TEXASINSTRUMENTS

C++ ODbject-Oriented Library

User’s M anual

MANUAL REVISION HISTORY

C++ Object-Oriented Library User’s Manual (2566801-0001)

Original 1SsUe March 1990

Copyright © 1990, 1991 Texas Instruments Incorporated

Permission is granted to any individual or institution to use, copy, modify, and
distribute this document, provided that this complete copyright and permission
notice is maintained, intact, in all copies and supporting documentation.

Texas Instruments Incorporated makes no representations about the suitability of
this document or the software described herein for any purpose. It is provided
"asis’ without express or implied warranty.

Texas Instruments Incorporated
Information Technology Group
Austin, Texas

C++ OBJECT-ORIENTED LIBRARY
USER'S MANUAL

CONTENTS

Paragraph Title Page
About ThisManual Xi
1 Overview of COOL
L1 IntroducCtion 1-1
12 AUAIENCE . ..o 1-1
1.3 Major Attributes 1-1
R Yo o 1-2
15 Parameterized Templates 1-2
16 SymbolsandPackagesc.ccoiiiiiii i 1-3
1.7 PolymorphicManagementiiiiiiiniiiiniiinaenn.. 1-3
1.8 ExceptionHandlingo i 1-4
I T O - 1-4
110 ClassHierarchy 1-7
2 String Classes
21 INtrodUCHIONo e 2-1
22 ReQUITEMENTS ...t e 2-1
23 SHING CIaSS . o .ttt 2-1
24 String EXample e 2-7
25 Auxiliary char* FUnCtions i 2-8
26 Regular EXpression Classovv it 2-10
2.7 Regular EXpression Examplet e 2-12
28 General String Class . ..o v vt 2-13
29 Genegral StringExample 2-20
3 Number Classes
31 INtrodUCtiono e 31
3.2 ReQUIFEMENTS . .ottt e 31
33 RANAOM ClaSS . . . oo et 3-1
34 RandomClassExample 3-3
35 CompleX Class . ..ot e 3-4
3.6 CompleX EXamplecouii i e 3-7
37 Rational Classovii i 39
3.8 Rational Example 3-13
39 BignUm Classttt e 314
310 BignumExample 3-19
311 RaANGE CIaSS. . . ottt 3-20
312 RangeEXample 321

COOL User's Manual \

Contents

Paragraph Title Page
4 System Interface Classes
A1 INtrodUCLioN . .. oo 4-1
42 REQUIFEMENIS . ottt e et e e e 4-1
43 Date TIMe ClasS . . oottt e 4-1
44 TimezonehFile 4-6
45 Country.h File . ..o 4-7
46 CaendarhFile 4-7
47 Date TImeEXample 4-8
A8 TIMEr ClasS . . vttt 4-9
49 Timer Example 4-10
5 Parameterized Templates
5.1 INtroduCtion o e 51
5.2 ReqUIrEMENTS e 51
53 Parameterized Classes. . ..o v vt e 5-2
B4 Templates 5-2
55 DECLARE and IMPLEMENT Examplec.ccoiiiiiiiin.... 5-5
56 Template EXample e 55
5.7 COOL C++ Control Programouiiiin i 5-7
58 CCCEXAMPIE ...t 5-9
5.9 Container Classesot 5-10
5.10 Container Example (Current POSItiON) 5-11
511 Herator Class . ..ot 5-12
512 Iterator EXampleo 5-13
513 Making Your Own Container Classesvvvivviniin i, 5-13
5.14 Storing Objectsin Container Classesovvi i 5-14
6 Ordered Sequence Classes
6.1 INtrodUCtionot 6-1
6.2 ReqQUIrEMENTS 6-1
6.3 VECIOr Class ... ii ittt e 6-2
6.4 Vector ExXample 6-8
B.5 SACK Class ..ottt e 6-9
6.6 Stack EXample i 6-12
B.7 QUEUE ClaSS ...ttt 6-13
6.8 QueueExample. 6-16
6.9 MatriX Classttt 6-16
6.10 MatriXx EXample oo e 6-19
7 Unordered Sequence Classes
7.1 INrOAUCHION . . oo 7-1
7.2 REQUITEMENES ...ttt et e e e e e e 7-1
7.3 LISt ClaSS oottt e 7-2
74 List Example e 7-8
75 Pair Class ..ot 7-10
7.6 ASSOCIAiON Classo 7-11

Vi

COOL User’'s Manual

Contents

Paragraph Title Page
7.7 Association Example 7-14
7.8 Hash TableClasst e 7-16
7.9 Hash TableExample ... e 7-19
8 Set Classes
8.1 INtrodUCtion 8-1
8.2 REQUITEMENTS ..ottt e et 8-1
8.3 S CIASS ... e 8-2
84 SetClassExampleo 8-5
85 Bit S ClasS. .ttt 8-6
86 Bit SetClassExample 8-11
9 Node and Tree Classes
9.1 INtrodUCHiON oot 9-1
9.2 ReQUIFEMENES ...ttt e e 9-1
9.3 Binary NodeClass 9-2
9.4 Binary Tree Classvvuiti it e 9-3
95 Binary_TreeExampleo 9-5
96 AVL_Tree Class . ..ottt et e 9-6
9.7 AVL TreeEXample ...t e e 9-9
9.8 N_NOAECIESS . . o oottt 9-10
9.9 D NOECIESS . . ottt ettt 9-12
910 N Tree Class . ovvi ittt e e 9-14
911 N_TreeEXample 9-17
10 Macros
101 INrOAUCION . o oottt e e e e e e 10-1
10.2 REQUITEIMENES . ..ttt ettt e e e e e e et e e 10-1
10.3 COOL PreproCessirvv e et et et e e et 10-1
104 defMacrO ..ot e 10-3
105 MACRO ..t 10-4
106 MACROEXaMPIES . ..ot e e e e e 10-5
107 ISSAME ..t 10-7
10.8 KEYARGS ... e 10-8
10,9 ONCE ONLY ..ttt e e e e e e 10-9
1010 EXPAND_ARGS ...t 10-9
1011 INITIALIZE .. e e e e e e e e e 10-10
10.12 IGNORE MACRO . ..ttt e e e e e 10-11
11 Symbols and Packages
111 INtrodUCHiON . . oot e 11-1
11.2 REQUITEMENS . .ottt e e e e e e e e e 11-1
11.3 Symboland Package Classes ..ot 11-2
114 Symbol Classo 11-2
115 Package Class . ..o vv ittt e et e 11-3
116 DEFPACKAGE ... i e e e 11-6
COOL User's Manual vii

Contents

Paragraph Title Page
11.7 Adding SymbolsToOA Package 11-8
11.8 EnumerationPackage 11-10
11.9 Enumeration Package Example 11-10

1110 TeXt PaCKage . . . oot e e 11-11
1111 Text Package EXample 11-12
11,12 Symbol Package oo e 11-16
11.13 Symbol Package Example i 11-17
1114 ONCE_ONLY Packagettt 11-19
11.15 Interfacingtothe SYM Package i, 11-20
11.16 Symbol Package Implementation i 11-20
12 Polymor phic Management
121 INtrOdUCHION . . o oot 12-1
122 REQUITEIMENES . ..ttt ettt e e e e e et e 12-1
123 GENENC CIaSS ..\ttt e 12-2
124 Runtime TypeChecking Example, 12-4
125 TYPE CASE MaCIO . ..ottt i e et e et 12-5
12.6 Heterogenous Container Example i, 12-5
127 ClaSSMACIO ..ottt e e e e e e 12-7
128 ClassMacro Example 12-9
13 Exception Handling
131 INtrOdUCLION . . oo e 13-1
132 REQUITEMENES . ..ttt ettt ettt e et 131
13.3 EXCEPONS . . oottt ettt 131
134 EXCEptioN Class ..ottt 13-2
135 Excp Handler Classoo it e 135
136 Excp Handler Example 13-6
13.7 Predefined Exception TypesAndHandlers 13-7
13.8 EXCEPTION .. e e e e 13-8
13.9 EXCEPTION EXamplesottt e i 13-9
1300 RAISE . o 13-11
1311 RAISEEXaMPIE ..o 13-12
1302 ST OP . . e 13-13
1313 STOPEXaMPIE ..ot e 13-14
13,04 VERIFY e 13-14
1315 VERIFY EXample. . ..o e 13-15
1316 Jump Handler Classot e e e 13-16
1317 IGNORE_ERRORS e e e 13-17
13.18 IGNORE_ERRORSExamplettt 13-18
13.19 ExceptionsasSymbolsandPackage i 13-18
13.20 User-Defined EXCEption TYPES . ..ot v it 13-19
14 COOL Methodology
141 INtrOdUCLION . . o oot e 14-1
142 REQUITEIMENES . ..ttt ettt e e et e e e e 14-1
14.3 Preprocessor and MaCroSo v ittt e e e 14-1
144 Parameterized Templates ..o e e e 14-2

viii

COOL User’'s Manual

Contents

Paragraph Title Page
145 Symbolsand Packagesttt e 14-4
14.6 Polymorphic Managementt 14-4
14,7 EXCEPIIONS . . ottt et e 14-6
14.8 Coding Styleand Conventionst 14-7

1481 Naming Conventionst e 14-8
14.8.2 ClassHeader FileOrganizationttt 14-9
14.8.3 Private, Protected, and PublicDatao, 14-10
1484 DOoCUMEeNtation 14-10
1485 Source Code Indentationt 14-10
14.8.6 Error Message ResourcePackage 14-10
14.8.7 Regression Test SUite.ot 14-11
14.8.8 Source Code System Independence 14-11
14.8.9 BUuild Procedure e e 14-11
149 ClassHierarchy 14-11

Glossary
Index

COOL User's Manual ix

Contents

X COOL User’'s Manual

ABOUT THISMANUAL

I ntroduction

Thismanual contains supporting software documentation for COOL (the C++ Object-
Oriented Library), acollection of classes, objects, templates, and macrosthat extend the
capabilities of the C++ language. This manual iswritten for high level C++ application
programmers using COOL.

Organization

This manual is divided into the following sections and appendixes:

e Section1l: Overview of COOL — Contains an introduction tothe COOL User’'s
Manual and what to expect on the various classes, macros and other enhancements
to C++ that are discussed in this manual.

e Section2: String Classes— Describesacollection of classesthat implement tex-
tual operations and functions.

e Section 3: Number Classes — Contains information on a collection of numeri-
cally oriented classes that augment the built-in numerical datatypesto provide ex-
tended precision, range-checked types, and complex numbers.

e Section 4: System Interface Classes — Includes classes for calculating the date
and time in different time zones and countries.

e Section5: Parameterized Templates— Describes classes that allow aprogram-
mer to design and implement a class template without specifying the data type.

e Section6: Ordered Sequence Classes— Describes classesthat areacollection of
basic data structures that implement sequential-access data structures as
parameterized classes.

e Section7: Unordered Sequence Classes— Describesclassesthat areacollection
of basic data structures that implement random-access data structures as
parameterized classes.

e Section8: Set Classes— Describes classes that implement two basic data struc-
tures for random-access set operations.

e Section 9: Node and Tree Classes — Describes classes that are a collection of
basic data structures that implement several standard tree data structures as
parameterized classes.

e Section10: Macros— Describes COOL macro facilitiesthat are an extensionto
the standard ANSI C macro preprocessor functions and that support constant sym-
bols, keyword and body arguments, parameterized templates and complex expres-
sion evaluation.

e Section 11: Symbols and Packages — Describes functions that manage error
message textual descriptions, provide polymorphic extensions to C++ for object
type and contents queries, and support sophisticated symbolic computing.

COOL User's Manual

Xi

About This Manual

Section 12: Polymorphic Management — Describesthe mode of managingsym-
bolic constants and run-time symbolic objects and packages. Also discusses the
Generic class, which isinherited by most COOL classes and manipulates lists of
symbols to manage type information.

Section 13: Exception Handling— Describes COOL exception handling, which
isaraise, handle, and proceed mechanism that usesthe COOL symbolic computing

capability.

Section 14: COOL Methodology — Describes COOL methodology for manag-
ers and programmers who need a brief overview of COOL components, organiza-
tion, style guide, and rules for extending the library.

Conventions Certain conventions and syntax are used to simplify presentation of the material in this
manual. The following typographical conventions are used:

e Boldtype— Wordsin bold represent either a class name, macroname, or system-
supplied function.

e |talics— Wordsinitalicsenclosed by anglebrackets or parenthesisrepresent argu-
ments that must be specified by the programmer .

e Monowidth Font — Program examplesand output are distinguished by monowidth
font of a smaller size than the norma manual text. (e.g., #include <cooL/
String. h>)

Program examples illustrated and defined within this manual are supplied and can be

found inthe ~coor/examples subdirectory. Examples are given specific file names by

appending a suffix of .c to its associated paragraph number. For example, the string
class example in paragraph 2.4 is located in the 2 . 4 . ¢ filename.

Each section includes a requirements paragraph that states the prerequisites needed to

understand and use the components or functions being discussed.

Certain paragraphs document reference information about COOL classes. A speciad

format is used that provides the following information:

e ClassName
e Synopsis
o Base Classes
e Friend Classes
e Constructors
e Member Functions
e Friend Functions
e Example Program
Xii COOL User’'s Manual

OVERVIEW OF
COOL

I ntroduction

1.1 The C++ Object-Oriented Library (COOL) is a collection of classes, objects,
templates, and macros to extend the capabilities of the C++ language for developing
complex problem-solving applications. Significant languagefeaturesin COOL, such as
parameterized types, symbolic computing, and exception handling, are implemented
with sophisticated C++ macro facilities. These features and facilities are designed to
enhance and improve a programmer’ s development capability.

COOL isintended to ssimplify the programming task by allowing the programmer to
concentrate on the application problem to be solved, not on implementing base data
structures, macros, and classes. In addition, COOL provides asystem-independent soft-
ware platform on which applicationsare built. An application built on top of COOL will
compile and run on any platform supporting COOL.

Audience

1.2 This manual isintended for use by programmers who have a working under-
standing of the C++ programming language as implemented by AT&T in release 2.0
and type system. Users must also understand the distinction between the concepts and
principles associated with overloaded operators and friend functions.

Features

1.3 Themgjor features that COOL contributes to enhancing the C++ language and
program development capabilities are the following:

e An enhanced macro language that supports constant symbols, keyword and body
arguments, parameterized templates, and complex expression evaluation

e Parameterized templates that allow development of type-independent container
classes with support for multiple iterators

e Dynamic, user-defined packages implementing name spaces for symbols with
names, property lists, and values

e Polymorphic features derived from the Generic virtua base class that supports
is_type of () run-time queries

o A multi-level exception handling mechanism that utilizes macros, symbols, and a
global error package and is similar in design to the Common Lisp Condition Han-
dling System

e A collection of classes implementing a wide range of useful data structures and
system interface facilities

Thefollowing paragraphs provide brief descriptions of each of thesefeatures, including
information on what to expect in the rest of this manual on the various classes, macros,
symbolic computing facilities, exception handling routines, and methodol ogy that gov-
erns the implementation of COOL.

COOL User's Manual

Overview Of COOL

M acros

14 Supplied aspart of thelibrary, the COOL macro facilitiesare an extension to the
standard ANSI C macro preprocessor functions and are portable and compiler-inde-
pendent. The COOL macro facilities support constant symbols, keyword and body ar-
guments, parameterized templates, and complex expression evaluation. Some macros,
such as those that support the parameterized types, are implementations of theoretical
design papers published by Bjarne Stroustrup.

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. The preprocessor complies with the draft
ANSI C specification with the exception that trigraph sequences are not implemented.

The preprocessor was modified to recogni ze a#pr agma defmacr o statement to allow a
programmer to define powerful extensions to the C++ language. The proposed draft
ANSI C standard indicates that extensions and changes to the language and features
implemented in a preprocessor and compiler should be made by using the #pragma
statement. The COOL preprocessor follows this recommendation and uses this asthe
means by which all macro extensions are made. The#pragma defmacr o statement is
the single hook through which features such as the class macro, parameterized tem-
plates, and polymorphic enhancementsareimplemented. This statement also allows ar-
bitrary filter programs and macro expanders to be run on C++ code fragments passing
through the preprocessor. Note, however, that once a macro is expanded, the resulting
code is conventional C++ 2.0 syntax acceptable to any conforming C++ translator or
compiler.

Parameterized
Templates

15 Parameterized classes adlow a programmer to design and implement a
classtemplatewithout specifying thedatatype. Theuser canthen customizethe classby
specifying the type when it is used in a program. Parameterized classes can be thought
of asmetaclassesin that only one source base needsto be maintained to support numer-
ous variations of atype of class.

An important and useful type of parameterized class is known as a container class. A
container classis aspecial type of parameterized class where you put objects of a par-
ticular type. A container classthat is parameterized over an object does not require the
user to manage memory, activatedestructors, and so forth. COOL suppliesseveral com-
mon container class data structures that include support for the notion of a built-in
iterator that maintains acurrent position in the container object. Multipleiteratorsinto
an instance of a container class are provided by the Iterator <Type> class.

Parameterized classes are handled by the COOL C++ Control program (CCC) which
provides all functions of the origina CC program and also supports the COOL
preprocessor and COOL macro language. CCC controls and invokesthe various com-
ponents of the compilation process.

Alternately, a declaration macro can be used to instantiate a type-independent
parameterized class for a user-specified type by introducing a new valid type name to
the compiler. An implementation macro defines the member functions of a
parameterized class for a specific type.

COOL User’'s Manual

Overview Of COOL

Symbolic Computing 1.6 COOL symbol and package facilities provide the following capabilities:

e management of error message text
¢ polymorphic extensions to C++ for object type and contents queries

e support of sophisticated symbolic computing normally unavailable in conventional
languages

A package provides a relatively isolated namespace for various COOL components
called symbols. Each symbal is unique within its own package and can be used as a
dynamic enumeration type. Symbols also can be run-time variables, with the package
acting asasymbol table. Those symbolsgrouped into aparticular packagearesaidto be
owned (interned) by that package. The package system provides logical groupings of
symbols that support relationships established between named objects and the values
they contain. COOL provides severa kinds of macros to simplify the usage and ma-
nipulation of symbols and packages.

COOL supportsefficient and flexible symbolic computing by providing symbolic con-
stantsand run-time symbol objects. Y ou can create symbolic constants at compile-time
and dynamically create and manipulate symbol objectsin a package at run-time by us-
ing any of several smple macros or by directly manipulating the objects.

TheCOOL DEFPACK AGE macro alowsfor efficient symbol and package manipula-
tion and is used extensively by COOL to implement run-time type checking and type
guery. DEFPACK AGE alows an application programmer to declare apackagethat is
a program-wide database of constant symbolswith associated default values and prop-
erties.

A package is created with the DEFPACK AGE macro, and macros for adding and re-
trieving constant symbols in a package are defined with the DEFPACKAGE_SYM-
BOL macro. In COOL, the most common types of packages are made easier to use by
the following four macros:

e enumeration_package

e symbol_package

o text_package

e once_only

Polymor phic
M anagement

17 COOL supports enhanced polymorphic management capabilities
with a programmer-sel ectable collection of macros, classes, symbolic constants, run-
time symbolic abjects, and dynamic packages. TheGeneric class, combined with mac-
ros, symbols, and packages, provides efficient run-time object type checking, object
guery, and enhanced polymorphic performance unavailablein the C++ language other-
wise.

COOL User's Manual

Overview Of COOL

COOL supplies several sophisticated macros that augment and manipul ate the symbol
objects maintained in the COOL global symbol package. Thetype of andis type of
virtual member functions provide run-time object type query support. Describe and
print member functions provide symbolic and val ue-oriented output capabilities. In ad-
dition, the typecase macro provides an efficient mechanism analogous to the C++
switch statement for branching, based upon an object’ s type. Finaly, the class macro
provides a user-extensible system for querying an object to determine if a particular
named function or data member accessor is available or should be created.

Exception Handling

1.8 COOL exception handling is araise, handle, and proceed mechanism that uses
the COOL symbolic computing capability. When a program encounters an anomaly it
can;

¢ Represent the anomaly in an exception object

e Announce that the anomaly has occurred by raising the exception
¢ Provide ways to deal with the anomaly by defining handlers

e Proceed from the anomaly by invoking a handler

The exception handling facility provides an exception class, an exception handler class,
aset of predefined subclasses of the exception class, and a set of predefined exception
handler functions. Each exception subclass is provided a default exception handler
function that iscalled if no other exception handler is established. The Exception class
inheritsfrom the Generic classto facilitate run-time type checking and query of excep-
tion objects.

Also available are macros that simplify the process of creating exceptions, raising ex-
ceptions, and ignoring raised exceptions. These include the EXCEPTION, RAISE,
STOP, VERIFY, and IGNORE_ERRORS macros.

There are six predefined exception type classes provided as part of COOL. TheExcep-
tion class is the base class from which specialized exception subclasses are derived.
Derived from Exception are Warning, System_Signal, System_Error, Fatal, and
Error. These classes are ameans of saving the statusinformation that represents a par-
ticular problem or condition, and communicating this information to the appropriate
exception handler.

Classes

19 Following is a brief description of the various classes developed for COOL to
supplement the development of C++ applications.

NOTE: All COOL constants such as TRUE and FAL SE are defined in the ~cooLr/
misc.h header file.

String Classes— The String class provides dynamic, efficient strings for a C++ appli-
cation. Theintent isto provide efficient char* -like functionality that frees the program-
mer from worrying about memory allocation and deall ocation problems, yet retainsthe
speed and compactness of a standard char* implementation. All typical string opera-
tions are provided including concatenation, case-sensitive and case-insensitive lexical
comparison, string search, yank, delete, and replacement.

COOL User’'s Manual

Overview Of COOL

The Regexp class provides a convenient mechanism to present regular expressionsfor
complex pattern matching and replacement and utilizesthe built-in char* datatype. The
Gen_String class provides general purpose, dynamic strings for a C++ application
with support for reference counting, delayed copy, and regular expression pattern-
matching. Theintent isto provide asophisticated character string function for the appli-
cation programmer. The Gen_String class combines the functions of the String and
Regexp classes, along with reference counting and self-garbage collection, to provide
advanced character string manipulation.

Number Classes—TheNumber classesareacollection of numerically oriented classes
that augment the built-in numerical datatypesto provide such features as extended pre-
cision, range-checked types, and complex numbers. Included are the Random, Com-
plex, Rational, Bignum and Range classes.

The Random class implements five variations of random number generator objects.
The Complex class implements the complex number type for C++ and provides basic
arithmetic and trigonometric functions, conversion to and from built-in types, and sim-
ple arithmetic exception handling. The Rational class implements an extended preci-
sion rational data type for inadequate round-off or truncation results from the built-in
numerical data types. The Bignum class implements near-infinite precision integer
arithmetic. Finally, the parameterized Range<Type> class enables arbitrary user-de-
fined rangesto be implemented in C++ classes. Typically, thisis used with other num-
ber classes to select arange of valid values for a particular numerical type.

System I nter face Classes— System Interface classesinclude classesfor calculating the
date and time in different time zones and countries and measuring the time duration
between two points in some application program.

The Date_Time class executes time zone-independent date and time functions. This
classalso supportsall time zonesintheworld, along with several special casesrequiring
alternate handling based upon political or daylight saving time differences. TheTimer
classis publicly derived from the Generic class and provides an interface to system
timing. It alows a C++ program to record the time between areference point (mark)
and now.

Ordered Sequence Classes — The ordered sequence classes are a collection of basic
data structures that implement sequential access data structures as parameterized
classes, thus alowing the user to customize a generic template to create a user-defined
class. The ordered sequence classes include Vector, Stack, Queue and Matrix.

The Vector <Type> classimplements single dimension vectors of auser-specifiedtype.
The Stack<Type> class implements a conventional first-in, last-out data structure,
while the Queue<Type> class implements a conventional first-in, first-out data struc-
ture. These two classes each hold a user-specified datatype. TheM atrix<Type> class
implements two-dimensional arithmetic matrices for a user-specified numeric data
type. The Vector, Stack, and Queue classes can be dynamic in size.

Unor der ed Sequence Classes— The unordered sequence classes are acollection of ba-
sic data structures that implement random access data structures as parameterized
classes, thus allowing the user to customize a generic template to create a specific user-
defined class. The unordered sequence classes include List, Pair, Association, and
Hash_Table.

The List<Type> class implements Common Lisp style lists providing a collection of
member functionsfor list manipulation and management. A list consistsof acollection
of nodes, each of which contains areference count, apointer to the next nodein thelist,
and a data element of a user-specified type.

COOL User's Manual

Overview Of COOL

ThePair<T1,T2> classimplementsan association between one object and another. The
objects may be of different types, with the first representing the key of the pair and the
second representing the value of the pair. The Association<Ktype,Vtype> classis pri-
vately derived from the Vector <Type> class and implements a collection of pairs. As
above, thefirst of the pair is called the key and the second of the pair iscalled thevalue.
The Hash_Table<Ktype, VType> class implements hash tables of user-specified types
for the key and the value.

Set Classes— The set classesimplement two basic data structuresfor random-access set
operations as parameterized classes, thus allowing the user to customize ageneric tem-
plate to create a specific user-defined class. The set classes include Set and Bit_Set.

The Set<Type> class implements random access sets of objects of a user-specified
type. Classical set operations such as union, intersection, and difference are available.
The Set<Type> class is publicly derived from the Hash_Table<KType,VType> class
and is dynamic in nature.

The Bit_Set class implements efficient bit sets. These bits are stored in an arbitrary-
length vector of bytes (unsigned char) large enough to represent the specified number of
elements. Elements can beintegers, enumerated val ues, constant symbolsfrom the enu-
meration package, or any other type of object or expression that resultsin an integral
value.

Nodeand Tree Classes— The node and tree classes are a collection of basic data struc-
turesthat implement several standard tree data structures asparameterized classes, thus
allowing the user to customize ageneric template to create aspecific user-defined class.
The node and tree classes include Binary_Node, Binary _Tree, N-Node, D-Node,
AVL_Treeand N-Tree.

TheBinary_Node<Type> classimplements parameterized nodes for binary trees. The
Binary Tree<Type> class implements simple, dynamic, sorted sequences in a tree
where each node has two subtree pointers. The AVL_Tree<Type> class implements
height-balanced, dynamic, binary trees. The AVL_Tree<Type> class is publicly de-
rived from the Binary_Tree<Type> class.

The N_Node<Type,nchild> class implements parameterized nodes of a static size for
n-ary trees. The D_Node<Type,nchild> classimplements parameterized nodes of ady-
namic sizefor n-ary trees. TheD_Node<Type,nchild> classisdynamicinthe sensethat
the number of subtrees allowed for each nodeisnot fixed. D_Node<Type,nchild> uses
the Vector <Type> class to support run-time growth characteristics. Both classes are
parameterized for the type and a number of subtrees that each node may have. In addi-
tion, the constructorsfor both classes are declared in the public section to alow the user
to create nodes and control the building and structure of an n-ary treewherethe ordering
can have a specific meaning, as with an expression tree.

TheN_Tree<Node, Type,nchild> classimplementsn-ary trees, providing theorganiza-
tional structurefor atree (collection) of nodeswhile knowing nothing about the specific
type of node used. N_Tree<Node, Type,nchild> is parameterized over a node type, a
datatype, and subtree count, where the node specified must have a data member of the
same Type asthe tree class. The subtree count indicates the number of possible subtree
pointers (children) from any given node. Two node classes are provided, but others can
also be written.

Symbol and Package Classes—The Symbol and Package classesimplement thebasic
COOL symbolic computing support as standard C++ classes. These classes support
efficient and flexible symbolic computing by providing symbolic constants and run-
time symbol objects. Programmers can create symbolic constants at compile-timeand
manipulate symbol objects in a package at run-time

COOL User’'s Manual

Overview Of COOL

The Symbol classimplements the notion of a symbol that has a name with an optional
valueand property list. Symbolsareinterned into a package, whichisamechanism for
establishing separate name spaces. Because each named symbol is unique within its
own package, the symbol can be used as adynamic enumeration type and asarun-time
variable. The Package class implements a package as a hash table of named symbols
and includes support for adding, retrieving, updating, and removing symbols at run-
time. It also provides completion and spelling correction on a Symbol name.

Generic Class— The Generic classisinherited by most other COOL classes and ma-
nipulates lists of symbols to manage type information. Generic adds run-time type
checking and object queries, formatted print capabilities, and a describe mechanism to
any derived class. The COOL class macro automatically generates the necessary im-
plementation code for these member functions in the derived classes. A significant
benefit of this common base class is the ability to declare heterogeneous container
classes parameterized over the Generic* type. These classes, combined with the cur-
rent position and parameterized iterator class, lets the programmer manipulate collec-
tions of objects of different typesin a simple, efficient manner.

Class Hierarchy

1.10 TheCOOL classhierarchy implementsarather flat inheritancetree, asopposed
to the deeply nested SmallTalk model. All complex classes are derived from the Ge-
nericclass, tofacilitate run-timetype checking and object query. Simpleclasses are not
derived from the Generic class due to space efficiency concerns. The parameterized
container classesinherit from abase classthat resultsin shared type-independent code.
Thisreduces code replication when aparticul ar type of container is parameterized sev-
eral timesfor different objectsin an application. The COOL classhierarchy isshownon
the following page.

COOL User's Manual

Overview Of COOL

Pair <Ktype, Vtype>
Range
Range<Type>
Rational
Complex
Bignum
Generic
String
Gen_String
Regexp
Vector
Vector<Type>
Association<Ktype,Vtype>
List_Node
List_ Node<Type>
List
List<Type>
Date Time
Timer
Bit_Set
Exception
Warning
Error
System_Error
Verify Error
Fatal
System_Signal
Excp_Handler
Jump_Handler
Hash Table
Set
Hash_Table<Key,Value>
Package
Matrix
Matrix<Type>
Queue
Queue<Type>
Random
Stack
Stack<Type>
Symbol
Binary_Node
Binary Node<Type>
Binary Tree
Binary Tree<Type>
AVL_Tree<Type>
N_Node<Type,nchild>
D_Node<Type,nchild>
N_Tree<Type,Node,nchild>

COOL User’'s Manual

STRING CLASSES

I ntroduction

2.1 Thestring classesareacollection of classesthat implement textual operationsand
functionsfor such commonplace actions as string concatenation and growth, allocating
memory as necessary and thus relieving the programmer from having to perform this
task manually. The following classes and functions are discussed in this section:

e String Class

e char* functions

e Regular Expression (Regexp) Class
e Gen_String Class

The String class implements dynamic, efficient strings comparable to the built-in
char* datatype. Thechar* functions supplement the standard ANSI C character string
library functions. Taken together, String and char* provide such operations as string
concatenation, case sensitive and insensitive comparison, case conversion, and simple
string search and replacement. The Regexp class provides a convenient mechanism to
present regular expressionsfor complex pattern matching and replacement, and usesthe
built-in char* data type. The Gen_String class combines the functions of the String
and Regexp classes, along with reference counting and garbage collection, to provide
sophisticated character string manipulation.

Requirements

2.2 This section assumes you have a working knowledge of the C++ language and
type system. In addition, you should understand the distinction between the concepts
associated with overloaded operators, member functions, and friend functions.

String Class

2.3 The String class provides dynamic, efficient strings for a C++ application. The
intent is to provide efficient char*-like functionality that frees the programmer from
worrying about memory allocation and deall ocation problems, yet retains the speed and
compactness of a standard char* implementation. The String classis dynamic in the
sensethat if an operation such as concatenate results in more characters than can fit in
the currently allocated memory, the string object grows according to some established
size or ratio value. All typical string operations are provided, including concatenation,
case-sensitive and case-insensitive lexical comparison, string search, yank, delete, and
replacement. System-provided functionsfor char* such asstrcpy and strcmp areaso
available via the overloaded operator char* member function.

Cool User’s Manual

Sring Classes

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

String — Simple, dynamic string class
#include <COOL/String.h>

Generic

None

String ();
Initializes an empty string object with a default size block of memory alocated to
hold 100 characters.

String (char c);
Initializes a string object with the default size block of memory alocated to hold
100 characterswhose valueisthe string consisting of thesingle character argument
C.

String (const char* str);
Initializes a string object with the default size block of memory alocated to hold
100 characters whose value is copied from the specified character string argument
str. If strislonger, the string will grow as necessary.

String (const char* str, long size);
Allocates an initia block of memory the size of the integer argument size, or the
strlen(str), whichever islonger. and initializes the string object with a copy of the
specified character string str. Note that sizeisignored if less than the length of str.

String (const String& str);
Duplicates the size and value of another string object str.

String (const String& str, long size);
Duplicates the size and value of another string object str by allocating an initial
block of memory to be the size of the integer argument size, or strlen(str), which-
ever islonger. The duplication is then performed.

inline long capacity () const;
Returnsthe maximum number of charactersthat the string object can contain with-
out having to grow.

void clear ();
Resetsthe NUL L character string terminator to the beginning of the string and sets
the length of the string to zero.

Boolean insert (const char* str, long position);
Inserts a copy of the sequence of characters pointed to by the first argument str at
the zero-relative index provided by the second argument position. This function
returns TRUE if successful; otherwise, thisfunction returns FAL SE if theindex is
out of range.

inline operator char* () const;
Provides an implicit conversion operator to convert a string object into a char*
value.

String operator + (char c);
Overloads the addition operator to concatenate a single character ¢ to a string ob-
ject. This function returns a new string object, via the stack.

Cool User’'s Manual

Sring Classes

String operator + (const char* str);
Overloads the addition operator to concatenate a copy of the specified character
seguence str to a string object. This function returns a new string object.

String operator + (const String& str);
Overloadsthe addition operator to concatenate the value of the specified string ob-
ject str to a string object. This function returns a new string object.

inline String& operator= (char c);
Overloads the assignment operator to assign asingle character ¢ to a string object.
This function returns a reference to the modified string object.

inline String& operator= (const char* str);
Overloads the assignment operator to assign a copy of the specified character se-
guence str to a string object. This function returns a reference to the modified
string object.

inline String& operator= (const String& str);
Overloadsthe assignment operator to assign theval ue of another string object str to
a string object. This function returns a reference to the modified string object.

inline String& operator += (char ¢);
Overloadsthe addition-and-assignment operator to concatenate asingle characterc
to astring object. This function returns a reference to the modified string object.

inline String& operator += (const char* str);
Overloadsthe addition-and-assignment operator to concatenate acopy of the speci-
fied character sequencestr to astring object. Thisfunction returnsareferencetothe
modified string object.

inline String& operator+= (const String& str);
Overloads the addition-and-assignment operator to concatenate the value of the
specified string object str to astring object. Thisfunction returnsareferenceto the
modified string object.

inline Boolean operator== (const char* str) const;
Overloadsthe equality operator for the String class. ThisfunctionreturnsTRUE if
the string object and str have the same sequence of characters; otherwise, thisfunc-
tion returns FAL SE.

inline Boolean operator== (const String& str) const;
Overloadsthe equality operator for the String class. ThisfunctionreturnsTRUE if
the strings have the same sequence of characters; otherwise, this function returns
FALSE.

inline Boolean operator!= (const char* str) const;
Overloads the inequality operator for the String class. This function returns
FAL SE if the string object and str have the same sequence of characters; other-
wise, this function returns TRUE.

inline Boolean operator!= (const String& str) const;
Overloads the inequality operator for the String class. This function returns
FAL SE if the strings have the same sequence of characters; otherwise, this func-
tion returns TRUE.

Cool User’s Manual

Sring Classes

inline Boolean operator < (const char* str) const;
Overloadsthe less-than operator for the String class. Thisfunction returns TRUE
if the string is lexically less than the char* s argument; otherwise, this function
returns FAL SE.

inline Boolean operator< (const String& str) const;
Overloads the less-than operator for the String class. Thisfunction returns TRUE
if the string object islexically less than the string str; otherwise, this function re-
turns FAL SE.

inline Boolean operator<= (const char* str) const;
Overloads the less-than-or-equal operator for the String class. This function re-
turns TRUE if the string object islexically lessthan or equal to the character string
argument str; otherwise, this function returns FAL SE.

inline Boolean operator<= (const String& str) const;
Overloads the less-than-or-equal operator for the String class. This function re-
turns TRUE if the string object is lexically less than or equal to the string str;
otherwise, this function returns FAL SE.

inline Boolean operator > (const char* str) const;
Overloads the greater-than operator for the String class. This function returns
TRUE if thestring objectislexically greater than the character string argument str;
otherwise, this function returns FAL SE.

inline Boolean operator> (const String& str) const;
Overloads the greater-than operator for the String class. This function returns
TRUE if the string object is lexically greater than the string str; otherwise, this
function returns FAL SE.

inline Boolean operator>= (const char* str) const;
Overloadsthe greater-than-or-equal operator for the String class. Thisfunctionre-
turns TRUE if the string object is lexically greater than or equal to the character
string argument str; otherwise, this function returns FAL SE.

inline Boolean operator>= (const String& str) const;
Overloadsthe greater-than-or-equal operator for the String class. Thisfunctionre-
turns TRUE if the string object is lexically greater than or equal to the string str;
otherwise, this function returns FAL SE.

inline char operator[] (long position) const;
Returnsthe character at the zero-relativeindex position in the string. If theindex is
invalid, an Error exception is raised.

Boolean remove (long start, long end);
Removes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes. This function returns TRUE if successful; otherwise, this
function returns FAL SE if either one or both of the indexesis out of range.

Boolean replace (const char* str, long start, long end);
Replaces the sequence of characters between the zero-relative inclusive start and
exclusive end indexes with a copy of the character string str. This function returns
TRUE if successful; otherwise, this function returns FAL SE if either one or both
of the indexes is out of range.

void resize (long size);
Resizes the string object to hold at least size number of characters. If sizeisless
than existing length, the operation is ignored.

2-4

Cool User’'s Manual

Friend Functions:

Sring Classes

void reverse ();
Reverses the ordering of the characters in a string object.

inline void set_alloc_size (int size);
Updatestheall ocation growth sizeto be used when the growth ratiois zero. Default
allocation growth sizeis 100 bytes. If sizeisnegative, an Error exception israised.

inline void set_growth_ratio (float ratio);
Updatesthe growth ratio for thisinstance of astring to the specified value. When a
string needsto grow, the current sizeismultiplied by theratio to determinethe new
size. If ratio is negative, an Error exception is raised.

void sub_string (String& str, long start, long end);
Setsthe given string object str to the valuesin the character sequence between the
zero-relative inclusive start and exclusive end indexes provided. Thisfunction re-
turns TRUE if successful; otherwise, thisfunction returnsFAL SE if either one or
both of the indexes is out of range.

void yank (String& str, long start, long end);
Deletes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes provided and sets the given string object str to the value of
the deleted characters.

inline friend double atof (const String& str);
Returns the floating-point value represented by the characters in the string object
Str.

friend int atoi (const String& str);
Returns the decimal radix integer number represented by the characters in the
string object str.

friend long atol (const String& str);
Returnsthe decimal radix long number represented by the charactersin thestring
object str.

friend String& capitalize (String& str);
Capitalizes each word and returns the modified string str. A word is defined to be
any subsequence of aphanumeric characters. This function returns a reference to
the modified string str.

friend String& downcase (String& str);
Convertsany al phabetic character tolowercase. Thisfunctionreturnsareferenceto
the modified string str.

friend String& left_trim (String& strl, const char* str2);
Removes any prefix occurrence of the character string str2 specified from the
string object str1. This function returns a reference to the modified string str1.

friend ostream& operator<< (ostreamé& 0s, const String& str);
Overloads the output operator for a reference to a string object str.

inline friend ostream& operator<< (ostreamé& os, const String* str);
Overloads the output operator for a pointer to a string object str.

friend String& right_trim (String& strl, const char* str2);
Removesany suffix occurrence of the character string str2 specified fromthestring
object strl. This function returns a reference to the modified string str2.

Cool User’s Manual

Sring Classes

friend String& strcat (String& str, char c);
Returns the result of concatenating the character ¢ to a string object str.

friend String& strcat (String& stri, const char* str2);
Returnsthe result of concatenating acopy of the specified character stringstr2to a
string object stri.

friend String& strcat (String& strl, const String& str2);
Returnstheresult of concatenating one string object str2 to another str1. Thisfunc-
tion returns the modified string object stri.

friend char* strchr (const String& str, char ¢);
Overloadstheforward character search function to scan fromleft to right througha
string object str for the first occurrence of the character ¢. This function returns a
pointer to the character if found; otherwise, this function returns NULL.

friend String& strcpy (String& strl, char str2);
Overloads the copy string function to copy the character string str2 into a string
argument str1. Thisfunction returns areference to the modified string object str1.

friend String& strcpy (String& strl, const char* str2);
Overloadsthe copy string function to copy the specified character string str2 argu-
ment into the string argument str 1. Thisfunction returnsareferenceto the modified
string object strl.

friend String& strcpy (String& strl, const String& str2);
Overloadsthe copy string function to copy the second string argument str2 into the
first string argument str1. This function returns the modified string object str1.

inline friend long strlen (const String& str);
Returns the number of characters (length) of the string str.

friend String& strncat (String& strl, const char* str2, int length);
Returns the result of concatenating a copy of some number of characters length
from acharacter string str2 to astring object str1. Thisfunction returnsareference
to the modified string object strl.

friend String& strncat (String& strl, const String& str2, int length);
Returns the result of concatenating some number of characters length from one
string object str2 to another strl. This function returns areference to the modified
string object stri.

friend String& strncpy (String& strl, const char* str2, long length);
Overloadsthe strncpy function to copy some number of characterslength fromthe
specified character string argument str2 into the string argument str1. Thisfunction
returns a reference to the modified string object stri.

friend char* strrchr (const String& str, char c);
Overloadsthe backward character search function to scan fromright toleft through
a string object str for the last occurrence of a specific character ¢. This function
returns a pointer to the character if found; otherwise, this function returnsNULL .

friend double strtod (const String& str, char** ptr = NULL);
Returns the doubl e floating-point value represented by the charactersin the string
object str. If the second argument is non-zero, it is set to the character terminating
the converted string value.

Cool User’'s Manual

Sring Classes

friend long strtol (const String& str, char** ptr = NULL, int radix=10);
Returns the long number represented by the charactersin the string object str. If a
specific radix is not specified, the default radix is decimal. If the second argument
is non-zero, it is set to the character terminating the converted string value.

friend String& trim (String& strl, const char* str2);
Removes any occurrence of the character string str2 from the string object str1.
This function returns a reference to the modified string str1.

friend String& upcase (Sring& str);
Convertsany al phabetic character touppercase. Thisfunctionreturnsareferenceto
the modified string str.

String Example

O©CoOoO~NOUOThWN =

2.4 The following program declares a string object and manipulates it with several
member functionsto changeitsvalue and size. Several of the overloaded String opera-
tors are used to perform concatenation and assignment. After each operation iscom-
plete, the resulting string is printed.

#include <COOL/String.h>

int main (void) {

String sl = "Hello”;

cout << "sl reads: ” << sl << ”"\n”";

cout << ”"sl has ” << strlen (sl) << ” characters\n”;
sl=s1l+""+"world!”;

cout << "sl reads: ” << sl << ”"\n”;

cout << ”"sl has ” << strlen (sl) << ” characters\n”;
sl.reverse () ;

cout << ”sl backwards reads: ” << sl << ”"\n";
sl.reverse () ;

cout << "sl upper case: ” << upcase (sl) << ”\n”;

cout << ”s1 lower case: ” << downcase (sl) << ”"\n”;
cout << ”"sl capitalized: ” << capitalize (sl) << "\n”;
sl.insert (”"Oh, ", 0);

cout << "slreads: ” << sl << ”\n";

sl.replace (”Goodbye”, 4, 9);

cout << "sl reads: ” << sl << ”"\n”";

sl.remove (4, 12);

cout << "sl reads: ” << sl << "\n”;

exit (0) ;

}

// Create string

// Display string
// Display count
// Concatenate

// Display string
// Display count
// Reverse order
// Output string

// Restore order

// Uppercase value
// Downcase value
// Capitalized value
// Insert at start
// Display string
// Replace ‘hello’
// Display string
// Remove ‘goodbye’
// Display string
// Exit with OK

Line 1lincludesthe COOL string.h class header file. Line 3 declares anew string ob-
jectandinitializesit withthewordze11o. Lines4 and 5 output the value of the string
and the number of charactersit contains. Line 6 usesthe overloaded oper ator + to con-
catenate a space and the word wor1d to the string object. The result and new character
count isthen output in lines 7 and 8. Line 9 uses ther ever se() member function to re-
versethe order of thelettersin the string object. Again, theresultsare output in line 10,
and then reverted back in line 11 with another call to the samereverse member function.
Lines 12 through 14 change the case and output the value of the string object. Line 15
adds some | ettersto the string obj ect by using theinsert() member function, and line 16
outputs the result. Lines 17 through 19 replace and then remove letters from the string
object with the result outputted after each operation. Finally, the program ends with a
valid exit code.

Cool User’s Manual

Sring Classes

The following shows the output from the program:

sl reads: Hello

sl has 5 characters

sl reads: Hello world!

sl has 12 characters

sl backwards reads: !dlrow olleH
s1 upper case: HELLO WORLD!
sl lower case: hello world!
sl capitalized: Hello World!
sl reads: Oh, Hello World!
sl reads: Oh, Goodbye World!
sl reads: Oh, World!

Auxiliary char*

Fu

nctions

Name:
Synopsis:

Friend Functions:

25 The ANSI C specification requires a collection of standard functions for
the manipulation of character strings. However, these do not include some of the more
useful functionsfound inthe String and Gen_String classes. In addition, many generic
character string functions can beused for the Stringand Gen_String objects because of
the implicit operator char*. For these reasons, the following auxiliary functions are
defined for the built-in char* data type:

char* — Auxiliary character string functionality
#include <COOL /char.h>

Boolean is_equal (const char* strl, const char* str2, Boolean
case_flag = FALSE);
Comparestwo character stringsfor lexical equality. If case flagis TRUE, acase-
sensitive comparison is made; otherwise, a case-insensitive comparison is made.
This function returns TRUE if the strings are lexically equivalent; otherwise, this
function returns FAL SE.

Boolean is_not_equal (const char* strl, const char* strl, Boolean
case_flag = FALSE);
Compares two character strings for lexical inequality. If case flag is TRUE, a
case-sensitive comparison is made; otherwise, a case-insensitive comparison is
made. This function returns FALSE if the strings are lexically equivalent;
otherwise, this function returns TRUE.

Boolean is_equal_n (const char* strl, const char* strl, int n,
Boolean case flag = FAL SE);
Compares n charactersin two character stringsfor lexical equality. If case flagis
TRUE, a case-sensitive comparison is made; otherwise, a case-insensitive com-
parisonismade. Thisfunctionreturns TRUE if the stringsarelexically equivalent;
otherwise, this function returns FAL SE.

Boolean is_ge (const char* strl, const char* str2, Boolean case flag);
Thisfunctionreturns TRUE if strlislexically greater than or equal to str2; other-
wise, this function returns FAL SE. If case flagis TRUE, a case-sensitive com-
parison is made; otherwise, a case-insensitive comparison is made.

Boolean is_gt (const char* strl, const char* strl, Boolean case flag);
This function returns TRUE if strl islexicaly greater than str2; otherwise, this
function returns FAL SE. If case flag is TRUE, a case-sensitive comparison is
made; otherwise, a case-insensitive comparison is made.

2-8

Cool User’'s Manual

Sring Classes

Boolean is _le (const char* strl, const char* strl, Boolean case flag);
ThisfunctionreturnsTRUE if strlislexically lessthan or equal to str2; otherwise,
thisfunctionreturnsFAL SE. If case_flagisTRUE, acase-sensitivecomparisonis
made; otherwise, a case-insensitive comparison is made.

Boolean is It (const char* strl, const char* str2, Boolean case flag);
Thisfunctionreturns TRUE if strlislexically lessthan str2; otherwise, thisfunc-
tionreturns FAL SE. If the Boolean valueis TRUE, acase-sensitive comparison is
made; otherwise, a case-insensitive comparison is made.

char* c_capitalize (char* str);
Capitalizes each word and returns a pointer to the modified character string str. A
word is defined to be any subsequence of a phanumeric characters.

char* ¢_downcase (char* str);
Converts any alphabetic character to lowercase. This function returnsa pointer to
the modified character string str.

char* c_left_trim (char* strl, const char* str2);
Removesany prefix occurrence of the second character stringstr2 in thefirst char-
acter string strl1. This function returns a pointer to the modified character string
stri.

char* c_right_trim (char* strl, const char* str2);
Removes any suffix occurrence of the second character string str2 in thefirst char-
acter string strl1. This function returns a pointer to the modified character string
strl.

char* c_trim (char* strl, const char* str2);
Removesany occurrence of the second character string str2 from thefirst character
string str1. This function returns a pointer to the modified character string stri.

char* c_upcase (char* str);
Converts any alphabetic character to uppercase. This function returnsa pointer to
the modified character string str.

char* strfind (const char* strl, const char* str2, long& start =0,
long& end = 0);

This function provides simple pattern matching by scanning from left to right
through strl for the first occurrence of str2. An asterisk can be used to match for
zero or more characters and a question mark can be used to match for any single
character. This function returns a pointer to the start of the matching character
string and updates the zero-relative start and end indexes if found; otherwise, this
function returns NULL.

char* strrfind (const char* strl, const char* str2, long& start =0,
long& end = 0);

This function provides simple pattern matching by scanning from right to left
through strl for the first occurrence of str2. An asterisk can be used to match for
zero or more characters and a question mark can be used to match for any single
character. This function returns a pointer to the start of the matching character
string and updates the zero-relative start and end indexes if found; otherwise, this
function returns NULL.

Cool User’s Manual

Sring Classes

char* strndup (const char* str, long position);
Duplicatesinto anew character string allocated off the heap the sequence of char-
acters from the beginning of str to the zero-relative index position. This function
returns a pointer to the duplicated character string if successful; otherwise, this
function returns NUL L if the index is out of range.

char* strnremove (char* str, long position);
Removes the sequence of characters from the beginning of str to the zero-relative
index position. This function returns a pointer to the new character string if suc-
cessful; otherwise, this function returns NULL if the index is out of range.

char* stryank (char* str, long position);
Deletes the sequence of characters from the beginning of str to the zero-relative
index position and allocates anew character string off the heap whose valueisthe
deleted characters. Thisfunction returnsapointer to theyanked string if successful;
otherwise, this function returns NULL if the index is out of range.

void reverse (char* str);
Reverses the order of charactersin a string str.

Regular Expression
(Regexp) Class

26 A regular expression allows a programmer to specify complex patterns
that can be searched for and matched against the character string of astring object. Inits
simplest form, aregular expression is a sequence of characters used to search for exact
character matches. However, many times the exact sequence to be found is not known,
or only amatch at the beginning or end of astringisdesired. The COOL regular expres-
sion classimplementsregular expression pattern matching asisfound and implemented
in many UNIX commands and utilities.

Theregular expression class provides a convenient mechanism for specifying and ma-
nipulating regular expressions. The regular expression object alows specification of
such patterns by using the following regular expression meta-characters:

n Matches at beginning of aline

$ Matches at end of aline

. Matches any single character

[] Matches any character(s) inside the brackets

] Matches any character(s) not inside the brackets

- Matches any character in range on either side of a dash
* Matches preceding pattern zero or more times

+ Matches preceding pattern one or more times

? Matches preceding pattern zero or once only

0 Saves a matched expression and usesit in alater match

Notethat more than one of these metacharacters can be used in asingle regular expres-
sionin order to create complex search patterns. For example, the pattern [*ab1-91 says
to match any character sequence that does not begin with the characters -~ an~ followed
by numbers in the series one through nine.

2-10

Cool User’'s Manual

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

Sring Classes

Regexp — Regular expression pattern matching
#include <COOL/Regexp.h>

Generic

None

inline Regexp ();
Creates an empty regular expression object with no private data initialized.

inline Regexp (char* str);
Creates a regular expression object and initializes all the data by compiling the
regular expression provided str. If aninvalid regular expression is detected, an Er-
ror exception is raised.

Regexp (const Regexp& reg);
Creates aregular expression object and duplicates the values and regular expres-
sion of another regular expression object reg.

void compile (char* str);
Createsacompiled version of theargument str and placesitinthe privatedata. If an
invalid expression is detected, an Error exception is raised.

Boolean deep_equal (const Regexp& reg) const;
Determines if two regular expressions are the same, including the zero-relative
start and end indexes of the last successful pattern match. This function returns
TRUE if the expressions are the same; otherwise, this function returns FAL SE.

inline long end () const;
Returnsan index into the last character string successfully searched for by thisob-
ject. The index corresponds to the character after the last item found. If none are
found, its valueis NULL.

Boolean find (char* str);
Searches for the aready specified regular expression in str. If the expression is
found, this function returns TRUE and sets start and end indexes appropriately. If
an invalid expression is detected, an Error exception is raised.

inline Boolean is valid () const;
Returns TRUE if avalid regular expression is compiled and ready for use; other-
wise, this function returns FAL SE.

Boolean operator== (const Regexp& reg) const;
Determines if two regular expression objects are the same. This function returns
TRUE if the expression objects are the same; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Regexp& reg) const;
Determines if two regular expression objects are not the same. This function re-
turns TRUE if the expression objects are different; otherwise, thisfunctionreturns
FALSE.

inline void set_invalid ();
Invalidates the current regular expression of the regular expression object.

Cool User’s Manual

2-11

Sring Classes

inline long start () const;
Returnsan index into the last character string successfully searched for by this ob-
ject. The index corresponds to the beginning of the last item found. If none are
found, its valueisNULL.

Regular Expression 2.7 The following program utilizes the COOL regular expression class to set
Example and search for several patterns. Thefirstisasimplecharacter match, the second asearch
for arange of characters, and thethird acomplex match using sub-patterns. Each pattern
and string to be searched is printed, along with the ensuing matches and zero-relative

index results.
1 #include <COOL/Regexp.h> // Include Regexp header file
2 int main (void) {
3 Regexp rl (”Hi There”) ; // Define simple pattern
4 char* dummy = ”“Garbage Hi There garbage” ; // Dummy string to search
5 cout << ”"The pattern ‘Hi There’ ”; // Output start of sentence
6 if (rl.find (dummy) == TRUE) // Pattern found in string?
7 cout << "is”; // Yes, indicate affirmative
8 else
9 cout << ”"is not”; // Else indicate failure
10 cout << ” found in ‘" << dummy << “\n” ; // And complete output
11 cout << "The pattern begins at zero-relative index ” << rl.start () ;
12 cout << ” and ends at index ” << rl.end () << ”\n”;
13 rl.compile (” [*abl-91"); // Complex pattern
14 strcpy (dummy, "abl23QQ59ba”) ; // Another string to search
15 cout << "The pattern ‘' [*abl-9]"' ”; // Output start of sentence

2-12 Cool User’s Manual

Sring Classes

if (rl.find (dummy) == TRUE) // Pattern found in string?
cout << "is”; // Yes, indicate affirmative
else
cout << "is not”; // Else indicate failure
cout << ” found in ‘" << dummy << “\n”; // And complete output

cout << "The pattern begins at zero-relative index ” << rl.start ();
cout << ” and ends at index ” << rl.end () << ”\n”;

rl.compile (”"O(.*xr)"); // New complex pattern
strepy (dummy, ”That’s OK for me. OK for you?”) ;// Another string to search
cout << "The pattern ‘O(.*xr) " ”; // Output start of sentence
if (rl.find (dummy) == TRUE) // Pattern found in string?

cout << "is”; // Yes, indicate affirmative
else

cout << ”"is not”; // Else indicate failure
cout << ” found in ‘" << dummy << “\n”; // And complete output

cout << "The pattern begins at zero-relative index ” << rl.start () ;
cout << ” and ends at index ” << rl.end () << ”\n”;
exit (0); // Exit with OK status

Line 1 includes the COOL regexp.h class header file. Lines 3 and 4 define asimple
regular expression object and a character string pattern to be searched. Lines 5 through
12 search the character string for the pattern, output the search results, and indicate the
zero-relative start and end points. Line 13 sets a more complex pattern for the regular
expression object. This says to match anything that does not begin with the characters
»ab~ followed by numbersin the seriesonethrough nine. Lines 15 through 22 search the
character string for this pattern, output the search results, and indicate the zero-relative
start and end points. Line 23 establishes a pattern that matches a character string begin-
ning with »o~, followed by a sequence of zero or more characters that ends with »r.
Lines 25 through 32 search the character string for this pattern, output the search resullts,
and indicate the zero-relative start and end points.

The following shows the output from the program:

The pattern ‘Hi There’ is found in ‘Garbage Hi There garbage’
The pattern begins at zero-relative index 8 and ends at index 16
The pattern ‘' [*abl-9]’ is found in ‘abl123QQ59ba’

The pattern begins at zero-relative index 5 and ends at index 6
The pattern ‘O(.*r)’ is found in ‘That’s OK for me. OK for you?’
The pattern begins at zero-relative index 7 and ends at index 24

General String
Class

28 The Gen_String class provides general-purpose, dynamic strings for
a C++ application with support for reference counting, delayed copy, and regular ex-
pression pattern matching. Theintent isto provide sophisticated character string func-
tionality for the application programmer. Asinthe String class, interface and member
functionsprovidetypical string operations. Theseinclude concatenation, case-sensitive
and case-insensitivelexical comparison, string search, yank, delete, and replacement. In
addition, the inclusion of regular expression pattern matching facilitates easier use of
this COOL class with character strings. The Gen_String classis dynamic in the sense
that if an operation such as concatenate results in more characters than can fit in the
currently allocated memory, the string object grows according to some established size
or ratio value. System-provided functionsfor char* such asstrcpy and strcmp arealso
available via the overloaded operator char* member function.

Cool User’s Manual

2-13

Sring Classes

Name:

Synopsis:
Base Classes:
Friend Classes:

Constructors:

Member Functions:

Gen_String — Dynamic genera-purpose strings with reference counting, delayed
copy, and regular expression pattern matching

#include <COOL/Gen_String.h>
Generic
None

Gen_String ();
Initializes an empty general string object with the default size block of memory
allocated to hold 100 characters.

Gen_String (char c);
Initializesageneral string object with the default size block of memory allocated to
hold 100 characters whose valueisthe general string consisting of the single char-
acter c.

Gen_String (const char* str);
Initializes a general string object with a default size block of memory allocated to
hold 100 characters whose value is a copy of the specified character string argu-
ment str. If strislonger than 100 char thentheGen_String will grow to the correct
size.

Gen_String (const char* str, long size);
Allocates an initial block of memory of size size or size strlen(str) whichever is
longer. Initializes the general string object with a copy of the specified character
string str.

Gen_String (const Gen_String& str);
Duplicates the size and value of another general string object str.

Gen_String (const Gen_String& str, long size);
Duplicates the size and value of another general string object str and allocates an
initial block of memory of size size or size strlen(str) whichever is longer.

inline long capacity () const;
Returns the maximum number of charactersthat the general string object can con-
tain without having to grow.

void clear ();
Resetsthe NUL L character sting terminator to the beginning of the general string
and sets the length of the genera string to zero.

void compile (char* str);
Creates a compiled version of the regular expression argument str. If an invalid
expressionisdetected, an Error exceptionisraised. Notethat you must recompilea
regular expression after changing the value of the Gen_String object.

inline long end () const;
Returns an index into the last string successfully searched for by this object. The
index corresponds to the character after the last item found, or if none was found
(the uninitialized state) then its value isNULL.

Boolean find ();
Searchesfor thefirst or next established regular expression in the string. If the ex-
pressionisfound, thisfunction returns TRUE and sets start and end appropriately.
If an invalid expression is detected, an Error exception is raised.

2-14

Cool User’'s Manual

Sring Classes

Boolean insert (const char* str, long position);
Inserts a copy of the sequence of charactersstr at the zero-relative index position.
Thisfunction returns TRUE if successful; otherwise, thisfunction returnsFAL SE
if the index position is out of range.

inline Boolean is valid () const;
Returns TRUE if avalid regular expression is compiled and ready for use; other-
wise, this function returns FAL SE.

Gen_String operator + (char c);
Overloads the addition operator to concatenate a single character ¢ to a genera
string object. This function returns a new general string object.

Gen_String operator + (const char* str);
Overloadsthe addition operator to concatenate acopy of the character sequencestr
to a general string object. This function returns a new general string object.

Gen_String operator + (const Gen_String& str);
Overloads the addition operator to concatenate the value of another general string
object str to ageneral string object. This function returns anew general string ob-
ject.

inline Gen_String& operator= (char c);
Overloadsthe assignment operator to assign asingle character c to ageneral string
object. This function returns a reference to the modified general string object.

inline Gen_String& operator= (const char* str);
Overloadsthe assignment operator to assign acopy of the character sequencestr to
agenera string object. This function returns a reference to the modified general
string object.

inline Gen_String& operator= (const Gen_String& str);
Overloadsthe assignment operator to assign the val ue of another general string ob-
ject str to ageneral string object. Thisfunction returns areference to the modified
general string object.

Gen_String& operator += (char c);
Overloadsthe addition-and-assignment operator to concatenate asingle characterc
to ageneral string object. Thisfunction returns areference to the modified general
string object.

