A Portable Implementation of Parameterized Templates Using A
Sophisticated C++ Macro Facility

Mary Fontana
LaMott Oren

Texas Instruments Incorporated
Computer Science Center
Dallas, Texas, 75265

Martin Neath

Texas Instruments Incorporated
Information Technology Group
Austin, Texas, 78759

ABSTRACT

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes,
templates and macros for use by C++ programmers writing complex applications. Parameter-
ized types, symbolic computing and exception handling are significant features of COOL
which improve the development capabilities available to the programmer. These features are
implemented in COOL with a sophisticated C++ macro facility. This paper describes the
COOL macro facility, discusses how support for parameterized templates is built upon it, and
provides details of two programmer interfaces (both implemented) for easy use of parameter-
ized templates in application programs.

1. Introduction

The Texas Instruments C++ Object-Oriented Library (COOL) is a system-independent software platform consist-
ing of classes, templates and macros for use by C++ programmers writing complex applications. It is designed to
raise the level of abstraction for the programmer in order to facilitate concentration on the problem domain, not
on implementing basic data structures, macros, and classes. Parameterized templates, symbolic computing, and
exception handling are significant features of COOL that substantially improve the development capabilities
available. We wished to provide these facilities in a compiler- and machine-independent manner across several
hardware platforms. We examined the macro language found in standard C-preprocessors and determined that it
was insufficient for implementing these features. As a result, we developed the COOL macro facility to allow
the programmer to define powerful extensions to the C++ language in a seamless and unobtrusive manner. This
macro facility is implemented as an extension to a C preprocessor [1]. The modifications made to the prepro-
cessor are both portable and compiler independent. This paper describes this enhanced macro facility, discusses
how parameterized templates is built upon it, and provides details of two programmer interfaces (both imple-
mented) for easy use of parameterized templates. For an overview of COOL see the paper, COOL - A C++
Object-Oriented Library [2]. For complete details, see the reference document, COOL User’s Manual [3].

2. The COOL Preprocessor and the defmacro Keyword

Many C++ language implementations separate the preprocessor and compiler functions into two separate pro-
grams. Others combine the preprocessor and compiler into one step. Since we needed a portable utility to

The authors may be reached via electronic mail at fontana@csc.ti.com, oren@csc.ti.com, and neath@itg.ti.com.



massage C++ source code that works under both scenarios and executes after include files and standard prepro-
cessor directives have been expanded, but before the C++ compiler itself begins parsing, we decided to modify a
C-preprocessor to support the COOL C++ language extensions. Thus, the COOL preprocessor is derived from
and based upon a public domain C-preprocessor (the DECUS C preprocessor) made available by the DEC User’s
group and supplied on the X11R3 source tape from MIT. It has been modified to comply with the draft ANSI C
specification with the exception that trigraph sequences are not supported.

The draft-proposed ANSI C standard indicates that extensions and changes to the language or features imple-
mented in a preprocessor or compiler should be made by using the #pragma keyword. The COOL preprocessor
recognizes a #pragma defmacro declaration and is the single hook through which features such as the class
macro, parameterized templates, and polymorphic enhancements have been implemented. The defmacro key-
word provides a way to define and execute arbitrary filter programs or macro expanders on C++ code fragments.
The syntax of the defmacro declaration is:

#pragma defmacro name "program’” options
#pragma defmacro name <program> options

where name is the name of the macro, program is either the name of an executable file or the name of an inter-
nal preprocessor function which implements the macro expansion, and options are any combination of the fol-
lowing optional parameters:

recursive - the macro may be recursively expanded.
expanding - the input to the macro is expanded.
delimiter= x - the default delimiter (semi-colon) is replaced with x.

Unknown options are passed as arguments to the macro expander named program. This provides the necessary
handle through which COOL functions and language extensions can be identified. For example, the MACRO
and template keywords are defined in a top-level header file with:

#pragma defmacro MACRO "macro" delimiter=} recursive
#pragma defmacro template "template” delimiter=}

The implementation of the macro expander program may be either external or internal to the preprocessor. Fun-
damental COOL macro-expanders are implemented internal to the COOL preprocessor for the sole reason of
providing a more efficient execution profile to reduce compile time for the application programmer. When the
preprocessor encounters a defmacro declaration in the source code, it searches first for an executable file named
program on the same search path as that used for include files. If a match is not found, it then searches for pro-
gram in an internal preprocessor function table. If a match is still not found, an error is reported indicating that
the macro expander could not be found. This search order allows an internal preprocessor definition to be over-
ridden by an external one.

