
lnternational Standard 1538

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.MEXAYHAPOAHAF OPTAHI.I3AIIhF NO CTAHAAPTh3Aq14I4'ORGANISATION INTERNATIONALE DE NORMALISATION

Programming languages ALGOL 60

Langages de programmation ALGOL 60

First edition - lStl-10-15

fi
st
@
6)

6
(Y)
rf,

oI

UDC 681.3.06:800.92

Descriptors : programming languages, algol, specifications.

Ref. No. ISO 153-1984{E}

Price based on 18 pages

Foreword

ISO (the lnternational Organization for Standardization) is a worldwide federation of
national standards bodies (lSO member bodies). The work of preparing lnternational
standards is normally carried out through lso technical committees. Every member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. lnternational organizations, govern-
mental and non-governmental, in liaison with lSO, also take part in the work.

Draft lnternational Standards adopted by the technical committees are circulated to
the member bodies for approval before their acceptance as lnternational Standards by
the ISO Council. They are approved in accordance with ISO procedures requiring at
least 75 % approval by the member bodies voting.

lnternational standard lso 1538 was prepared by Technical committee lSo/TC 97, /n-
fo rmati o n p ro cessi n g sysferns.

This lnternational Standard replaces ISO/R 1538 (withdrawn in 19771 of which it con-
stitutes a revision.

ISO Recommendation 1538 was a compilation of several source documents. The basic
one [developed under the auspices of the lnternational Federation for lnformation Pro-
cessing (lFlP), whose contributions are acknowledgedJ was the Revised Report on the
Algorithmic Language ALGOL 60.

The text presented in this lnternational Standard is based on the Modified Report on
the Algorithmic Language ALGOL 60, which is a minor technical revision and a textual
clarification of the Revised Report, as established by lFlP. For reasons of ISO editorial
policy the original introduction which is irrelevant to an lnternational Standard has
been deleted and some introductory clauses have been added instead.

O lnternational Organization for Standardization, 1984 o

Printed in Switzerland

I NTE R NATI ONAL STAN DAR D rso 1538-1984 (E)

Programming Languages ALGOL 60

0 lntroduction

ln this lnternational Standard consistent use is made of
ALGOL 60 as the name of the language, rather than just
ALGOL, in order to avoid confusion with ALGOL 68 which is a
completely different language. lt is recommended that the
language defined in this lnternational Standard be referred to
as STANDARD ALGOL 60.

Whenever the name ALGOL is used in this lnternational Stan-
dard it is to mean ALGOL 60, not ALGOL 68, unless it is clear
from the contert that no specific language is indicated.

1 Scope and field of application

This lntemational Standard defines the algorithmic program-
ming language ALGOL 60. lts purpose is to facilitate inter-
change and promote portability of ALGOL 60 programs be-
tween data processing systems.

ALGOL 60 is intended for expressing a large class of numerical
processes in a form sufficiently concise for direct automatic
translation into the language of programmed automatic com-
puters.

This lnternational Standard specifies:

a) the syntax and semantics of ALGOL 60;

b) characteristics of programs written in ALGOL 60, and
of implementations of that language, required for confor-
mance to this lnternational Standard.

This lnternational Standard does not specify:

a) results of processes or other issues. that are, explicitly,
left undefined or said to be undefined;

b) questions of hardware representation (these may be the
subject of another lnternational Standard), or of implemen-
tation;

c) the way non-valid programs are to be rejected. and how
this will be reported;

d) requirements and rules for executing programs on an
actual data processing system.

2 Reference

ISO/TR 1672, Hardware representation of ,ALGOL basie sym-
bols in the ISO 7-bit coded character set for information pro-
cessing interchange.

3 Definitions

For the purpose of this lnternational Standard the following
definitions apply:

3.1 valid program: A text written in the ALGOL60
language that conforms to the rules for a program defined in
this lnternational Standard.

3.2 non-valid program: A text that does not conform, but
was intended to be a program.

3.3 processor: A compiler, translator or interpreter, in com-
bination with a data processing system, that accepts an in-
tended program, transcribed in a form that can be processed by
that data processing system, reports whether the intended pro-
gram is valid or not, and if valid executes it, if that is being
requested.

3.4 implementation: A processor, accompanied with docu-
ments that describe

a) its purpose. and the environment (hardware and soft-
ware) in which it will work;

b) its intended properties, including

the particular hardware representation of the
language, as chosen;

the actions taken, when results or issues occur that
are undefined in this lnternational Standard;

conventions for issues said to be a question of
implementation;

rso 1538-1984 (E)

c) with regard to the implemented language, all dif-
ferences from, restrictions to, or extensions to the language
defined in this lnternational Standard;

d) its logical structure;

e) the way to put it into use.

3.5 conforming implementation: An implementation con-
forrning to this lnternational Standard by accepting valid pro-
grams as being valid, by rejecting non-valid programs as being
non-valid and by executing valid programs in accordance with
the given rules.

3.6 implemented language: The version of the language
as defined by the implementation.

3.7 conforming language version: A version of the
language, defined by a conforming implementation that

a) does not contain any rule conflicting with those defined
in this lnternational Standard;

b) does not contain any ruie not provided for in this lnter-
national Standard, except such rules as. either said to be in-
tentionally and explicitly a question of implementation, or
otherwise being outside the scope of this lnternational
Standard.

3.8 extension: A rule in the implemented language that

a) is not given in this lnternational Standard.

b) does not cause any ambiguity when added to this lnter-
national Standard (but may serve to remove a restriction);

c) is within the scope of this lnternational Standard.

4 Conformance

4.1 Requirements

Conformance to this lnternational Standard requires

a) for a program, that it shall be a valid program;

b) for an implementation, that it shall be a conforming im-
plementation;

c) for the implemented language. that it shall be a con-
forming language version.

4.2 O,uantitative restrictions

The requirements specified in 4. 1 shall allow for quantitative
restrictions to rules stated or implied as having no such restric-
tion in this lnternational Standard, but only if they are fully
described in the documents with the implementation.

2

4.3 Extensions

An implementation that allows for extensions in the im-
plemented language is considered to conform to this Interna-
tional Standard, notwithstanding 4.1, if

a) it would conform when the extensions were omitted;

b) the extensions are clearly described with the implemen-
tation;

c) while accepting programs that are non-valid according
to the rules given in ciause 6 of this lnternational Standard,
it provides means for indicating which part, or parts, of a
program would have led to its rejection, had no extension
been allowed.

Valid programs using extensions shall be described as ,,con-

forming to ISO 1538 but for the following indicated parts',.

4.4 Subsets

Conformance to a subset specified in this lnternational Stan-
dard means conformance to the subset rules as if they were the
only rules in the language.

5 Tests

Whether an implementation is a conforming implementation or
the implemented language is a conforming language version
may be decided by a sequence of test programs. lf there is any
uncertainty or doubt regarding acceptance of these programs
then the conclusions drawn from the actual behaviour of the
processor will prevail over those derived from its accompanying
documents.

6 Description of the reference language

The detailed description of the reference language given herein
reproduces. without modification, the text taken from the
Modified Report (see the foreword), the contents of which are
the following:

1 Structure of the language

1.1 Formalism for syntactic description

2 Basic symbols, identifiers, numbers, and strings. Basic
concepts

2.1 Letters

2.2 Digits and logical values

2.3 Delimiters

2.4 ldentifiers

2.5 Nurnbers

Strings

Ouantities, kinds and scopes

Values and types

2.6

2.7

2.8

3 Expressions

3.1 Variables

3.2 Function designators

3.3 Arithmetic expressions

3.4 Boolean expressions

3.5 Designational expressions

4 Statements

4.1 Compound statements and blocks

4.2 Assignment statements

4.3 Go to statements

4.4 Dummy statements

4.5 Conditional statements

4.6 For statements

4.7 Procedure statements

5 Declarations

5.'l Type declarations

5.2 Array declarations

5.3 Switchdeclarations

5.4 Procedure declarations

Appendix 1 - Subsets

Appendix 2 - The environmental block

Bibliography

Alphabetic index of definitions of concepts and syntactic units

rso 1538-1984 (E)

l. Structure of the language
The algorithmic Ianguage has two different kinds of representation-
reference and hardware-and the development described in the
sequel is in terms of the relerence representation. This means that all
objects defined within the language are represented by a given set of
symbols-and it is only in the choice of symbols that other repre-
sentations may differ. Structure and content must be the same for all
re presen tations.

Reference language
l. It is the defining language.
2. The characters are determined by ease ol mutual understanding

and not by any computer limitations, coder's notation, or pure
mathematical notation.

3. It is the basic relerence and guide for compiler builders.
4. It is the guide for all hardware representations.

Har dwar e r epr e se n t a t i on s

Each one of these:
f. is a condensatio-n ol the reference language enforccd by the

limited number of characters on standard input equipment;
2. uses the character set ofa particular computer and is the language

accepted by a translator for that computer;
3. must be accompanied by a special set of rules for transliterating to

or from reference language.
It should be particularly noted that throughout the reference
language underlining in typescript or manuscript, or boldlace type in
printed copy, is used to represent certain basic symbols (see Sections
2.2.2 and 2.3). These are understood to have no relation to the
individual letters of which they are composed. In the reference
language underlining or boldface is used for no other purpose.
The purpose of the algorithmic language is to describe compu-

tational processes. The basic concept used lor the description of
calculating rules is the well-known arithmetic expression containing
as constituents numbers, variables, and functions. From such
expressions are compounded, by applying rules of arithmetic
composition, self-contained units of the language--explicit formulae

-<alled assignment statements.
To show the flow of computational processes, certain non-arith-

metic statements and statement clauses are added which may
describe, e.g. alternatives, or iterative repetitions of computing
statements. Since it is sometimes necessary for the function ol these
statements that one statement relers to another, statements may be
provided with labels. A sequence of statements may be enclosed
between the statement brackets begin and end to form a compound
statement.

