** DRAFT **
Symbols and Packages in C++
** DRAFT **

Mary Fontana
LaMott Oren
Dane Meyer

Texas Instruments Incorporated
Computer Science Center
Dallas, TX

Martin Neath

Texas Instruments Incorporated
Information Technology Group
Austin, TX

ABSTRACT

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes,
templates and macros for use by C++ programmers writing complex applications. Symbolic
computing in COOL is one component of this library that substantialy improves the develop-
ment capabilities available to the programmer by providing symbol and package manipulation
and runtime type checking and type query. This paper will focus on the implementation and
sample usage of symbols and packages.

** Note that currently this paper describes the implementation of symbols and packages in a
very technical reference format. We are in the process of modifying it to place more
emphasis on why a programmer would want to use this capability in object oriented C++ pro-
grams. This will include example situations, usage, and comparison with other alternatives,
in addition to the current reference material. **

1. Introduction

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes, templates and macros for
use by C++ programmers writing complex applications. An important feature of this library is the symbolic
computing capability which provides symbol and package manipulation and runtime type checking and query.
This paper will describe the symbol and package mechanism. Symbols and packages make extensive use of the
COOL macro facility. This macro facility, implemented as an extension to the ANSI C preprocessor, provides
the ability to define powerful extensions to the C++ language in an unobtrusive way. For a full discussion of
this macro facility, see the paper A Portable Implementation of Parameterized Templates Using A Sophisticated
C++ Macro Facility, [5]. For details on the runtime type checking capability in COOL, see the paper, A Run-
time Type Checking and Query Mechanism for C++ [4]. For an overview of the COOL class library, see the
paper, COOL - A C++ Object-Oriented Library [1]. For complete details, see the reference document, COOL
User’s Guide [6].

The ability to manipulate symbols and packages is is found in Common LISP [7] but is unavailable in the C++
language. COOL supports efficient symbolic computing by providing symbolic constants and run-time symbol
objects. Dynamic user-defined packages support symbol storage, query and modification at run-time and are

available via an easy-to-use programming interface.

2. Symbol and Package

The Symbol class implements the notion of a symbol object that has a name, value and property list. Symbols
are interned into a package, which is merely a mechanism for establishing separate name spaces for groups of
symbols. The Package class is implemented as a hash table of symbol objects and includes public member
functions for adding, retrieving, updating and removing symbols. It also provides "Emacs' style completion,
"InterLisp" style spelling correction, and "apropos’ (which finds a symbol whose name contains a specified sub-
string) on the symbol names. Because symbols are unique within their own package, they can be used as
dynamic enumeration types as well as run-time variables defined at run-time.

In addition to dynamic, run-time symbols, the COOL DEFPACKAGE mechanism makes it possible to define
constant pointers to symbols at compile-time. These compile-time symbols are interned in their package at
application startup time. For example, the SYM package and ERR_MSG package in COOL are initialized in
this manner. This mechanism allows for highly efficient symbol and package manipulation and is used exten-
sively by COOL to implement run-time type checking and query capabilities.

3. DEFPACKAGE

DEFPACKAGE allows declaration of a package which contains only constant symbols with associated default
values and properties. This is useful when the application needs to set up a table of symbols where all informa-
tion is known at compile time. This saves the run-time overhead associated with the Package class. An appli-
cation declares a new type of constant package with the following statement:

DEFPACKAGE name <file> options

where name is the name of the package to create, file is the name of the file where symbol definitions in the
package are kept, and options are optional control parameters separated by commas. The list of options avail-
able is shown below.

count = identifier
Defines identifier as a symbolic name constant. If specified, the package file will include
"#define identifier num", where num is the total number of symbols defined in the package at
compile-time. The default is to not define this constant.

use first = num
When num is non-zero, the first value defined for a symbol is the one used. Redefinition attempts
are ignored. This option is used by ONCE_ONLY. The default is 0.

start = num
Use num as the starting (first) index of symbols in the package. The default is 0.

increment = num
Increment each symbol index in package by num. The default is 1.

template = num
Inclusive-or each symbol index in package with num. The default is 0.

max = num
When num is non-zero, generate an error when the number of constant symbols in the package
exceeds num. The default is O.

nospace = num
When num is non-zero, remove al whitespace from symbol names. The default is 0.

case = upper | lower | cap | sensitive
upper and lower converts all symbol name aphabetical characters to uppercase and lowercase,
respectively. cap capitalizes the first letter of each symbol name, and convert remaining letters to
lowercase. sensitive preserves the case of the symbol name and is the default.

DEFPACKAGE builds an internal package table entry based on its parameters. The package entry gets further

-3-

updated with symbols specified throughout the program with DEFPACKAGE_SYMBOL.