When a defmacr o name is successfully recognized, the name and all following characters upto and including the
delimiter character (including all matching and nested levels of {} [] () <> "" '’ and comments found along the
way) are piped into the standard input of the macro expander program. The expander program performs what-
ever function(s) is appropriate and the resulting massaged character stream is piped back onto the standard out-
put of the macro expander. This output stream is scanned as new input by the preprocessor for any further pro-
cessing that might be necessary. The original text in the source file is replaced with the preprocessor output
before being sent onto the C++ compiler. The expansion replacing a defmacro name in the source code is C++
2.0 syntax acceptable to any conforming C++ trandator or compiler [4].

3. The MACRO Keyword

The COOL MACRO keyword provides a powerful and flexible macro capability used to implement and sim-
plify many of the features and functions contained in the library. A defmacro named MACRO (all uppercase)
provides an enhanced #define macro that supports multi-line, arbitrary length, nested macros and cpp-directives
with positional, optional, optional keyword, required keyword, rest, and body arguments. MACRO has the fol-
lowing syntax:



MACRO name ( parmlist ) { body }
parmlist := [KEY: | REST: | BODY:] identifier [= identifier] [, parmlist]

where name is the name of the macro, parmlist is a list of parameters separated by commas, and body is the
code which replaces the MACRO reference. The parmlist specification allows positional, keyword, rest, and
body parameters to be identified by the programmer. The positional and keyword parameters may be required
or optional. Optional parameters are supported by use of an equal sign followed by an identifier that specifies
the default value. All the optional positional parameters must follow all of the required positional ones.

When KEY:: is specified in the parmlist, all parameters which follow are keyword parameters. Keyword param-
eters are position-independent parameters. A keyword parameter is provided a value in an argument list by sup-
plying the keyword name followed by an equal sign and the argument value. REST: in the parmlist indicates
that the remaining parameters are referenced by one named identifier. An optional equal sign followed by an
identifier sets the identifier after the equal sign to the number of arguments remaining. Finally, BODY: in the
parmlist indicates that the parameter which follows is expanded to include al the source code within the braces
after the MACRO call. This is useful for passing a source code fragment onto other nested MACROs. Exam-
ples of these three types of arguments are given below.

3.1. MACRO Examples

The following examples show some of the power and flexibility of MACRO. This first example uses both posi-
tional parameters and keyword parameters.

MACRO set_va (size, value=NULL, KEY: low=0, high) {
init (size, value, low, (high-low))
}

set_val has three parameters. size is a required positional parameter, value is an optional positional parameter
that if not specified in a particular call has a default value of NULL, low is an optional keyword parameter with
a default value of 0, and high is a required keyword parameter. In this example, the expansion calls the func-
tion init with four arguments. The following shows several expansions of set_val.

set_val (0, high=20) > init (0, NULL, 0, (20-0))
set_val (0, low=5, high=15) -—> init (0, NULL, 5, (15-5))
set_val (1, 2, high=25) > init (L, 2, 0, (25-0))

The next example uses the REST: parameter. Note that there are two MACROSs defined: build_table calls
build_table internal to do most of the work.

MACRO build_table (name, REST: rest) {
char* name[] = { build_table internal(rest) NULL}

}
MACRO build_table internal (first, REST: rest=count) {
#irst,
#if count
build_table internal (rest)
#endif
}

build_table has two parameters. name is the name of the table of char*’s and rest refers to al the remaining
arguments. build_table calls build_table internal passing its rest argument. Note that this call is embedded
within the initialization braces of the table and is followed by a NULL. In build_table internal, first is set to
the first argument of the rest argument list in the invoking macro call, and the remaining count arguments are
left in rest. build_table internal uses the ANSI # character on first to double quote the value. A conditional
clause tests count to see if there are remaining arguments. If count is non-zero, the macro is called recursively
with the remaining arguments. When there are no more arguments, build_table regains control and appends the
NULL character and closing brace to the result of build_table internal.