Statements are supported by declarations which are not themseives
computing instructions, but inform the translator of the existence
and certain properties ofobjects appearing in statements, such as the
class of numbers taken on as values by a variable, the dimension of
an array of numbers, or even the set of rules defining a function. A
sequence of declarations followed by a sequence ol statements and
enclosed between begin and end constitutes a block. Every decla-
ration appears in a block in this way and is valid only for that block.
A program is a block or a compound statement that is contained

only within a fictitious block (always assumed to be present and
called the environmental block), and that makes no use of statements
or declarations not contained within itself, except that it may invoke
such procedure identifiers and lunction designators as may be
assumed to be declared in the environmental block.
The environmental block contains. procedure declarations of

standard functions, input and output operations, and possibly other

3

tso 1538-1984 (E)

operations to be made available without declaration within the
program. It also contains the fictitious declaration, and initialisation,
of own variables (see Section 5).
In the sequel the syntax and semantics of the language will be

given.
Whenever the precision of arithmetic is stated as being in general

not specified, or the outcome of a cerfain process is left undefined or
said to be undefined, this is to be interpreted in the sense that a
progxam only fully defines a computational process if the accom-
panying information specifies the precision assumed, the kind of
arithmetic assumed, and the course of action to be taken in all such
cases as may occur during the execution of the computation.

Ll. Formalism for syntactic description
The syntax will be described with the aid of metalinguistic formulae
(Backus, 1959;. Their interpretation is best explained by an example:

(ab) ::= (I I I (ab)(I (ab)(d)
Sequences of characters enclosed in the brackets O represent
metalinguistic variables whose values are sequences of symbols. The
marks ::: and | (the latter with the meaning of 'or') are metalin-
guistic connectives. Any mark in a formula, which is not a variable
or a connective, denotes itself (or the class of marks which are
similar to it). Juxtaposition of marks and/or variables in a formula
signifies juxtaposition of the sequences denoted. Thus the formula
above gives a recursive rule for the formation of values of the vari-
able (ab). It indicates that (ab) may have the value (or I or that
given some legitimate value of (ab), another may be formed by
following it with the character (or by following it with some value
of the variable (d). If the values of (d) are the decimal digits, some
values of(ab) are:

((1(37(
(t234s(
((
[86

In order to facilitate the study, the symbols used for distinguishing
the metalinguistic variables (i.e. the sequences ofcharacters appear-
ing within the brackets O as ab in the above example) have been
chosen to be words describing approximately the nature of the
corresponding variable. Where words which have appeared in this
manner are used elsewhere in the text they will refer to the corres-
ponding syntactic definition. In addition some formulae have been
given in more than one place.

Defnition:
(empty) :::
(i.e. the null string of symbols).

2. Basic symbols, identifiers, numbers, and strings. Basic concepts
The reference language is built up from the following basic symbols:
(basic symbol) : : : (letter) l(digit) l(logical value)l(delimiter)

2.1. Letters

(letter) : : : alblcldlel f Islhlil jlkltlmlnlol plqlrlsltlulvlwlxlylz
I Al Bl c I Dl E I F lcl H lr lI I

K
I
Ll M lN lo lpl Ql Rl s lr lu lv lw I

xlYlz
This alphabet may arbitrarily be restricted, or extended with any
other distinctive cbaracter (i.e. character not coinciding with any
digit, logical value or delimiter).
Letters do not have individual meaning. They are used for forming

identifiers and strings (see Sections 2.4 Identifiers, 2.6 Strings).
Within this report the letters (from an extended alphabet) f , 0, Z
and f) are sometimes used and are understood as not being available
to the programmer. If an extended alphabet is in use, that does
include any of these letters, then their uses within this report must be
systematically changed to other letters that the extended alphabet
does not includc.

2.2. Disits and logical values
2.2.1. Digits
(dieit) : :: 0ll l2l3lal5l6l7l8le
Digits are used for forming numbers, identifiers, and strings.

2.2.2. Logical values
(logical value) ::: truelfalse

4

The logical values have a fixed obvious meaning.

2.3. Delimiters
(delimiter) ; ; : (operator) i(separator)l(bracket) l(declarator) |

(specificator)
(operator) ; ; : (arittrnetic operator) l(relational operator) |

(logical operator) l(sequential operator)
(arithmetic operator) ::: + l- I " l/l- lf(relational operator) ::: . l< l: I > I >l +
(logical operator) ::: = l. I A I V l-l
(sequential operator) ::: Bo tolif lthenlelselforido
(separator) : : :, l. ho I : | ; | : : lstepluntil lwhilelcomment
(bracket) : : : (l)l tlll'1.lbeginlend
(declarator) : : : own I Boolean I

integer
I
real larray I switch lprocedure

(specificator) : : : stringllabellvalue
Delimiters have a fixed meaning which for the most part is obvious
or else will be given at the appropriate place in the sequel.
Typographical leatures such as blank space or change to a new line

have no significance in the reference.language. They may, however,
be used freely for facilitating reading.
For the purpose of including text among the symbols of a program

the following'comment' conventions hold:
The sequence is equivalent to
;commt (any sequence of zero or more

characters not containing ;); ;

@in comment (any sequence of zero
or more characters not containing ;); begin

end (any s€querce of zero or more basic
symbols not containing end or else or ;) end

By equivalence is here meant that any of the three structures shown
in the left hand column may be replaced, in any occurrence outside of
strings, by the symbol shown on the same line in the right hand
column without any effect on the action of the program. It is further
understood that the comment structure encountered first in the text
when reading from left to right has precedence in being replaced
oveg later structures contained in the sequence.

2.4. Identirters
2.4.1. Syntax
(identifier)' : : (letter)

I
(identifier)(letter) l(identifier)(digit)

2.4.2. Examples
q
Soup
VlTa
a34kTMNs
MARILYN

2.4.3. Semantics
Identifiers have no inherent meaning, but serve for the identification
of simple variables, alrays, labels, switches, and procedures. They
may be chosen freely. Identifiers also act as formal parameters of
procedures, in which capacity they may represent any of the above
entities, or a string.
The same identifier cannot be used to denote two different

quantities except when these quantities have disjoint scopes as

defined by the declarations of the program (see Section 2.7 Quantities,
kinds and scopes and Section 5 Declarations). This rule applies also
to the formal parameters of procedures, whether representing a
quantity or a string.

2.5. Numbers
2.5.1. Syntax
(unsigned integer) : : : (digit)l(unsigned integerXdigit)
(integer) ; ; : (unsigned integer)i + (unsigned integer)

l-(unsigned integer)
(decimal fraction) ;;: .(unsigned integer)
(exponent part) ::: ro(integer)
(decimal number) ; ; : (unsigred integer) |

(decimal fraction)
l(unsigned integer)(decimal fraction)

(unsigned number) ;;: (decimal number)l(exponent part)
l(decimal number)(exponent part)

(number) ; ; : (unsigned number)l *(unsigned number)
l- (unsigned number)

2.5.2. Examples
0

|',77

.5384
+ 0.7300

2.5.3. Sentantics

- 200.084
* 07.43r08

9.3410* l0
2n-4

-.083r0-02
-n7
rc-4

*ro*5

Decimal numbers have their conventional meaning. The exponent
part is a scale factor expressed as an integral power of 10.

2.5.4. Types
lntegers are of integer type. All other numbers are of real type (see
Section 5.1 Type declarations).

2.6. Stings
2.6.1. Syntax
(proper string) ": (any sequence ol characters not containing

'or')l(empty)
(open string) '.: (proper string)

l(proper string)(closed string)(open string)
(closed string) ';: '(open string)r
(string) ;' : (closed string)l(closed string)(string)

2.6.2. Examples
'5k,, - r[[[r .r. : /:rzrrr
' . . This- is

-a-t
str ing. -

'Thisuis-all-ruQ4g;5S7inga

2.6.3. Semantics
In order to enable the language to handle sequences of characters
the string quotes r and t are introduced.
The characters available r*'ithin a string are a question of hardware

representation, and further rules are not given in the reference
language. However, it is recommended that visible characters, other
than , , and ", should repres€nt themselves, while irwisible characters
other than space should not occur \A'ithin a string. To conform with
ISO/TR 16'72, a space may stand for itself, although in this
document the character, ' is used to represent a space.
To allow invisible, or other exceptional characters to be used, they

are represented within either matching string quotes or a matched
pair of the " symbol. The rules within such an inner string are
unspecified, so if such an escape mechanism is.used a comment is
necessary to explain the meaning of the escape sequence.
A string of the form (closed string)(string) behaves as if it were

the string formed by deleting the closing string quote of the closed
string and the opening string quote of the lollowing string (together
with any layout characters bet,*'een them).

Strings are used as actual parameters of procedures (see Sections
3.2 Function designators and 4.'7 Procedure statements).

2.7. Quantities, kinds and scopes
The following kinds of quantities are distinguished : simple variables,
arrays, labels, switches, and procedures.
The scope of a quantity is the set of statements and expressions in

which the declaration of the identifier associated with that quantity
is valid. For labels see Section 4.1.3.

2.8. Values and types
A value is an ordered set of numbers (special case: a single number),
an ordered set of logical v'alues (special case: a single logical value),
or a label.
Certain of the syntactic units are said to possess values. These

values will in general change during the execution of the program.
The values of expressions and their constituents are defined in
Section 3. The value of an array identifier is the ordered set of values
of the corresponding array of subscripted variables (see Section
3. r .4.1).
The various types (integer, real, Boolean) basically denote pro-

perties ol values. The types associated with syntactic units refer to
the values of these units.

3. Expressions
ln the language the primary constituents of the programs describing
algorithmic processes are arithmetic, Boolean, and designational

tso 1538_1984 (E)

expressions. Constituents of these expressions, except for certain
delimiters, are logical values, numbers, variables, function desig-
nators, Iabels, switch designators, and elementary arithmetic,
relational, logical, and sequential operators. Since the syntactic
definition of both variables and function designators contains
expressions, the definition of expressions, and their constituents, is
necessarily recursive.
(expression) ; ; : (arithmetic expression) l(Boolean expression)

|
(designational expression)

3.1. Variables
3.1.1. Syntax
(variable identifier) ;;: (identifier)
(simple variable) ;;: (variable identifier)
(subscript expression) " : (arithmetic expression)
(subscript list) ::: (subscript expression)l(subscript list),

(subscript expression)
(array identifler) ::: (identifier)
(subscripted variable) : : : (array identifier)[(subscript list)]
(variable)' ;: (simple variable)l(subscripted variable)

3.1 .2. Examples
epsilon
detA
al7
Ql1,2l
xlsin(n x pil2), Ql3, n,4l)

3.1.3. Semantics
A variable is a designation given to a single value. This value may be
used in expressions for forming other values and may be changed at
will by means of assignment statements (see Section 4.2). The type
of the value of a particular'variable is defined in the declaration for
the variable itself (see Section 5.1 Type declarations) or for the
corresponding affay identifier (see Section 5.2 Anay declarations).