Gen_String& operator += (const char* str);
Overloadsthe addition-and-assignment operator to concatenate a copy of thechar-
acter sequencestr to ageneral string object. Thisfunction returnsareferenceto the
modified general string object.

Gen_String& operator += (const Gen_String& str);
Overloads the addition-and-assignment operator to concatenate the value of an-
other general string object str to ageneral string object. Thisfunction returnsaref-
erence to the modified general string object.

inline Boolean operator== (const char* str) const;
Overloads the equality operator for the Gen_String class. This function returns
TRUE if the general string object and str have the same sequence of characters;
otherwise, this function returns FAL SE.

Cool User’s Manual

2-15

Sring Classes

inline Boolean operator == (const Gen_String& str) const;
Overloads the equality operator for the Gen_String class. This function returns
TRUE if the general strings have the same sequence of characters; otherwise, this
function returns FAL SE.

inline Boolean operator!= (const char* str) const;
Overloads the inequality operator for the Gen_String class. This function returns
FAL SE if the general string object and str have the same sequence of characters;
otherwise, this function returns TRUE.

inline Boolean operator!= (const Gen_String& str) const;
Overloadsthe inequality operator for the Gen_String class. This function returns
FAL SE if thegeneral strings have the same sequence of characters; otherwise, this
function returns TRUE.

inline Boolean operator < (const char* str) const;
Overloads the less-than operator for the Gen_String class. This function returns
TRUE if the genera string object islexically lessthan str; otherwise, thisfunction
returns FAL SE.

inline Boolean operator< (const Gen_String& str) const;
Overloads the less-than operator for the Gen_String class. This function returns
TRUE if the general string object islexically lessthan str; otherwise, thisfunction
returns FAL SE.

inline Boolean operator <= (const char* str) const;
Overloads the | ess-than-or-equal operator for the Gen_String class. Thisfunction
returns TRUE if thegeneral string object islexically lessthan or equal tostr; other-
wise, this function returns FAL SE.

inline Boolean operator <= (const Gen_String& str) const;
Overloadsthe less-than-or-equal operator for the Gen_String class. Thisfunction
returns TRUE if thegeneral string object islexically lessthan or equal tostr; other-
wise, this function returns FAL SE.

inline Boolean operator > (const char* str) const;
Overloads the greater-than operator for the Gen_String class. This function re-
turns TRUE if the general string object islexically greater than str; otherwise, this
function returns FAL SE.

inline Boolean operator> (const Gen_String& str) const;
Overloads the greater-than operator for the Gen_String class. This function re-
turns TRUE if the general string object islexically greater than str; otherwise, this
function returns FAL SE.

inline Boolean operator>= (const char* str) const;
Overloads the greater-than-or-equal operator for the Gen_String class. Thisfunc-
tion returns TRUE if the general string object islexically greater than or equal to
str; otherwise, this function returns FAL SE.

inline Boolean operator >= (const Gen_String& str) const;
Overloadsthe greater-than-or-equal operator for the Gen_String class. Thisfunc-
tion returns TRUE if the general string object islexically greater than or equal to
str; otherwise, this function returns FAL SE.

inline char operator[] (long position) const;
Returnsthe character at the zero-rel ativeindex position into the general string. If an
invalid index is specified, an Error exception is raised.

2-16

Cool User’'s Manual

Friend Functions:

Sring Classes

inline operator char* () const;
Provides an implicit conversion operator to convert a string object into a char*
value.

Boolean remove (long start, long end);
Removes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes provided. This function returns TRUE if successful; other-
wise, this function returns FAL SE if either one or both of the indexes is out of
range.

Boolean replace (const char* str, long start, long end);
Replaces the sequence of characters between the zero-relative inclusive start and
exclusive end indexes with a copy of the character string str. This function returns
TRUE if successful; otherwise, this function returns FAL SE if either one or both
of the indexes is out of range.

void resize (long size);
Resizesthe genera string object to hold at least size characters. If anegativesizeis
specified, an Error exception is raised.

void reverse ();
Reverses the ordering of the charactersin a genera string object. The Reg_Exp
does not need to be recompiled.

inline void set_alloc_size (int size);
Updatestheallocation growth sizeto be used when the growth ratioiszero. Default
allocation growth sizeis 100 bytes. If anegative sizeis specified, anError excep-
tion is raised.

inline void set_growth_ratio (float ratio);
Updatesthe growth ratio for thisinstance of aGen_String class object to the speci-
fied value. When astring needsto grow, the current sizeismultiplied by theratio to
determinethe new size. If anegative growth ratio is specified, an Error exception
israised.

inline long start () const;
Returns an index into the last string successfully searched for by that object. The
index corresponds to the beginning of the last item found.

void sub_string (Gen_String& str, long start, long end);
Setsthe general string object str to the val ues of the character sequence between the
zero-relative inclusive start and exclusive end indexes provided. Thisfunction re-
turns TRUE if successful; otherwise, if the start or end indexes or both are out of
range, an Error exceptionisraised and, if the handler returns, thisfunction returns
FALSE.

void yank (Gen_String& str, long start, long end);
Deletes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes provided and sets the string object str to the value of the de-
leted characters. If the start or end or both indexesare out of range, anError excep-
tionisraised.

inline friend double atof (const Gen_String& str);
Returnsthe floating-point value represented by the charactersin the general string
object str.

Cool User’s Manual

2-17

Sring Classes

friend int atoi (const Gen_String& str);
Returnsthe decimal radix integer number represented by the charactersin the gen-
eral string object str.

friend long atol (const Gen_String& str);
Returnsthe decimal radix long number represented by the charactersin the general
string object str.

friend Gen_String& capitalize (Gen_String& str);
Capitalizeseach word and returnsthe modified general stringstr. A wordisdefined
to be any subsequence of aphanumeric characters, but it must start with aletter.
This function returns a reference to the modified general string.

friend Gen_String& downcase (Gen_String& str);
Convertsany al phabetic character tolowercase. Thisfunctionreturnsareferenceto
the modified general string str.

friend Gen_String& left_trim (Gen_String& strl, const char* str2);
Removes any prefix occurrence of the character string str2 in the general string
object str1. This function returns a reference to the modified general string strl.

friend ostream& operator<< (ostreamé& 0s, const Gen_String& str);
Overloads the output operator for a reference to ageneral string object.

inline friend ostream& operator << (ostreamé& o0s, const Gen_String* str);
Overloads the output operator for a pointer to a general string object.

friend Gen_String& right_trim (Gen_String& strl, const char* str2);
Removes any suffix occurrence of the character string str2 in the general string
object strl. This function returns a reference to the modified general string strl.

friend Gen_String& strcat (Gen_String& str, char ¢);
Concatenatesasingle character cto ageneral string object str. Thisfunctionreturns
areference to the modified general string str.

friend Gen_String& strcat (Gen_String& strl, const char* str2);
Concatenatesacopy of the character string str2 to ageneral string object str1. This
function returns a reference to the modified general string strl.

friend Gen_String& strcat (Gen_String& strl, const Gen_String& str2);
Concatenates one general string object str2 to another general string object str1.
This function returns a reference to the modified general string strl.

friend char* strchr (const Gen_String& str, char ¢);
Overloadstheforward character-search function to scan from left to right through a
general string object str for thefirst occurrence of aspecific character c. Thisfunc-
tion returns a pointer to the character if found; otherwise, this function returns
NULL.

friend Gen_String& strcpy (Gen_String& str, char c);
Returns the result of copying a single character into a general string object str.
This function returns a reference to the modified general string object str.

friend Gen_String& strepy (Gen_String& strl, const char* str2);
Copiesacharacter string str2 into ageneral string object str1. Thisfunction returns
areference to the modified general string object strl.

2-18

Cool User’'s Manual

Sring Classes

friend Gen_String& strepy (Gen_String& strl, const Gen_String& str2);
Copies one general string object str2 into another general string object strl. This
function returns a reference to the modified general string object strl.

inline friend long strlen (const Gen_String& str);
Returns the number of characters (length) of the general string str.

friend Gen_String& strncat (Gen_String& strl, const char* str2, int n);
Concatenates some number of charactersn from acharacter string str2 to ageneral
string object str1. This function returns areference to the modified general string
object strl. If a negative length is specified, an Error exception is raised.

friend Gen_String& strncat (Gen_String& strl, const Gen_String& str2,
int n);
Concatenates some number of characters n from one genera string object str2 to
another general string object str1. Thisfunction returnsareferenceto the modified
general string object strl. If a negative length is specified, an Error exceptionis
raised.

friend Gen_String& strncpy (Gen_String& strl, const char* str2,
long n);
Copies some number of charactersn from the character string str2 into the general
string object strl. This function returns a reference to the modified general string
object strl. If a negative number is specified, an Error exception is raised.

friend char* strrchr (const Gen_String& str, char c);
Overloads the backward character-search function to scan from right to left
through a general string object str for the last occurrence of a specific character c.
This function returns a pointer to the character if found; otherwise, this function
returns NUL L.

friend double strtod (const Gen_String& str, char** ptr = NULL);
Returnsthe doubl e fl oating-point val ue represented by the charactersin the general
string object str. If the second argument is non-zero, it is set to the character termi-
nating the converted string value.

friend long strtol (const Gen_String& str, char** ptr=NULL,
int radix=10);
Returnsthe long number represented by the charactersin the general string object
str. If no specific radix is specified, the default radix isdecimal. If the second argu-
ment iS non-zero, it is set to the character terminating the converted string value.

friend Gen_String& trim (Gen_String& strl, const char* str2);
Removes any occurrence of the character string str2 in the general string object
strl. This function returns a reference to the modified general string strl.

friend Gen_String& upcase (Gen_String& str);
Convertsany al phabetic character touppercase. Thisfunctionreturnsareferenceto
the modified general string str.

Cool User’s Manual

2-19

Sring Classes

General String

Example

NP

e
RPBoo~vourw

12
13
14
15
16
17
18

20
21
22
23
24
25
26
27

29
30
31
32
33

35
36

38
39
40
41
42
43

45
46

29 The following program uses the COOL general string class to show the
combined functionality of the previous two classes. A general string object is declared
and manipul ated with several of the member functionsto changeitsvalueand size. Sev-
era of the overloaded Gen_String operatorsare used to perform concatenation and as-
signment. After each operation is complete, the resulting string is printed. In addition,
several search operations using thebuilt-in regular expression capability are performed.
The first isasimple character match, the second a search for arange of characters, and
the third a complex match using sub-patterns. Each pattern and string to be searched is

printed, along with the ensuing matches and zero-relative index resullts.

#include <COOL/Gen_String.hs>
#include <COOL/Regexp.h>

int main (void) {
Gen_String sl = "Hello”;
cout << "sl reads: ” << sl << ”\n”;
cout << ”sl has ” << strlen (sl) << ” characters\n”;
sl=sl+""+"world!”;
cout << "sl reads: ” << sl << ”\n”;
cout << ”"sl has ” << strlen (sl) << ” characters\n”;
sl.reverse () ;
cout << "sl backwards reads: ” << sl << ”"\n”;
sl.reverse () ;
cout << ”"sl upper case: ” << upcase (sl) << ”\n”;
cout << "sl lower case: " << downcase (sl1) << ”\n”;
cout << "sl capitalized: ” << capitalize (sl) << ”\n”;
sl.insert (”"Oh, ", 0);
cout << "sl reads: ” << sl << ”\n”;
sl.replace (”"Goodbye”, 4, 9);
cout << ”sl reads: ” << sl << ”\n";
sl.remove (4, 12);
cout << "sl reads: ” << sl << ”\n”";
sl.compile ("Hi There”) ;
sl = "Garbage Hi There garbage” ;
cout << "The pattern ‘Hi There’ ”;
if (sl1.find () == TRUE)
cout << "is”;
else
cout << "is not”;
cout << ” found in ‘" << sl << ”"\n”;
cout << “The pattern begins at zero-relative index ” << sl
cout << ” and ends at index ” << sl.end () << ”\n”;
sl.compile (" [*abl-9]1") ;
sl = "abl23QQ59ba”;
cout << “"The pattern ' [*abl-9]' ”;
if (sl.find () == TRUE)
cout << "is”;
else
cout << ”"is not”;

cout << ” found in '” << sl << ”"\n”;

// Include header file
// Include header file

// Create string

// Display string
// Display count

// Join characters
// Display string
// Display count

// Reverse order

// Output string

// Restore order

// Uppercase value
// Downcase value
// Capitalized value
// Insert at start
// Display string
// Replace‘hello’
// Display string
// Remove ‘goodbye’
// Display string
// Define pattern
// Set search string
// Output start

// Pattern found?
// Yes

// Else failure
// Complete output

.start () ;

// Complex pattern
// Search string
// Output start

// Pattern found?
// Yes

// Else failure
// Complete output

cout << "The pattern begins at zero-relative index ” << sl.start () ;

cout << ” and ends at index ” << sl.end () << ”\n”;
sl.compile("0(.*r)");
sl ="That’s OK for me. OK for you?”;
cout << "The pattern ‘O(.*xr) " ”;
if (s1.find () == TRUE)
cout << "is”;

// New pattern

// Another string
// Output start
// Pattern found?
// Yes

2-20

Cool User’'s Manual

47
48
49
50
51
52
53

Sring Classes

else
cout << ”"is not”; // Else failure
cout << ” found in ‘" << sl << ”"\n”; // Complete output

cout << "The pattern begins at zero-relative index ” << sl.start () ;
cout << ” and ends at index ” << sl.end () << ”\n”;
exit (0); // Exit with OK

Line 1 includes the COOL cen_string.h class header file, and line 2 includes the
Regexp . h Classheader file. Lines4through 9 perform the assignment and concatenation
of a character string to the Gen_String object. Lines 10-15 reverse the order of the
charactersin the object and manipulate the case of the words. Lines 16 through 21 in-
sert, replace, and remove various characters from the object. Lines 22 through 31 dem-
onstrate use of the built-in regular expression functionintheGen_String classwith the
first pattern used in the Regexp example program. Lines 32 through 41 demonstrate use
of the second pattern, and lines 42 through 51 use the third pattern from the regular
expression program. Finally, line 52 ends the program with a successful status.

The following shows the output from the program:

sl reads: Hello

sl has 5 characters

sl reads: Hello world!

sl has 12 characters

sl backwards reads: !dlrowolleH

sl upper case: HELLO WORLD!!

sl lower case: hello world!

sl capitalized: Hello World!

sl reads: Oh, Hello World!

sl reads: Oh, Goodbye World!

sl reads: Oh, World!

The pattern ‘Hi There’ is found in ‘Garbage Hi There garbage’
The patter begins at zero-relative index 8 and ends at index 16
The pattern ' [*abl-9]’ is found in ‘ab123QQ59%ba’

The pattern begins at zero-relative index 5 and ends at index 6
The pattern ‘O(.*r)’ is found in ‘That’s OK for me. OK for you?’
The pattern begins at zero-relative index 7 and ends at index 24

Cool User’s Manual

2-21

Sring Classes

2-22 Cool User’s Manual

NUMBER CLASSES

I ntroduction

3.1 Simpleintegers and floating point numbers do not provide the needed precision
for many applications. The COOL number classes are a collection of numerically-ori-
ented classes that augment the built-in numerical datatypesto provide such featuresas
extended precision, range-checked types, and complex numbers. Thefollowing classes
are discussed in this section:

Random

Complex

Rational

e Bignum

Range<Type,|bound,hbound>

TheRandom classimplementsfivevariations of random number generators, each with
different portahility, efficiency, and accuracy characteristics. The Complex classim-
plementsthe complex number typefor C++ and providesall of thebasic arithmetic and
trigonometric functions. The Rational class usesthe built-inlong typetoimplement an
extended precision rational data type for resolving inadequate round-off or truncation
resultsfrom the built-in numerical datatypes. The Bignum classimplements near-infi-
nite precision integers and arithmetic by using adynamic bit vector.

Finally, the parameterized Range< Type,|bound,hbound> class enables arbitrary user-
defined rangesto beimplemented in C++ classes. Typically, but not always, thisisused
with other number classes to select a range of valid values for a particular numerical
type. Features and advantages of the Range<Type,|bound,hbound> class are discussed
in this section. However, complete details of parameterized templates are provided in
Section 5.

Requirements

3.2 Thissection discussesthe number classes. It assumesyou have aworking under-
standing of the C++ language and type system. In addition, you should understand the
distinction between the concepts and ideas associated with overloaded operators and
friend functions.

Random Class

3.3 The Random class provides several general-purpose random number generators
with features similar to those asdescribed in Chapter 7 of Numerical Recipesin C, writ-
ten by William T. Vetterling. The ANSI C draft standard specifies the rand function
that allows an application to obtain successive random numbers in a sequence by re-
peated calls. However, system-supplied random number generators in the form of the
rand function are generally of poor quality, particularly when true random distribution
over arange is important. Specifically, system random number generators are almost
alwayslinear congruential generatorswhose periodisnot very large. The ANSI C draft
specification only requiresamodulusof 32767, which can bedisastrousfor such usesas
a Monte Carlo integration over 10"6 points.

COOL User's Manual

Number Classes

Name:
Synopsis:

Base Classes:
Friend Classes:

Constructor:

Member Functions:

The Random class alows an application to select one of five types of random number
generators based upon the usage requirements. Each generator function has different
characteristicsand all are defined to be of type RNG_TYPE. The SIMPL E and SHUF-
FLE functions use the system rand function, while the ONE_CONGRUENTIAL,
THREE_CONGRUENTIAL, and SUBTRACTIVE functions are self-contained,
portable implementations. Following are descriptions of each generator function.

e SIMPLE — When speed is the predominant concern, this function uses the sys-
tem-suppliedrand function. Although sequential correlation of successiverandom
valuesisahigh probability, thisfunction at least ensures that the value’ sleast sig-
nificant bits are as random as the most significant bits. In many system random
generator functions, the value' sleast significant bits are often lessrandom than the
most significant bits.

e SHUFFLE — This function uses the rand function and a shuffling procedure.
Random numbers are stored in abuffer and selected randomly to break up sequen-
tial correlation in the system-supplied function.

e ONE_CONGRUENTIAL — This self-contained function uses one linear con-
gruential generator instead of the rand function to implement a portable random
number generator. This guarantees no sequential correlation between the random
values returned.

e THREE_CONGRUENTIAL — This portable function uses three linear con-
gruential generatorsto implement arandom number generator whose period is es-
sentially infinite and has no sequential correlations.

e SUBTRACTIVE — Thisfunctionimplementsaportabl e random number genera-
tor that does not use linear congruential generators, but rather an original subtrac-
tive member function as suggested in Volume 2 of The Art of Computer
Programming, written by Donald Knuth.

Random — A portable, user-selectable random number generator
#include <COOL/Random.h>

Generic

None

Random (RNG_TYPE r_type, int seed = 1, float lower = 0.0,
float upper = 100.0);
Constructor for a floating-point random number generator that initializes the se-
lected random number generator function with the user-supplied seed value.

inline double next ();
Returns the next double floating-point random number within the user-specified
range.

inlineint get_seed () const;
Returns the seed value for the currently-selected random number generator.

inlinevoid set_rng (RNG_TYPE r_type);
Sets the random number generator function to the type selected by the user and
reinitializes the state.

COOL User’'s Manual

Number Classes

inline void set_seed (int seed);
Sets the seed value for the currently-selected random number generator function
and reinitilizes the state.

Random Class 34 The following program creates two random number objects using different

Example generator algorithms to provide random numbers within a specified range. The first
uses a variation of the system-supplied rand () function and the second a three-con-
gruential linear generator. Ten random numbers from each are sent to the standard out-

put.
1 #include <COOL/Random.h> // Include Random class
2 int main (void) {
3 Random rl (SIMPLE, 1, 3.0, 9.0) ; // Simple rand () generator
4 Random r2 (THREE_CONGRUENTIAL,1,5.0,11.5); // Highly random generator
5 cout << ”"Simple random number generator:\n”; // Output banner title
6 for (inti=0; 1 <10; i++) // Generate 10 random numbers
7 cout << ” Randomnumber ” << i << ” is: ” <<rl.next () << "\n”;
8 cout << "\nThree congruential linear random number generator:\n” ;
9 for (1=0; 1 <10; i++) // Generate 10 random numbers
10 cout << ” Randomnumber ” <<1i<<” is: ” <<r2.next () << "\n”;
11 return (0) ; // Exit with OK status
12)

Line lincludesthe COOL random.h class header file. Line 3 definesarandom number
generator of type stveLe for generator numberswithin therange of 3.0t0 9.0 inclusive.
Line 4 defines arandom number generator of type TureEE_coNGrRUENTIAL fOr generator
numberswithin the range of 5.0to 11.5 inclusive. Lines 6 through 10 utilize two loops
to generate and print ten numbersfrom each generator. Finally, the program endswith a
valid exit code.

The following shows the output from the program:

Simple random number generator:

Random number 0 is: 6.08322
Random number 1 is: 4.05445
Random number 2 is: 4.85191
Random number 3 is: 6.2072

Random number 4 is: 8.68577
Random number 5 is: 4.03042
Random number 6 is: 7.21339
Random number 7 is: 4.35858
Random number 8 is: 5.96864
Random number 9 is: 3.74832

Three congruentia linear random number generator:
Random number 0 is: 9.26861

Random number 1 is: 7.84012
Random number 2 is: 8.84924
Random number 3 is: 7.22898
Random number 4 is: 8.1818
Random number 5 is: 7.3039

Random number 6 is: 9.18251
Random number 7 is: 10.0368
Random number 8 is: 10.3957
Random number 9 is: 11.3929

COOL User’'s Manual 3-3

Number Classes

Complex Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

3.5 TheComplex classisacomplex number classwith basi carithmetic support, con-
version to and from built-in types, and simple arithmetic exception handling. A Com-
plex object has the same precision and range of values as the system-defined type
double. Implicit conversion to the system-defined types short, int, long, float, and
double is supported by overloaded operator member functions. However, despite the
implicit conversions and judicious use of inline member functions, arithmetic opera-
tions on Complex objects are slower than the built-in types.

The Complex class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditionsis detected or an
attempt to convert from aComplex with no value to a built-in type is made, an excep-
tionisraised. The programmer can provide an exception handler at runtimeto takecare
of thisproblem. If no such handler isavail able, an error messageis printed and program
execution ends. See Section 13 for more information on the COOL exception handling
mechanism.

Complex — Complex number class
#include <COOL/Complex.h>
None

None

inline Complex ();
Creates a new complex number object initialized to floating point zero.

inline Complex (double real, double imaginary = 0.0);
Creates a new complex number object whose real part is set to real and whose
imaginary part isinitialized to the value of imaginary.

inline Complex (const Complex& c);
Creates a new complex humber object whose real and imaginary parts are initial-
ized to the values of those of another complex number c.

inline Complex conjugate () const;
Calculates the conjugate of a complex number and returns a new object whose
value is the negated imaginary value of the object. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

inline Complex cos (Complex& c) const;
Calculatesthe cosine of acomplex number c. A new complex object isreturned as
theresult. If the operation resultsin an arithmetic error of sometype, the appropri-
ate exception is raised.

inline Complex cosh (Complex& c) congt;
Calculates the hyperbolic cosine of acomplex number c. A new complex object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

operator double ();
Overloaded operator to provide implicit conversion between complex objectsand
the built-in double type when appropriate.

COOL User’'s Manual

Number Classes

operator float ();
Overloaded operator to provide implicit conversion between complex objectsand
the built-in float type when appropriate.

inline double imaginary () const;
Returns the imaginary part of the complex number.

inline Complex invert () const;
Returnsthe reciprocal of acomplex number. If the operation resultsin an arithme-
tic error of some type, the appropriate exception is raised.

operator int ();
Overloaded operator to provide implicit conversion between complex objectsand
the built-in int type when appropriate.

operator long ();
Overloaded operator to provide implicit conversion between complex objectsand
the built-in long type when appropriate.

Complex operator—();
Overloadsthe unary minusoperator for theComplex classand returnsanew object
whose value is the negated real value of the object. If the operation resultsin an
arithmetic error of some type, the appropriate exception is raised.

Complex& operator= (const Complex& c);
Overloadsthe assignment operator for the Complex class and assigns one complex
number to have the value of another. A reference to the updated object isreturned.

inline void oper ator+= (const Complex& c);
Overloadsthe addition-with-assignment operator for the Complex class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator— (const Complex& c);
Overloads the subtraction-with-assignment operator for the Complex class. If the
operation resultsin an arithmetic error of some type, the appropriate exception is
raised.

inline void operator*= (const Complex& c);
Overloads the multiplication-with-assignment operator for the Complex class. If
the operation resultsin an arithmetic error of some type, the appropriate exception
israised.

inline void operator/= (const Complex& c);
Overloadsthe division-with-assignment operator for the Complex class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline Complex& operator ++ ();
Overloads the increment operator to provide an increment capability for the
Complex class. If the operation resultsin an arithmetic error of sometype, the ap-
propriate exception israised. A reference to the updated complex object is re-
turned.

COOL User's Manual

Number Classes

Friend Functions:

inline Complex& operator— ();
Overloads the decrement operator to provide a decrement capability for the
Complex class. If the operation resultsin an arithmetic error of sometype, the ap-
propriate exception israised. A reference to the updated complex object is re-
turned.

inline Boolean operator! () const;
Overloads the logical NOT operator for the Complex class and returns TRUE if
the complex number has a zero value; otherwise, this function returns FAL SE.

inline Boolean operator== (const Complex& c) const;
Overloads the equality operator for the Complex class. This function returns
TRUE if the complex numbers have the same value; otherwise, this function re-
turns FAL SE.

inline Boolean operator!= (const Complex& c) const;
Overloads the inequality operator for the Complex class. This function returns
TRUE if the complex numbers have different values; otherwise, this function re-
turns FAL SE.

inline doublereal () congt;
Returns the real part of the complex number.

operator short ();
Overloaded operator to provide implicit conversion between complex objectsand
the built-in short type when appropriate.

inline Complex sin (Complex& c) const;
Calculatesthe sine of acomplex number c. A new complex object isreturned asthe
result. If the operation resultsin an arithmetic error of some type, the appropriate
exception is raised.

inline Complex sinh (Complex& c) const;
Calculates the hyperbolic sine of a complex number ¢c. A new complex object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

inline N_Status status () const;
Returns the numerical exception state of the complex object.

inline Complex tan (Complex& c) const;
Calculatesthetangent of acomplex number c. A new complex object isreturned as
theresult. If the operation resultsin an arithmetic error of sometype, the appropri-
ate exception is raised.

inline Complex tanh (Complex& c) const;
Calculatesthe hyperbolic tangent of acomplex number c. A new complex objectis
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

inline friend Complex operator+ (const Complex& c1,
const Complex& c2);
Overloads the addition operator to provide addition for the Complex class. A new
complex object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

3-6

COOL User’'s Manual

Number Classes

inline friend Complex operator— (const Complex& cl,
const Complex& c2);
Overloadsthe subtraction operator for theComplex class. A new complex object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

inline friend Complex operator* (const Complex& cl,
const Complex& c2);
Overloads the multiplication operator for the Complex class. A new complex ob-
ject isreturned asthe result. If the operation resultsin an arithmetic error of some
type, the appropriate exception is raised.

friend Complex operator/ (const Complex& cl, const Complex& c2);
Overloadsthe division operator to provide division for the Complex class. A new
complex object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

inline friend ostream& operator << (ostreamé& o0s, const Complex& c);
Overloads the output operator for areference to acomplex object to provide afor-
matted output.

inline friend ostream& operator << (ostreamé& os, const Complex* c);
Overloadsthe output operator for apointer to acomplex object to provide aformat-
ted output.

Complex Example 3.6 The following impedance example using complex numbers is accredited to a

[N NN [

© 00~

10
11
12

13
14
15

16
17
18

19
20
21

LISP program publishedin LISP, written by Patrick Henry Winston and Berthold Klaus
Paul Horn. This example calcul ates the impedance of an electrical circuit operating at a
given frequency by using standard formulas from basic hardware design texts.

#include <COOL/Complex.h> // Include complex header file
#define FREQUENCY 346.87
#define OMEGA (2 * 3.14159265358979323846 * FREQUENCY)

inline Complex in series (const Complex& cl, const Complex& c2) {
return (cl+c2) ;

}

inline Complex in parallel (const Complex& cl, const Complex& c2) {
return ((cl.invert () + c2.invert()) .invert ());

}

inline Complex resistor (doubler) {
return Complex (r) ;

}

inline Complex inductor (double i) {
return (Complex (0.0, i * OMEGA)) ;

}

inline Complex capacitor (double c) {
return (Complex (0.0, -1.0 / (c * OMEGA))) ;

}

int main (void) {
Complex circuit;
circuit = in_series (resistor (1.0),

COOL User's Manual

Number Classes

22
23

25

26
27

}

in parallel (in_series (resistor (100.0), inductor (0.2)),
in parallel (capacitor (0.000001),
resistor (10000000.0))));

cout << “Circuit impedance is ” << circuit << ” at frequency ” <<
FREQUENCY << "\n”;
return 0; // Exit with OK status

Line 1 includes the COOL complex.h class header file. Lines 2 and 3 define a fre-
guency constant and aval ueomeca based upon pi and thefrequency and isusedincal cu-
lating impedance formulas. Lines 4 through 6 define a function for calculating the
impedance of two components placed in series. Similarly, lines 7 through 9 define a
function for calculating the impedance of two components placed in parallel. Lines 10
through 18 provide functionsfor determining theimpedance of resistors, inductors, and
capacitors, based upon their tolerances. Line 21 isthe heart of the program that callsthe
necessary functionsto cal cul ate theimpedance of a circuit. Finally, the result is sent to
the standard output and the program ends with a successful exit code. Figure 3.1 illus-
trates the circuit used in this example program.

1Q
Y e)

1002
T~ 1uF § 10MQ

0.2Hy

Figure 3.1

The following shows the output from the program:

Circuit impedance is (2000.6,0.00747744) at frequency 346.87

3-8

COOL User’'s Manual

Number Classes

Rational Class

Name:
Synopsis:

Base Classes:
Friend Classes:

Constructors:

Member Functions:

3.7 The Rational class provides infinite precision rational numbers and arithmetic
using thebuilt-inlong typefor the numerator and denominator objects. Consequently, a
rational object will grow in 32-bit chunks as necessary. Implicit conversion to the sys-
tem-defined typesshort, int, long, float, and doubleis supported by overloaded opera-
tor member functions. However, arithmetic operations on rational objects are slower
than the built-in integer types.

The Rational class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditionsis detected or if an
attempt to convert from aRational with no valueto abuilt-intypeismade, an exception
israised. The programmer can provide an exception handler at runtime to take care of
this problem. If no such handler is available, an error message is printed and program
execution terminates. See Section 13 for moreinformation onthe COOL exceptionhan-
dling mechanism.

Rational — Infinite precision rational numbers
#include <COOL/Rational.h>

Generic

None

inline Rational ();
Simple constructor to create a new rational object.

Rational (long n, long d = 1);
Constructor that specifies an integer numerator and optional denominator argu-
ments to create a new rational object.

Rational (const Rational& r);
Constructor that takes a reference to an existing rational object and creates a new
object with the same value.

inline long ceiling () congt;
Returnsan integer that representsthe value of therational object truncated towards
positive infinity.

inline long denominator () const;
Returns the denominator value of the object.

inline operator double ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in double type when appropriate.

operator float ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in float type when appropriate.

inline long floor () const;
Returnsan integer that representsthe value of therational object truncated towards
negative infinity.

COOL User's Manual

Number Classes

operator int ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in int type when appropriate.

Rational& invert ();
Returns a reference to the inverse of the rational number object.

operator long ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in long type when appropriate.

inline long numerator () const;
Returns the numerator value of the object.

inline Rational operator—();
Overloadsthe unary minus operator for theRational classand returnsanew object
whosevalueisthe negated val ue of the object. If theoperation resultsin an arithme-
tic error of some type, the appropriate exception is raised.

inline Rational& operator= (const Rational& r);
Overloads the assignment operator for the Rational class and assigns one rational
number to have the value of another. A reference to the updated object is returned.

void operator+= (const Rational& r);
Overloads the addition-with-assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator— (const Rational& r);
Overloads the subtraction-with-assignment operator for the Rational class. If the
operation resultsin an arithmetic exception of sometype, the appropriate exception
israised.

void operator*= (const Rational& r);
Overloads the multiplication-with-assignment operator for the Rational class. If
the operation resultsin an arithmetic error of some type, the appropriate exception
israised.

inline void operator/= (const Rational& r);
Overloads the division-with-assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator %= (const Rational& r);
Overloads the modulus with assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline Boolean operator!() const;
Overloadsthelogical NOT operator for theRational classand returns TRUE if the
complex number has a zero value; otherwise, this function returns FAL SE.

inline Rational& operator++ ();
Provides an increment capability for the Rational class. If the operation resultsin
an arithmetic error of sometype, theappropriate exceptionisraised. A referenceto
the modified Rational object is returned.

3-10

COOL User’'s Manual

Friend Functions:

Number Classes

inline Rational& operator— ();
Providesadecrement capability for theRational class. If the operation resultsinan
arithmetic error of some type, the appropriate exception israised. A reference to
the modified Rational object is returned.

inline Boolean operator== (const Rational& r) const;
Overloads the equality operator for the Rational class. This function returns
TRUE if therational numbershavethe samevalue; otherwise, thisfunction returns
FALSE.

inline Boolean operator!= (const Rational& r) const;
Overloads the inequality operator for the Rational class. This function returns
TRUE if the rational numbers have different values; otherwise, this function re-
turns FAL SE.

Boolean operator < (const Rational& r) const;
Overloads the less-than-operator for the Rational class and returns TRUE if the
object islessthan the specified argument; otherwise, thisfunction returnsFAL SE.

inline Boolean operator <= (const Rational& r) const;
Overloadsthe less-than-or-equal operator for the Rational class. Thisfunctionre-
turnsTRUE if the object islessthan or equal to the val ue of the specified argument;
otherwise, this function returns FAL SE.

Boolean operator> (const Rational& r) const;
Overloadsthe greater-than operator for the Rational classand returns TRUE if the
object is greater than the specified argument; otherwise, this function returns
FALSE.

inline Boolean operator >= (const Rational& r) const;
Overloads the greater-than-or-equal operator for the Rational class. Thisfunction
returns TRUE if the object is greater than or equal to the value of the specified
argument ; otherwise, this function returns FAL SE.

long round () const;
Returnsan integer that representsthe val ue of therational object truncated towards
the nearest integer.

operator short ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in short type when appropriate.

inline N_Status status () const;
Returns the numerical exception state of the rational object.

inline long truncate () const;
Returnsan integer that representsthe value of the rational object truncated towards
zero.

friend Rational operator+ (const Rational& rl1, const Rational& r2);
Overloads the addition operator for the Rational class. A new rationa object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

inline friend Rational operator— (const Rational& r1, const Rational& r2);
Overloadsthe subtraction operator to provide subtraction for theRational class. A
new rational object isreturned astheresult. If the operation resultsin an arithmetic
error of some type, the appropriate exception is raised.

COOL User's Manual

3-11

Number Classes

friend Rational operator* (const Rational& r1, const Rational& r2);
Overloadsthe multiplication operator for the Rational class. A new rational object
isreturned astheresult. If the operation resultsin an arithmetic error of sometype,
the appropriate exception is raised.

inline friend Rational operator/ (const Rational& rl, const Rational& r2);
Overloads the division operator for the Rational class. A new rational object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

friend Rational operator% (const Rational& r1, const Rational& r2);
Overloads the modulus operator for the Rational class. A new rational object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

inline friend ostream& operator << (ostream& os, const Rational& r);
Overloads the output operator for areference to arational object to provide afor-
matted output capability.

inline friend ostream& operator << (ostreamé& os, const Rational* r);
Overloadsthe output operator for apointer to arational object to provide aformat-
ted output capability.

3-12

COOL User’'s Manual

Number Classes

Rational Example

3.8 Thefollowing program usesthe Rational classand the built-infloat typetoillus-
trate the added precision available for calculations involving multiplication, division,
addition, and determining the remainder for numeric ratios. The first half of the pro-
gram calculates answersfor problems using the Rational class. The second half calcu-
lates answersfor the same problems using the built-infloat type. Theresults from each

are printed on the standard output stream for comparison of precision.

1 #include <COOL/Rational.h> // Include COOL Rational class
2 int main (void) {

3 Rational rl (10,3); // Create rational object

4 Rational r2 (-4,27), r3; // Create rational objects

5 r3=rl+r2; // Calculate sum of values

6 cout << rl<<” +” <<r2<<” ="<<r3<<"”\n"; //Anddisplay result

7 r3=rl*r2; // Calculate product of values
8 cout << rl<<” * " <<r2<<” =" <<r3<<”\n"”; //Anddisplay result

9 r3=rl/r2; // Calculate quotient of values
10 cout << rl<<” /" <<r2<<” ="<<r3<<"”\n"”; //Anddisplay result

11 r3=rl%r2; // Calculate remainder of values
12 cout << rl<<” %" <<r2<<” ="<<r3<<"”\n"”; //Anddisplay result

13 double d1 = double (10.0/ 3.0) ; // Create double ratio

14 double d2 = double (-4.0/27.0), d3; // Create double ratios

15 d3 =dl +d2; // Calculate sum of values

16 cout << dl<<” +" <<d2<<” =" <<d3 << "”"\n"”; //Anddisplay result

17 d3 =dl *d2; // Calculate product of values
18 cout << dl << ” *” <<d2<<” =" <<d3 << "\n"”; //Anddisplay result

19 d3 =dl/dz; // Calculate quotient of values
20 cout <<dl<<” /" <<d2<<” ="<<d3 << "”"\n"; //Anddisplay result

21 return 0; // Return valid success code

22)

Line 1 includes the COOL Rrational.h class header file. Lines 3 and 4 declare three
rational objects(r1, r2, r3), thefirst two of which haveinitial valuesof 10/3 and —4/27,
respectively. Lines5 and 6 calcul ate the sum of the two rational objects, assignit to the
third, and display the answer. Likewise, lines 7 and 8 cal cul ate the product, lines 9 and
10 calculate the quotient, and lines 11 and 12 calculate the remainder of the same two
rational numbers. Lines 13 through 20 perform the same cal culations with the built-in
type double as were performed in lines 3 through 10. As indicated from the results, a
loss of precision occurs from the floating point cal culations, thus highlighting the po-
tential benefit of using the ratios maintained by the Rational number class. Finaly, the
program ends with a valid exit code.

The following shows the output from the program:

10/3 + -4/27 = 86/27

10/3 * —4/27 = -40/81

10/3 / -4/27 = -45/2

10/3 % -4/27=2/27

3.33333 +-.148148 =3.18519
3.33333 % —.148148 = —.493827
3.33333 /-.148148 =-22.5

COOL User's Manual

3-13

Number Classes

Bignum Class

3.9 TheBignum classimplements near-infinite precision integers and arithmetic by
using adynamic bit vector. A Bignum object will grow in size as necessary to hold its
integer value. Implicit conversion to the system defined types short, int, long, float,
and doubleis supported by overloaded operator member functions. Addition and sub-
traction operators are performed by simple bitwise addition and subtraction on un-
signed short boundaries with checks for carry flag propagation. The multiplication,
division, and remainder operations utilize the algorithms from Knuth’'s Volume 2 of
“TheArt of Computer Programming” . However, despitethe use of these algorithmsand
inline member functions, arithmetic operations on Bignum objects are considerably
dower than the built-in integer types that use hardware integer arithmetic capabilities.

NOTE: TheBignum classrequiresthat the built-in typelongislarger than the built-in
type short and can accommodate the result of multiplying two short values. The maxi-
mum positive value that can be represented by the Bignum classis:

(2* (sizeof (unsigned long) * sizeof (unsigned short)))-1.

The Bignum class supports the parsing of character string representations of all thellit-
eral number formats. The following table shows an example of acharacter string repre-
sentation on the left and a brief description of the interpreted meaning on the right:

Character String Representation Interpreted Meaning

1234 1234

1234 1234

12341 1234

1234u 1234

1234U 1234

1234ul 1234

1234UL 1234

01234 1234 in octa (leading Q)

0x1234 1234 in hexadecimal (leading 0x)
0X1234 1234 in hexadecimal (leading 0X)
1234 123 (value truncated)

1.234e2 123 (exponent expanded/truncated)
1.234e-5 0 (truncated value less than 1)

The Bignum class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected, an
exception is raised. The programmer can provide an exception handler at runtime to
take care of thisproblem. If no such handler isavailable, an error messageis printed and
program execution terminates. See Section 13 for more information on the COOL ex-
ception handling mechanism.

3-14

COOL User’'s Manual

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

Number Classes

Bignum — Infinite precision integers
#include <COOL/Bignum.h>
Generic

None

inline Bignum ();
Simple constructor to create a near-infinite precision integer object initialized to
zero.

Bignum (const char* str);
Constructor to create a near-infinite precision integer object from the character
string representation str.

Bignum (double d);
Constructor to create anear-infinite precision integer object from the double value
d.

Bignum (long |);
Constructor to create a near-infinite precision integer object from the long integer
valuel.

Bignum (const Bignum& bn);
Constructor to create a near-infinite precision integer object from bn.

operator double ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in double type when appropriate.

operator float ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in float type when appropriate.

operator int ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in int type when appropriate.

operator long ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in long type when appropriate.

Bignum operator— () const;
Overloadsthe unary minus operator for the Bignum class and returns anew object
whosevalueisthe negated val ue of the object. If theoperation resultsin an arithme-
tic error of some type, the appropriate exception is raised.

Bignum& operator= (const char* str);
Overloads the assignment operator for the Bignum class and assigns the integer
representation from the character string str to the near-infinite precision integer
object. A reference to the updated object is returned.

Bignum& operator= (const Bignumé& bn);
Overloadsthe assignment operator for the Bignum class and assignsbn to the near-
infinite precision integer object. A reference to the updated object is returned.

COOL User's Manual

3-15

Number Classes

inline Boolean operator! () const;
Overloadsthe unary negation operator for the Bignum class. A new Bignum object
isreturned astheresult. If the operation resultsin an arithmetic error of sometype,
the appropriate exception is raised.

Bignum operator~ () const;
Overloads the unary exclusive-or operator for the Bignum class. A new Bignum
object isreturned astheresult. If the operation resultsin an arithmetic error of some
type, the appropriate exception is raised.

Bignum& operator ++ ();
Overloads the increment operator to provide an increment capability for the Big-
num class. A reference to the modified Bignum object is returned asthe result. If
the operation resultsin an arithmetic error of sometype, the appropriate exception
is raised.

Bignumé& operator— ();
Overloads the decrement operator to provide a decrement capability for the Big-
num class. A reference to the modified Bignum object is returned asthe result. If
the operation resultsin an arithmetic error of some type, the appropriate exception
israised.

void operator+= (const Bignumé& bn);
Overloads the addition with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator—= (const Bignumé& bn);
Overloads the subtraction with assignment operator for the Bignum class. If the
operation resultsin an arithmetic error of some type, the appropriate exception is
raised.

void operator*= (const Bignumé& bn);
Overloadsthe multiplication with assignment operator for theBignum class. If the
operation resultsin an arithmetic error of some type, the appropriate exception is
raised.

void operator/= (const Bignumé& bn);
Overloads the division with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator %= (const Bignumé& bn);
Overloads the modulus with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator & = (const Bignumé& bn);
Overloadsthe logical AND with assignment operator for the Bignum class. If the
operation resultsin an arithmetic error of some type, the appropriate exception is
raised.

void operator = (const Bignumé& bn);
Overloads the exclusive-or with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

3-16

COOL User’'s Manual

Friend Functions:

Number Classes

void operator |= (const Bignumé& bn);
Overloads the logical OR with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator>>= (const Bignumé& bn);
Overloadsthe right shift with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator <<= (const Bignumé& bn);
Overloads the | eft shift with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

Boolean operator== (const Bignum& bn) const;
Overloadsthe equality operator for the Bignum class. Thisfunction returnsTRUE
if the near-infinite precision integers have the same value; otherwise, thisfunction
returns FAL SE.

inline Boolean operator!= (const Bignumé& bn) const;
Overloads the inequality operator for the Bignum class. This function returns
TRUE if the near-infinite precision integers have different values; otherwise, this
function returns FAL SE.

Boolean operator< (const Bignumé& bn) const;
Overloads the less than operator for the Bignum class and returns TRUE if the
object islessthan the specified argument; otherwise, thisfunction returnsFAL SE.

inline Boolean operator <= (const Bignumé& bn) const;
Overloads the less than or equal operator for the Bignum class. This function re-
turns TRUE if the object islessthan or equal to the value of the specified argument
; otherwise, this function returns FAL SE.

Boolean operator> (const Bignumé& bn) const;
Overloadsthe greater than operator for the Bignum class and returns TRUE if the
object is greater than the specified argument; otherwise, this function returns
FALSE.

inline Boolean operator>= (const Bignum& bn) const;
Overloads the greater than or equal operator for the Bignum class. This function
returns TRUE if the object is greater than or equal to the value of the specified
argument ; otherwise, this function returns FAL SE.

operator short ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in short type when appropriate.

inline N_Status status () const;
Returns the numerical exception state of the Bignum object.

friend Bignum operator + (const Bignum& bnl, const Bignum& bn2);
Overloads the addition operator to provide addition for the Bignum class. A new
Bignum object isreturned as the result. If the operation resultsin an arithmetic er-
ror of some type, the appropriate exception is raised.

COOL User's Manual

3-17

Number Classes

inline friend Bignum operator— (const Bignumé& bn1l,
const Bignumé& bn2);
Overloads the subtraction operator to provide subtraction for the Bignum class. A
new Bignum object isreturned astheresult. If the operation resultsin an arithmetic
error of some type, the appropriate exception is raised.

friend Bignum operator* (const Bignumé& bnl, const Bignumé& bn2);
Overloads the multiplication operator to provide multiplication for the Bignum
class. A new Bignum object isreturned as the result. If the operation resultsin an
arithmetic error of some type, the appropriate exception is raised.

friend Bignum operator/ (const Bignumé& bnl, const Bignumé& bn2);
Overloadsthe division operator for the Bignum class. A new Bignum object isre-
turned asthe result. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

friend Bignum operator % (const Bignumé& bnl, const Bignumé& bn2);
Overloads the modulus operator for the Bignum class. A new Bignum object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

friend Bignum operator & (const Bignum& bnl, const Bignumé& bn2);
Overloadsthelogical AND operator for the Bignum class. A new Bignum object
isreturned astheresult. If the operation resultsin an arithmetic error of sometype,
the appropriate exception is raised.

friend Bignum operator”™ (const Bignumé& bnl, const Bignumé& bn2);
Overloadsthelogical exclusive-or operator for the Bignum class. A new Bignum
object isreturned astheresult. If the operation resultsin an arithmetic error of some
type, the appropriate exception is raised.

friend Bignum operator| (const Bignumé& bnl, const Bignumé& bn2);
Overloadsthelogical OR operator for the Bignum class. A new Bignum object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

friend Bignum operator>> (const Bignumé& bnl, const Bignumé& bn2);
Overloads the right shift operator for the Bignum class. A new Bignum object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

friend Bignum operator << (const Bignumé& bnl, const Bignumé& bn2);
Overloads the | eft shift operator for the Bignum class. A new Bignum object is
returned astheresult. If the operation resultsin an arithmetic error of sometype, the
appropriate exception is raised.

friend ostreamé& operator<< (ostreamé& os, const Bignum& bn);
Overloadsthe output operator for areferenceto aBignum object to provide afor-
matted output.

inline friend ostream& operator << (ostreamé& 0s, const Bignum* bn);
Overloadsthe output operator for apointer to aBignum object to provide aformat-
ted output.

3-18

COOL User’'s Manual

Number Classes

Bignum Example

=

OCoO~NOUAWN

~NOoO O WNBE

3.10 The following program uses the Bignum integer data type in a semantically
equivalent manner to the built-inint or long datatypesto perform arithmetic and logi-
cal operations. The only difference is that the values manipulated are larger than
MAX_INT Of Max_r.oNG would alow on a 32-bit computer.

#include <COOL/Bignum.h>

int main (void) {
Bignumbl;
Bignum b2 = " 0xFFFFFFFF” ;
Bignumb3 ="”1.2345e30”;

cout << "b2 =" << b2 << "\n";
cout << "b3 =" << b3 << ”"\n";
bl =Db2 + Db3;

cout << "b2 +b3 =" << bl << ”\n”;
bl =b2 -b3;

cout << "b2 -b3 =" << bl << ”\n”";
bl =b2 *b3;
cout << "b2 *b3 =" << bl << ”\n”;
bl =b3 /b2;

cout << "b3 /b2 =" <<bl << ”"\n";

bl =Db3 %$b2;

cout << "b3 $b2 =" <<bl << ”\n”;
return 0;

// Include Bignum class

// Create Bignum object
// Create Bignum object
// Create Bignum object
// Display value of b2
// Display value of b3
// Add b2 and b3

// Display result

// Subtract b3 fromb2
// Display result

// Multiply b2 and b3

// Display result

// Divide b2 into b3

// Display result

// Get b3 modulo b2

// Display result

// Exit with status code

Line 1 includes the COOL Bignhum class header file. Line 3 creates abignum object
initialized to zero. Lines 3 and 4 create Bignum objectsinitialized to very largeinteger
values. Lines5 and 6 output these val ues on the standard output stream. Lines 8 through
17 compute the sum, difference, product, quotient, and remainder of various Bignum
values and output the answer. Finally, the program ends with a valid exit code.

The following shows the output from the program:

b2 =4294967295

b3 =1234500000000000000000000000000
b2 + b3 =1234500000000000000004294967295
b2 - b3 =-1234499999999999999995705032705

b2 * b3 =5302137125674500000000000000000000000000

b3 / b2 =287429429657624435997
b3 $ b2 =64281885

COOL User's Manual

3-19

Number Classes

Range Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

3.11 The parameterized Range< Type,Ibound,hbound> class enables arbitrary user-
defined rangesto beimplemented in C++ classes. Typically, but not always, thisisused
with other number classes to select a range of valid values for a particular numerical
type. Features and advantages of this class are discussed in this section. However, com-
plete details of parameterized templates are provided in Section 5.

The Range<Type,Ibound,hbound> class is publicly derived from the Range class and
supports user-defined ranges for atype of object or built-in datatype. Thisallows other
higher level datastructuressuch astheRational and Complex classesto berestricted to
arange of values. The programmer does not have to add bounds-checking code to the
application. A vector of positiveintegers, for example, would be easy to declare, facili-
tating bounds checking restricted to the code that implements the type, not the vector.

The inclusive low and high bounds for the range are specified as arguments to the
parameterized type declaration and implementation macro calls. They are declared as
C++ constants of the appropriate type. No storage is alocated, and all references are
compiled out by the compiler. Once declared, a Range<Type,Ibound,hbound> object
cannot have its upper or lower bounds changed because maintenance of all instances
would require significant and unwarranted overhead.

Range<Type,Ibound,hbound> — A parameterized range
#include <COOL/Range.h>

Range

None

Range<Type,|bound,hbound> ();
Creates an empty range object of the specified type and ranges.

Range<Type,Ibound,hbound> (const Type& value);
Creates arange object with the specified value. If valueis outside of the lower and
upper bounds, an Error exception is raised.

Range<Type,Ibound,hbound> (const Range<Type,|Ibound,hbound>& r);
Creates a new range object with the same value as the range object r.

inline const Type& high () const;
Returns a reference to the upper limit of the range.

inline const Type& low () const;
Returns a reference to the lower limit of the range.

inline Range<Type,Ibound,hbound>& operator=
(const Range<Type,lbound,hbound>& r);
Overloadsthe assignment operator for the Range<Type,|bound,hbound> classand
assignsthe range object the value of r. This function returns areference to the up-
dated object.

inline void set (const Type& value);
Sets the value of the range object to value if within the lower and upper limits;
otherwise, this function raises an Error exception.

3-20

COOL User’'s Manual

Number Classes

inline void set_compare (Range_Comparer_fcn);
Sets the compare function for this class of Range<Type,Ibound,hbound>.
Range Compare is a function of type int (*Function)(const Type&, const
Type&).

inline operator Type () const;
Overloadstheimplicit conversion operator for the parameterized type to facilitate
mixed-type expressions and statements.

Range Example

oUW N

© 0o~

10
11

13
14
15
16
17
18
19
20

22
23
24
25
26
27
28

3.12 Thefollowing program declarestwo range-checking objects, one of typedouble
and one of type char*. Each hastype-specific upper and lower boundsthat, if violated,
result in arun-time exception. Vaues are assigned to each object and theimplicit use of

the type conversion operator is demonstrated.

#include <COOL/Range.h> // Include range header file
#include <string.h> // C++ ANSI C string functions
DECLARE Range<double,2.5,8.8>; // Declare range of doubles
IMPLEMENT Range<double,2.5,8.8>; // Implement range of doubles
DECLARE Range<char*,”"D"”, "K">; // Declare range of strings
IMPLEMENT Range<char*, "D”, "K">; // Implement range of strings

int my compare (const charP& sl, const charP& s2) {
return (strcmp (sl, s2));

}

int main (void) {
// Range-checked double
rl.set(4.3); // Assign value
cout << "rl has an inclusive low bound of ” << rl.low(); // Output low and
cout << ”"an inclusive high bound of ” << rl.high() << ”,\n”; // High
cout << "and a value of ” << (double)rl << ”"\n”; // Output value

doubledl =1.9; // Declare a double

cout << (double)rl<<” * " <<dl << " ="; // Output equation
rl.set (dl *rl); // Calculate value

cout << (double)rl << ”"\n”;// Anddisplay it

Range<charP,”D” ,"K"> r2; // Range-checked string
r2.set_compare (&my compare) ; // Set compare function
r2.set ("EFG") ; // BRssign value

cout << "r2 has an inclusive low bound of ” << r2.low() ;
cout << ”"an inclusive high bound of ” << r2.high() << ”,\n”;

cout << "a value of ” << (char*)r2; // Output string value
cout << ”, and a length of ” << strlen (r2) << ”\n”; // Output length
return 0; // Exit with OK status

Line 1 includes the COOL range.h class header file and line 2 includes the COOL
string.h class header file. Lines 3 through 6 declare and implement two kinds of
range-checking objects: one adoublewith alow bound of 2.5 and a high bound of 8.8,
and the other acharacter string object with alow bound of »b~ and ahigh bound of +k~.
Lines 7 through 9 define a comparison function for the range-checked string object,
althoughin this program, it is not actually used. Line 11 declares arange object of type
double with upper and lower bounds as before and line 12 gives this object a value.
Lines 13 and 14 output the lower and upper bounds and line 15 displaysthe value of the
object viaacast. Lines 16 through 18 show the object used in an arithmetic expression
and line 19 prints the result.

COOL User's Manual

3-21

Number Classes

Line 20 declares arange-checked string object and line 21 sets the default comparison
routinefor this object, should one be needed. Line 22 initializes the object with astring
value. Lines 23 through 25 output the lower and upper bounds and the value. Line 26
displays the number of characters in the string by means of a system-supplied string
length function and the implicit type conversion operator for the Range class. Finaly,
the program ends with a valid exit code.

The following shows the output from the program:

rl has an inclusive low bound of 2.5, an inclusive high bound of 8.8,
and avalueof 4.3

4.3%1.9=8.17

r2 has an inclusive low bound of D, an inclusive high bound of K,

a value of EFG, and a length of 3

3-22

COOL User’'s Manual

SYSTEM INTERFACE
CLASSES

I ntroduction

4.1 The COOL system interface classes encapsulate common system-specific func-
tionality such as date-and-time manipulation and timing facilities. These classes pro-
vide a single interface for an application program no matter which of the supported
platformsit is running on. This facilitates a single source base for an application de-
signed to run on several types of hardware. The following classes arediscussed in this
section:

e Date Time
o Timer

The Date_Time class implements time zone-independent date and time functions, in-
cluding time zone changes, calendar date manipulation, and complete input parsing and
output formatting capability for significant country or language formats. The Timer
class uses the system time(2) interface to provide time resolution between a reference
point and now. The accuracy of the time period reported is system-dependent, but will
generaly be either at millisecond or microsecond granularity.

Requirements

4.2 Thissection discussesthe system interface classes. It assumesyou have aworking
understanding of the C++ language and type system. In addition, you should under-
stand the distinction between overloaded operators and friend functions.

Date Time Class

Name:
Synopsis:

Base Classes:
Friend Classes:

Public Constructors:

4.3 The Date_Time class executes time zone-independent date and time functions.
This class supports calendar operations and input and output based upon the value of an
environmental synonym, suchasUS CENTRAL. Thisclasssupportsall timezonesin
theworld, along with several special cases requiring alternate handling based upon po-
litical or daylight saving time differences. Unlikethe ANSI C date and time functions,
this class supports dates before the epoch (January 1, 1970). Y ear values specified be-
tween 0 and 99 are assumed to be in the twentieth century.

Date_Time — Time zone-independent date and time class
#include <COOL/Date_Time.h>

Generic

None

Date Time ();
Allocatesadate and time object with the default time zone and country. A Warning
exceptionisraised if the default country or the default time hasnot been set for the
class.

Date Time (const Date Time& dt);
Duplicates the size and entries of a date and time object dt.

COOL User's Manual

4-1

Syt

em Interface Classes

Member Functions:

Date Time (time_zone tz, country c);
Allocates a date and time object with time zone tz and country code c.

const char* ascii_date () const;
Returns the date in ASCII format for the appropriate time zone and country.

const char* ascii_date_time () const;
Returnsthe date and timein ASCI| format for the appropriate time zone and coun-

try.

const char* ascii_duration (const Date_Time& dt) const;
Returnsthe duration of time between the date/time object and dt in ASCII format.

const char* ascii_time () const;
Returns the time in ASCI| format for the appropriate time zone and country.

inline void decr_day (int n = 1);
Decrements the time by the specified number of days. The default is one.

inline void decr_hour (int n=1);
Decrements the time by the specified number of hours. The default is one.

inline void decr_min (int n = 1);
Decrements the time by specified number of minutes. The default is one.

void decr_month (int n = 1);
Decrements the time by specified number of months. The default is one.

inline void decr_sec (int n=1);
Decrements the time by specified number of seconds. The default is one.

inline void decr_week (int n = 1);
Decrements the time by the specified number of weeks. The default is one.

void decr_year (int n=1);
Decrements the time by the specified number of years. The default is one.

void end_day (int n = 1);
Advances the time by the specified number of days, setting the time to 23:59:59.
The default is one.

void end_hour (int n=1);
Advances the time by the specified number of hours, setting thetime to hh:59:59.
The default is one.

void end_min (int n = 1);
Advances the time by the specified number of minutes, setting the time to
hh:mm:59. The default is one.

void end_month (int n = 1);
Advancesthe time by the specified number of months, setting the time to 31/mm/
yyyy 23:59:59. The default is one.

void end_week (int n=1);
Advances the time by the specified number of weeks, setting the time to Sunday
23:59:59. The default is one.

COOL User’'s Manual

System Interface Classes

void end_year (int n=1);
Advances the time by the specified number of months, setting the time to
31/12/yyyy 23:59:59. The default is one.

inline const char* get_country () const;
Returns the country in ASCII format.

inlineint get_hour () const;
Returns the value of the hour data member in the object (0-23).

inlineint get_mday () const;
Returns the value of the day of the month data member in the object (1-31).

inlineint get_min () const;
Returns the value of the minutes data member in the object (0-59).

inlineint get_mon () const;
Returns the value of the months data member in the object (0-11).

inlineint get_sec () const;
Returns the value of the seconds data member in the object (0-59).

inline const char* get_time_zone () const;
Returns the time zone in ASCII format.

inline int get_wday () const;
Returns the value of the day of the week data member in the object (Sunday=0).

inlineint get_yday () const;
Returns the value of the day of the year data member in the object (0-365)

inlineint get_year () const;
Returns the value of the year data member in the object.

void incr_day (int n=1);
Increments the time by the specified number of days. The default is one.

void incr_hour (int n = 1);
Increments the time by the specified number of hours. The default is one.

void incr_min (int n = 1);
Increments the time by the specified number of minutes. The default is one.

void incr_month (int n = 1);
Increments the time by the specified number of months. The default is one.

void incr_sec (int n = 1);
Increments the time by the specified number of seconds. The default is one.

void incr_week (int n = 1);
Increments the time by the specified number of weeks. The default is one.

void incr_year (int n= 1);
Increments the time by the specified number of years. The default is one.

inline Boolean is _day_light_savings () const;
Returns TRUE if daylight saving time isin effect; otherwise, returns FAL SE.

COOL User’'s Manual 4-3

System Interface Classes

inline long oper ator— (const Date_Time& dt);
Computes the interval of time between the date and time object and dit.

Date Time& operator= (const Date Time& dt);
Overloads the assignment operator to replicate the value of one date and time ob-
ject to another.

Date Time& operator+= (long seconds);
Performs interval addition and assignment.