A sample use of build_table is shown below to illustrate the construction of a NUL L-terminated table contain-
ing character strings. The first line shows the macro call and the second shows the resulting expansion.

build_table (table, 1,2,3,4,5,6,7);
expands to:
char* table[] = {"1", "2", "3", "4", "5", "6", "7", NULL};

This last example uses the BODY': parameter and also takes advantage of the current position feature found in
the COOL container classes [2]. This is used to implement a general purpose loop macro similar to that found in
Common LISP [5].

MACRO LOORP (type, identifier, object, BODY: body) {
{ type identifier;
for ( object.reset(); object.next(); ) {
identifier = object.value();
body
}
}
}

LOOP has four parameters: type is the type of each element in a container class (such as, int), identifier is the
name of a variable to be declared of the given type, object is the name of a container class instance, and body is
the body of code to apply on each element in the container object. A specific example for the parameterized
List<int> class is shown below.

extern List<int> listl;
LOORP (int, varl, listl) { cout << varl; }

expands to:

extern List<int> listl;
{ int varl,
for (listl.reset(); listl.next(); ) {
varl = listl.value();
cout << varl;
}
}

In this example, listl is an instance of List<int> which is a container class representing a list of integers.
LOORP takes this list object and iterates through the elements, assigning each to a temporary integer variable
varl and printing its value. The net result will print all elements in the list.

4. COOL Parameterized Templates

One of the main uses of the COOL macro facility is the implementation of template, DECLARE and IMPLE-
MENT for supporting parameterized templates. The syntax of the template grammar is that as specified by
Stroustrup in his paper, Parameterized Types for C++ [6]. COOL fully implements this functionality such that
there will be minimal source code conversion necessary when this feature is finaly implemented in the C++
language. COOL provides templates for a number of parameterized classes (such as, Range and Iterator) and
container classes (such as, Vector, List, Binary _Tree and Hash_Table) which are described in COOL User’s
Guide [3].

4.1. The template Keyword

The template keyword provides a mechanism for defining parameterized classes. A parameterized class is a
type-independent class. A typical use is a container class where the type of the contained object is specified at
compile-time. For example, vectors can be declared to hold a specific type of element, such as, a vector of
integers or a vector of doubles, from a single parameterized class, Vector <type>.



-5-

A template is divided into the declarative part and the implementation part of a class. The declarative part may
occur many times in an application and is analogous to including a header file for a class which contains the
class definition and its inline member functions. The implementation part is analogous to the file that contains
the source code implementing the member and friend functions of the class. COOL provides four variations of
template for these two parts:

template <class type [, parms]> class name<type>{ class description };
Defines the class template for the declarative part of the name class.

template <class type [, parms]> inline result name<type>::function { ... };
Defines an inline member function for the declarative part of the name class.

template <class type [, parms]> result name<type>::function { ... };
Defines a member function for the implementation part of the name class.

template <class type [, parms]> name { anything };
Defines anything else associated with a template for the name class.

This last form is used to define such things as typedefs or friend functions of a parameterized class. When this
form is found before the class template, the contents are expanded before the class definition. When this form is
found after the class template, the contents are expanded as part of the class implementation. Note that this
form is not part of the parameterized type syntax described by Stroustrup [6]. Rather, it is something we found
lacking in the original proposal and found very useful in several COOL container classes for defining predicate
types for the class under C++ 2.0. Another use of this form is to provide automatic declarations of nested
parameterized classes, that is, to declare a parameterized class for a class template which is itself derived from
another parameterized class template.