4. DEFPACKAGE_SYMBOL

DEFPACKAGE_SYMBOL adds, updates and retrieves the values and properties of constant symbols. It is
implemented as a COOL defmacro [2] and has the following syntax:

DEFPACKAGE_SYMBOL (package, symbal, [type], [valug], [property], [expander])

where package is the name of the package that the symbol belongs to, symbol is the name of the symbol being
added or accessed, type is the optional data type of the value, value is the optional value of the symbol or pro-
perty, property is the optional name of the property, and expander is the name of an optional user-defined macro
which is to be invoked in place of the default expansion of DEFPACKAGE_SYMBOL. The expander will be
called by DEFPACKAGE_SYMBOL with the following arguments:

expander (index, symbol, type, value)

where index is the index number of symbol in the package, and expander, symbol, type and value are the argu-
ments supplied to DEFPACKAGE_SYMBOL.

DEFPACKAGE_SYMBOL causes a macro definition unique to the specified package to be written to the pack-
age definition file. The <package> DEFINITIONS macro expands to macro calls which define the symbols, set
the symbol values, and set the symbol propertiess Each DEFPACKAGE_SYMBOL would generate a
define_macro, value_macro or property_macro in the package definition file.

MACRO package#t DEFINITIONS (define_macro value_macro property_macro) {
define_macro (index, name)
value_macro (index, type, value)
property_macro (index, property, type, value)

For example, the SYM package is defined with DEFPACKAGE. It's symbols will be stored in the file,
sym_package.p. The named constant, SYM _count, will contain the total number of symbols in the SYM pack-
age. The case of each symbol is preserved. A symbol’'s value may be updated. Zero is the starting index for
the package. No increment or inclusive-or is done on the symbol’s index. Finally, there is no limit on the max-
imum number of symbols allowed in this package.

DEFPACKAGE SYM <sym package.p> count=SYM _count, case=sensitive, use first=0,
start=0, increment=1, template=0, max=0

Shown below, SYM is a macro defined to add a symbol name to the SYM package. expand_sym is the
expander macro for SYM which replaces occurrences of SYM with the symbol table entry of the symbol.
SYM_symbols is an array of pointers to Symbol objects and is initialized with the symbol names found in the
file sym_package.p.

Symbol* SYM_symbols [SYM_count];
#define expand_sym (index, symbol, type, value) (SYM_symbolg[index])

MACRO SYM (symbal) {
DEFPACKAGE_SYMBOL(SYM, #symboal,,,, expand_sym)

}
COOL supports run-time type query by using the SYM package to store al class name which inherit from the

Generic class. The class defmacro in COOL uses the SYM macro to add a derived Generic class to the SYM
package. An application uses SYM to access a symbol in the SYM package.

Generic* obj;

obj->is type of (SYM(Error));
expands to:

Generic* obj;

obj->is type_of (SYM_symbolg[1]);

Each DEFPACKAGE_SYMBOL adds or updates a symbol table entry and optionally sets either the symbol’s
value or property. After the symbol table is built, the package is written into the package definition file
specified in DEFPACKAGE. How this package file of symbols is loaded into the application depends on the
type of package being created.

Several macros in COOL simplify the process of creating, accessing and initializing a package at run-time.
ENUMERATION_PACKAGE, SYMBOL_PACKAGE, TEXT_PACKAGE and ONCE_ONLY create a
specific type of package, define macros which are used to add symbols to the package and update their values
and properties, and define the run-time initialization of the package.

Examples

(1) Assuming the SYM package was created with:

DEFPACKAGE SYM <SYM> name=sym_package.p, count=SY M_count, case=sensitive,
start=0, increment=1, template=0, max=0

and the macro SYM is used to add a symbol to the SYM package:
#define expand_SYM (index, symbol, type, value) (SYM_symbolg[index])

MACRO SYM (symbol) {
DEFPACKAGE_SYMBOL (name, #symbol,,,, expand_SYM)
}

In an application program:
SYM(Exception); SYM(Warning); SYM(Error); ... SYM(Random);
would expand to:
SYM_symbolg[0]; SYM_symbolg[1]; SYM_symbolg[2]; ... SYM_symbolg35];

and the following would be included (by the COOL preprocessor) in the sym_package.p file for the SYM pack-
age:
#define SYM_count 36

MACRO SYM_DEFINITIONS (define_macro, value_macro, property_macro) {
define_macro (0O, "Exception™)
define_macro (1, "Warning")
define_macro (2, "Error")

define_macro (35, "Random")
}

In COOL, the SYM package would be initialized with the symbols found in the sym_package.p file by using the
implement_symbol_package macro in the application program. implement symbol package uses
SYM_DEFINITIONS to create an instance of Package for SYM.