Date_Time& operator—= (long seconds);
Performsinterval subtraction and assignment.

inline Boolean operator== (const Date_Time& dt) const;
Overloads the equality operator for the Date Time class. This function returns
TRUE if two objects represent the same time; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Date Time& dt) const;
Overloads the inequality operator for the Date Time class. This function returns
FALSE if two objects represent the same time; otherwise, this function returns
TRUE.

inline Boolean operator< (const Date Time& dt) const;
Overloads the less-than operator for the Date_Time class. This function returns
TRUE if the date and time object represents a date and time before dt; otherwise,
this function returns FAL SE.

inline Boolean operator<= (const Date_Time& dt) const;
Overloads the less-than-or-equal operator for the Date_Time class. This function
returns TRUE if the date and time object represents adate and time before or equal
to dt; otherwise, this function returns FAL SE.

inline Boolean operator> (const Date Time& dt) const;
Overloadsthe greater-than operator for theDate Timeclass. Thisfunction returns
TRUE if the date and time object represents adate and time after dt; otherwise, this
function returns FAL SE.

inline Boolean operator>= (const Date_Time& dt) const;
Overloads the greater-than-or-equal operator for the Date Time class. This
function returns TRUE if the date and time obj ect represents a date and time equal
to or after dt; otherwise, this function returns FAL SE.

void parse (char* dtr, int settz = 0);
Parses the character string str input and fills all appropriate data members of the
date and time object. If no valueisprovided for settz, the parsing algorithm does not
search for atime zone. The parser recognizes most valid input and always parses
relativeto thetime zone. Fieldsnot specified are defaulted where appropriate. |le-
gal input resultsin an Error exception being raised.

inline void set_country (country c);
Sets the country to the value c.

void set_gm_time ();
Sets the date and time to Greenwich mean time.

4-4

COOL User’'s Manual

Friend Functions:

System Interface Classes

void set_local_time ();
Sets the date and time to local time as determined by the time zone and country
code values.

inline void set_time_zone (time_zone t2);
Sets the time zone to the value tz

void start_day (int n=1);
Advancesthe time the specified number of days, setting thetimeto 00:00:00. The
default is one.

void start_hour (int n = 1);
Advances the time by the specified number of hours, setting thetime to hh:00:00.
The default is one.

void start_min (int n = 1);
Advances the time by the specified number of minutes, setting the time to
hh:mm:00. The default is one.

void start_month (int n = 1);
Advances the time by the specified number of months, setting the time to 01/mm/
yyyy 00:00:00. The default is one.

void start_week (int n = 1);
Advances the time by the specified number of weeks, setting the time to Monday
00:00:00. The default is one.

void start_year (int n = 1);
Advancesthetime by the specified number of years, setting thetimeto 01/01/yyyy
00:00:00. The default is one.

friend istream operator>> (istream& is, Date Time& dt);
Overloads the input operator to read the input stream is, and parses the character
string containing the date and time information. The result is returned in the date
and time object dt.

friend ostream operator<< (ostreamé& os, const Date Time* dt);
Overloads the output operator for a pointer to a date-and-time object. The object
writes the output stream os with a character string representing the date and time
object dt formatted for the appropriate country.

friend ostream operator << (ostreamé& os, const Date Time& dt);
Overloadsthe output operator for areference to a date-and-time object. The object
writes the output stream os with a character string representing the date and time
object dt formatted for the appropriate country.

inline friend void set_default_country (country c);
Sets the default country for the class to the value c.

inlinefriend void set_default_time_zone (time_zone t2);
Sets the default time zone for the class to the value tz.

COOL User's Manual

System Interface Classes

Time_zone.h File

Name:
Synopsis:

44 The time zone.h include file contains enumeration declarations for time zone
namesof typetime_zone. Thefiledeclaresastatic char* array of printable names. The
constantsin the enumerated type can be used asindexesfor these names. Inthefollow-
ing table, the enum declaration is on the |eft and the matching static char* stringison

the right.

time_zone.h — Symbolic and string time zone names

#include <COOL/time_zone.h>
Enumeration Declaration

Character String

UNKNOWN_TIME_ZONE

“Unknown Time Zon€e”

US EASTERN “US/Eastern”

US CENTRAL “US/Central”
US MOUNTAIN “US/Mountain”
US PACIFIC “US/Pacific”

US PACIFIC_NEW “US/Pacific-New”
US YUKON “US/Y ukon”

US EAST_INDIANA “US/East— ndianad’
US_ARIZONA “US/Arizona”

US HAWAII “US/Hawaii”
CANADA_NEWFOUNDLAND “ Canada/Newfoundland”
CANADA_ATLANTIC “Canada/Atlantic”
CANADA_EASTERN “Canada/Eastern”
CANADA_CENTRAL “Canada/Central”
CANADA_EAST_SASKATCHEWAN “ Canada/East—Saskatchewan”
CANADA_MOUNTAIN “Canada/Mountain”
CANADA_PACIFIC “ Canada/Pacific”
CANADA_YUKON “Canada/Y ukon”
GB_EIRE “GB-Eire”

WET “WET”

ICELAND “lceland”

MET “MET”

POLAND “Poland”

EET “EET”

TURKEY “Turkey”

W_SU “W-8uU”

PRC “PRC”

KOREA “Korea”

JAPAN “Japan”
SINGAPORE “Singapore’
HONGKONG “Hongkong”

ROC “ROC”

AUSTRALIA_TASMANIA
AUSTRALIA_QUEENSLAND
AUSTRALIA_NORTH
AUSTRALIA_WEST
AUSTRALIA_SOUTH
AUSTRALIA_VICTORIA
AUSTRALIA_NSW

NZ

“Australia/Tasmania’
“Australia/Queensland’
“Australia/North”
“Australia/West”

“ Australia/South”
“Australial/Victoria’
“Australia/NSW”

“NZ"

COOL User’'s Manual

System Interface Classes

Country.h File

45 Thecountry.n includefile contains enumeration declarationsfor country names
of typecountry. Thefiledeclaresastatic char* array of printable country names. The
constantsin the enumerated type can be used asindexes for these names. In the follow-
ing table, the enumeration declaration is on the left and the static char* string ison the
right.

Name: country.h — Symbolic and string country names

Synopsis: #include <COOL/country.h>
Enumeration Declaration Character String
UNKNOWN_COUNTRY “Unknown Country”
UNITED_STATES “United States’
FRENCH_CANADIAN “French Canadian”
LATIN_AMERICA “Latin America’
NETHERLANDS “Netherlands’
BELGIUM “Belgium”
FRANCE “France”
SPAIN “Spain”
ITALY “Italy”
SWITZERLAND “ Switzerland”
UNITED_KINGDOM “United Kingdom”
DENMARK “Denmark”
SWEDEN “Sweden”
NORWAY “Norway”
GERMANY “Germany”
PORTUGAL “Portugal”
FINLAND “Finland”
ARABIC_COUNTRIES “Arabic Countries”
ISRAEL “lsragl”

Calendar.h File 4.6 The calendar.nh include file contains enumeration declarations for day and
month namesof thetypesday of week and months. Thefiledeclarestwo staticchar*
arraysof printable day and month names. The constantsin the enumerated types can be
used asindexesfor these names. In addition, an array indexed by typemonth specifying
thenumber of daysinthemonthisalso provided. Finally, thefile defines several macros
for typical date and time constants, along with a macro determining if ayear isaleap
year. In the following tables, the enum declaration is on the left and the static char*
string is on the right.

Name: calendar.h — Symbolic and string calendar names
Synopsis: #include <COOL/caendar.h>

Enumeration Declaration Character String

COOL User's Manual

System Interface Classes

SUNDAY “ Sunday”
MONDAY “Monday”
TUESDAY “Tuesday”
WEDNESDAY “Wednesday”
THURSDAY “Thursday”
FRIDAY “Friday”
SATURDAY “ Saturday”

Enumeration Declaration

Character String

JANUARY “January”
FEBRUARY “February”
MARCH “March”
APRIL “April”
MAY “May”
JUNE “June’
JULY “July”
AUGUST “August”
SEPTEMBER “ September”
OCTOBER “QOctober”
NOVEMBER “November”
DECEMBER “December”

Date Time Example 4.7 Thefollowing program creates two Date_Time objects and initializes one to the
current system date and time and the other to the date and time specified in acharacter
string. Several conversions between country formats and time zones are performed,
along with manipulating one of the dates by subtracting three months. Finally, the
length of time between the two objects is displayed.

4-8 COOL User’s Manual

OCO~NOORWN =

NNRPRRRRRRRERRE
RPOOONOUIRAWNRO

#include <COOL/Date_ Time.h>

int main (void) {
set_default_ country (UNITED STATES) ;
set_default time zone (US_CENTRAL) ;
Date_ Time dil;
dl.set_local_time () ;
cout << "Local date/time is: ” << dl << ”"\n”;
dl.set_country (UNITED_ KINGDOM) ;
dl.set_time_zone (GB_EIRE) ;
cout << "GMT date/time is: ” << dl << "\n”";
dl.parse(”1 April 1890, 4:30pm”) ;
cout << "Date/time parsed is: ” << dl << "\n”;
dl.set_country (FRANCE) ;
dl.set_time_zone (WET) ;
cout << "Date/time in France: "<< dl << "\n”;
Date Time d2;
d2.set_local_time ();
cout << "Date/time set is: ” << d2 << "\n”;
d2.decr _month (3) ;

System Interface Classes

// Include Date Time class

// Set default country code
// Set default time zone

// Create Date Time object

// Set current system time

// Output date in US format

// Set country to UK

// Set Greenwich Mean Time

// Output date/time at GMT

// Parse some date in UK format
// Output date/time parsed

// Set country to France

// Western European Time zone
// Output date/time in France
// Create another object

// Set current system time

// Output date in US format

// Move back three months

cout << "Date/time three months earlier: ” <<d2 << “\n”; // Output date

cout << "Duration between dates is ”;

!/

N
N

cout << dl.ascii duration (d2) << ”\n”; // Output time duration

N
w

return 0; // Return valid success code

N
N

Line 1 includes the COOL Date Time class header file. Lines 3 and 4 establish the
default country and time zone for all Date Time objects in this application to be
UNITED STATES and us CENTRAL, respectively. Line 5 instantiates an uninitialized ob-
ject, line 6 sets its value to be the local system date and time, and line 7 outputs this
value. Lines 8 and 9 change the country to uniTep kIneDOM and the time zone to
ee_EIRrE (Greenwich Mean Time). Line 10 outputs the time zone corrected date and
time valuesin English format. Line 11 setsthe new value of theDate_Time object by
parsing a character string, and line 12 outputs the new setting. Lines 13 and 14 change
the country to rrance and thetime zone to weT and output the value again. Note that the
time zone didn't affect the value printed, but the format based on the country code
changed. Lines 16 through 18 output another Date_Time object for theuniTeD sTaTES
inus MOUNTAIN time zone, and setsitsvalueto the current system time. Line 19 decre-
ments the date by three months, and line 20 shows the resulting value. Lines 21 and 22
output in ASCII format the time difference between the two objects. Finaly, line 23
exits the program with a valid successful completion code.

The following shows the output of the program:

Local date/time is: United States 02-13-1990 11:28:40 US/Central

GMT date/time is: United Kingdom 13-02-1990 17:28:40 GB-Eire

Date/time parsed is: United Kingdom 01-04-1890 16:30:00 GB-Eire

Date/time in France: France 01-01/1990 16:30:00 WET

Date/time set is: United States 02-13-199010:28:40 US/Mountain

Date/time three months earlier: United States 11-15-1989 10:28:40 US/Mountain
Duration between dates is 99 years, 35 weeks, 2 days, 0 hours, 58 minutes, 40 seconds

Timer Class 4.8 The Timer classis publicly derived from the Generic class and provides an inter-
faceto systemtiming. It allowsaC++ programto record the time between areference
point (mark) and now. This classusesthe systemtime(2) interfaceto providetimereso-
[ution at either millisecond or microsecond granularity, depending upon operating sys-
tem support and features. Since the time duration is stored in a 32-bit word, the

maximum time period before rollover occursis about 71 minutes.

COOL User’'s Manual 4-9

System Interface Classes

Name:
Synopsis:

Base Classes:
Friend Classes:

Constructors:

Member Functions:

Dueto operating system dependencies, the accuracy of all member function results may
not be as documented. For example, some operating systems do not support timerswith
microsecond resolution. In those cases, the values returned are provided to the nearest
millisecond or other unit of time asappropriate. SeetheTimer . h header filefor system-
specific notes.

Timer — A timing facility for C++
#include <COOL/Timer.h>
Generic

None

Timer ();
Creates an instance of the Timer class with the mark set to creation time.

long all();
Returnsthe number of milliseconds spent in the user process and the operating sys-
tem since the last reference point (mark).

long all_usec();
Returns the number of microseconds spent in the user process and the operating
system since the last reference point (mark).

void mark ();
Sets the reference time to now.

long real();
Returnsthe number of millisecondsof wall clock time sincethelast reference point
(mark).

long system();
Returnsthe number of milliseconds spent in the operating system sincethelast ref-
erence point (mark).

long system_usec();
Returns the number of microseconds spent in the operating system since the last
reference point (mark).

long user();
Returns the number of milliseconds spent in the user process since the last refer-
ence point (mark).

long user _usec();
Returns the number of microseconds spent in the user process since the last refer-
ence point (mark).

Timer Example

4.9 The following program uses the COOL Timer class to calculate the time for a
loop to sum up a sequence of integer values. Note that although this example reports
resultsin milliseconds, support timing granularity onyour particular computer and op-
erating system may be different.

4-10

COOL User’'s Manual

System Interface Classes

1 #include <COOL/Timer.h> // Includes COOL timer class

2 int main (void) {

3 Timer t1; // Create a timer object

4 tl.mark () ; // Set start reference point

5 for (int 1 =0, j=0; 1 <10000; i++) // Loop for 10000 times and

6 j=3+1i; // Sum up numbers

7 cout << “Summation of integers from 0 through 10000 took ”;

8 cout << tl.real () << ” milliseconds\n”; // Output time since mark

9 return 0; // Return valid completion code
10)

Linelincludesthe COOL Timer header file. Line 3 createsanew timer object and line
4 establishesthe starting point of thetiming operation by setting themark. Lines5 and 6
implement aloop counting from 1 to 10000 that cal culatesthe sum of thesevalues. Line
8 contains an embedded call to thetimer object to report the elapsed time from the mark
to now. Notethat sincethiscall isembedded in the output statements, the time reported
isnot technically correct. A more accurate reading could be established by calling this
function and saving the value in atemporary variable for later use in the output state-
ment. Finally, line 9 returns a successful completion code.

The following shows the output of the program:

Summation of integers from 0 through 10000 took 20 milliseconds

COOL User’'s Manual 4-11

System Interface Classes

4-12 COOL User’'s Manual

PARAMETERIZED
TEMPLATES

I ntroduction

5.1 Parameterized templates allow a programmer to design and implement a general
purpose class without specifying the exact type of object or datathat is to be manipu-
lated. The user can then customize thisgeneral purpose class by specifying the object or
datatypewhen it isused in aprogram. Several versionsof the same parameterized tem-
plate (each implemented with a different type) can exist in a single application.
Parameterized templates can be thought of as metaclassesin that only one source base
needs to be maintained in order to support humerous variations of atype of class.

Animportant and useful type of parameterized templateis known as acontainer class.
A container classisaspecia kind of parameterized template whereyou put objects of a
particular type. For example, the Vector, List, and Hash_Table classes are container
classes because they contain a set of programmer-defined datatypes. Since container
classes are so commonplace in many applications and programs, parameterized con-
tainer classes provide a mechanism to maintain one source base for several useful data
structures. COOL supplies several common container class data structures that can be
used by the programmer in many typical application scenarios.

Each of the COOL parameterized container classes supports the notion of a built-in
iterator that maintains a current position in the container and is updated by various
member functions. These member functionsallow progression through the collection of
objectsin some order. For example, a function might take a pointer to a generic object
that is atype of container object. The function can iterate through elementsin the con-
tainer by using current position member functionswithout needing to know whether the
object is a vector, list, or queue.

In addition to this built-in iterator, you can also have multiple iterators over_the same
class by using the Iterator class. For example, you may be moving through the ele-
ments of acontainer classand come to a point where you need to save the current posi-
tion and begin processing elements at another location. After a period of time, you
return to the previous stopping point and continue where you left off.

Requirements

5.2 Thissection assumesyou have an understanding of the C++ language and itstype
system. In addition, some familiarity with automated program build procedures suchas
make is also necessary.

COOL User's Manual

Parameterized Templates

Parameterized
Templates

5.3 A parameterized template is the mechanism that allows a programmer to
define a metaclass representing a type—independent class. The class programmer uses
this facility to implement a class without knowing the specific type of data the user
might want to use. For example, aVector class can be written by using parameterized
templates so that the user of the class can create vectors of integers, vectors of doubles,
and so on. This scheme allowsthe class programmer to maintain one source code base
for multiple implementations of the class.

Regardless of the type of object a parameterized template isto manipulate,the structure
and organization of the template and the implementation of the member functions are
the samefor every version of the class. For example, aprogrammer providing aVector
class knows that there will be several member functions such asinsert, remove, print,
sort, and so on that apply to every version of the class. By parameterizing the arguments
and return values from the various member functions, the programmer provides only
oneimplementation of theVVector template. The user of the classthen specifiesthetype
of vector at compile-time. The following parameterized templates are currently avail-
ablein COOL:

Templates Description

Association An association list of pairs of objects
AVL Tree Height-balanced binary tree
Binary Tree Fast, efficient binary tree
Hash_Table Dynamic hash table

I terator Container class iterators

List Dynamic Common Lisp style lists
Matrix Two-dimensional matrix

N_Tree N-ary tree

Pair Coupling of two objects

Queue Dynamic circular queue

Range User-specified type with limits
Set Unordered collection of objects
Stack Dynamic stack

Vector One-dimensional vector

The syntax of the COOL parameterized templates grammar is as specified by Bjarne
Stroustrup in his paper “ Parameterized Typesfor C++” inthe 1988 USENIX C++ Con-
ference Proceedings. COOL fully implements the specified syntax so there will be
minimal source code conversion necessary when thisfeature isfinally implemented in
the C++ language.

The template keyword provides a means of defining parameterized templates. COOL
providesfour variations of templatefor controlling the operation and generation of dif-
ferent parts of a class. Templates are expanded in two parts and each of the four vari-
ationsis used in one of the two parts:

e The declarative part, which is needed by every program file that uses the
parameterized class

e Theimplementation part, which needsto be compiled once for the classin any ap-
plication that uses it

COOL User’'s Manual

Name:
Synopsis:

Parameterized Templates

The declarative part of the template may occur many times in an application and is
analogous to including a header file for a class. Template variations here declare the
class interface and define the inline member functions.

The implementation part of the template is analogous to the C++ file that containsthe
source code implementing the member functions of a class. Template variations here
define the member and friend functions that constitute the parameterized class.

template — C++ parameterized template keyword

template<class parms> class hame<parms> { class description };
Defines a template for the declaration of class name.

template<parms> result name<parms>::function{ ... };
Defines a member function for the implementation of class name.

template<class parms> inline result name<parms>::function{ ... };
Defines an inline member function for the declaration of the class name .

template<class parms> name { anything };
Defines anything else you want associated with a template.

Thefirst variation of template declares a parameterized template in aheader file. Typi-
cally, such adeclaration is very similar to that of a standard C++ class, except for the
appearance of the angle brackets and arguments. The second variation defines member
functions of a parameterized template. The third variation defines inline member func-
tionsof aparameterized template. Again, these appear similar to that of astandard C++
class.

Thelast variation of template defines such miscellaneousitems asatypedef or an over-
loaded friend function of a parameterized template. When thisform isfound before the
classtemplate, the contentsare expanded beforethe classdeclaration. Whenthisformis
found after the class template, the contents are expanded as part of the classimplemen-
tation. This has been used in several COOL container classes for defining predicate
types for the class (see paragraph 5.5 example below).

Each of the template forms allow one or more optional parameters to be supplied be-
tween the angle brackets. These are used to allow the programmer to specify the type
and other optional arguments to the template with the following syntax:

parms ::= type name [, parms]

wheretypeisthetypeof theargument, for example, aclass, anint, and so forth. Nameis
the name of the parameter that is substituted when the template is expanded. For exam-
ple, an n-ary tree class might have the following template class declaration:

template <class Type, int nchild> class N Tree<Type,nchild> {...};

In this example, classN_Tree<Type,nchilds is defined as a parameterized template
with two arguments. The first, Type, specifies the type over which n_tree is
parameterized. The second, nchild, specifiesthe number of subtrees each nodein the
n-tree may have.

COOL User's Manual

Parameterized Templates

DECLARE and 54 As stated earlier, a parameterized template declares a metaclass that is

IMPLEMENT type-independent. To usethe metaclass, aprogrammer must specify the actual typeand
any other template arguments in order to use it in a program. Thisis accomplished in
two steps: the declarative step and the implementation step. The declarative step uses
DECL ARE and the implementation step uses either IMPLEMENT or the Cool C++
Control program (CCC) discussed in paragraph 5.7.

Name: DECLARE — Declares a parameterized class
IMPLEMENT — Implements a parameterized class
Synopsis: #include <COOL/Name.h>

DECLARE Name< Type>;
IMPLEMENT Name<Type>;

Macros: DECLARE Name<Type>
Declares a parameterized class named Name of type Type.

IMPLEMENT Name<Type>
Implements a parameterized class named Name of type Type.

DECLARE instantiates a type-independent parameterized template for a user-speci-
fied type. DECL ARE is analogousto using typedef to indicate anew valid type name
to the compiler, or including the header file for some standard C++ class declaration.
DECLARE must be used in every file that includes or makes use of a parameterized
template. Alternately, the DECL ARE statement can be placed in acommon header file
that is included as necessary. DECL ARE must be followed by a valid parameterized
template name and atype name. Typically, thisis done by including a header file with
common information and definitions.

IMPLEMENT defines the member functions of a parameterized template for a spe-
cific type. IMPLEMENT is analogous to the C++ file that contains the source code
implementing the member functions of aclass. IMPLEMENT must be used only once
in an application for aspecific instantiation of a parameterized template; otherwise, you
will receive errors from the linker about symbols being defined more than once. IM -
PLEMENT must be followed by a parameterized template name and a type
name.Typicaly, IMPLEMENT isdonein one of the C++ source files making up part
of the application. The name and arguments must match those previously declared with
DECLARE.

NOTE: When you use IMPLEMENT, al the member functions for a particular
parameterized template are implemented in one source file. With the simple linkers
available on many operating systemstoday, an application will get all of these member
functionslinked into the executable image even if only one or two are used. CCC pro-
videsamechanism by which only member functions actually used in the application get
linked into thefinal program. See paragraph 5.6, COOL C++ Control program, for fur-
ther information.

5-4 COOL User’'s Manual

Parameterized Templates

DECLARE and
IMPLEMENT
Example

A WN PP

m\lmm

11
12

5.5 Declaration and implementation statements are flexible and can be
nested in a variety of operations, such as declaring a list of vectors of integers.
In addition, an argument passed as a type name at one level can itself be used as an
argument to be passed at a lower level. This is done in the COOL Associa-
tion<Ktype Vtype> class in conjunction with the fourth variation of template dis-
cussed earlier. An abbreviated header file for this class contains the following
statements:

template <class Ktype, class Vtype> Association {
DECLARE Pair<Ktype, Vtype>; // Declare pair object type
DECLARE Vector<Pair<Ktype,Vtype>>; // Declare vector of pairs

}

template <class Ktype, class Vtype>
class Association : public Vector<Pair<Ktype, Vtype>> {
/* Association class interface specification */

i

template <class Ktype, class Vtype> Association {
IMPLEMENT Pair<Ktype, Vtypes>;
IMPLEMENT Vector<Pair<Ktype, Vtype>>;

}

Lines 1 through 4 are placed before the Association<Ktype,Vtype> class definition,
thus becoming linked with the declarative part of the template for the class. Lines5
through 8 contain the actual class definition. Lines 9 through 12 are placed after the
class definition, thus becoming linked with the implementation part of the templatefor
the class. By using template in this manner, the DECLARE for the Associa-
tion<Ktype, Vtype> class aso invokes DECLARE for the correct types for the
Pair<Ktype Vtype> and Vector<Pair<Ktype,Vtype>> classes. Likewise, IMPLE-
MENT for the Association class invokes IMPLEMENT for the Pair <Ktype,Vtype>
and Vector <Pair <Ktype,Vtype>> classes.

Template Example 56 Suppose a class programmer wants to implement a generic vector class with a

O~NO U WN -

simple, consistent interfacefor the application programmer, regardlessof what objectis
to be stored in the vector. In addition, he wants to avoid replication of code for each
specific type. He creates a parameterized vector template derived from a type-inde-
pendent base class, as in the following abbreviated example:

class Vector { // Vector class
private:

int num_elements; // Element count

int size; // Size of vector object
public:

inline int count () ; // Number of elements

// Other member functions ...

};---

inline int Vector::count (intn) {
return this->num elements; // Return element count

}

// Other member functions ...

COOL User's Manual

5-5

Parameterized Templates

13 #include <Base_Vector.h> // Type-independent base class
14 #include <COOL/misc.h> // COOL definitions

15 template<class Type> class Vector<Type> : public Vector {

16 private:

17 Type* v; // Vector of pointer to Type
18 public:

19 Vector<Type> () ; // Empty constructor

20 Vector<Type> (int) ; // Constructor with size

21 Vector<Type> (Vector<Type>&) ; // Constructor with reference
22 ~Vector<Type> () ; // Destructor

23 inline Type& operator[] (int n) ; // Operator[] overload for Type
24 Type& element (intn) ; // Return element of type Type
25 .. // Other member functions ...
26 Vs

27 template<class Type> // Overload operator []

28 inline Type& Vector<Types>: :operator[] (int n) {

29 return this->v([n];

30 }

31 template <class Type> // Constructor with size

32 Vector<Types>: :Vector<Type> (intn) {

33 this->v = new Type [n] ;

34 this->size =n;

35 this->num elements =0;

36 }

37 .. // Other member functions ...

Lines 1 through 8 declare a class Vector representing the generic functionality of the
parameterized vector class. Datamembers such as object size and element count arein
the base class. Lines 9 through 11 implement one of theinline member functions of this
base class. Type-independent member functionslike count () areprovidedinthepublic
interface. Other member functions of this base class can be defined. The class declara
tion and theinlinemember functions (lines 1 through 11) arewrittento afilesase vec-

tor.h and the non-inline member functions (line 12) located in thefilesase_vector.c.

Line 13includesthebaseVector classand line 14 includes the COOL declarations and
definitions necessary for the use of parameterized templates. Line 15 is atemplate for
the class Vector < Type> that inheritsthe type-independent Vector baseclass. Lines 16
through 26 declare part of theinterfacefor the class. A more complete classwould have
many other member functionsand include support for thecurrent position functionality
discussed later. Lines 27 through 30 use atemplate for an inline member function, and
lines 31 through 36 use another template for a constructor for the class. Unlike a non-
parameterized class, the class declaration, the inline member functions, and the non-in-
line member functions are all located in the same file vector.h.

This abbreviated example is exactly how the code is organized for the COOL Vec-
tor<Type> class. Lines 1 through 11 are located in the file ~cooL/vector/Base_vec-
tor.h and specify type-independent features. Line 12 (that is, the member functions of
the base class) isfound in ~coor/vector/Base_vector.c and contains member func-
tion implementation code for the base vector class. Finally, lines 13 through 37 are lo-
cated in ~coon/vector/vector.h and specify the parameterized vector class.

5-6 COOL User’'s Manual

Parameterized Templates

To use this parameterized template, an application programmer includes the
parameterized vector header file and adds aDECL ARE statement in every sourcefile
that needsto know about theV ector < Type> class. Inaddition,anl MPLEM ENT state-
ment must be added to only one source file. The following lines could be added to an
application program source file to use this parameterized vector class for type double:

1 #include <Vector.h> // Include parameterized class
2 DECLARE Vector<double>; // Declare vector of double

3 IMPLEMENT Vector<doubles>; // Implement vector of double
4 void print (Vector<doubles>& v) { // Function to print elements
5 for (1=0; 1i<v.count (); i++) // For each element in vector

6 cout << v[i] << ”\n”"; // Print the value

7 }

Thissimplefunction takesasingle argument of areferenceto aparameterized vector of
doublesobject. It usesthe count () member function inherited from the base classVec-
tor to iterate through the elements of the object and print the value. An aternate proce-
durefor iterating through the elements of aparameterized container classisdiscussedin

paragraph 5.9.

NOTE: When IMPLEMENT isused in this manner, all the member functions of the
parameterized template arelinked into thefinal executableimage, evenif they arenever
referenced or used. To avoid this problem, use the CCC program as discussed below.

COOL C++ Control
Program

5.7 Parameterized classes are compiled and manipulated by the COOL C++
Control program (CCC) which provides all functions of the original CC program and
also supports the COOL preprocessor and COOL macro language. CCC controls and
invokes the various components of the compilation process. In particular, it looks for
command line arguments specific to the parameterized templ ate process and processes
them accordingly. Other options and arguments are passed onto the system C++ com-
piler control program.

When | MPLEM ENT isused to expand aparameterized template, all the member func-
tionsare placed in one source file. With the simple linkers available on many operating
systemstoday, aprogram links these member functionsinto the application executable
image, even if only one or two are actualy used. The CCC program takes each
template specifying amember function, compilesit into a separate object module, and
adds it to an application-specific object library. As aresult, only those member func-
tions actually used by the application get linked into the final program.

CCC takes the in-memory expanded code that implements a parameterized template
and fractures it along template boundaries. Each member function for aclassisin its
own template. Each member function compiles into a separate object module named
(by default) the name of the source file with a number appended that is incremented
automatically for each member function. These separate object files are then added to
an application library. At link time, the system linker usesthe symbolsinthisarchiveto
resolve external references. Since each member function isin its own object filein the
library archive, only those member functions used in the application are linked into the
final executable image.

COOL User's Manual

Parameterized Templates

Name:

Synopsis:
Options:

The user specifies one or more template files, a library archive name, and a specific
expansion type as command line arguments. Other arguments for the C++ compiler,
system linker, and so forth, are passed on unchanged to the various components of the
compilation process. A singleinvocation of CCC processes either atemplate or pro-
ceeds with the compilation of aregular C++ source file, but not both.

Severa of the primary COOL classes use CCC to fracture an instance of one or more
parameterized classes. For example, the Symbol and Package classes (discussed insec-
tion 11, Symbols and Packages) use only a few of the member functions of theVec-
tor<Type> and Hash_Table<Type> classes to implement the runtime type checking
(discussed in section 12, Polymorphic Management). See the file ~coor/package/
Makefile for more information.

CCC — The COOL C++ control program
CCC [-options REST: args] template library type

—X* Name< Type>"
Expandsthetemplatefor classNamewithtype Type. A template expansion must be
specified. The double quotation marks are required.

NOTE: The following options are used only in conjunction with the —X option;
otherwise, they are passed to the system C++ control program.

—o filename
Specifies the optional filename prefix to be used as the base name for each object
module. The default filename is the name of the classwith an index appended toit
(for example, Vector5.0 and Vector6.0). The filename must be unique inside the
library archive.

— library
Places all resulting object files in the specified application library archive. A li-
brary archive must be specified.

—C
Keeps the fractured source files implementing each member function. Thisisuse-
ful asadebugging aid when atemplate doesnot expand correctly due to some user
syntax error.

-l pathname
Searches the pathname for the specified header (template) source files.

COOL User’'s Manual

Parameterized Templates

CCC Example

N

oO~NO U~ W

5.8 Suppose you have an application where you require a Vector <Type> class tem-
plate parameterized over the builtl-in int type. You could use DECLARE and
IMPLEMENT and get all of Vector<Type>'s member functions expanded and linked
into your application. Typically, however, you are going to use only asmall percentage
of the member functions of the class. The remaining unused member functions get
linked in as overhead into the executable image, increasing program size and memory
requirements. Consider the following program example

#include <COOL/Vector.h> // Include parameterized class
DECLARE Vector<ints>; // Declare vector of integers

int main (void) {

}

Vector<ints> vl; // Declare vector object

for (1=0; 1 <10; i++) // Copy 10 elements into vector
vl.push (1) ; // Add value to vector

cout << vl; // Print the vector

Line lincludestheVector <Type> class header file. Line 2 declaresthe type so that the
compiler knows about vectors of integers. Lines 3 through 8 implement atrivia pro-
gram that adds 10 elements to the vector object and outputs the results. This program
makes use of aconstructor, the push member function, and the overload oper ator <<. If
compiled and linked in the normal manner, all the other Vector <Type> member func-
tions would also be linked into the application, even though they aren’t used.

Toresolvethisproblem, thefollowing line can be used in your application makefile (as
in done for this example in ~cooL/examples/Makefile):

$(CCC) $(CCFLAGS) $ (INCLUDE) $ (MY LIB) COOL/Vector.h -oVecInt -X”Vector<ints>”

This command line executes CCC with the usual options and include directory search
path. In addition, an application-specific library archive filemy r18 is designated to
hold the fractured template object files. Thevector . n header fileis given asthe source
file. The -ovecint option causes CCC to generate object files named vecinto,
VecIntl,VecInt2, €lC. Finaly,the-x"vector<int>~ optionindicatesthat CCC should
generate code to support a vector of integers. The resulting object files (one for each
member function) from the fractured template are stored in the library archive.

NOTE: Aswith any intermediate compilation step, the -c option must be specified as
part of ccrracs, sinceit is passed onto the compiler indicating that it should not con-
tinue with the link phase.

Toinsurethat thelinker searchesin thecorrect library archivefor thefractured template
object files, add the application-specific library archiveto thefinal link step (asisdone
for this example in ~COOL/examp1es/Makefile)Z

CCC -o $ (PROGRAM) $ (OBJECTS) -Ls$ (LIB_DIR) -1$ (MY LIB) -1COOL

Thiscommand line creates afinal executableimage named ¢ (procram) from all object
files specified by ¢ (oBgecTs) using thelibraries ¢ (my_r.1B) and 1ibcoor. a to resolve
any external references.

COOL User's Manual

5-9

Parameterized Templates

Container Classes

Example:

5.9 A container classis aspecialization of parameterized classes which contains ob-
jects of a particular type. For example, the Vector, List, and Hash_Table classesare
container classes because they contain a set of programmer-defined data types. On the
other hand, theRangeand | ter ator classesare parameterized classes, but not container
classes, because you do not put objectsinto them. As container classes are so common-
place in many applications and programs, the COOL parameterized container classes
provide a mechanism to maintain one source base for several versions of very useful
data structures. The following container classes are currently available in COOL.:

Association An association list of pairs of objects
AVL Tree Height-balanced binary tree
Binary Tree Fast, efficient binary tree
Hash_Table Dynamic hash table

List Dynamic Common Lisp style lists
Matrix Two-dimensional matrix

N_Tree N-ary tree

Queue Dynamic circular queue

Set Unordered collection of objects
Stack Dynamic stack

Vector One dimensional vector

One of the convenient aspects of the container classes is ease from the programmer’s
point of view. A container classthat isparameterized over an object does not requirethe
user to manage memory. However, if the class is parameterized over a pointer to an
object, the programmer must allocate and deallocate al storage for the objects.

Generally, thereisno performance gain from parameterizing over apointer to an object
rather than the object itself because all COOL container classes use C++ references.In
fact, doing so may belessefficient than parameterizing over the object itself. Construc-
torsand destructorsfor the objects pointed to may be calledevery timeyou change, add,
or remove an element in the container. If, on the other hand, you parameterize over the
object itself, the constructor is called only once when the container classis created. Up-
dates and changes are performed viathe assignment and/or X (X&) constructor. A valid
reason for choosing a pointer is when the size of each object might be different and/or
unknown at compile-time.

1 #include <COOL/Vector.h> // Bring in the template
2 DECLARE Vector<int> // Define the type

3 static Vector<ints> foo; // Use the type

4 IMPLEMENT Vector<ints> // Support the type

In this example, line 1 includes the parameterized COOL container class Vec-
tor<Type>. Line 2 declares an instance of this classto contain integers. Any valid C++
statement containing a data type can now be used with thistype. Line 3 shows a use of
this new type to define a static variable. Line 4 must appear only oncein al the source
files in an application. Line 4 generates the type-specific code that implements the
member functionsof classvector<int>. At thistime, any member function can now be
called for an object of this type.

5-10

COOL User’'s Manual

Parameterized Templates

In many cases, you may need to create a specialized container class that is customized
for aparticular problem (for example, aBTree class for a database project). Paragraph
5.12, Making Y our Own Container Classes, will discuss the requirements for such a
case. However, first read the documentation for current position and iteratorsin thefol -
lowing paragraphs.

Container Example
(Current Position)

5.10 Each of the COOL parameterized container classes supports the notion
of a built-in iterator maintaining a current position in the container. When
acontainer object is created, the current position isinvalidated. Various member func-
tions change the contents or order of elementsin a container object, and update the cur-
rent position marker as necessary (including invaidating it if appropriate). This might
occur, for example, if the elements of a container object are sorted according to some
new predicate, thus removing any significance to the current position setting.

In addition to this automatic tracking of the current position, the following member
functions are common to all container classes and can be used in a generic manner re-
gardless of the specific container class. The programmer uses the following member
functions to move through and manipulate the collection of objects in the container:

Member Functions Description

reset Resets the current position

next Advances to the next element

prev Backs up to the previous element

value Gets the element at the current position
remove Removes the element at the current position
find Finds an element and sets the current position

These member functions work efficiently for each container class. In most cases, an
inlineisall that isneeded. Other classes have more efficient versions of aspecific mem-
ber function (such as, next/prev in Vector, or find in Hash_Table), but all have the
same semantic meaning. These simple member functions combine to make powerful,
general purpose functions and macros.

For example, you might define afunction that takesapointer to ageneric object thatisa
type of container class (see the section titled Polymorphic Management later in this
manual for more information on polymorphic functionality). The function iterates
through the elements in the container by using the current position member functions
without needing to know whether theobject isavector, alist, or aqueue, and soforth. A
completeand useful exampleof thisfeatureisprovidedinthe section titied Macros|ater
in this manual.

COOL User's Manual

5-11

Parameterized Templates

|terator Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

5.11 Inadditiontothebuilt-initerator previously described, you can also have multi-
pleiteratorsover thesameclassby using thel ter ator < Type> class. Thisisuseful when
you move through the elements of acontainer class, cometo apoint where you need to
save the current position, and process elements at another location. After a period of
time, you return to the previous stopping point and continue where you left off.

The Iterator<Type> class provides an independent mechanism for maintaining the
state associated with the current position of an instance of acontainer class. Multiple
iterators over the same instance of a class can be supported. Each container class sup-
porting the current position notion has a data structure representing the state. This may
be as simple as atype long, or more involved, such aswith aunion of bit fields or an-
other classinstance. In addition, each container class has acurrent_position member
function to get or set the current position. Thismember function facilitates storage and
retrieval of the current position.

The container-specific datastructure used to hold the current position statein all COOL
container classesis, by convention, named class_state, where classis the name of the
container class header file. Thus, auser including vector . h declaresan | ter ator <Vec-
tor> class, and theinternal datastructurethat iscreated automatically and maintainsthe
state is of type Vector_state. In this manner, the | ter ator <Type> class parameterizes
over the container classname (that is, Bit_Set, Vector, and soon). Thisclassallocatesa
data member of the appropriate type by concatenating the Type name with the string
“ state’. The user need not know about internal implementation details.

Each container class has the current_position public member function that returns a
reference to the iterator state data structure. The member functions supporting current
position functionality alwayswork on the current position as maintained in the private
data section of the container classinstance. A programmer can, at any point, changethe
current position state information by using this member function to get and/or set the
current position of the container class.

Each state data structure implemented in every container class must support the assign-
ment of INVALID (defined in coor/misc.h). A state with this value will result in an
Error exception if used by one of the current position member functions. Alternately,
the user can specialize the Iterator<Type> class to behave differently for a specific
class. This alternate mechanism is used by the COOL List<Type> class in the file
COOL/Iterator.h.

Iterator<Type> — A parameterized iterator class
#include <COOL/Iterator.h>

None

None

inline Iterator<Type> ();
Simple constructor that initializesto INVAL 1D the state information representing
the current position for a specific Type of container class.

inline Iterator<Type> (Type ##_state& state);
Constructor that takes a reference to the container-Type current position state and
copies the value to the internal data member. This constructor calls the cur-
rent_position() member function of some container class.

5-12

COOL User’'s Manual

Member Functions:

Parameterized Templates

inline Type ## state operator Type ## state ();
Overloaded operator required by the compiler. It implicitly converts the current
position state information contained in a type-specific iterator object to the data
type expected by an associated container class object.

Iterator Example

512 The following program excerpt shows the use of an instance of the
Iterator<Type> class with an instance of the Vector < Type> classto save and restore
the current position.

1 #include <COOL/Vector.h> // Include Vector header file

2 #include <COOL/Iterator.h> // Include Iterator header file
3 DECLARE Iterator<Vectors; // Declare Iterator for vector
4 DECLARE Vector<ints; // Declare Vector of ints

5 Vector<ints> v; // Declare a vector

6 Iterator<Vectors> iv; // Declare a vector iterator

7 iv =v.current position() ; // Save current position

8 ... /* godo something that may change current position*/

9 v.current position() =iv; // Restore previous position
10 ... /* some action continuing fromold place, ie. remove */

Lines1and 2includethe COOL Vector<Type> and I terator<Type> classesand lines
3 and 4 declareavector of integersand an iterator for vectors. Lines5 through 10 repre-
sent code that might be contained at a point in the source file. Line 5 creates avec-
tor<int> Object and line 6 creates an 1terator<vectors oObject. Line 7 saves the
current position of avector object so that the vector can be altered inline 8. Line 9 re-
storesthe previous position val ue and the program continueswith processingin line10.

Making Your Own
Container Classes

5.13 COOL supplies severa common container class data structures that
can be used by the programmer in many application scenarios. However,
there are many other caseswhere aspecialized container class customized for aparticu-
lar problem is needed (for example, aBTree class for adatabase project). To augment
the COOL container classeswith other compatible classes, afew requirements must be
met:

e Theclassmust contain aprivatedatamember maintaining the current position with
member functions that update or reset this position as appropriate.

e Themember functionsnext(), prev(), reset(), valug(), remove(), and find() must
be defined and supported.

e |fthename of the container classisFoo defined in header file Foo . h, there must be
adatastructure of type Foo_statedefined in oo . nh for use by thelter ator < Type>
class.

e Themember function current_position() must be defined to return areference to
theFoo_statedatastructureto allow thelterator <Type> classto work efficiently.

COOL User's Manual

5-13

Parameterized Templates

Since auser may have declared several kinds of atype of container class, thefinal pro-
gram size can be significantly reduced if all type-independent codeis placed in abase
class. For example, the COOL Vector < Type> classimplements aparameterized vector
class. However, all member functionsand datathat areindependent of the specific Type
areplaced inthebaseclassVector. Thisresultsin common functionality shared by sev-
eral kinds of vector classes, thus reducing the needlesscode replication that would oth-
erwise occur.

If not designed properly, a parameterized class can result in excessive code-replication
when used in a single application many times. When you are designing your own
parameterized classes, you can avoid this problem by putting all type-independent code
in a base class from which the parameterized class is later derived. The COOL
parameterized classes reduce the amount of code that is generated by doing this.

For example, if an application has a Vector<int>, Vector<char*>, and Vec-
tor<String>, there could be potentially three“copies’ of all the member functionsthat
implement these classes. However, the baseVector classimplements many of thesim-
ple bookkeeping member functions and exception routines that do not require knowl-
edge of or access to the type. The Vector<Type> class is derived from Vector. Asa
result, although an application may parameterize V ector <Type> with several different
types, there will only be one copy of many of the member functions.

Storing ObjectsIn
Container Classes

5.14 The COOL container classes allow the programmer to specify the type
of object that will be stored and manipulated by the class. The following member func-
tionsmust be defined for any user-defined object that isto be contained in any container
class (all built-in types aready support these operations):

e Type& operator= (const Type&);

Boolean operator== (const Type&);

Boolean operator< (const Type&);

e Boolean operator> (const Type&);

friend ostream& operator<< (ostreamé& , const Type&);
e inlinefriend ostream& operator<< (ostream&, const Type*);

These member functions are assumed to be available for the type of object over which
the class has been parameterized. If any are missing, acompiletime error is generated.
Although the programmer may not use these directly, the container class usesthemfor
such operations as assigning element values and printing the contents.

5-14

COOL User’'s Manual

ORDERED
SEQUENCE CLASSES

I ntroduction

6.1 The ordered sequence classes are a collection of basic data structures that imple-
ment sequential access data structures as parameterized classes, thus allowing the user
to customize a generic template to create a specific user-defined class. Thefollowing
classes are discussed in this section:

o Vector<Type>
o Stack<Type>

e Queue<Type>
e Matrix<Type>

The Vector<Type> class implements dynamic, one-dimensional vectors supporting
such functions as insert, delete, replace, search, reverse, print, and sort. The
Stack<Type> classimplements dynamic stacks with the functions push, pop, find, po-
sition, and empty. The Queue<Type> class implements a dynamic, circular buffer
gueue with support for get, unget, put, and unput to access elements at either end of the
gqueue. The Matrix<Type> class implements static-sized, two-dimensional matrices
with support for the basic arithmetic operations. TheV ector <Type> and Queue<Type>
classes support the notion of a current position. See Section 5, Parameterized Tem-
plates, for more information regarding the current position mechanism and the
Iterator<Type> class.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which a sequence class is parameterized. The
member functions operator=, operator <, operator>, operator==, and operator<<
for both pointer and reference must be overloaded for any class object used as the type.
In addition, the M atrix<Type> class requires the supplied type to support oper ator +,
operator—, oper ator/, and operator*. Note that built-in types already have these func-
tions defined.

NOTE: The ordered sequence classes use oper ator = of the parameterized type when
copying elements. Y ou should be careful when parameterizing an ordered sequence
classover apointer to atype, sincethe default pointer assignment operator usually cop-
ies the pointer, not the value pointed at.

Requirements

6.2 This section discusses the parameterized ordered sequence container classes. It
assumesthat you have read and understood Section 5, Parameterized Templates. In ad-
dition, no attempt is made to discuss the concepts and algorithmsfor the data structures
discussed. Y ou should refer to ageneral datastructures or computer sciencetext for this
information.

COOL User's Manual

Ordered Sequence Classes

Vector Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

6.3 TheVector<Type> classimplementsone-dimensional vectors of auser-specified
type. All memory management and initialization is encapsul ated and performed by the
class constructors and member functions. Vector objects can be either static-sized or
dynamic. Vectors are, by default, dynamic in nature. A static-sized vector object is se-
lected by setting the growth all ocation size to zero or by passing in apointer to ablock of
user-supplied storage to the constructor. If avector is of static size and an operationis
performed that requires more storage, an Error exception is raised.

The Vector <Type> classimplements the notion of acurrent position. Thisis useful for
iterating through the elements of a vector. The current position is maintained in a data
member of type Vector_stateand is set or reset by all member functions affecting ele-
mentsin the class. Member functions are provided to reset the current position, moveto
the next and previous elements, find an element, and get the value at the current posi-
tion. Thelter ator <Type> class providesamechanismto save and restore the state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a vector.

The Vector<Type> class follows conventional object-oriented programming tech-
niques and encapsul ates the actual data elements from the user. The advantage of this
approach is that the class can automatically manage memory, maintain the element
count, and be aware of any changes made to thevector. The user of the classfacilitates
this operation by using theinsert, push, pop, and remove member functions and their
variants. However, the Vector <Type> class also overloads the operator[] and allows
the user to access a specific element directly. This is done partly for efficiency and
partly for compatibility with past usage.

The drawback of this approach, however, is that the object may not always know its
current state. For example, anewly declared vector object has no el ements. Each use of
push to add an element will increment the element count by one. However, elements
added at random locationsviatheoperator [] will not be counted. A user may get unex-
pected results by mixing these approaches. For this reason, the set_length() member
function allows the user to manually set the element count before use of operator|[] for
random-access write operations.

Vector<Type> — A dynamic, parameterized vector class
#include <COOL/Vector.h>
Vector, Generic
None
Vector<Type> ();
Creates an empty vector of the specified type.

Vector <Type> (unsigned long number);
Allocates enough storage for a vector of a specific type to hold number elements.
Elements are not initialized.

Vector <Type> (unsigned long number, const Type& value);
Allocates enough storage for a vector of a specific type to hold number elements,
each of which isinitialized with value.

6-2

COOL User’'s Manual

Member Functions:

Ordered Sequence Classes

Vector<Type> (unsigned long number, int init_num, ...);
Allocates enough storage for a vector of a specific type to hold number elements.
The second argument init_num specifies the number of optional initialization val-
ues provided for consecutive elements of the vector. Any remaining elements are
not initialized.

Vector<Type> (Vector<Type>& Vec);
Duplicatesthe size and value of another vector object vec. Element values are cop-
ied by operator = for the type specified.

Vector<Type> (void* storeage, unsigned long number);
Creates a static-sized vector object for number elements whose storage storeageis
provided by the user. If a vector object created in this manner attempts to grow
dynamically or the resize member function is invoked, an Error exception is
raised.

Boolean append (const Vector<Type>& Vec);
Addstheelementsof vector vecto theend of avector object. Thecurrent positionin
the vector object is set to the position of the last element of vec. If required and not
prohibited, this function grows the destination vector and returns TRUE; other-
wise, this function returns FAL SE.

inline long capacity () const;
Returnsthe maximum number of elementsthevector can contain without growing.

void clear ()
Removes all elements in the object and invalidates the current position.

void copy (const Vector<Type>& vec, unsigned long start = 0,
long end = -1);
Copiesthe specified range (start inclusive and end exclusive) from the source vec-
tor vec to the vector object. The destination vector will grow if necessary and if
allowed. The current positionisset to thelast element copied into the destination. If
end is equal to minus one (the default), all elements from start to the end of the
vector are copied. If the start or end or both indexes areinvalid or the vector needs
to grow dynamically and thisis prohibited, an Error exception is raised.

inline Vector_state& current_position ();
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multiple iterators over an instance of vector.

void fill (const Type& value, unsigned long start = 0, long end = -1);
Sets all elements within the specified range (start inclusive and end exclusive) to
valueand invalidatesthe current position. If end isequal to minusone (the default),
all elementsfrom start to the end of the vector arefilled. If the start or end or both
indexes are invalid, an Error exception is raised.

Boolean find (const Type& value, unsigned long start = 0);
Searchesthevector for value beginning at the specified startindex. If theelementis
found, this function sets the current position and returns TRUE; otherwise, this
function invalidates the current position and returns FAL SE.

inline Type& get (int n)
Returns a reference to the nth (zero-relative) element in the object. This function
setsthe current position to this element. If the index is negative or out of range, an
Error exception israised.

COOL User's Manual

Ordered Sequence Classes

Boolean insert_after (const Type& value);
Inserts (not replaces) the element value after the current position and does not
change the current position. If the current positionisinvalid, this function returns
FALSE. If required and not prohibited, this function grows the target vector and
returns TRUE; otherwise, this function returns FAL SE.

Boolean insert_after (const Type& value, long index);
Inserts (not replaces) the element value after the specified zero-relative index and
updatesthe current position to the specified index. If theindex is out of range, this
function returns FAL SE. If required and not prohibited, this function grows the
target vector and returns TRUE; otherwise, this function returns FAL SE.

Boolean insert_before (const Type& value);
Inserts (not replaces) the element value before the current position and advances
the current position one element, thusleaving it pointing at the sameelement. If the
current positionisinvalid, thisfunction returnsFAL SE. If required and not prohib-
ited, thisfunction growsthe target vector and returns TRUE; otherwise, thisfunc-
tion returns FAL SE.

Boolean insert_before (const Type& value, long index);
Inserts (not replaces) the element val ue before the specified zero-rel ativeindex and
updatesthe current position to the specified index. If theindex isout of range, this
function returns FAL SE. If required and not prohibited, this function grows the
target vector and returns TRUE; otherwise, this function returns FAL SE.

inline Boolean is_empty ();
Returns TRUE if the vector contains no entries; otherwise, returns FAL SE.

inline long length () const;
Returns the number of elements in the vector.

void merge (const Vector<Type>& vec, Predicate p);
Mergesthe elements of one vector into another by using the supplied predicate for
determining the collating sequence. The current positioninthe destination vector is
invalidated. Predicate is a user-defined function of type int (* Function) (const
Type&, const Type&) that returns—1 if the first argument should precede the sec-
ond, zero if they are equal, and 1 if the first argument should follow the second.

inline Boolean next ();
Advancesthe current position to the next element in the vector and returns TRUE.
If the current position isinvalid, this function sets the current position to the first
element and returns TRUE. If the current positionisthe last element of the vector,
this function invalidates the current position and returns FAL SE.

Vector<Type>& operator= (const Type& value);
Overloadsthe assignment operator for theVector <Type> classand assigns all ele-
ments value. If dynamic growth of the vector is prohibited, an Error exceptionis
raised. If thereisenough room, the current positionisinvalidated and areferenceto
the vector is returned.

Vector<Type>& operator= (const Vector<Type>& Vec);
Overloads the assignment operator for the Vector <Type> class and assigns vec to
the vector object, duplicating the size and element values. The current position in
the destination vector isinvalidated. A reference to the vector object is returned.

6-4

COOL User’'s Manual

Ordered Sequence Classes

Boolean operator == (const Vector<Type>& vec) const;
Overloads the equality operator for the Vector <Type> class and returns TRUE if
the vector object has the same number of elements with the same values as vec;
otherwise, this function returns FAL SE.

inline Boolean operator!= (const Vector<Type>& vec) const;
Overloadstheinequality operator for the Vector <Type> classand returns TRUE if
the vector object does not have the same number of el ements or the same values as
vec; otherwise, this function returns FAL SE.

inline Type& operator[] (unsigned long index) const;
Overloadsthe brackets operator for theV ector <Type> classand returnsareference
to anindividual element from the vector at the zero-relative index specified. If in-
dexisinvalid or out of range, an Error exception israised. Y ou should be careful
when using oper ator [] because anindex isout of rangeif it isgreater than the num-
ber of elementsinthevector. If random accessto all allocated spaceisdesired, first
use the set_length() function.

Type& pop ();
Returnsareferenceto thelast element in the vector and invalidatesthe current posi-
tion.

inline long position () const;
Returnsthe current position asazero-rel ativeindex into the vector that can be used
with the overloaded operator(].

inline long position (const Type& value) const;
Searchesthe vector for value. If the element isfound, thisfunction updatesthe cur-
rent position and returns the zero-relative index of the element; otherwise, this
function invalidates the current position and returns —1.

Boolean prepend (const Vector<Type>& Vec);
Inserts the elements of one vector vec at the beginning of athe vector object. The
current position is set to the new position of thefirst element of the old destination
vector. If required and not prohibited, this function grows the destination vector
and returns TRUE; otherwise, this function returns FAL SE.

inline Boolean prev ();
Movesthe current position pointer to the previous element in the vector and returns
TRUE. If thecurrent positionisinvalid, thisfunction movesto thelast el ement and
returns TRUE. If the current positionisthefirst element in the vector, thisfunction
invalidates the current position and returns FAL SE.

Boolean push (const Type& value);
Adds value to the end of a vector. If required and not prohibited, this function
growsthe vector object. Thisfunction returns TRUE if successful; otherwise, this
function returns FAL SE. Thisfunction setsthe current position to point to the new
element added.

Boolean push_new (const Type& value);
Addsvaluetotheend of avector if itisnot already in thevector. If required and not
prohibited, this function grows the vector object. This function returns TRUE if
successful; otherwise, this function returns FAL SE. This function sets the current
position to point to the new element added.

COOL User's Manual

Ordered Sequence Classes

inline Boolean put (const Type& value, long n)
Replacesthe nth (zero-relative) element in the object with value. Thisfunction re-
turns TRUE if the nth element exists; otherwise, this function returns FAL SE. If
the index is negative, an Error exception is raised.

Type remove ();
Removes and returnsthe element at the current position. Thisfunction setsthe cur-
rent position to the element immediately following the element removed. If the
element is found but at the end of the vector, this function invalidates the current
position.

Boolean remove (const Type& value);
Searchesfor valueand, if found, thisfunction removesand setsthe current position
to the element immediately following the element removed, and then it returns
TRUE. If valueisfound but at the end of the vector, this function invalidates the
current position and returns TRUE. If value is not found, this function returns
FALSE.

Boolean remove_duplicates ();
Removes any duplicate elements from the vector and invalidates the current posi-
tion. This function returns TRUE if any elements were removed; otherwise, this
function returns FAL SE.

Boolean replace (const Type& valuel, const Type& value2);
Replaces the first occurrence of value2 with valuel. If value2 is found, this func-
tion returns TRUE; otherwise, this function returns FAL SE.

Boolean replace all (const Type& valuel, const Type& value2);
Replacesall occurrences of value2 with valuel and setsthe current position to the
last replaced element. Thisfunction returns TRUE if any elements were replaced,;
otherwise, this function returns FAL SE.

inline void reset ();
Invalidates the current position.

void resize (unsigned long size);
Resizes the vector for at |east size number of elements and invalidates the current
position. If agrowth ratio has been selected and it satisfies the resize request, the
vector is grown by this ratio. If the new size is negative, an Error exception is
raised.

void reverse ();
Reverses the order of elementsin avector and invalidates the current position.

Boolean sear ch (const Vector<Type>& vec, long start=0, long end=-1);
Searches within the specified range (start inclusive, end exclusive) of avector ob-
ject for asequencevec. If end isequal to minusone (the default), al elementsfrom
start to the end of the vector are filled. If the sequenceis found, this function sets
the current position in the destination vector to the start of the matched sequence
and returns TRUE; otherwise, this function returns FAL SE.

inline void set_alloc_size (int size);
Updatesthe alocation growth sizefor all instances of the classto beused when the
growth ratio iszero. Default allocation growth sizeis 100 bytes. Setting the alloca-
tion growth sizeto zero resultsin a static-sized object. If the size specified isnega-
tive, an Error exception is raised.

6-6

COOL User’'s Manual

Friend Functions:

Ordered Sequence Classes

inline void set_compar e (Vector_Compare = NULL);
Updates the compare function for this class of vector. Vector _Compareisafunc-
tion of type Boolean (* Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the vector is parameterized is
used..

inline void set_growth_ratio (float ratio);
Updatesthe growth ratio for thisinstance of avector to the specified value. When a
vector needsto grow, thecurrent sizeismultiplied by theratio to determinethe new
size. If ratio is negative, an Error exception is raised.

inline long set_length (long);
Specifiesthe number of elementsin avector to allow random access viathe over-
loaded oper ator[] member function. If the number requestedislarger thanthe stor-
age allocated, thisfunction truncatesto thelargest value that theallocated size will
support. This function returns the updated number of elements. If the length is
negative, an Error exception is raised.

void sort (Predicate p);
Sorts the elements of a vector by using the supplied predicate for determining the
collating sequence and invalidates the current position. Predicateis auser-defined
function of typeint (* Function) (const Type&, const Type&) that returns—1 if the
first argument should precede the second, zero if they are equal, and 1 if the first
argument should follow the second.

inline Type& value ();
Returns areference to the element at the current position. If the current positionis
invalid, an Error exception is raised.

friend ostreamé& operator<< (ostream& os, const Vector<Type>& vec);
Overloadsthe output operator for areferencetoaVector < Type> object to provide
a formatted output capability.

friend ostreamé& operator<< (ostream& os, const Vector <Type>* vec);
Overloadsthe output operator for apointer to aVector < Type> object to providea
formatted output capability.

COOL User's Manual

Ordered Sequence Classes

Vector Example 6.4 Thefollowing program declaresavector of five stringswhose contents areinitial-
ized with state names. The element values are first printed by using oper ator <<, then
sorted in reverse alphabetical order, and finally printed by iterating through the vector
by using the current position functions.

1 #include <COOL/String.h> // COOL String class

2 #include <COOL/Vector.h> // COOL Vector class

3 DECLARE Vector<Strings>; // Declare vector of strings
4 IMPLEMENT Vector<Strings>; // Implement vector of strings
5 Boolean my compare (const String& sl, const String& s2) {

6 return ((sl <= s2) ? FALSE : TRUE) ; // Reverse alphabetize

7 }

8 int main (void) {

9 Vector<String> v1(5) ; // Declare vector of strings
10 vl.push (”Texas”) ; // Add “Texas”

11 v1.push (“Alaska”) ; // Add “Alaska”

12 v1l.push (”"New York”) ; // Add “New York”

13 vl.push (“Alabama”) ; // Add “Alabama”

14 v1.push (“North Dakota”) ; // Add “North Dakota”

15 cout << vl << ”"\n"; // Output the vector

16 vl.sort(my_compare); // Reverse sort the vector
17 for (vl.reset(); vli.next();) // For each element

18 cout << vl.value() << ”"\n”; // Output the value

19 exit (0); // Exit with OK status

20)

Lines 1 through 4 define the Vector and String classes. Lines 5 through 7 declare a
simplesort function that reversesthelexical comparison test performed by oper ator <=
in the String class. Line 9 defines a vector of strings with initial storage for five ele-
ments. Lines 10 through 14 push five literal character strings into the vector. Line 15
uses oper ator << for the Vector class to output the element values. Line 16 sorts the
vector according to the predicate function provided. Finally, lines 17 and 18 use the
current position functions to iterate through the elements, printing each one.

