
InterViews: A C++ Graphical Interface Toolkit

Mark A. Linton, Paul R. Calder, and John M. Vlissides
Stanford University

Abstract

We have implemented an object-oriented user interface
package, called InterViews, that supports the composi-
tion of a graphical user interface from a set of inter-
active objects. The base class for interactive objects,
called an interactor, and base class for composite ob-
jects, called a scene, define a protocol for combining
interactive behaviors. Subclasses of scene define com-
mon types of composition: a box tiles its components,
a tray allows components to overlap or constrain each
other’s placement, a deck stacks its components so that
only one is visible, a frame adds a border, and a view-
port shows part of a component. Predefined compo-
nents include menus, scrollers, buttons, and text editors.
InterViews also includes classes for structured text and
graphics. InterViews is written in C++ and runs on top
of the X window system.

1 Introduction

Graphical user interfaces are difficult to implement be-
cause of diverse user needs and preferences. Tools that
assist a graphical interface programmer must balance
conflicting requirements carefully. High-level tools can
restrict the variety of interfaces that can be created,
while tools at too low a level may not provide much
help to the programmer.

InterViews (Interactive Views) is a library of C++[5]
classes that can be used to construct a graphical user
interface from interactive components. The design of
InterViews has been driven by three desires: (1) to
avoid constraining the style of the interface, (2) to allow
the interface to be defined by composition of existing
components, and (3) to allow new components to be
derived easily from existing ones.

Like MacApp[4] and Smalltalk MVC[1], the ap-
proach used in InterViews separates interactive behav-
ior from abstract behavior. An interactive object, called

0Research supported by the SUNDEC project through a gift from
Digital Equipment Corporation and a grant from the Charles Lee
Powell Foundation.

0An early version of this paper titled “The Design and Implemen-
tation of InterViews” appears in Proceedings of the USENIX C++
Workshop, Santa Fe, New Mexico, November 1987.

a view, defines the user interface to an abstract ob-
ject, called the subject. The separation of subject and
view supports different views of the same subject to
suit the particular application or to customize inter-
active style. A view can be customized dynamically
using a metaview, a view of another view’s internal
state. For example, a metaview might allow the user
to interactively modify the mapping from keystrokes to
commands in a text view.

Building graphical interfaces from reusable compo-
nents requires the ability to define an interactive object
that can be used in a variety of contexts. To fulfill
this requirement, we must consider the way in which
the characteristics of a component and its context affect
each other.

In InterViews, each interactive component, called an
interactor, has a preferred shape and size. The pre-
ferred shape and size of a composition of components,
called a scene, is calculated from those of the compo-
nents. However, the actual display space allocated to an
interactor might not correspond to its preferred size—
the interactor is responsible for making best use of the
space it has been allocated. Different scenes allocate
display space to component interactors using different
algorithms. For example, a box tiles its components,
but a tray allows them to overlap.

We have implemented InterViews on top of the X
window system[3]. A small set of primitive classes
completely encapsulates the X interface. The remaining
library classes and applications do not contain any X
calls; they call operations defined by the primitives.

2 Class Organization

Figure 1 shows a subset of the InterViews class hierar-
chy. Several factors influenced the structure of the hi-
erarchy. The overriding goal was simplicity—to make
the classes easy to understand, straightforward to imple-
ment, and convenient to extend. From most important
to least important, the factors were:

Shallow Nesting
Classes are a good partitioning mechanism, but
there are drawbacks associated with a large
number of classes. Our experience has been



- 2 -

Painter Sensor Cursor Color Font Brush Pattern

Resource

Interactor

Scroller Panner Button Scene Glue Menu TextEdit

Frame Viewport Box Tray Deck

Figure 1: InterViews class hierarchy

that a large class hierarchy overwhelms pro-
grammers, especially when there are many lev-
els of subclasses. An earlier library had many
small classes nested up to 12 deep. Users of
this library had trouble grasping the many dif-
ferent classes and their inherited behavior. In-
terViews currently has one class nested 5 deep;
most classes are at level 2 or 3. Throughout
the development of InterViews we often chose
to add an operation to an existing class rather
than adding a new class.