3.1 .4. Subscripts
3.1.4.1. Subscripted variables designate values which are com-
ponents of multidimensional arrays (see Section 5.2 Array <iecla-
rations). Each arithmetic expression of the subscript list occupies
one subscript position of the subscripted variable and is called a
subscript. The complete list of subscripts is enclosed in the subscript
brackets []. The array component referred to by a subscripted
variable is specified by the actual numerical value of its subscripts
(see Section 3.3 Arithmetic expressions).

3.1.4.2. Each subscript position acts like a variable of integer type
and the evaluation of the subscript is understood to be equivalent to
an assignment to this fictitious variable (see Section 4.2.4). The value
of the subscripted variable is defined only if the valqe of the subscript
erpression is within the subscript bounds of the array (see Section
5.2 Array declarations).

3.1.5. Initial values of variables
The value of a variable, not declared own, is undefined from entry
into the block in which it is declared until an assignment is made to
it. The value of a variable declared own is zero (if arithmetic) or false
(if Boolean) on first entry to the block in which it is declared. On
subsequent entries it has the same value as at the preceding exit from
the block.

3.2. Funct ion desig nators
3.2.1. Syntax
(procedure identifier) ; ; : (identifier)
(actual parameter) " : (string)l(expression)

l(array identifier)l(switch identifier)
l(procedure identifier)

(letter string)' : : (letter)l(letter string)(letter)
(parameter delimiter) ": ,lxletter string):(
(actual parameter list) ::: (actual parameter)

l(actual parameter list)
(parameter delimiter)(actual parameter)

(actual parameter part) ;:: (empty)l((actual parameter list))
(function designator) " : (procedure identifier)

(actual parameter part)

5

a

rso 1538-1984 (E)

3.2.2. Examples
sin(a - b)
J(v + s, n)
R
S (s - S)Tenperature :(T)Pressure i(p)
C o mp i le (r 1 :''1 S t ac k :(Q)

3.2.3. Semantics
Function designators define single numerical or logical values u,hich
result through the application of given sets of rules defined by a
procedure declaration (see Section 5.4 Procedure declarations) to
fixed sets of actual parameters. The rules governing specification of
actual parameters are given in Section 4.7 Procedure statements.
Not every procedure declaration defines rules for determining the
value of a function designator.

3.2.4. Standard functions and procedures
Certain standard functions and procedures are declared in the
environmental block with the following procedure identifiers:

abs, iabs, sign, entier, sqrt, sin, cos, arctan, ln, exp, inchar, outchar,
Iength, outstrittg, outterminator, stop, fault, ininleger. outinteger,
inreal, outreal, maxreal, minreal, maxint and, epsilon.

For details of these functions and procedures, see the specification
of the environmental block given as Appendix 2.

3.3. Arithmetic expressions
3.3.1 . Syntax
(adding operator) ::: + I -
(multiplying operator) ": t l/l-
(primary)' ; : (unsigned number)l(variable)

|
(function designator) l((arithmetic expression))

(factor) " : (primary)l(factor)t(primary)
(term) " : (factor)l(term)(multiplying operator)(factor)
(simple arithmetic expression)' :: (term)i(adding operator)

(term)
|
(simple arithmetic expression)(adding operator)(term)

1if clause) ::: if (Boolean expression) then
(arithmetic expression) ; ;: (simple arithmetic expression)

l(if clause)(simple arithmetic expression) else
(arithmetic expression)

3.3.2. Examples
Primaries:
7.394n-B
sum
wli + 2,81
cos(y + z x 3)
(a-3ly+vaf8)

Factors:
omega
sumlcos(y*zx3)
't.394n- 8tw[i + 2,8]l(a - 3ly + vulS)

Terms:
U
omega x sumlcos(y + z x 3)17.394to-8

lwli + 2,811(a - 3ly + vufS)

Simple arithmetic expression :

U - Yu + omega x sumlcos(y + z x 3)17.3946-8
f w[i + 2,811@ - 3ly + vufs)

Arithmetic expressions:
wxu-Q(S+Cu)12
ifq > 0thenS * 3 x QlAelse2 x S + 3 x 4
ifa < 0then U * Zelse if a x b > 17 then UIV

else if k * y then VIU else O

ax sin(omegax t)
0.57n12 x a[Nx (N- 1y2,0]
(Axarctan(y)+Z)10+8)
if q then n - "1 else n
if a < 0 then AIB else if b : 0 then BIA else z

3.3.3. Semantics
An arithrnetic expression is a rule for computing a numerical value.

6

In the case of simple arithmetic expressions this value is obtained by
executing the indicated arithmetic operations on the actual numericai
values of the prirnaries of the expression, as explained in detail in
Section 3.3.4 below. The actual numerical value of a primary is
obvious in the case of numbers. For variables it is the current value
(assigned last in the dynamic seuse), and for function designators it
is the value arising from the computing rules defining the procedure
(see Section 5.4.4 Values ol function designators) when applied to
the current values of the procedure parameters given in the expres-
sion. Finally, for arithmetic expressions enclosed in parentheses the
value must through a recursive analysis be expressed in terms of the
values of primaries of the other three kinds.
In the more general arithmetic expressions, which include if clauses,

one out of several sirnple arithmetic expressions is selected on the
basis of the actual values of the Boolean expressions (see Section
3.4 Boolean expressions). This selection is made as follows: The
Boolean expressions of the if clauses are evaluated one by one in
sequence from left to right until one having the vaiue true is found.
The value of the arithmetic expression is then the value of the first
arithmetic expression following this Boolean (the longest arithmetic
expression found in this position is understood). If none of the
Boolean expressions has the value true, then the value of the
arithmetic expression is the value of the expression following the
final else.
The order ol evaluation of primaries within an expression is not

defined. If different orders of evaluation would produce different
results, due to the action of side effects ol function designators, then
the program is undefined.
In evaluating an arithmetic expression, it is understood that all the

primaries *ithin rhat expression are evaluated, except those within
any arithmetic expression that is governed by an il clause but not
selected by it. In the special case where an exit is made from a
function designator by means of a go to statement (see Section
5.4.4), the evaluation of the expression is abandoned, when ttie go to
statement is executed.

3.3.4. Operators and types
Apart lrom the Boolean expressions ofifclauses, the constituents of
simple arithmetic expressions must be of real or integer types (see

Section 5.1 Ty'pe declarations). The meaning of the basic operators
and the ty'pes of the expressions to which they lead are given by the
following rules:

3.3.4.1 . The operators * , - , and x have the conventional meaning
(addition, subtraction, and multiplication). The type of the expres-
sion will be integer if both of the operands are of integer type,
otherwise real.

3.3.4.2. The operations (term)/(factor) and (term,\ - (factor\
both denote division. The operations are undefined if the factor has
the value zero, but are otherwise to be understood as a multiplication
ol the term by the reciprocal ol the factor with due regard to the
rules of precedence (see Section 3.3.5). Thus for example

albxll(p-q)xvls
means

((((a x 16-t;; x 7) x ((p - q)-')) x v) x (5-t)
The operator / is defined for all fbur combinations of real and integer
types and will yield results ofreal type in any case. The operator +
is defined only lor two operands both of integer type and will yield
a result of integer type. If a and D are of integer type, then the value
of a + b is given by the function:
integer procedure div(a, b); v^lue a, b;

integer a, b;
ifb:0then

faul t (' di vtb yu z ero1, a)
else

begin integer 4, r;
q :: 0; r :: iabs(a);
for r :: r - iabs(b)while r > 0do q :: q t l;
div :: if a < A : b > 0 then -q else4
end div

3.3.4.3. The operation (factor)1(primary> denotes exponentiationr
where the factor is the base and the primary is the exponent. Thus

for example

while
2Jnf k means (2")r

2f(nfm) means 2('-).
Ifr is ofreal type and r ofeither real or integer type, then the value
of xfr is given by the function:
real procedure expr(x, r); value x, r;

real x, r;
if x > 0.0 then

expr i: exp(r x ln(x))
else if x:0.0 A r > 0.Othen

exPr :: 0,0
else

faul t (' e xpr t undefi n ed', x)
If i andT are both of integer type, then the value of it7 is given by
the function:
integer procedure expi(i,j); value i,7;

integer i,7;
if7<0Vt:0A.r:0then

fau I t (' e xp i u undefi n ed', i)
else

begin
integer k, result;
result::1;
for k::1 step I untilTdo

result :: result x i;
expi :: result
end expi

Il n is of integer type and -r ol real type, then the value of xfn is
given by the function:
real procedure expn(x, n); vahre x, n;

real r; integer n;
if r : 0 A x:0.0 then

fault (' expn-undef ned-, x)
else

begin
real resulti integer i;
result:: 1.0;
for i :: labs(n) step - I until I do

resull :: result x xa
expn t: if n < 0 tfui l.Iyresult el* result
end expn

The call of the procedure/aalr denotes that the action of the program
is undefined. It is understood rhat the finite deviations (see Seition
3.3.6) of using the exponenriarion op€rator may be different from
those ol using the procedures expr and expn.

3.3.4.4. Type of a conditional expression
The type of an arithmetic expression ol the form

if .B th€n SAE elsp' AE
does not depend upon the value of B. The expression is of real type
if either SAE or AE is real and is of integer type otherwise.

3.3.5. PreceCence of operators
The sequence ol operations within one expression is generally lrom
left to right, with the following additional rules:

3.3.5.1. According to the s-v-ntax given in Section 3.3.1 the following
rules of precedence hold:

first: i
se{ond: x / +
third: + -

3.3.5.2. The expression between a left parenthesis and the matching
right parenthesis is evaluated by itself and this value is used in
subsequent calculations. Consequently the desired order of execution
of operations within an expression can always be arranged by
appropriate positioning of parentheses.

3.3.6. Arithmetics of real quantities
Numbers and variables of real type must be interpreted in the sense
ol numerical analysis, i.e. as entities defined inherently with only a
finite accuracy. Similarly, the possibility of the occurrence of a
finite deviation from the mathematically defined result in any
arithmetic expression is explicitly understood. No exact arithmetic
will be specified, however, and it is indeed understood that different

lso 1538-1984 (E)

implementations may evaluate arithmetic expressions diffe.rently.
The control of the possible consequences of such differences must be
carried out by the methods of numerical analysis. This control must
be considered a part of the process to be described, and will therefore
be expressed in terms of the language itself.