The following shows the output for the program:

Texas Alaska New York Alabama North Dakota
Texas

North Dakota

New York

Alaska

Alabama

6-8 COOL User’'s Manual

Ordered Sequence Classes

Stack Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

6.5 TheStack<Type> classimplementsaconventional first-in, last-out datastructure
that holds a user-specified datatype. All memory management and initialization is en-
capsulated and performed by the class constructors and member functions. Stack ob-
jects can be either static-sized or dynamic. Stacks are, by default, dynamic in nature. A
static-sized stack object is selected by setting the growth alocation size to zero or by
passingin apointer to ablock of user-supplied storagetothe constructor. If astack isof
static sizeand an operationis performed that requires more storage, anError exception
israised.

Stack<Type> — A dynamic, parameterized stack
#include <COOL/Stack.h>

Stack, Generic

None

Stack<Type> ();
Creates an empty stack of the specified type.

Stack<Type> (unsigned long number);
Allocates enough storage for astack of aspecific type to hold number of elements.

Stack<Type> (const Stack<Type>& stk);
Duplicates the size and value of a stack object stk.

Stack<Type> (void* storage, unsigned long number);
Createsa static-sized stack object for number of elementswhose storagestorageis
provided by the user. If an object of thistype attempts to grow dynamically or the
programmer invokes the resize member function, an Error exception is raised.

inline long capacity () const;
Returns the maximum number of elements the stack can contain.

inline void clear ();
Sets the number of elements in the stack to zero.

Boolean find (const Type& value);
Searchesthe stack for value. If valueisfound, this function returns TRUE; other-
wise, this function returns FAL SE.

inline Boolean is_empty () const;
Returns TRUE if the stack has no elements; otherwise, this function returns
FALSE.

inline long length () const;
Returns the number of elements in the stack.

Stack<Type>& operator= (const Stack<Type>& stk);
Overloadsthe assignment operator for the Stack<Type> classand assignsstkto the
stack object by duplicating the size and element values. If the stack object isprohib-
ited from dynamically growing, an Error exception is raised.

COOL User's Manual

Ordered Sequence Classes

Boolean operator== (const Stack<Type>& stk) const;
Overloads the equality operator for the Stack<Type> class. Returns TRUE if the
stackshave an equal number of elementswith thesame val ues; otherwisethisfunc-
tion returns FAL SE.

inline Boolean operator!= (const Stack<Type>& stk) const;
Overloadstheinequality operator for the Stack<Type> class. Thisfunction returns
TRUE if the stacks have a unequal number of elements or unequal values; other-
wise this function returns FAL SE.

inline Type& operator[] (unsigned long number);
Overloads the index operator for the Stack<Type> class. This function returns a
reference to the element of the stack that isnumber of elements from the top of the
stack. If number is greater than the size of the stack, an Error exception israised.

inline Type& pop ();
Removes and returns areference to the top element on the stack. If the number of
elements (that is, length) has been set to a zero-relative index greater than the size
of the stack, an Error exception is raised.

Type& popn (long n);
Pops n elements off the stack, returning areference to the last one popped off the
stack. With an argument of zero, thisfunction returnsthetop item of the stack with-
out removing it. If the number of elementsto pop isnegative, anError exceptionis
raised.

long position (const Type& value) const;
Searchesthe stack for value. If valueisfound, thisfunction returnsthe zero-relative
index, from thetop of the stack, of that element; otherwise, thisfunction returns—1.

inline Boolean push (const Type& value);
Pushes value onto the top of a stack. If required and not prohibited, this function
grows the stack object. This function returns TRUE if successful; otherwise, this
function returns FAL SE. If the stack is prohibited from growing dynamically, an
Error exception is raised.

Boolean pushn (const Type& value, long n);
Pushes n items onto the top of the stack, all of which have the specified value.
When n is zero, this function replaces the top item on the stack with value. If re-
quired and not prohibited, this function grows the stack object. This function re-
turns TRUE if successful; otherwise, this function returns FAL SE. If the stack is
prohibited from growing dynamically, an Error exception is raised.

void resize (long number);
Resizesthe stack for at | east number of elements. If agrowth ratio has been selected
and it satisfies the resize request, the stack is grown by this ratio. If the stack is
prohibited from dynamically growing, an Error exception is raised.

inline void set_alloc_size (int size);
Updatestheall ocation growth sizeto be used when the growthratioiszero. Default
allocationgrowth sizeis 100 bytes. Setting theallocationgrowth sizeto zeroresults
in a static-sized object. If size is zero or negative, an Error exception is raised.

inline void set_compar e (Stack_ Compare = NULL);
Setsthe compare function for this class of stack. Sack Compareisauser-defined
function of type Boolean (*Function)(const Type&, const Type&). If no such
function is provided, the operator== for the type over which the class is
parameterized is used.

6-10

COOL User’'s Manual

Friend Functions:

Ordered Sequence Classes

inline void set_growth_ratio (float ratio);
Updatesthe growth ratio for thisinstance of astack toratio. When astack needsto
grow, the current sizeismultiplied by theratio todeterminethe new size. If ratiois
negative, an Error exception is raised.

inline long set_length (long number);
Specifies the number of elementsin a stack to allow random access via the over-
loaded oper ator[] member function. If number islarger than the storage all ocated,
this function truncates number to the largest value that the allocated size will sup-
port. Thisfunction returnsthe new element count. If number is negative, an Error
exception is raised.

inline Type& top ();
Returns (without removing) areferenceto thetop element of the stack. If the num-
ber of elements (that is, length) hasbeen set to azero-rel ativeindex greater than the
size of the stack, an Error exception is raised.

friend ostream& operator << (ostream& os, const Stack<Type>& stk);
Overloadsthe output operator for areferenceto aStack<Type> object to providea
formatted output capability.

inline friend ostream& operator << (ostream& 0s, const Stack<Type>* stk);
Overloads the output operator for a pointer to a Stack<Type> object to provide a
formatted output capability.

COOL User's Manual

6-11

Ordered Sequence Classes

Stack Example 6.6 Thefollowing program declares a stack capable of initially holding 10 integers.
Integer values are pushed onto the stack in aloop. Notice that since more than 10 ele-
ments are pushed onto the stack, it must grow automatically and add storage capacity as
necessary to hold the extra elements. Finally, these elements are then popped from the
stack and printed.

1 #include <COOL/Stack.h> // COOL Stack class

2 DECLARE Stack<ints>; // Declare stack of integers

3 IMPLEMENT Stack<ints>; // Implement stack of integers
4 int main (void) {

5 Stack<int> s1(3); // Declare stack of integers

6 for (inti=1; i<=5; i++) // Inasmall loop, push “n”

7 sl.pushn (i,1); // copies of an integer value
8 for (1 =0; i<5; i++) { // In another similar loop up to
9 for (int j=0; j <sl.top(); j++) // the top element value, get
10 cout << sl.pop() ; // avalue from stack and print
11 cout << ”"\n”; // Output a newline and repeat
12 }

13 exit (0); // Exit with OK status

4

Lines 1 through 3 define the Stack class. Line 5 defines a stack of integers withiinitial
storagefor 10 elements. Lines 6 and 7 loop from one through five and push the current
loop number on the stack. Thus, the first time through the loop, one element whose
valueisoneispushed. The second time, two elementswhose values aretwo are pushed,
and so on. Because more than 10 elements are added to thestack, an automatic resizeis
performed by the stack object to accommodate more elements. Because no user-speci-
fied growth factor was given, enough storage is allocated tohold 100 elements. Lines 8
through 11 contain nested loops that read the top value on the stack, loop that many
times, pop off avalue, and print it. After each inner loop completes, anewline character
is printed.

The following shows the output from the program:

55555
4444
333
22

1

6-12 COOL User’'s Manual

Ordered Sequence Classes

Queue Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

6.7 The Queue<Type> classimplements a conventional first-in, first-out data struc-
turethat holds a user-specified datatype. All memory management and initialization is
encapsulated and performed by the class constructors and member functions. Queue
obj ects can be either static-sized or dynamic. Queuesare, by default, dynamicin nature.
A static-sized queue object is sel ected by setting the growth all ocation sizetozero or by
passingin apointer to ablock of user-supplied storageto the constructor. If aqueueisof
static sizeand an operationis performed that requires more storage, anError exception
israised.

The Queue<Type> class implements the notion of a current position. Thisisuseful for
iterating through the elements of a queue. The current position is maintained in a data
member of type Queue_stateand is set or reset by all member functions affecting ele-
mentsin the class. Member functionsare provided to reset the current position, moveto
the next and previous elements, find an el ement, and get the value at the current posi-
tion. Thelter ator <Type> class providesamechanismto save and restorethe state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a queue.

The Queue<Type> class alows the programmer to add and/or remove items from
either end of the queue. In addition, the current position and iterator functions allow the
programmer to examine other entriesin the middle of the queue and remove or change
them. Thiswould be useful inimplementing a prioritized queue where the entries may
need to be rearranged at times.

Queue<Type> — A dynamic, parameterized queue
#include <COOL/Queue.h>

Queue, Generic

None

Queue<Type> ();
Creates an empty queue of the specified type.

Queue<Type> (unsigned long number);
Allocates enough storage for aqueue of aspecific typeto hold number of elements
specified by the argument.

Queue<Type> (const Queue<Type>& q);
Duplicates the size and value of a queue object g.

Queue<Type> (void* storage, unsigned long number);
Createsastatic-sized queue object for number of elementswhose storagestorageis
provided by the user. If an object of thistype attemptsto grow dynamically or the
programmer invokes the resize member function, an Error exception is raised.

inline long capacity () const;
Returns the maximum number of elements the stack can contain.

void clear ();
Setsthe number of itemsin the queueto zero. Thisfunction invalidates the current
position.

COOL User's Manual

6-13

Ordered Sequence Classes

inline Queue_state& current_position ();
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multiple iterators over an instance of queue.

Boolean find (const Type& value);
Searchesthe queue for value. If valueisfound, this function sets the current posi-
tion and returns TRUE; otherwise, thisfunction resets the current position and re-
turns FAL SE.

Type& get (); -
Removes and returns a reference to the first-in item on the queue. If there are no
elements in the queue, an Error exception is raised.

inline Boolean is_empty () const;
Returns TRUE if there are no items in the queue. Otherwise, this function returns
FALSE.

inline long length () const;
Returns the number of elements in the queue.

inline Type& look ();
Returns the first-in item on the queue. If there are no elements in the queue, an
Error exception is raised.

Boolean next ();
Advancesthe current position to the next element in the queue and returns TRUE.
If the current position isinvalid, this function sets the current position to the first
element and returns TRUE. |f the current positionisthelast element of the queue,
this function invalidates the current position and returns FAL SE.

Queue<Type>& operator= (const Queue<Type>& Q);
Overloads the assignment operator for the Queue class and assigns q to the queue
object by duplicating the size and element values. Thisfunctioninvalidatesthe cur-
rent position.

Boolean operator== (const Queue<Type>& () const;
Overloadsthe equality operator for the Queue class. This function returns TRUE
if the queues have an equal number of elements with the same values; otherwise,
this function returns FAL SE.

inline Boolean operator!= (const Queue<Type>& Q) const;
Overloads the inequality operator for the Queue class. This function returns
TRUE if the queues have an unegqual number of elements or unequal values.

Boolean prev ();
Movesthe current position pointer to the previous element in thequeue and returns
TRUE. If thecurrent positionisinvalid, thisfunction movestothelast element and
returns TRUE. If the current position isthefirst element in the queue, thisfunction
invalidates the current position and returns FAL SE.

Boolean put (const Type& value);
Putsvalue onto the back of the queue, making it thelast-initem. If required and not
prohibited, this function grows the queue, puts the new last-in item on the queue,
and returns TRUE. Otherwise, this function returns FAL SE.

6-14

COOL User’'s Manual

Friend Functions:

Ordered Sequence Classes

Boolean remove ();
Removes the element at the current position. This function returns FAL SE if the
current position isinvalid; otherwise, this function sets the current position to the
element immediately following the element removed (if not at end of queue) and
returns TRUE. If the current position is at the last element before removing, this
function invalidates the current position and returns TRUE after removing the ele-
ment.

Boolean remove (const Type& value);
Searchesfor valueand, if found, thisfunction removes and setsthe current position
to the element immediately following the element removed, and then it returns
TRUE. If valueis found but at the end of the queue, this function invalidates the
current position and returns TRUE. If the element is not found, this function re-
turns FAL SE.

inline void reset ();
Invalidates the current position.

void resize (long number);
Resizes the queue for at least number of elements. If a growth ratio has been se-
lected and it satisfiestheresize request, the queueisgrown by thisratio, the current
position is invalidated, and TRUE is returned. Otherwise, this function returns
FALSE. If the size specified is zero or negative, an Error exception is raised.

inline void set_alloc_size (int size);
Updatestheall ocation growth sizeto be used when the growth ratiois zero. Default
alocation growth size is 100 bytes. If the size specified is negative, an Error ex-
ception is raised.

inline void set_compare (Queue_Compare = NULL);
Updates the compare function for this class of queue. Queue_Compareis afunc-
tion of type Boolean (* Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the class is parameterized is
used.

inline void set_growth_ratio (float ratio);
Updatesthe growth ratio for this instance of a queue to ratio. When aqueue needs
togrow, thecurrent sizeismultiplied by theratioto determinethenew size. If ratio
is negative, an Error exception is raised.

Boolean unget (const Type& value);
Puts value onto the front of the queue. If required and not prohibited, thisfunction
growsthequeue, putsthefirst-initem on the queue, and returns TRUE. Otherwise,
this function returns FAL SE. If there are no elements in the queue, an Error ex-
ception is raised.

Type& unput ();
Removes and returns a reference to the last-in item on the queue.

inline Type& value ();
Returns areference to the element at the current position. If the current position is
invalid, an Error exception is raised.

friend ostream& operator << (ostream& os, const Queue<Type>& Q);
Overloadsthe output operator for areferenceto aQueue< Type> object to provide
aformatted output capability.

COOL User's Manual

6-15

Ordered Sequence Classes

inline friend ostream& operator << (ostream& 0s, const Queue<Type>* q);
Overloads the output operator for a pointer to aQueue< Type> object to providea
formatted output capability.

Queue Example 6.8 Thefollowing program declares a queue of doubles. Random floating-point val-
ues are added to the queue in aloop. The elements added are then output. Next, aloop
iterates through the elements of the queue by using the current position functionality. If
any random number added to the queueisbel ow some arbitrary tolerance, itisremoved.
Finaly, the remaining elements are printed.

1 #include <COOL/Queue.h> // COOL Queue class

2 #include <COOL/Random.h> // COOL Random number class

3 DECLARE Queue<doubles>; // Declare a queue of doubles

4 IMPLEMENT Queue<doubles; // Implement a queue of doubles

5 int main (void) {

6 Queue<double> gl; // Create empty queue

7 Random r (SIMPLE, 1, 3.0, 9.0) ; // Simple random generator

8 for (int 1 =0; 1 <5; i++) // Put five random numbers

9 gl.put (r.next ()); // into the queue

10 cout << ql; // Output queue elements

11 for (gl.reset(); gl.next();) // For each element in queue

12 if (gl.value() <4.5) // If less than tolerance

13 gl.remove (); // Remove from queue

14 cout << "\n” << ql; // Output queue elements

15 exit (0); // Exit with OK status

16 }
Lines1through 4 definethegueue<dounbie class, and line 6 declaresaninstance of this
class. Line 7 declares a random number generator whose values are guaranteed to be
within the range 3.0 to 9.0 inclusive (see Section 3, Number Classes, for a discussion
about the Random class). Lines 8 and 9 contain a simple loop that adds five random
numbers to the queue. Line 10 uses oper ator << for the Queue class to output the ele-
ment values. Lines 11 through 13 use the current position functions to iterate through
the elements, removing any entry below an arbitrary tolerance. Finally, theremaining
elements are output.
The following shows the output from a sample run of the program:
<First in>6.083224.054454.851916.2072 8.68577 <Last in>
<First in>6.083224.85191 6.2072 8.68577 <Last in>

Matrix Class 6.9 TheMatrix<Type> classimplements two-dimensional arithmetic matricesfor a

user-specified numeric data type. Using the parameterized types facility of C++, it is
possible, for example, for the user to create a matrix of rationa numbers by
parameterizing the Matrix class over the Rational class (see Section 3, Number
Classes, for a discussion regarding the Rational class). The only requirement for the
typeisthat it support the basic arithmetic operators. Note that unlike the other sequence
classes, theMatrix< Type> classisfixed-sizeonly (thatis, it will not grow oncethesize
has been specified to the constructor).

6-16 COOL User’'s Manual

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

Ordered Sequence Classes

Matrix<Type> — A parameterized matrix class
#include <COOL/Matrix.h>

Matrix, Generic

None

Matrix<Type> (unsigned int row, unsigned int col);
Allocates enough storage for amatrix of a specific type with the specified number
of rows and columns.

Matrix<Type> (unsigned int row, unsigned int col, int init_num, ...);
Allocatesenough storagefor amatrix of the specified typeand size. Thethird argu-
ment init_num indicates the number of optional initialization values. Matrix ele-
ments are initialized in row-major order.

Matrix<Type> (unsigned int row, unsigned int col, const Type& value);
Allocates enough storage for amatrix of a specific type with the specified number
of rowsand columns. In addition, each element of the matrix isinitialized tovalue.

Matrix<Type> (const Matrix<Type>& m);
Duplicates the size and value of a M atrix<Type> object m.

inline int columns () const;
Returns the number of columns in the matrix.

void fill (const Type& value);
Sets all elements in the matrix to value.

inline Type get (unsigned int row, unsigned int col) const;
Returns the value of the element at the indicated row and column. If the row or
column specification is out of range, an Error exception is raised.

Matrix<Type> operator+ (const Matrix<Type>& m) const;
Overloads the addition operator to provide matrix addition for the M atrix<Type>
class. A new matrix is returned as the result. If the matrices are of adifferent size,
an Error exception is raised.

Matrix<Type> operator+ (const Type& value) const;
Overloads the addition operator to provide scalar addition for the M atrix<Type>
class. A new matrix is returned as the result.

Matrix<Type> operator* (const Matrix<Type>& m) const;
Overloadsthe multiplication operator to provide matrix multiplication for theM a-
trix<Type> class. A new matrix is returned as the result. If the matrices are of a
different size, an Error exception is raised.

Matrix<Type> operator* (const Type& value) const;
Overloads the multiplication operator to provide scalar multiplication for the M a-
trix<Type> class. A new matrix is returned as the result.

Matrix<Type>& operator= (const Type& value);
Overloadsthe assignment operator for theM atrix<Type> classand assigns all ele-
ments of a matrix to value.

COOL User's Manual

6-17

Ordered Sequence Classes

Friend Functions;

Matrix<Type>& operator= (const Matrix<Type>& m);
Overloads the assignment operator for the M atrix<Type> class and assigns one
M atrix<Type> object to have the val ue of another by duplicating the size and ele-
ment values.

Matrix<Type>& operator+= (const Matrix<Type>& m);
Overloads the addition—with—assignment operator to provide matrix addition for
the M atrix<Type> class. The source is modified to contain the result. If the matri-
ces are of adifferent size, an Error exception is raised.

Matrix<Type>& operator+= (const Type& value);
Overloadsthe addition-with-assignment operator to provide scalar addition for the
Matrix<Type> class. The source is modified to contain the result. If the matrices
are of adifferent size, an Error exception is raised.

Matrix<Type>& operator*= (const Matrix<Type>& m);
Overloadsthe multipli cation-with-assignment operator to provide matrix multipli-
cation for the Matrix<Type> class. The source is modified to contain the result. I
the matrices are of a different size, an Error exception is raised.

Matrix<Type>& operator*= (const Type& value);
Overloads the multiplication-with-assignment operator to provide scalar multipli-
cation for the Matrix<Type> class. The source is modified to contain the result

Boolean operator== (const Matrix<Type>& m) const;
Overloadsthe equality operator for the M atrix<Type> class. Thisfunction returns
TRUE if the matrices have the same number of elements with the same values;
otherwise, this function returns FAL SE.

inline Boolean operator!= (const Matrix<Type>& m) const;
Overloads the inequality operator for the Matrix<Type> class. This function
returns TRUE if the matrices have adifferent number of elementsor different val-
ues.

inline void put (unsigned int row, unsigned int col, Type value);
Assigns value to the element at the specified row and col. If the row or column
specification is out of range, an Error exception is raised.

inline int rows () const;
Returns the number of rows in the matrix.

inline void set_compare (Matrix_Compare = NULL);
Updates the compare function for this class of matrix. Matrix_Compareisafunc-
tion of type Boolean (* Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the class is parameterized is
used.

friend ostream& operator<< (ostreamé& 0s, const Matrix<Type>& m);
Overloadsthe output operator for areference to aM atrix<Type> object mto pro-
vide a formatted output capability.

inline friend ostream& operator << (ostreamé& os, const M atrix<Type>* m);
Overloadsthe output operator for apointer to aM atrix<Type> object mto provide
a formatted output capability.

6-18

COOL User’'s Manual

Ordered Sequence Classes

Matrix Example

6.10 The following program declares two matrices of integers. The first matrix is
filled with a series of integral values computed in the nested loops, and the second ma-
trix is derived from the first. Several of the Matrix<Type> overloaded operators are
used, and the resulting matrices are printed.

// COOL Matrix class

// Declare a matrix of integers
// Implement matrix of integers

// Two 3x4 matrices of integers
// For each row inmatrix

// For each column in matrix

// Assign element value

// Copy matrix with added value
// Add the matrices together

// Output the starting matrices
// Exit with OK status

1 #include <COOL/Matrix.h>

2 DECLARE Matrix<ints>

3 IMPLEMENT Matrix<ints

4 int main (void) {

5 Matrix<ints>mcl(3,4), mc2(3,4);
6 for (int i =0; i < 3; i++)

7 for (int j =0; j <4; j++)

8 mel.put (i,3, (1+2)*(3+3));
9 mc2 =mcl +5;

10 mcl =mcl + mc2;

11 cout << mcl << "\n” << mec2 << "\n";
12 exit (0);

13 }

Linelincludesthe COOL matrix.n classheader file. Lines2 and 3 declareand imple-
mentthematrix<int> class. Line5 declarestwomatrix<int > variables, each of which
havethree rowsand four columns. Lines 6 through 8 generate aseries of integral values
that are copied into the elements of the first matrix. Line 9 usesthe overloaded addition
and assignment operators for the Matrix<Type> class and computes the value of the
second matrix. Line 10 uses the overloaded addition operator to add the two matrices
together. Line 11 uses the overloaded output operator to display the contents of each
matrix. Finally, the program ends with a valid exit code on line 12.

The following shows the output from the program:

17 21 25 29
23293541
2937 45 53

11131517
14 17 20 23
17 21 25 29

COOL User's Manual

6-19

Ordered Sequence Classes

6-20 COOL User’'s Manual

UNORDERED
SEQUENCE CLASSES

I ntroduction

7.1 The unordered sequence classes are a collection of basic data structures that im-
plement random-access data structures as parameterized classes, thus allowing the user
to customize a generic template to create a specific user-defined class. Thefollowing
classes are discussed in this section:

o List<Type>

e Pair<Tl, T2>

e Association<Ktype, Vtype>
e Hash_Table<Ktype, Vtype>

The List<Type> class implements dynamic, Common Lisp-style lists supporting such
functions as insert, delete, replace, search, reverse, print, and sort. The Pair<T1,T2>
classimplementsasimpleobject that containstwo other objects, primarily for useinthe
Association<Ktype, Vtype> class. The Association<Ktype, Vtype> class maintains a
collection of associated objects. TheHash_Table<Ktype, Vtype> classimplementsdy-
namic hash tables with the option for user-defined hashing functions. TheL ist<Type>,
Hash_Table<Ktype, Vtype>, and Association<Ktype, Vtype> classes support the no-
tion of acurrent position. The example programsin this section solve the same problem
using different data structures, allowing the reader to compare the different features of
each.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which an unordered sequence class is
parameterized. Themember functionsoper ator =, oper ator <, oper ator >, oper ator <<,
and operator== must be overloaded for any class object used as the type. Note that
built-in types aready have these functions defined.

NOT E: Theunordered sequence classes useoper ator = of the parameterized typewhen
copying elements. Y ou should be careful when parameterizing an unordered sequence
classover apointer to atype, sincethe default pointer assignment operator usually cop-
ies the pointer, not the value pointed at.

Requirements

7.2 Thissection discussesthe parameterized unordered sequence container classes. It
assumesthat you have read and understood Section 5, Parameterized Templates. In ad-
dition, no attempt is made to discuss the concepts and algorithmsfor the data structures
discussed. Y ou should refer to ageneral datastructures or computer sciencetext for this
information.

COOL User's Manual

Unordered Sequence Classes

List Class

Name:
Synopsis:

Base Classes:
Friend Classes:

Constructors:

Member Functions:

7.3 The List<Type> class implements Common Lisp-style lists that provide a rich
collection of member functions for list manipulation and management. A list consists
of acollection of nodes, each of which contains a reference count, apointer to the next
nodeinthelist, and adata element of auser-specified type. TheL ist< Type> classuses
reference counting to allow more efficient sharing and reuse of list node objects. The
reference count indicates the number of list or node objects pointing to a node and en-
suresthat the node and the data are deall ocated when the node is no longer referenced.

Considerable attention has been paid to performance and efficiency concerns in the
List<Type> class. The Base List classimplements generic list functionality required
by the parameterized List class. TheBase L ist classisnot usableasastand-aloneclass,
but used to derivetheL ist<Type> class. By providing generic operationsin abaseclass,
the quantity of code generated for each implementation of a parameterized classisre-
duced considerably. Consequently, most member functions for List<Type> are inline
calls to the generic equivalent function in the base List class.

List<Type> — A parameterized list
#include <COOL/List.h>

List, Generic

None

List<Type> ();
Creates an empty list of the specified type.

List<Type> (const Type& value);
Creates a list with one element of the specified type and value.

List<Type> (int number, Type&, ...);
Createsalist of number elements of the specified typeinitialized with the optional
values provided.

List<Type> (List<Type>& I);
Creates alist from | of the specified type.

List<Type> (const Type& value, List<Type>& 1);
Creates alist of the specified type with value as the first element and | as the tail.

Boolean append (const List<Type>& 1);
Addsthe elementsof | to theend of the object and returns TRUE. Thisfunction sets
the current position to the first element added. This function returns FAL SE if a
new node cannot be created.

void but_last (List<Type>& I, int n = 1);
Setsl to point to all but the last n elements of the object. When no second argument
isspecified, but_last setsl to pointto all but thelast element of the object. A second
argument whosevalueis zero setsl to point to all of the elementsin the object. This
function setsl to NI L if the second argument is greater than or equal to the number
of elements in the object. This function invalidates the current position of I.

void clear ();
Removes all elements in the object and invalidates the current position.

COOL User’'s Manual

Unordered Sequence Classes

void copy (List<Type>& |) const;
Sets | to a copy of the object. This function invalidates the current position of I.

inline List_state& current_position () const;
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multiple iterators over an instance of list.

void describe (ostream& 09);
Provides a formatted output capability for displaying the internal structure of the
list including reference counts and values for each node.

void difference (const List<Type>& 1);
Removes from the object the elements that also appear in . This function invali-
dates the current position of the list object.

void exclusive or (const List<Type>& |);
Performs an exclusive-or operation by setting the object to contain al theelements
inthe object that arenotinl, and al theelementsin| that are not in the object. This
function invalidates the current position of the list object.

inline Boolean find (const Type& value, List_state start = NULL);
Searches the object for value beginning at the current position specified. If astart-
ing point is not provided, this function begins the search at the head of thelist. If
value is found, this function sets the current position to this element and returns
TRUE; otherwise, thisfunction returnsFAL SE. If valueisnot found, thisfunction
returns FALSE and resets the current position of the list object.

inline Type& get (int n=0);
Returns a reference to the nth (zero-relative) element in the object. This function
setsthe current positionto thiselement. If theindex isnegativeor isgreater thanthe
number of nodesin the list, an Error exception is raised.

inline Boolean insert_after (const Type& valuel, const Type& value?);
Inserts valuel after value2 in the object, sets the current position to this new ele-
ment, and returns TRUE. If value2 is not in the object, this function returns
FALSE.

inline Boolean insert_after (const Type& value);
Inserts value after the element at the current position in the object, sets thecurrent
position to this new element, and returns TRUE. If the current position isinvalid,
an Error exception is raised.

inline Boolean insert_before (const Type& valuel, const Type& value2);
Inserts valuel before value2 in the object, setsthe current position to thisnew ele-
ment, and returns TRUE. If value? is not in the object, this function returns
FALSE.

inline Boolean insert_before (const Type& value);
Insertsval ue before the element at the current position inthe object, setsthe current
position to this new element, and returns TRUE. If the current position isinvalid,
an Error exception is raised.

void intersection (const List<Type>& |);
Setsthe object to contain only the elements that exist in both the object and . This
function invalidates the current position of the list object.

COOL User's Manual

Unordered Sequence Classes

inline Boolean is_empty ();
Returns TRUE if the object does not have any elements; otherwise, thisfunction
returns FAL SE.

void last (List<Type>& I, int n = 1);
Sets| to point to the last n elements of the object. When it hasno second arguments,
last sets| to point to the last element of the object. If nis equal to the number of
elementsin the object, thisfunction setsl to point to al the elements of the object. If
nisgreater than the number of elementsinthe object or niszero, thisfunction setsl
toNIL, alist with no elements. Thisfunction setsthe current position to thefirst of
the last n elements of the list object.

int length ();
Returns the number of elementsin the object.

void lunion (const List<Type>& |);
Setsthe object to contain everything that isan el ement of either the object orl. This
function invalidates the current position of the list object.

inline Boolean member (List<Type>& |, const Type& value);
Searchesthe object for value. If the element isfound, this function setsthe current
position to this element, sets| to the sublist within the object starting with the de-
sired element, and returns TRUE. If the valueis not found, this function sets| to
NIL and returns FAL SE.

inline void merge (const List<Type>& |, List_Predicate p);
Mergesthe elementsof | into the object by using the supplied predicatep for deter-
mining the collating sequence. List Predicate is a function of type Boolean
(*Function)(const Type&, const Type&).

inline Boolean next ();
Advancesthe current position to the next element in the object and returns TRUE.
If the current position isinvalid, this function sets the current position to the first
element and returns TRUE. If the current position isthelast element of the object,
this function invalidates the current position and returns FAL SE.

Boolean next_difference (const List<Type>& |);
Setsthe current position to the next element in the difference of the object and!l and
returns TRUE. If there are no more elementsin thedifference, thisfunctioninvali-
dates the current position and returns FAL SE.

Boolean next_exclusive or (const List<Type>& 1);
Setsthe current position to the next element in the exclusive-or of the object and |
and returns TRUE. If there are no more elementsin the exclusive-or, thisfunction
invalidates the current position and returns FAL SE.

Boolean next_intersection (const List<Type>& 1);
Sets the current position to the next element in the intersection of the object and|
and returns TRUE. If there are no more elements in the intersection, this function
invalidates the current position and returns FAL SE.

Boolean next_lunion (const List<Type>& |);
Sets the current position to the next element in the union of the object and | and
returns TRUE. If there are no more elementsin the union, thisfunction invalidates
the current position and returns FAL SE.

7-4

COOL User’'s Manual

Unordered Sequence Classes

inline List<Type>& operator+ (const List<Type>& |);
Returns areference to a new list containing the concatenation of the object and .
Since the new list is alocated from heap memory, you must delete its storage.

inline List<Type>& operator— (const List<Type>& 1);
Returnsareferenceto anew list containing the difference of the object andl. Since
the new list is alocated from heap memory, you must delete its storage.

inline List<Type>& operator”™ (const List<Type>& |);
Returns a reference to a new list containing the exclusive-or of the object and I.
Since the new list is alocated from heap memory, you must delete its storage.

inline List<Type>& operator& (const List<Type>& |);
Returns a reference to a new list containing the intersection of the object and I.
Since the new list is alocated from heap memory, you must delete its storage.

inline List<Type>& operator| (const List<Type>&);
Returnsareference to anew list containing the union of the object andl. Since the
new list is alocated from heap memory, you must delete its storage.

inline List<Type>& operator= (List<Type>& 1);
Assignsthe object (the list on the left-hand side of the assignment) to point to the
same set of elements as| (on the right-hand side of the assignment) and returns a
referenceto the updated object. Also, thisfunction invalidatesthe current position.

inline List<Type>& operator+= (const List<Type>& |);
Setsthe object (thelist ontheleft-hand side of the operator) to the concatenation of
the object and | (the list on the right-hand side of the operator) and returns arefer-
ence to the updated object. Also, this function invalidates the current position.

inline List<Type>& operator— (const List<Type>& |);
Returns a reference to the modified object containing the difference of the object
and |.

inline List<Type>& operator™= (const List<Type>& |);
Returnsareferenceto the modified object containing the exclusive-or of the object
and |.

inline List<Type>& operator& = (const List<Type>&);
Returns areference to the modified object containing the intersection of the object
and |.

inline List<Type>& operator|= (const List<Type>&);
Returnsareference to the modified object containing the union of the object and|.

Boolean operator== (const List<Type>& |) const;
Returns TRUE if the elements of thetwo lists have the ssmeval ues; otherwise, this
function returns FAL SE.

inline Boolean operator!= (const List<Type>& |) const;
Returns TRUE if the elements of the two lists have different values; otherwise,
this function returns FAL SE.

Type& operator([] (int n);
Returns areference to the the nth (zero-relative) element in the object. This func-
tion sets the current position to thiselement. If the index is negative or is greater
than the number of nodes in the list, an Error exception is raised.

COOL User's Manual

Unordered Sequence Classes

Type pop (); . _ _ . S
Removes and returns the first element in the object. This function invalidates the
current position. If there is nothing in the object, an Error exception is raised.

Boolean pop (Type& value);
Copiesthefirst element in the object to value and removesit from the object. This
function invalidates the current position. If there is nothing in the list, an Error
exception is raised.

int position ();
Returnsthe current position asazero-relativeindex into the object that can be used
with the overloaded operator(].

int position (const Type& value);
Searchesthe object for value. If the element isfound, this function setsthe current
position to this element and returns the zero-relative index of this element; other-
wise, this function returns —1.

inline Boolean prepend (const List<Type>& 1);
Addsthe elementsof | to the beginning of the object and returnsTRUE. Thisfunc-
tion sets the current position to the first element added. This function returns
FAL SE if the specified list argument isNIL.

Boolean prev ();
Movesthe current position to the previous element inthe object and returnsTRUE.
If the current position isinvalid, this function sets the current position to the last
element and returns TRUE. If the current position isthefirst element in the object,
this function invalidates the current position and returns FAL SE.

Boolean push (const Type& value);
Addsvalueto the beginning of the object and returns TRUE. Thisfunction setsthe
current position to the first element of the object. This function returns FAL SE
when heap memory is exhausted.

inline Boolean push_end (const Type& value);
Adds value to the end of the object and returns TRUE. This function sets the cur-
rent position to the last element of the object. Thisfunction returns FAL SE when
heap memory is exhausted.

inline Boolean push_end_new (const Type& value);
Adds value to the end of the object (if it is not already in the object) and sets the
current position to this element. This function returns TRUE if the element is
added to the object; otherwise, this function returns FAL SE.

inline Boolean push_new (const Type& value);
Addsvalueto the beginning of the object (if it isnot already in the object) and sets
the current position to this element. Thisfunction returns TRUE if the element is
added to the object; otherwise, this function returns FAL SE.

Boolean put (const Type& value, int n = 0);
Replacesthe nth (zero-relative) el ement in the object with value. Thisfunction re-
turns TRUE if the nth element exists; otherwise, thisfunction returnsFAL SE. If n
is negative, an Error exception is raised.

COOL User’'s Manual

Unordered Sequence Classes

Type& remove ();
Removesthe element at the current position inthe object and returnsareferenceto
the element. Thisfunction setsthe current position to the element immediately fol-
lowing the element removed. If the current positionisinvalid, an Error exception
israised.

inline Boolean remove (const Type& value);
Removes the first occurrence of value in the object. If the element is found, this
function removesit from the object, setsthe current position to the element imme-
diately following the element removed, and returns TRUE. If the element is not
found, this function returns FAL SE.

Boolean remove_duplicates ();
Removes any duplicate elements from the object. This function returns TRUE if
any elements were removed; otherwise, this function returns FAL SE. This func-
tion invalidates the current position.

inline Boolean replace (const Type& valuel, const Type& value?);
Replacesthe first occurrence of valuel in the object with value2 and sets the cur-
rent position to thiselement. If valuel isfound, thisfunction returns TRUE; other-
wise, this function returns FAL SE.

inline Boolean replace all (const Type& valuel, const Type& valuel);
Replacesall occurrences of valuel in the object with value2. Thisfunction returns
TRUE if any elements were replaced; otherwise, this function returns FAL SE.
This function invalidates the current position.

inline void reset ();
Invalidates the current position in the object.

void reverse ();
Reversesthe order of the elementsin the object. Thisfunction invalidates the cur-
rent position.

Boolean sear ch (const List<Type>& 1);
Searchesfor thesublist | intheobject. If | isasublist inthe object, thisfunction sets
the current position in the object to the first element of the sublist and returns
TRUE; otherwise, this function returns FAL SE.

inline void set_compare (List_ Compare = NULL);
Updates the compare function for the object. List Compare is a function of type
Boolean (* Function) (const Type&, const Type&). If no argument isprovided, the
operator= for the type over which the class is parameterized is used.

Boolean set_tail (const List<Type>& I, int n = 1);
Setsthenthtail of the object tol. Thisfunction setsthe current position of the object
to thefirst element of the nth tail. Thisfunction returns TRUE if the object hasan
nth tail; otherwise, this function returns FAL SE.

inline void sort (List_Predicate p);
Sorts the elements of the object by using p for determining the collating sequence.
List_Predicateisafunction of typeint (* Function) (const Type&, const Type&)
that returns —1 if the first argument should precede the second, zero if they are
equal, and 1 if the first argument should follow the second.

COOL User’'s Manual 7-7

Unordered Sequence Classes

Friend Functions:

Boolean sublist (List<Type>& 11, const List<Type>& 12);
Searches for 12 in the object. If 12 is a sublist of the object, this function sets the
current position of the object to the first element of 12, sets11 to the sublist within
the object (starting at the new current position), and returns TRUE; otherwise, this
function sets |1 list to NIL (an empty list) and returns FAL SE.

void tail (List<Type>& |, int n=1);
Sets| to point to thenth tail of the object. Thenthtail isalist whosefirst element is
the nth (zero-relative) element of the object. When it has no second argument, tail
sets | to point to the first tail of the object. n=1 sets| to all of the elementsin the
object. This function sets| to NIL if n is greater than or equal to the number of
elementsin the object. Thisfunction setsthe current position to the nth element of
the object.

inline Type& value ();
Returns the element at the current position in the object. An Error exception is
raised if the current position isinvalid.

friend ostream& operator<< (ostream& os, const List<Type>& |);
Provides a formatted output capability for areference to alist.

inline friend ostream& operator << (ostream& 0s, const List<Type>* |);
Provides a formatted output capability for a pointer to alist.

List Example

EENNCO N Ol

0o ~NO O

#include <cool/List.h>
#include <cool/Gen_String.h>
#include <cool/Iterator.h>
#include “paragraph.h”

DECLARE List<Gen String>
IMPLEMENT List<Gen_String>
DECLARE Iterator<List>
IMPLEMENT Iterator<List>

7.4 The following program declares a list of strings and stores the words in a para-
graph of text in individual nodes. The list of words is traversed using a parameterized
iterator, and the nodes are manipulated to determine the total number of words, the
number of unique words, and the most commonly used word in the paragraph. These
results are sent to the standard output, and the program then ends.

// Include list header file

// Include COOL String class
// Include COOL Iterator class
// Include Stroustrup text

// Declare list type

// Implement list type

// Declare list iterator type
// Implement list iterator type

int main (void) {

List<Gen String> 11;

Gen_String s;

int max_count =0;

cout << text;

text.compile (” [a-zA-Z]+") ;

while (text.find ()) {
text.sub_string (s, text.start (),

// Declare list variable

// Temporary string variable

// Temporary counting variable

// Output paragraph

// Match any alphabetical word

// While still more words
text.end ()); // Get word

11.push (s); // And add to list
1
1ll.reset (); // Invalidate current position
while (11.next ()) { // While there are still nodes

int counter = 0;
Gen_String cur_word;

// Initialize counter
// Temporary string variable

Iterator<List> il =11l.current position (); // Save current position

cur_word = 11.value () ;
ll.reset ();

// Get word to be counted
// Invalidate current position

7-8

COOL User’'s Manual

26
27

29
30
31
32
33

35
36

38

39
40

Unordered Sequence Classes

while (11.next ()) // While there are still nodes

if (11.value () == cur_word) // 1f word appears in list
counter++; // Increment usage count

if (counter > max_ count) { // 1f most used word so far
max count = counter; // Update maximum count
s = cur_word; // And save word

1

11l.current position () =1il; // Restore old current position

}

cout << "There are ” << 11.length () << ” words\n”;

11.remove duplicates (); // Remove duplicate words

cout << "There are ” << 11.length () << ” unique words\n”;

cout << "The most common word is '” << s << ”’ and is used ” <<
max_count << ” times\n”;

exit (0); // Exit with successful status

Lines 1 through 3 include the COOL List.h, Gen String.h, and Iterator.h class
header files. Line 4 includes a statically allocated Gen_String object that contains a
paragraph of text to be scanned by the program. Lines5 and 6 defineacontainer class of
alist of stringsand lines 7 through 8 define aniterator for thelist class. Lines 10 through
13 declare various variables and print the complete paragraph. A regular expression to
match sequences of al phabetical characters(that is, words) iscompiledinline14. Lines
15through 18 contain aloop that finds each word in the paragraph and pushesit onto the
list. Line 18 resets the internal current position iterator inside the list object.

Lines 20 through 34 arethe heart of the program. Theloop iteratesthrough the elements
of thelist, assigning each word to a current word variable and the current position toa
list iterator object. Aninner loop usesthe current position functionality to loop through
the elements of the list counting the number occurrences of the current word. If this
count isthe largest so far, both the word and the count are saved. When the inner loop
terminates, the outer loop establishes the previous current position maintained by the
iterator object and the procedure is repeated again until al words have been scanned.
Lines 35 through 38 output the results of the word search and counting. Finally, the
program ends with a successful completion code.

The following shows the output for the program:

COOL User's Manual

Unordered Sequence Classes

A programming language serves two related purposes: it provides a
vehicle for the programmer to specify actions to be executed and a
set of concepts for the programmer to use when thinking about what
can be done. The first aspect ideally requires a language that is
‘close to the machine’, so that all important aspects of amachine
are handled simply and efficiently inaway that is reasonably
obvious to the programmer. The C language was primarily designed with
this in mind. The second aspect ideally requires a language that is
‘close to the problemto be solved’ so that the concepts of a
solution can be expressed directly and concisely. The facilities
added to C to create C++ were primarily designed with this inmind.

—-- Bjarne Stroustrup

There are 129 words
There are 71 unique words
The most common word is ‘to’ and is used 9 times

Pair Class

Name:
Synopsis:

7.5 The parameterized Pair<T1,T2> class implements an association between one
object and another. The objects may be of different types, with thefirst representing the
key of the pair and the second representing thevalue of the pair. The Pair <T1,T2> class
isused by the Association<Ktype,Vtype> classto implement an association list (that is,
avector of pairs of associated values).

Pair<T1,T2> — A parameterized pair
#include <COOL/Pair.h>

Base Classes: None

Friend Classes: None
Constructors: Pair<T1,T2> ();

Creates an empty pair of the specified types.

Pair<T1,T2> (const Pair<T1,T2>&);
Duplicates the size and value of a pair object.

Pair<T1,T2> (const T1&, const T2&);
Creates a pair from the two specified elements.

Member Functions: inline const T1& get_first () const;

Returns a constant reference to the first element of the pair.

inline const T2& get_second () const;
Returns a constant reference to the second element of the pair.

inline T1& first ();
Returns a reference to the first element of the pair.

Pair<T1,T2>& operator= (Pair<T1,T2>&);
Assignsone pair object to have the value of another by duplicating element val ues.

Boolean operator== (Pair<T1,T2>&) congt;
Returns TRUE if the pairs have the same element values; otherwise, this function
returns FAL SE.

7-10

COOL User’'s Manual

Friend Functions;

Unordered Sequence Classes

inline Boolean operator!= (Pair<T1,T2>&) const;
Returns TRUE if the pairs have different element values; otherwise, this function
returns FALSE .

inline T2& second ();
Returns a reference to the second element of the pair.

inline void set_compare (Pair_Compare= NULL);
Updates the compare function for this class of pair. Pair_Compareis afunction of
type Boolean (* Function)(const Pair<T1,T2>&, const Pair<T1,T2>&). If no ar-
gument is provided, the operator== for the types over which the class is
parameterized are used.

inline void set_first (const T1&);
Sets the first element of the pair to the specified value.

inline void set_second (const T2&);
Sets the second element of the pair to the specified value.

friend ostream& operator << (ostream&, const Pair<T1,T2>&);
Provides a formatted output capability for reference to a Pair<T1,T2> object.

inline friend ostream& operator << (ostream&, const Pair<T1,T2>*);
Provides a formatted output capability for apointer to a Pair<T1,T2> object.

Association Class

7.6 The Association<KtypeVtype> class is privately derived from the
Vector <Type>class and implements a collection of pairs. Thefirst of the pair is called
the key, and the second of the pair is called thevalue. The Association<Ktype,Vtype>
class implements a one-dimensional vector parameterized over a pair of objects. The
first type specifies the type of the key, and the second type specifies the type of the
value. Many of the member functionsfor Association<Ktype,Vtype> areinherited from
Vector <Type> and, consequently, are inline calls to the vector member function of the
same hame.

The Association<Ktype,Vtype> class inherits the dynamic growth capability of the
Vector class. Vectorsare, by default, dynamicin nature. A static-sized vector objectis
selected by setting the growth all ocation size to zero or by passing in apointer to ablock
of user-supplied storageto the constructor. If avector isof static sizeand an operationis
performed that requires more storage, an Error exception is raised.

The Association<Ktype, Vtype> classimplementsthe notion of acurrent position. This
is useful for iterating through the elements of a vector. The current position is main-
tained in a data member of type Association_state and is set or reset by all member
functions affecting elements in the class. Member functions are provided to reset the
current position, move to the next and previous elements, find an element, and get the
value at the current position. The I ter ator <Type> class provides a mechanism to save
and restore the state associated with the current position, thus allowing the programmer
to use multiple iterators over the same instance of an association object.

COOL User's Manual

7-11

Unordered Sequence Classes

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

Association<Ktype,Vtype> — A dynamic, parameterized association
#include <COOL/Association.h>

Vector<Type>, Vector, Generic

None

Association<Ktype,Vtype> ();
Creates an empty association of the specified type.

Association<Ktype, Vtype> (const Association<Ktype,Vtype>& assoc);
Duplicates the size and value of an association object.

Association<Ktype,Vtype> (unsigned long number);
Allocates enough storage for an association of a specific type to hold number ele-
ments.

Association<Type> (void* storage, unsigned long number);
Creates a static-sized association object for number elements whose storage stor-
ageisprovided by the user. If an object of thistype attempts to grow dynamically
or the programmer invokes the resize member function, an Error exception is
raised.

inline long capacity ();
Returns the maximum number of elements the association can contain.

inline void clear ()
Removes all elements in the object and invalidates the current position.

inline Association_state& current_position ();
Returns the state information associated with the current position. This function
should be used with the I ter ator <Type> class to save and restore the current posi-
tion, thus facilitating multiple iterators over an instance of association.

Boolean find (const Ktype& key);
Searchesthe association for key. If found, thisfunction setsthe current position and
returns TRUE; otherwise, this function resets the current position and returns
FALSE.

Boolean get (const Ktype& key, Vtype& value);
Getsthe associated value for key. Thisfunction returns TRUE and modifies value
to contain the associated value. If key is not found, this function returns FAL SE
and does not modify value.

Boolean get_key (const Vtype& value, Ktype& key) const;
Gets the first associated key for value. This function returns TRUE and modifies
key to contain the associated key. If value is not found, this function returns
FAL SE and does not modify key.

inline const Ktype& key () const;
Returns the key of the key/value pair at the current position.

inline long length ();
Returns the number of elements (pairs) in the association.

7-12

COOL User’'s Manual

Unordered Sequence Classes

inline Boolean next ();
Advances the current position pointer to the next element in the association and
returns TRUE. If the current position isinvalid, this function advancesto thefirst
element and returns TRUE. If advancing past the last element, thisfunction invali-
dates the current position and returns FAL SE.

Association<Ktype, Vtype>& operator = (const Association<Ktype,Vtype>&);
Overloads the assignment operator for the Association class and assigns one asso-
ciation object to have the value of another by duplicating the size and element val-
ues. This function invalidates the current position. If the association is prohibited
from dynamically growing as necessary, an Error exception is raised.

Boolean operator== (const Association<Ktype,Vtype>& assoc) const;
Overloads the equality operator for the Association class. This function returns
TRUE if the associations have the same number of el ementswith the same values,
otherwise, this function returns FAL SE.

inline Boolean operator!= (const Association<Ktype,Vtype>& assoc) const;
Overloads the inequality operator for the Association class. This function returns
TRUE if the associations have adifferent number of elements or different values;
otherwise, this function returns FAL SE.

inline Boolean prev ();
Moves the current position pointer to the previous element in the association and
returns TRUE. If the current positionisinvalid, thisfunction movesto thelast ele-
ment and returns TRUE. If moving to the previouselement passesthefirst element
in the association, this function invalidates the current position and returns
FALSE.

Boolean put (const Ktype& key, const Vtype& value);
Puts the key/value pair into the association. If apair already exists with the speci-
fied key, the value for that pair is replaced with value. If required and not prohib-
ited, the association is grown. If the new pair is successfully put into the
association, TRUE is returned; otherwise, FAL SE is returned.

Vtype& remove ();
Removes and returns areference to the element at the current position. This func-
tion setsthe current position to the el ement immediately following the element re-
moved. If the element removed is at the end of the association, this function
invalidatesthe current position. If the current positionisinvalid, and Error excep-
tion is raised.

Boolean remove (const Ktype& key);
Searches for key and, if found, this function removes the pair associated with key
and sets the current position to the element immediately following the element re-
moved; then, the function returns TRUE. If key isfound at the end of the associa-
tion, this function invalidates the current position and returns TRUE. If key is not
found, this function returns FAL SE.

inline void reset ();
Invalidates the current position.

inline void resize (long number);
Resizesthe association for at least number elements. If agrowth ratio has been se-
lected and it satisfies the resizerequest, the association isgrown by thisratio. This
functioninvalidatesthe current position. If the size specified iszeroor negative, an
Error exception is raised.

COOL User's Manual

7-13

Unordered Sequence Classes

inline void set_alloc_size (int size);
Updatestheall ocation growth sizeto be used when the growth ratioiszero. Default
allocation growth size is 100 bytes. If the size specified is negative, an Error ex-
ception is raised.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for thisinstance of an association to the specified value.
When an association needs to grow, the current size is multiplied by the ratio to
determine the new size. If ratio is negative, an Error exception is raised.

inline void set_key compare (Assoc_Key Compare= NULL);
Updates the key compare function for this class of association. Assoc_Key Com-
pareisafunction of type Boolean (* Function)(const Type&, const Type&). If no
argument isprovided, theoper ator ==for Ktypeover which thekey for theassocia-
tion classis parameterized is used.

inline long set_length (long number);
Specifies the number of elementsin an association to allow random access viathe
overloaded oper ator[] member function. If number islarger than the storage allo-
cated, thisfunction truncatesnumber to thelargest valuethe all ocated size will sup-
port. This function returns the updated number of elements.

inline void set_value_compare (Assoc_Value_Compare = NULL);
Updates the value compare function for this class of association.
Assoc_Value Compareis afunction of type Boolean (* Function)(const Ktype&,
const Vtype&). If no argument is provided, the oper ator == for Vtype over which
the value for the association class is parameterized is used.

inline Vtype& value ();
Returns a reference to the value of the key/value pair at the current position.

Friend Functions: friend ostream& operator << (ostream os,
const Association<Ktype,Vtype>& assoc);
Provides a formatted output capability for reference to an Associa-
tion<Ktype,Vtype> object.

inline friend ostream& operator << (ostream& os,
const Association<Ktype,Vtype>* assoc);
Provides a formatted output capability for a pointer to an Associa-
tion<Ktype,Vtype> object.

Association 7.7 The following program declares an association of strings and integers,

Example storing each word and its frequency of occurrence in a paragraph of text in individual
elements. The association of wordsistraversed using the current position functionality
of the class to determine the total the number of words and the most commonly used
word in the paragraph.

1 #include <cool/Association.h> // Include Association class
2 #include <cool/Gen_ String.h> // Include COOL String class

3 #include <cool/Iterator.h> // Include COOL Iterator class
4 #include "paragraph.h” // Include Stroustrup text

5 DECLARE Association<Gen String, int> // Declare association type

6 IMPLEMENT Association<Gen_ String,ints> // Implement association type
7 DECLARE Iterator<Associations> // Declare assoc iterator

8 IMPLEMENT Iterator<Association> // Implement assoc iterator

7-14 COOL User’'s Manual

10

12
13
14
15
16
17
18
19

21
22
23
24

26
27
28

30
31
32
33

35

int main (void) {
Association<Gen String,int>al;
Gen_Strings;
int counter = 0, max_count =0;
cout << text;
text.compile (” [a-2zA-Z]+");
while (text.find ()) {

Unordered Sequence Classes

// Declare Association variable
// Temporary string variable

// Initialize word counters

// Output paragraph

// Match any alphabetical word
// While still more words

text.sub_string (s, text.start (), text.end ()); // Get word

if (al.find (s))

// 1f word already found

elseal.put (s, 1);

}

al.reset () ;
Iterator<Association> il;
while (al.next ()) {

counter +=al.value () ;

if (al.value () >max_count) {

}
}

il =al.current_position () ;
max_count = al.value () ;

// Increment use count
// Else add word

++al.value () ;

// Invalidate current position
// Iterator object

// While there are still nodes
// Sum number of words used

// 1f most used word so far

// Save position in list

// And keep track of usage

cout << "There are ” << counter << ” words\n” ;

cout << "There are ” << al.length () << ” unique words\n”;

al.current position () =il;

// Set position of most used word

cout << ”"The most common word is '” << al.key () << ”’ and isused” <<

exit (0);

}

al.value () << ” times\n”;
// Exit with successful status

Lines 1 through 3includethe COOL association.h, Gen_String.h, and Iterator.h
classheader files. Line4 includesastatically allocated Gen_String object that contains
aparagraph of text to be scanned by the program. Lines5 and 6 define acontainer class
of an association of stringsand integers, and lines 7 and 8 define aniterator for the asso-
ciationclass. Lines 10 through 13 declare various variablesand print the complete para-
graph. A regular expression to match sequences of alphabetical characters (that is,
words) iscompiledinline 14. Lines 15 through 20 contain aloop that findseach wordin
the paragraph and addsit to the association if not aready there. Otherwise, the current
frequency isincremented. Line 21 resetsthe internal current position iterator inside the
association object, and line 22 defines an iterator for an association object.

Lines23through 29 arethe heart of the program. Theloop iteratesthrough the elements
of the association summing up the frequencies of all thewordstoget atotal word count.
Inaddition, if the count for agiven word isthe largest so far, the position in the associa-
tion is saved in the iterator object. This procedure repeats until all words have been
scanned. Lines 30 through 33 output the results of the word search and counting. Fi-
nally, the program ends with a successful completion code.

COOL User's Manual

7-15

Unordered Sequence Classes

The following shows the output for the program:

A programming language serves two related purposes: it provides a
vehicle for the programmer to specify actions to be executed and a
set of concepts for the programmer to use when thinking about what
can be done. The first aspect ideally requires a language that is
‘close to the machine’, so that all important aspects of a machine
are handled simply and efficiently ina way that is reasonably
obvious to the programmer. The C language was primarily designed with
this in mind. The second aspect ideally requires a language that is
‘close to the problemto be solved’ so that the concepts of a
solution can be expresseddirectly and concisely. The facilities
added to C to create C++ were primarily designed with this inmind.

-- Bjarne Stroustrup

There are 129 words
There are 71 unique words
The most common word is ‘to’ and is used 9 times

Hash_Table Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

7.8 TheHash_Table<Ktype VType> classis publicly derived from theHash_Table
classand implements hash tabl es of user-specified typesfor both the key and the value.
Thisisaccomplished by using the parameterized type capability of C++. TheHash_Ta-
ble class is dynamic in nature. Its size (that is, the number of buckets in the table) is
alwaysaprime number. Each bucket holds eight items. No holesareleft in abucket; if a
key/value pair isremoved from the middle of abucket, the following entries are moved
up. When a hash on a key ends up in a bucket that is full, the table is enlarged.

Hash_Table<Ktype,Vtype> — A dynamic, parameterized hash table
#include <COOL/Hash_Table.h>
Hash_Table, Generic
None
Hash_Table<Ktype,Vtype> ();
Allocates a hash table of the default size (three buckets).

Hash_Table<Ktype,Vtype> (unsigned long number);
Allocates a hash table with at |east enough buckets for number entries.

Hash_Table<Ktype,Vtype> (const Hash_Table<Ktype,Vtype>& ht);
Duplicates the size and entries of another hash table object ht.

inline long capacity () const;
Returns the maximum number of entries that the hash table can hold.

void clear ();
Removes all entries from the hash table and adjusts the appropriate counts.

inline Hash_Table state& current_position () const;
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multiple iterators over an instance of hash table.

7-16

COOL User’'s Manual

Unordered Sequence Classes

Boolean find (const Ktype& key);
Searchesthe hash tablefor key and returns TRUE if found; otherwise, thisfunction
returns FAL SE. If key is found, this function sets the current position to the key/
value entry; otherwise, this function invalidates the current position.

Boolean get (const Ktype& key, Vtype& value);
Calculates the hash value for key and returns the val ue associated with that key in
the table by copying it to value. This function sets the current position to the key/
value pair. If key is found, this function returns TRUE; otherwise, this function
returns FAL SE.

inline long get_bucket_count () const;
Returns the prime number of buckets currently allocated for the hash table.

inlineint get_count_in_bucket (long n) const;
Returns the number of keys currently hashed to the zero-relative nth bucket.

Boolean get_key (const Vtype& value, Ktype& key);
Searchesthe table for value. If found, this function copies the associated key into
key, sets the current position to the key/value pair, and returns TRUE. If valueis
not found inthe hash tabl e, thisfunction invalidatesthe current position and returns
FALSE.

inline Boolean is_empty () const;
Returns TRUE if the hash table contains no entries; otherwise, thisfunction returns
FALSE.

const Ktype& key ();
Returnsthe key of the key/value pair at the current position. If the current position
isinvalid, an Error exception is raised.

inline long length () const;
Returns the number of entries in the hash table.

Boolean next ();
Advancesthe current position pointer to the next entry in the hash table and returns
TRUE. If the current position is invalid, this function advances to the first entry
and returns TRUE. If advancing past the last entry in the hash table, this function
invalidates the current position and returns FAL SE.

Hash_Table<Ktype,Vtype>& operator= (const
Hash_Table<Ktype,Vtype>& ht);
Overloadsthe assignment operator for the classand assigns one hash table object to
have the value of another by duplicating the size and entries. Thisfunction invali-
dates the current position of the object.

Boolean operator== (const Hash_Table<Ktype, Vtype>& ht);
Overloads the equality operator for the hash table class. This function returns
TRUE if the tables have the same number of buckets with the same key/value
pairs; otherwise, this function returns FAL SE.

inline Boolean operator!= (const Hash_Table<Ktype,Vtype>& ht);
Overloads the inequality operator for the hash table class. This function returns
TRUE if thetableshave adifferent number of buckets or different key/value pairs;
otherwise, this function returns FAL SE.

COOL User's Manual

7-17

Unordered Sequence Classes

Boolean prev ();
Moves the current position pointer to the previous entry in the hash table and re-
turns TRUE. If the current position isinvalid, thisfunction movesto thelast entry
andreturns TRUE. If moving to the previousentry passesthefirst entry inthe hash
table, this function invalidates the current position and returns FAL SE.

Boolean put (const Ktype& key, const Vtype& value);
Searches the hash table for key and puts the corresponding key/value pair into the
hash table. If key is not there, the key/value pair is added and TRUE is returned;
otherwise, if key is aready there, this function updates the value with value and
returnsFAL SE. If thebucket determined by thehashisfull, thetablegrowsand the
key/value pairs are rehashed and inserted. Thisfunction setsthe current positionto
the key/value pair.