Object Sharing
One reason for introducing new classes is to al-
low state to be shared among several objects.
For example, several interactors should be able
to use the same graphics state; therefore, graph-
ics state is a separate class. Similarly, several
graphics states should be able to refer to the
same font, so font is a separate class. The
top set of classes in Figure 1 are subclasses
of resource, because they are shared objects.
Resources contain a reference count that can
be manually incremented. When a resource is
destroyed, the reference count is decremented;

then the resource is deallocated if the count is
zero.

Common Usage
It is often preferable to design for a specific
common case than for the general case. For
example, InterViews does not define a unifying
class for all kinds of menus. Instead, it provides
a particular style, pop-up menus. The advantage
is that a user need not understand a complicated
menu model to use pop-up menus. The dis-
advantage is that there is no direct support for
other kinds of menus, though they are straight-
forward to implement.

2.1 Interactors

All user interface objects are derived from the inter-
actor class. Every interactor has an associated shape
that it uses to specify its desired display space alloca-
tion. Shapes define a natural size, a shrinkability, and
a stretchability. The natural size is the interactor’s pre-
ferred width and height, the stretchability is the amount
by which it is prepared to stretch beyond its natural size,
and the shrinkability is the amount by which it is pre-
pared to shrink. An interactor’s parent scene may use



- 3 -

the shapes of its components to allocate their display
area and to determine its own shape. The actual display
area allocated to a component interactor is assigned to
its canvas. If the interactor is a scene, it may in turn
allocate parts of its canvas to its own components ac-
cording to their shapes. Because the current implemen-
tation is on top of X, canvases are always rectangular
and may overlap.

An interactor defines a set of operations that char-
acterize its behavior. Figure 2 gives the C++ interface
to these operations. The Draw operation defines the
appearance of the interactor. Calling Draw causes the
interactor to display a representation of itself on its can-
vas. If the interactor is a scene, it will also call Draw
on each of its components. Redraw is called when-
ever a part of an interactor needs to be redrawn, perhaps
because it had been obscured but is now visible. The
Update operation indicates that some state on which
the interactor depends may have changed; the interactor
will usually Draw itself in response to an Update call.
Typically, when a subject changes it will call Update
on its views. Reshape provides a way of controlling
an interactor’s shape. If an interactor changes its shape,
it will usually propagate the change to its parent scene.
Resize indicates that the interactor’s canvas has been
changed in size. If the interactor is a scene, it will
reallocate its components’ canvases.

An interactor performs output to its canvas using a
painter. A painter provides drawing operations and
manages graphics state such as foreground and back-
ground colors, font, and fill pattern. Each drawing op-
eration is passed the target canvas. Canvas coordinates
refer to pixels but can be expressed in inches or cen-
timeters by multiplying by the predefined global values
“inch” or “cm”. Also, painters can perform coordinate
transformations composed of translations, rotations, and
scalings.

A sensor defines interest in certain kinds of events.
Interactors interested in input events have a sensor that
defines their current input interest. Each event is tar-
getted to a particular interactor.

An interactor can receive input events in one of two
ways: (1) it can read the next event from the (global)
input queue, or (2) an event can be passed from another
interactor using the Handle operation. The reader of
an event may choose to process or ignore the event, or
to pass it to the event’s target interactor.

A purely event-driven organization, such as in
MacApp, can be produced by using the C++ loop

for (;;) {
Read(e);
e.target->Handle(e);

}

A more traditional control flow, not possible in
purely event-driven systems, can be produced by read-
ing events as part of interactor operations. For example,
when a button is pressed in a pop-up menu it may be
desirable to ignore events for targets other than menu
items. In cases such as this, reading events directly is
more straightforward than an event-driven implementa-
tion.

Most interactors handle input and generate output.
Thus, every interactor has a sensor called “input” and a
painter called “output” for which initial values are de-
fined when the interactor is created. This approach lets
interactors define event interest and graphics state dy-
namically. Interactors can also define additional sensors
and painters. For example, an interactor representing
a menu selection might use one painter when it is not
selected, and another (with reversed colors) to highlight
itself when it is selected.

