A Portable Exception Handling M echanism for C++

Mary Fontana
LaMott Oren

Texas Instruments Incorporated
Computer Science Center
Dallas, TX 75265
fontana@csc.ti.com
oren@csc.ti.com

Martin Neath

Texas Instruments Incorporated
Information Technology Group
Austin, TX 78714
neath@itg.ti.com

ABSTRACT

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes,
templates, and macros for use by C++ programmers who need to write complex yet portable
applications. The COOL exception handling mechanism is one component of this library that
substantially improves the development and expressive capabilities available to programmers
by alowing them to control the action to be taken by their programs when exceptional or
unexpected situations occur. This paper describes the facilities provided by COOL to raise,
handle, and proceed from exceptions in a C++ class library or program and provides several
examples of its use and flexihility.

1. Introduction

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes, templates, and macros
for use by C++ programmers writing complex applications. An important feature of this library is the ability to
create and raise exceptions in the library for which a user of this class library can define his’her own exception
handler routines to effectively and appropriately handle the exceptions in an application at runtime. This is espe-
cially important since current C++ compiler implementations do not contain an exception handling facility [6].
For an overview of the COOL class library, see the paper, COOL - A C++ Object-Oriented Library [2]. For
complete details, see the reference document, COOL User’s Guide [8].

The COOL exception handling facility consists of a set of classes and macros to define, create, raise and handle
exceptions. It is implemented with the COOL macro facility [3] and symbolic computing capability [4] and is
similar to the Common Lisp Condition Handling system [1] in that both implement an exception system with the
ability for resumption. Briefly, when a program encounters a particular or unusual situation that is often (but not
necessarily) an error, it can (1) represent the situation in an exception object, (2) announce that the situation has
occurred by raising the exception, (3) provide ways to deal with the situation by defining and establishing
handlers, and (4) continue or proceed from the situation after invoking a handler. One possible action for a
handler is to correct some piece of erroneous information and retry the operation.

The COOL exception handling facility represents exceptions as objects derived from an exception class and pro-
vides a generic exception handler class, a set of predefined subclasses of the base exception class, and a set of
default exception handler functions. Several macros -- EXCEPTION, RAISE, STOP, and VERIFY -- provide



a simple interface to the exception handling facility and allow a programmer to easily create and raise excep-
tions. In addition, the macro IGNORE_ERRORS provides a convenient means by which a programmer can
explicitly disable the exception handling system while executing a block of statements. Finally, the
DO_WITH_HANDLER and HANDLER_CASE macros offer functionality similar to that described by Koenig
and Stroustrup [5] to associate a block of statements with a provision for handling a specific set of possible
exceptions.

Exception handlers are also represented as objects derived from an exception handler class. When an exception
handler object is instantiated, it is placed at the top of a global exception handler stack. When an exception
handler object is destroyed, the handler is removed from the exception handler stack. This stack is maintained
in a similar way to that described by Miller [7]. When an exception is raised, a search is performed for an
appropriate handler starting at the top of the exception handler stack. Since the most recently defined handler
objects are placed at the top of the stack, localized or specialized handlers take precedence over more generic
system-wide handlers. When a match against an exception type or group name is found, the exception handler
object invokes the handler function. An exception handler function might report the exception to the standard
error stream and terminate the program, generate debug information by dumping a core image or stack trace to
disk, or attempt to fix the problem and retry the operation again.

2. The Exception Class

Exceptions are represented as objects of an exception class and are used as a means of saving and communicat-
ing the state information representing a particular problem or condition to the appropriate exception handler.
When an exception can be corrected and resumption is possible, information on the new state is stored in the
exception object by the invoked exception handler function and returned to the point at which the exception was
raised. The COOL Exception class is the base class from which specialized exception classes are derived. It
contains data members to store a message string prefix, a format control string, a list of one or more group
names or exception aliases for which this exception class is appropriate, and a flag to indicate whether or not an
exception is handled. User-derived exception classes can include additional data members for saving the
incorrect values detected by a program. These values report the state to the exception handler and are often
used by an exception handler when reporting the exception/error message to some interactive stream.