Boolean remove ();
Removes the key/value at the current position and returns TRUE. This function
setsthe current position to the entry immediately following the entry removed ifin
the same bucket; otherwise, thisfunctioninvalidatesthe current position. If the cur-
rent positionisinvalid, anError exceptionisraised and, if the handler returns, this
function returns FAL SE.

Boolean remove (const Ktype& key);
Searches the hash table for key, removes the indicated key/value pair from the ta-
ble, sets the current position to the old location of the key/value pair, and returns
TRUE. If key is not found in the hash table, this function returns FAL SE.

inline void reset ();
Invalidates the current position.

Boolean resize (long number);
Resizesthe hash tablefor at |east the indicated number of entries. If agrowthratio
has been selected and it satisfies the resize request, the table is grown by thisratio.
Thisfunctioninvalidatesthe current position. If theresizevalueiszero or negative,
an Error exception is raised.

inline void set_hash (Hash h);

Updatesthe hash function for thisinstance of hashtable. Hashisafunction of type
unsigned long (* Function) (const Ktype&). If thekey isof typechar*, thehashis
the result of successively exclusive-or-ing each byte with the current hash value
shifted left seven bits. If thekey isnot of typechar*, thedefault hash functionisthe
computation of a 32-bit value shifted left three bits with the result then modul o the
prime number of buckets. If the size of (Ktype) isgreater than four bytes, the 32-bit
valueis computed by successively exclusive-or-ing 32-bit values for the length of
the key.

void set_key compare (Hash Key Compare= NULL);
Updatesthe key compare function for thisinstance of hash table. Hash_Key Com-
pare is afunction of type Boolean (* Function)(const Ktype&, const Ktype&). If
no argument isprovided, the oper ator ==for Ktype, the key over whichtheclassis
parameterized, isused. If thekey isachar*, aString, or aGen_String, the default
compare function is a string comparison.

inline void set_ratio (float);
Updates the growth ratio for this instance of the hash table to the specified value.
When a hash table needsto grow, the current sizeismultiplied by theratio to deter-
mine the new size. If ratio is negative, an Error exception is raised.

7-18 COOL User’s Manual

Friend Functions:

Unordered Sequence Classes

void set_value _compare (Hash_Value Compare = NULL);
Updates the value compare function for this instance of hash table.
Hash Value Compare is a function of type Boolean (*Function)(const
Viype& ,const Viype&). If no argument is provided, the oper ator == for Vtype, the
value over which the class is parameterized, is used.

const Vtype& value ();
Returns areference to the value of the key/value pair at the current position. If the
current position isinvalid, an Error exception is raised.

friend ostream& operator << (ostream& os,
const Hash_Table<Ktype Vtype>& ht);
Overloads the output operator for areferenceto aHash_Table<Ktype,Vtype> ob-
ject. Thisfunction providesaformatted output with key/val ue pairs printed one per
line.

inline friend ostream& operator << (ostream& os,
const Hash_Table<Ktype,Vtype>* ht);
Overloadsthe output operator for apointer toaHash_Table<Ktype,Vtype> object.
Thisfunction providesaformatted output with key/value pairs printed one per line.

Hash Table
Example

A WN -

0o ~NO O

7.9 The following program declares a hash table of strings and integers,
storing each word asthe key anditsfrequency of occurrencein aparagraph of text asthe
value. The hash tableistraversed using the current position function of the classto de-
termine the total number of words and the most commonly used word in the paragraph.

#include <cool/Hash_Table.h> // Include Hash Table class
#include <cool/Gen_ String.h> // Include COOL String class
#include <cool/Iterator.h> // Include COOL Iterator class
#include "paragraph.h” // Include Stroustrup text
DECLARE Hash Table<Gen String,ints> // Declare Hash Table type
IMPLEMENT Hash Table<Gen String, int> // Implement Hash Table type
DECLARE Iterator<Hash Table> // Declare Hash Table iterator
IMPLEMENT Iterator<Hash Tablex> // Implement Hash Table iterator

COOL User's Manual

7-19

Unordered Sequence Classes

10

12
13
14
15
16
17
18
19

21
22
23
24

26
27
28

30
31
32
33

35

int main (void) {

Hash Table<Gen String, int>al;
Gen_Strings;

int counter = 0, max_count =0;
cout << text;

text.compile (” [a-2zA-Z]+");
while (text.find ()) {

// Declare Hash Table variable
// Temporary string variable
// Initialize word counters

// Output paragraph

// Match any alphabetical word
// While still more words

text.sub_string (s, text.start (), text.end ()); // Get word

if (hl.find (s))

// 1f word already found

hl.put (hl.key (), hl.value ()+1); // Update use count

else hl.put (s, 1);

}

// Else add word

hl.reset () ; // Invalidate current position
Iterator<Hash Table> il; // Iterator object
while (hl.next ()) { // While there are still nodes

counter +=hl.value () ;
if (hl.value () > max_count) {

}
}

il =hl.current_position () ;
max_count = hl.value () ;

// Sum number of words used
// 1f most used word so far
// Save position in list

// And keep track of usage

cout << "There are ” << counter << ” words in the paragraph\n”;

cout << "There are ” << hl.length () << ” unique words in the paragraph\n”;

hl.current position () = il;

// Set position of most used word

cout << "The most common word is '” << hl.key () << ”’ and isused ” <<

exit (0);

}

hl.value () << ” times\n”;
// Exit with successful status

Lines 1 through 3 include the COOL #ash_Table.h, Gen_String.h, and Iterator.h
class header files. Line 4 includes a statically allocated paragraph of text to be scanned
by the program. Lines 5 and 6 define a container class of a hash table whose key isa
string and whose value is an integer. Lines 7 and 8 define aniterator for the hash table
class. Lines10through 13 declarevariousvariablesand print the compl ete paragraph. A
regular expression to match sequences of alphabetical characters (that is, words) is
compiledinline 14. Lines 15 through 20 contain aloop that finds each word in thepara-
graph and addsit to the hash tableif not already there. Otherwise, the current frequency
isincremented and used asthe new value for the key. Line 21 resetstheinternal current
position iterator inside the hash table object and line 22 defines an iterator for a hash
table object.

Lines 23 through 29 arethe heart of the program. Theloop iteratesthrough the elements
of the hash table summing up the frequencies of all thewordsto get atotal word count.
In addition, if the count for agiven word isthe largest so far, the positionin thetableis
saved in the iterator object. This procedure repeats until all words have been scanned.
Lines 30 through 33 output the results of the word search and count. Finally, the pro-
gram ends with a successful completion code.

7-20

COOL User’'s Manual

Unordered Sequence Classes

The following shows the output for the program:

A programming language serves two related purposes: it provides a
vehicle for the programmer to specify actions to be executed and a
set of concepts for the programmer to use when thinking about what
can be done. The first aspect ideally requires a language that is
‘close to the machine’, so that all important aspects of a machine
are handled simply and efficiently ina way that is reasonably
obvious to the programmer. The C language was primarily designed with
this in mind. The second aspect ideally requires a language that is
‘close to the problemto be solved’ so that the concepts of a
solution can be expresseddirectly and concisely. The facilities
added to C to create C++ were primarily designed with this inmind.

-- Bjarne Stroustrup

There are 129 words
There are 71 unique words
The most common word is ‘to’ and is used 9 times

COOL User’'s Manual 7-21

Unordered Sequence Classes

7-22 COOL User’'s Manual

SET CLASSES

I ntroduction

8.1 The set classesimplement two basic data structures for random-access set opera
tions.The following classes are discussed in this section:

e Set<Type>
e Bit Set

The Set<Type> class implements random-access sets of objects of a user-specified
type. Classical set operations such as union, intersection, and difference are available.
In addition, the Set<Type> class supportsthe notion of acurrent position. See Section 5,
Parameterized Templates, for more information regarding the current position mecha-
nism and the Iterator<Type> class. The Bit_Set class implements efficient bit sets
stored in an arbitrary-length vector of bytes (unsigned char) large enough to represent
the specified number of elements. A bit set isindexed by integer valuesso elementscan
beintegers, enum values, constant symbol sfromthe enumeration package (discussedin
Section 11, Symbols and Packages), or any other type of object or expression that re-
sultsin an integral value.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which the Set<Type> class is parameterized.
The member functions operator=, operator <, operator>, operator==, and opera-
tor << for both pointer and reference must be overl oaded for any class object used asthe
type. Note that built-in types already have these functions defined.

NOTE: The Set class uses operator= of the parameterized type when copying ele-
ments. Y ou should be careful when parameterizing a set over a pointer to atype, since
the default pointer assignment operator usually copiesthe pointer, not the value pointed
at.

Requirements

8.2 Thissection discusses set classes. It assumes that you have read and understood
Section 5, Parameterized Templates. In addition, no attempt is made to discussthe con-
cepts and algorithms for the data structures discussed. Y ou should refer to a general
data structures or computer science text for this information.

COOL User's Manual

Set Classes

Set Class

Name:

Synopsis:

Base Classes:
Friend Classes:
Public Constructors:

Member Functions:

8.3 The Set<Type> class implements a set of elements of a user-specified type. The
Set<Type> class implements a simple one-element hash table where the key and the
value are the same. The type of the Set<Type> classis the key/value in the hash table.
The Set<Type> classis publicly derived from theHash_Tableclassand isdynamicin
nature. Its size (that is, the number of buckets in the table) is alwaysa prime number.
Each bucket holds eight items. No holes are left in abucket; if akey/valueisremoved
from the middle of abucket, the following entries are moved up. When ahash on akey
endsup inabucket that isfull, thetableisenlarged. Growth of a specificinstance of the
class can be controlled automatically by setting a growth ratio or manually by aresize
member function.

Set — A dynamic, parameterized set
#include <COOL/Set.h>

Hash Table, Generic

None

Set<Type> ();
Allocates a set of the default size (24 elements).

Set<Type> (unsigned long number);
Allocates a set with at least enough storage for number elements.

Set<Type> (const Set<Type>& st);
Duplicates the size and elements of another set object st.

Boolean find (const Type& value);
Searchesthe set for value. If the element isfound, this function updates the current
position and returns TRUE; otherwise, this function invalidates the current posi-
tion and returns FAL SE.

Boolean next_difference (Set<Type>& st);
Determinesthe next element in the difference of the set object and st. Thisfunction
sets the current position in the set object to that element and returns TRUE. If no
more elements are in the difference, this function invalidates the current position
and returns FAL SE.

Boolean next_inter section (Set<Type>& t);
Determines the next element in theintersection of the set object and st. Thisfunc-
tion setsthe current position in the set object to that element and returnsTRUE. If
no more elements arein the intersection, thisfunction invalidates the current posi-
tion and returns FAL SE.

Boolean next_union (Set<Type>& t);
Determinesthe next element in the union of the set object and st. Thisfunction sets
the current position in the set object to that element and returns TRUE. If no more
elementsarein the union, thisfunction invalidates the current position and returns
FALSE.

Boolean next_xor (Set<Type>& <t);
Determinesthe next element in the exclusive-or of the set object and st. Thisfunc-
tion setsthe current position in the set object to that element and returnsTRUE. If
no more elements arein the exclusive-or, thisfunction invalidates the current posi-
tion and returns FAL SE.

COOL User’'s Manual

Sat Classes

Set<Type> operator— (Set<Type>& st);
Determinesthelogical difference of the set object and st and returnstheresult. This
function invalidates the current position.

Set<Type> operator™ (Set<Type>& stb);
Determinesthelogical exclusive-or of two setsand returnstheresult. Thisfunction
invalidates the current position.

Set<Type> operator & (Set<Type>& st);
Determinesthe logical intersection of two setsand returnsthe result. Thisfunction
invalidates the current position.

Set<Type> oper ator| (Set<Type>& t);
Determinesthelogical union of two setsand returnstheresult. Thisfunctioninvali-
dates the current position.

Set<Type>& operator= (const Set<Type>& st);
Duplicatesthe size and elements of another set object st. Thisfunction invalidates
the current position of the set object and returns areference to the modified object.

Set<Type>& operator— (Set<Type>& st);
Determines the logical difference of two sets and returns the modified set object.
This function invalidates the current position of the set object and returns a refer-
ence to the modified object.

Set<Type>& operator™= (Set<Type>&);
Determinesthelogical exclusive-or of two setsand returns the modified set object.
This function invalidates the current position of the set object and returns arefer-
ence to the modified object.

Set<Type>& operator& = (Set<Type>& t);
Determinesthelogical intersection of two sets and returns the modified set object.
This function invalidates the current position of the set object and returns a refer-
ence to the modified object.

Set<Type>& operator|= (Set<Type>& st);
Determines the logical union of two sets and returns the modified set object. The
current position isinvalidated of the set object and returns areference to the modi-
fied object.

Boolean operator== (const Set<Type>& st) const;
Thisfunction returns TRUE if the sets have an equal number of elementswith the
same values; otherwise, this function returns FAL SE.

inline Boolean operator!= (const Set<Type>& st) const;
Thisfunction returns TRUE if the setshave an unequal number of elementsor val-
ues; otherwise, this function returns FAL SE.

Boolean put (const Type& value);
Adds value to the set. If the set is not large enough and it can grow, this function
allocates enough storage, copies the old set elements, sets the current position to
value, and returns TRUE; otherwise, this function returns FAL SE.

COOL User's Manual

Set Classes

Boolean remove ();
Removesthe element at the current position and returns TRUE. Thisfunction sets
the current position to the element immediately following the element removed if
not at end of the set; otherwise, this function invalidates the current position and
returns TRUE. If the current position isinvalid, an Error exception israised and
this function returns FAL SE.

Boolean remove (const Type& value);
Searches for the specified element. If the element isfound, this function removes
the element, setsthe current position to the element immediately following the el e-
ment removed, and returns TRUE. If the element found is the last element in the
set, this function invalidates the current position and returns TRUE. Otherwise,
this function returns FAL SE.

Boolean resize (long number);
Resizesthe set for at least number elements. This function invalidates the current
position. If number is zero or negative, an Error exception is raised.

Boolean sear ch (Set<Type>& st);
Determinesif stisasubset of the set object. If found, this function sets thecurrent
position to the start of the subset and returns TRUE; otherwise, this function re-
turns FAL SE.

inline void set_compare (Set_Compare = NULL);
Updatesthe comparefunction for thisinstance of set. Set Compareisafunction of
type Boolean (*Function) (const Type&, const Type&). If no argument is pro-
vided, the operator== for the type over which the set is parameterized is used.

inline void set_difference (Set<Type>& st);
Determines the logical difference of two sets and modifies the source with the re-
sult. This function invalidates the current position in the set object.

inline void set_ratio (float ratio);
Updates the growth ratio for this instance of a set to ratio. When a set needs to
grow, the current sizeismultiplied by theratio todeterminethe new size. If ratiois
negative, and Error exception is raised.

inline void set_hash (Set_Hash);

Updates the hash function for this instance of set. Set_Hash is a function of type
unsigned long (* Function) (const Type&). If the set object is parameterized over
thetype char*, the default hash is the result of successively exclusive-or-ing each
byte with the current hash value shifted | eft seven bits. If the typeisnot char*, the
default hash function is the computation of a 32-bit value that is shifted left three
bits with the result then modul o the prime number of buckets. If the size of Typeis
greater than four, the 32-bit value is computed by successively exclusive-or-ing
32-bit values for the length of the key.

inline void set_inter section (Set<Type>& st);
Determinesthelogical intersection of st and the set object, modifying the set object
with the result. This function invalidates the current position in the set object.

inline void set_union (Set<Type>& st);
Determinesthelogical union of st and the set object, modifying the set object with
the result. This function invalidates the current position in the set object.

inline void set_xor (Set<Type>& st);
Determinesthe logical exclusive-or of st and the set object, modifying the set ob-
ject with the result. Thisfunction invalidates the current position in the set object.

COOL User’'s Manual

Friend Functions:

Sat Classes

Type& value ();
Returns the element at the current position. If the current position is invalid, an
Error exception israised.

friend ostream& operator<< (ostreamé& 0s, const Set<Type>& st);
Overloads the output operator for a reference to a Set<Type> object to provide a
formatted output capability.

inline friend ostream& operator << (ostreamé& 0s, const Set<Type>* t);
Overloadsthe output operator for apointer to a Set<Type> object to provide afor-
matted output capability.

Set Class Example

8.4 Thefollowing program manipulates sets of string objects representing the names
of various colors. Two sets with different elements are created and several set opera-
tions are then applied. The results of each operation are sent to the standard output via
the overloaded oper ator << function.

1 #include <COOL/String.h> // COOL String class

2 #include <COOL/Set .h> // COOL Set class

3 DECLARE Set<Strings>; // Declare set of strings

4 IMPLEMENT Set<Strings>; // Implement set of strings
5 Boolean my compare (const String& sl, const String& s2) {

6 return ((strcmp (sl, s2) == 0) ? TRUE : FALSE) ;

7 }

8 static String color_table [1= { "RED”, "YELLOW” , "PINK”, "GREEN",

"ORANGE” , "PURPLE” , "BLUE” } ;

9 int main (void) {
10 Set<String>a(5), b(5); // Declare two set objects
11 a.set_compare (my compare) ; // Establish compare function
12 for (int 1 =0; 1 <5; i++) { // For each color defined
13 a.put (color_ tablel[i]); // Add object to first set
14 b.put (color_ table[6-i]); // BAdd end object to second set
15 }
16 cout << ”"Set A contains: ” << a; // Elements of set 1
17 cout << "Set B contains: ” << b; // Elements of set 2
18 cout << "A | B: " << (a | b); // Display union
19 cout << "A&B: " << (a &b) ; // Display intersection
20 cout << "A " B: " << (a " b); // Display exclusive-or
21 cout << "A-B: ” << (a-Db) // Display difference
22 exit (0); // Exit with OK status
23)

Lines1 through 4 includethe COOL string.nh and set . h header files, and then declare
and implement a set of strings. Lines 5 through 7 define a string comparison routine to
be used by the set class. Line 8 defines a static array of strings whose values arethe
namesof colorsto be used aselement valuesin aset. Line 10 definestwoobjects each of
whichisaset withinitial storagefor five elements. Line 11 establishes the comparison
routineto be used by the set objects. Lines 12 through 17 add some elementsto each set
and output the resulting objects. Lines 18 through 21 perform four set operations and
display the results. The program ends with a successful completion code.

COOL User's Manual

8-5

Set

Classes

The following shows the output from the program:

Set A contains: [RED YELLOW ORANGE PINK GREEN]
Set B contains: [BLUE PURPLE ORANGE GREEN PINK]
A | B: [RED YELLOW BLUE PURPLE ORANGE PINK GREEN]
A & B: [ORANGE PINK GREEN]

A" B: [RED YELLOW BLUE PURPLE]

A -B: [RED YELLOW]

Bit_Set Class

Name:
Synopsis:
Base Classes:

Friend Classes:

Public Constructors:

Member Functions:

8.5 TheBit_Set classispublicly derived fromtheGeneric classand implementseffi-
cient bit sets. These bitsare stored in an arbitrary-length vector of bytes(unsignedchar)
large enough to represent the specified number of elements. A bit setisindexed by inte-
ger values. Zero represents the first bit, one the second, two the third, and so on with
eachinteger value actually indicating the zero-rel ative bit positioninthe bit vector. Ele-
mentscan beintegers, enum val ues, constant symbolsfrom the enumeration package, or
any other type of object or expression that resultsin an integral value. All operations
involving bit shifting are performed in byteincrements, giving the most efficient opera-
tion on common hardware architectures.

Bit_Set — Efficient, dynamic bit sets
#include <COOL/Bit_Set.h>

None

None

Bit_Set ();
Allocates a hit set of the default size (1 byte).

Bit_Set (unsigned int number);
Allocates a bit set with at least enough storage for number elements.

Bit_Set (const Bit_Set& bs);
Duplicates the size and elements of another bit set object bs.

inline int capacity () const;
Returns the maximum number of elements that the bit set can hold.

void clear ();
Removes all elements from the bit set and adjusts the appropriate counts.

inline Bit_Set_state& current_position () const;
Returns the state information associated with the current position. This function
should be used with the I ter ator <Type> class to save and restore the current posi-
tion, thus facilitating multiple iterators over an instance of bit set.

Boolean find (unsigned int n);
Searchesthebit set for thenth zero-relativebit. If thebit isset, thisfunction updates
the current position and returns TRUE; otherwise, thisfunctioninvalidatesthe cur-
rent position and returnsFAL SE. If nisout of range, an Error exceptionisraised.

inline Boolean is_empty () const;
Returns TRUE if the bit set contains no elements; otherwise, this function returns
FALSE.

int length () const;
Returns the number of elements in the bit set.

8-6

COOL User’'s Manual

Sat Classes

Boolean next ();
Advancesthe current position pointer to the next element in the bit set and returns
TRUE. If the current positionisinvalid, thisfunction advancesto thefirst element
and returns TRUE. If advancing past the last element in the bit set, this function
invalidates the current position and returns FAL SE.

Boolean next_difference (const Bit_Set& bs);
Determinesthe next element in the difference of the set object and bs. Thisfunction
sets the current position in the set object to that element and returns TRUE. If no
more elementsarein thedifferent, thisfunction invalidatesthe current position and
returns FAL SE.

Boolean next_intersection (const Bit_Set& bs);
Determinesthe next element in the intersection of the set object and bs. Thisfunc-
tion setsthe current position of the set object to that element and returnsTRUE. If
no more elements are in the intersection, thisfunction invalidates the current posi-
tion and returns FAL SE.

Boolean next_union (const Bit_Set& bs);
Determinesthe next element in the union of the set object andbs. Thisfunction sets
the current position of the set object to that element and returnsTRUE. If no more
elementsarein the union, thisfunction invalidates the current position and returns
FALSE.

Boolean next_xor (const Bit_Set& bs);
Determinesthe next element in the exclusive-or of the set object andbs. Thisfunc-
tion setsthe current position of the set object to that element and returns TRUE. If
no more elements arein the exclusive-or, thisfunction invalidates the current posi-
tion and returns FAL SE.

Bit_Set operator—();
Overloads the unary minus operator to return the complement bit set.

Bit_Set operator— (const Bit_Set& bs);
Determines the logical difference of the set object and bs and returns the result.
This function invalidates the current position of the set object.

inline Bit_Set operator~ ();
Returns the complement of a hit set.

Bit_Set operator”™ (const Bit_Set& bs);
Determinesthe logical exclusive-or of the set object and bs and returns the result.
This function invalidates the current position of the set object.

Bit_Set operator& (const Bit_Set& bs);
Determines the logical intersection of the set object and bs and returns the result.
This function invalidates the current position of the set object.

Bit_Set operator| (const Bit_Set& bs);
Determines the logical union of the set object and bs and returns the result. This
function invalidates the current position of the set object.

Bit_Set& operator= (const Bit_Set& bs);
Duplicates the size and elements of another bit set. This function invalidates the
current position of the set object and returns a reference to the updated object.

COOL User's Manual

Set Classes

Bit_Set& operator—= (const Bit_Set& bs);
Determinesthe logical difference of the set object and bs and modifies the source
with the result. Thisfunction returns areference to the modified bit set and invali-
dates the current position of the set object.

Bit_Set& operator”™= (const Bit_Set& bs);
Determinesthelogical exclusive-or of the set object and bsand modifiesthe source
with the result. Thisfunction returns areference to the modified bit set and invali-
dates the current position of the set object.

Bit_Set& operator& = (const Bit_Set& bs);
Determinesthelogical intersection of the set object and bs and modifiesthe source
with theresult. Thisfunction returns areference to the modified bit set and invali-
dates the current position of the set object.

Bit_Set& operator|= (const Bit_Set& bs);
Determinesthelogical union of the set object and bs and modifies the source with
the result. This function returns areference to the modified bit set and invalidates
the current position of the set object.

Boolean operator== (const Bit_Set& bs) const;
Overloadsthe equality operator for the Bit_Set class. Thisfunction returnsTRUE
if the sets have an equal number of elements with the same values; otherwise, this
function returns FAL SE.

inline Boolean operator!= (const Bit_Set& bs) const;
Overloads the inequality operator for the Bit_Set class. This function returns
TRUE if the setshave an unequal number of elementsor unequal valuesotherwise,
this function returns FAL SE.

inline Boolean operator[] (int n) const;
Returns TRUE or FAL SE to indicate the setting of the zero-relative nth bit. If the
index is out of range, an Error exception is raised.

Boolean prev ();
Movesthe current position pointer to the previous element inthe bit set and returns
TRUE. If thecurrent positionisinvalid, thisfunction movesto thelast element and
returns TRUE. If moving to the previous element passesthefirst element in the bit
set, this function invalidates the current position and returns FAL SE.

Boolean put (int n);
Addsthezero-relative nth element to the bit set. If the bit vector isnot large enough
and it can grow, this function allocates enough storage, copies the old bit set ele-
ments, updates the current position, and returns TRUE; otherwise, this function
returns FAL SE. If the index is out of range, an Error exception is raised.

Boolean put (int start, int end);
Addsthe specified range of e ements (inclusive) to the bit set by setting the appro-
priate zero-relative bits. If the bit vector is not large enough and it can grow, this
function allocates enough storage, copiesthe old bit set elements, updatesthe cur-
rent position, and returns TRUE; otherwise, this function returns FAL SE. If the
start or end are out of range, an Error exception is raised.

8-8

COOL User’'s Manual

Sat Classes

Boolean remove ();

Thisfunction removes the element at the current position, setsthe current position
to the element immediately following the element removed (if not at the end of the
vector), and returns TRUE. If the element is at the end of the bit vector, thisfunc-
tion removesthe el ement, invalidatesthe current position, and returnsTRUE. Oth-
erwise, this function invalidates the current position and returns FAL SE. If the
current position isinvalid, an Error exception is raised and this function returns
FALSE.

Boolean remove (int n);
Searches for the zero-relative nth element. If the element is found, this function
removes the element, sets the current position to the element immediately follow-
ing the element removed, and returns TRUE. If the element isfound but at the end
of the bit vector, this function removes the element, invalidates the current posi-
tion, and returns TRUE. Otherwise, this function returns FAL SE. If theindex is
out of range, an Error exception is raised.

Boolean remove (int start, int end);
Searches for the specified range of elements. If the range is found, this function
removesthe range of elements, setsthe current position to the starting element po-
sition, and returns TRUE. Otherwise, thisfunction returns FAL SE. If either index
isout of range, an Error exception is raised.

inline void reset ();
Invalidates the current position.

resize (int number);
Resizes the bit set for at |east number elements. This function invalidates the cur-
rent position.

Boolean sear ch (const Bit_Set& bs) const;
Determines if bsis a subset of the bit set object. If found, this function returns
TRUE; otherwise, this function returns FAL SE.

inline void set_alloc_size (int number);
Sets the allocation growth size to number of bytes. The growth allocation sizeis
used when the growth ratio is zero. Default alocation growth size is four bytes.

inline void set_difference (const Bit_Set& bs);
Determinesthelogical difference of bsand the bit set object, modifying the source
with the result. This function invalidates the current position in the bit set object.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for thisinstance of abit set to ratio. When abit set needs
to grow, the current sizeismultiplied by theratio to determinethe new size. If ratio
is negative, and Error exception is raised.

inline void set_inter section (const Bit_Set& bs);
Determines the logical intersection of bs and the bit set object, modifying the
source with the result. This function invalidates the current position of the hit set
object.

inline void set_union (const Bit_Set& bs);
Determinesthelogical union of bsand the bit set object, modifying the sourcewith
the result. This function invalidates the current position of the bit set object.

COOL User's Manual

Set Classes

inline void set_xor (const Bit_Set& bs);
Determines the logical exclusive-or of bs and the hit set object, modifying the
source with the result. This function invalidates the current position of the bit set

object.

inlineint value ();
Returnsthe value (zero-relative bit position) of the bit at the current position. If the
current position isinvalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostreamé& 0s, const Bit_Set& bs);
Overloads the output operator for areference to aBit_Set object to provide afor-
matted output capability for the class.

inline friend ostream& operator << (ostreamé& os, const Bit_Set* bs);
Overloads the output operator for areference to aBit_Set object to provide afor-
matted output capability for the class.

8-10 COOL User’'s Manual

Sat Classes

Bit_Set Class
Example

N =

w

8.6 The following progran manipulates sets of objects representing the
names of various colors, similar to the previous Set example. However, this program
utilizes enumerated types and a bit vector to represent the objects. Two bit sets with
different elementsare created and several set operationsare then applied. The results of
each operation are sent to the standard outpui.

#include <COOL/Bit_Set.h> // COOL Bit Set class
enum colors { RED=1, YELLOW, PINK, GREEN, ORANGE, PURPLE, BLUE };

static colors c_tbl[] = {RED, YELLOW, PINK, GREEN, ORANGE, PURPLE, BLUE};

int main (void) {

Bit_Set a, b; // Declare two bit set objects

for (inti=0; 1<5; i++) { // For each color defined
a.put (c_tbl[i]); // Add object to first set
b.put (c_tbl[6-1]); // Add end object to second set

1

cout << ”"Set A contains: ” << a; // Elements of set 1

cout << ”Set B contains: ” << b; // Elements of set 2

cout << "A | B: " << (a | b); // Display union

cout << "A&B: " << (a&b); // Display intersection

cout << "A " B: " << (a”b); // Display exclusive-or

cout << "A-B: ” << (a -b) // Display difference

return (0) ; // Exit with OK status

Line 1l includesthe COOL Bit_set.h class header file. Line 2 defines an enumerated
color type and line 3 defines a static array of enumerated color values to be used as
elementsin the bit setsin the main program. Notice that the enumerated color type de-
fined inline 2 beginswith aninitial value of 1. Thisinsures that the bit set will behave
correctly when the bit representing rep is set. Line 5 defines two bit set objects with
default storage capacity. Lines 6 through 11 add some elements to each set and output
the resulting objects. Lines 12 through 15 perform four set operations and display the
results. Finally, the program ends with a successful completion code.

The following shows the output from the program:

Set A contains: [01111100]
Set B contains: [00011111]
A|B: [01111111
A&B: [00011100
A*B: [01100011
A-B: [01100000

COOL User's Manual

8-11

Set Classes

8-12 COOL User’'s Manual

NODE AND
TREE CLASSES

I ntroduction

9.1 Thenodeand tree classesimplement several tree data structures as parameterized
classes. The following classes are discussed in this section:

e Binary_Node<Type>

Binary Tree<Type>

e AVL_Tree<Type>

N_Node< Type,nchild>

D_Node< Type,nchild>
e N_Tree<Node, Typenchild>

The Binary_Node<Type> class implements parameterized nodes for use by the Bi-
nary_Tree<Type> class, which in turn implements simple, dynamic, sorted sequences
in atreewhere each node hastwo subtree pointers. TheAVL_Tree<Type> classimple-
ments height-balanced binary trees. The N_Node<Type,nchild> class implements
static-size nodes for use by the n-ary tree class. The D_Node<Type,nchild> classim-
plements dynamic-sized nodes for use by the n-ary tree class. The
N_Tree<Node,Type,nchild> class implements n-ary trees, providing the organiza-
tional structurefor atree of nodes, but knowing nothing about the specific type of node
used. N_Tree<Node, Type,nchild> is parameterized over anode type, adatatype, and
an initial subtree count. The Binary Tree<Type>, AVL_Tree<Type>, and
N_Tree<Node, Type, nchild> classes support the notion of acurrent position. See Sec-
tion 5, Parameterized Templates, for more information regarding the current position
mechanism and the | ter ator < Type> class.

In order to achieve successful compilation and usage, there are certain operations that
must be supported by any user-specified type over which a node or tree class is
parameterized. Themember functionsoper ator =, oper ator <, oper ator >, oper ator ==,
and oper ator << for both pointer and reference must be overloaded for any class object
used as the type. Note that built-in types already have these functions defined.

NOTE: The node and tree classes useoper ator = of the parameterized type when copy-
ing elements. Y ou should be careful when parameterizing a node or tree class over a
pointer to atype, sincethe default pointer assignment operator usually copiesthe point-
er, not the value pointed at.

Requirements

9.2 This section discusses the parameterized tree container classes. It assumes that
you haveread read and understood Section 5, Parameterized Templates. In addition, no
attempt ismadeto discussthe concepts and algorithmsfor the data structures discussed.
Y ou should refer to ageneral data structures or computer science text for thisinforma
tion.

COOL User's Manual

Node and Tree Classes

Binary _Node Class 9.3 The Binary_Node<Type> class implements parameterized nodes for binary
trees. Thisclassisprivately derived fromthe Binary_Node classthat contains left and
right subtree pointers. The Binary_Node<Type> class adds a data member of the re-
quired typein the private section. Since the Binary_Node<Type> classis intended for
use by the Binary Tree<Type> class, the Binary_Tree<Type> class is declared a

friend class.
Name: Binary Node<Type> — Parameterized binary node class
Synopsis: #include <COOL/Binary_Node.h>
Base Classes: Binary Node
Friend Classes: Binary Tree<Type>
Constructors: Binary Node<Type> ();

Allocates a binary node with left and right subtree pointers set to NULL.

Binary Node<Type> (const Binary_Node<Type>& bn);
Duplicates the value of another binary node object bn.

Binary Node<Type> (const Type& value);
Allocatesabinary nodewith left and right subtree pointersset toNUL L and initial-
izes the value of the node to value.

Member Functions: Binary Node<Type>& operator= (const Binary_Node<Type>& bn);
Overloadsthe assignment operator to assign the values of the left and right subtree
pointers and to assign the value in bn to the binary node object. This function re-
turns a reference to the updated node.

inline Type& get () const;
Returns a reference to the value of the data member.

inline Binary_Node<Type>* get_ltree () const;
Returns a pointer to the left subtree.

inline Binary_Node<Type>* get_rtree () const;
Returns a pointer to the right subtree.

inline Boolean is leaf () const;
Determines if the node is aterminal node by evaluating the left and right subtree
pointers. If both are NUL L, this function returns TRUE; otherwise, this function
returns FAL SE.

inline void set (const Type& value);
Sets the value of the data member in the node to value.

inlinevoid set_Itree (Binary_Node<Type>* bn);
Sets the value of the left subtree pointer of the binary node object to bn.

inlinevoid set_rtree (Binary_Node<Type>* bn);
Sets the value of the right subtree pointer of the binary node object to bn.

9-2 COOL User’'s Manual

Node and Tree Classes

Binary_Tree Class

Name:

Synopsis:

Base Classes:
Friend Classes:
Public Constructors:

Member Functions:

9.4 TheBinary_Tree<Type> classimplements ssimple, dynamic, sorted sequences.
Users requiring a data structure for unsorted sequences whose structure and organiza-
tion is more under the control of the programmer are referredtotheN_Treeclass. The
Binary_Tree<Type> class is derived from Binary_Tree and is a friend of the Bi-
nary_ Node<Type> class, also parameterized over the same Type. There is no attempt
made to balance or prune the tree. Nodes are added to a particular subtree at the direc-
tion of the collating function. For example, a lopsided tree results if a tree is
parameterized for integers and the tree uses the default integer comparison operators
whose elements are added in increasing order. Likewise, alopsided tree results after
many items have been added and removed.

TheBinary_Tree<Type> classimplementsthenotion of acurrent position. Thisisuse-
ful for iterating through the nodes of atree. The current position is maintained in adata
member of type Binary_Tree stateand is set or reset by all member functions affect-
ing elementsin the class. Member functions are provided to reset the current position,
moveto the next and previous elements, find an element, and get the value at the current
position. The Iter ator <Type> class provides amechanism to save and restore the state
associated with the current position, thus allowing the programmer to use multiple
iterators over the same instance of atree.

Binary_Tree<Type> — A parameterized binary tree class
#include <COOL/Binary_Tree.h>

Binary _Tree, Generic

None

Binary_Tree<Type> ();
Allocates a binary tree object with the root pointer set to NULL.

Binary Tree<Type> (const Binary Tree<Type>& ht);
Duplicates the structure of another binary tree object bt.

void balance ();
Builds a perfectly balanced binary tree from the existing tree structure and deletes
the old tree and storage.

void clear ();
Empties the tree and deallocates all memory for nodes and internal structures.

inline long count () const;
Returns the number of nodes in the tree structure.

inline Binary_Tree state& current_position ();
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multipleiterators over an instance of binary tree.

Boolean find (const Type& value);
Searchesfor value in the tree structure. If found, this function updates the current
position and returns TRUE; otherwise, this function invalidatesthe current posi-
tion and returns FAL SE.

Binary Node<Type>* get_root () const;
Returns a pointer to the root node of the tree.

COOL User's Manual

Node and Tree Classes

Boolean next ();
Advancesthe current position to the next element inthetreeand returns TRUE. If
the current positionisinvalid, thisfunction setsthe current position to thefirst ele-
ment and returns TRUE. If the current position isthe last element in the tree, this
function invalidates the current position and returns FAL SE.

Binary Node<Type>* node ();
Returns a pointer to the current node object.

Binary Tree<Type>& operator= (Binary_ Tree<Type>& bt);
Overloads the assignment operator to duplicate another binary tree object bt by
copying al nodes and value to the binary tree object. Thisfunction returnsarefer-
ence to the updated binary tree object.

inline Boolean operator== (const Binary_Tree<Type>& bt) const;
Overloads the equality operator for the Binary_Tree<Type> class. This function
returns TRUE if bt is equal to the binary tree object; otherwise, this function re-
turns FAL SE.

inline Boolean operator!= (const Binary_Tree<Type>& bt) const;
Overloadstheinequality operator for theBinary_Tree<Type> class. Thisfunction
returns TRUE if bt is unegqual to the binary tree object; otherwise, this function
returns FAL SE.

Boolean prev ();
Moves the current position to the previous element in the tree and returns TRUE.
If the current position isinvalid, this function sets the current position to the last
element and returns TRUE, thus facilitating reverse traversal through the tree. If
the current positionisthefirst element in thetree, thisfunction invalidates the cur-
rent position and returns FAL SE.

inline Boolean put (const Type& value);
Addsvalueto thetree structureif not already present. Thisfunction returnsTRUE
if theitem isadded; otherwise, thisfunction returns FAL SE. Thisfunction invali-
dates the current position.

inline Boolean remove ();
Removesthenode at the current position from thetree structure and returnsTRUE.
Thisfunctioninvalidatesthe current position of the binary tree object. If the current
position is out of range, an Error exception is raised and this function returns
FALSE.

inline Boolean remove (const Type& value);
Removesvaluefromthetreestructureif present. Thisfunction returnsTRUE if the
specified argument is successfully removed; otherwise, this function returns
FAL SE. This function invalidates the current position.

inline void reset ();
Invalidates the current position of the binary tree object.

inline void set_compare (Binary_Tree Compare= NULL);
Sets the comparison function that isto be used in all logical comparison tests. Bi-
nary Tree Compare is a function of type Boolean (*Function)(const Type&,
const Type&). If no argument isprovided, theoper ator == for thetype over which
the class is parameterized is used.

94

COOL User’'s Manual

Friend Functions:

Node and Tree Classes

inline long tree_depth ();
Returns the zero-relative depth of the tree structure. Note that this function is po-
tentially very expensive, sincethetree depthiscal culated by traversingall nodesin
the tree.

Type& value ();
Returnsareference to the node value at the current position. If the current position
isinvalid, an Error exception is raised.

friend ostream& operator<< (ostreamé& 0s, const Binary_Tree<Type>& bt);
Accepts abinary tree reference and outputs the structure by printing it sideways,
where theroot is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. Thisfunction returnsareferenceto the output
stream.

friend ostream& operator<< (ostreamé& os, const Binary_Tree<Type>* bt);
Accepts a binary tree pointer and outputs the structure by printing it sideways,
wheretheroot is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. Thisfunction returnsareferenceto the output
stream.

Binary Tree
Example

WN P~

10
11
12
13
14

16
17

9.5 The following program processes the words in a character string using
theregular expression feature of the Gen_String class aswas done for the examplesin
Section 7. Each uniqueword isthen converted to uppercase and added to the binary tree.

#include <COOL/Binary Tree.h> // Include Binary tree class
#include <COOL/String.h> // Include COOL String class
#include <COOL/Gen_String.h> // Include COOL Gen String class

static Gen String text (”\n\

A programming language serves two related purposes: it provides a\n\
vehicle for the programmer to specify actions to be executed and a\n\
set of concepts for the programmer to use when thinking about what\n\
can be done.”) ;

DECLARE Binary Tree<String> // Declare tree type
IMPLEMENT Binary Tree<String> // Implement tree type

int main (void) {

Binary Tree<Stringsbtl; // Declare tree variable
Gen_Strings; // Temporary string variable
text.compile (” [a-zA-Z]+") ; // Match any alphabetical word
while (text.find ()) { // While still more words
text.sub_ string (s, text.start (), text.end ()); // Get word
btl.put (* (new String (uppcase (s)))); // And add to tree
1
cout << btl; // Output tree structure
exit (0); // Exit with successful status

COOL User's Manual

Node and Tree Classes

Lines 1 through 3 include the COOL Binary Tree.h, String.h, and Gen_String.h
header files. Line 4 defines a static character string containing the first sentence of the
paragraph in section 7 quoted from Stroustrup. Lines 5 and 6 declare and implement the
binary tree type containing String objects. Line 8 declaresaBinary_Tree object and
line 9 declares atemporary string variable. A regular expression to match sequences of
alphabetical characters (that is, words) iscompiled inline 10. Lines 11 through 14 con-
tain aloop that finds each word in the paragraph and addsit tothe binary tree. Note the
use of operator new() to create a new String object for each item stored in the tree.
Line 15 outputs arepresentation of the structure of theBinary_tree object rotated 90V
counter clockwise. Finally, the program ends with a valid exit code on line 16.

The following shows the output for the program:

WHEN
WHAT
VEHICLE
USE
TWO
TO
THINKING
THE
SPECIFY
SET
SERVES
RELATED
PURPOSES
PROVIDES
PROGRAMMING
PROGRAMMER
OF
LANGUAGE
IT
FOR
EXECUTED
DONE
CONCEPTS
CAN
BE
AND
ACTIONS
ABOUT
A

Each unique string added to the binary tree is inserted at a node such that all strings
contained in the left subtree of the node arelexically lessthan (that is, come before) the
string. All strings contained in the right subtree of the node are lexically greater than
(that is, come after) the string. Thus, the order in which items are added to the tree sig-
nificantly alter itsinternal structure.

AVL_TreeClass

9.6 TheAVL_Tree<Type> classimplementsheight-balanced, dynamic, binary trees.
The AVL_Tree<Type> classis publicly derived from the Binary_Tree<Type> class,
and both are parameterized over someType. An AVL treeisacompromise between the
expense of afully balanced binary tree and the desire for efficient search timesfor both
average and worst-case scenarios. Asaresult, an AVL tree maintains a binary tree that
isheight-bal anced, ensuring that thedifference between the depth of theleft subtreeand
right subtree for every node is no more than one.

9-6

COOL User’'s Manual

Name:

Synopsis:

Base Classes:
Friend Classes:
Public Constructors:

Member Functions:

Node and Tree Classes

The AVL_Tree<Type> classimplementsthe notion of acurrent position. Thisisuseful

for iterating through the nodes of atree. The current position is maintained in a data
member of type AVL_Tree stateand isset or reset by all member functions affecting
elementsinthe class. Member functionsare provided to reset the current position, move
to the next and previous elements, find an element, and get the value at the current posi-

tion. Thelterator <Type> classprovidesamechanismto save and restore the state asso-

ciated with the current position, thus allowing the programmer to use multipleiterators
over the same instance of atree.

The AVL_Tree<Type> class inherits all its member functions publicly from the Bi-
nary_Tree<Type> class. The only member functionsthat are overloaded are those that
affect the structure of the tree, thus potentially requiring one or more subtreesto bere-
structured.

AVL _Tree<Type> — A parameterized, height-balanced binary tree class
#include <COOL/AVL_Tree.h>

Binary_Tree<Type>

None

AVL_Tree<Type> ()
Simple constructor to create an empty tree.

AVL _Tree<Type> (const Binary Tree<Type>& bt);
Duplicates a Binary_Tree object bt, adjusting the organization and structure as
necessary to create an AVL tree.

AVL_ Tree<Type> (const AVL_Tree<Type>& at);
Duplicates the structure of another AVL_Tree<Type> object at.

void balance ();
Builds a perfectly balanced binary tree from the existing tree structure and deletes
the old tree and storage.

void clear ();
Empties the tree and deallocates all memory for nodes and internal structures.

inline long count () const;
Returns the number of nodes in the tree structure.

inline AVL_Tree state& current_position ();
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thel ter ator <Type> classto save and restore the
current position, thus allowing multiple iterators over an instance of abinary tree.

Boolean find (const Type& value);
Searchesfor value in the tree structure. If found, this function updates the current
position and returns TRUE; otherwise, this function invalidates the current posi-
tion and returns FAL SE.

inline Binary_Node* get_root () const;
Accesses the root pointer for the tree structure.

COOL User's Manual

Node and Tree Classes

Boolean next ();
Advancesthe current position to the next element inthetreeand returns TRUE. If
the current positionisinvalid, thisfunction setsthe current position to thefirst ele-
ment and returns TRUE. [f the current position isthelast element of thetree, this
function invalidates the current position and returns FAL SE.

Binary Node<Type>* node ();
Returns a pointer to the current node object.

AVL Tree<Type>& operator= (Binary_ Tree<Type>& ht);
Overloads the assignment operator to create an AV L tree from abinary tree object
bt. This function returns a reference to the updated AVL tree object.

AVL Tree<Type>& operator= (AVL_Tree<Type>& at);
Overloads the assignment operator to duplicate another AVL tree object at. This
function returns a reference to the updated AVL tree object.

inline Boolean operator== (const AVL_Tree<Type>& at) const;
Overloadsthe equality operator for the AVL_Tree<Type> class. Thisfunction re-
turns TRUE if at is equal to the AVL tree object; otherwise, this function returns
FALSE.

inline Boolean operator!= (const AVL_Tree<Type>& at) const;
Overloads the inequality operator for the AVL _Tree<Type> class. This function
returns TRUE if at isunequal to the AVL tree object; otherwise, thisfunction re-
turns FAL SE.

Boolean prev ();
Moves the current position to the previous element in the tree and returns TRUE.
If the current position isinvalid, this function sets the current position to the last
element and returns TRUE, thus facilitating reverse traversal through the tree. If
the current position is the first element in the object, this function invalidates the
current position and returns FAL SE.

Boolean put (const Type& value);
Addsthe value passed to the tree structureif not already present. Thisfunction re-
turns TRUE if the item is added; otherwise, this function returns FAL SE. This
function invalidates the current position and balances the tree structure if neces-
sary.

inline Boolean remove ();
Removesthe node at the current position from thetree structure and returnsTRUE.
Thisfunction invalidates the current position and balancesthetree structureif nec-
essary. If the current position isout of range, an Error exception israised and this
function returns FAL SE.

Boolean remove (const Type& value);
Searches for the specified node. If the node is found, this function removes the
node and sets the current position to the node immediately following the node re-
moved; then the function returns TRUE. If the nodeisfound at the end of thetree
structure, thisfunction invalidatesthe current position, balancesthetree structureif
necessary, and returns TRUE. If the node is not found, this function returns
FALSE.

inline void reset ();
Invalidates the current position pointer and deall ocates the memory allocated for
the node cache.

9-8

COOL User’'s Manual

Friend Functions:

Node and Tree Classes

inline void set_compare (AVL_Tree Compare= NULL);
Sets the comparison function that is to be used in al comparison tests.
AVL_Tree Compare is a function of type Boolean (* Function)(const Type&,
const Type&). If no argument is provided, the oper ator == for the type over which
the class is parameterized is used.

inline Type& value ();
Returns a reference to the value of the node at the current position. If the current
position isinvalid, an Error exception is raised.

inlinelong tree_depth ();
Returns the zero-relative depth of the tree structure. Note that this function is po-
tentially very expensive, sincethetree depthiscalculated by traversingall nodesin
the tree.

friend ostream& operator<< (ostreamé& o0s, AVL_Tree<Type>& at);
Accepts an AVL tree reference and outputs the structure by printing it sideways,
wheretheroot is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. Thisfunction returnsareferenceto the output
stream.

friend ostream& operator<< (ostreamé& os, AVL_Tree<Type>* at);
Accepts an AVL tree pointer and outputs the structure by printing it sideways,
where theroot is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. Thisfunction returnsareferenceto the output
stream.

AVL Tree Example 9.7 Thefollowing program processesthewordsin acharacter string using theregular

7
8
9
10
11
12
13
14
15
16
17

expression features of the Gen_String class aswas done for the examplesin Section 7.
Each unique word is then converted to uppercase and added to the binary tree. Thisis
the same as the previous example except that an AVL treeisused, resulting in the crea
tion of a height-balanced tree.

#include <COOL/AVL Tree.h> // Include AVL tree class
#include <COOL/String.h> // Include COOL String class
#include <COOL/Gen_String.hs> // Include COOL Gen_String class

static Gen String text (”\n\

A programming language serves two related purposes: it provides a\n\
vehicle for the programmer to specify actions to be executed and a\n\
set of concepts for the programmer to use when thinking about what\n\
can be done.”) ;

DECLARE AVL_Tree<Strings // Declare tree type
IMPLEMENT AVL_Tree<String> // Implement tree type

int main (void) {

AVL Tree<String> avll; // Declare tree variable
Gen_Strings; // Temporary string variable
text.compile (” [a-zA-Z]+"); // Match any alphabetical word
while (text.find ()) { // While still more words
text.sub_string (s, text.start (), text.end ()); // Get word
avll.put (* (new String (uppcase (s)))); // And add to tree
1
cout << avll; // Output tree structure
exit (0); // Exit with successful status

COOL User's Manual

9-9

Node and Tree Classes

Lines1through 3includethe COOL avL_Tree.h, String.h,andGen string.h header
files. Line 4 defines a static character string containing the first sentence of the para-
graph in section 7 quoted from Stroustrup. Lines 5 and 6 declare and implement the
AVL treetype containing String objects. Line8 declaresan AVL _Treeobject and line
9 declares atemporary string variable. A regular expression to match sequences of al-
phabetical characters(that is, words) iscompiledinline 10. Lines 11 through 14 contain
aloop that finds each word in the paragraph and adds it to the AV L tree. Notethe use of
operator new () t0 create anew String object for each item stored in the tree. Line 15
outputs a representation of the structure of the AVL _tree object rotated 90V counter
clockwise. Finally, the program ends with a valid exit code on line 16.

The following shows the output for the program:

WHEN
WHAT
VEHICLE
USE
TWO
TO
THINKING
THE
SPECIFY
SET
SERVES
RELATED
PURPOSES
PROVIDES
PROGRAMMING
PROGRAMMER
OF
LANGUAGE
IT
FOR
EXECUTED
DONE
CONCEPTS
CAN
BE
AND
ACTIONS
ABOUT
A

Each unique string added to the AVL treeisinserted at anode such that all strings con-
tained in the left subtree of the node are lexically less than (that is, come before) the
string. All strings contained in the right subtree of the node are lexically greater than
(that is, come after) the string. However, unlikeabinary tree, an AVL tree guaranteesto
maintain a balanced structure. Consequently, the order in which items are added to the
tree has no bearing upon its internal structure.

N_Node Class

9.8 TheN_Node<Type,nchild> classimplements parameterized nodes of astatic size
for n-ary trees. Thisnode classis parameterized for both the type and someinitial num-
ber of subtrees that each node may have. The constructors for the
N_Node<Type,nchild> class are declared in the public section to allow the user to cre-
ate nodes and control the building and structure of an n-ary tree where the ordering can
have a specific meaning, as with an expression tree.

9-10

COOL User’'s Manual

Name:

Synopsis:

Base Classes:
Friend Classes:
Public Constructors:

Member Functions:

Node and Tree Classes

N_Node<Type,nchild> — Parameterized static-sized n-ary node class
#include <COOL/N_Node.h>

None

N_Tree<Node, Type,nchild>

N_Node<Type,nchild> ();
Allocates an N-node with al subtree pointers set to NULL.

N_Node<Type,nchild> (const Type& value);
Allocatesan N-nodewith all subtree pointers set toNUL L and initializesthevalue
of the node to value.

N_Node<Type,nchild> (const N_Node<Type,nchild>& nn);
Duplicates the value of another N-node object nn.

inline Type& get () const;
Returns a reference to the value of the data member.

Boolean insert_after (N_Node<Type,nchild>& nn, int index);
Inserts a subtree pointer to nn after the zero-relative index given. Thisfunction re-
turns TRUE if successful; otherwise, this function returns FALSE. If index is
negative or out of range, an Error exception is raised.

Boolean insert_before (N_Node<Type,nchild>& nn, int index);
I nserts a subtree pointer to nn before the zero-relative index. This function returns
TRUE if successful; otherwise, thisfunction returns FAL SE. If index is negative
or out of range, an Error exception is raised.

Boolean is |eaf () congt;
Determinesif the node is atermina node by evaluating the subtree pointers. If all
pointers are NUL L, this function returns TRUE; otherwise, this function returns
FALSE.

inline int num_subtrees () const;
Returns the maximum number of subtrees possible for a node.

N_Node<Type,nchild>& operator= (N_Node<Type,nchild>& nn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the valuein nn to the node object. Thisfunction returns areferenceto
the updated node.

N_Node<Type,nchild>& operator= (N_Node<Type,nchild>* nn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the value in nn to the node object. Thisfunction returnsareferenceto
the updated node.

inline Boolean operator == (const Type& value) const;
Overloads the equality operator for the N_Node<Type> class. This function re-
turns TRUE if valueis equal to the value of the node object; otherwise, thisfunc-
tion returns FAL SE.

inline Boolean operator!= (const Type& value) const;
Overloads the inequality operator for the N_Node<Type> class. This function re-
turns TRUE if value is not equal to the value of the node object; otherwise, this
function returns FAL SE.

COOL User's Manual

9-11

Node and Tree Classes

inline Boolean operator < (const Type& value) const;
Overloads the less-than operator for the N_Node<Type> class. This function re-
turns TRUE if valueislessthan the value of the node object; otherwise, thisfunc-
tion returns FAL SE.

inline Boolean operator <= (const Type& value) const;
Overloadstheless-than-or-equal operator for theN_Node<Type> class. Thisfunc-
tion returns TRUE if value is less than or equal to the value of the node object;
otherwise, this function returns FAL SE.

inline Boolean operator> (const Type& value) const;
Overloads the greater-than operator for the N_Node<Type> class. This function
returns TRUE if value is greater than the value of the node object; otherwise, this
function returns FAL SE.

inline Boolean operator >= (const Type& value) const;
Overloads the greater-than-or-equal operator for the N_Node<Type> class. This
function returns TRUE if value is greater than or equal to the value of the node
object; otherwise, this function returns FAL SE.

inline N_Node<Type,nchild>*& operator[] (int index);
Returns areference to a pointer to the subtree at the zero-relativeindex. If indexis
negative or out of range, an Error exception is raised.

inline void set (const Type& value);
Sets the value of the data member in the node to value.

inline void set_compare (N_Node Compare= NULL);
Sets the comparison function that is to be used in al comparison tests.
N_Node Compareisafunction of type Boolean (* Function)(const Type&, const
Type&). If no argument is provided, the oper ator== for the type over which the
classis parameterized is used.

D_Node Class

Name;

Synopsis:

Base Classes:
Friend Classes:
Public Constructors:

9.9 The D_Node<Type,nchild> class implements parameterized nodes of adynamic
sizefor n-ary trees. Thisnode classis parameterized for the type and someinitial num-
ber of subtreesthat each node may have. TheD_Node<Type,nchild> classisdynamicin
the sense that the number of subtrees allowed for each node is not fixed.
D_Node<Type,nchild> uses the Vector <Type> class, which supports run-time growth
characteristics. Asaresult, theD_Node<Type,nchild> class should be used asthe node
typefor theN_Tree<Node, Type,nchild> class when the number of subtreesisvariable,
unknown at compile time, or needs to increase on a per-node basis at run-time. This
capability is suited for hierarchical trees such as may be used in an organization chart.
Also, specialization of theN_Tree<Node, Type,nchild> classwould alow for relatively
easy implementation of a DAG class.

D_Node<Type,nchild> — Parameterized, dynamic-size n-ary node class
#include <COOL/D_Node.h>

None

N_Tree<Node, Type,nchild>

D_Node<Type,nchild> ();
Allocates a D-node and avector of subtree pointers of theinitial size, al of which
areset to NULL.

9-12

COOL User’'s Manual

Member Functions:

Node and Tree Classes

D_Node<Type,nchild> (const Type& value);
Allocates a D-node and a vector of subtree pointers of theinitial size, al of which
are set to NUL L, and initializes the value of the node to value.

D_Node<Type,nchild> (const D_Node<Type,nchild>& dn);
Duplicates the value of another D-node object dn.

inline Type& get () const;
Returns a reference to the value of the data member.

Boolean insert_after (D_Node<Type,nchild>& dn, int index);
Inserts a subtree pointer to dn after the zero-relative index. This function returns
TRUE if successful; otherwise, thisfunction returnsFAL SE. If index is negative
or out of range, an Error exception is raised.

Boolean insert_before (D_Node<Type,nchild>& dn, int index);
Inserts a subtree pointer to dn before the zero-relative index. This function returns
TRUE if successful; otherwise, thisfunction returns FAL SE. If index is negative
or out of range, an Error exception is raised.

Boolean is_leaf () const;
Determinesif the node is aterminal node by evaluating the subtree pointers. If all
pointers are NUL L, this function returns TRUE; otherwise, this function returns
FALSE.

inline int num_subtrees () const;
Returns the number of subtrees for a node.

D_Node<Type,nchild>& operator= (D_Node<Type,nchild>& dn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the value in dn to the node object. Thisfunction returns areferenceto
the updated node.

D_Node<Type,nchild>& operator= (D_Node<Type,nchild>* dn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the valuein dn to the node object. Thisfunction returns areferenceto
the updated node.

inline Boolean operator== (const Type& value) const;
Overloads the equality operator for the D_Node<Type> class. This function re-
turns TRUE if valueis equal to the value of the node object; otherwise, thisfunc-
tion returns FAL SE.

inline Boolean operator!= (const Type& value) const;
Overloads the inequality operator for the D_Node<Type> class. This function re-
turns TRUE if value is not equal to the value of the node object; otherwise, this
function returns FAL SE.

inline Boolean operator < (const Type& value) const;
Overloads the less-than operator for the D_Node<Type> class. This function re-
turns TRUE if valueislessthan the value of the node object; otherwise, thisfunc-
tion returns FAL SE.

inline Boolean operator <= (const Type& value) const;
Overloadstheless-than-or-equal operator for theD Node<Type> class. Thisfunc-
tion returns TRUE if value is less than or equal to the value of the node object;
otherwise, this function returns FAL SE.

COOL User's Manual

9-13

Node and Tree Classes

inline Boolean operator> (const Type& value) const;
Overloads the greater-than operator for the D_Node<Type> class. This function
returns TRUE if value is greater than the value of the node object; otherwise, this
function returns FAL SE.

inline Boolean operator >= (const Type& value) const;
Overloads the greater-than-or-equal operator for the D_Node<Type> class. This
function returns TRUE if value is greater than or equal to the value of the node
object; otherwise, this function returns FAL SE.

inline D_Node<Typenchild>*& operator[] (int index);
Returns areference to a pointer to the subtree at the zero-relativeindex. If index is
negative or out of range, an Error exception is raised.

inline void set (const Type& value);
Sets the value of the data member in the node to value.

inline void set_compare (D_Node Compare= NULL);
Sets the comparison function that is to be used in al comparison tests.
D_Node _Compareisafunction of type Boolean (* Function)(const Type&, const
Type&). If no argument is provided, the operator== for the type over which the
classis parameterized is used.

N_Tree Class

9.10 The N_Tree<Node, Type,nchild> class implements n-ary trees, providing the
organizational structure for atree (collection) of nodes, but knowing nothing about the
specific type of node used. N_Tree<Node, Type,nchild> is parameterized over anode
type, adatatype, and a subtree count, where the node specified must have adata mem-
ber of the same Type as the tree class and the subtree count indicates the number of
possible subtree pointers (children) from any given node. Two node classes are pro-
vided, but others could also be written. The N_Node<Type> class implements static-
sized nodes for some distinct number of subtrees, and the D_Node<Type> class
implements dynamic-sized nodes derived from the Vector <Type> class.

Since the organization of atreeisimportant (aswith an expression tree), the user must
supervisethe construction of thetree by directing specific nodeand subtree assignments
and layout. No attempt is made by theN_Tree<Node, Type,nchild> classto balance or
prune the tree.

The N_Tree<Node, Type,nchild> class implements the notion of a current position.
Thisisuseful for iterating through the nodes of atree. Thecurrent positionismaintained
in adata member of typeN_Tree stateand is set or reset by al member functions af-
fecting elements in the class. Member functionsare provided to reset the current posi-
tion, move to the next and previous elements, find an element, and get the value at the
current position. The Iterator <Type> class provides a mechanism to save and restore
the state associated with the current position, thus allowing the programmer to use
multiple iterators over the same instance of atree.