Scenes often pass “input” and “output” to their com-
ponent interactors, effectively sharing the state among
several interactors. Because the state may be shared, it
is inconvenient to make a particular interactor respon-
sible for destroying the sensor and painter. The sensor
and painter classes are therefore subclasses of resource.
The interactor constructor explicitly increments the ref-
erence counts of “input” and “output”, and the destruc-
tor decrements them.

2.2 Scenes

All interactors that contain component interactors are
derived from the scene class. Scene subclasses differ
primarily in the way their shape depends on the shapes
of their components and in the way they allocate display
space to their components.

Scenes define operations for managing their compo-
nents. The C++ interface is given in Figure 3. Insert
and Remove are used to specify a scene’s components.
An interactor can be a component of only one scene—
the interactor structure is a hierarchy. Some scenes have
only one component; inserting a component implicitly
removes any existing component. Raise and Lower
modify the front-to-back ordering of components within
a scene. Move suggests a change in the position of a
component within the scene. Not all scenes implement
all of these operations. For instance, it does not make
sense to call Raise on a scene that can have only one
component.

The Change operation tells a scene that one of its
components’ shapes has changed. A scene can do ei-
ther of two things in response to a Change: it can



- 4 -

virtual void Resize();
virtual void Draw();
virtual void Redraw(Coord left, Coord bottom, Coord right, Coord top);
virtual void Reshape(Shape&);
virtual void Update();
virtual void Handle(Event&);

Figure 2: Interface to Interactor base class operations

void Insert(Interactor*);
void Insert(Interactor*, Coord x, Coord y);
void Change(Interactor*);
void Move(Interactor*, Coord x, Coord y);
void Remove(Interactor*);
void Raise(Interactor*);
void Lower(Interactor*);
void Propagate(boolean);

Figure 3: Interface to Scene operations

recalculate its own shape and propagate the change by
calling Change on its parent, or it can simply reallo-
cate its components’ canvases based on the new shape.
The Propagate operation is used to specify which
behavior is required for a particular instance.

2.2.1 Box

Many graphical interfaces can be composed by arrang-
ing components side-by-side either horizontally or ver-
tically. The scene subclasses hbox and vbox support
this style of tiled composition. Glue provides a way of
inserting space between the components in a box. This
model is a simplified version of TEX[2] boxes and glue.

A box’s shape is the sum of its components’ shapes.
When allocating its components’ canvases, a box tries
to allocate each component its natural size. If there is a
discrepancy between the available space and the natural
size, a box distributes the excess or shortfall according
to the proportion of the total stretchability or shrink-
ability contributed by each component. For example,
consider a box which contains one interactor whose
shape, expressed as , is

10 2 7 and another whose shape is 15 10 1 . If
the box is given a canvas of size 25, it can allocate each
component its natural size. If the box is given size 19,
then it will shrink the first component by 6 2 12 1
and the second component by 6 10 12 5. If the
box is given size 33, then it will stretch the first com-
ponent by 8 7 8 7 and the second component by

8 1 8 1. A shape which is in effect infinitely
stretchable or shrinkable can be specified by using the
predefined values “hfil” and “vfil.”

Figure 4 illustrates a typical composition using boxes
and glue. The upper part of the figure shows two views
of an alert box that consists of a vbox containing five
components. From the top, they are a piece of glue, an
interactor containing the text of the alert, another piece
of glue, an hbox containing the button, and a final piece
of glue. The hbox is composed of a button with glue
on both sides. By suitable choice of the shapes of the
various components, the layout of the alert box can be
controlled for a range of display sizes. The lower part
of the figure shows that, in this instance, the glue to
the left of the button is made “infinitely” stretchable
and shrinkable, while that to the right is rigid. Thus
when the alert is made wider, all of the extra space is
absorbed by the glue on the left.

Boxes and glue allow flexible specification of the
presentation of a user interface. Many common lay-
out strategies can be expressed easily. For example, a
component can be centered within a box by placing “fil”
glue on either side, or a number of components can be
spaced equally by inserting identically sized glue be-
tween them.