Each variation of template allows additional optional parameters with the following syntax:
parms ::= type name [= valug] [, parmg|
where type is the type of the parameter, (such as, class or int); name is the name of the parameter that is substi-
tuted when template is expanded; and value is the default value of parameter name.
The following is an example of template for the class, Vector <type>.

template <class Type> Vector { /I predicate functions
typedef int (*Vector ## Typet## Predicate) (const Type&, const Type&);
typedef Boolean (*Vector_##Type## Compare) (const Type&, const Type&);

H
template <class Type> class Vector<Type>{ // Parameterized Vector class
private:
Type* v; Il Vector of pointer to Type
int num_elements; /I Element count
int size; /I Size of vector object
public:
Vector<Type> (); /Il Empty constructor
Vector<Type> (int); /I Constructor with size
Vector<Type> (const Vector<Type>&); /I Constructor with reference
Vector<Type> (); /I Destructor
inline Type& operator[](int n); /I Operator[] overload for Type

/I ... other member functions ...



template <class Type> I/l Overload operator []
inline Type& Vector<Type>::operator[] (int n) {
return this->v[n];

}

template <class Type> /I Constructor with size
Vector<Type>::Vector<Type> (int n) {

this->v = new Type[n];

this->size = n;

this->num_elements = 0

}

/I ... other member functions ...

4.2. An Initial Programmer Interface: DECLARE and IMPLEMENT

As stated earlier, a template for a parameterized class is divided into a declarative part and an implementation
part. In our first attempt at implementing parameterized template support, the programmer creates instances of a
parameterized class using DECLARE to expand the declarative part and IMPLEMENT to expand the imple-
mentation part. DECLARE defines the parameterized class for a specific type and IMPLEMENT generates the
member functions supporting this type-specific class. DECLARE must be used in every file that includes or
makes use of the parameterized class. IMPLEMENT must be used only once in the application for each type
over which the class is parameterized; otherwise the linker will generate errors about multiple versions of the
same member functions. For example, to create a vector of doubles, the following would be used:

#include <Vector.h>
DECLARE Vector<double>;
IMPLEMENT Vector<double>;
Vector<double> vs(30);

DECLARE expands to code which defines a vector class of doubles and its associated inline member functions.
IMPLEMENT causes a class definition with its associated member functions to be generated and expanded in
the file. When compiled, this causes the class Vector_double to be declared and defined. One drawback of the
use of IMPLEMENT, however, is the fact that the entire class with all its member functions is generated and
linked into the program image, even if the programmer only requires the use of two or three member functions.
This problem can be avoided by the use of the COOL C++ Control Program (CCC) discussed below. Continu-
ing with the example above, the template for the Vector <type> class for doubles would expand to the following
code:

/I predicate functions
typedef int (*Vector_double Predicate) (const double&, const double&);
typedef Boolean (*Vector_double Compare) (const double&, const double&);

class Vector_double { /I Parameterized Vector class
private:
double* v; /I Vector of pointer to double
int num_elements; /I Element count
int size; /I Size of vector object
public:
Vector_double (); /I Empty constructor
Vector_double (int); /I Constructor with size
Vector_double (const Vector_double&); /I Constructor with reference
[Wector_double (); /I Destructor

inline double& operator[](int n); /I Operator[] overload for double



/I ... other member functions ...

// Overload operator []
inline double& Vector_double::operator[] (int n) {
return this->v[n];

}

/I Constructor with size
Vector_double::Vector_double (int n) {
this->v = new double[n];
this->size = n;
this->num_elements = 0

}

/I ... other member functions ...

Vector_double vs(30);

Declarations of nested parameterized types and the use of non-type arguments in a template definition are also
supported. For example, it is possible to declare a vector of vectors of ints with Vector<Vector<int>>. In addi-
tion, a class template derived from another class template is supported, that is, a type parameter in one template
class can be used to declare another class template of that type. For example, the COOL Association<T1,T2>
class is a parameterized container class that takes two type arguments, T1 and T2. The header file for this class
has the following templates.

template <class T1, T2> Association {
DECLARE Pair<T1, T2>; Il Declare Pair object type
DECLARE Vector<Pair<T1, T2>>; /I Declare Vector of Pairs

...
/I Association<T1,T2> class definition here

template <class T1, T2> Association {
IMPLEMENT Pair<T1, T2>;
IMPLEMENT Vector<Pair<T1, T2>>;

}

By using template in this manner, DECLARE for the Association<T1,T2> class invokes DECLARE on the
correct types for the Pair<T1,T2> and Vector<Type> classes. Likewise, IMPLEMENT for the
Association<T1,T2> class invokes IMPLEMENT for the Pair<T1,T2> and Vector <Type> classes.