The Exception class has severa generic member functions for use by all exception objects. The virtual member
function report() uses the message prefix and format string data members to report an exception message on a
specified stream. The virtual member function raise() searches for an exception handler and invokes it if found.
The match() member function indicates if an exception object is included in one of the exception group names
(aliases). The output operator is overloaded for the Exception class to call the report() member function.
Member functions to query whether or not an exception has been handled and to set the handled flag are also
available. Finally, the virtual default_handler() member function is invoked if no exception handler is found.

As mentioned above, data members can be included in a derived exception class as a way for the signaller (the
one who raises the exception) to indicate to an exception handler ways of proceeding from the exception. For
example, if an exception occurs because a variable has an incorrect value, an exception object of the appropriate
type is created and then the exception is raised. The exception object defined for this situation would have a
data member with the incorrect value and a data member for the new value. An exception handler could be
established to handle this type of situation by supplying a new value (possibly by interactively informing the
user about the incorrect value and querying for a new value through an appropriate interface), store this new
value in the exception object, and return the exception object to the signaller. The signaller would then assign
this new value to the variable in error and execution at the point the exception was raised would resume.

3. Exception Handler Class

When an exception handler is invoked after a successful search of the global exception handler stack, it's
handler function is called with the raised exception object as an argument. The handler function may correct the
problem, ignore it, or do most anything else appropriate. For the case in which an attempt is made to fix the
problem and resumption is possible, the point in the program or library at which the exception is raised can



-3-

contain statements to determine the new or changed values and state information, update any local variables
accordingly, and resume execution. All the information and processing associated with exception handling is
represented by an instance of an exception handler class.

The Excp_Handler class has two data members. The first is a list of one or more exception types or group
names (aliases) and the second is a pointer to a function to be called to handle a raised exception that matches
againgt a value in the exception type list. These data members are initialized by the argument list of the con-
structor and cannot be changed once set. The Excp_Handler class has a single virtual member function
invoke _handler() that takes a single argument -- a pointer to the exception object -- and invokes the exception
handler function. This function may or may not return, depending upon whether the handler attempts to resume
execution or terminate the operation.

4. Exception Group Names (Aliases)

As with most exception handling systems, the COOL exception facility supports the grouping of exceptions by
the class hierarchy. However, as mentioned above, the COOL exception handling facility also supports the con-
cept of exception group names or aliases. Grouping of exception names is implemented through the alias/group
name data member in each exception object. These group names allow a programmer to raise a single excep-
tion but associate that exception with several names or aliases rather than with just one. This means that a single
exception class might be handled by one of several different exception handlers appropriate under different
situations. The net result for the programmer is that only one exception class needs to be defined instead of
several very similar classes. The group names are implemented using the COOL symbolic computing facility [4]
for efficiency, but could be implemented using simple character strings to represent each name.

For example, suppose a programmer is implementing a parameterized Vector<Type> class in a generic class
library to be used by several other programmers in the company. Some of these other programmers want to have
a detailed set of options for dealing with exceptions, including resumption, while others want only a simple
fail-safe termination mechanism. The Vector class programmer wishes to provide exception handling in the over-
loaded Vector<Type>:.operator[] member function that satisfies all potential users of the class. To accomplish
this, a single exception class Out_Of Bounds is derived from the base class Exception with appropriate data
members added to contain the old index value and a possible new value. If an index out of bounds error is
detected, an exception object is created with one type name provided by the class hierarchy mechanism --
Out_Of Bounds -- and two group names -- Vector_Error and Fatal_If Not Handled -- representing different
exception reporting granularity. These three names for one exception type allow three different users of this
class to achieve varying levels of sophistication in their exception handlers while requiring the class programmer
to only implement one exception class for the parameterized vector class. If an Out_Of Bounds exception is
raised, the first exception handler found on the global exception handler stack that can handle either the excep-
tion type or one of the three exception group names supported will be invoked.