implement_symbol_package(SY M, "sym_package.p")

-5-

(2) Assuming the Once_Only package was created with:

DEFPACKAGE Once_Only <Once_Only> name=once_only.p, count=, case=sensitive,
gtart=0, increment=1, template=0, max=0

the following shows what would be included in the once_only.p file for the Once_Only package:

MACRO Once_Only_DEFINITIONS(define_macro, value_macro, property_macro) {
define_macro (O, String_Support)
value_macro (0, char*, "vtbl.C")

define_macro (22, List_Support)
value_ macro (22, char*, "Base List.C")

}

(3) The following shows how the ENUMERATION_PACKAGE macro is implemented using DEFPACKAGE
and DEFPACKAGE_SYMBOL:

MACRO enumeration_package (name, file, REST: options) {
DEFPACKAGE name file options
#define expand_## name (index, symbol, type, value) index
#define name (symbol) DEFPACKAGE_SYMBOL (name, symboal,,,, expand_##name)

5. ENUMERATION_PACKAGE

ENUMERATION_PACKAGE is a smple interface to the DEFPACKAGE facility for creating and accessing
a package of constant, compile-time symbols. Enumeration symbols have no value. When a symbol is refer-
enced, its index is returned. Symbols in an enumeration package can be used anywhere a standard enum can be
used. Enumeration symbols are easier to add then enums since they are collected throughout the application
source base and maintained in a separate file.

ENUMERATION_PACKAGE isa COOL MACRO [2] and has the following syntax:

ENUMERATION_PACKAGE (name, file, REST: options)

where name, file and options are parameters that are passed on to DEFPACKAGE and
DEFPACKAGE_SYMBOL. The macro name(symbol) is automatically defined to add symbol to the name
package if it does not exist and return the index of symbol in name package.

Example

In the example below, the FONT package is created with ENUMERATION_PACKAGE. fg 13, fg_25 and
vg 13 are symbols in this package. FONT(fg_13), FONT(fg_25), and FONT(vg_13) expand to 1, 15, 22,
respectively and are the 1st, 15th and 22nd element in the FONT package, respectively.

ENUMERATION_PACKAGE (FONT, "font_package.h");
if (f == FONT(fg_13) || f == FONT(fr_25)) do_fixed_width_font();
else if (f == FONT(vg_13)) do variable width font();

expands to:

if (f==1]f==15) do_fixed_width_font();
else if (f == 22) do_variable width font();

6. TEXT_PACKAGE

TEXT_PACKAGE is a simple interface to the DEFPACKAGE facility for creating and accessing a package
containing symbols whose default value is the same as its symbol name. For example, all error messages in an
application could be implemented as text symbols and the symbol definition file for this text package would then
contain a summary of all the messages. The message text can be substituted with another version (perhaps in
another language) at run-time. The COOL error message facility [3] is implemented in this manner.
TEXT_PACKAGE is implemented with MACRO and has the following syntax:

TEXT_PACKAGE (name, file, REST: options)

where name, file and options are parameters that are passed on to DEFPACKAGE and
DEFPACKAGE_SYMBOL. The macro name(symbol) is defined to add and retrieve symbol from the name
package. If symbol has not already been added to the package, it is added and the char* value is returned. If
symbol is aready present in the package, the existing char* value is returned.

Example

In the following example, after creating the ERR_MSG package with TEXT_PACKAGE, the ERR_MSG
macro is used to add and retrieve error message symbols. ERR_MSG expands to the current trandation of the
error message in the ERR_MSG_entries table. This table is initialized at run-time with the compile-time error
message strings found in the err_package.p file.

TEXT_PACKAGE (ERR_MSG, "err_package.p");
ERR_MSG("String::resize(): Invalid size %d");

expands to:
ERR_MSG_entrieq37].value;
and is the 37th symbol and contains the default value of "String::resize(): Invalid size %d".

7. SYMBOL_PACKAGE

SYMBOL_PACKAGE is a smple interface to the DEFPACK AGE facility for creating and accessing a pack-
age which contains symbols whose values can be assigned at run-time. Entries in a symbol package are pointers
to Symbol objects. Symbols known at compile time are interned in their package at application startup time and
additional symbols are added at run-time. Symbols may have a value and a set of properties. If not specified,
the value and properties are non-existent, that is, no space other than storage for a NULL pointer is allocated for
them in atable. SYMBOL_PACKAGE isa COOL MACRO [2] and has the following syntax:

SYMBOL_PACKAGE (name, file, REST: options)

where name, file and options are parameters that are passed on to DEFPACKAGE and
DEFPACKAGE_SYMBOL. SYMBOL_PACKAGE creates a package and defines three macros for use in
adding, updating, and retrieving symbols in this package. The macro name(symbol) adds or retrieves symbol
from the name package. The macro DEF_name adds or updates the value of a symbol in the name package.
The macro DEF_name_PROPERTY adds or updates a property of a symbol in the name package.