Non-type arguments as template parameters are used to provide guidelines to be used when a template is
expanded. For example, the N_Tree<Node, Type,nchild> class in COOL takes as arguments a node type (either
gtatic or dynamic), a type specifying the value-type each node will hold, and an argument that specifies the
number of initial subtrees (or children) each node is to have. The node argument is itself the name of a
parameterized class and a nested parameterized template definition is automatically generated based upon the
supplied type and number arguments. As such, a single template can be used to generate several different classes
with different behaviors and features.



-8-

4.3. A Revised Programmer Interface: COOL C++ Control Program (CCC)

The DECLARE and IMPLEMENT macros discussed above were the first programmer interface implemented
for parameterized template support. We soon discovered, however, that this macro expansion mechanism had
two serious problems. First, the type over which a class was parameterized would have to support all operators
used in the template, even if not applicable or needed. For example, the COOL List<Type> class has several
member functions that use operator<. However, if what the programmer needs is a list of window objects and
does not ever use List<Type> member functions that require operator<, compile-time errors from the offending
functions that got macro-expanded are nevertheless generated. Second, with the simplistic linkers available on
many operating systems today, an application gets all of these member functions linked into the executable
image. Typically, an application uses only a small percentage of the member functions of a parameterized class.
The remaining unused member functions are useless overhead, increasing program size and memory require-
ments.

A revised programmer interface for parameterized templates was implemented to resolve these problems and
centers around a new program to be used as the main interface between the user and the preprocessor/compiler
in a make file. This program, the COOL C++ Control program (CCC), augments the standard CC script. For
most operations, user options and command line arguments are passed straight through to the underlying CC
program. However, when the -X option is specified, the CCC program goes to work in the following manner.
As Stroustrup[6] suggested, -X"Foo<Bar>" is used on the command line to indicate that the programmer wants
to parameterize class Foo<Type> over some type Bar. Additional options for include file search path and a
user-defined library archive are required as described below. CCC finds the header file(s) implementing class
Foo and type Bar, then proceeds to define that type for the compiler. It then fractures the implementation of
this new type along template boundaries, placing each non-inline member function in a separate source file,
compiling it, and putting the resulting object file in a user-specified library archive. If a particular operator is
not defined for the type over which the class is parameterized (as with the example of operator< above), a com-
pile time error for that one file is generated. However, the remaining member functions, one in each fractured
template, are still compiled and added to the user library.

For each parameterized class in an application, CCC fractures the parameterized class definition along template
boundaries, causing each template specifying a member function of the parameterized class to be compiled into
a separate object file. These separate object files are then added to an application-specific object library. Since
each member function is in its own object module in the library, only those member functions actually used in
the application are linked into the final executable image. To use CCC, the programmer specifies a library
name, one or more header files containing templates, and specific parameterized classes as command line argu-
ments to CCC. Other arguments are passed on unchanged to the C++ compiler and system linker. A single
invocation of CCC can either process a parameterized class type or compile a C++ source file, but not both.
For example,

CCC -lapp -c List.h String.h -X "List<String>"

expands the template for alist of strings. The resulting object files from the fractured parameterized List<Type>
class are stored in the library, libapp.a. The -c option is passed to the compiler to indicate that it should not
continue with the link phase. The library archive libapp.a is added to the list of libraries specified in the make
file to be searched during the link step.

The net result is a library archive containing object files, each implementing one member function for the
parameterized class and type. This process solves the two problems identified above with the use of the macros
DECLARE and IMPLEMENT. First, operators not defined for a type cause compile-time errors on that one
file. Once a parameterized class has been implemented and provided in a library, compile errors will only occur
when atype is selected that does not have all operators implemented. The user of the class will see these, and if
the member function in question is required, he can add that necessary operator to the type class. Second,
only member functions actually used in an application are linked into the final executable image.