3,4. Boolean expressions
3.4.1. Syntax
(relational operator) ": . l< l: l> l> l*
(relation) ; ; : (simple arithmetic expression)(relational operator)

(simple arithmetic expression)
(Boolean primary) ; ; : (logical value)l(variable)

|
(function designator)

|
(relation)

(B o orean second ary),,]tl?::tnX rt',ffiT1(Boorean primary)
(Boolean factor) ;;: (Boolean secondary)

l(Boolean factor) A (Boolean secondary)
(Boolean term) ::: (Boolean factor)

l(Boolean term) ! (Boolean factor)
(implication) : : : (Boolean term) l(implication) > (Booiean term)
(simple Boolean) ;:: (implication)

l(simple Boolean) : (implication)
(Boolean expression) ;;: (simple Boolean)

l(if clause)(simple Boolean) else (Boolean expression)

3.4.2. Examples
x: -2Y>VVz<q
a*b>-5Az-d>qlT
pAsVx+y
g = -1a A b A -1c \/ d \/ e = -1f
if.k<lthens>welsei<c
if if if a then b else c then

delse/then gelv'h < k

3.4.3. Sentantics
A Boolean expression is a rule for computing a logical value. The
principles of evaluation are entirely analogous to those given for
arithmetic expressions in Section 3.3.3.

3.4.4. Types
Variables and function designators entered as Boolean primaries
must be declared Boolean (see Section 5.1 Type declarations and
Section 5.4.4 Values of function designators).

3.4.5. The operators
The relational operators <, (, :,), > and * have their con-
ventional meaning (less than, less than or equal to, equal to, greater
than or equal to, greater than, not equal to). Relations take on the
value true whenever the corresponding relation is satisfied for the
expressions involved, otherwise false.
The meaning of the logical operators -1 (not), A (and), V (or),
> (implies), and : (equivalent), is given by the following function
table:

bt
b2

false false
false true

true true
false true

.bl
bl

^.
b2

btvb2
bl=b2
bt:b2

true true false false
false false false true
false 'true true true
true true false true
true false false true

3.4.6. Precedence of operators
The sequence of operations within one expression is gene.rally from
left to right, with the following additional rules:

3.4.6.1. According to the syntax given in Section 3.4.1 the following
rules of precedence hold:

first: arithmetic expressions according to Section 3.3.5.
second; <<=>>*
third: -.l

fourth: A
fifth: V
sixth: :)
seventh: =

tso 1538-1984 (E)

3.4.6.2. The use cf parentheses v'ill be interpreted in the sense given

in Section 3.3.5.2.

3.5. Designational exPressions

3.5.1. Syntax
(label) 1;: (identifier)
(switch identifier) ; ;: (identifier)

ir*it"tt designator) : : : (switch i&ntifier)[(subscript expression)]
(simple designational expression) ;1: (labe!)

.

|
(switctr- designator) l((designational expression))

(designational expression) 11: (simple designational expression)

l(if clause)(simple designational expression)
else (designational exPression)

3.5.2. ExamPles
Ll7
p9
Choose ln - 1l
Townlif Y < 0thenNelseN+ 1l
if Ab < c then Ll1

elseq[if w (0then2elsen]

3.5.3. Semantics
A designational expression is a rule for obtaining a label ol a

statem;t (see Section 4 Statements). Again the principle of the

evaluation is entirely analogous to that of arithmetic expressions (see-

iection 3.3.3). In the general case thc Boolean expressions of the if
clauses will select a simple designational expression. Il this is a
label the desired result is already found. A switch designator refers

to the corresponding switch declaration (see Section 5'3 Switch

declarations) and by the actual numerical value of its subscript

expression selects one of the designational expressions listed in the

switch declaration by counting these from left to right. since the

designational expression thus selected may again be a switch

designator this evaluation is obviously a recursive process'

3.5.4. The subscriPt exPression

The evaluation o1 the subscript expression is analogous to that of
subscripted variables (see Section 3.1.4.2). The value of a switch

a"rfunuto. is defined only if the subscript expression assumes one of
the iositive values l, 2, 3, . ..' n, where n is the number of entries in

the switch iist.

4. Statements
ihe units of operation within the language are called statements.

They will normally be executed consecutively as written' However'

this sequence of operations may be broken by go to statements'

wtici, aenrre their successor explicitly, shortened by conditional

statements, which may cause certain statements to be skipped' and

iengttrene4 by for statements which cause certain statements to be

repeated.
i'n o.C.r to make it possible to define a specific dynamic succession,

statements may be provided with labels'
-
iin"" ,"qu"nces of statements may be grouped together into com-

pound stitements and blocks the deflnition of statement must

necessarilyberecursive.Alsosincedeclarations,describedjn
ilai;; 5, enter fundamentally into the syntactic structure' the

;t;;;" iefinition of statements must suppose declarations to be

already defined.

4.1. Compound statements and blocks

4.1.1. Syntax
lunlatitea basic statement) ::: (assignment statement)

l(eo to statement)l(dummy statement)

l(Procedure statement)
(basic statement) ::: (unlabelled basic statement)'

l(labcl) : (basic statement)
(uncondiii,onal statement) ; ; : (basic statement)'

l(compound statement)l(block) . .

(statemen) : ; : (unconditional siatement) l(conditional statement)

l(for statement)
(compound tail) : : : (statement)end

l(statement) ; (comPound tail)
(block head) ::: begin (declaration)

l(block head) ; (declaration)

I

(unlabelled compound) ::: begin (compound tail) .

?unlabelled block) ;;: (block head); (compound tail)
(compound statement) ;'1: (unlabelled compound)'

l(label):(comPound statement)
(block) ; ; : (unlabelled block)l(label) :(block)
(program) : : : (block)l(compound statement)

This syntax may be illustrated as follows: Denoting arbitrary

stut.-"ntt, declarations, and labels, by the letters S, D, and L'
respectively, the basic syntactic units take the forms:

Compound statement:
L:L: . .. begin S; S; . . . S;

^S
end

Block:
L:L:... begin D; D;... D;S; S;. .. S; Send

It should be kept in mind thai each of the statements S may again

be a complete compound statement or block'

4.1.2. Examples
Basic statements:

a..:p+q
go to NaPles
START:CONTINUE: W :: 7'993

Compound statement:
begin.t :: 0;

forY :: l steP l until ndo x ": x + AIY\;
if x > q then go to STOP
else if x > w - 2 then go to S;

Aw '. St'. 11' '.- x * bob
end

Block:
Q: begin integer i, ki real w;

for i :: 1 steP 1 until m do
for k :: i * I steP 1 until nr do

begin w :: Ali'k):
Ali'kl:: Alk, i];
Alk, il :- w

endfor i and k
end block Q

4.1 .3. Semantics
Every block automatically introduces a new level of nomenclature'

Thisis realised as follows: Any identifler occurring within the block

,"", tr.tr"rgt a suitable declaiation (see Section 5 Declarations) be
-r-pon"a

to-be local to the block in question' This means (4) that the

"i-ttitv..pt"onted
by this identifier inside the block has no existence

outside ii and (6) that any entity represented by this identifier outside

the block is completely inaccessible inside the block'
Identifiers (except those representing labels) occurring within a

Uioit anO not being declared to this block will be non-local to it'
i.e. will represent the same entity inside the block and in the level

immeOiateiv outside it. A label separated by a colon from a statement'

i.e. labelling that statement, behaves as though declared in the head

of tt" ,rnat.st embracing block, i'e' the smallest block whose

brackets begin and end enclose that statement'

A t"U"l iisaid to be implicitly declared in this block head' as

distinct from the explicit declaration of all other local identifiers'

In this context a procedure body, or the statement following a for

;i;;;;, must be considered as iiit were enclosed bv begin and.end

and treated as a block, this block being nested within the fictitious

block of Section 4.7.3.1. in the case of a procedure with parameters

Uy uutu". A label that is not within any block of the program (nor

within a procedure body, or the statement.following a for clause)

ir-it"pri.iiry declared in ihe head of the environmental block'

Since a stitement of a block may again itself be a block the concepts

loial and nonlocal to a block musibe understood recursively. Thus

an identifier which is non-local to a block A' may or may not be

nonJocal to the block B in which ,{ is one statement'

4.2. Assignment staternents
4.2.1. Syntax
(destination) ; ;: (variable)l(procedure identifier)
(left part) ;;: (destination) ::
iieft part'fist) "': (left pari)l(t,eit part.list)(left part)

iusig"*"nr ltatement) :: =
'(fift pirt list)(arithmetic expression)'
i(left part listxBoolean expression)

4.2.2. Examples
r:=p[0]::n::r,*l*s
n::n+l
A::BlC-y-4x.S
S[v,k + 2] :: 3 - arctan(s x zeta)
V:: e> y A,z

4.2.3. Semantics
Assignment statements serve for assigning the value of an expression
to one or several destinations. Assignment to a procedure identifier
may only occur within the body ol a procedure defining the value of
the function designator denoted by that identifier (see Section 5.4.4).
If assignment is made to a subscripted variable, the values of all the
subscripts must lie within the appropriate subscript bounds. Other-
wise the action of the program becomes undefined.
The process will in the general case be understood to take place in

three steps as follows:

4.2.3.1. Any subscript expressions occurring in the destinations are
evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.

4.2.3.3. The value of the expression is assigned to all the destinations,
with any subscript expressions having values as evaluated in step
4.2.3.1.

4.2.4. Types
The type associated with all destinations of a left part list must be the
same. If this type is Boolean, the expression must likewise be Boolean.
lf the type is real or integer, the expression must be arithmetic. If
the type ol the arithmetic expression differs from that associated
with the destinations, an appropriate transler function is understood
to be automatically invoked. For transfer from real to integer type
the transfer function is understood to yield a result which is the
largest integral quantity not exceeding E + 0.5 in the mathematical
sense (i.e. without rounding error) where E is the value of the
expression. It should be noted that E, being ofrcal'type, is defined
with only finite accuracy (see Section 3.3.6). The type associated with
a procedure identifier is given by the declarator which appears as
the first symbol of the corresponding procedure declaration (see
Section 5.4.4).

4.3. Go to statements
4.3.1. Syntax
(go to statement) ::: go to (designational expression)

4.3.2. Examples
go to 18
go to exitln + ll
gotoTownlify < 0thenNelseN+ 1l
go to if Ab < c then Lll

elseg[if ll < 0then2elsen]

4.3.3. Semantics
A go to statement interrupts the normal sequence of operations, by
defining its successor explicitly by the value of a designational
expression. Thus the next statement to be executed will be the one
having this value as its label.