Traversal through an n-ary tree using the current position mechanism and the
Iterator <Type> class can be controlled by setting the traversal mode. An enumerated
type Traversal_Typeis defined for the following values:

o PREORDER

o PREORDER REVERSE

o INORDER

9-14

COOL User’'s Manual

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

Member Functions:

Node and Tree Classes

o INORDER REVERSE
o POSTORDER
° POSTORDER_REVERSE

Inorder traversal for an n-ary tree is defined to traverse the left-most subtree, visit the
node, then traverse all remaining subtrees from |eft to right. Postorder traversal of an
n-ary treeisdefined to traverse all subtreesfrom left to right, then visit the node. Preor-
der traversal for an n-ary treeisdefined to visit the node, then traverse all subtreesfrom
left toright. Thereversetraversal modesaresimilar, except that they visit subtreesfrom
right to left.

N_Tree<Node, Type,nchild> — A parameterized N-ary tree class
#include <COOL/N_Tree.h>

Generic

None

N_Tree<Node, Type,nchild> (Node<Type,nchild>& n);
Allocates an n-ary tree object with the root pointer set to n.

N_Tree<Node, Type,nchild> (Node<Type,nchild>* n);
Allocates an n-ary tree object with the root pointer set to n.

N_Tree<Node, Type,nchild> (const N_Tree<Node, Type,nchild>& nt);
Duplicates the structure of another n-ary tree object nt.

void clear ();
Empties the tree and deall ocates the memory for al nodes and internal structures.

inline long count () const;
Returnsthe number of nodesin the tree structure. Note that this function is poten-
tially very expensive, sincethetreedepthiscalculated by traversing all nodesinthe
tree.

inline long current_depth ();
Returns the zero-relative depth in the n-ary tree object of the node at the current
position. If the current position isinvalid, this function returns zero.

inlineN_Tree state& current_position ();
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multiple iterators over an instance of n-ary tree.

Boolean find (const Type& value);
Searches for value in the tree. If found, this function updates the current position
and returns TRUE; otherwise, this function invalidates the current position and
returns FAL SE.

COOL User's Manual

9-15

Node and Tree Classes

void inorder (Node_Apply_Function fn);
Performs an in-order traversal of the tree structure and applies the function fn to
each node. Inorder traversal for an n-ary tree is defined to traverse the left-most
subtree, visit the node, then traverse al remaining subtrees from left to right.
Node Apply _Function is a function of type Boolean (*Function)(const Type&
value) wherevalueisthe valuefrom each node visited that is substituted during the
traversal.

inline Boolean next ();
Advancesthe current position to the next element if there is one. Thisfunction re-
turns TRUE if successful. If the current position is invalid, this function sets the
current positionto thefirst element and returnsTRUE. If thecurrent positionisthe
last element in the tree, this function invalidates the current position and returns
FALSE.

inline Node<Type,nchild>*& operator[] (int index);
Returns a reference to a pointer to the zero-relative indexed subtree. If index is
negative or out of range, an Error exception is raised.

inline operator Node<Type,nchild>();
Providesan implicit conversion operator from an n-ary tree object to the node over
which the class is parameterized.

void postorder (Node Apply Function fn);
Performs a post-order traversal of the tree structure and applies the function fn to
each node. Postorder traversal of an n-ary tree is defined to traverse all subtrees
from left to right, then visit the node. Node_Apply_Function is afunction of type
Boolean (* Function)(const Type& value) where valueisthe value from each node
visited that is substituted during the traversal.

void preorder (Node_Apply Function fn);
Performs a pre-order traversal of the tree structure and applies the function fn to
each node. Preorder traversal for an n-ary treeisdefined to visit the node, thentrav-
erse all subtrees from left to right. Node Apply Function is a function of type
Boolean (* Function)(const Type& value) wherevalueisthe value from each node
visited that is substituted during the traversal.

Boolean prev ();
Moves the current position to the previous element in the tree and returns TRUE.
If the current position isinvalid, this function sets the current position to thelast
element and returns TRUE. If the current position isthefirst element in the tree,
this function invalidates the current position and returns FAL SE.

inline void reset ();
Invalidates the current position for the n-ary tree object.

inline Traversal_Type& traversal ();
Returnsareference to the traversal mode. This member function can be used to set
or get the current traversal mode.

Type& value ();
Returns a reference to the value of the node at the current position. If the current
position isinvalid, an Error exception is raised.

9-16

COOL User’'s Manual

Node and Tree Classes

N_Tree Example

o~

[(e o NNe)]

9.11 UnliketheBinary_Tree<Type>and AVL_Tree<Type> classes discussed ear-
lier in this section, the N_Tree<Node, Type,nchild> requires the user to direct the con-
struction and control the structure of the tree. The following program requires this
flexibility and uses dynamic nodes and the n-ary tree class to creste, and then navigate
through a hypothetical organizational chart.

#include <COOL/D_Node.h> // Include node class
#include <COOL/N_Tree.h> // Include n-ary tree class
#include <COOL/String.h> // Include string class
DECLAREN_Tree<D_Node, String, 3> // Declare tree type
IMPLEMENT N_Tree<D Node, String, 3> // Implement tree type

int main (void) {

}

D Node<String, 3> president (String(”President”)) ; // Create president

N _Tree<D Node, String, 3> org chart (president) ; // Setup top of tree

D _Node<String, 3> sales (String(”Sales”)) ; // Create sales

D _Node<String, 3> service (String(”Service”)) ; // Create service

D Node<String, 3> finance (String(”Finance”)) ; // Create finance

D _Node<String, 3> legal (String(”Legal”)) ; // Create legal
president [0] = &sales; // Add sales to chart
president.insert after(service, 0); // Add service to chart
president.insert after (finance, 1); // Add finance to chart
president.insert after(legal, 2); // Add legal to chart
sales[0] =newD Node<String,3> (String(”Domestic”)); // Domestics sales

D _Node<String, 3> international (String(”International”)); // International

sales.insert_after (international, 0);

international [0] =newD Node<String, 3> (String(”Asia”)) ;

international.insert_after (* (newD Node<String, 3> (String(”Europe”))), 0);
international.insert_after (* (newD Node<String, 3> (String(”Africa”))), 1);
finance[0] =newD Node<String,3> (String(”Short Term”)) ;
finance.insert after (* (newD Node<String,3> (String(”Long Term”))), 0);
finance.insert_after (* (newD Node<String,3> (String(”Collections”))), 1);
org chart.traversal () = PREORDER; // Set traversal mode
for (org_chart.reset (); org_chart.next ();) { // For each node in tree

for (int i = 0; i <org_chart.current_depth (); i++) // Indent level

cout << ” ";

cout << org_chart.value () << ”\n”"; // Print value of node
1
return (0) ; // Return success

Lines1through 3includetheD_Node<Type>, N_Tree<Node, Type,nchild>and String
class header files. Lines 4 and 5 declare an n-ary tree class using dynamic nodes that
initially support three subtrees per node and whosevalueisaString. Line 7 createsthe
top level node to represent the president in the organization. Line 8 creates the
org_chart tree object and establishesthepresident node asthe root. Lines 9 through
12 createthe four department nodes. Notice that the dynamic natureof D_Nodeisauto-
matically used since we add four departments, but initially parameterized the class for
three subtrees per node. Line 13 addssales asthefirst node under president. Lines14
through 16 then add the service, finance, and 1egal nodes. Lines 17 and 18 establish
thepomestic and International nodesunder sales, and lines19 through 22 setup the
international distribution nodes. Similarly, lines 23 through 25 setup the finance nodes.
Line 26 establishes the preorDER traversal mode for the n-ary tree object.

COOL User's Manual

9-17

Node and Tree Classes

Lines 27 through 31 contain aloop that uses the current position mechanism to iterate
through the nodes of thetree. For each node, theindentation for the output isdetermined
by itsdepthinthetree. After theindentation isprinted on the output stream, the val ue of
the node (the String value) isalso printed. Finally, when all nodesin the tree havebeen
visited, the program ends with a successful completion code.

The following shows the output for the program:

President
Sales
Domestic
International
Asia
Europe
Africa
Service
Finance
Short Term
Long Term
Collections
Legal

9-18 COOL User’'s Manual

MACROS

I ntroduction

10.1 The COOL macro facility is an extension to the standard ANSI C macro
preprocessing functions available with the #define statement. The COOL preprocessor
isamodified ANSI C preprocessor that allows aprogrammer to define powerful exten-
sions to the C++ language in an unobtrusive manner. This enhanced preprocessor is
portable and compiler-independent, and can execute arbitrary-filter programs or macro
expanderson C++ code fragments. It isimportant to note, however, that onceamacrois
expanded, theresulting codeis conventional C++ 2.0 syntax acceptableto any conform-
ing C++ tranglator or compiler.

The COOL macro facilities have many components. Macros such as those that support
parameterized templ ates are implementations of theoretical design papers published by
Bjarne Stroustrup. Others provide significant language features and enhanced power
for the programmer heretofore unavailable with conventional C++ implementations.
This section providesinformation on the COOL macro facility that formsthe basisfor
many of the advanced features covered in later sections. The following topics aredis-
cussed in this section:

e COOL preprocessor

e defmacro

¢ MACRO

e Example COOL macros

Requirements

10.2 This section discusses the macro facilities of COOL. It assumesthat you have a
working knowledge of the C++ language and are familiar with the concept of macros
and macro expansion as found in the standard C preprocessor.

COOL
Prepr ocessor

10.3 The COOL preprocessor is supplied as part of the library and is the
point at which all language and computing enhancementsavailablein COOL areimple-
mented. The proposed draft ANSI C standard indicates that extensions and changes to
the language or featuresimplemented in apreprocessor or compiler should be made by
using the #pragma statement. The COOL preprocessor follows this recommendation
and uses this to make all macro extensions. The #pragma defmacr o statement is the
single hook through which features such as the class macro, parameterized templ ates,
and polymorphic enhancements have been implemented.

Porting COOL to anew platform or operating system starts with the preprocessor. The
preprocessor contains support for the defmacr o statement and al so implements severa
important macros internally for efficiency and performance considerations. These in-
clude template, class, DEFPACKAGE, and DEFPACKAGE_SYMBOL.

COOL User's Manual

10-1

Macros

Name:

Synopsis:
Options:

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied onthe X11R3 sourcetapefrom MIT. It complieswith the draft ANSI C specifica-
tion with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed above, the preprocessor has several new
command line options to support C++ comments. These command line options also
have include-file debugging aids.

ccpp — The COOL C/C++ preprocessor
ccpp [—optiong] [infile [outfil€]]

-B
Recognizes the C++ double slash (//) comment character and treats all characters
following up to the next newline character as commentary text.

-C
If set, source-file comments are written to the output file. This allowsccpp output
to be used as input to a program such as lint(1) that expects comments to be spe-
cialy formatted.

—Dname[=value€]
Defines name as if the programmer had defined it in the program. If no value is
provided, a default value of 1 is used.

-E
Alwaysreturnsasuccessful status completion codeto the operating system, even if
errors were detected.

—ldirectory
Addsthe specified directory to thelist of directories searched when looking for an
includefile. Note that there is no space between the option letter and thedirectory
name.

—Uname
Undefines name as if the programmer had undefined it in the program.

—X[number]

Enables debugging output from the preprocessor. A value of 1 for number will
cause the pathname of each included file to be sent to the standard error stream. A
valueof 2 for number will cause#contr ol statementsto beinserted ascommentsin
the output. A value of 3 for number will enable both debugging modes. If no value
for number isprovided, adefault value of 1isused. Notethat thisoptionisdesigned
to be a debugging aid for use when the preprocessor is run as stand alone and not
when invoked by the control program. Other values for number are ignored.

10-2

COOL User’'s Manual

Macros

defmacro

Name:
Synopsis:

10.4 The #pragma defmacr o statement is implemented in the COOL preprocessor
and is the single hook through which features such as the class macro, parameterized
templates, and polymorphic enhancements have been implemented. Thedefmacro fa
cility provides away to execute arbitrary-filter programs on C++ code fragments pass-
ing through the preprocessor. When adefmacr o style macro name is found, the name
and everything until the delimiter (including all matching{} []) <>“" ‘" and comments
found along theway) is piped onto the standard i nput stream of theindicated program or
filter procedure. The procedure’s standard output is scanned by the preprocessor for
further processing. The expansion replaces the macro call and is passed onto the com-
piler for parsing.

Theimplementation of adefmacr o can be either external to the preprocessor (asin the
case of filesand programs) or internal to the preprocessor. For example, thetemplate,
declare, and implement macros that implement parameterized typesisinternal to the
preprocessor to provide a more efficient implementation. The defmacr o facility first
searchesfor afile or program in the same search path asthat used for includefiles. If a
match is not found, an internal preprocessor table is searched. If a match is still not
found, theerror message “Error : Cannot openmacro file [XXX] ~ issent tothe standard
error stream where xxx is the name as it appears in the source code. The fundamental
COOL macros are defined with defmacr o in the header file <COOL/misc.h>, whichis
included by all COOL C++ source files.

defmacro — The COOL C/C++ preprocessor extension mechanism

#pragma defmacro name <file> options
#pragma defmacr o name “file’ options
#pragma defmacr o name program options

name A character string identifying the macro

file The name of afile implementing the macro

program The name of afilter program implementing the macro
options One or more of the following space-separate parameters:

recursive
When present, the macro may be recursively expanded.

expanding
When present, input to the macro is macro-expanded.

delimiter=c
The default delimiter *;" is replaced with c.

condition=c
When present, the macro will not be invoked unless followed by c.

REST: args
Other arguments are passed to the macro expander.

COOL User's Manual

10-3

Macros

MACRO

Name:
Synopsis:

105 MACRO provides a powerful and flexible macro language used to simplify
many of the features and functions contained in the library. The defmacr o feature pre-
viously discussed is used to declare theM ACRO keyword whose implementationisa
preprocessor-internal routine named macro. The terminating delimiter for aM ACRO
isthe closing brace character. MACRO implements an enhanced #define syntax that
supportsmultipleline, arbitrary length, nested macros, and preprocessor directiveswith
positional, optional, optional keyword, required keyword, rest, and body arguments.

MACRO — Enhanced COOL macro language
MACRO name [expanding] (arglist) { body }

name

expanding

arglist

body

The name of the macro

Optional argument that, when present, indicates that argument names
themselves should be macro-expanded before passing onto and invoking
the name macro.

A list of comma separated arguments

KEY: identifier [= valug]
All ensuing arguments are taken to be keyword arguments that allow
the user to specify aparticular value. Default values are supported by
an equal sign and value, and can be applied to both regular and key-
word arguments.

REST: name [= count]
Indicates that there are some number of arguments, al of which are
referenced by the one named identifier. An optional equal sign and
identifier contains the number of arguments remaining. Thisistypi-
cally used when an outer level macro must pass some number of argu-
ments to an inner level macro.

BODY': body
Indicates that body is to be expanded to include all text within the
braces after the macro call. Thisis useful for identifying a section of
code that implements some part of the macro or should be passed to
other nested macros.

Statements substituted when the macro isexpanded. These statementscan
be any valid C++ statementsterminated with asemicolon and surrounded
by curly-braces.

10-4

COOL User’'s Manual

Macros

MACRO Examples

Example 1:

Example 2:

10.6 Following arethree examplesof MACRO, each using variousfeatures and con-
cepts to highlight some of the COOL macro capabilities. More detailed and complex
examples follow in subsequent sections. It cannot be emphasized enough how impor-
tant the macro facility isto theimplementation of COOL. Without it, many featuresand
functions would not be possible or would be more cumbersome and difficult to use. As
an exampl e of thistype of use, the aggressive reader isreferred to the end of Section 11,
Symbols and Packages, for a detailed examination of the symbol_package macro.

Thisisasimpleuse of MACRO toimplement awrapper to aninitialization routine that
provides greater flexibility in passing arguments than is possible with straight C++ 2.0
syntax.

1 MACRO set_val (size, value=0, KEY: low = 0, high) {
2 init (size, value, low, high—low)}

Line 1 contains the function prototype for the macro set_va1 defined between thefol-
lowing braces. This macro takes four arguments:

e size iSarequired positional argument;

e value isanoptional positional argument that if not specifiedin aparticular call has
adefault value of o;

e 1owisan optional keyword argument with a default value of zero;
e high isarequired keyword argument.
Line 2 contains the body of the macro which in this case involvesacall to theinit ()

function. The following shows several legal invocations of the macro, along with the
resulting macro expansions:

set_val (0, high=20) —> init (0, 0, 0, 20-0) ;
set_val (0, low=5, high=15) —> init (0, 0, 5, 15-5);
set_val (1, 2, high=25) —> 1init (1, 2, 0, 25-0);

The next example makesuse of theREST : argument list modifier and recursive calls of
the macro defined. Note that there are two macros, the first calls the second to do most
of thework. The results of both are combined and placed on the standard output of the
preprocessor:

1 MACRO build table (name, REST: rest) {

2 char* name[] = { build table internal (rest) NULL}

3 }

4 MACRO build table internal (first, REST: rest=count) {
5 #first,

6 #if count

7 build table_ internal (rest)

8 #endif

9 }

COOL User's Manual

10-5

Macros

Example 3:

The macro uild table is defined on lines 1 through 3 and takes two arguments: a
name to associate with the table and a REST: argument called rest that refersto all
remaining arguments. A char* variable called name isdefined online 2 and containsan
embedded call to a second macro with the rest argument mentioned above. Note also
that the embedded call iswithin theinitialization braces of the character string variable
and is followed by aNULL symbol.

The second macro definedin lines 4 through 9 loops through the rest argument values
and recursively callsitself. Line 4 contains the prototype with two arguments. Thefirst
argument first is stripped from the incoming argument list and the remaining count
arguments areleft alonein the rest argument. Line 5 usesthe ANSI # character on an
argument to double quote thevalue. Then, aconditional clausetestscount to seeif there
areremaining argumentsand, if so, recursively callsthe macro. When thereareno more
arguments, thepuild_table macroregainscontrol and appendstheNUL L and closing
brace to the result of the second macro.

A sample use of thismacroisshown below toillustrate the construction of aNUL L -ter-
minated table containing character strings. Line 1 showsthe macro call and line 2shows
the resulting macro expansion:

1 build table (table, 1,2,3,4,5,6,7);
2 char* table[] = {nln’ wQu N3wowgw o owgw wgw owgr NULL};

Asafinal example, hereisamacro that usestheBODY: modifier. It takes advantage of
the current position featurefound in the COOL container classesto implement ageneral
purpose L OOP macro similar to that foundin Common Lisp. Sinceall COOL container
classesimplement the current position iterator capability, this macro will work equally
well with List, Vector, Set, and so on:

MACRO LOOP (type, variable, container, BODY: body) {
{ type variable;
for (container.reset(); container.next();) {
variable = container.value() ;
body

}

O~NOOUITRWN P

}

Line 1 contains the prototype of the macro r.oor that takes four arguments; a container
classelement type; avariable name (of thetype) to be declared; the name of acontainer
classinstance; and aBODY': argument of code to be applied to each element. Line 2
declaresaninstance of the element typein the specified container class. Lines 3 through
6 implement aloop that iteratesthrough the el ements of thecontainer. Line4 assignsthe
value of the element at the current position to thelocal variabledeclared online 2. Line
5 expands the body argument specified.

10-6

COOL User’'s Manual

Macros

A specific examplefor the Vector <Type> classis shown below. Lines 1 and 2 show the
macro call and lines 3 through 8 show the resulting macro expansion:

1 Vector<ints> vl;

2 LOOP (int, e, v1) { cout <<e<<”, ”;}
3 { inte;

4 for (vl.reset (); vi.next();) {

5 e =vl.value() ;

6 cout << e <<”

7 }

8 }

This example contains an instance of vector<int> caled vi. The Loor macro iterates
through the vector and assigns each element to atemporary variablee. Thisisthen used
inthe expanded boay argument. The net result isto print all elementsin the vector sepa-
rated by commas.

ISSAME 10.7 ThelSSAME macro isused in the preprocessor to compare two stringsto seeif
they are the same. This macro is intended to be used in a similar manner as the
preprocessor #if directive, which allowsasymbol to becompared to someinteger value.
If the character strings are the same, | SSAM E returns one; otherwise, it returns zero.

Name: | SSAM E — Compares two character strings at compile time
Synopsis: ISSAME (argl, arg2)
argl The first character string
arg2 The second character string
Example: Thismacroisused inthe COOL Hash_Table<T1,T2> classto select the hash function

based on the key type. If the hash tableis parameterized such that the key typeischar*,
a specific hashing function suited for character strings is implemented as the default
hashing scheme. If not, an alternate hashing functionisused. Inthe example below, line
1 compares the key type to severa string type names. If a match is indicated, the
statementsat line 2 will be used. If no matchisindicated, the statementsat line4 will be

used.

1 #if ISSAME (T1, char*, String, Gen String)
2

3 #else

4

5 #endif

COOL User’s Manual 10-7

Macros

KEYARGS 10.8 The KEYARGS macro implements a keyword argument feature for standard
C++ functions similar to the KEY: modifier available with M ACRO which supports
optiona keyword arguments.

Name: KEYARGS — Provides keyword arguments for C++ functions
Synopsis: KEYARGS type name (arglist)
type Function return type
name Name of the function
arglist A C++ function argument list that supports keyword arguments:

[KEY:] identifier [= default] [, arglist]
All ensuing arguments are taken to be keyword arguments that allow
the user to specify aparticular value. Default values are supported by
an equal sign and value, and can be applied to both regular and key-
word arguments.

Example: This example definesthe function set that returns a Boolean value. The first argument
(size) isarequired positional argument, while the second and third (10w and high) are
optional keyword arguments. A skeleton implementation of this function is shown in

lines 1 through 3 below:

1 KEYARGS Boolean set (int size, KEY: int low=0, int high=100) {
2

3 }

Lines 4 through 6 show acall to set with a value of 512 for the first argument and a
value 1024 for the key argument nignh. The value of the keyword argument 10w will
default to value 0. Lines 7 through 9 show the results of this macro expansion:

4 if (set (512, high=1024) == TRUE) {
5

6 }

7 if (set (512, 0, 1024) == TRUE) {

8

9 }

10-8 COOL User’'s Manual

Macros

ONCE_ONLY

Name:

Synopsis:

Example:

109 TheONCE_ONLY macro allows an application to control the expansion orin-
sertion of a section of code or function. ONCE_ONLY creates a symbol in a package
whose value is the file name where the symbol was first encountered. If the current
value of the symbol is the same as the current file (available from the standard
preprocessor symbol _ r1Le_), the code is expanded and compiled. If not, nothing
happens. ONCE_ONL Y uses symbol and package objectsand is more completely dis-
cussed in Section 11, Symbols and Packages.

ONCE_ONLY — A macro whose body is expanded only once
ONCE_ONLY (name) { body}
name Symbolic name given to this operation

body Statements substituted when the macro is expanded

The C++ parameterized type macros generate two sets of code: a declaration that must
always be included and implemented codethat only needsto be compiled once. Thisis
particularly important when the definition of the parameterized typeisin a header file.
By using the ONCE_ONLY macro, al macros and expansion of code are controlled
and located in a single header file. The code implementing the parameterized type is
expanded by the first application source file that included the header file.

The DECL ARE macro used to declare a specific type of parameterized class only de-
claresthe classtype and inline member functions. This could be changed to also imple-
ment the member functions by invoking theIMPLEMENT macro, if thisisonly done
once during compilation. The macro auro_pecrare declared below would implement
the member functions one time only.

MACRO AUTO_DECLARE (name, REST: parms) {
DECLARE name<parms>;
ONCE_ONLY (Implement_ ##name<parmss>) {
IMPLEMENT name<parms>;
1
1

OO WNBE

Line1 declaresthemacroauro pecrare with two arguments. Thefirst argument speci-
fies the parameterized class name and the second specifies any necessary arguments,
including the type. Line 2 declares the parameterized class of the specified type. Lines
3-5 utilize ONCE_ONLY to implement the parameterized class if it has never been
implemented before. This mechanism is not the default mechanism used in COOL be-
causeit preventsthefracturing of the source code templateto reduce program size. This
feature is available with CCC and is discussed in section 5, Parameterized Types.

EXPAND_ARGS

10.10 TheEXPAND_ARGSmacroisuseful when one or more of the argumentsto
some M ACRO are themselves macros that must be expanded first. Thisfeatureisalso
availableviatheexpanding optioninthe M ACRO syntax discussed earlier. Themajor
difference between thetwoisthat EXPAND_ARGSallowsthisfunctionto beadded to
existing macros that may not have this already in place.

COOL User's Manual

10-9

Macros

Name:
Synopsis:

Example:

EXPAND_ARGS — Expand macro arguments before invocation
EXPAND_ARGS (name, REST: args)
name Name of the macro to be invoked

args Arguments to be expanded and then passed to the macro

The <stdarg.n> header file provides a set of preprocessor macros to allow the C++
compiler to accept avariable number of argumentsin afunction call. The syntax of one
of these macros is va_arg (argp, type), where type is the type of the arguments
expected. In the case of such things as COOL parameterized classes, however, atype
like Pair<Generic*, Symbol*> is not recognized as avalid type by va_arg because it
tooisamacro that must be expanded first. The solution isto passthe name of the macro
and its arguments to the EXPAND_ARGS macro, as shown below in line 2, which
results in the type argument being expanded before being passed on, instead of the
standard call asin line 1.

1 va_arg (argp, type)
2 EXPAND ARGS (va_arg, argp, type)

INITIALIZE

Name:
Synopsis:

Example:

10.11 ThelNITIALIZE macro guaranteesto execute abody of code beforethe main
program is called. Thisis often necessary in an application when atable or state infor-
mation needsto beinitialized before constructorscan becalled. INI TIAL I ZE worksby
creating a static function containing the body of code to be executed. It initidlizes a
global static variable, For Initialization only, With a pointer to this function.
For_Initialization oOnly iS a class whose constructor executes the function. The
C++ language guarantees to execute the constructors for all global and static classin-
stances before the main program is run. However, there is no mechanism by which the
user can control the ordering of global static constructors themselves.

INITIALIZE — A MACRO whose body is executed once
INITIALIZE (name) { body }
name Name of the initialization sequence

body Statements substituted when the macro is expanded

In the following example, a global instance of a hash table is created on line 1 where
both the key and the value are character strings. Lines 2 through 6 contain the
INITIALIZE macro invocation to initialize this hash table by invoking the put
member function of the Hash_Table class.

Hash Table<char*, char*> capitals_g;
INITIALIZE (capitals_g) {
capitals_g.put (“Texas”, “Austin”) ;
capitals g.put (“Arkansas”, “Little Rock”);
capitals_g.put (“*Michigan”, “Lansing”) ;

}

DU WNBE

10-10

COOL User’'s Manual

Macros

IGNORE MACRO

Name:
Synopsis:

Example:

10.12 The | GNORE macro silences warnings from the compiler relating to unused
variables or function arguments. An application often has no control over theinterface
to a function and does not require all of the arguments. In other situations, an object
might be created so that a friend function can access some private static data member.
Without this macro, warnings of thetype “warning: variable <f00> declaredbut not
used” appear. The IGNORE macro suppresses these warning messages.

IGNORE — Silences compiler warnings from unused variables
IGNORE (name)

name The name of the argument/variable not used

The following example shows the main function of a program with its two standard
arguments. However, in this example, these arguments are unused. By using the
IGNORE macro, the warning error messages are never generated by the compiler.

1 main (int argc, char** argv) {
2 IGNORE (argc) ; // Don’t use argument
3 IGNORE (argv) ; // Don’t use argument
4
5 }
COOL User’s Manual 10-11

Macros

10-12 COOL User’s Manual

SYMBOLS AND PACKAGES

I ntroduction

11.1 A package provides arelatively isolated namespace for variousCOOL compo-
nents called symbols. Those symbols grouped into a particular package are said to be
owned by that package. A symbol that is owned by a particular package is said to be
interned in that package. In general, the term interned means that aparticular object is
uniquely identifiable in some context. When asymbol isinterned, it becomes uniquely
identifiable by the symbol name within anamespace context. The package system pro-
videslogical groupingsof symbolssupporting rel ationships establi shed between named
objectsand the valuesthey contain. Although the notion of symbolsbeing groupedinto
packagesisfairly straightforward, the nature of the relationshipsthat can exist between
packagesand theway inwhich they establishanamespace can be quite complex. COOL
providesseveral kindsof macrosdiscussed later inthissectionto simplify the usage and
mani pulation of symbols and packages.

A symbol isadataobject that definesarelationship between aname, apackage, avalue,
and a property list. The nameis a character string used to identify the symbol. Once a
name is established for a symbol, you are not allowed to changeit. The valuefieldis
used to refer to some C++ object. Property listsarelistsof alternating namesand values.
The property list allows you to associate supplemental attributes with a symbol. In-
itialy, the property list for asymbol isempty. This section discussesthe symbolic com-
puting facilities provided with COOL. The following items are covered:

e Symboal
e Package
e DEFPACKAGE and DEFPACKAGE_SYMBOL

e Package macros

The Symbol and Package classes implement the basic symbolic computing support.
DEFPACKAGE and DEFPACKAGE_SYMBOL are flexible, low-level macros
used to create and manipul ate symbols and packages at both compiletime and runtime.
Finally, the package macrosdiscussed in thelatter portion of this section provide aflex-
ible and easy interface to the symbol and package featuresand allow a programmer to
quickly use powerful constructs and features.

NOTE: The symbol and package classes use oper ator = when copying names and val -
ues. Y ou should be careful when reusing memory, since the default pointer assignment
operator copies the pointer, not the value pointed at.

Requirements

11.2 Thissection discussesthe symbol and packagefacilitiesof COOL. It assumesthat
you have aworking knowledge of the C++ language and have read and understood Sec-
tion 10, Macros.

COOL User's Manual

11-1

Symbols and Packages

Symbol and
Package Classes

11.3 COOL supports efficient and flexible symbolic computing by providing
symbolic constants and run time symbol objects. Y ou can create symbolic constantsat
compiletimeand dynamically create and manipul ate symbol objectsin apackageat run
time by using any of several simple macros or by directly manipulating the objects.

The Symbol classimplements the notion of a symbol that has a name with an optional
value and property list. Symbolsareinterned into a package, whichismerely amecha
nism for establishing separate name spaces. ThePackage classimplements a package
asahash table of symbolsand includes public member functionsfor adding, retrieving,
updating, and removing symbols.

Symbols and packages in COOL manage error message textual descriptions, provide
polymorphic extensions to C++ for object type and contents queries, and support so-
phisticated symbolic computing not normally available in conventional languages.

Symbol Class

Name:
Synopsis:

Base Classes:
Friend Classes:

Protected
Constructors:

Public Constructors:

Member Functions:

11.4 The Symbol class implements the notion of a symbol that has a name with an
optional valueand property list. TheSymbol classispublicly derivedfromtheGeneric
class. Symbolsareinterned in apackage, which ismerely amechanism for establishing
a namespace whereby there is only one symbol with a given name in agiven package.
Packages areimplemented as hash tables by the COOL Package class, whichisafriend
of the Symbol class. Because each named symbol is unique within itsown package, the
symbol can be used as a dynamic enumeration type and as a run time variable.

The name of asymbol is specified by acharacter string. The value of asymbol is speci-
fied as a pointer to a Generic object. The property list of a symbol is specified by an
Association<Symbol* ,Generic*>, where the name of the property is a pointer to a
Symbol object and the value of the named property is a pointer to a Generic object.

Symbol — Named, interned objects with a value and property list
#include <COOL/Symbol.h>

Generic

Package

inline Symboal (const char* name);
Creates a symbol object with the name name. This member function is for use by
the Package: :inter n member function. An application program should only create
symbols interned and associated with a specific package.

inline Symbal ();
Applications should use the Package: :intern member function to create symbols.
Thepublic constructor isprovided for use by COOL macrosto createand initialize
constant symbols used for run time type query.

Boolean get (const Symbol* name, Generic* value);
Looks up the named property name on the property list of the symbol object. If
found, this member function copies the associated value into value and returns
TRUE; otherwise, this member function returns FAL SE.

inline const char* name () const;
Returns a constant pointer to the name associated with a symbol object.

11-2

COOL User’'s Manual

Friend Functions;

Symbols and Packages

inline Properties* plist ();
Returns a pointer to the property list associated with a symbol. Properties is an
object of type Association<Symbol*, Generic*>.

void put (const Symbol* name, Generic* value);
Looks up the named property name on the property list of the symbol object. If
found, this member function updates the value of the property with value; other-
wise, this member function adds anew property namewith the valuevalue. If this
isthefirst property added to thelist, enough storagefor four propertiesisallocated.

Boolean remove (const Symbol* name);
Looks up the named property name on the property list of the symbol object. If
found, this member function removes the property and returns TRUE; otherwise,
this member function returns FAL SE.

inline Generic* set (Generic* value);
Setsthe val ue associated with the symbol object tovalue and returnsthe new value.
The destructor for the old value is not called automatically.

inline Generic* value ();
Returns a pointer to the value associated with the symbol object.

friend ostream& operator<< (const ostreamé& os,
const Symbol* name);
Overloadsthe output operator to provide aformatted output capability for apointer
to a symbol object name.

friend ostreamé& operator<< (const ostreamé& os,
const Symbol& name);
Overloads the output operator to provide aformatted output capability for arefer-
ence to a symbol object name.

Package Class

Name:
Synopsis:

Base Classes:
Friend Classes:
Constructors:

11.5 ThePackageclassactsasasymbol tablefor acollection of Symbol objects. Itis
publicly derived from the Hash_Table<char*, Symbol*> class and implements a hash
table of symbols. The Package classincludes public member functionsfor adding, re-
trieving, updating, and removing symbols. It also provides completion and spelling
correction on a symbol name (see the example programs later in this section).

Package — A namespace for a collection of symbols
#include <COOL/Package.h>
Hash_Table<char*, Symbol*>, Generic
Symbol
inline Package ();
Creates a package object of default size to hold 24 entries.

inline Package (unsigned long number);
Creates a package to hold at least number entries.

COOL User's Manual

11-3

Symbols and Packages

Member Functions:

Package (unsigned long number, Package |nitializer fn);
Createsapackage of constant symbolsto hold at |east number entries. Package In-
itializer isafunction of typevoid (Package |nitializer)(Package*) that allowsthe
programmer to perform an operationinitializing a package object. Thisconstructor
is primarily for use by the package macros. A detailed explanation of the macros
and construction of the symbol_package macrois provided in the paragraph enti-
tled, Symbol Package Implementation, at the end of this section below.

inline Package (Package& pkg);
Creates a new package, duplicating the size and values of another package object
pkg.

inline long capacity () const;
Returns the maximum number of entries the package can hold.

void clear ();
Removes all entries from the package and adjusts the appropriate counts.

inline Package state& current_position () const;
Returns a reference to the state information associated with the current position.
Thisfunction should be used with thelter ator <Type> classto save and restore the
current position, thus facilitating multiple iterators over an instance of package.

Boolean find (const char*& name);
Searchesthe package for asymbol whose name matchesname. If found, thisfunc-
tion sets the current position to the symbol matching the character string and re-
turns TRUE; otherwise, this function invalidates the current position and returns
FALSE.

Boolean get (const char*& name, Symbol& sym);
Searchesthe package for asymbol whose name matchesname. If found, thisfunc-
tion sets the current position to the symbol matching the character string, updates
symwith the symbol object found, and returns TRUE; otherwise, thisfunctionin-
validates the current position and returns FAL SE.

inline Boolean get_key (const Symbol* sym, char*& name);
Searches the package for the name associated with the symbol sym. If found, this
function sets the current position to the symbol entry, updates name with name of
the symbol object found, and returns TRUE; otherwise, this function invalidates
the current position and returns FAL SE.

Symbol* intern (const char* name);
Creates a new symbol object with the name name, or returns an existing symbol
with the same name. This function updates the current position to the new or exist-
ing entry.

inline Boolean is_empty () const;
Returns TRUE if the package contains no entries; otherwise, this function returns
FALSE.

const char*& key ();
Returns areference to the character string name of the symbol at the current posi-
tion. If the current position isinvalid, an Error exception is raised.

inline long length () const;
Returns the number of entries in the package.

11-4

COOL User’'s Manual

Symbols and Packages

Boolean next ();
Advances the current position pointer to the next entry in the package and returns
TRUE. If the current position is invalid, this function advances to the first entry
and returns TRUE. If advancing past the last entry in the package, this function
invalidates the current position and returns FAL SE.

Package& operator= (const Package& pkg);
Overloads the assignment operator for the class and assigns the package object to
have the value of pkg by duplicating the size and entries. Thisfunction invalidates
the current position of the package object.

Boolean operator== (const Package& pkg);
This function returns TRUE if the package object has the same symbol entries as
pkg; otherwise, this function returns FAL SE.

inline Boolean operator!= (const Package& pkg);
This function returns TRUE if the package object has different symbol entries as
pkg; otherwise, this function returns FAL SE.

Boolean prev ();
Movesthe current position pointer to the previous entry in the package and returns
TRUE. If the current position isinvalid, this function moves to the last entry and
returns TRUE. If moving to the previousentry passesthefirst entry inthe package,
this function invalidates the current position and returns FAL SE.

Boolean put (const char* name, Symbol& sym);
Searched for the symbol associated with namenameand, if found, updateswith the
new symbol sym. This function returns TRUE if successful; otherwise, this func-
tion returns FAL SE. The current position is updated to the added entry sym.

Boolean remove ();
Removes the symbol at the current position, deallocates its storage, and returns
TRUE. Thisfunction sets the current position to the entry immediately following
the entry removed if in the same bucket; otherwise, this function invalidates the
current position. If the current positionisinvalid, anError exceptionisraised and,
if the handler returns, this function returns FAL SE.

inline Boolean remove (char* name);
Searches the package for the symbol name. If the symbol is found, this function
removes the symbol, deallocates its storage, sets the current position to the old lo-
cation of the symbol, and returns TRUE; otherwise, this function returns FAL SE.

Boolean remove (Symbol* sym);
Searchesthe package for the symbol entry sym. If found, thisfunction removesthe
symbol, deallocates its storage, sets the current position to the old location of the
symbol, and returns TRUE; otherwise, this function returns FAL SE.

inline void reset ();
Invalidates the current position.

void resize (long number);
Resizesthe package for at |east number entries. If agrowth ratio has been selected
and it satisfies the resize request, the package grows by this ratio. This function
invalidates the current position. If the resize value is zero or negative, an Error
exception is raised.

COOL User's Manual

11-5

Symbols and Packages

Friend Functions:

inline void set_ratio (float ratio);
Updates the growth ratio for this instance of a package to ratio. When a package
needsto grow, the current sizeis multiplied by theratio to determine the new size.
If the ratio is negative, an Error exception is raised.

const Symbol& value ();
Returns areference to the symbol at the current position. If the current positionis
invalid, an Error exception is raised.

Boolean apr opos (Package& pkg, const char* name);
Findsthe next symbol from the current position in the package pkg whose nameis
name. If the symbol isfound, thisfunction returns TRUE and sets the new current
position; otherwise, this function returns FAL SE.

int complete (Package& pkg, String& name,
Boolean sensitive = FAL SE);
Provides completion on name. If sensitive is TRUE, a case-sensitive character
comparison is made; otherwise, a case-insensitive comparison is performed. This
function modifies name to the completed value, returns the count of possible
matches, and sets the current position of the package to the last match found.

Boolean completions (Package& pkg, const char* name,
Boolean sensitive = FAL SE);
Finds the next symbol in the package pkg after the current position whose name
starts with name. If sensitive is TRUE, a case-sensitive character comparison is
made; otherwise, a case-insensitive comparison is performed. If the symbol is
found, this function returns TRUE and sets the new current position; otherwise,
this function returns FAL SE.

int correct (Package& pkg, const char* name,
Boolean sensitive = FALSE, int* errors= NULL);
Performs spelling correction on asymbol whose nameisnamein the package pkg.
If sensitiveis TRUE, a case-sensitive character comparison is made; otherwise, a
case-insensitive comparison is performed. This function returns the number of
matchesand setsthe current position of pkg to the best match found. The number of
corrections is provided in the optional errors argument.

friend ostream& operator<< (ostreamé& o0s, const Package& pkg);
Overloadsthe output operator for areferenceto apackage pkg to provide aformat-
ted output capability for the Package class. Thisfunction returns areferenceto the
output stream.

inline friend ostream& operator << (ostreamé& 0s, const Package* pkg);
Overloadsthe output operator for a pointer to a package pkg to provide aformatted
output capability for the Package class. This function returns a reference to the
output stream.

DEFPACKAGE

11.6 The DEFPACKAGE macro enables a programmer to declare a program-wide
database of constant symbolswith associated default values and properties. Thisisuse-
ful when the programmer needsto set up atable of symbolsand knowsall instancesand
requirementsat compiletime, aswiththe COOL ERR_M SG packagediscussed later in
thissection. Under such circumstances, the runtime overhead associatedwith the Pack -
ageclassisavoided. The package database (that is, the place where the constant sym-
bols are kept) is stored in afile on the include path. This file contains macro calls that
can be used in an application to associate data with compile-time symboals.

11-6

COOL User’'s Manual

Name:
Synopsis:

Symbols and Packages

DEFPACKAGE — Symbolic C++ constant symbol mechanism
DEFPACKAGE name <path> options

name A character string to be used as a symbol prefix
path The name of an include file where symbol definitions are kept
options One or more of the following commarseparate parameters:

count = identifier
The package file should define the specified preprocessor identifier
whose value is the number of symbols defined in the package.

use first =int
When nonzero, the value used is the first definition. Redefinition at-
temptsareignored. Thisoptionisused by the ONCE_ONLY macro.

noblank = int
When nonzero, removes all whitespace from symbol names.

case = upper
Converts all symbol name a phabetic charactersto uppercase.

case = lower
Converts all symbol name alphabetic characters to lowercase.

case = cap
Capitalizesthefirst letter of each symbol name, and converts remain-
ing letters to lowercase.

case = sensitive
Preserves the case of the symbol name as used. This is the default
behavior.

start =int
Uses the provided value as the first (that is, starting) point for each
enumerated symbol index. The default is zero.

increment = int
Increments symbol index values by the specified value. The defaultis
one.

template = int
The valueisinclusive-or’ed with the index every symbol value. The
default is zero.

max = int
Generates an error when the number of constant symbolsin the pack-
age exceeds the specified value.

Whilethe DEFPACK AGE macro providesgreat flexibility and versatility in creating a
package of constant symbolsfor an application, the creation of the most commontypes
of packageslikely to be needed by the programmer ismade easier by thefollowing mac-
ros.

COOL User's Manual

11-7

Symbols and Packages

MACRO enumeration_package (name, file, REST: options)

MACRO text_package (name, file, REST: options)

MACRO symbol_package (name, file, REST: options)
e MACRO once_only (name, file, REST: options)

Thefirst three allow the programmer to easily create packages of symbolswith varying
levels of sophistication. The fourth is used by the various COOL componentsto ensure
that certain functions are performed only once during the compilation phase. Complete
information and usage of these macros is discussed later in this section.

Adding Symbols To

11.7 The DEFPACKAGE_SYMBOL macro adds, updates, and retrieves

A Package constant symbols, their values, and properties from a package created with the
DEFPACKAGE macro. DEFPACKAGE_SYMBOL updates the program-wide da-
tabase of constant symbols stored in afile with macro definitions and calls that can be
used in an application to associ ate dataand property listswith compiletimesymbols. As
withthe DEFPACK AGE macro, DEFPACKAGE_SYMBOL isaflexible, low-level
function. The most common types of packages and constant symbol manipulation re-
guirements are made easier by the four macros mentioned above and discussed later in
this section.

Name: DEFPACKAGE_SYMBOL — Symbolic C++ constant symbol manipulation
Synopsis: DEFPACKAGE_SYMBOL (package, symbol, type, value, property,
expander)
package The name of apackageto access. Notethat the package must have already
been defined with DEFPACKAGE
symbol The name of the symbol to be added, updated, or retrieved
type The optional type of the value
value The optional value of the symbol or property
property The optional name of the property
expander When present, replacesthe DEFPACK AGE_SYMBOL invocationwith
the result of calling the specified macro expander (index, symbol, type,
value) where:
expander
The expander macro to be called and specified in the invocation of
DEFPACKAGE_SYMBOL.
index
The symbol’s index number.
symbol
The name of the symbol.
type
The optional type of the value.
11-8 COOL User’s Manual

Name:
Synopsis:

Symbols and Packages

value
The optional type of the symbol or property.

If you use DEFPACK AGE to create your own specialized package, you will probably
want to write simple macros that expand into calls to manipulate the constant symbol
entries. DEFPACKAGE_SYMBOL writesthree other macro definitionsto the pack-
age’'s definition file for use in a user-application. Each use of the DEF-
PACKAGE_SYMBOL macro generates another macro.
<Package> DEFINITIONS. This macro expands to use the three macros mentioned
above to define the symbol, set the symbol value, and set the symbol properties. It is
invoked at compile time to create the constant symbol package.

<Package> DEFINITIONS — Create symbolic C++ constant symbol values
<Package> DEFINITIONS (define, value, property);
define Macro to be used to create the constant symbol of the form:

define_macro (index, name)

value Macro to be used to set the value of the constant symbol of the form:
value_macro (index, type, value)

property Macro to be used to set a property of the constant symbol of the form:
define_macro (index, property, type, value)

Under most circumstances, the programmer will never have the need to use these mac-

ros. However, for thoseinterested, further information about these macros and their use

in constructing a constant symbol package is available in the documentation and exam-
plesin the ~coor/package/defpackage . h header file and the COOL sym and ErrR_MsG
packagefilesinthe COOL inc1ude subdirectory. Finally, adetailed explanation of the
macros and construction of the symbol_package macro is provided in the paragraph
entitled, Symbol Package Implementation, at the end of this section.

NOTE: Constant symbol packages defined and manipulated by themacrosdiscussedin
this section must have storage all ocated for them and codeto initialize them at program
startup time. Thisismanaged by the COOL filesymbo1s . ¢ that should be compiled and
linked with every application that uses COOL components. Thisfile doesnot needto be
changed unlessyou create your own symbol packages, inwhich caseyou should add the
appropriateinclude and initialization statements (seetheexampl eslater in this section).
An automated method for ensuring correct package setup and symbol initiaization is
shown in the makefilefor the example programsfor thismanual inthecoor/examples
subdirectory.

COOL User's Manual

11-9

Symbols and Packages

Enumeration 11.8 The enumeration_package macro is for use in applications that need

Package to create acollection of constant symbols. Enumeration symbols can be used anywhere
that an enumeration type can be used. One reason for selecting symbolsin an enumera-
tion package over the standard enum typeisthat it is easier to add new symbols. The
enumeration package macro automatically collects them from across the source base
and maintains a single database in the specified header file.

NOTE: An enumeration package is stored in afile located somewhere on the include
directory search path. This header file must initially be created asan empty file by the
programmer, since the macro does not know which subdirectory on the include file
search path to select. A convenient mechanism for creating thisfileon UNIX systemsis
the touch(1) command.

Once an enumeration package hasbeen created, symbol s can be added and retrieved by
using the package namewith the symbol name surrounded by parentheses. If the symbol
contained between parentheses has not already been added to the package, it is added
and the new valueisreturned. If the symbol isalready present in the package, the exist-
ing value is returned.

Name: enumeration_package — Enumerated constant symbol package macro
Synopsis: enumeration_package (name, file, REST: options)
name Specifies the name of the package.
file Thefile located somewhere on the include file directory search path that

acts as a database for the symbols across the application source base.
options Any other valid DEFPACK AGE options.
Macros: name (sym)

Definesthe symbol symin the package nameif it isundefined, and returnsapointer
to the symbol entry.

Enumeration 11.9 The following program declares an enumeration package of constant

Package Example symbols that are dynamically added in the program text. The enumerated symbol ob-
jects behave exactly like the built-in enum type in that there is no storage allocated.
However, they have the added benefit that they can be created or added at any timein
any source filein the program. The enumeration package macro ensures that they are
collected in a single database.

1 #include <COOL/Package.h> //Include COOL Package header
2 enumeration package (MY ENUM, “my_ enum.p”); //Create enum package

3 int main (void) {

4 cout << "MY_ENUM (Red) has a value of ” << MY ENUM (Red) << ”"\n”;

5 cout << "MY_ ENUM (Yellow) has a value of ” << MY _ENUM (Yellow) << "\n”;
6 cout << "MY_ENUM (Green) has a value of ” << MY ENUM (Green) << ”"\n”;

7 return 0; //Return valid success code

8 }

11-10 COOL User’s Manual

Symbols and Packages

Line 1 includes the COOL package .h class header file. Line 2 creates an enumeration
package vy _enum whose database is kept in the file my_enum.p somewhere on the in-
cludefilesearch path. Thisfilemust initially be created asan empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command. Lines 4 through 6 add the enumerated symbolsreq, ve1l1ow, and
creen 10 the package and display their respective values. Findly, line 7 returnsavalid
successful completion code.

The following shows the output from the program:

MY ENUM (Red) has a value of 0
MY_ENUM (Yellow) has avalueof 1
MY ENUM (Green) has a value of 2

At first glance, thisexample doesn’t seeminteresting becausethisisasimplethree-line,
one-sourcefile program. However, imagine an application that solves acomplex com-
munications problem and requires many flags. A programmer could use the dynamic
COOL Bit_Set class and use an enumerated package of symbols defined across many
files to index the bits in the vector. This will result in a very flexible and efficient (1
bit/flag) implementation that can easily be atered and extended.

Text Package

11.10 Thetext_package macroisfor usein applications that need to create a collec-
tion of symbolswith valuesthe same asthe symbol name. Thisisuseful for the manipu-
lation of error messages in an application, since the symbol definition file contains a
summary of al the messages. In addition, the message text may be substituted in an-
other language at run time. Thetext package macro automatically collectstext symbols
from acrossthe source base and maintains asingle databasein the specified header file.

NOTE: A text package is stored in a file located somewhere on the include directory
search path. This header file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command.

Once a package has been created, symbols can be added and retrieved by using the
macro whose name is the same as the package name and whose single argument isthe
symbol name. After creating apackage, add and retrieve symbolswith the package and
symbol namesin parentheses. If the symbol in parentheses has not already been added
to the package, it is added and a pointer to the new value returned. If the symbol isal-
ready present in the package, the existing value returns.

TheERR_M SG text packageisthe COOL global error message package. It storesthe
text to all error messages in the COOL class and macro library. The text_package
macro createsthe ERR_M SG package. As exceptions are added to the program, a cor-
responding entry isautomatically madeinto the error message package at compiletime.
Theerror message packageloadsintothesymbo1s. c fileand isawaysthelast file com-
piledin an application that uses COOL components. Thisensuresthat all symbol values
have been collected up over the source base.

COOL User's Manual

11-11

Symbols and Packages

Name:
Synopsis:

Macros:

Friend Functions;

An application that uses atext packageto store all textual information can support mul-
tiple languages through the language property field. All such messages are collected
together in onefile by the symbol and package macros. Thisonefilecan be edited by the
programmer to change or add alternate transl ations for each message. The only change
required of the application source codeisan initial statement to set the program execu-
tion language. All error messagesin COOL areimplemented thisway to facilitate ports
to other language environments.

text_package — Resource text symbol package macro
text_package (name, file, REST: options)
name Specifies the name of the package.

file Thefile located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACK AGE options

name (sym)
Definesthe symbol symin the package nameif it isundefined and returns a pointer
to the symbol entry.

int set_text_language (Symbol* language = NULL,
text_package entry* package= NULL);

Setsanew languagefor atext package. Thefirst argument isasymbol representing
the name of the new language, and the second argument isthe starting entry in the
package from which to begin language trandation. If the language symboal is not
specified, thedefault languageisthe original fromthe program. If theentry pointis
not specified, the default isthe first symbol in the package. When a package entry
does not have a tranglation for the specified language, a Warning exception is
raised. Thisfunction returnsthe number of entriesin the packagefor which atrans-
lation does not exist.

Text Package
Example

11.11 The following program uses the text_package macro to create a text
resourcefilethat can be maintained across all sourcefilesin an application. Thisexam-
pleissplit into two parts. In the first example, two symbols are added to the text pack-
age. The value of a symbol in a text package is identical to the name. Alternate
languages can be supported by adding the appropriate property. An attempt is made to
set thetext language property to an unsupported language symbol. W ar ning exceptions
areraised as aresult.

11-12

COOL User’'s Manual

N -

el
SRbBowo~Nwouhsw

co~NoUThWN PP

SREBowo~NvounbrbwNhrk

Symbols and Packages

#include <COOL/Package.h> // Include COOL Package header
text package (MY TEXT, “my_ text.p”); // Create text package

int main (void) {

cout << “1st message: ” << MY TEXT (”Hi! What’sup?”) << ”\n”;

cout << “2nd message: ” << MY TEXT (”See you later”) << ”\n”;
set_text_ language (SYM (Southern), &MY TEXT entries[0]);

cout << ”"1st message: ” << MY TEXT (”Hi! What’sup?”) << ”\n”;

cout << “2nd message: ” << MY TEXT (”See you later”) << ”\n”;
set_text language (NULL, &MY TEXT entries[0]);

cout << ”"1st message: ” << MY TEXT (”Hi! What’sup?”) << ”\n”;

cout << “2nd message: ” << MY TEXT (”See you later”) << ”\n”;
return 0; // Return valid success code

Line 1 includes the COOL package header file. Line 2 usestext_packageto create a
package whose name is vy _TExT and whose values are stored in the filemy text.p
somewhere on the include search path for this application. Note that this file must be
initially created by the programmer, since the COOL package system cannot know in
which directory the file should be placed. Lines 4 and 5 add two symbols to the text
package. Line 6 attemptsto set the language for the text package to sout hern, asymbol
interned in the global COOL symbol package sym (discussed below in the paragraph,
Symbol Package). Lines 7 and 8 print the values of the two symbols for the newly set
language property. Line 9 restoresthe language property back toitsinitial value, hacker
english. Lines 10 and 11 output the values of the symbols back in the default language.
Finally, line 12 ends the program with a valid success code.

The following shows the output from the program:

1lst message: Hi! What's up?

2nd message: See you later

Warning: No Southern translation for “Hi! What’'s up?”
Warning: No Southern translation for ”See you later”
lst message: Hi! What's up?

2nd message: See you later

lst message: Hi! What's up?

2nd message: See you later

Lines 1 and 2 contain the values of the two symbols as they are added to the text pack-
age. Lines 3 and 4 are warning exceptions raised when the language property for the
package was et to southern, indicating that the two symbols do not have trandations
for this property. Asaresult, lines 5 and 6 output the same values for the two symbols.
Lines 7 and 8 output the same values with the switch back to the default language. The
COOL package system creates and maintains the text package symbol fileny text.p
shown below:

/*

* DEFPACKAGE MY_TEXT definitions file.

*

* This file is automatically generated by the cpp DEFPACKAGE facility
* DO NOT EDIT THIS FILE, because it may be re-written the next time CPP
*is run.

*

* This file is for:

* DEFPACKAGE MY_TEXT <MY_TEXT> name=my_text.p,

* count=MY TEXT count, case=sensitive,

* start=0, increment=1, template=0, max=0

*/

COOL User's Manual

11-13

Symbols and Packages

13 /* WARNING: Do not remove this line */

14 #define MY_TEXT count 2

15 MACRO MY_TEXT DEFINITIONS (define macro, value macro, property macro) {
16 define macro (0, "Hi! What’sup?”)

17 define macro (1, “Seeyou later”)

18)

Lines 1 through 12 contain the standard header commentary information, including the
package creation specifications placed at thetop of every symbol file. Line 13 isimpor-
tant in that the package and symbol macrosusethisasamarker for placement inthefile.
Line 14 is a preprocessor constant reflecting the number of symbols in the package.
Line 15 contains aM ACRO to create the text package. Lines 16 and 17 contain two
macros defining the two symbols added in the program.

The following textual insertion shows the customized contents of the generic sym-
vols.c filewhichisawaysthelast file to be compiled in any application using COOL
components. Thisfileis responsible for including any package definition files created
during the compilation of other program source files. It must always be last to ensure
that all symbolshavebeen added to the packagebeforeit isimplemented. The program-
mer need never ater the contents of thisfile unless an application-specific package has

been created, as is the case with this example program.

// This file must be compiled and linked with every applicationutilizing the
// COOL library. The sample makefile shows the procedure for compilation order.
// It is important that this be the last file compiled before the link process
// begins. The constant symbols in the SYM package and ERR_MSG package are

// initialized by invoking the implement macros defined in <COOL/defpackage.h>

1 #include <COOL/String.h>

2 #include <COOL/Package.h>

3 #include <COOL/Properties.h>

4 implement symbol_package (SYM, “sym package.p”)

5 implement text package (ERR_MSG, "err package.p”)

// The next three lines are added to insure that the text and symbol packages
// manipulated by examples 11.11a.C, 11.11b.C, and 11.13.C are allocated and
// initialized, respectively.

6 implement text package (MY TEXT, "my_ text.p”)
7 //implement text package (MY TEXT, "my_ text2.p”)
8 //implement symbol package (MY _SYM, "my_ sym.p”)

Lines 1 through 3 include the necessary COOL header files to enable the package and
symbol system to beimplemented. Lines4 and 5 are the default contents of thisfileand
implement the COOL global symbol and error message packages through two macros.
An application that uses any COOL componentsmust have these two lines compiledin
the last file in the compilation process. Lines 6 through 8 have been added for thisand
the next two examples to implement the packages created. Note that lines 7 and 8 are
commented out. The next two examples will create the text and symbol packages re-
ferred to here and will also uncomment the appropriate line.

The second part of thisexample continues below. Inthefirst example, the attempt to set
the language property for the package to southern caused two War ning exceptionsto
be raised. The continuation of this example will add trandlations for the southern lan-
guage property to the text package. The program below isidentical tothe previous one
except for the name of thefilein which the packageis stored. Line 2 containsthe macro
to create the package, and the file this time is specified asmy _text2.p.

11-14

COOL User’'s Manual

N =

Co~Nouhw

10

12
13

SREBowo~NounbrwheE

13
14

15
16
17
18
19
20

Symbols and Packages

#include <cool/Package.h> // Include COOL Package header
text package (MY TEXT, “my_text2.p”); // Create text package

int main (void) {
cout << "1lst message: ” << MY _TEXT (”Hi! What’'sup?”) << ”\n”;
cout << “2nd message: " << MY _TEXT (”See you later”) << ”\n”;
set_text language (SYM (Southern), &MY TEXT entries[0]);
cout << ”"1st message: ” << MY TEXT (”Hi! What’sup?”) << ”\n”;
cout << “2nd message: " << MY _TEXT (”See you later”) << ”\n”;
set_text language (NULL, &MY_TEXT entries([0]);
cout << ”"1st message: ” << MY TEXT (”Hi! What’sup?”) << "”\n”;
cout << “2nd message: ” << MY_TEXT (”See you later”) << ”\n”;
return 0; // Return valid success code

The text package contained in the filemy text2.p isacopy of the previous example
with the addition of asouthern property for each symbol. To add such properties, the
programmer must edit thefile and add the appropriate transl ation for each symbol entry,
as shown below.

/*

* DEFPACKAGE MY_TEXT definitions file.

*

* This file is automatically generated by the cpp DEFPACKAGE facility
* DO NOT EDIT THIS FILE, because it may be re-written the next time CPP
* is run.

*

* This file is for:

* DEFPACKAGE MY TEXT <MY _TEXT> name=my_ text.p,

* count=MY TEXT count, case=sensitive,

* start=0, increment=1, template=0, max=0

*/

/* WARNING: Do not remove this line */
#define MY TEXT count 2

MACRO MY TEXT DEFINITIONS (define macro, value macro, property macro) {
define macro (0, "Hi! What’s up?”)
property macro (0, Southern, char*, "Howdy! What y’all up to?”)
define macro (1, "Seeyou later”)
property macro(l, Southern, char*, “Y’all come back now, ya’ heah?”)

}

Lines1through 14 areidentical tothe previouspackagefile. Lines 15 through 20 define
the symbol s contained in this package. Lines 16 and 18 are the same as before and con-
tain macros to create the two text symbols. Lines 17 and 19 have been added by the
programmer to establish a southern property for each text symbol. Note that the first
value of each definition and property macro is an integer. These must match to ensure
correct package setup.

NOTE: A packagefileisrecreated every time the compilation processis performed.
Any changes made to support translations should be kept in a separate file and merged
into the package file after the compilation is complete.

COOL User's Manual

11-15

Symbols and Packages

To complete this example, the symbo1s. ¢ file must be changed dlightly to implement
the text package contained in thefilemy text2.p with the new properties. Thefollow-
ing shows the output of the program:

1 1st message: Hi! What'’'s up?
2 2nd message: See you later
3 1st message: Howdy! What y’all up to?
4 2nd message: Y'all come back now, ya’ heah?
5 lst message: Hi! What's up?
6 2nd message: See you later
Lines1 and 2 output the value of the two text symbolsadded to the package. Lines 3 and
4 output the value of the southern property for each symbol. Note, however, that the
symbolsused inthe program did not haveto be changed to support adifferent language.
Lines 5 and 6 output the value of the symbols back in the default language.
Symbol 11.12 The symbol_package macro creates and accesses a Package object
Package containing symbols whose values can be assigned at run time. Symbols in the sym-

bol_package are pointersto Symbol objects. Symbolsknown and declared at compile
time are interned in a table. The symbol package macro automatically collects these
symbols from across the source base and maintains a single database in the specified
header file. Additional symbols can be added at run time. Symbols have values and
propertieswhoseinitial values can be declared. If not specified, the values and proper-
tiesare nonexistent; that is, no space other than storage for aNUL L pointer isallocated
for them. The globa Package object created has the name name package g, Where
name is the name of the package specified in the macro invocation.