5. Predefined Exception Types and Handlers

COOL provides seven predefined exception class and five default exception handlers. The Exception class is
the base exception class from which all other exception classes are derived. The Warning, Fatal, Error, and
System_Signal classes are immediately derived from the base class. The System_Error and Verify Error
classes are derived from the Error class. Each of these predefined exception types has a default report member
function and a default exception handler member function that is only invoked if no other exception handler is
established by the programmer and found on the global exception handler stack when an exception is raised.

For exceptions of type Error and Fatal, the default exception handler reports the error message on the standard
error stream and terminates the program with exit() or writes a core image and/or stack trace out to disk with
abort(). If the exception is of type Warning, the warning message is reported on the standard error stream and
the program resumes at the point at which the exception was raised. If the exception is of type System_Error,
the system error message is reported on the standard error stream and the program is terminated. If the excep-
tion is of type System_Signal, the signal is reported and the program resumes execution after the call of the sys-
tem function signal(2). In all cases, the default exception handler is merely a place-holder to insure that there is



at least one handler for each type of exception available at all times on the global exception handler stack. Users
are expected to provide their own exception handler classes that handle particular exception group names used
within the COOL class library in a more appropriate application-specific manner.

6. Exception Handling Macros

The COOL exception handling facility uses the COOL macro facility [3] to create macros for creating, raising,
and manipulating exceptions. The EXCEPTION macro simplifies the process of creating an instance of a par-
ticular type of exception object. The RAISE macro allows the programmer to easily construct and raise an
exception, then perform a search for an appropriate exception handler and invoke the handler function. The
STOP macro is similar to RAISE, except that it guarantees to end the program if the exception is not handled.
The VERIFY macro raises an exception if an assertion for some specified expression evaluates to zero. The
IGNORE_ERRORS macro is a wrapper that can be placed around a body of statements to ignore exceptions
raised while executing that body. The DO_WITH_HANDLER macro establish an exception handler effective
for the duration of a block. Finally, the HANDLER_CASE macro establishes an exception handler that transfers
control to a series of exception-case clauses similar to the try/catch concept proposed by Koenig/Stroustrup [5].

6.1. The EXCEPTION Macro

The EXCEPTION macro simplifies the process of creating an instance of a particular type of exception object.
It provides an interface for the application programmer to create an exception object using the specified argu-
ments to indicate one or more group names, initialize any data members, or generate a format message.
EXCEPTION is implemented as a COOL macro and has the following syntax:

EXCEPTION (excp_name [, group_names] [, format_string] [, args])

where excp_name is the COOL symbol representing the exception class type (such as, Error or Warning),
group_names are one or more pointers to COOL symbols each of which represents a group or aias name for
this exception, format_string is a printf(2) compatible control string, and args are any combination of format
arguments and keyword arguments to initialize data members. For example, the following macro invocation
might be used to implement the index-bounds exception for the Vector<Type> class discussed above:

EXCEPTION (Out_Of Bounds, SYM(Vector_Error), SYM(Fatal_If _Not_Handled)),
"Index %d out of bounds for vector of type %s", bad_index =i, #Type);

The first argument is the exception type (ie. a new exception class derived from Exception), the second and
third arguments are entries in the COOL symbol table for two group names (aliases) to be associated with this
exception object, the third argument is a message string, and the last two arguments provide values for the fields
in the message. The fourth argument also initializes a data member. When expanded, this macro generates:

(Exception_g = new Out_Of Bounds(),

Exception_g = set_group_names(2, SYM(Vector_Error), SYM(Fatal_If _Not_Handled)),

Exception_g->format_msg = ERR_MSG (hprintf ("Index %d out of bounds for vector of type %s",
i, #Type)),

((Out_Of_Bounds*)Exception_g)->bad_index = i,

Exception_g);

This comma-separated expression creates a new Out_Of_Bounds exception object on the heap and assigns it to
the pointer Exception_g. The two group names are added as symbols using the set_group_names() member
function. The format message is created by hprintf(), which is a variation of printf(2) that returns a formated
string allocated on the heap. This string is placed in the COOL ERR_M SG table that facilitates simple interna-
tionalization of text strings in an application [4]. Finally, the data member bad_index is initializied with the
valuei.