4.3.4. Restriction
Since labels are inherently.local, no go to statement can lead from
outside into a block. A go to'statement may, however, lead from
outside into a compound statement.

4.3.5. Go to an unde.fined switch designator
A go to statement is undefined if the designational expression is a
switch designator whose value is undefined.

4.4. Dummy statements
4.4.1. Syntax
(dummy statement) ';: (smpty)

4.4.2. Examples
L:
begin statements; John: end

tso 1538-1984 (E)

4.4.3. Semantics
A dummy statement executes no operation. It may serve to plac€ a
label.

4.5. Conditional statements
4.5.1. Syntax
(if clause) ::: if (Boolean expression) then
(unconditional statement)' ; : (basic statement)

|
(compound statement) I

(block)
(if statement) ": (if clause)(unconditional statement)
(conditional statement) ": (if statement)

l(if statement) else (statement)
|
(if clause)(for statement)

|
(label) : (conditional statement)

4.5.2. Examples
ifx>0thenn::n47
if v > u then Vi q:: n * n else go to R
ifs<0!P<Qthen

AA: begin if q < v then a := vls
elseY":2x a

end
elseify>sthenai:v-q
elseif v > s - 1 then go to,S

4.5.3. Semantics
Conditional statements cause certain statements to be executed or
skipped depending on the running values of specified Boolean
erpressions.

4.5.3.1. If statement
An il statement is of the form

if .B then Srz
where B is a Boolean expression and Sn is an unconditional statement.
In execution, .B is evaluated; if the result is true, Sz is executed;
il the result is false, ,Srr is not executed.
If Sn contains a label, and a go to statement leads to the label,

then -B is not evaluated, and the computation continues with
execution of the labelled statement.

4.5.3.2. Conditional Statenxent
Three forms of unlabelled conditional statement exist, namely:

if ,B then Sa
if B then ,for
if .B then Sa else .l

where Sa is an unconditional statement, Sfor is a for statement and
S is a statement.
The meaning of the first form is given in Section 4.5.3.1.
The second form is equivalent to

if.B then begin S/or end
The third form is equivalent to

begin
if .B then begin Srr ; go to .l. end;
S;

l-: end
(For the use of J. see Section 2.1 Letters.) If S is conditional, and
also of this form, a different label must be used instead of l- in
following the same rule.

4.5.4. Go to into a conditional statement
The effect of a go to statement Ieading into a conditional statement
follows directly from the above explanation of the execution of a
conditional statement.

4.6. For statements
4.6.1. Syntax
(ior Iist element) ;;: (arithmetic expression)

|
(arithmetic expression) step (arithmetic expression)

until (arithmetic expression)
|
(arithmetic expression) while (Boolean expression)

(for list) ": (for list element)l(for list), (for list element)
(for clause) ::: for (variable identifier) .: (for list) do
(for statement) ::: (for clause)(statement)

l(label) : (for statement)

I

rso 1538-1984 (E)
4.6.2. Examples

for q :: I step s untit z do Alql:: Blq)
fork :: l, Vl x 2while Vl < N do

forT:: I + G,Z, I step I untilN, C + D do
Alk, jl:: Blk, jJ

4.6.3. Semantics
A for clause causes the statement S which it precedes to be repeatedly
executed zero or more times. In addition it performs a seqirence of
assignments to its controlled variable (the variable after lor). The
controlled variable must be of real or integer type.

4.6.4..The for list elements
If the for list contains more than one element then

for V:: X, Ydo S
where X is a for list element, and Y is a for list (which may consist of
one element or more), is equivalent to

begin
procedure J; S;
forV:: Xdo2;
forV:: YdoE
end

(For the use of .X see Section 2.1 Letters.)

4.6.4.1. Arithmetic expression element
If X is an arithmetic expression then

for V :: Xdo S
is equivalent to

begin
VI: X;S
end

where S is treated as if it were a block (see Section 4.1.3).

4.6.4.2. Step-until element
lf A, B and C are arithmetic expressions then

for Y :: A step B until C do
^Sis equivalent to

begin (type of B) 0;
Vi: A;
0::B;

l: if (V - C) x sr'gn(p) < 0 then
begin
S; g;.= B: V:: V + 0;
go to l-
end

end
where S is treated as if it were a block (see Section 4.1.3).
In the above, (type of .B) must be replaccd by real or integer

according to the type of .8. (For the use of d and J- see Section 2.1
I.etters.)

4.6.4.3. Llthile element
If E is an arithmetic expression and F a Boolean expression then

Ior V :: E while Fdo S
is equivalent to

begin
T: V:: E;

if F then
begin
S; gotof
end

end
where both S and the outermost compound statement of the above
expansion are treated as if they were blocks (see Section 4.1.3).
(For the use of J- see Section 2.1 Letters.)

4,6.5. The value of the controlled variable upon exit
Upon exit from the lor statement, either through a go to statement,
or by exhaustion of the for list, the controlled variable retains the
last value assigned to it.

4.6.6. Go to leading into a for statement
The statement following a for clause always acts like a block,
whether it has the lorm ofone or not. Consequently the scope olany
label within this statement can never extend beyond the statement.
10

4.7. Procedure statements
4.7 .1. Syntax
(actual parameter)' : : (string)1(expression)l(array identifier)

l(switch identifier)l(procedure identifier)
(letter string) ; ;: (letter)l(letter string)(letter)
(parameter delimiter) " :,1)(letter srring) :(
(actual parameter list) ::: (actual parameter)

l(actual parameter list)(parameter delimiter)(actual parameter)
(actual parameter part) ::: r.empty)l((actual parameter list).;
(procedure statement) " : (procedure identifier)

(actual parameter part)

4.7.2. Examples
Spur(A) Order:(7) Result to: (V)
Transpose(VV, v + l)
Absnnx(A, N, M, Yy, I, K)
Innerproduct(A[t, P, u], Blpl, 10, P, Y)

These examples correspond to examples given in Section 5.4.2.

4.'7.3. Semantics
A procedure statement serves to invoke (cal! for) the execution of a
procedure body (see Section 5.4 Procedure declarations). Where the
procedure body is a statement written in ALGOL the effect of this
execution will be equivalent to the eflect ol performing the lollowing
operations on the program at the timc ofexecution of the procedure
statement:

4.7.3.1. Value assignnrent (call by value)
All formal parameters quoted in the value part of the procedure
heading (see Section 5.4) are assigned the values (see Section 2.8
Values and types; ol the corresponding actual parameters, these
assignments being considered as being perlormed explici(ly before
entering the procedure body. The effect is as though an additional
block embracing the procedure body were created in which these
assignments were made to variables local to this flctitious block with
types as given in the corresponding specifications (see Section 5.4.5).
As a consequence, variables called by value are to be considered as
non-local to the body of the procedure, but local to the fictitious
block (see Section 5.4.3).

4.7.3.2. Nane replacement (call by nanre)
Any formal parameter not quoted in the value list is replaced,
throughout the procedure body, by the corresponding actual para-
meter, alter enclosing this latter in parentheses if it is an expression
but not a variable. Possible conflicts between identifiers inserted
through this process and other identifiers already present within the
procedure body will be avoided by suitable systematic changes of the
formal or local identifiers involved.
If the actual and formal parameters are of different arithmetic

types, then the appropriate type conversion must take place, irres-
pective of the contert of use of the parameter.

4.7.3.3. Body replacetnent and e.recution
Finally the procedure body, modified as above, is inserted in place
of the procedure statement and executed. If the procedure is called
from a place outside the scope of any non-local quantity of the
procedure body the conflicts between the identifiers inserted through
this process of body replacement and the identificrs whose decla-
rations are valid at the place of the procedure statement or function
designator will be avoided through suitable systematic changes of the
latter identifiers.

4.7 .4. A c t ua I -.for tnal cor responde nce
The correspondence between the actual parameters of the procedure
statement arrd thc formal paranleters ol the procedure heading is
established as follows: The actual parameter list of the procedure
statement must have the same number of entries as the formal para-
meter list ol the procedurc rieclaration heading. The correspondence
is obtaincd by taking the entries of these two lists in the same order.

'4.7.5. Restrictions
For a procedure statement to be definctl it is evidently necossary that
the operations on the procedure body detined in Scctions 4.7.3.1 and
4.7.3.2 lead, to a correct ALGOL staternent.
This imposes the restriction on any procedure statement that thc

kind and type of each actual parameter be compatible with the kind
and type of the corresponding lormal parameter, Some important
particular cases of this general rule, and some additional restrictions,
are the following:

4.7 .5.1. If a string is supplied as an actual parameter in a procedure
statement or function designator, whose defining procedure body is
an ALGOL 60 statement (as opposed to non-ALGOL code, see
Section 4.7.8), then this string can only be used within the procedure
as an actual parameter in further procedure calls. Ultimately it can
only be used by a procedure body expressed in non-ALGOL code.

4.7.5.2. A formal parameter which occurs as a destination within tfre
procedure body and which is not called bl.value can only correspond
to an actual parameter which is a variable (special case of expression).

4.7.5.3. A formal parameter which is used rrithin the procedure body
as an array identifier can only correspond to an actual parameter
which is an array identifier ol an array of the same dimensions.
In addition if the formal parameter is called by value the local array
created during the call will have the same subscript bounds as the
actual array.
Similarly the number, kind and type of any parameters of a formal

procedure parameter must be compatible with those of the actual
parameter.

4.7.5.4. A formal parameter which is called by value cannot in
general correspond to a switch identifier or a procedure identifier or
a string, because these latter do not possess values (the exception is
the procedure identifier of a procedure declaration which has an
empty formal paiameter part (see Section 5.4.1) and which defines
the value ofa function designator (see Section 5.4.4). This procedure
identifier is in itself a complete expression).

4.7.5.5. Restrictions imposed by specifications of formal para-
meters must be observed. The correspondence between actual and
forma! parameters should be in accordance with the f6llowing table.
Formal parameter il.Iode Actual parameter
integer value arithmetic expression

name arithmetic expression (see 4.7.5.2)
real value arithmetic expression

name arithmetic expression (see 4.7.5.2)
Boolean value Boolean expression

name Boolean expression (see 4.7.5.2)
label value designational expression

ne designational expression
integer array

real array

value arithmetic array (see 4.7.5.3)
name integer array (see 4.7.5.3)
value arithmetic array (see 4.7.5.3)

tso 1538-1984 (E)

4,7.8. Procetlure body expressed in cotle
The restrictions imposed on a procedure statement calling a pro-
cedure having its body expressed in non-ALGOL code evidently can
only be derived from the characteristics of the code used and the
intent of the user and thus fall outside the scope of the reference
language.