NOTE: A symbol packageisstoredin afilelocated somewhere ontheincludedirectory
search path. This header file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command.

The symbol_package macro defines three macros for adding, updating, and retrieving
symbolsin the package. The first adds new symbols or retrieves existing symbols. The
second adds a value of a specified type to an existing symbol entry. The third adds a
named property of the specified type to an existing symbol entry.

The sym symbol package is created with the symbol_package macro and is the COOL
global type package. It stores the type and inheritance hierarchy for all classesthat in-
herit from the Generic classto support run timetype and object query. Each such class
isrepresented by a symbol that may have variousvalues and properties. All type infor-
mation is accessed and manipulated by the macros and functions discussed in Section
12, Polymorphic Management.

11-16 COOL User’s Manual

Name:
Synopsis:

Macros.

Symbols and Packages

symbol_package — Constant symbol package macro with run time update
symbol_package (hame, file, REST: options)
name Specifies the name of the package.

file Thefile located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACK AGE options

name (sym)
Definesthe symbol symin the package nameif it isundefined and returns a pointer
to the symbol entry.

DEF_name (sym, type, value)
Defines a value of the specified type to the symbol sym in the package name.

DEF_name PROPERTY (sym, property, type, value)
Definesaproperty of the specified typeand valueto the symbol symin the package
name.

Symbol Package
Example

o b N

©O©oo~N®»

10

12
13
14
15
16
17
18
19

21

11.13 The following program uses the symbol_package macro to create a
symbol package. This example shows the manipulation of symbols, their associated
values, and properties in a symbol package at both compile time and run time. Two
symbols are added at compiletime. One of these has avalue and property specified at
compile time. The other has its value and property fields assigned at run time.

#include <COOL/Date_Time.h> // Include COOL Date/Time header
#include <COOL/Package.h> // Include COOL Package header
symbol package (MY SYM, “my sym.p”) ; // Create symbol package

DEF_MY_ SYM (syml, String, new String(”Greetings!”)) ;
DEF_MY_SYM PROPERTY (syml, MY _SYM (Prop. example), Symbol, MY SYM (String)) ;

int main (void) {

Symbol *s1l =MY_SYM (syml) ; // Lookup first symbol
cout << "First symbol is ” << sl->name () << ”\n”; // Output symbol name

cout << "Also available via MY SYM(syml): ” << MY_SYM(syml)->name () <<”\n”;
cout << s1 << "\n”; // Output value/property list
sl->set (new String (”Goodbye!”)) ; // Add new value

cout << ”syml value is now ” << sl->value () << ”\n”; // Output value

Date Time dl (US_CENTRAL, UNITED STATES) ; // Create date/time object
dl.set_local time (); // Set to current date/time
Symbol* s2 = MY _SYM (sym2) ; // Create new symbol object
cout << "Second symbol is ” << s2->name () << ”\n”;// Output symbol name

cout << "Also available via MY SYM(sym2): ” << MY SYM(sym2)->name () <<”\n”";
s2->put (MY SYM (Creation Time), &d1) ; // Add property

cout << 82 << "\n”"; // Output runtime symbol
return 0; // Return valid code

COOL User's Manual

11-17

Symbols and Packages

Lines1 and 2 includethe COOL pate_Time.h and package . h header files. Line 3 uses
the symbol_package macro to create a package whose nameisvy_sym and whose val-

uesare stored inthefilemy sym.p somewhere on the include search path for thisappli-

cation. Note that thisfile must be initially created by the programmer, since the COOL

package system cannot know which directory the file should be placed. Line 4 adds a
valueto thefirst symbol in the packagewiththe DEF_MY_SY M macro. Notethat this
macro hasthe nameof the package concatenated to form apackage-specific macro. This
wascreated by themacroinline 3. Similarly, line5 adds aproperty to thefirst symbol in
thepackagewiththeDEF_MY_SYM_PROPERTY macro. Line7 addsanew symbol

to the package. Lines 8-10 output the name and value of thefirst symbol in the package.
Line 11 changes the value added at compile time to anew string added at run time and
line 12 outputs this new value.

Lines 13 and 14 create adate/time object initialized with thelocal time. Line 15 creates
asecond symbol for the package and lines 16 and 17 output its name. Line 18 adds the
named property creation Time With avalue of apointer to the date/time object instan-
tiated in line 13 to the second symbol sym2 in the package. Line 19 outputs the newly
updated symbol and line 20 ends the program with a successful completion code.

The following shows the output from the program:

First symbol is syml

Also available via MY SYM(syml) : syml

syml Greetings! [value-type String]

syml value is now Goodbye!

Second symbol is sym2

Also available via MY_SYM(sym2) : sym2

sym2 [Creation Time United States 01-19-1990 07:46:07 US/Central]

~No o~ wWNERE

Lines 1 and 2 output the name of the first symbol in the package. Lines 3 and 4 output
the initial and new value and property lists for this symbol. Lines 5 and 6 output the
name of the newly created second symbol object, and line 7 outputsthe name, value, and
property list of this symbol.

The COOL package system creates and maintains the symbol package filemy sym.p
shown below:

/*

* DEFPACKAGE MY_SYM definitions file.

*

* This file is automatically generated by the cpp DEFPACKAGE facility
* DO NOT EDIT THIS FILE, because it may be re-written the next time CPP
*is run.

*

* This file is for:

* DEFPACKAGE MY _SYM <MY SYM> name=my_ sym.p,

* count=MY SYM count, case=sensitive,

* start=0, increment=1, template=0, max=0

*/

PR
REBoow~wourwN

[iny
w

/* WARNING: Do not remove this line */
14 #define MY SYM count 6

11-18 COOL User’s Manual

15
16

18
19
20
21

23
24
25

Symbols and Packages

MACRO MY SYM DEFINITIONS (define macro, value macro, property macro) {

define macro
value_macro

property macro
property macro

define_macro
define macro
define macro
define_macro
define macro

(0, "syml”)

(0, String, new String (”Greetings!”))

, (&MY_SYM symbols[5]), Symbol, (&MY SYM symbols[2]))
, (&MY_SYM symbols[1]), Symbol, (&MY SYM symbols[2]))
(1, "value-type”)

(2, "String”)

(3

(4, "Creation Time”)
(

(o
(o
, "Sym2")

5, "Property example”)

Lines 1 through 12 contain the standard header commentary information, including the
package creation specifications placed at thetop of every symbol file. Line 13 isimpor-
tant in that the package and symbol macrosusethisasamarker for placement inthefile.
Line 14 is a preprocessor constant reflecting the number of symbols in the package.
Line 15 containsaM ACRO to create the symbol package. Lines 16 through 25 contain
macros defining the symbols and their values and properties added in the program.

Under most circumstances, the programmer need never examinethisfile. Itispresented
here merely as an aid in understanding the COOL symbol and package system. Al-
though not included here, the customized symbo1s . ¢ file (alwaysthelast fileto compile
inany COOL application) must include animplement macrofor themy sym package, as
was shown earlier for thetext package example. Thisfile (symbo1sa4 . c) canbefoundin
the coon/examples subdirectory.

ONCE_ONLY
Package

11.14 The ONCE_ONLY macro (discussed in Section 10, Macros) alows
an application to control the expansion of a section of code. This might be useful, for
example, when atable needsto beinitialized onceand once only when aconstructor for
some class is first called. This could be accomplished by having a static flag for the
classset onthefirst call, withlater callschecking theflag and skipping theinitialization.
The ONCE_ONLY macro, however, provides an intelligent and more efficient condi-
tional compilation feature. It usestheonce_only package tocontrol the expansion and
compilation of code only once in a program.

Whena ONCE_ONL Y macro invocation is encountered for the first time, asymbol is
created withanamerelated tothemacrocall. A valueiscreated that isacharacter string
representing the file name where the symbol isfirst defined. Thissymbol isadded to the
once only Package and the body of code expanded. The next time the same
ONCE_ONLY macro is encountered, a symbol name is created and looked up in the
once_oOnly Package Object. If the valueisthe same as the current file (available from
_ riLe__inthepreprocessor), the body of codeisexpanded, and ready to be compiled.
However, if the symbol hasadifferent value (that is, the macro invocationisin adiffer-
ent file), the code is not expanded and thus, not compiled.

The symbol name specified in the macro ensuresthat a specified body of code expands
and compiles only once across an entire source base. These symbol names and the
once_oOnly Package arenotavailablefor general useother thanthroughthismacro. Itis
included here to provide you with another example of the use and flexibility of COOL
symbols and package objects.

COOL User's Manual

11-19

Symbols and Packages

Interfacing to the

SYM Package

OO WNE

10
11

13
14
15

#include<COOL/Package.h>
#include<COOL/List .h>
#include<COOL/String.h>

DECLARE List<Strings>,
extern Package* SYM package_g;

11.15 Under some circumstances, it might be necessary for an application
to interface to the global COOL symbol package sym to reference type information
automatically created and stored there by various macros. This could be the casein an
application-specific library that must have certain knowledge about al the possible
typesavailableinan application, such asaninference engine where certain user-defined
objects can implement specific firing rules. The default firing rulefor each type of ob-
ject could be represented as the value of the symbol representing the object type.

Inthefollowing codefragment, afunctionisdefined that processesalist of string names
containing the names of all the rule typesin a particular rules-based inference engine.
These names camefrom arulesgrammar file generated by atranslator that runsover the
user’s knowledge-base-specific rules. The character string names match class names
defined within the user’s application and so have a corresponding symbol entry in the
COOL globa symbol package. This function finds a matching symbol for each name
and attaches a default firing rule as the value of the symbol and returns the number of
rules processed. Other rules may be added to the property list of the symbol at runtime.

// COOL Package header file
// COOL List header file
// COOL String header file

// Declare list of strings
// Pointer to global SYM

int process_rules (List<String>& names, Generic* default_rule) {

}

int i; // Counter
Symbol* temp; // Temporary variable
for (i=0, names.reset () ; names.next () ; i++) { // For each rule name
temp = SYM package g->get (names.value ()); // Get symbol for type
temp->set (default_ rule); // Set default firing rule
}
return i; // Return rule count

Lines 1 through 3 include the COOL header files for the Package, List, and String
classes. Line 5 declares the type of alist of string objects. Line 6 contains an external
reference to the pointer to the global sym package object. Lines 7 through 12 define the
functionprocess_rules that takestwo arguments: areferencetoalist of stringsthat are
the names of all rule typesin the inference engine and a pointer to adefault firing rule
object. Lines 8 and 9 define two temporary variables. Lines 10-13 contain aloop that
uses the current position iterator of the list object to move through al the stringsin the
list.

Line 11 getsthevalue of the string at the current position and usestheget member func-
tion of the package object tolook up the character string name and return apointer to the
corresponding symbol object. Line 12 uses the set member function of the symbol ob-
ject to set the value to a pointer to the default firing rule function. This loop continues
until all names have been scanned and line 14 returns the number found.

Symbol Package
I mplementation

11.16 The symbol_package macro discussed previously is implemented
with the DEFPACKAGE and DEFPACKAGE_SYMBOL macros and the COOL
MACRO facility. This section discusses the implementation details of the sym-
bol_package macro and should be of interest to programmers who wish to create their
own specialized packages or more fully understand the macro capabilities. Others may
skip these details.

11-20

COOL User’'s Manual

OCO~NOURARWNPE

14
15
16
17
18
19
20
21
22
23

25
26
27

28
29
30
31

Symbols and Packages

The symbol_package macro is implemented with the COOL macro facilities and can
befoundinthe ~coor/package/defpackage . h header file. Therelevant portion of this
file is shown below:

MACRO symbol package (name, file, REST: options) {
DEFPACKAGE name file length = name##_ count, options
#define expand_##name (index, symbol, type, value) \
(&name##_ symbols [index])
MACRO name (symbol) {
DEFPACKAGE_SYMBOL (name, #symbol,,,, expand_##name) }
MACRO EXPANDING DEF_##name (symbol, type, value) {
DEFPACKAGE_SYMBOL (name, #symbol, type, value,,) }
MACRO EXPANDING DEF ##name## PROPERTY (symbol, property, type, value) {
DEFPACKAGE_SYMBOL (name, #symbol, type, value, property,) }
extern struct Package* name## package g;
extern Symbol name##_ symbols|[];

/* Runtime initialization of a symbol package */
MACRO implement symbol package (name, file) {
#include file
#1f name##_count > 0
Symbol name##_ symbols [name##_ count] ;
#endif
#define MAKE ##name##_ SYMBOL (index, symbol) \
pkg->put (symbol, name##_ symbols [index]) ;
MACRO SET ##name## VALUE (index, type, val) {
name## symbols[index] .set ((Generic*) val) ;}
MACRO SET ##name## PROPERTY (index, prop, type, value) {
name## symbols[index] .put (prop, (Generic*) value);}
void name## package initializer (Package* pkg) {
name##_ DEFINITIONS (MAKE_##name## SYMBOL, SET_##name##_ VALUE,
SET_ ##fname## PROPERTY)
}

static Package name##_ package_ s (name##_ count*2,name## package initializer);
Package* name##_package g = &name##_package s;

}

A symbol packageis created and implemented with two macros analogousto the decla-
ration and implementation parts of a parameterized template. The symbol_package
macro creates macros for adding and manipulating symbol objects. The imple-
ment_symbol_package macro is used in the symbo1s. c file and actually creates the
package object. Lines 1 through 13 contain the declarative macro and lines 14 through
31 contain the implementation macro.

Line 1 startsthe declarative macro and takes three arguments. Thefirst, name, specifies
the name of the package. The second, ti1e, specifiesthe filein which the symbolsfor
the package are to be maintained. ThethirdisaREST: argument and may contain any
number of options for DEFPACKAGE. Line 2 invokes DEFPACKAGE with the
package name and file arguments, and maintains the number of symbolsin the package
in the preprocessor symbol name##_count, where the package name name isused as a
prefix to the identifier _count.

COOL User's Manual

11-21

Symbols and Packages

Lines3and4 defineastandard preprocessor macro that, given anindex, asymbol name,
atype, and avalue, returns an offset into atable of symbol objects. Line5implementsa
macro to create or return a symbol object in the package by using DEF-
PACKAGE_SYMBOL. Lines 7-10 implement macros to add or return the value and
named property from asymbol in the package. Note that these are EXPANDING mac-
ros, which means their arguments are first expanded before being passed to DEF-
PACKAGE_SYMBOL.Finally, lines11 and 12 declaretwo external objects, apointer
to the global package object name## package g, and an array of symbol objects
name##_ symbols([].

Line 15 startstheimplementation macro that takestwo arguments: thefirst, name, Speci-

fies the name of the package; the second, £i1e, specifies the file in which the symbols
for the package areto bemaintained. Line 16includesthe symbol file specified. Line 17
determines if any symbols are actually defined for the package using name## count

previously discussed. If there are symbols defined, an array of symbolsiscreated. Lines
20-25 define macrosto create and update asymbol object and itsvalue and property list
in the package at run time.

Lines26-28 defineapackageinitializer function. Line 29 createsaglobal static package
object name## package s Whose constructor takes a size and a pointer to a package
initializer function. The C++ 2.0 language specification guaranteesthat the constructor
of aglobal static object will be invoked before calling main. The package constructor
callsthe packageinitializer function to create and initialize the symbol objects. Finaly,
line 30 creates aglobal pointer name## package g pointing to the newly created pack-
age object.

The COOL symbol and package facilities provide an efficient and flexible programmer
interfface to the dlightly more complicated DEFPACKAGE and DEF-
PACKAGE_SYMBOL macros. The COOL macro capabilities, combined with the
features of C++ and the rulesfor static object constructor invocation, allow for adirect,
although dlightly complicated, implementation. The once_only_package, enumer a-
tion_package, and text_package macros are implemented in a similar manner. Under
most circumstances, a programmer should be able to make use of these interfaces and
never need to delveinto the detail sdiscussed above. However, should acustom package
macro be necessary for a specific application, a similar approach is appropriate.

11-22

COOL User’'s Manual

POLYMORPHIC MANAGEMENT

I ntroduction

12.1 The C++ language version 2.0, as specified in the AT& T language reference
manual, implementsvirtual member functions. Thisdelaysthe binding of an object toa
specific function implementation until run time. This delayed (or dynamic) binding is
useful where the type of object might be one of several kinds, all derived from some
common base class but requiring a specialized implementation of afunction. Theclas-
sic exampleisthat of a graphics editor where, given a base classgraphic_object from
which squar e, cir cle, and triangle are derived, specialized virtual member functionsto
calculate the area are provided. A programmer can then write a function that takes a
graphic_object argument and determines its area without knowing which of al the
possible kinds of graphical objects the argument really is.

While powerful and more flexible than most other conventional programming lan-
guages, this dynamic binding capability of C++isstill not enough. Highly dynamic lan-
guages such as Small Talk and Lisp alow the programmer to delay almost all decisions
until run time. In addition, facilities are often present for querying an object at runtime
to determine its type or to request a list of al possible member functions available.
These kinds of features are commonly used in many symbolic computing problems
tackled today.

COOL supports enhanced polymorphic management capabilities with a programmer-
selectable collection of macros, classes, symbolic constants, runtime symbolic objects,
and dynamic packages. Many of theseindividual conceptshavebeendiscussedin previ-
ous sections. This section discusses the Generic class that — combined with macros,
symbols, and packages— provides efficient run time object type checking, object query,
and enhanced polymorphic functionality unavailable in the C++ language. In this sec-
tion, the following macros, queries, and classes are discussed:

e Genericclass

e run time type checking

e TYPE_CASE macro

e heterogeneous container classes

e classmacro

Requirements

12.2 This section discusses the Generic class and extended polymorphic manage-
ment facilities of COOL. It assumes that you have a working knowledge of the C++
language and have read and understood Section 10, Macros, and Section 11, Symbols
and Packages.

COOL User's Manual

12-1

Polymorphic Management

Generic Class

Name:
Synopsis:

Base Classes:
Friend Classes:

Protected
Constructors:

Protected
Member Functions:

12.3 TheGenericclassisinherited by most other COOL classes and manipulateslists
of symbols to manage type information. Generic adds to any derived class run-time
type checking and object queries, formatted print capabilities, and a describe mecha
nism. The COOL classmacro (discussed in paragraph 12.7) automatically generatesthe
necessary implementation code for these member functions in the derived classes. A
significant benefit of thiscommon base classisthe ability todeclare heterogeneous con-
tainer classes parameterized over the Generic* type. These classes, combined with the
current position and parameterized iterator class, allow the programmer to manipulate
collections of objects of different typesin a simple, efficient manner.

The member functions added by Generic and the classmacro to derived COOL classes
mani pulate symbols stored in the global SYM package. These symbols reflect the in-
heritance tree for a specific class. They may have optional property lists containing in-
formation that associates supported member functions with their respective argument
lists. User-defined classesderived from Generic are also automatically supportedinan
identical fashion, resulting in additional symbolsin the global symbol package. Asdis-
cussed earlier, these symbolsmust have storage all ocated for them and codetoinitialize
the package at program startup time. Thisis managed by the COOL filesymbo1s. ¢ that
should be compiled and linked with every application that uses COOL. An automated
method for ensuring correct package setup and symbol initialization is shown in the
make files associated with the example programs for this manual.

NOTE: All applications using COOL must have a copy of symbo1s.c linked into the
final executable program. See the make file in the ~coor/examp1es subdirectory for a
mechanism to automate this procedure.

Generic — Base class supporting run time object typing and query
#include <COOL/Generic.h>

None

None

Generic ();
Thereareno public constructorsfor aGeneric object. Y ou canonly createapointer
to aGeneric object. Since Generic has no private or public data (asa pure virtua
base class), itisactually used as an implementation requirements guide for derived
classes.

virtual void print (ostream& 0s) const;
Utility member function used by the overloaded output operator to provide a de-
fault print capability for all classes derived from Generic. Thisintermediate func-
tion is required since friend functions cannot be virtual.

int select_type of (const Symbol** sym list) const;
Supports an efficient type-case macro (discusses later) by examining the NUL L -
terminated sym list of symbols passed asan argument (fromtype_list) and returns
an integer index of the matching type symbol if found; otherwise, this function re-
turns —1.

12-2

COOL User’'s Manual

Member Functions

Friend Functions;

Polymorphic Management

virtual Symbol** type list() const;
ReturnsaNUL L -terminated array whosefirst element isapointer toasymbol rep-
resenting the type of object. Theremaining elementsof the array are pointersto the
symbol type lists of the base classes.

virtual void describe (ostream& 0s);
Usesthemap_over _slots member function to display the data members and their
types of the object on the specified stream os.

Boolean is_type of (Symbol* sym) const;
Type checking predicate that returns TRUE if the object is of type symor inherits
from that type somewhere in the class hierarchy; otherwise, this predicate returns
FALSE.

virtual Boolean map_over_slots (Slot_ Mapper sm, void* rock=NULL);

Calls the mapping function sm on every data member in the object and returns
TRUE if al callsreturn TRUE; otherwise, thisfunction returns FAL SE. Therock
argument isapointer to some arbitrary piece of datafor optional use by themapper
function. snisafunction of type Boolean (Sot_Mapper)(Generic*, char*, void*,
Symbol*, void*), where Generic* is a pointer to the object, char* is a character
string representation of the datamember name, void* isapointer to the datamem-
ber value, Symbol* is a symbol table entry for the data member type, and void* is
the miscellaneous programmer-defined optional data value.

inline Symbol* type of () congt;
Returns a pointer to the type symbol associated with an object.

Boolean compare_types (Symbol** type list, Symbol* sym);
Searchestype list for symand returns TRUE if found; otherwise, thisfunctionre-
turns FAL SE. This function is used by theis type _of member function.

int compare_multiple _types (Symbol** sym listl, Symbol** sym list2);
Searches sym listl for any symbol match against sym list2 and returns TRUE if
found; otherwise, this function returns FAL SE. This function is used by the se-
lect_type of member function.

friend ostreamé& operator<< (ostreamé& o0s, const Generic& g);
Overloads the output operator for areference to ageneric object and callsthe pro-
tected virtual print member function to provide a default output capability for all
classes derived from Generic.

friend ostreamé& operator<< (ostreamé& os, const Generic* g);
Overloads the output operator for a pointer to a generic object and calls the pro-
tected virtua print member function to provide adefault output capability for all
classes derived from Generic.

COOL User's Manual

12-3

Polymorphic Management

Run Time Type 124 One of the simplest and most useful features facilitated by Generic

Checking Example isthe run-time type checking capability. Thetype of and is_type of virtual member
functions accomplish this. The following code fragment provides an example of the
kind of runtimetype query availablefor an object that is derived at some point from the
COOL Genericclass. A more complete exampleisin the discussion on heterogeneous
container classes.

The parameterized Vector <Type> class is derived from the type-independent V ector
class, whichisinturn derived from Generic. Similarly, theList< Type> classisderived
from List, which is derived from Generic. Suppose a general-purpose function in an
application iswritten that at some point needs to determine the type of the object being
manipulated and respond appropriately. If there are many possibilities, the
TYPE_CASE macro discussed later might be appropriate. If there are few, thefollow-
ing mechanism can be used:

void foo (Generic* g) {
e // Some processing
if (g->is_type of (SYM(Vector))) // 1f derived from Vector
e // Go do something
else if (g->is_type of (SYM(List))) // Else if fromList
// Go do something
else { // Else something else

// Do something else

}

.. // Sometime later
cout << "Object is a” << g->type of () ; // Output type

}

RhEBoo~NwourwNh R

Lines 1 through 12 contain a code fragment that queriesthetype of object pointed to by
aGeneric* argument. Lines3 and 5 are similar and use thevirtual is_type_of member
function that takesa Symbol asan argument to determineif the object isaninstance of a
class or is derived at some point from that class. Note that since Vector<Type> is de-
rived fromtheVector class, theapplication merely queriesto seeif thisobject isof type
Vector, not of vector<int>. Themore specified version could a so be used asthe sym-
bol representing the class. Presumably, the programmer will perform some type-spe-
cific operation on lines 4 and 6 as appropriate. If the object is neither avector or alist,
some default action is performed. Similarly, line 11 usesthetype_of member function
and the overloaded output operator to send the classtype name of the abject (that is, the
symbol name for the class) to the standard output stream. In all cases, the function bind-
ings for theses operations are determined at run time, not compile time.

12-4 COOL User’'s Manual

Polymorphic Management

TYPE_CASE
Macro

SRhEBoo~NwourwNh R

}

125 Type determination and function dispatch can become quite tedious if

there are many types of objects. Ideally, each would be derived from a common base
and include a virtual member function for each important operation that might be re-
quired. However, it issometimes not feasible to have such asituation, especially with a
high number of objects or member functions. The TYPE_CASE macro provides an
alternate scheme to do this.

The following code fragment shows an abbreviated function that takes a single argu-
ment of apointer toaGenericobject. Thisfunction usesthe TY PE_CA SE statement to
dispatch some particular member function call based upon the type of the object. This
might be useful in a situation where every object that inherits from Generic does not
implement the same functions, but rather has a specialized subset appropriate for that
object only. For example, £oo might want to modify the elements of the COOL Vector
and List classesin a different manner.

void foo (Generic* g) {

TYPE_CASE (g) {
case Vector: // If the object is a vector
// Do something for Vector

break;

case List: // If the object isa list
. // Do something for List
break;
default: // Else do the rest

cout << "Object isa ” << g->type of () ; // Output type

Lines 1 through 12 implement the same operation as the previous exampl e but thistime
usethe TYPE_CASE macroinstead of is_type of and type of. Line 2 beginsamacro
analogousto the C++ switch statement. It gathersall possible casesand allowsthe user
to symbolically dispatch on the type of object represented by the case statements. This
automates some of the symbol collection and manipulation required with the earlier ex-
ample. Y et another variation isdiscussed later using hooks avail able to the programmer
with the class macro.

Heter ogeneous
Container
Example

126 As a fina example, the polymorphic capabilities available with Generic
and its associated functions and macros can implement heterogeneous con-
tainer classes. A heterogeneous container class can contain many types of objects. For
exampl e, the graphics editor mentioned earlier might store all instances of graphic ob-
jectsin alist, regardless of whether they are circles, squares, or dodecahedrons. The
examplebelow createsalist of pointersto Generic objectsand usesthe virtual member
functions associated with both the derived classes and the COOL Symbol class to ac-
complish what would otherwise be a relatively difficult task:

COOL User's Manual

12-5

Polymorphic Management

WN P

(S

BREBo®~o

14
15
16
17

19
20
21
22
23
24

25
26
27
28
29
30

#include <COOL/String.h> // COOL String class
#include <COOL/Date_Time.h> // COOL DateTime class
#include <COOL/List.h> // COOL List class

DECLARE List<Generic*>; // Define list of Generic*
IMPLEMENT List<Generic*s>; // Implement list of Generic*

classmy class : public Generic {
private:
int i;
public:
my class (int value) {
this->1 = value;
1
int&get () {
return this->i;
1
friend ostream& operator<< (ostream& os, my class*m) {
os << m->get () ;
return os;
1
friend ostream& operator<< (ostream& os, my class&m) {
os <<m.get () ;
return os;
1
Vi

void process_list (List<Generic*>&g) {
for (g.reset(); g.next ();) {
cout << "Itemisa ‘" << ((g.value())->type of ())->name() << "’ ”;
cout << "and its value is: ” << g.value() << "\n”;

}
}

int main () {
String sl (”"This is a string object”) ; // Initialize string object
set_default country (SWEDEN) ; // Set Sweden country code
set _default time zone (WET) ; // Western Europe time zone
Date Time dl; // Declare DateTime object
dl.parse(”5:44pm 86-10-15") ; // Parse a date/time string
my classml(3); // Initializemy class object
List<Generic*> 1lg (3, &sl, &d1, &ml) ; // List with 3 generic objects
process_list (1g); // Iterate through list
return 0; // Exit with valid return code

Lines 1-3include three COOL classes, and lines4 and 5 implement alist of pointersto
generic objects. Lines 6-24 declare and implement anew simple classmy class, de-
rived from the Generic class. Lines 25-30 are the heart of this polymorphic example. A
function, process 1ist, isdeclared that takes one argument, areference to alist of
pointers to generic objects. Lines 26-29 implement a loop using the current position
iterator built into the COOL List<Type> classto accessall elements of thelist. Line 27
usesthetype_of member function to return apointer to the Symbol object representing
thetype of the value of the object at the current position inthelist. Thenamefunction of
Symbol is used to return the name so it can be printed. Line 28 outputs the value of the

object at the current position in the list.

12-6

COOL User’'s Manual

Polymorphic Management

Lines 31 through 41 constitute the main body of the program. Line 32 declaresaString
object and initializes it with a character string value. Lines 33 through 36 declare a
Date Time object whosevalueis set to thelocal system time formatted for Sweden in
Western European Time. Line 37 declares an instance of my_class with an integral

valueof three. Line 38 declaresaninstance of thelist of pointersto ageneric object with
threevalues, the address of the string, date/time, anduy _c1ass objects. Line39 callsthe
process_list function to output the types and values of the objectsin thelist. Finally,
line 41 ends the program with a valid exit code.

The output of this program is shown below:

Itemis a ‘String’ and its value is: This is a string object
Itemis a ‘Date_Time’ and its value is: Sweden 1986-15-10 17.44.00 WET
Itemis a ‘my_class’ and its value is: 3

Ascan be seen from the preceding output, thisprogram was successful in querying each
object in thelist for itstype, printing the name of that type, and outputting the value to
the standard output stream. Line 1 showsthe type and value of the String object, line 2
showsthetype and value of theDate_Timeobject, and line 3 showsthe type and value
of the application-specific object.

Class Macro

Name:
Synopsis:

12.7 Theclasskeyword isimplemented asa COOL macro to add symbolic comput-
ing abilitiesto classdefinitions. It takesastandard C++ classdefinition and, if the class
contains Generic somewhere in its inheritance hierarchy, it generates member func-
tions for support of run time type checking and query. In addition, a symbol for the
derived Generic classtypeisadded to the COOL global symbol packagesym. Theclass
macro also has two hooks, allowing a programmer to customize the results. The actual
code, whichisexpanded in aclass definition and after aclass definition, iscontrolled by
the classmac macro that class calls.

Theclassmac macro allows datamember and member function hooksto be specified by
user-defined macros. There may be more than one classmac macro hook specified by
the programmer. COOL has several, and other user-defined macros are simply chained
together in a calling sequence ordered according to order of definition. Each classmac
macro defines how the class macro should expand the class definition. Theclassmacro
doesnot actually generate the codeitself. Thisisdefined in user-modifiable header files
that specify aclassmac macro. For example, a general-purpose mechanism that auto-
matically creates accessor member functions to get and set each data member can be
created by defining a classmac macro that is attached to the data member hook of the
class macro (see the following example). No changes to the COOL preprocessor are
required.

A user-defined combination of data members and member functions of a classdefini-
tion are passed as arguments to macros that can be changed or customized by the appli-
cation programmer. The virtual map_over_slots member function takes a pointer to a
function asone of itsarguments. Each datamember sel ected i s passed to thisprocedure,
providing the customization point for the user. The COOL Generic class usesthe data
member hook to implement the map_over_slots member function.

classmac — User-definable class macro
classmac (name, REST: args);
name Name of macro to call

COOL User's Manual

12-7

Polymorphic Management

args One or more of the following comma-separated arguments:

arg = macro_name
Calls macro_name on the preceding type of argument

inside
Expands the macro inside the class definition

outside
Expands the macro outside the class definition

dots
Evaluates the macro for data members in the class

methods
Evaluates the macro for member functions in the class

virtual
Evaluates the macro for virtual member functions only

inline
Evaluates the macro for inline member functions only

normal
Evaluates the macro for non-inline, non-virtual member functions
only

private
Evaluates the macro for private data members or private member
functions only

protected
Evaluatesthe macro for protected data or protected member functions
only

public
Evaluates the macro for public data or public member functions only

Thearg=macro_name option allowsthe programmer to specify the name of amacro to
call onargumentsof the precedingtype. Thisistypically used to specify the nameof the
macro to call for either the data members or member functions, asin the following ex-
ample. If neither the inside nor outside arguments are specified, the macro will be ex-
panded outside and after the class definition. Either the slots or methods keyword must
be specified, but not both. If neither thevirtual, inline, nor normal keywords are speci-
fied, all member functions in the class are used. If neither the private, protected, nor
public keywords are specified, all data members and member functionsin the classare
used.

12-8

COOL User’'s Manual

Polymorphic Management

Class Macro
Example

bW N

~N O o1

10
11

13
14
15
16
17
18
19

12.8 The following example shows a mechanism to automatically generate a
member function accessor for each private datamember in aclass. Thisisperformed for
any classthat inheritsfrom Genericinitsinheritance tree and in an environment where
the classmac data member hook macro shown has been defined. This operation is not
performed by default for COOL, but rather requires explicit programmer action. The
following lines contain several macros and a skeleton class definition to pass through

the preprocessor:

#pragma defmacro classmac ”“classmac” delimiter=)
classmac (generate_slot_accessors, inside, slots=slot_accessor)

MACRO generate slot accessors (class_name, base class, BODY: methods) {
methods }

MACRO slot_accessor (type, name, value) {
const type& get ##name () { return name }

}

class foo: public Generic {

private:

int* data; // Pointer to allocated storage
char *a, *b, c; // Three miscellaneous variables
int size; // Size of foo object

void grow (int new size) ; // Private function to grow foo
public:

foo (int) ; // Constructor with size

~foo () ; // Destructor

int& operator[] (int) ; // Operator [] overload for Type
Boolean find (const int&) ; // Find element in foo

}i

Linelinstructsthe preprocessor to recognizethe COOL macroclassmac andto call the
internal preprocessor macro classmac. Theterminating delimiter of thismacroisaclos-
ing parentheses, which means that all input from the classmac keyword up to and in-
cluding amatched, right parenthesiswill be passed to and processed by the macro. Line
2 tells the classmac macro to call the generate_slot_accessors macro for each data
member in the class definition and place the expanded macro results inside the defini-
tion. Notethesilots=slot_accessor argument that ensuresthat each datamember will
be processed by the named macro passed through the BODY : argument.

Lines3and4 definethegenerate slot accessors macro. classmac passesthismacro
the classname, thebase classname, andtheBODY : argument s1ot_accessor aSSPECi-
fied by thes1ots optiononline 2. Lines 5 through 7 define amacro siot_accessor of
type (Symbol*, Symbol*, char*) where the first argument is a symbol representing the
type, the second argument isasymbol representing the name, and thethirdargumentisa
character string of the arguments or initial values. These arguments and their order are
always passed by the classmac macro to all data member and member function macros
specified by theuser. Line 6 containsthelineof codethat getsgenerated for the accessor
function with argument names substituted appropriately. Lines 8 through 19 declare a
simple class with several data members.

COOL User's Manual

12-9

Polymorphic Management

The preprocessor expands the macros and generates the following:

1 class foo :public Generic{

2 private:

3 int* data; // Pointer to allocated storage
4 char *a, *b, c; // Three miscellaneous variables
5 int size; // Size of foo object

6 void grow (int new size); // Private function to grow foo
7 public:

8 foo (int) ; // Constructor with size

9 ~foo () ; // Destructor

10 int& operator[] (int) ; // Operator[] overload for Type
11 Boolean find (const inté&) ; // Find element in foo

12 const int*& get_data() { returndata }

13 const char*&get_a() { returna }

14 const char*&get b() { returnb }

15 const char*& get _c() { returnc}

16 const int& get_size() { return size }

17 }i

Lines 1 through 11 are the same as before entering the preprocessor and contain the
class definition as specified by the programmer. Lines 12 through 16 contain inline ac-
cessor member functions generated by the macros specified. Thesewere added inlineas
aresult of theinside specifier on the classmac macro directivefor generate slot_ac-

cessors.

12-10 COOL User’s Manual

EXCEPTION HANDLING

I ntroduction

13.1 TheException class, itsderived classes, Excp_Handler class, and theexception
interface macros offer programmers an easy means of reporting and handling excep-
tionsin an application. This section discusses the base Exception and Excp_Handler
classes. It also covers predefined exceptions and exception handlers, referencing excep-
tionsas symbolsin apackage, exception group names (aliases), the report message text
package, and user-defined exceptions.

Requirements

13.2 Thissection assumes that you have aworking knowledge of C++ and have read
and understood Section 10, Macros, and Section 11, Symbols and Packages.

Exceptions

13.3 InCOOL, program anomalies are known as exceptions. An exception can bean
error, but it can also be a problem such asimpossible division or information overflow.
Exceptions can impede the development of object-oriented libraries. Exception han-
dling offers a solution by providing a mechanism to manage such anomalies and sim-
plify program code.

The C++ exception handling schemeisaraise, handle, and proceed mechanism similar
tothe Common Lisp Condition Handling system. When aprogram encounters an anom-
aly that is often (but not necessarily) an error, it has the following options:

e Represent the anomaly in an object called an exception

e Announce the anomaly by raising the exception

e Provide solutions to the anomaly by defining and establishing handlers
e Proceed from the anomaly by invoking a handler function

The COOL exception handling facility provides an exception class (Exception), an ex-
ception handler class (Excp_Handler), a set of predefined exception subclasses
(Warning, Error, Fatal, and so on), and a set of predefined exception handler func-
tions. In addition, the macros EXCEPTION, RAISE, STOP, and VERIFY alow the
programmer to easily create and raise an exception at any point in a program.

When an exception israised (through macrosRAI SE or STOP, for example), asearch
beginsfor an exception handler that handles this type of exception. An exception han-
dler, if found, deals with the exception by calling its exception handler function. The
exception handler function can correct the exception and continue execution, ignore the
exception and resume execution, or end the program. In COOL, an exception handler
for each of the predefined exception types exists on theglobal exception handler stack.

An exception handler invokes a specific exception handler function for a specific type
of exception or group of exceptions. Handling an exception means proceeding fromthe
exception. An exception handler function could report the exception to standard error
and end the program, or drop a core image for further debugging by the programmer.
Another way of proceeding isto query the user for afix, store the fix in the exception
object, and return to where the exception was raised.

COOL User's Manual

13-1

Exception Handling

When an exception handler object isdeclared, it is placed on the top of aglobal excep-
tion handler stack. When an exception israised, asearch is made for an exception han-
dier. The handler search starts at the top of the exception handler stack, with the most
recently defined exception handler at the top of the stack. An exception handler func-
tioniscalled if amatchisfound between the exception type or group name of the excep-
tion raised, and a handler function on the exception handler stack.

The COOL exception handling facility provides several macrosthat simplify the proc-
ess of creating, raising, and manipulating exceptions. These macros are implemented
with the COOL macro facility discussed in Section 10, Macros. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception
object. The RAISE macro allows the programmer to easily raise an exception and
search for an exception handler. The STOP macro is similar to the RAI SE macro, ex-
cept that it guaranteesto end the program if the exceptionisnot handled. TheVERIFY
macro raises an exception if an assertion for some particular expression evaluates to
FALSE. Finaly, thel GNORE_ERRORS macro provides a mechanism to ignore an
exception raised while executing a body of statements.

The COOL exception handling mechanism supports the concept of group namesor ali-
asesfor classes of exceptions that require no specialization of the exception object, but
do require adistinct name to provide a specific exception handler. For example, an in-
dex exception class to handle indexing range errors in a vector class could be defined
with aliases established for get and set operations. The appropriate get and set member
functions set the alias of the exception object as necessary, and provide a speciaized
exception handler. If an indexing exception is detected at some point by one of these
member functions, the appropriate handler function can be invoked. As a result, two
different exception handlers can be used while only onetype of index exception object
is required.

Exception Class

13.4 The Exception class reports exceptions through a message prefix and aformat
string. Both areimplemented as public datamembersin the exception object. An excep-
tion handled status data member is also used to determineif theexception was handled.
All of these areimplemented as public datamembers, which makes access easier by the
exception handler functions and the EXCEPTION macro. In addition, alist of excep-
tion typesismaintained in agroup names datamember to support aliasing and subclass-
ing of exception types. The Exception classincludes member functionsfor reporting a
message (using the message prefix and format string) on a specified output stream, de-
termining if the exception object is of a particular type or group, and setting the excep-
tion handled status. Finaly, it aso includes a member function that searches for a
handler to invoke on this exception type.

Classes derived from the Exception class save the state of the situation and communi-
cate this information to exception handlers. When an exception can be fixed and pro-
ceeding from the exception is possible, information on how the exception handler
proceeded from the exception is also stored in the exception object by the invoked ex-
ception handler function.

Note: Theexcp_type argumentsin the Exception class constructors and member func-
tions are pointers to Symbol objects. These arguments control the relationship of an
exception object with one or more exception handlers. They can be the symbol repre-
senting the name of aclass (aswith Error or War ning) that is created automatically for
any class derived from Exception through the Generic class and the class macro. The
arguments can al so be symbol aliases created in the COOL sym package, or some appli-
cation-specific package. Thisis discussed in the next paragraph, Excp_Handler Class,

13-2

COOL User’'s Manual

Name:
Synopsis:

Base Class:
Friend Classes:
Constructors:

Member Functions:

Exception Handling

and illustrated in the example in paragraph 13.6, Excp_Handler Example. See section
11, Symbols and Packages, for more information.

Exception — The base class for building exception objects.
#include <COOL/Exception.h>

Generic

None

Exception ();
Createsan exception object, initializestheformat message and message prefix data
membersto NULL, and sets the exception handled flag to FAL SE.

Exception (Symbol* excp_type);
Creates an exception object, creates a group name excp_type if necessary, associ-
ates this exception object with the excp_type group name, initializes the format
message and message prefix message data memberstoNUL L, and sets the excep-
tion handled flag to FAL SE.

Exception (int number, Symbol* excp_typel, Symbol* excp_type2, ...);
Creates an exception object, createsnumber group namesexcp_typel, excp_type2,
and so on if necessary, associates this exception object with group names
excp_typel, excp_type2, and so on, setsthe format and message prefix data mem-
bersto NULL, and sets the exception handled flag to FAL SE.

virtual void default_handler ();
Default exception handler called when this type of exception israised if no user-
specified exception handler isfound. This function does not set the exception han-
died flag in the exception object.

inline void handled (Boolean handled);
Sets the exception handled flag to handled.

inline Boolean is_handled () const;
Returns TRUE if the exception was handled; otherwise, return FAL SE.

Boolean match (Symbol* excp_type);
Returns TRUE if this exception object isin the group nameexcp_type; otherwise,
this function returns FAL SE.

const char* message prefix () const;
Returns the message prefix.

virtual void raise ();
Invoked to search for an exception handler when an exception israised. If found,
the associated handler function is called and the exception handled flag is set to
TRUE; otherwise, this function sets the exception handled flag to FAL SE. If the
exception handler function returns or no exception handler is found, the program
resumes execution at the point at which the exception was raised.

virtual void report (ostream& 0s) const;
Reports the exception message on the output stream os. The exception handler
functionsand the output operator function of Exception call thismember function.

COOL User's Manual

13-3

Exception Handling

Friend Functions:

void set_group_names (Symbol* excp_type);
Createsagroup nameexcp_typeinthe COOL sym packageif necessary, and associ-
ates this exception object with the excp_type group name.

void set_group_names (int number, Symbol* excp_typel, Symbol*
excp_typez, ...);
Creates number group names excp_typel, excp_type2, and so oninthe COOL sym
package if necessary, and associates this exception object with group names
excp_typel, excp_type2.

virtual void stop ();
Invoked to search for an exception handler when an exception israised. If found,
the associated handler function is called and the exception handled flag is set to
TRUE; otherwise, this function sets the exception handled flag to FALSE. This
functionisidentical toraiseexcept that if the exception handler function returnsor
no exception handler is found, program execution is terminated.

friend ostream& operator <<(ostreamé& 0s, const Exception* excp)
Overloadsthe output operator to provide aformatted output capability for apointer
to an exception object excp.

friend ostream& operator<< (ostreamé& 0s, const Exception& excp);
Overloads the output operator to provide aformatted output capability for arefer-
ence to an exception object excp.

13-4

COOL User’'s Manual

Exception Handling

Excp_Handler Class 135 An exception handler provides a way to proceed from a particular

Name:
Synopsis:
Base Class:
Friend Class:
Constructors:

Member Functions:

type of exception by calling its exception handler function. An exception handler func-
tion could handle the exception by reporting the exception to standard error and ending
the program, or dropping a core image for further debugging by the programmer. An-
other way of proceeding isto query the user for afix, store thefix in the exception ob-
ject, and return to the point where the exception was raised.

Aninstance of theExcp_Handler classis specified for aparticular type of exception or
one or more exception group names with an associated exception handler function.
Such an instance invokes the specific exception handler function when an exception of
theappropriatetypeisraised. TheExcp_Handler classalso containsdatamembersthat
point to the top exception handler on the global exception handler stack and the next
exception handler after itself. When an exception handler object is instantiated, it is
placed at thetop of the exception handler stack. When an exception israised, the excep-
tion stack is searched from the top for an appropriate handler. When oneisfound, it is
invoked and the exception object is passed as an argument. What action the exception
handler function takesis determined by the type of exception and is discussed in para-
graph 13.7, Predefined Exception Types and Handlers.

Excp_Handler — The class for handling exceptions.
#include <COOL/Exception.h>

Generic

Exception

Excp_Handler ()
Createsan exception handler object with defaultsfor the exception type and excep-
tion handler function and pushesitself on top of the global exception handler stack.
The default exception typeis Error and the default exception handler function is
void exit_handler (Exception*).

Excp_Handler (Excp_Handler_Function fn, Symbol* excp_type)
Creates an exception handler object associated with the exception typeexcp_type,
initializes the exception handler function data member to fn, and pushes itself on
top of the global exception handler stack. The exception handler functionisof type
void (Excp_Handler_Function)(Exception*).

Excp_Handler (Excp_Handler_Function fn, int number,
Symbol* excp_typel, Symbol* excp_type2, ...);
Creates an exception handler object, creates number group names excp_typel,
excp_type2, and so on if necessary, associates this exception handler object with
number group hames excp_typel, excp_type2, and so on, initializes the exception
handler function datamember to fn, and pushesitself ontop of the global exception
handler stack. The exception handler function is of type void (Excp_Han-
dler_Function)(Exception*).

virtual Boolean invoke handler (Exception* excp)
Returns TRUE if the exception handler function wasinvoked for excp; otherwise,
this function returns FAL SE.

COOL User's Manual

13-5

Exception Handling

Excp_Handler

Example

W

13.6 The following example shows a function that establishes an exception
handler function for exceptions associated with a group name rile Error Of type
My Exceptions. |tthenattemptstoopeneachfileindicatedinanarray of pointerstofile
name character strings.

#include <COOL/Exception.h> // Include header

#include <My Exceptions.h>
externvoidmy file handler (My_ Exceptions* excp) ;

// My exception types
// Exception handler

FILE* open_ f (char* file, char* mode) {

}

FILE* temp; // Temp variable

if ((temp = fopen (file, mode)) == NULL) { // File open OK?
My Excpl (SYM(File Error)) excp; // Create exception
excp->fname = file; // Set file name
excp_>fmode = mode; // Set file mode
excp->raise () ; // Raise exception

}

Booleanopen files (char** file names, char** modes, FILE** £ handles) {

Excp_Handler eh (my file handler, SYM(File Error)) ; // Setup handler
for (int 1 = 0; file_names[i] !=NULL; i++) // For each file
f handles[i] =open f (file names[i], modes[i]) ; // Open file

Line 1 includes the COOL Exception header file. Line 2 includes an application-spe-
cific header filethat defines exception typesderivedfrom Exception. Line 3isan exter-
nal reference to some user-defined function to be called for exceptions of type
My Exceptions. FOr example, thisfunction might prompt the user for anew file name
and perform aretry operation. Lines4 through 12 implement afunction that attemptsto
open file in mode With the system function fopen. If the open fails, an exception
My Excpl associated with groupnamerile Error iscreated andraised. Line7 usesthe
COOL sym package in which to store the group name symbol. In atypical application,
all application-specific symbols should be located in an application-specific package.
Lines8and 9 set two public datamember slotsin the exception object, and line 10 raises
the exception.

Lines 13 through 17 contain a function open_files that loops through an array of
file names and attemptsto open eachfileinthefunctionopen_£.Line14istheheart of
thisfunction, where an exception handler object en is created with apointer to the func-
tionmy file handler foOr exceptions of group name rile Error. Thissymbol islo-
cated in the COOL sym package and would be referenced when an exception of type
My Excpl israised, asinlines7 through 10. See section 11, Symbols and Packages, for
more information on the COOL symbol and package mechanism.

In this example, the exception handler my file handler isassociated with the excep-
tion handler object en created locally on line 14. When the constructor for en is exe-
cuted, apointer to the exception handler object isplaced on theglobal exception handler
stack. Whilethis object isin scope and not pre-empted by amore specific handler, any
exception raised asssociated with the group namerile Error Will be handled. When
function open_files completes and destructor for en caled, the handler is removed
from the global exception handler stack.

13-6

COOL User’'s Manual

Exception Handling

Predefined
Exception Types
and Handlers

13.7 COOL provides six predefined exception classes and five default
exception handlers. Each of the predefined exception types has a default
exception handler member function. The following rules apply in determining which
handler function should be invoked for a particular type of exception:

e |f no exception handler is found and the exception is of type Error or Fatal, its
error message reports on the standard error stream and the program ends.

o |f the exception is of type War ning, the warning message reports on the standard
error stream and the program resumes at the point where the exception was rai sed.

e If theexceptionisof type System_Error, the system error message reports on the
standard error stream and the program ends.

o |f the exception isof type System_Signal, the signal error message reports on the
standard error stream and the program resumes at the point where the system func-
tion signal() was called.

o If the exception is of type Verify_Error, the expression that failed assertion re-
ports on the standard error stream and the program ends.

Exception isthe base exception class and from it are derived Warning, System_Sig-
nal, Fatal, and Error. The System_Error and Verify_Error classesare derived from
the Error class. The default exception handlers are called only if no other exception
handler is established and available when an exception is raised.

For exceptionsof typeError and Fatal, the exception handler reportsthe error message
of the exception on standard error and endsthe program. Exceptions of thetypeWar n-
ing report awarning message on standard error and return to the point at which the ex-
ception was raised. Exceptions of type System_Error report an error message on
standard error and end the program. Finally, exceptions of type System_Signal report
an error message on standard error and the program resumes execution at the point at
whichthesystem functionsignal wascalled. Thefollowing functionsreport exceptions
and deal with them:

void Fatal::default_handler ();
This member function reports the exception message on the standard error stream
and ends the program with a call to abort(), generating a core image that can be
used for further debugging purposes.

void Error::default_handler ();
This member function reports the exception message on the standard error stream
and ends the program normally with a call of exit(1).

void System_Error::default_handler ();
This member function reports the exception message on the standard error stream,
sets the global system errno variable appropriately, and ends the program with a
call to abort(), generating a core dump that can be used for further debugging pur-
pOSES.

void System_Signal::default_handler ();
This function reports the exception message on the standard error stream and re-
turns to the point at which a call to the system signal() function was made.

COOL User's Manual

13-7

Exception Handling

void Warning::default_handler ();
This function reports the exception message on the standard error stream and re-
turns to the point at which the exception was raised.

EXCEPTION

Name:

Synopsis:

13.8 TheEXCEPTION macro simplifiesthe process of creating an instance of apar-
ticular type of exception object. It providesaninterfacefor the application programmer
to create an exception object using the specified arguments to indicate group name(s),
initialize data members, or generate a format message. There are many variations of
EXCEPTION that provide flexible and efficient means of customizing the exception
object. In particular, the variable number of group hame arguments should reduce the
need for many types of exception classes whose only difference is the type name.

NOTE: The EXCEPTION macro takes some arguments that are actually pointers to
Symbol objects. These arguments control the relationship of an exception object with
one or more exception handlers. They can be the symbol representing the name of a
class (as with Error or Warning) that is created automatically for any class derived
from Exception through the Generic classand the classmacro. Theargumentscan also
besymbol aliasescreatedinthe COOL symand err_Msc packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

EXCEPTION — A COOL macro for constructing an exception object
EXCEPTION (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)

args One or more of thefollowing comma-separated arguments or val-
ues:

Symbol* group_name
One or more commarseparated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key value args
The name(s) and value(s) of any public data members in the
exception object

13-8

COOL User’'s Manual

Exception Handling

EXCEPTION
Examples

Example 1:

ab~rwnN

Example 2:

OO WNE

O 0o~

139 Here are three examples of the use of the EXCEPTION macro.
Each makes use of adifferent form of the macro to show alternate features and usage.
Exception_gisaglobal exception object pointer.nprintf () isavariation of theprintf
function which returns aformat string allocated on the heap. Both of these are provided
as part of the COOL exception handling facility. In addition, notice that the ordering of
theformat_argsand key value argsargumentsin exampletwo depends on the control
characters in the format string. Finally, the code resulting from the macro expansion
makes heavy use of the commaoperator and is standard C++, although thismight look a
little confusing at first.

Thisisasimple use of EXCEPTION that specifies the exception type, agroup name,
and aformat string:

EXCEPTION (Error, SYM(Serious_Error), “Serious problemhere”) ;

Line 1 contains an invocation of the exceptron macro for an exception of type error
aliased with the group name serious_Error. This group name symbol is reference
through the COOL sym package. The messagetext followsasthethird argument. When
expanded, this macro call generates:

(Exception g =new Error(),

Exception_g.set_group name (SYM(Serious_Error)),

Exception g->format msg = hprintf (ERR_MSG(“Serious problemhere.”)),
Exception g) ;

Line 2 assigns the global pointer exception g to point to a new instance of an Error
exception object. Line 3 associates this exception object with the group name seri -
ous_Error. Line4initializestheformat message field to the message argument passed.
Notethat this message is actually asymbol inthe COOL err msc package, thusfacili-
tating collection of all error messagesin one location, and affording the ability to have
multiple translations of text for asingle application. Line 5 returns a pointer to the new
exception object.

An exception handler on the global exception handler stack that is associated withthe
group nameserious_Error Will becalled if thisexception object israised. Thiscan be
donethrough thevirtual Exception: :raisemember function, or more conveniently with
the RAISE macro discussed in paragraph 13.10 below.

In this example, anew exception classis derived containing two data members whose
valuesarefilled in when the exception object iscreated. EXCEPTION isinvoked with
an exception type, a format string, and a mix of data member arguments and format
arguments.

Class Bad_Argument Error : public Fatal {
public:

char* arg_name;

int arg_value;

Bad_Argument_Error () ;

}i

EXCEPTION (Bad Argument Error,
ERR_MSG (“Argument %s has value %d that is out of range for vector %s "),
arg_name="foo”, arg_value=x, vecl) ;

COOL User's Manual

13-9

Exception Handling

Example 3:

Lines 1 through 6 define a new exception class, Bad_aArgument Error, derived from
the COOL Fatal class. This new exception type has two public data members,
arg name and arg_value, Whose valueswill be provided when creating an instance of
this type. Line 7 invokes EXCEPTION, specifying the exception type Bad argu-
ment_Error asthefirst argument. Notice there are no group namesin thisinvocation.
As a result, only an exception handler specifically created for exceptions of type
Bad Argument_ Error Can becalledif dBad_Argument_Error exception israised. Line
8 contains the second argument, which is the error message control string, in standard
printf format. Line 9 contains intermixed format string arguments and data member

initialization arguments. When expanded, this macro generates:

(Exception g =newBad Argument Error(),

Exception_g->arg name = “foo”,

Exception g->arg value =X,

Exception g->format msg = hprintf (ERR _MSG (“Argument %s has value %d\
which is out of range for vector %$s.”), “foo”, x, vecl),

OO WNPEF

Exception g);

Linelassignstheglobal pointer exception_gtopointtoanew instance of asad_argu-
ment_Error exception object. Lines 2 and 3 initialize the public data members of the
exception object. Lines4 and 5 initialize the format message field to the message argu-
ment passed, with the appropriate argument values inserted. Note that this message is
actually asymbol in the COOL err_msc package. Line 6 returns a pointer to the new

exception object.

An exception handler for aBad_argument _Error exception could prompt the user for a
new value for the named argument and return it in arg_value field if this exception
object israised. This can be done through the virtual Exception::raise member func-
tion or more conveniently with the RAI SE macro discussed in paragraph 13.10 below.

Class Out_of Range : public Fatal {
public:
int value;
Generic* container;
Out_of Range () {
format_msg = “Value %d is out of range for container %s.”
}
void report (ostream& os) {
Fatal: :report (os);
os << form (format_msg, this->value, this->container->type of()) ;
}
i

SEBowo~N~ourwhR

13-10

COOL User’'s Manual

This example is similar to the previous one, except that the constructor for the new
exception type object initializes the format message field. This is a general-purpose
exception type for any container class derived from the COOL Generic class as
discussed in Section 12, Polymorphic Management. Providing alocal report member
function supercedes the virtual default implementation in the base Exception class.

A WN PP

Exception Handling

Lines1 through 12 defineanew exception classout of Range derived fromthe COOL
Fatal class. This new exception type has two public data members, vaiue and con-
tainer, Whose values will be provided when creating an instance of thistype. Lines5
through 7 define the constructor for the new exception type that initializes the format
message data member. Lines 8 through 11 implement a specialized report member
function. It usesthe polymorphictype_of member function of the container classinher-
ited from Generic.

EXCEPTION (Out_of Range, value=n, container=cl) ;

At some pointinan application, line 1invokesEXCEPTION, specifying the exception
type out of Range asthe first argument and intermixed format string arguments and
data member initialization arguments of value and container. When expanded, this
macro generates:

(Exception g =newOut of Range(),
Exception g->value =n,

Exception g->container =cl,
Exception g);

Line 1 assigns the global pointer Exception g to point to a new instance of an
out_of_ Range exception object. Lines 2 and 3initialize the public datamembers of the
exception object. Line 4 returns apointer to the new exception object that can be raised
as appropriate.

This example provides an interesting look at a general-purpose exception object that
usesthe polymorphic runtime type determination provided by theGenericclassand the
class macro. The exception type out_of Rrange could be used in many types of con-
tainer classes (Vector<Type>, List<Type>, and so on) where areference or index for
some element is out of range. Any of these classes could raise this exception to display
the error message and appropri ate type-specific information without the need for aspe-
cialized exception type for each class.

RAISE

13.10 TheRAISE macro alowsan application program to create and rai se an excep-
tion. RAISE uses EXCEPTION to construct the exception object and then callsits
member function raise, defined as afriend function of the exception class, to raise the
exception. This function searches for an exception handler of the appropriate type to
handle the exception and, if found, invokes the exception handler function. It returns
the exception object if the exception handler returnsor if no exception handler isfound.
The exception object may be examined to determineif the exception washandled and if
any alternate values were returned. There are many variations of RAISE that provide
flexible and efficient means of customizing the exception object and raising the excep-
tion. In particular, the variable number of group name arguments should reducethe need
for many different types of exception classes whose only difference is the type name.

NOTE: The RAISE macro takes some arguments that are actually pointersto Symbol
objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of aclass (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Gener ic classand the classmacro. The arguments can also be sym-
bol dliases created in the COOL svv and ERrR Mse packages, or some
application-specific package. See section 11, Symbolsand Packages, for moreinforma-
tion.

COOL User's Manual

13-11

Exception Handling

Name: RAISE — A COOL macro for constructing and raising an exception
Synopsis: RAISE (Symbol* excp_type, REST: args);
excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)
args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more commarseparated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key value args
The name(s) and value(s) of any public data members in the
exception object

RAISE Example 13.11 Inthisexample RAI SE createsan Error exception object and raisesthe excep-
tion when the index for operator[] of avector classis out of range.

inline int Vector::operator[] (int n) {
if (n>=0 &&n < this->number elements
return this->data[n];
else
RAISE (Error, “vector::operator[] () : $d out of range”, n) ;

OO WNE

Lines 1 through 6 implement the code necessary for atypical operator[] member func-
tion of aclassfor vector of integers. However, when the index provided is out of range,
the RAI SE macro invocation in line 5 creates an exception object and raisesthe excep-
tion to report the error.

13-12 COOL User’'s Manual

Exception Handling

STOP

Name:
Synopsis:

13.12 The STOP macro raises an exception and ends program execution with exit if
the exceptionis not handled. By default in COOL, only exceptions of typeError will
exit and exceptions of type Fatal will abort. STOP issimilar to RAISE in that it uses
EXCEPTION to construct the exception object and then calls its member function
raiseto raise the exception. This function searches for an exception handler of the ap-
propriatetypeto handlethe exception and, if found, invokesthe exception handler func-
tion and returns the exception object. If no exception handler is found, however,
program execution ends. There are many variations of STOP that provide flexible and
efficient means of customizing the exception object and raising the exception. In par-
ticular, the variable number of group name arguments should reduce the need for many
different types of exception classes whose only difference is the type name.