Example

The SYM package could be created using SYMBOL _PACKAGE:
SYMBOL_PACKAGE (SYM, "sym_package.p")
and the following macros for accessing the SYM package would be defined:
SYM (name)

Adds the specified symbol name to the SYM package, if not already defined. Returns a pointer to a
Symbol object. For example, SYM(foo) adds the symbol name, foo to the SYM package and

expands to & SYM_symbolg[37].

DEF_SYM (name, type, value)
Sets the specified symbol name in the SYM package with the specified value and type. For exam-
ple, DEF_SYM (foo, String, String("Greetings!")); sets the value of symbol foo to the string
"Greetings!".

DEF_SYM_PROPERTY (name, property, type, value)
Sets the named property of the symbol name in the SYM package with the specified type and value.
For example, DEF_SYM_PROPERTY (foo, value-type, Symbol, SYM (String)); sets the value-
type property of symbol foo to the symbol String.

8. ONCE_ONLY

ONCE_ONLY provides a simple interface to the DEFPACK AGE facility to allow an application to control the
processing of a section of code. This is useful in an application where a function or table is referenced in several
source files and needs to be defined the first time it is referenced. ONCE_ONLY isa COOL MACRO [2] and
has the following syntax:

ONCE_ONLY (symbol) { body }

where symbol is the name of a symbol and body is the body of code to insert in the source only once. symbal is
used to ensure that body is compiled only once. symbol is added to the ONCE_ONLY package and its initial
value is the file name where symbol was first defined. When symbol is encountered and its current value is the
same as the current file, then the body of code is compiled. If symbol is found in a different file, then the code
is not inserted into the source stream.

Example

The AUTO_DECLARE macro defined below insures that IMPLEMENT is called only once in an application
using a parameterized type. It would be used instead of DECLARE and IMPLEMENT and would be included
in every source file that references the parameterized type.

MACRO AUTO_DECLARE(class, type) {
DECLARE class<type>;
ONCE_ONLY (Implement_#fclass ##type) {
IMPLEMENT class<type>;
}
}

AUTO DECLARE (List, int);
List<int> list1;

9. Status of COOL

Texas Instruments has been using the symbolic computing capability in COOL for the last year. Applications
have utilized COOL symbols, packages, and run-time type checking and type query of Generic-derived class
objects. In addition, the COOL exception handling facility [3] takes advantage of the run-time type checking of
exception objects.

COOL is currently up and running on a Sun SPARCstation 1 (TM) running SunOS (TM) 4.x, a Tl System 1500
running Tl System V, a PS/2 model 70 running SCO XENIXO 2.3, a PS2 (TM) model 70 running OS2 1.1,

SunOS and SPARCstation 1 are trademarks of Sun Microsystems, Inc.
XENIX is aregistered trademark of Microsoft Corporation.
PS/2 is a trademark of International Business Machines Corporation.

-8-

and a MIPS running RISC/os 4.0. The SPARC and MIPS ports utilize the AT&T C++ trandlator (cfront) version
2.0 and the XENIX and OS/2 ports utilize the Glockenspiel tranglator with the Microsoft C compiler.

10.

(1]

(2]

(3]

[4]

(5]

6]

References

Mary Fontana, Martin Neath and Lamott Oren, COOL - A C++ Object-Oriented Library, Information
Technology Group, Austin, TX, Internal Original Issue January 1990.

Mary Fontana, Martin Neath and Lamott Oren, A Portable Implementation of Parameterized Templates
Using A Sophisticated C++ Macro Facility, Information Technology Group, Austin, TX, Internal Original
Issue January 1990.

Mary Fontana, Martin Neath and Lamott Oren, A Portable Exception Handling Mechanism for C++,
Information Technology Group, Austin, TX, Internal Original Issue January 1990.

Mary Fontana, Martin Neath and Lamott Oren, A Runtime Type Checking and Query Mechanism for C++,
Information Technology Group, Austin, TX, Internal Original Issue January 1990.

Mary Fontana, Martin Neath, and Lamott Oren, A Portable Implementation of Parameterized Templates
Using A Sophisticated C++ Macro Facility, Information Technology Group, Austin, TX, Internal Origina
Issue January 1990.

Texas Instruments Incorporated, COOL User’'s Guide, Information Technology Group, Austin, TX, Internal
Original Issue January 1990.

Guy L. Steele Jr, Common LISP: The Language, Second Edition, 1990.