4.7.9. Standard procedures
Ten standard procedures are defined, which are declared in the
environmental block in an identical manner to the standard functions.
These procedures are: inchar, outchar, outstring, ininteger, inreal,
outinteger, oatreal, outterminator, fault and stop. The input/output
procedures identify physical devices or files by means of channel
numbers which appear as the fust parameter. The method by which
this identification is achieved is outside the scope of this report.
Each channel is regarded as containing a sequence of characters, the
basic method of accessing or assigning these characters being via the
procedures inchar and outchar.
The procedures inreal and outreal are converses of each other in the

sense that a channel containing characters from successive calls of
outreal can be re-input by the same number of calls of inreal, but
some accuracy may be lost. The procedures ininteger and outinteger
are also a pair, but no accuracy can be lost. The procedure oat-
terminator is called at the end of each of the procedures outreal and
outinteger. Its action is machine dependent but it must ensure
separation between successive output ol numeric data.
Possible implementation of these additional procedures are given in

Appendix 2 as examples to illustrate the environmental block.

5. Declarations
Declarations serve to deflne certain properties of the quantities used
in the program, and to associate them with identifiers. A declaratron
of an identifier is valid for one block. Outside this block the parti-
cular identifier may be used for other purposes (see Section 4.1.3).
Dynamically this implies the following: at the time of an entry into

a block (through the begin since the labels inside are local and there-
fore inaccessible from outside) all identifiers declared for ttre block
assume the significance implied by the nature of the declarations
given. If these identifiers had already been defined by other decla-
rations outside they are for the time being given a new significance.
Identifiers which are not declared for the block, on the other hand,
retain their old meaning.
At the time of an exit from a block (through end, or by a go to

statement) all identifiers which are declared for the block lose their
local significance.
A declaration may be marked with the additional declarator own.

This has the following effect: upon a reentry into the block, the values
of own quantities will be unchanged from their values at the last
exit, while the values of declared variables which are not marked as
own are undefined.
Apart from labels, formal parameters of procedure declarations,

and identifiers declared in the environmental block, each identifier
appearing in a program must be explicitly declared within the
program.
No identifier may be declared either explicitly or irnplicitly (see

Section 4.1.3) more than once in any one block head.

Syntax
(declaration)' ; = (type declaration) l(array declaration)

j(switch declaration)l(procedure declaration)

5.1. Type declarations
5.7.7. Syntax
(type list) ;;: (simple variable)l(simple variable),(type list)
(type) : : : real]integerlBoolean
(local or own) ::: (empty) jown
(type declaration)> ::: (loca.l or own)(type)(type list2

5.7.2. Examples
integer p, q, s
own Boolean Acryl, n

5.1"3. Semantics
Type declarations serve to declare certain identifers to represent
simple variables of a given type. Real'declared variables may only

11

name
Boolean array value

name
typelessprocedure name

reai array (see 4.7.5.3)
Boolean array (see 4.7.5.3)
Boolean array (see 4.7.5.3)
arithmetic procedure, or
typeless procedure, or
Boolean procedure (see 4.7.5.3)

integer procedure name arithmetic procedure (see 4.7.5.3)
real procedure name arithmetic procedure (see 4.7.5.3)
Boolean procedure name Boolean procedure (see 4.7.5.3)
switch name switch
string name actual string or string identifier
If the actual pararneter is.itself a formal parameter the corres-
pondence (as in the above table) must be with the specification of
the irnmediate actuai parameter rather than with the declaration of
the ultirnate actual parameter.

4,7.6. Label parameters
A label may be called by value, even though variables of type label
do not exist.

4.7.7. Parameter delimiters
All parameter delimiters are understood to be equivalent. No
correspondence between the parameter delimiters used in a pro-
cedure statement and those used in the procedure heading is expected
beyond their number being the same. Thus the information conveyed
by using the elaborate ones is entirely optional.

rso 1538-1984 (E)

assume positive or nega-tive values including zero. Integer declared
variables may only assume positive and negative integral values
including zero. Boolean declared variables may only assume the
values true and false.
A variable declared own behaves as if it had been declared (and

initialised to zero or false, see Section 3.1.5) in the environmental
block; except that it is accessible only within its own scope. Possible
conflicts between identifiers, resulting from this process, are resolved
by suitable systematic changes of the identifiers involved.

5.2, Array declarations
5.2.1. Syntax
(lower bound) ;;: (arithmetic expression)
(upper bound) ;;: (arithmetic expression)
(bound pair) ::: (lower bound):(upper bound)
(bound pair list) ;;: (bound pair)l(bound pair list),(bound pair)
(array segment) ::: (array identifier)1(bound pair list)l

|
(array identifi er),(array segment)

(array list) ": (array segment)l(array list),(array segment)
(array declarer) ::: (type) arraylarray
(array declaration) :;: (local or own)(array declarer)(array list)

5.2.2. Examples
Ltray a, b, cll:n,2:ml, sl-2:101
own integer allay Al2:201
r€al array ql-l: if c < 0 then 2 else I l

5.2.3. Semantics
An array declaration declares one or several identifiers to represent
multidimensional arrays of subscripted variables and gives the
dimensions ofthe arrays, the bounds ofthe subscripts, and the types
of the variables.

5.2.3.1. Subsuipt bounds
The subscript bounds for any array are given in the first subscript
brackets following the identifier of this array in the form of a bound
pair list. Each item of this list gives the lower and upper bounds of a
subscript in the form of two arithmetic expressions separated by the
delimiter :. The bound pair list gives the bounds of all subscripts
taken in order from left to right.

5.2.3.2. Dimensions
The dimensions are given as the number of entries in the bound pair
lists.

5.2.3.3. Types
All arrays declared in one declaration are of the same quoted type.
If no type declarator is given the real type is understood.

5.2.4. Lower upper bound expressions
5.2.4.1. The expressions will be evaluated in the same way as sub-
script expressions (see Section 3.t.4.2).

5.2.4.2. The expressions cannot include any identifier that is declared,
either explicitly or implicitly (see Section 4.1.3), in the same block
head as the array in question. The bounds of an array declared as
own may only be of the syntactic form integer (see Section 2.5.1).

5.2.4.3. An array is defined only when the values of all upper
subscript bounds are not smaller than those of the corresponding
lower bounds. If any lower subscript bound is greater than the
corresponding upper bound, the array has no component.

5.2.4.4. The expressions will be evaluated once at each entrance into
the block.

5.3. Switch declarations
5.3.1. Syntax
(switch list) ::: (designational expression)

|
(switch list),(designational expression)

(switch declaration) ::: switch (switch identifier) :: (switch list)

5.3.2. Examples
switch S :: ,Sl, 52, Qlml, if v > - 5 then 53 else 54
switch Q 1: pl,w

12

5.3.3. Semantics
A switch declaration defines the set of values of the corresponding
switch designators. These values are given one by one as the values
of the designational expressions entered in the switch list. With each
of these designational expressions there is associated a positive
integer, 1,2, . . ., obtained by counting the items in the list from left
to right. The value of the switch designator corresponding to a given
value of the subscript expression (see Section 3.5 Designational
expressions) is the value of the designational expression in the switch
list having this given value as its associated integer.

5.3.4. Evaluation of expressions in the switch list
An expression in the switch list will be evaluated every time the item
of the list in which the expression occurs is referred to, using the
current values of all variables involved.

5.3.5. Influence of scopes
If a switch designator occurs outside the scope of a quantity entering
into a designational expression in the switch list, and an evaluation
of this switch designator selects this designational expression, then
the conflicts between the identifiers for the quantities in this expres-
sion and the identiflers whose declarations are valid at the place of
the switch designator will be avoided through suitable systematic
changes of the latter identifiers.

5.4. Procedure declaral ions
5.4.1. Sy,ntax
(formal pardm€ter'; ; ; : (identifier)
(formal parameter list) ::: (formal parameter)

j(lormal parameter list)(parameter delimiter)(formal parameter)
(formal parameter part) ::: (empty)l((formal parameter list))
(identifier list) : : : (identifier)l(identifier list),(identifier)
(value part), ::: value (identifier list);l(empty)
(specifier2 : : : stringl(type) l(array declarer)llabel

I
switch lprocedurel (type)procedure

(specification part) : : : (empty)l(specifier)(identifier list) ;

l(specification part)(specifier)(identifier list) ;
(procedure heading) ": (procedure identifier)

(formal parameter part) ; (value part)(specification part)
(procedure body) : ; : (statement)l(code)
(procedure declaration) : : :

procedure (procedure heading)(procedure body)
I
(type)procc{ure(procedure heading)(procedure body)

5.4.2. Exantples (see also the examples in Appendix 2)
procedure Spur(a) Order:(n) Resrlt:(s); value r;
array a; integer z; real s;

begin integer k;
s::0;
fork :: I step I until n do s :: s * alk, kl

end

procedure Transpose(a) Order:(n); value z;
array a; integer n;
begin real w; integer i, A;

for i :: I step 1 until n do
fork'.: I +i stepluntiln do

begin w :-- afi, kl;
ali, kl :: alk, il;
a[k, i]:: w

end
end Transpose

integer procedure Step(u); value u; real r;
Step'.: ifO < tt A a (I then l-else0

procedure Absnnx(a) size'.(n, m) Result:(y) Subscripts:(i, k);
yalue r, m; lrtay a; integer n, nt, i, k; real v;

comment The absolute greatest elemertt of the malrix a, of size n by m
is transferred to y, and the subscripts of this element to i and k;
begin integer p, q;

y::0;ii:k;:1;
forp:: lstepluntiln do
forq::lstepluntilndo

ifabs(alp,ql) > ythen

beginy : abs(alp,ql);
i:=p:k::q
end

enil Absmax

procdure Innerproduct(a, b) Order'.(k, p) Result:(y); value k;
integer k, p; rea,l y, a, bi
begin rel s;

s:= 0;
forp :: I step I until,kdos :: s * a x b;
y..:s

end Innerproducl

real procedure eulerQfct, eps, tim);
value eps, tim;
reaf procedure fct; real eps: inte43er tim;
comment euler computes the sum of fct(i) for i from zero up to
infinity by means of a suitably refned euler transformation. The
summation is stopped as soon as tim times in succession the absolute
value of the terms of the transformed series are found to be less than
eps. Hence one should provide a function fct with one integer
argument, an upper bound eps, andan integer tim. euler is particularly
efrcient in the case of a slowly convergent or divergent alternating
series;
begin
integer i, k, n, r;
anay ln[0:15];
re*'l mn, mp, ds, sum;
n:: t '.: 0;
mlDl :: .fct(O); sum:: ml0)i2;
for i :: l, t + 1 while I < rirn do

begin
*7 1: fct(i))
Ior k ::0 step 1 until n do

begin
mp :: (mn + m[k])12:
mlkT:: rn; mn t: mp
end means;

if abs(mn) < abs(m[n]iS ,\ z < 15 then
begin
ds :: mnlzi n;: n * l;
mlnl:: mn
end accept

else
ds :: mn;

sum:: sum + ds;
t :: if abs(ds) < eps then t + I els€ 0
end;

euler:: sum
end euler

5,4.3. Semantics
A procedure declaration serves to define the procedure associated
with a procedure identifier. The principal constituent ofa procedure
declaration is a statement or a piece of code, the procedure body,
which through the use of procedure statements andior function
designators may be activated from other parts of the block in the
head of which the procedure declaration appears. Associated with
the body is a heading, which specifies certain identifiers occurring
within the body to represent formal parameters, Formal parameters
in the procedure body will, whenever the procedure is activated (see