6.2. The RAISE Macro

The RAISE macro simplifies the process of creating and raising an exception. The exception object is con-
structed using EXCEPTION and is raised using the member function raise(). If oneis found of the appropriate



-5-

type, it's handler function is invoked and passed the exception object as an argument. RAISE returns the excep-
tion object if the exception handler function returns or if no exception handler is found. RAISE isimplemented
as a COOL macro and has the following syntax:

RAISE (excp_name [, group_names] [, format_string] [, args])

where excp_name is the COOL symbol representing the exception class type (such as, Error or Warning),
group_names are one or more pointers to COOL symbols each of which represents a group or aias name for
this exception, format_string is a printf(2) compatible control string, and args are any combination of format
arguments and keyword arguments to initialize data members.

The RAISE macro is used extensively in COOL and is often the most convenient form used by programmers.
The following example continues with the index-bounds exception for the Vector<Type> class from above.
Suppose an application programmer is working on a tutorial programming environment that provides assistance
at runtime to novice programmers. The programmer wishes to set up an exception handler to handle the index-
bounds error by prompting for a new value, storing the result in the exception object, and retrying the operation.
The class programmer implementing the Vector<Type> could write the code for the member function
Vector<Type>::operator[] in the class library and raise an exception and process it as follows:

class Out_Of_Bounds : public Error {
public:
unsigned int bad_index;
unsigned int new_index;
char* container;
char* type;
Out_of Bounds() { format_msg = "Index %d out of bounds for %s of type %s'; }

virtual void report (ostream& 0s) { 0s << msg_prefix << form(format_msg, bad_index, container, type);}

1

int Vector<Type>::operator|] (int i) {
while(TRUE) {

if i >=0&& i <this>number_elements)
return this->data(i];

else{
Error* e = RAISE (Out_of_Bounds, bad index = i, container = "Vector", type = #Type);
if (e->exception_handled())

i = e->new_index;
}

}
}

The application programmer writing the programming environment defines an exception handler function to
prompt for a new index and an instance of a handler object to associate with the function for the
Out_Of_Bounds exception in the following manner:

void Bounds_Index_Handler (Exception& excp) {
excp.report(cout);
cout << "New index to use instead: " << flush;
cin >> excp.new_index;
excp.handled(TRUE);

}

Excp_Handler vec_eh (Bounds_Index_Handler, SYM(Out_Of Bounds));

The exception handler object vec_eh should be declared at what ever scope is necessary for exceptions of this
type to be handled in this manner. This is usually, but not always, declared as a global instance so as to insure
that the handler is available at al times during the run of an application. When the user of this system runs the



-6-

program with an erroneous index, the Out_Of_Bounds exception is raised in the class library, the exception
handler Bounds Index Handler written by the application programmer is invoked and prompts for a new
index, then the operation retryed. Note that the three programmer’s involved in this system (the class program-
mer, the application programmer, and the novice programmer) had no interaction with each other and no discus-
sion over the design and interface to the exception handling facility. However, the class programmer was able
to use a flexible exception handling system that was customized with an application-specific handler to afford a
more helpful system for the novice programmer. Finally, note that in this example, proceeding from the raised
exception involves no use of the system setjmp/longjmp functions.

6.3. The STOP Macro

The STOP macro creates and raises an exception similar to the RAISE macro except that it guarantees to ter-
minate program execution if an exception handler returns (ie. attempts to resume) or if no exception handler is
found. The exception object is constructed in the same manner using the EXCEPTION macro and raised using
the member function stop(). STOP isimplemented as a COOL macro and has the following syntax:

STOP (excp_name [, group_names] [, format_string] [, args])

where excp_name is the COOL symbol representing the exception class type (such as, Error or Warning),
group_names are one or more pointers to COOL symbols each of which represents a group or alias name for
this exception, format_string is a printf(2) compatible control string, and args are any combination of format
arguments and keyword arguments to initialize data members.