4.4. Future Improvementsto CCC

CCC essentially provides a more sophisticated version of the IMPLEMENT macro discussed above. However,
the programmer is till required to place the DECLARE macro in the appropriate files. One option under con-
sideration to resolve this problem is the use of a command line switch similar to the +e0/+el switchs on the
AT&T cfront trandator. Under this scenario, the equivalent of the +e0 option would be used to declare the type
for a parameterized class and generate the inline member functions (as the DECLARE macro does) but not to
generate the remaining member functions. The programmer would use the equivalent of the +el option on one
source file to cause the remaining non-inline member functions to be generated and placed in a library archive.

A second problem with CCC concerns the specification of nested parameterized classes. A programmer should
be able to use -X"Vector<List<int>>" on the command line to specify creation of nested parameterized classes.
Currently, CCC does not handle this case appropriately. A more sophisticated command line parser should be
able to recognize and implement nested types before trying to expand the outer most parameterized class.

5. Conclusion

The COOL macro facility provides a mechanism to implement significant language features and extensions for
C++ that are unavailable with current language implementations. The macro facility is implemented in an
enhanced preprocessor that is both efficient and portable, thus allowing for delivery of enhanced language
features on many platforms. This macro extension is at the heart of the parameterized templates functionality.
CCC is usad in place of the norma procedure for controlling the compilation process. It provides all of the
functionality of the original CC program with additional support for the COOL preprocessor and parameterized
type expansion. Finally, the preprocessor provides an ideal mechanism for quickly prototyping and testing addi-
tional language functions and syntax without requiring access to or modification of a compiler.

6. Status of COOL

Texas Instruments has been using the enhanced macro facility and the implementation of parameterized tem-
plates internally on severa projects for the last year. Many classes and programs have been successfully
designed and implemented, taking full advantage of the power of parameterized templates and the enhanced
macro facility. In particular, we have found that the use of a class library supplying many basic parameterized
container classes significantly increases the productivity of the programmer, enabling applications to be proto-
typed in a shorter time period than might otherwise be possible. COOL is currently up and running on a Sun
SPARCstation 1 (TM) running SunOS (TM) 4.x, a PS/2 (TM) model 70 running SCO XENIX[O 2.3, a PS/2
model 70 running OS/2 1.2, and a MIPS running RISC/os 4.0. The SPARC and MIPS ports utilize the AT&T
C++ trandator (cfront) version 2.1 and the XENIX and OS/2 ports utilize the Glockenspiel trandator 2.0a with
the Microsoft C 6.0 compiler.

The COOL preprocessor source code is available in compressed tar(1) format in the file /pub/cpp.tar.Z via
anonymous FTP from CSC.TI.COM (128.247.159.141). Permission is granted to any individual or institution to
use, copy, modify, and distribute this software, provided that all copyright statements and permission notices are
maintained, intact, in al copies and supporting documentation. Texas Instruments Incorporated provides this
software "as is" without express or implied warranty.

7. References

[1] Brian Kernighan and Dennis Richie, The C Programming Language, Second Edition, Printice-Hill, Engle-
wood Cliffs, NJ, 1988.

[2] Mary Fontana, Martin Neath and Lamott Oren, COOL - A C++ Object-Oriented Library, Information
Technology Group, Austin, TX, TI Internal Document, Original Issue January 1990.

SunOS and SPARCstation 1 are trademarks of Sun Microsystems, Inc.
PS/2 is a trademark of International Business Machines Corporation.
XENIX is aregistered trademark of Microsoft Corporation.



(3]

[4]

(5]
(6]

-10 -

Texas Instruments Incorporated, C++ Object-Oriented Library User’'s Manual, Information Technology
Group, Austin, TX, Tl Internal Document, Original Issue January 1990.

AT&T Incorporated, C++ Language System Release 2.0, AT&T Product Reference Manual Select Code
307-146, 1989.

Guy L. Steele Jr, Common LISP: The Language, Second Edition, 1990.

Bjarne Stroustrup, Parameterized Types for C++, Proceedings of the USENIX C++ Conference, Denver,
CO, October 17-21, 1988, pp. 1-18.