Section 3.2 Function designators and Section 4.7 Procedure state-
ments) be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are noi formal will be either
local or nonlocal to the body depending on whether they are
declared within the body or not. Those of them which are non-local
to the body may well be local to the block in the head of which the
procedure declaration appears. The procedure body always acts like
a block, whether it has the form of one or not. Consequently the
scope of any label labelling a statement within the body or the body
itself can never extend beyond the procedure body. In addition, if
the identifier of a formal parameter is declared anew within the
procedure body (including the case of its use as a label as in Section
4.1.3), it is thereby given a local significance and actual parameters
which correspond to it are inaccessible throughout the scope ofthis
inner local quantity.

tso 1538-1984 (E)

No identifier may appear more than once in any one formal para-
meter list, nor may a formal parameter list contain the procedure
identifier of the same procedure heading.

5.4.4. Values of function designators
For a procedure declaration to define the value ofa function desig-
nator there must, within the procedure body, occur one or more uses
of the procedure identifier as a destination; at least one of these must
be executed, and the type associated with the procedure identifier
must be declared through the appearance of a type declarator as the
very first symbol of the procedure declaration. The last value so
assigned is used to continue the evaluation of the expression in which
the function designator occurs. Any occurrence of the procedure
identifier within the body of the procedure other than as a destin-
ation in an assignment statement denotes activation of the procedure.
If a go to statement within the procedure, or within any other

procedure activated by it, leads to an exit from the procedure, other
than through its end, then the execution, of all statements that have
been started but not yet completed and which do not contain the
label to which the go to statement leads, is abandoned. The values of
all variables that still have significance remain as they were immedi-
ately before execution of the go to statement.
If a function designator is used as a procedure statement, then the

resulting value is discarded, but such a statement may be used, if
desired, for the purpose of invoking side effects.

5.4.5. Specifications
The heading includes a specification part, giving information abour
the kinds and types of the formal parameters. In this part no forrnal
parameter may occur more than once.

5.4.6. Code as procedure body
It is understood that the procedure body may be expressed in non-
ALGOL language. Since it is intended that the use of this feature
should be entirely a question of implementation, no further rules
concerning this code language can be given within the reference
language.

Appendix I Subsets
Two subsets of ALGOL 60 are defined, denoted as level I and level 2.
The full language is level 0.
The level I subset is defined as level 0 with the following additional

restrictions:

1. The own declarator is not included.

2. Additional restrictions are placed upon actual parameters as
given by the following replacement lines to the table in Section
4.7.5.5.
Formal parameter Mode Actual parameter
integer name integer expression (see 4.7.5.2)
real name real expression (see 4.7.5.2)
integer array value integer array (see 4.7.5.3)
real array value real array (see 4.7.5.3)
typeless procedure name typeless procedure (see 4.7.5.3)
integer procedure name integer procedure (see 4.7.5.3)
real procedure name real procedure (see 4.7.5.3)

3. Only one alphabet of 26 letters is provided, which is regarded as
being the lower case alphabet of the reference language.

4. If deleting every symbol after lhe twelfth in every identifier would
change the action of the program, then the program is undefined.

The level 2 subset consists of restrictions l-3 of level I and in
addition:
5. Procedures may not be called recursively, either directly or

indirectly.
6. If a parameter is called by name, then the corresponding actual

parameter may only be an identifier or a string.

7. The designational expressions occurring in a switch list may only
be labels.

8. The specifiers switch, procedure and (type) procedure are not
included.

9. A left part list may only be a left part.

10. If deleting every symbol after the sixth in every identifier would
change the action ofthe program, then the program is undefined.

13

rso 1538-1984 (E)

Appendix 2 The environnental block
As an example of the use of ALGOL 60, the structure of the
environmental block is given in detail.
begin

comment This description of the standard functions and procedures
should be taken as defnitive only so far as their efects are con-
cented. An actual implementation should seek to produce these
effects in as efficient a manner as practicable, Furthermore, where
arithmetics of rea! quantities are ioncerned, even the efects must be
regarded as deftned with only a finite accuracy (see Section 3.3 6).
Thus, for exanrple, there is no guarantee that the value of sqrt(x) is
exactly equal to the value of xl0.5,or tlnt the efects of inreal and
outreal will exactly match those given here.
ALGOL coding has been replaced by a metalinguistic variable (see

Section 1.1) in places where the requirement is clear, and there is
no simple way of specifying the operations needed in ALGOL;

comment Simple functions ;

real procedure abs(E);
value ,E; real E;
abs :: if E > 0.0 then E else - E;

integer procedure iabs(E) ;

value E; integer E;
iabs'.: if E > 0 then E else -E;

integer procedure srgn(E) ;

value .E; real E;
sign:: if E > 0.0 then I

else if E < 0.0 then - 1 else 0;

integer procedur e e nt ier (E) ;

value E; real 6;
comment entier '.: largest integer not greater than E, i.e.

E-l<entier4[,;
begin
integer 7;
j::E;
entier::if,r> Ethenj - lelse7
end entier;

comment M at hema t ical func t ions ;

real procedure sqrt(E) ;

value E; rca'l E;
ifE<0.0then

fault (
r negative -sqrt-, E)

else
sQrt t:810.5;

real procedure sin(E);
value E; real E;
comment sin :: sine oJ.E radians;
(bodY);

real procedure cos(E);
value E; real E;
comment cos :: cosine of E radians;
(bodY);

real procedure arctan(E) ;

value E; real E;
comment arctan i: principal value, in radians, ofarctangenl of E,

i.e. -trlL < arctan < 7r12;

(body);

real procedure /r(E);
value E; real E:
comment ln '.: nntural logarithm of E;
ifE<0.0then

fault (' ln- not -positivel, E)
else

(statement);

real procedure exp(E);
value E; real Et

14

commena exp i: exponentialfunction of E;
if E> ln(maxreal)then

faul t (
r overflow - on - e xp-, E)

else
(statement);

comment Terminating procedures ;
procedure s/op;

comment/or the use of 9, see Section 2,1 Letters;
go to Q;

procedure /aa I t (s t r, r) ;
value r; string str; real r;
comment E is assumed to denote a standard outpul channel. For
the use of 2 see Section 2.1 Letters. The following calls of fault
appear:

integer divide by zero,
undefned operqtion in expr,
undefined operation in expn,
undefned operation in expi,

and in the environmental block:
sqrt of negative argument,
ln of negative or zero argument,
overflow on exp function,
intalid parameter for outchar,
invalid character in ininteger(twice),
invalid character in inreal(three times);

begin
outstring(f ,'fault - -t 1;
outstring(2, str);
outstring(Z, t- -t);
outreal(2. r);
comment Additional diagnostics may be output here;
stop
end fault;

comment Input : output procedures ;
procedure inchar(channel, str, int) ;

value channel;
integer channel, lnl; string slr;
comment Set int to value corresponding to the frst position ln str
of current character on channel. Set int to zero if character not in
str. Morc channel pointer to next character;
(body);

procedure o ut char(channel, str, int) ;
value channel, int;
integer channel, rn l; string srr;
comment Pass to channel the character in sff, corresponding to

the talue of int;
ifint < 7 . int > length(str)then

faulr l. ' character -not - in - slring- , int)
else

(statement);

integer procedure leng t h(str) ;

string str;
comment length:: number of characters in the open string
enclosed by the outermost string quotes, after performing any

necessory concatenation as defned in Section 2-6-3. Characters

forning an inner string (see Section 2.6.3) are counted in an

implementation dePendent manner ;

(body);

procedure o u t s t r ing(channe l, slr) ;

vtlue channel;
integer channel; string slr;
begin
integer m, n;
n :-- length(str);
for m:: I step 1 until z do

out char (c hanne I, str, m)
end outstring;

procedure .orrt t er minator (channe l) ;
talue channel; integer channel;
comment outputs a terminator for use aftet a number. To be

converted into format contol instructions.in a machine dependent

fashion. The terminator should be a space, a newline or a semi-
colon if ininteger and inreal are to be able to read representations
resulting from outinteger and outreal;
(bodv);

procdure ininteger(channe l, int) ;
Yllue chamel; integer channel, int;
comment int takes the value of an integer, as defined in Section
2.5.1, read from chaw&l. The terminator of the integer may be
either a space, a ncwliru or a semicolon (if other terminators are
to be allowed, they may be added to the end ofthe string parameter
of the call of inchar. No other change is necessary). Any number of
spaces or newlines may precede the first character ofthe integer;
begin
integer k, mi
fuolan b, d;
integer procedure lns;

begin
integer z;
comment read one character, converting newlines to spaces.
The inner string'NL- behaves as a single character rcpresenting
newline;
inchar(channel, 10123456789- + -;tNltt, n);
ins :: if n : 15 then 13 else n
end irs;

cornmentpass over initial spaces or newlines;
for k := lns while k : 13 do

comment fault anything except sign or digit;
if k : 0,/ k > 13 then

fault (
r
inv alid - c har ac t ert, k) ;

ifk > l0then
begin
comment sign found, d indicates digit not found yet, b indicates
whether * or -, m is value so far;
d:= false;
b::k:12;
m'.: 0
end

else
begrn
comment d indicates digit found, b indicates *, m is value so

"far)

d;: b:: true;
m::k-l
end;