6.4. The VERIFY Macro

The VERIFY macro asserts that an expression has a non-zero value by raising an exception of the specified
type if the expression evaluates to zero. The exception object is constructed with EXCEPTION and is raised
using the member function raise(). The exception type is optional and, if not given, defaults to Verify Error.
This exception class is derived from Error and contains a data member for storing a string representation of the
expression that failed. VERIFY is implemented as a COOL macro and has the following syntax:

VERIFY (test_expression, excp_name = Verify_Error [, group_names] [, format_string] [, args])

where test_expression is the C++ expression to be verified, excp_name is the optional argument specifying the
exception type, group_names are one or more pointers to COOL symbols each of which represents a group or
alias name for this exception, format_string is a printf(2) compatible control string, and args are any combina
tion of format arguments and keyword arguments to initialize data members. For example, the following macro
invocation might be used to implement an alternate approach for the index-bounds exception discussed above:

int Vector<Type>::operator[] (int i) {
VERIFY ((i >= 0 && i < this->number_elements));
return this->data[i];

}

Since only the expression to assert is passed as an argument, the VERIFY macro creates a Verify Error excep-
tion object by default and initializes the inherited data members. When expanded, this macro generates:

if (1(i >=0&& i <this->number_elements))
(Exception_g = new Verify_Error(),
Exception_g)->raise();

6.5. The IGNORE_ERRORS Macro

The IGNORE_ERRORS macro ignores an exception that is raised while executing a body of statements. If an
exception of a specified type or types is raised while within the scope of this body, the macro insures that the
handler for that exception is not invoked, but rather, control is returned to the point immediately following the
body. IGNORE_ERRORS is implemented as a COOL macro and has the following syntax:



IGNORE_ERRORS (excp_ptr [, excp_class = Error] [, group_names]) { body }

If an exception of type excp_class (or with group group_names) is raised while executing body, then excp_ptr is
set to the address of this exception object and program control transfers to the statement following
IGNORE_ERRORS. If no exception is raised while executing body, then excp ptr is set to NULL. The
exception must have been raised with the RAISE, STOP, or VERIFY macros. If excp_class is not specified,
the default exception class is Error. IGNORE_ERRORS is implemented using the system functions, setjmp
and longjmp. As a result, the statements within the braces should not require destructors to be invoked because
the setjmp/longjmp mechanism does not currently support this capability.

In the following program fragment, IGNORE_ERRORS is used to ignore an exception of type Error raised
while using operator[] of the Vector<Type> class. In this case, the exception object is send to the standard error
stream and execution continues. 1f IGNORE_ERRORS were not used and no other exception handler had been
defined, the default exception handler for Error would terminate the program with a call to exit(2).

Vector<int> data[4];
Error* g
IGNORE_ERRORS (e) {
inti;
i = data[5];
}
if (e!=NULL)
cerr << g

6.6. The DO_WITH_HANDLER Macro

The DO _WITH_HANDLER macro establishes an exception handler whose scope is restricted to a specified
body of statements. An exception handler that matches against one of the exception types or group names in the
exception list is established during execution of a series of statements. The specified exception handler will be
invoked if an exception of the specified type or group is raised and no other more-recently-established handler
matches the type or group names. The exception must have been raised with the RAISE, STOP, or VERIFY
macros. DO_WITH_HANDLER is implemented as a COOL macro and has the following syntax:

DO _WITH_HANDLER (exh_func [, excp_types]) { body }

where exh_func is the name of an exception handler function, excp_typesis a list of one or more exception types
and group names, and body specifies one or more C++ statements surrounded by braces. In the following exam-
ple, a specialized exception handler for the index-bounds problem in the Vector<Type>::operator[] class is esta-
blished for a small body of code:

extern void New_Out_Of Bounds Handler(Exception&);
Vector<int> data[4];
DO _WITH_HANDLER (New_Out_Of Bounds Handler, SYM(Out_Of Bounds)) {

int sum;
for(int i = 0; i <= datalength(); i++)
sum += data[i];