2.2.2 Tray

A composition in which components can be placed at
specified positions is supported by the scene subclass



- 5 -

<0,hfil,hfil> <40,0,0>OK

Figure 4: An example of composition with boxes and glue

tray. A tray has a “background” component that is
allocated all of the tray’s canvas and a number of other
components each of whose position is determined by a
set of individual alignments. If no explicit alignment is
defined for a component, it is assumed to be aligned to
the lower left corner of the tray. Components in a tray
are arranged from back to front in insertion order and
can overlap arbitrarily.

Each alignment of a component interactor is to some
other “target” interactor, often another component of
the tray or the tray itself. The alignment specifies a
point on the target, a point on the component, and the
characteristics of the “glue” with which to connect the
alignment points. The aligned points can be a corner of
the interactor, the midpoint of a side, or the center. The
tray will place each component to satisfy its alignments
as far as possible. The interactor and the connecting
glue will be stretched or shrunk according to their con-
tributions to the total stretchability and shrinkability in
the same manner as components within a box.

Trays provide a natural way to describe layouts in
which components “float” in front of a background.
For example, consider a composition to center a title
near the top of a diagram. Figure 5 shows a possible
layout. The interactor representing the diagram is the
background of the tray, and an interactor containing
the title has been inserted with an alignment from the
midpoint of its top edge to the midpoint of the tray’s
top edge. The natural size of the glue connecting the
aligned points determines the distance of the title from
the top edge of the diagram. Other examples of layouts
easily described using a tray include “pull down” menus
where the menu is aligned to a fixed “menu bar” and

transient “alert boxes” which are often centered atop
another interactor.

2.2.3 Deck

A third style of composition is provided by the scene
subclass deck. Components in a deck are conceptually
stacked on top of each other so that only the topmost
component is visible at a time. A deck takes the shape
of the largest of its components and allocates all of its
canvas to the topmost component. A set of operations
provide the means to “shuffle” the deck to bring the
desired component to the top. The visible component
can also be selected interactively using a scroll bar.

A deck is useful in composing a layout such as a
multi-page document in which each page is represented
by an interactor in the deck. Another use might be to
compose a “dialog” in which there are several alternate
“panels” of options—a deck could be used to switch
between the panels.

2.2.4 Single Component Scenes

Graphical interfaces commonly require interactors that
are best described using another interactor. For exam-
ple, a menu is implemented as a box containing menu
items. However, a menu does not share the behav-
ior of a box in the sense of a subclass; it simply uses
the box to compose the items. This distinction is im-
portant, and it helps simplify the class hierarchy. In
InterViews such interactors are implemented using the
scene subclass monoscene, which can contain only a
single component. A monoscene normally gives all



- 6 -

Figure 5: A layout using a tray

of its display space to the interactor. One subclass of
monoscene, frame, allocates all of its display space ex-
cept for an outline around the interactor. For example,
the alert box of Figure 4 has a frame around the vbox
which composes the inner components. Another sub-
class, viewport, allows its component to be larger than
the available space. Part of the component is visible
through the viewport; how much is visible can be con-
trolled by the user through interactors such as scroll
bars.

2.3 Perspectives

InterViews provides a standard way to handle scrolling,
zooming, and panning operations on an interactor. An
interactor that implements such operations maintains a
perspective. The perspective defines a range of coor-
dinates representing the total extent of the interactor’s
view and a subrange for the portion of the total range
that is currently visible. For example, the vertical range
for a text editor might be the total number of lines in a
file; the subrange would be the number of lines actually
displayed in the editor’s canvas.

Scrolling and zooming are performed by modifying
the interactor’s perspective. An interactor can modify
its own perspective (when the text editor adds a line to
the file, for example), or the perspective can be modi-
fied as a result of an external operation such as a user
request.

A scroller is an interactor that is a view of the per-
spective associated with another interactor. A scroller
displays a sliding bar whose length reflects the fraction
of the total range that is currently visible. The user can
modify the perspective interactively through the scroller
using the mouse.

Other kinds of views of perspectives are also pro-
vided by InterViews: a panner supports movement

in both x and y dimensions from a single interface,
and zoom and scroll buttons allow stepped adjustments.
Several views of the same perspective can exist at once.
For instance, a perspective could be modified by zoom
and scroll buttons in addition to a scroller. When a
perspective is changed, it notifies its views. Thus, a
change made through one view of a perspective will be
reflected in all of its views.