NOTE: The STOP macro takes some arguments that are actually pointers to Symbol
objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of aclass (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be
symbol aliases created in the COOL sym and err_Mse packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

STOP — Raise an exception and end the program if not handled
STOP (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
War ning, and so forth)

args One or more of the following comma-separated arguments or val-
ues.

Symbol* group_name
One or more commarseparated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key value args
The name(s) and value(s) of any public data members in the
exception object

COOL User's Manual

13-13

Exception Handling

STOP Example

OO WNE

13.13 Inthisexample, STOP createsan Error exception object and raisesthe excep-
tion when the index for operator|[] of avector classis out of range.

inline int vector::operator[] (int n) {
if (n >=0 &&n < this->number elements)

return this->data[n];

else

STOP (Error, “vector::operator([] () : $d out of range”, n) ;

Lines 1 through 6 implement the code necessary for atypica operator[] member func-
tion of aclassfor avector of integers. However, when theindex provided isout of range,
the STOP macro invocation in line 5 creates an exception object and raises the excep-
tion to report the error. A handler for this exception could prompt the user for anew
index and retry the operation. The distinction between the use of STOP and RAISE is
that STOP guarantees to end the program if the exception is not handled, whereas
RAISE will return.

VERIFY

13.14 TheVERIFY macro asserts that an expression is TRUE by raising an excep-
tion of the appropriatetypeif itisFAL SE. The exception typeisoptional, but if speci-
fied, is the group name or dias of the VERIFY_ERROR object created. This is
because the macro assumes that a public data member named test is defined. If the
exceptiontypeisnot specified, no other argumentscan beprovided. VERIFY issimilar
toRAISE inthat it usessEXCEPTION to construct the exception object and then calls
thefunction r aiseto rai sethe exception. Thisfunction searchesfor an exception handler
of the appropriate typeto handlethe exception and, if found, invokesthe exception han-
dler function and returnsthe exception object. If no exception handler isfound, program
execution ends.

NOTE: The VERIFY macro takes some arguments that are actually pointers to Sym-
bol objects. These arguments control the relationship of an exception object with oneor
more exception handlers. They can be the symbol representing the name of aclass (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can aso be
symbol aliases created in the COOL sym and err_msc packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

13-14

COOL User’'s Manual

Name:

Synopsis:

Exception Handling

VERIFY — Verify that an expression evaluates to non-zero
VERIFY (test_expression, REST: args);
test_expression Any valid C++ expression to be verified

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more commarseparated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key value args
The name(s) and value(s) of any public data members in the
exception object

VERIFY Example

abrwnNPE

}

13.15 This example is another variation of the previous two examples.
VERIFY_ERROR assertsthat theindex specifiedfor avector element iswithinrange.
It createsaVerify Error exception object and raises the exception when the index for
operator[] of avector classis out of range.

inline int vector::operator[] (int n) {
VERIFY ((n >=0 &&n < this->number elements),

Error, “vector: :operator[] () : $d out of range”, n) ;

return this->data[n] ;

Lines 1 through 5 implement the code necessary for atypica operator[] member func-
tion of aclassfor avector of integers. However, beforetheindexed element islooked up
and returned, the VERIFY macro invocation on lines 2 and 3 insures that the given
index is within range. When the index provided is out of range, VERIFY creates an
exception object and raisesthe exceptionto report theerror. A handler for thisexception
could prompt the user for anew index and retry the operation. If no exception handler is
found, program execution ends.

COOL User's Manual

13-15

Exception Handling

Jump_Handler
Class

Name:
Synopsis:

Base Class:
Friend Classes:
Constructors:

Member Functions:

Friend Functions:

13.16 The Jump_Handler class is derived from the Excp_Handler class. It
savesthe current environment and al so the exception obj ect when an exceptionisraised.
Instancesof thisclassare used by thel GNORE_ERRORSmacro discussed below. An
exception handler function saves a pointer to the exception raised in the Jump_Han-
dler exception object and then calls the system functionlongj mp, passing the environ-
ment that was saved in the Jump_Handler object by setjmp.

Note: Theexcp_type argumentsin theJump_Handler class constructors and member
functions are pointers to Symbol objects. These arguments control the relationship of
an exception object with one or more exception handlers. They can bethe symbol repre-
senting the name of aclass(aswith Error or War ning) that is created automatically for
any class derived from Exception through the Generic class and the classmacro. The
argumentscan also be symbol aliases created in the COOL svm package, or some appli-
cation-specific package. See section 11, Symbols and Packages, for more information.

Jump_Handler — An exception handler class for ignoring exceptions.
#include <COOL/Exception.h>

Excp_Handler

None

Jump_Handler (Jump_Handler_Function fn, Symbol* excp_type)
Creates an jJump handler object associated with the exception type excp_type, in-
itializesthejump handler function datamember tofn, and pushesitself ontop of the
global exception handler stack. The jump handler function is of type void
(Jump_Handler_Function)(Exception*, Excp_Handler*).

Jump_Handler (Jump_Handler_Function fn, int number,
Symbol* excp_typel, Symbol* excp_type2, ...);

Creates an jump handler object, creates number group names excp_typel,
excp_type2, and so on if necessary, associates this jump handler object with num-
ber group names excp_typel, excp_type2, and so on, initializes the jump handler
function datamember to fn, and pushesitself ontop of the global exception handler
stack. The jJump handler function is of type void (Jump_Handler _Function)(Ex-
ception*, Excp_Handler).

virtual Boolean invoke _handler (Exception* excp)
Returns TRUE if the exception handler function wasinvoked for excp; otherwise,
this function returns FAL SE.

void ignore_errors_handler (Exception* excp, Excp_Handler* fn);
This exception handler function ignores exceptions raised through the macros
RAISE and STOP. When invoked, thisfunction saves a pointer to the exception
object excp in thejump handler fn. It then callslongjmp, passing the environment
savedin Jump_Handler. The program returnsto the point after the call of setjmp
in the macro IGNORE_ERRORS discussed below.

13-16

COOL User’'s Manual

Exception Handling

IGNORE_ERRORS 13.17 ThelGNORE_ERRORSmMacroignoresan exception raised whileexecuting a

Name:
Synopsis:

body of statements. If an exception is raised while executing these statements, the
Jump_Handler created by the surrounding IGNORE_ERRORS macro saves a
pointer to the exception object. Program control returnsto the statement following 1 G-
NORE_ERRORSmacro. Thismacro eliminates the return value of the last statement
within the body if no exception was raised. In addition, | GNORE_ERRORS works
only for exceptions raised with the macros RAI SE and STOP. The default exception
typeisError, if no exception type or group name is specified.

NOTE: IGNORE_ERRORS uses the system functions setjmp and longjmp. If an
exception occurs while executing statements within the body argument of the macro,
causing program control to be redirected, objectsfalling out of scopewill not havetheir
destructor called. This is because the ANSI C setjmp/longjmp mechanism does not
support a mechanism for unwinding the stack.

IGNORE_ERRORS — Ignores a raised exception within a body of code

IGNORE_ERRORS (Exception* excp, Symbol* excp_type = Error,
REST: args) { body}

excp Pointer that is set to the exception object if oneisraised whileexe-
cuting the statements in body; otherwise, this pointer is set to
NULL

excp_type A symbol representing the Exception class type of excp (that is,
Error, Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

group_name
One or more commarseparated pointers to Symbol objects
representing aliases for this exception class type

body Any valid C++ statements to be executed under the protection of
the IGNORE_ERRORS macro

COOL User's Manual

13-17

Exception Handling

IGNORE_ERRORS 13.18 In this example, IGNORE_ERRORS checks for an exception of type

Example

RPBoo~v~ourwNnr

Error raised while summing up avector of integers. Inthis simplistic example, thesize
of the vector is unknown. If during the loop, an exception is raised, an error message
prints, and the function continues execution after the body of statements. If 1G-
NORE_ERRORSwere not used and an exception of type Error was raised, the pro-
gram would end.

int sum up (vector&v) {

int sum=0;

Error* excp;

IGNORE_ERRORS (excp) {

for (int 1 = 0; i < NUM_ELEMENTS; i++)
sum += data[n] ;

1

if (excp != NULL)
Cerr << excp;

return sum;

Lines1through 11 implement afunction that cal culatesthe sumof theelement values of
avector of integers. Line2initializesavariableto hold therunning total. Line 3 declares
apointer to an exception of typeerror. Line4 beginsthel GNORE_ERRORSinvoca-
tion. The pointer to the exception object is passed as an argument, along with thebody
of statements between the braces. At the end of the body, the variableexcp ischeckedto
seeif it contains an address. If so, an exception must have been rai sed, so the exception
object isoutput to the standard error stream. If itsvalueisNUL L, theloop ends success-
fully. Finaly, line 10 returns the sum of the element values.

Exceptions as
Symbols and
Package

13.19 The exception handling facility uses the COOL symbolic computing
capability. Exception (along with most other COOL classes) is derived from
the Generic class, which eases run-time type checking and object query. Thein-
voke_handler member function of the exception handler takes advantage of this fea-
ture. It callsis_type of ontheraised exception object to determineif it isof the desired
exception type. The exception name specified in the exception macros and the excep-
tion handler constructor are pointers to Symbol objects. All classes inheriting from
Generic are represented as type symbols in the COOL global symbol package, sym.

When the exception macros are expanded in the program, the formatted error message
constructed and stored in the exception object is also added as a symbol to the COOL
global error message package, ERR_MSG. This package is created with the
text_package macro which contains symbolswhose values are the same as the symbol
names. All error messagesinaCOOL application areimplemented astext symbols, and
asymbol definition fileisautomatically created that containsasummary of al theerror
messages. These error message symbols can be represented in other languages by es-
tablishing a property list with the appropriate translation. See Section 11, Symbolsand
Packages, for more information on the COOL symbolic computing capabilities.

13-18

COOL User’'s Manual

Exception Handling

User-Defined
Exception Types

13.20 The COOL exception mechanism detects and raises an exception and
finds the appropriate exception handler. To define a user-specific exception class, you
must derive from the Exception class or one of the predefined exception typesError,
Fatal, System_Error, System_Signal, or Verify Error. All new data members
should be public. Thereport member function will need to be changed to reflect the
nature of the newly created type of exception.

NOTE: Derived exception classes should have public data members. Initialize these
data members with an assignment statement in the EXCEPTION macro invocation,
and access the data members by exception handler functions.

To handle a specific type of exception, define an exception handler function that takes
asits first argument a pointer to the exception object and returns void. An exception
handler object ispassed apointer to thisfunction through itsconstructor. The exception
handler function can be defined with more than one argument, but anew exception han-
dler class must be defined with anew version of the virtual invoke _handler member
function. For example, the Jump_Handler class modifiestheinvoke _handler mem-
ber function to call afunction with two arguments: a pointer to the exception object and
a pointer to the exception handler object.

Other user-derived exception classes can include data members for saving the wrong
values detected by aprogram. These values report the problem to the exception handler
and are often used when reporting the exception or error message to an output stream.
Datamembers can al so be included in an exception classso the signaler (the exception
raiser) can indicate to an exception handler ways of proceeding from the exception.

For example, if an exception occurs because avariable has awrong value, an exception
object is first created and then raised. The exception object defined for this problem
would have adatamember with the wrong value and adatamember for anew value. An
exception handler resolves this problem by supplying anew value (usually by inform-
ing the user about the wrong value and querying the user for anew value). The handler
storesthis new value in the exception object and returnsthat object to thesignaler. The
signaler then assigns this new value to the variable.

COOL User's Manual

13-19

Exception Handling

13-20 COOL User’'s Manual

COOL METHODOLOGY

I ntroduction

14.1 The C++ Object-Oriented Library (COOL) isacollection of classes, templates,
and macros for use by C++ programmers writing complex applications. It raises the
level of abstraction and allows the programmer to concentrate on the problem domain,
not on implementing base data structures, macros, and classes. In addition to raising the
level of abstraction, COOL also provides a system-independent software platform on
top of which applicationsarebuilt, since COOL encapsul ates system-specific function-
ality such asdate/time and exception handling. This section discussesthefollowing top-
ics:

e Preprocessor and macros

e Parameterized templates

e Symbols and packages

e Polymorphic management

e Exception handling

e Coading style and conventions

e Class hierarchy

COOL is an ever changing and growing C++ class library. As such, some constraints
will be necessary in order to achieve compatible and seamless integration of new or

modified features. This section outlines the major technologies and conventions that
should be used and followed.

Requirements

14.2 This section discusses COOL methodology and should be used as an aid in un-
derstanding the COOL library, its organization, structure, and layout. It assumes you
have a working knowledge of C++. For more detailed information and examples on
each topic, you should refer to the appropriate section of this manual.

Preprocessor and
M acr os

143 The COOL macro facility is an extension to the standard ANSI C
macro preprocessing functions available with the #define statement. The COOL
preprocessor isamodified ANSI C preprocessor that allows a programmer to unobtru-
sively define powerful extensions to the C++ language.

This enhanced preprocessor is portable, compiler independent, and can execute arbi-
trary filter programs or macro expanders on C++ code fragments. Macros that support
parameterized templ ates are implementations of theoretical design papers published by
Bjarne Stroustrup. Other macros provide significant language features and enhanced
power for the programmer previously unavailable with conventional C++ implementa-
tions. It isimportant to note, however, that onceamacro isexpanded, theresulting code
is conventional C++ 2.0 syntax acceptable to any conforming C++ translator or
compiler.

COOL User's Manual

14-1

Cool Methodology

The COOL preprocessor is supplied as part of the library and is the implementation
point for all language and computing enhancements availablein COOL. The draft-pro-
posed ANSI C standard indicates that extensions and changes to the language or fea-
turesimplemented in apreprocessor or compiler should be made by using the#pragma
statement. The COOL preprocessor follows this recommendation and uses this for all
macro extensions.

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied onthe X11R3 sourcetapefrom MIT. It complieswith the draft ANSI C specifica-
tion with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed previously, the preprocessor has several
new command line optionsto support C++ comments and includesfile debugging aids.

The #pragma defmacr o statement is implemented in the COOL C/C++ preprocessor
and is the single hook through which features such as the class macro, parameterized
templates, and polymorphic enhancements have been implemented. Thedefmacro fa
cility provides away to execute arbitrary filter programs on C++ code fragments pass-
ing through the preprocessor. When adefmacr o style macro name is found, the name
and contents up to the delimiter (including all matching{} [] () <>"" * and comments
found aong the way) pipes onto the standard input stream of the indicated program or
filter procedure. The preprocessor scans the procedure’s standard output for further
processing. The expansion replaces the macro call and is passed onto the compiler for
parsing.

The implementation of adefmacr o can be either external to the preprocessor (asin the
case of filesand programs) or internal to the preprocessor. For example, thetemplate,
declar e, and implement macrosthat implement parameterized types areinternal to the
preprocessor, providing a more efficient implementation. The defmacr o facility first
searchesfor afileor program in the same search path used for includefiles. If amatchis
not found in the preprocessor table, an internal preprocessor table is searched. If a
match isstill not found, the error message is sent to the standard error stream: “Error:

Cannot openmacro file [XXX]”, Where xxx isthe name asit appearsin the source code.
Thefundamental COOL macros are defined with defmacr o in the header file <COOL/
misc.h> that isincluded in al COOL C++ source files.

Porting COOL to anew platform or operating system starts with the preprocessor. The
preprocessor contains support for the defmacr o statement and al so implements severa
important macrosinternally for efficiency and performance considerations. In addition,
a powerful macro language that simplifies many library functions is available via the
MACRO keyword (discussed in detail in Section 10). MACRO implements an en-
hanced #define syntax that supports multiple-line, arbitrary-length, nested macros, and
preprocessor directives with positional, optional, optional keyword, required keyword,
rest, and body arguments. Many of the COOL features would be very difficult, if not
impossible, to implement without this enhanced macro language.

Par ameterized
Templates

144 The development and successful deployment of application libraries
such as COOL is made easier and more useful by a language feature called
parameterization. Parameterized templates allow a programmer to design and imple-
ment a class template without specifying the data type. The user customizes the tem-
plateto produce a specific class by indicating thetypein aprogram. Several versions of
the same parameterized template (each with adifferent type) can existin asingle appli-
cation. Parameterized templ ates can be thought of asmetaclassesin that only one source
base needs to be maintained to support numerous variations of atype of class.

14-2

COOL User’'s Manual

Cool Methodology

Regardlessof thetype of object aparameterized classisto manipulate, the structure and
organization of the class and the implementation of the member functions are the same
for every version of the class. For example, a programmer providing a vector class
knows that there will be several member functions such as insert, remove, print, sort,
and so on that apply to every version of the class. By parameterizing the arguments and
return values from the various member functions, the programmer provides only one
implementation of thevector class. The user of the classthen specifiesthetype of vector
at compile time.

Animportant and useful typeof parameterized templateisknown asacontainer class. A
container classis aspecial kind of parameterized class where you put objects of a par-
ticular type. For example, the Vector<Type>, List<Type>, and Hash _Ta-
ble<KType,Vtype> classes (discussed in Sections 6 and 7) are container classes because
they contain a set of programmer-defined data types. Since container classes are so
commonplacein many applicationsand programs, parameterized container classespro-
vide a mechanism to maintain one source base for several versions of very useful data
structures. COOL supplies several common container class data structures that can be
used in many typical application scenarios.

Each of the COOL parameterized container classes support the notion of a built-in
iterator that maintains a current position in the container and is updated by various
member functions. These member functions allow you to move through the collection
of objectsin some order and manipulate the element value at that position. This might
beused, for example, in afunction that takes a pointer to ageneric object that isatype of
container object. Thefunction caniteratethrough the el ementsin the container by using
the current position member functions without needing to know whether the objectisa
vector, alist, or a queue.

In addition to this built-in current position mechanism, COOL provides support for
multiple iterators over the same class by using the Iterator <Type> class (discussed in
detail in Section 5). For example, a programmer may need to write a function that
moves through the elements of a container class and, at some point, needs to save the
current position and begin processing elements at another location. After a period of
time, the secondary processing ends, at which point flow of control returnsto the previ-
ous stopping point. The current position is restored from the iterator object, and proc-
ng continues.

A programmer usesthe COOL C++ Control program (CCC), instead of thenormal CC
procedure, to control the compilation process. This program providesall of the capabili-
ties of the original CC program with additional support for the COOL preprocessor,
parameterized types, and the COOL macro language. CCC controls and invokes the
various components of the compilation process. In particular, it looksfor command line
arguments specific to the parameterized template process and processes them accord-
ingly. Other options and arguments are passed on to the system C++ compiler control
program.

COOL User's Manual

14-3

Cool Methodology

Symbols and
Packages

145 A package provides a relatively isolated namespace for various COOL
components called symbols. A symbol that isowned by a particular package is said to
beinternedinthat package. Ingeneral, theterminterned meansthat a particular object
is uniquely identifiable in some context. When a symbol is interned, it becomes
uniquely identifiable by the symbol name within a namespace context. The package
system provideslogical groupings of symbols supporting relationships established be-
tween named objectsand thevaluesthey contain. Althoughthe notion of symbolsbeing
grouped into packagesisfairly straightforward, the nature of the relationships that can
exist between packages and the way in which they establish a namespace can be quite
complex. COOL provides severa kinds of macrosto simplify the usage and manipula-
tion of symbols and packages.

A symbol isadataobject that definesarel ationship between aname, apackage, avalue,
and a property list. The nameis a character string used to identify the symbol. Once a
nameisestablished for asymbol, it may not be changed. Thevaluefieldisusedtorefer
to some C++ object. Property lists are lists of aternating names and values. The prop-
erty list allows the programmer to associate supplemental attributes with a symbol.
Initially, the property list for a symbol is empty.

The Symbol and Package classes implement the fundamental COOL symbolic com-
puting support as standard C++ classes. The Symbol class implements the notion of a
symbol that has a name with an optional value and property list. Symbolsareinterned
into a package, which is merely a mechanism for establishing separate namespaces.
The Package classimplements a package as ahash table of symbolsand includes public
member functions for adding, retrieving, updating, and removing symbols.

COOL supportsefficient and flexible symbolic computing by providing symbolic con-
stantsand run time symbol objects. Y ou can create symbolic constants at compiletime
and dynamically create and manipul ate symbol objectsin apackageat runtimeby using
any of several simple macros or by directly manipulating the objects. Symbols and
packages in COOL manage error message textual descriptions with trandations, pro-
vide polymorphic extensions to C++ for object type and contents queries, and support
sophisticated symbolic computing normally unavailable in conventional languages.

Polymor phic
M anagement

146 C++ version 2.0 as specified in the AT&T language reference manual
implements virtual member functions that delay the binding of an object to a specific
function implementation until run time. This delayed (or dynamic) binding is useful
where the type of object might be one of several kinds, all derived from some common
base classbut requiring aspecialized implementation of afunction. Theclassic example
is that of a graphics editor where, given a base class graphic_object from which
square, circle, andtriangle are derived, specialized virtual member functionsto cal cu-
latetheareaareprovided. In such asystem, aprogrammer canwrite afunction that takes
agraphic_object argument and determine its area without knowing which of al the
possible kinds of graphical objects the argument really is.

Thisdynamic binding capability of C++, while powerful and providing greater flexibil-
ity than most other conventional programming languages, is still not enough for some
types of problems. Highly dynamic languages such as SmallTalk and Lisp allow the
programmer to delay almost all decisionsuntil runtime. In addition, facilities are often
present for querying an object at run time to determine its type or request alist of all
available member functions. These kinds of features are commonly used in many sym-
bolic computing and complex, knowledge-intensive operations management areas
tackled today.

14-4

COOL User’'s Manual

Cool Methodology

COOL supports enhanced polymorphic management capabilities with a programmer-
selectable collection of macros, classes, symbolic constants, runtime symbolic objects,
and dynamic packages. This is facilitated by the Generic class that, combined with
macros, symbols, and packages, provides efficient run-time object type checking, ob-
ject query, and enhanced polymorphic management unavailable in the C++ language.

The Generic class is inherited by most other COOL classes and manipulates lists of
symbolsto manage type information. Generic adds run-time type checking and object
queries, formatted print capabilities, and a describe mechanism to any derived class.
The COOL classmacro (discussed bel ow) automatically generatesthe necessary imple-
mentation code for these member functionsin the derived classes. A significant benefit
of this common base class is the ability to declare heterogeneous container classes
parameterized over the Generic* type. These classes, combined with the current posi-
tion and parameterized iterator class, letsthe programmer manipul ate collections of ob-
jects of different typesin asimple, efficient manner.

One of the simplest and most useful features facilitated by Genericisthe runtime type
checking capability. Thetype of andis type of virtual member functions providethis
kind of run-timetype query for an object that isderived (at some point) from the COOL
Generic class. Type determination and function dispatch can become quite tedious,
however, if there are many typesof objects. Ideally, each would be derived from acom-
mon base and include support for avirtual member function for each important opera-
tion that might be required. Thisis not alwaysfeasible, however, especialy with ahigh
number of objectsobtained from several sources. An alternate schemesimilar totheone
mentioned above is the type_case macro, anaogous to the C++ switch Statement. It
gathersall possible type cases and allows the user to symbolically dispatch on the type
of object represented by the case statements. This automates some of the symbol collec-
tion and manipulation required with the earlier mechanism.

The classkeyword isimplemented asa COOL macroto add symbolic computing abili-
tiesto classdefinitions. It takesastandard C++ classdefinition and, if the class contains
Genericsomewhereinitsinheritance hierarchy, it generates member functionsfor sup-
port of runtimetype checking and query. In addition, asymbol for the derived Generic
classtypeisadded to the COOL global symbol package sym. The actual codewhichis
expanded in aclass definition and after a class definition is controlled by theclassmac
macro.

The classmac macro providestwo hooks as a customi zation point by user-defined mac-
ros. A combination of data members and member functions of a class definition are
passed as arguments to macros that can be changed or customized by the application
programmer. The COOL Generic class uses the data member hook to implement the
map_over_slotsmember function. There may be more than one classmac macro hook
specified by the programmer. COOL has several, and other user-defined macros are
simply chained together in a calling sequence ordered according to the order of defini-
tion. Each classmac macro defines how the class macro should expand the class defini-
tion. The class macro does not actually generate the code itself. This is defined in
user-modifiable header files that specify a classmac macro. For example, a general-
purpose mechanism that automatically createsaccessor member functionsto get and set
each data member can be created by defining aclassmac macro that is attached to the
data member hook of the class macro. No changes to the COOL preprocessor are re-
quired.

COOL User's Manual

14-5

Cool Methodology

The member functions added by Generic and the class macro to derived COOL classes
mani pulate symbols stored inthe global sym package. These symbolsreflect theinheri-
tance tree for a specific class. They may have optional property lists containing infor-
mation associating supported member functions and their respective argument lists.
User-defined classesderived from Generic are also automatically supportedin aniden-
tical fashion, resulting in additional symbols in the global symbol package. As dis-
cussed earlier, these symbols must have storage all ocated for them and codetoinitialize
the package at program startup time. This is managed by the COOL file symbols.c
which should be compiled and linked with every application that uses COOL. Anauto-
mated method for ensuring correct package setup and symboal initialization is accom-
plished by establishing the correct dependency in an application make file.

Exceptions

14.7 InCOOL, program anomalies are known as exceptions. An exception can bean
error, but it can also be a problem such asimpossible division or information overflow.
Exceptions can impede the development of object-oriented libraries. Exception han-
dling offers a solution by providing a mechanism to manage such anomalies and sim-
plify program code. The COOL exception handling scheme is a raise, handle, and
proceed mechanism similar to the Common Lisp Condition Handling system. When a
program encounters an anomaly that is often (but not necessarily) an error, it can:

e Represent the anomaly in an object called an exception

¢ Announce the anomaly by raising the exception

e Provide solutions to the anomaly by defining and establishing handlers
e Proceed from the anomaly by invoking a handler function

The COOL exception handling facility provides an exception class (Exception), an ex-
ception handler class (Excp_Handler), a set of predefined exception subclasses
(Warning, Error, Fatal, System_Error, System_Signal, and Verify _Error), and a
set of predefined exception handler functions. In addition, the macros EXCEPTION,
RAISE, STOP, and VERIFY dlow the programmer to easily create and raise an ex-
ception at any point in a program.

When an exception israised (through macrosRAI SE or STOP, for example), asearch
beginsfor an exception handler that handles this type of exception. An exception han-
dler, if found, deals with the exception by calling its exception handler function. The
exception handler function can correct the exception and continue execution, ignore the
exception and resume execution, or end the program. In COOL, an exception handler
for each of the predefined exception types exists on theglobal exception handler stack.

An exception handler invokes a specific exception handler function for a specific type
of exception. Handling an exception means proceeding fromthe exception. An excep-
tion handler function could report the exception to standard error and end the program,
or drop a core image for further debugging by the programmer. Another way of pro-
ceeding isto query the user for afix, store thefix in the exception object, and return to
where the exception was raised. When an exception handler object is declared, isis
placed onthetop of aglobal exception handler stack. When anexceptionisraised, acall
searches for a handler. The handler search starts at the top of the exception handler
stack.

14-6

COOL User’'s Manual

Cool Methodology

There are six predefined exception type classes provided as part of COOL. The excep-
tion classisthe base class from which specialized exception subclasses are derived. De-
rived from Exception are Warning, System_Signal, Fatal and Error. From the
Error class, the System_Error and Verify Error classes are derived. The default
exception handlersarecalled only if no other exception handler is established and avail-
able when an exception is raised. COOL offers users the option of defining their own
exception types. Such types can be derived from the Exception class of one of the de-
rived exception types. All user-defined exception classes should have public dataslots.
For more detailed information on creating your own exception types, refer to Section
13, Exception Handling.

The COOL exception handling facility provides several macros that simplify the proc-
ess of creating, raising, and manipulating exceptions. These macros are implemented
with the COOL macro facility discussed in Section 10, Macros. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception
object. The RAISE macro alows the programmer to easily raise an exception and
search for an exception handler. The STOP macro is similar to the RAI SE macro, ex-
cept that it guaranteesto end the program if the exceptionisnot handled. TheVERIFY
macro raises an exception if an assertion for some particular expression evaluates to
FALSE. Finaly, thel GNORE_ERRORS macro provides a mechanism to ignore an
exception raised while executing a body of statements.

Coding Style and
Conventions

148 A sandard source code style alows several programmers to easily
maintain and understand each other’ s codebecause additional semantic information can
beinferred from the source code’ sformat and style. In addition, asingle style presentsa
more coherent, professional software package for potential source code users. Thisis
particularly important for COOL, since parameterized templates require complete ac-
cessto all source code. Finally, one of the foundations of object-oriented programming
iscodereuse. Thisismuch easier if aprogrammer isableto browsethrough source code
and understand its organization and layout. The COOL source code adoptsthe follow-
ing C++ coding style convention:

e Variable and class naming conventions— A proposed definition for naming con-
ventions for variables and classes and a coding style for writing C++ class defini-
tions.

e Organization and contents of class header files— An ordering for all of the ele-
mentsin aC++ classlibrary. A uniform organization for C++ class definition ele-
mentswill simplify auser’ stask in learning theinterface of aclassand inlocating
information when making later references to the class.

e Private/Protected/Public data members — Recommended usage for scoping data
members in a class with respect to encapsulation, derivation, and an object-ori-
ented data base (OODB).

e Sourcecodedocumentation— Minimum standards and requirements consisting of
at least an introductory, high-level algorithmic discussion and input/output docu-
mentation for each function.

e Source code indentation and layout — A flexible and easy to follow indentation
and layout proposal, facilitated in part by a C++ mode distributed with COOL
source code for the popular GNU Emacs editor.

e Error message text resource package — Use of the COOL exception handling
mechanism provide a package containing all error messages in an application that
eases internationalization of text message strings.

COOL User's Manual

14-7

Cool Methodology

Naming
Conventions

Regression test suite — All modified and new C++ classes added to the COOL
library should contain acomplete, stand-al onetest program that exercisesall major
features of the component and reports successes and failures via the test macros
contained in the ~cooL/include/test . h header file.

Source code system independence— COOL placesgreat importance upon system-
independent code and features. As such, system-specific functions should be sur-
rounded with preprocessor directives where appropriate.

Build procedure— COOL containsamodifiedimake utility fromthe MIT X11R3
sourcetapethat implements a system-independent build procedure. This should be
used for al new classes and source code. It also provides configuration and rules
files for localization or customization of system build utilities and commands to
port to other operating systems and hardware platforms.

14.8.1 A prime objective for a naming convention is to alow programmers
to recognize what sort of component aname refersto. Another goal isusing meaningful
names, which has not typically been donein Capplications. Thefollowing naming con-
ventionsare used throughout the COOL source code. Thereader isstrongly encouraged
to follow the same guidelines:

Directory, .c, and .1 filenames should be the same or close to the class being de-
fined, and the declaration and implement files should be in a single directory. For
example, the String class is defined and implemented in the files string.n and
string.c and contained in the ~coor/string subdirectory.

Class, struct, and typedef names should be capitalized with the words separated
by underscores:

class Generic Window { ... };
struct String Layout { ... };
typedef int Boolean;

All function names should belowercase with each word separated by an underscore
character:

voidmy fun (int foo) ;
char* get_name (ostream&) ;

Predicate functions should begin with is_:
Boolean is_type of (int);

Variable and data member names should be lowercase with words separated by
underscores:

int ref count;
char* name;

Global and static variables should be appended with g or s, respectively:

int node_count_g;
static char* version_s;

Preprocessor statements and MACRO names should be uppercase:

#define ABS ((x<0) ? (-x) : x)

14-8

COOL User’'s Manual

Class Header
File Organization

Cool Methodology

e Constants (const) declarations should be uppercase:

const int FALSE=0;
const int TRUE=!FALSE;

14.8.2 All header files defining the structure of a class or parameterized
template should be organized into sections in the following order:

e Included files and typedefs necessary for the class.

e Definition of private data members.

e Declaration of private member functions and friends.

o Definition of protected data members.

e Declaration of protected member functions and friends.

e Declaration of public member functions and friends.

¢ Inline member functions of the class follow the class definition.

e Other member and friend function definitions are located in a separate source code
file.

In general, only the data member definitions and function prototypes of the member
functions and friend functions should appear in the class construct. This separates the
implementation from the specification and reduces clutter. Defineinline functions after
the class {...}; statements. In addition, the keyword inline should appear in both the
class definition and in the actual implementation as adocumentation aid. The optional
private keyword should be explicitly stated. Finally, avoid multiple instances of
scoped sections. There should be no more than one each of the private, protected, and
public labels.

COOL User's Manual

14-9

Cool Methodology

Private, Protected,
and Public

Documentation

Sour ce Code
Indentation

Error Message
Resour ce Package

14.8.3 In genera, class data should be encapsulated in either the private
or protected sections. Data specific to a particular classwith no use for possible derived
classes should be located in the private section. Data located in the protected section
might include configuration or adjustment data members that a derived class might
want to monitor or change. No COOL classes contain public data, and the user should
not declare such data. Aside from being bad object-oriented programming style, classes
with public data may be difficult to make persistent and stored in an OODB. The one
exception to this standard are the derived exception classes, which may require public
data members in order to alow query or update of alternate values.

14.8.4 Documentation of al filesis very important. Terseness should be the general
rulefor all header files, and completenesstherulefor all codefiles. Parameterized tem-
plates have asingle header/sourcefile and all documentation should be located there. If
indoubt, more documentation isbetter than lessdocumentation. A high-level abstract at
thetop of each file should provide adescription of thefile' sfunctionality. Class header
files should also contain a brief description of the public interface.

Each function in a source code file should have a preceding block comment specifying
the input and output parameters as well as giving abrief synopsis of the functionality.
For complex inline definitionsin header files, ablock comment of thistype should only
be used when the purpose is not obvious because these comments do not appear in the
codefile. Sincemost inlinefunctionscontaintrivial code (usually providing an accessor
to some private data member), comment requirements for inline function can be re-
laxed.

All source code should be commented every few source lines. Specifically, largeblock
comments every 100 linesis unacceptable. No comment should contain operating sys-
tem specific names or terms unless that section of code is truly specific. When thisis
necessary, the code should be surrounded by conditional compilation constructs. These
are handled by the preprocessor relative to that specific operating system.

Finally, documentation in the form of a man page should be written for every class.
Layout and organization will be as that with the -man macro package available for
nroff(1)/tr off(1). Section names and requirementsfor a class man page include Name,
Synopsis, Base Class, Friend Classes, Description, Constructors (publicor protected as
necessary), Protected Member Functions (when appropriate), Public Member Func-
tions, Files, See Also, and Bugs (when necessary). Introductory and high-level material
should also be documented.

14.85 Indentation and source code structure is relaxed, but it is suggested
that the programmer use the C++ mode available for GNU Emacs and supplied with
COOL. In general, statements should berestricted to one line with indentation reflect-
ing block and scoping visibility. Location of such items as braces, spacing around pa-
rentheses, and so on is left up to the programmer. If the C++ mode is used, whole
regions can be marked and indented appropriately, providing asimple means by which
all source code can be brought into the same format.

1486 All eror message text strings in an application should use the
ERR_M SG package availablein COOL. The COOL exception handling scheme auto-
matically usesthis package ensuring that all text strings associated with error messages
arestored asthe value of asymbol (see Section 13). All error message symbolsare auto-
matically processed and located in one file, thus facilitating easy update or configura-
tion. In particular, a language transation can be added to the property list of each

14-10

COOL User’'s Manual

Regression Test
Suite

Sour ce Code
System | ndependence

Build Procedure

Cool Methodology

symbol entry, providing an efficient and convenient means for internationalizing the
text messages in an application.

148.7 Each new or modified class contained in or added to COOL
must also include a stand-al onetest program. This should fully exercise all featuresand
functions and report success or failure through the test macros contained in the ~coor./
include/test.h header file. Thistest program is used in regression testsfor new re-
leases and ports to other software platforms to ensure a complete and working
implementation.

1488 COOL places great importance upon system-independent code
and features. As such, system-specific functions should be surrounded with #it
preprocessor directives where appropriate. In general, small performance sacrificesin
implementation are preferred if system independence and portability is improved.

14.8.9 COOL containsamodifiedimakeutility fromtheMIT X11R3 sourcetapethat
implements a system-independent build procedure. This should be used for all new
classesand source code. imake provides configuration and rulesfilesfor localization or
customization of system build utilities and commands to aid in porting activities to
other operating systems and hardware platforms.

Class Hierarchy

14.9 The COOL class hierarchy implements aflat inheritance tree, as opposed to the
nested Small Talk model. Most COOL classesarederivedfrom Generictofacilitaterun
time type checking and object query. Simple classes are not derived from Generic due
to memory-space efficiency concerns. All parameterized container classesinherit from
abase class that resultsin shared type-independent code. This reduces code replication
when a particular type of container is parameterized several timesfor different objects
in a single application. The COOL hierarchy is:

Pair<T1,T2>
Range
Range<Type>
Rational
Complex
Bignum
Generic
String
Gen_String
Regexp
Vector
Vector<Type>
Association<T1,T2>
List_Node
List_ Node<Type>
List
List<Type>
Date Time
Timer
Bit_Set
Exception
Warning

COOL User's Manual

14-11

Cool Methodology

Error
Verify Error
System_Error
Fatal
System_Signal
Excp_Handler
Jump_Handler
Hash_Table
Set
Hash_Table<Key,Value>
Package
Matrix
Matrix<Type>
Queue
Queue<Type>
Random
Stack
Stack<Type>
Symbol
Binary_Node
Binary Node<Type>
Binary Tree
Binary_Tree<Type>
AVL_Tree<Type>
N_Node<Type>
D_Node<Type>
N_Tree<Type,Node,nchild>

14-12

COOL User’'s Manual

GLOSSARY

a

abstract data type

accessor

array

assignment statement

association list

A set of values and a set of operations that can be applied to the new type.

1. A trivial inline function that gets or setsthe value of a private or protected slot of a
class.

2. A functiondesignedto access(that is, read, write, or modify) the value(s) of aprivate
or protected slot of aclass.

A collection of objects of a single data type.
A programming language statement that gives a value to a variable.
A data structure consisting of alist of pairs where each pair represents an association

between its objects. The first element of the pair is the key and the second element is
associated data. Thisis also referred to as an alist.

b

base class The class from which subclasses are derived and inherit their properties.

Cc

class The basic building blocks of an application, where each individual aspect of structure
and behavior is defined separately.

constructors Member functions with the same name as the class in which they are defined that pro-

container class

vide for the automatic initialization of objects at their point of declaration.

A class such as Vector, List, and Hash_Table that contains a set of application pro-
grammer defined datatypes. The COOL library contains anumber of container classes.

d

DECLARE
#define

derivation

A macro that expands to the declaration of aclass.
Preprocessor directive that defines a name and (optionally) the value that follows it.
The process by which one classis built on top of (specialized) from one or more base

classes. For example, the Bit_Set classis derived from the Generic class, whereas the
Generic class is the base class of Bit_Set.

COOL User’'s Manual

Glossary-1

Glossary

derived class

destructors

A class that inherits from a base class.

Member functions providing for the automatic deall ocation of the storage occupied by
an object when the block containing the object is exited.

dymanic enumeration type

A modifiable data type used to define a set of named integral constants and to declare
variables of that type.

e

encapsulation

enum

enumeration

environmental synonym

exception

exception handling

A special type of form that surrounds another form and enhancesthe other form’ sopera-
tion without changing itsbasic functionality. A trace, for example, isan encapsulation.

Keyword for declaring an enumeration.

A set of symbolic integral constants.

A variable contained in the operating system environment in which an application pro-
gram runs and provides a specific value or customization directive to the program.

Some noteworthy event that can occur during the execution of a program, such as an
error or anomaly.

A mechanism for managing program anomalies and errors.

extensibility A language feature that allows programmers to create new types that can be endowed
with specific properties and whose behavior is characterized in a class definition.

f

friend A nonmember of aclassthat isgiven accessto the nonpublic members of the class. Can
be a nonmember function, a member function, or an entire other class.

g

Generic class The class that is inherited by most COOL classes. It is used as a base class that adds

run-time type checking and basic print capabilities to any derived class.

Glossary-2

COOL User's Manual

Glossary

h

hash table A table that derives a numeric index from some data key to index a specific value.

header file A file containing information needed by severa program modules. During compila-
tion, the text of the header file becomes part of the program text that the compiler ana-
lyzes.

heter ogeneous The condition in which several objects are of different types.

homogeneous The condition in which several objects are of the same type.

i

IMPLEMENT A macro that expands into the function definitions of a class.

#include A simple text manipulation mechanism for gathering source program fragments to-
gether into a single file for compilation.

inheritance 1. Theability of aclassto use properties of another class. Enablesthe programmer to
define an organi zation of classesthat model s the relationshi ps among the various kinds
of objects.
2. The capability for distinguishing between the generic properties of some class of
object and the more specialized properties that only certain objects will share.

interned symbol A symbol that belongs to a specific package.

iterator A mechanism that automatically repeats the same series of steps until a predetermined
stop is reached.

m

macr o A simple, symbolic programming-language statement that, when expanded, resultsina

member function

series of more complex statements.

The set of operations defined to manipulate an object within aclass.

NULL

An empty or nonexistent or non-specified value.

COOL User’'s Manual

Glossary-3

Glossary

0]

obj ect

A variable declared to be of aspecific class. Anobjectisnot just passive data, but also
the procedures which manipulate it. Objects are the modular building blocks for an
object-oriented programming system.

object-oriented programming

operator

ordered sequence class

overloaded operator

A programming approach for designing and implementing software systems, centering
around the concepts of abstract data types and classes, hierarchies, inheritance, and
polymorphism. Noted primarily for its advantages of code reuse, extensibility, com-
plexity control, and much closer linkage between software design and implementation.

A symbol specifying an arithmetic, logical, or other manipulation of its operands.

A collection of basic data structuresthat implement sequential-access data structures as
parameterized classes.

An operator with an additional meaning assigned toit. When an operator isoverloaded,
its meaning is usually inferred from the types of their operands.

P
package

package system

parameterized class

A collection of symbols that serves as a namespace. See also package system.
A facility that establishes a mapping from names to symbols and helps prevent name-
space conflicts. The package system allowsdifferent programsto use the same namefor
objects so that the programs and objects can coexist in the same environment.

A class in which one or more types can be declared at compile time.

pointer A data type that holds the address of an object in memory.

polymor phic The ahbility of different objectsto respond differently to the same message at run time.

private Information that cannot be manipulated by the programmer.

procedures The operations or behaviors that the object can perform.

property list A component of asymbol that effectively provides the symbol with many modifiable,
named components. The property list has zero or more entries, with each entry consist-
ing of apair of elements. Thefirst element of the pair is called the indicator and is used
to name a particular property. Each indicator must be unique within that property list.
The second element can be any object that represents the value of that property. Func-
tions are available tomanipulate a symbol’s property list.

protected Information that can be manipulated in a limited manner by the programmer.

public Information that can be manipulated by the programmer.

r

raise To announce an exception.

Glossary-4

COOL User's Manual

Glossary

S

scope

standard error

The spatial or textual region of aprogram or form within which it is possibleto refer to
an object.

A predefined 1/0 stream used to alert the user to some exceptional condition in thepro-
gram during execution.

symbol An object used as an identifier to specify arelationship between anameand other ob-
jectsand variables. Internally, each symbol isrepresented asastructurewith thefollow-
ing components:
| value
| Property list
These contain information about the symbol, and functions are provided to manipulate
this information, as well as the symbol itself.
t
template Provides a means of defining a complex macro that supports parameterized classes.
typedef A storage class that is used to create new data types from existing data types.
u

unordered sequence class

A collection of basic data structures that implement random-access data structures as
parameterized classes.

value

void

A constant or quantity assigned to a variable.

A datatypethat is used when declaring afunction to indicate that the function does not
return a value or that the function does not take any arguments.

COOL User’'s Manual

Glossary-5

Glossary

Glossary-6 COOL User’'s Manual

INDEX

Symbols

#pragma defmacro
description, 10-1
implementation. See defmacro
overview, 1-2

A

Association class
See also Pair class
base classes, 7-12
constructors, 7-12
description, 7-12
example, 7-15—7-17
friend functions, 7-15
member functions, 7-12—7-15
requirements for parameterized type, 7-1
use of operator=, 7-1
AVL_Treeclass
See also Binary_Tree class; N_Tree class
base class, 9-7
description, 9-6—9-7
example, 9-9—9-10
friend functions, 9-9
member functions, 9-7—9-9
public constructors, 9-7
requirements for parameterized type, 9-1
use of operator=, 9-1

B

Bignum class

base class, 3-15

constructors, 3-15

description, 3-14

example, 3-19

friend functions, 3-17—3-18

maximum value, 3-14

member functions, 3-15—3-17

parsing of character string representations, 3-14
Binary_Node class

See also Binary_Tree class; N_Node class;

D_Node class

base class, 9-2

constructors, 9-2

description, 9-2

friend class, 9-2

member functions, 9-2

requirements for parameterized type, 9-1
Binary_Tree class

See also Binary_Node class; AVL_Tree class;
N_Tree class

base classes, 9-3

description, 9-3

example, 9-5—9-6

friend functions, 9-5

member functions, 9-3—9-5

public constructors, 9-3

requirements for parameterized type, 9-1

use of operator=, 9-1

Bit_Set class

See also Set class; enumeration_package

base classes, 8-6

description, 8-6

example, 8-11

friend functions, 8-10

member functions, 8-6—8-10

public constructors, 8-6

C

Calendar.h File
See also Date Time class
description, 4-8
CCC
See also IMPLEMENT macro; Parameterized
templates
definition, 1-2, 5-7
description, 5-7—5-8, 14-4
example, 5-9
options, 5-8
char* functions
See also String class; Gen_String class
description, 2-8
friend functions, 2-8—2-10
class macro
See also Generic class; MACRO
definition, 1-4
description, 12-7, 14-6
classmac macro
See also Generic class; MACRO
arguments, 12-8
description, 12-7, 14-6
example, 12-9—12-10
interaction with class macro, 12-7
synopsis, 12-8
Coding style
build procedure, 14-8, 14-11
class header file organization, 14-9—14-10

COOL User’'s Manual

Index-1

Index

data members, 14-8
description, 14-8—14-11
error message package, 14-8, 14-11
naming conventions
class, struct, typedef names, 14-9
constant declarations, 14-9
directory names, 14-9
function names, 14-9
global and static variables, 14-9
predicate function names, 14-9
preprocessor and macro names, 14-9
variable and data member names, 14-9
organization and contents of class header files,
14-8
private, protected, and public data, 14-10
regression test suite, 14-8, 14-11
source code documentation, 14-8
guidelines, 14-10—14-11
source code indentation, 14-11
source code layout, 14-8
source code system dependence, 14-8
source code system independence, 14-11
variable and class naming conventions, 14-8
Complex class
base class, 3-4
constructors, 3-4
description, 3-4
example, 3-7—3-8
friend functions, 3-6—3-7
member functions, 3-4—3-6
Container class
See also Parameterized templates; Ordered
seguence classes; Unordered sequence
classes
availablein COOL, 5-10
current position, 5-11
definition, 1-2
description, 5-10
making your own, 5-13
member functions, 5-11
requirements for parameterized type, 5-14
storing objectsin, 5-14
COOL
audience, 1-1
class hierarchy, 1-7, 14-12
constants, defined in misc.h, 1-4
definition, 1-1
description of classes, 1-4—1-7
features, 1-1—1-7
introduction, 1-1
macros, 1-2
major features, 1-1
methodology, 14-1
porting to a new platform, 10-1
preprocessor
derived from, 1-2, 10-2
description, 10-1, 14-1—14-2

options, 10-2
synopsis, 10-2
symbolic computing capabilities, 14-4
TRUE and FALSE constants, 1-4
Country.h File
See also Date Time class
description, 4-7
Current position
See also Iterator class
description of, 5-11
example, 10-6
member functions, 5-11
state information, 5-12

D

D_Node class
See also N_Node class; N_Tree class
base class, 9-13
description, 9-13
friend classes, 9-13
member functions, 9-13—9-14
public constructors, 9-13
requirements for parameterized type, 9-1
Date Time class
base class, 4-1
constructors, 4-1—4-2
description, 4-1
example, 4-8—4-9
friend functions, 4-5—4-6
member functions, 4-2—4-5
DECLARE macro
See also IMPLEMENT macro; Parameterized
Templates
description, 5-4
example, 5-5
synopsis, 5-4
defmacro
description, 10-3
implementation, 10-3
options, 10-3
synopsis, 10-3
DEFPACKAGE macro
See also DEFPACKAGE_SYMBOL macro;
MACRO; enumeration_package,

text_package; symbol_package; once _only

package

allocation of storage, 11-10

creating specialized packages, 11-10

definition, 1-3

description, 11-7

importance of symbols.C file, 11-10

options, 11-7—11-8

synopsis, 11-7
DEFPACKAGE_SYMBOL macro

See also DEFPACKAGE macro

adding symbols to a package, 11-9

Index-2

COOL User’'s Manual

description, 11-9
synopsis, 11-9

E

enumeration_package macro
creation of storage file, 11-11
description, 11-11
example, 11-11—11-12
synopsis, 11-11
use as dynamic enumeration types, 11-11
ERR_MSG text package
See also text package macro
creation of, 11-12
error messages in exceptions, 13-9, 13-18
Exception class, 13-7
as symbolsin a package, 13-18
base class, 13-3
constructors, 13-3
description, 13-3—13-4
Error, 13-7
Error, default handler, 13-7
Fatal, default handler, 13-7
friend functions, 13-4
predefined types, 13-7
public data membersin, 13-19
public methods, 13-4
System_Error, 13-7
System_Error, default handler, 13-7
System_Signal, 13-7
System_Signal, default handler, 13-8
Verify Error, 13-7
Warning, 13-7
Warning, default handler, 13-8
Exception handling
See also Excp_Handler class
definition, 1-4
description, 13-1—13-2, 14-7
macros, 14-7
overview, 1-4
EXCEPTION macro
See also RAISE macro; STOP macro; VERIFY
macro; IGNORE_ERRORS macro
description, 13-8
examples, 13-9—13-11
group names as symbols, 13-8
synopsis, 13-8
Exceptions
See also MACRO; Excp_Handler class; Symbol
class; Package class
description, 13-1—13-2
description of COOL macros, 13-2
group names (aliases), 13-2
group names as symbols, 13-3
group names, example of, 13-9
overview, 14-6—14-7
predefined types, description, 14-7

Index

public data members in user—defined exceptions,
13-19

user—defined types, 13-19
Excp_Handler class

See also Exception class; MACRO; Symbol class;

Package class

as symbolsin a package, 13-18

base class, 13-5

constructors, 13-5

dealing with exceptions, 13-5

description, 13-5

example, 13-6

friend class, 13-5

global exception handler stack, 13-2

group names, example of, 13-6

predefined types, 13-7

public methods, 13-5
EXPAND_ARGS macro

See also MACRO

description, 10-10

example, 10-10

synopsis, 10-10

G
Gen_String class
See also Regexp class; char* functions; String
class
base class, 2-14
constructors, 2-14
definition, 2-14
example, 2-20
friend functions, 2-18—2-20
member functions, 2-14—2-18
operator char*, 2-14
Generic class
See also class macro; SYM package; Symbol
class; Package class; class macro
addition of member functions, 12-2
base class, 12-2
definition, 1-3
description, 12-2, 14-5
example of runtime type checking. See Generic
class
friend functions, 12-3
member functions, 12-3
overview, 1-7
protected constructors, 12-2
protected member functions, 12-2
relationship to SYM package, 12-2
symbols.C file, 12-2

H

Hash_Table class
base classes, 7-17
constructors, 7-17

COOL User’'s Manual

Index-3

Index

description, 7-17
example, 7-20—7-22
friend functions, 7-20
member functions, 7-17—7-20
requirements for parameterized type, 7-1
use of operator=, 7-1
heterogeneous containers
See also Generic class
example, 12-5—12-7

IGNORE macro
See also MACRO
description, 10-11
example, 10-11
synopsis, 10-11
IGNORE_ERRORS macro
See also EXCEPTION macro; RAISE macro;
STOP macro; VERIFY macro
description, 13-17
destructors not called, 13-17
example, 13-18
synopsis, 13-17
IMPLEMENT macro
See also CCC; DECLARE macro; Parameterized
templates
description, 5-4
example, 5-5
synopsis, 5-4
INITIALIZE macro
See also MACRO
description, 10-10
example, 10-11
synopsis, 10-10
is type of
See also Generic class
example, 12-4
ISSAME macro
See also MACRO
description, 10-7
example, 10-7
synopsis, 10-7
Iterator class
base class, 5-12
constructors, 5-12
description, 5-12
example, 5-13
member functions, 5-13
provision of multiple iterators, 1-2
state information, 5-12

J

Jump_Handler class
See also Excp_Handler class; IGNORE_ERRORS
macro
base class, 13-16
constructors, 13-16

description, 13-16

friend functions, 13-16

group names as symbols, 13-16
public methods, 13-16

K

KEYARGS macro
See also MACRO
description, 10-8
example, 10-8
synopsis, 10-8

L

List class
base classes, 7-2
constructors, 7-2
description, 7-2
example, 7-9—7-10
friend functions, 7-8
member functions, 7-2—7-8
requirements for parameterized type, 7-1
use of operator=, 7-1

M

MACRO
description, 10-4
examples, 10-5—10-7
implementation, 14-2
synopsis, 10-4
Matrix class
base classes, 6-17
constructors, 6-17
description, 6-17
example, 6-19
friend functions, 6-19
member functions, 6-17—6-19
requirements for parameterized type, 6-1
use of operator=, 6-1
misc.h, fundamental COOL constants, 1-4

N

N_Node class

Seealso D_Nodeclass; N_Tree class

base class, 9-11

description, 9-11

friend classes, 9-11

member functions, 9-11—9-12

public constructors, 9-11

requirements for parameterized type, 9-1
N_Tree class

See also Binary_Tree class; AVL_Tree class,

D_Node class; N_Node class

base class, 9-16

description, 9-15

example, 9-18—9-19

member functions, 9-16—9-17

Index-4

COOL User’'s Manual

public constructors, 9-16
requirements for parameterized type, 9-1
traversal modes, 9-15
use of operator=, 9-1
Node and tree classes
See also Ordered sequence classes; Unordered
seguence classes
overview, 1-6
Node classes. See Binary_Node class; N_Node class;
D_Node class
Number classes
See also Random class; Complex class; Rational
class; Bignum class; Range class
definition, 3-1
overview, 1-5

@)
ONCE_ONLY macro
See also MACRO; once_only package
description, 10-9
example, 10-9
synopsis, 10-9
once_only package, description. See ONCE_ONLY
macro
Ordered sequence classes
See also Parameterized templates;, Unordered
seguence classes; Vector class; Stack class;
Queue class; Matrix class
overview, 1-5
requirements for parameterized type, 6-1
use of operator=, 6-1

P

Package class
See also Symboal class; Generic class; Macro
base classes, 11-4
constructors, 11-4
definition of a package, 1-3, 11-1
description, 11-3, 14-4
friend class, 11-4
friend functions, 11-6—11-7
member functions, 11-4—11-6
overview, 1-7
use of operator=, 11-1
Pair class
See also Association class
base class, 7-10
constructors, 7-10—7-11
description, 7-10
friend functions, 7-11
member functions, 7-11
use of operator=, 7-1
Parameterized classes. See Parameterized templates
Parameterized templates
See also Container classes
COOL, list of, 5-2
container class, description, 14-3

Index

definition, 1-2

description, 5-1—5-3, 14-3—14-4

example of DECLARE and IMPLEMENT, 5-5

template example, 5-5—5-7

use of DECLARE and IMPLEMENT, 5-4
Polymorphic management

description, 12-1, 14-5

relationship with Generic and class macro,

14-5—14-6

Q

Queue class
base classes, 6-13
constructors, 6-13
description, 6-13
example, 6-16
friend functions, 6-16
member functions, 6-13—6-16
requirements for parameterized type, 6-1
use of operator=, 6-1

R

RAISE macro
See also EXCEPTION macro; STOP macro;
VERIFY macro; IGNORE_ERRORS macro
description, 13-11—13-12
example, 13-12—13-13
group names as symbols, 13-12
synopsis, 13-12
Random class
base class, 3-2
Constructor, 3-2
description, 3-1
example, 3-3
member functions, 3-2
ONE_CONGRUENTIAL random generator, 3-2
SHUFFLE random generator, 3-2
SIMPLE random generator, 3-2
SUBTRACTIVE (Knuth) random generator, 3-2
THREE_CONGRUENTIAL random generator,
3-2
Range class
base class, 3-20
constructors, 3-20
description, 3-20
example, 3-21—3-22
member functions, 3-20—3-21
Rational class
base class, 3-9
constructors, 3-9
description, 3-9
example, 3-13
friend functions, 3-12
member functions, 3-9—3-11
Regexp class
See also Gen_String class
base class, 2-11

COOL User’'s Manual

Index-5

Index

constructors, 2-11
description, 2-11
example, 2-12—2-14
member functions, 2-11

S

Set class
See also Hash_Table class; List class; Bit_Set
class, Parameterized templates
base classes, 8-2
description, 8-2
example, 8-5—8-6
friend functions, 8-5
member functions, 8-2—8-5
public constructors, 8-2
requirements for parameterized type, 8-1
use of operator=, 8-1
Stack class
base classes, 6-9
constructors, 6-9
description, 6-9
example, 6-12
friend functions, 6-11
member functions, 6-9—6-11
requirements for parameterized class, 6-1
use of operator=, 6-1
STOP macro
See also EXCEPTION macro; RAISE macro;
VERIFY macro; IGNORE_ERRORS macro
description, 13-13
example, 13-14
group names as symbols, 13-13
synopsis, 13-13
String class
See also Gen_String class; char* functions;
Regexp class
base class, 2-2
constructors, 2-2
definition, 2-1
example, 2-7—2-8
friend functions, 2-5—2-7
member functions, 2-2—2-5
operator char*, 2-1
overview, 1-4
Stroustrup, Bjarne, 1-2, 10-1
SYM package
See also symbol_package macro
description, 11-21
example of interface to, 11-21
interface with, 11-21—11-22
Symbol class
See also Package class; Generic class
base class, 11-2
definition of a symbol, 1-3, 11-1
definition of property list, 11-1
description, 11-2, 14-4
friend class, 11-2

friend functions, 11-3
member functions, 11-3
overview, 1-7, 14-4
protected constructors, 11-2
public constructors, 11-2
use of operator=, 11-1

symbol_package macro
See also DEFPACKAGE macro;

DEFPACKAGE_SYMBOL macro

contents of symbol package file, 11-20
creation of SYM symbol package, 11-18
creation of storage file, 11-18
definition of additional macros, 11-18
description, 11-17
example, 11-18—11-20
implementation details, 11-22—11-24
implementation of package in symbols.C, 11-20
synopsis, 11-18

Symbolic computing
See also Symbol class; Package class
COOL capahilities, 1-3

System interface classes
See also Date _Time class; Timer class
overview, 1-5

T

template
See also Parameterized templates; container class
syntax, 5-3
text_package macro
adding trandations for other languates, 11-17
contents of symbol package file, 11-15
cregtion of storage file, 11-12
description, 11-12—11-13
example, 11-13—11-17
friend functions, 11-13
implementation of package in symbols.C, 11-15
support for multiple language trandations, 11-13
synopsis, 11-13
Time zone.h File
See also Date Time class
description, 4-6
Timer class
accuracy, 4-10
constructors, 4-10
description, 4-10
example, 4-11
member functions, 4-10
Tree classes
See also Binary_Tree class; AVL_Tree class;
N_Tree class, Node classes
use of operator=, 9-1
TYPE_CASE macro
See also Generic class
description, 12-5
example, 12-5
type of

Index-6

COOL User’'s Manual

See also Generic class
example, 12-4

U

Unordered sequence classes
See also List class, Pair class, Association class,
Hash_Table class; Ordered sequence
classes; Parameterized templates
overview, 1-5
requirements for parameterized type, 7-1
use of operator=, 7-1

V

Vector class
base classes, 6-2

Index

constructors, 6-2—6-3

description, 6-2

example, 6-8

friend functions, 6-7

member functions, 6-3—6-7
requirements for parameterized type, 6-1
use of operator=, 6-1

VERIFY macro

See also EXCEPTION macro; RAISE macro;
STOP macro; IGNORE_ERRORS macro

description, 13-14

example, 13-15

group names as symbols, 13-14

synopsis, 13-15

COOL User’'s Manual

Index-7

Index

Index-8 COOL User's Manual

	Contents

	About This Manual

	1. Overview of COOL

	2. String Classes

	3. Number Classes

	4. System Interface Classes

	5. Parameterized Templates

	6. Ordered Sequence Classes

	7. Unordered Sequence Classes

	8. Set Classes

	9. Node and Tree Classes

	10. Macros

	11. Symbols and Packages

	12. Polymorphic Management

	13. Exception Handling

	14. Cool Methodology

	Glossary

	Index