}

This code fragment contains a typical indexing problem where the programmer has an inaccurate loop-
termination test, thus incrementing the index one too many times and causing an exception to be raised. When
expanded, this macro generates:



extern void New_Out_Of_Bounds_Handler(Exception&);
Vector<int> data[4];

{
Excp_Handler _do_eh(New_Out_Of Bounds Handler, SYM(Out_Of Bounds));
int sum;
for(int i = 0; i <= data.length(); i++)
sum += data[i];
}

6.7. The HANDLER_CASE Macro

The HANDLER_CASE macro establishes an exception handler that transfers control to a set of exception-case
clauses when an exception is raised while executing a body of statements. HANDLER_CASE is implemented
as a COOL macro and has the following syntax:

HANDLER_CASE { body } { case clauses}

case _clauses ::= case ([excp_spec]) : {statements} [case clauses]
excp_spec ::= [excp_types| [, excp_class excp_decl]

excp_types ::= excp_class or_group_type [, excp_types]

If an exception is raised while executing body, an exception handler will be invoked to transfer control to
case clauses. The statements of the case clause whose excp_spec matches the raised exception type or one of
its group names is executed. The variable excp_decl is bound to the excp_class exception object raised and may
be referenced by any statement in the matching case clause. The exception must have been raised with RAISE,
STOP, or VERIFY. Finadly, as in IGNORE_ERRORS, the HANDLER_CASE macro is implemented using
the system functions, setimp and longimp. As a result, the statements within the matching case clause should
not require destructors to be invoked because the setjmp/longjmp mechanism does not currently support this
capability. The following example shows the use of this macro with the index-bounds problem used throughout
this paper:

Boolean calculate sum (Vector<int>& vl, int start, int end)
{
HANDLER_CASE {
int sum;
for(int i = start; i <= end; i++)
sum += v1[i];
}
v1.push(sum);

case (SYM (Out_Of Bounds), Error eh) : {
cerr << eh;
return FALSE;
}
case (SYM (Resize Error), SYM (Static_Error), Error eh) : {
cerr << eh;
abort();

}

case (Error eh) : {
cerr << eh;
exit();

}

return TRUE;

}

This function takes a reference to a vector object, a starting index, and an ending index to compute the sum of
the elements between and including these indexes. If an exception occurs during this operation, control is



-9-

transferred to the appropriate case statement clause. If an exception of type Out_Of Bounds is raised, the
exception object is printed on the standard error stream and the value FALSE is returned from the function. If
the raised exception has a group name of either Resize Error or Static Error, the exception object is printed
on the standard error stream and the program aborts. Finally, as a default condition, if any other type of excep-
tion is raised, the exception object is printed on the standard error stream and the program exits. If no excep-
tions are raised, the sum of the elements is pushed onto the end of the vector object and the value TRUE is
returned from the function.

7. COOL Exception Handling Comparison to Koenig/Stroustrup Proposal

The COOL exception handling facility implements a portable, compiler independent, object-oriented exception
handling capability. Exceptions are classified according to subtype relationships making it easy to test for a
group of exceptions. These exception objects have data members through which state information is conveyed
from the point at which the exception is raised to the handler. The base exception and handler classes contain
generic virtual functions upon which more sophisticated capabilities can be built through inheritance and deriva-
tion.

The COOL exception handling macros, RAISE and HANDLER_CASE, provide the same type of functionality
as the throw and try-catch statements proposed by Koenig and Stroustrup in their paper, Exception Handling
for C++ [5]. Both throw and RAISE transfer control to the most recently establish handler for a particular type
of exception. However, any object may be used as an argument in a throw expression, whereas RAISE only
passes exception objects. In a similar manner, the try-catch block and the HANDLER CASE macro establish
some handlers while executing a body of statements. The difference here is that the catch expression in a try
block is like a function definition and any data type can be specified in the exception declaration. The case state-
ments in the HANDLER_CASE macro, on the other hand, accept only COOL symbol objects. These symbols
allow for group names and aliases to be used to handle a single kind of exception in one of severa ways.