2.4 Buttons

A button is an interactor subclass that is a view of
a button state. The user can “press” a button to set
the associated button state to a particular value. Several
buttons can be visible for the same button state, making
it possible to use buttons to select from a discrete set of
values, each button representing a different value. Like
any subject, a button state notifies its views (buttons)
when it changes.

Three common kinds of buttons are provided. A
push button has a round-cornered rectangle surround-
ing its label. It is drawn in reverse colors when it is
pressed. A push button remains pressed only as long as
the user hold down the mouse button. A radio button
has a circle to the left of its label; the circle is filled
when the button is pressed. A radio button acts like a
tuning button on a car radio. Pressing the button sets the
associated button state to a particular value. The button
will stay pressed until the button state is changed to a
new value, usually by pressing another radio button for
the same button state. A check box has a square to the
left of its label; the square is checked when the button
is pressed. A check box has a “push-on/push-off” ac-
tion. Successive clicks of the mouse button alternately
press and release the check box button. Figure 8 shows
all three types of button composed in a dialog box.



- 7 -

In addition to being attached to a button state, buttons
can be attached to other buttons. If button is attached
to button , then is disabled while is not pressed.
A disabled button ignores input and draws itself “grayed
out” to show that it is disabled.

The button model implemented by the InterViews
library is well suited to a dialog mode of user
interaction—buttons are used to set state variables but
cause no immediate action. Only when the dialog is
dismissed, often with a push button, are the current
values of the state variables examined and interpreted.
Other button models, such as a button with an associ-
ated action rather than state, can be derived easily.

2.5 Structured Text

InterViews provides text objects that can be structured
hierarchically using composition objects that support a
variety of layout styles. The composition class defines
the way objects of class text are arranged to fill avail-
able space. Subclasses of composition specify different
layout strategies. There is a close parallel between a
composition containing text objects and a scene con-
taining interactors. In both cases, subclasses of a gen-
eral composition class determine the way components
are laid out to fill available space.

Primitive textual objects derived from the text class
include word and whitespace. The edit word subclass
provides character editing operations such as Insert
and Delete. Subclasses of composition include sen-
tence, which causes a line break at the right margin;
paragraph, which defines right and left margins; text
list, which composes components horizontally or ver-
tically depending on the available space; and display,
which indents its components.

Conceptually, text objects form one long line of text.
Composition objects can be used to place constraints
on how this line is broken to fit available space. For
example, a text list object will arrange text objects hori-
zontally if there is enough room; otherwise it will place
each of its components on a separate line.

Composition objects also support hit detection by re-
turning the text object corresponding to a coordinate
pair. This facility lets views determine which text ob-
ject is selected without knowing the layout.

2.6 Structured Graphics

Graphic is a base class for defining structured graphics
objects. Each graphic has its own graphics state that
includes attributes such as color, line style, and coordi-
nate transformation. Subclasses of graphic include line,

circle, rectangle, and picture (for representing a col-
lection of graphics). All graphics can draw and erase
themselves and provide operations for examining and
changing graphics state attributes.

Pictures are the basic mechanism for building hier-
archies of graphics. A picture maintains a list of com-
ponent graphics and draws itself by drawing each com-
ponent with a graphics state formed by combining the
component’s state with its own. For example, com-
bining color attributes means the component’s color is
overridden by the picture’s (if the picture defines one);
combining coordinate transformations means multiply-
ing the component’s transformation matrix by the pic-
ture’s. This scheme makes operations on a picture af-
fect its components so that an operation works on the
picture as a unit.

Graphics also support hit detection; for instance, a
hit can be registered on a spline object within one
pixel. Pictures perform hit detection by checking for
hits on their component graphics in the picture’s coor-
dinate space.

Damage is a class that automatically redraws por-
tions of a graphic that have been changed, erased,
or are otherwise inconsistent with the graphic’s in-
tended appearance. Damage objects try to minimize
the amount of redraw needed to repair a graphic. They
are most useful for repairing graphics that are com-
plicated enough to make redrawing the entire canvas
undesirable.