These differences are minor, however, when compared to the philosophical models each system follows:. termi-
nation versus resumption. In the one, the throw unwinds the stack before the call of the exception handler, thus
supporting a termination model for exception handling, while in the second, the RAISE macro expands into a
function call before the stack is unwound, thus supporting a resumption model for exception handling.

8. Conclusion

The COOL exception handling facility is a set of classes and macros that provide a mechanism to detect and
raise an exception and independently establish and invoke an exception handler to deal with the exception in
another part of the application. An exception handler may either fix the problem and resume execution, retry the
operation, or terminate the program. The virtual member functions report, raise, default_handler, and match
can be customized in user-defined exception classes derived from the base Exception and Excp_Handler
classes. The macros EXCEPTION, RAISE, STOP, VERIFY, IGNORE_ERRORS, DO_WITH_HANDLER,
and HANDLER_CASE provide a consistent and convenient way for the programmer to create, raise, and handle
exceptions.

There are still a number of problems that need to be addressed in the COOL exception handling system. Of
particular concern are how to handle exceptions raised in constructors and destructors, and the destruction of
objects when setjmp/longjmp are used. Texas Instruments has been using the exception handling facility inter-
nally on several projects in conjunction with the COOL class library. We have found that the use of a flexible
exception handling system enables programmer’s to customize the error handling to suit a specific application.
As aresult, class libraries are more useful and reusable, thus significantly increasing the productivity of the pro-
grammer and thus enabling applications to be prototyped in a shorter time period than might otherwise be possi-
ble. COOL is currently up and running on a Sun SPARCstation 1 (TM) running SunOS (TM) 4.x, a PS/2 (TM)
model 70 running SCO XENIX[O 2.3, a PS/2 model 70 running OS2 1.1, and a MIPS running RISC/os 4.0. The

SunOS and SPARCstation 1 are trademarks of Sun Microsystems, Inc.
PS/2 is a trademark of International Business Machines Corporation.
XENIX is aregistered trademark of Microsoft Corporation.



-10 -

SPARC and MIPS ports utilize the AT& T C++ trandator (cfront) version 2.0 and the XENIX and OS2 ports
utilize the Glockenspiel trandator with the Microsoft C compiler.

9. References

(1]

(2]

(3]

[4]

(3]

(6]
(7]

(8]

Andy Daniels and Kent Pitman, Common Lisp Condition System Revision #18, ANSI X3J13 subcommittee
on Error Handling, March 1988.

Mary Fontana, Martin Neath and Lamott Oren, COOL - A C++ Object-Oriented Library, Information
Technology Group, Austin, TX, Internal Original Issue January 1990.

Mary Fontana, Martin Neath and Lamott Oren, A Portable Implementation of Parameterized Templates
Using A Sophisticated C++ Macro Facility, Information Technology Group, Austin, TX, Internal Origina
Issue January 1990.

Mary Fontana, Martin Neath and Lamott Oren, Symbolic Computing for C++, Information Technology
Group, Austin, TX, Internal Original Issue January 1990.

Andrew Koenig and Bjarne Stroustrup, Exception Handling for C++, Submitted as document X3J16/90-
042 to the ANSI C++ committee, July, 1990.

Stanley Lippman, C++ Primer, Addison-Wesley, Reading, MA, 1989.

Mike Miller, Exception Handling Without Language Extensions, Proceedings of the USENIX C++ Confer-
ence, Denver, CO, October 17-21, 1988, pp. 327-341.

Texas Instruments Incorporated, COOL User’'s Guide, Information Technology Group, Austin, TX, Internal
Origina Issue January 1990.