2.7 Other Classes

Rubberband is a base class for graphics objects that
track user input. For example, a rubber rectangle can
be used to drag out a new rectangle interactively. An-
other subclass, sliding rectangle, can be used to move
around an existing rectangle. These classes completely
isolate programmers from device-dependent methods
commonly used to implement “rubberbanding”, such
as use of exclusive-or drawing or an overlay plane.

A bitmap represents a bit-mapped mask suitable for
drawing icons or for constructing other objects such as
cursors and fill patterns. Operations such as scaling,
rotation, and bit manipulations are provided.

Every program using InterViews must create a world
object. This object represents the root scene of the dis-
play. The constructor opens a connection to the win-
dow server. Other InterViews classes include banner,
which displays headings, border, which visually sepa-
rates components in boxes, and menu, which is a box
of menu items that inserts itself into the world when
its Popup operation is called. After insertion, a menu



- 8 -

waits for the user to release a button and then returns
the menu item that was chosen.

3 Example Usage

Squares is a demonstration program that uses many of
the InterViews classes. The program contains a simple
subject that manages a list of squares of different sizes
and positions. The user interface is constructed from a
view of the squares list, a frame around the view, and
a metaview for simple customization.

The frame surrounds a vertical box containing a ban-
ner and two horizontal boxes, all separated by hori-
zontal borders. The upper horizontal box contains the
squares view, a vertical border, and a vertical scroller.
The lower horizontal box contains a horizontal scroller,
a vertical border, and a piece of glue. Figure 6 shows
what the squares frame looks like, and Figure 7 shows
the C++ code that constructs the frame.

Using a pop-up menu, the user can create another
view of the squares list, add a square to the list, open
a metaview to customize the squares frame, or exit the
program. The squares list notifies its views when the
square is added, so the new square is visible in all
views. Each view can be scrolled and zoomed inde-
pendently.

Figure 8 shows the metaview used to customize the
frame around a view. The metaview consists of a dia-
log box containing check boxes for specifying the pres-
ence of scrollers, buttons for specifying attributes of the
scrollers, and a confirmation button to indicate that cus-
tomization is complete. The components of the dialog
box are separated by glue objects with carefully chosen
shapes; the dialog will maintain a pleasing layout for a
range of sizes.

4 Implementation

It took about six man-months to implement the initial
version of InterViews on top of X. In this section, we
discuss some of the problems in interfacing to X, some
details of implementing scenes, and some comments on
using C++ and object-oriented programming in general.

4.1 Interfacing to X

InterViews primitive class operations make direct X li-
brary calls to implement their semantics. The key is-
sues in interfacing to X were managing X windows and
translating X input events into InterViews events.

4.1.1 Window Management

Each canvas is represented as an X window. The
world’s canvas is the root window for a display. The
scene class contains operations to handle the creation,
mapping, and configuration of windows. The two oper-
ations available for use by scene subclasses when allo-
cating component interactors’ canvases are Place and
UserPlace. Place puts an interactor at a specific
position in a scene and is implemented by creating a
subwindow of the scene’s window and associating the
subwindow with the interactor’s canvas. UserPlace
creates a window and lets the user interactively position
it.

4.1.2 Input Events

The X model of input events is somewhat different from
the InterViews model, but an important similarity is that
each X input event is associated with a destination win-
dow. The interactor Read operation maps the window
to the target through a global hash table maintained by
scenes. The event is then checked against the interac-
tor’s current sensor to see if the interactor is interested
in the event. Normally, we can tell X to ignore events
that are not of interest; however, X cannot always dis-
tinguish events at the level we wish. For example, X
cannot send events for the left mouse button and ignore
events for the middle and right buttons.

X is very different from InterViews in the sizing and
redrawing of windows. X represents the need to redraw
part of a window as an input event; InterViews repre-
sents it as an out-of-band procedure call. When the
Read operation sees a redraw event, it calls Redraw
on the destination window and proceeds to read the next
input event.

4.2 Scene Shapes

An important aspect of implementing scenes is the com-
putation of the scene’s shape. A graphical interface
designer should be free to concentrate on the compo-
nents and rely on the scene to compose their shapes
appropriately.

For example, consider the calculation of the shape of
a box. A box must compute its own shape as a function
of the shapes of the interactors inside it. Along the
major axis (horizontal for an hbox, vertical for a vbox),
the natural sizes, stretchabilites and shrinkabilities can
simply be added.

Computing the parameters for the minor axis is more
complicated. The model we adopted is that the box



- 9 -

Figure 6: Squares view

frame = new VBox(
new Banner("squares demo", "InterViews 2.3", "2/8/88"),
new HBorder,
new HBox(view, new VBorder, new VScroller(view, vwidth)),
new HBorder,
new HBox(new HScroller(view, hwidth), new VBorder, new HGlue(vwidth, 0))

);

Figure 7: Code to construct squares frame

Figure 8: Squares metaview dialog



- 10 -

should be big enough to accommodate the largest com-
ponent and should stretch and shrink no more than the
most rigid component will allow. If these requirements
conflict, the larger number is used. Letting , , ,

, represent natural size, minimum size, maximum
size, shrinkability, and stretchability, respectively, then
for a set of components the parameters are calculated
as follows:

1 . . .

1 . . .

where

and
1 . . .

where

4.3 Experience with C++

Using C++ as the implementation language for Inter-
Views has had several benefits. Class inheritance and
virtual functions simplify the structure of code and
data, making the implementation easier to debug and
understand. Much of the complexity is in the primi-
tive classes, hidden from interface designers. Ease of
understanding is especially important for InterViews,
since it is intended that interface designers will derive
application-specific classes from library classes to suit
particular needs. C++ is also portable, enabling us to
bring up InterViews on a new workstation quickly.

A significant advantage of using C++ for InterViews
was that there was a good match between the language
and the software we were designing. It was much easier
to implement an object-oriented user interface package
using an object-oriented language than it would have
been with a procedural language. Classes define objects
that model closely the real objects and concepts the
system is meant to manage. The programmer focuses
on the objects that are manipulated, not on the flow of
control. In fact, an earlier version of InterViews was
implemented in Modula-2. Rewriting the code in C++
resulted in a considerably cleaner implementation.

An observation we made during the design of Inter-
Views was that it is important to concentrate on the
protocols for communication between objects. If these
protocols are well designed, then the implementation of
the objects is relatively straightforward. Conversely, if
consideration is not given to such issues, much reorga-
nization of class hierarchies and considerable recoding
is likely to result.

5 Current Status

InterViews currently runs on MicroVAX and Sun work-
stations on top of either X10 or X11. The library is
roughly 25,000 lines of C++ source code. We have also
implemented several applications on top of the library,
including a reminder service, a scalable digital clock,
a drawing editor, a load monitor, a window manager,
and a display of incoming mail. The applications have
been used daily by about 20 researchers for a year, and
the library is being used in many development efforts at
Stanford and other universities, and in industry. We are
currently working on a more general drawing system,
a program structure editor, and a visual debugger.

6 Conclusion

InterViews provides a simple organization of graphical
interface classes that is easy to use and extend via sub-
classing. Scene subclasses such as box, tray, deck and
frame make it possible to compose interactive compo-
nents into complete interfaces without specifying layout
details. Abstract and interactive behavior are separated
into subject and view objects to support different inter-
faces to the same functionality.

The InterViews library completely hides the under-
lying window system from application programs. This
means that we can port InterViews applications to a
new window system simply by porting the primitive
classes.

Using an object-oriented language to implement In-
terViews resulted in a package that is both simple to
use and easy to extend. The interface designer is en-
couraged to think in object-oriented terms, usually the
most natural way of expressing interactive behavior.

References

[1] Goldberg, A., Smalltalk-80: The Interactive Pro-
gramming Environment, Addison-Wesley, Read-
ing, Massachusetts, 1984.

[2] Knuth, D., The TEXbook, Addison-Wesley, Read-
ing, Massachusetts, 1984.

[3] Scheifler, R.W., and J. Gettys, “The X Window
System”, ACM Transactions on Graphics Vol. 5,
No. 2, April 1986, pp. 79-109.

[4] Schmucker, K. J., Object-Oriented Programming
for the Macintosh, Hayden, Hasbrouck Heights,
New Jersey, 1986.



- 11 -

[5] Stroustrup, B., The C++ Programming Language,
Addison-Wesley, Reading, Massachusetts, 1986.