Ior k :: rnswhilef > 0 A k < 11 do
begin
comment deal with further digits;
m::lOxm*k-1;
d:: true
end k loop;

comment fault if no digit has been found, or the terminator wds
invalid;
ifd>k<13then

faul t (
r invalid -char ac t ert, k) ;

inl :: if b then m else -rn
end ininteger;

procedure o ut int eg er (channe l, int) ;
valae ckannel, int;
integer channel, int;
comment Passes to channel the characters representing the value
of int, followed by a terminator;
begin
procedure dig its(int) ;

vg;lue int;integer int;
begin
integer 7;
comment use recursion to evaluate digits fron right to left, but
print them from left to right;
j :: int : 10;
int :: int - 10 x i;
ifr*0then

tso 1538-1984 (E)
disitsU);

outchar(channel, 101234567891, int + l)
efr digits;

if rzr < 0then
begin
outchar(channel, t-., 1);
int'.: -int
end;

digit s(int) ; ottt t e rminatot(channe l)
enil outinteger;

procdure inreal(channel, re) ;
vdue charmel;
integer channel; ral re;
comment re takes the value of a number, as defined in Section
2.5.1, read from channcl. Except for the diferent definitions of a
number and an integer the rules are exaclll as for ininteger.
Spaces or newlines may follow the symbol rc;
begin
integer j, k, m;
real r, s;
Boolean b, d;
integer procedure lzs;

begrn
integer n;

comment read one character, converting newlines to spaces.
The inner string'NLt behaves as a single character representing
newline;
inchar (channe l, | 01234567 89 - * .ro- ;' N L", n) ;
rns :: if n: l7 then 15 else z
end lns;

commentpass over initial spaces or newlines;
for k :: in^r while & : 15 do

commentfault anything except sign, digit, point or ten;
if k:0Vk > 15then

fault (
r inval i d - cher ac t er1, k) ;

comment b indicates whether * or - , d indicates whether further
digits can have any efect, m will count places after the point, r is
the value so far.
j indicates whether lest character read was sign (j : l), disit
before point (i : 2), point (i : 3), disit after point (i : 4), or
tenU: r'
b:: k * 11;
d:: true;
m::1;
j:: if k < 11 then 2else iabs(k + k - 23);
r :: if k < ll then & - I else 0.0;
lfk*l4then

begtn

comment ten not fownd. Continue until ten or terminetor foundi
for k :: lns while k < 14 da

begin
comment fault for non-numerical character, sign or second
Pointi
ifk:0Vk:11'Vk:rZ

yk: l3Aj> 2then
faul t (

r inval id * c har ac t er', k) ;
comment deal with digit unless it eannot afect value;
if d then

begtn
ifk : 13 then

begtn
comrnent point found;j::3
end

else
begin
ify < 3 then

beein
comrnent deal with digit before point;
r::l0.0xr*k-l
end

else
begin

15

rso 1538-1984 (E)
comment deal with digit after point;
s :: 10.01(-n)i
m::m*li
r::r+sx(/c-l);
comment if r: r * s to machine accuracy,further
digits cannot afect valuei
d;:r+r+s
end;

if7:1V/:3then/::/*1
end

end
end k looP:

comment /aalt if no digit has been found;
ifi:1Ak+t4vi:3tlen'

faul t (' inval id - charact erl, k)
end;

ifk: 14then
begin

comment deal with exPonent Part;
inint eg er (channe I, m) ;
, ,: lit i : lV i : 5 then 1.0 else r) x l0.0fm
end;

re '": if b then r else - r
end inreal;

procedure oufteal (channe l, re) ;

value channel, re;
integer channel ; tca;l re ;

com"ment Passes to channel the characters representing the value

of re, followed bY a terminator;
begin
integer r;
comment n gives nutnber of digits to print, Could be given as a

constant in any actual implementation;
n:: entier(|.0 - ln(epsilon) / l(10.0));
if re < 0.0 then

begin
ouichar(chann€\,'-t, l); re :: - re

end;
if re < minreal then

begin
out s t r ing(c hannel,

t0.0t) ; o u t t e r m i na t o r (c hanne l)
errd

else
begin
integer j, k, m, P;
Boolean float, nines;

comment m will hold number of places point,must be moved to

itandardise value of re to have one digit before point;

m::0;
conrment standardise value of re;
for m :: m * 1 whilere > 10'0do

re i: rell0.0i
for m :: rr - I while re < l'0 do

re :: l0.O x re;
if re > 10.0 then

begin

comment this can occur only by rounding error' but is a

necessarY safeguard;
re t: 1.0;
m::m*l
end;

if m>-nYm< -2then
begin
coirment printing to be in exponent form;
float :: fiue;
p::l
end

else
begrn
comment prrn ting to be in non'exponent fortn;
float :: filse;
comment if p : 0 point will not be printed' Otherwise point

will be after P digits;
p :: if. m -- n - lY m < 0 then0else m * 1;

ifm < 0then

16

begin
out s t r ing(channe l,' 0.t) ;

if m : -Zthen
out char (channel,' 0t, 11

end
end;

nr'nes :: false;
forT :: 1 steP I until n do

begrn
comment if nines is ttue, all remaining digits must be 9' This

can occur only by rounding error, but is a necessary safeguard;

if nines then
k::9

else
begin
comment find digit to Print;
k '.-- entier(re);
ifk > 9then

begin
k;:9;
nittes:: true
end

else
begin
commmt move next digil to before point:
re :: 100 x (re - k)
end

end;
outchar(.channet,'0123456789t, k + 1);

if7 : p then
oulchar(channel,' .-, l)

ed j IooP;
if float tben

begin
comment print exponent part, outinteger includes a call of
oultertninator:
o utchar(channel,

t :l-, l) ;

ou t inte ger(channel, m)
end

else
o u t I e r nt ma t or (c hanne I)

end
end outreal;

comment Env ironrnent a! enq uir ies ;

real procedure maxre al',
maxreal :: (number);

real procedure ninreal ;

minreal :: ' number);
integer Procedure maxinl :

maxint ;: linteger);
.o*rn.ot ^oireol,

minreal, and maxint are, respectively' tlr,c-i)-*i^u-
allowabie positive real number, the minimum allowable

nositive real number, and the maximum allowable positive integet,
'such

that any valid expression of the form
iprimarylarithmetic operator) (primary)

will be coriictty evaluated, provided that each of the primaries

,iinrrrnra, and ihe mathematieally correct resuh lies within the open

iitrrnot (-maxreal, -minreal) or (minreal, maxreal) or is zero
'tf

;f;;ti rype, or within the open interval (- maxint, naxint) if of
integer tYPe.'ii

rii ,ttrt, is of real type, the words-'coft.ectly.evaluated' must be

inderstood in the sense- of numerical analysis (see Section 3'3'6);

real Procedwe ePsilon;--*il-"nt
Thi smaliest positive real number such that the eom'

,iiitiorot result of 1.0 + epsilon is greater than 7'O and the
'computotional result of 1 .0 - epsilon is less than 1'0;
epsilon;: (number);

comment In any particular implementation, further standard

i;;;;;;; ord pro'rrrirrrs mav be added here, but no additional ones
'rr., n" regarded as part of the reference langu.age (in particular'

a liss rudimentary inputloutput system is desirable);

(fictitious declaration of own variables);
(initialisation of own variables) ;

(program);
9:

cnd

rso 1538-1984 (El

Bibliography
Brcxu-s, J. _W. (1959). The Syntax and Semantics of the Proposed International Algebraic Language. Information processing, paris2

UNESCO.
ECMA Subset of ALGoL 60, CACM, vol' 6 (1963), p.595; European Computer lv{anufacturers Association (lg6s) ECMA standardfor aSubset of ALGOL 60.
IFIP (1964a). Report on Subset ALGOL 60, Num. Math., vol. 6, p.4s4:; CACM, vol. z, p.626.
IFIP (1964b). Report on Input-Output Procedures for ALGOL 60, Num, Math.,yol. A, p. +SO; CACM,VoI. 7, p. 62g.KNtmt, D. E. er al. (19&). A Proposal for Input-Output Conventions in ALGOL @, CACM,'yol. 7, p.273. ' '
KNurH, D. E. (1967). The Remaining Trouble spots in ALGOL ffi. CACM, vol. 10, p. 611.
Nrun, P. (Editor) (1963)' Revised Report on the Algorithmic Language ALGoL @, -ACM, vol. 6, p. l; The Computer rournal,vol. 5,p.349; Num. Math., Vol. 4, p.420.
IJn"rrN, R. E. et al. (1963). Suggestions on the ALGoL 60 (Rome) Issues, clcM, vol. 6, p. 20.

Alphabetic index of definitions of concepts and syntectic rmits
All references are given through section numbers. The references are
.given in three groups:
de/ Following the abbreviation 'del', reference to the syntactic

definition (if any) is given.
,synl Following the abbreviation 'synt', references to the occurrences

in metalinguistic formulae are given. References already quoted
in the def-group are not repeated.

text Following the word 'text', the references to definitions given in
text are given.

* see: plus

- see: minus
x see: multiply
/+see:divide
t see: exponentiation
<< : >> * see: (relational operator)

= > V A -l see: (logical operator)
, se€: corTlma
. see: decimal point
r0 see: ten
: see: colon
; see: semicolon
:: see: colon equal
() see: parentheses

[] see: subscript brackett t see: string quote
(actual parameter), def 3.2.1, 4.7.1
(actual parameter list), def 3.2.1,4.7.1
(actual parameter part), def 3.2.1, 4.7.1
(adding operator), def 3.3.1
alphabet, text 2.1

arithmetic, text 3.3.6
(arithmetic expression), def 3.3.1 synt 3, 3,1.1, 3,4"1,4.2,1, 4.6.1,

5.2.1 text 3.3.3
(arithmetic operator), def 2.3 text 3.3.4
array, synt 2.3,5.2.1
array, text 3.1.4.1
(array declaration), def 5.2.1 synt 5 text 5.2.3
(array declarer), def 5.2.1, synt 5.4.1
(array identifier), def 3.1.1 synt 3.2.1,4.7.1, 5.2.1 text 2.8
(array list), def 5.2.1
(array segment), def 5.2.1
(assignment statement), def 4.2.1 sytrt 4.1.1 text 1,4.2.3

(basic statement), def 4.1.1 synt 4.5.1
(basic symbol), def 2
begin, synt 2.3,4.1.1
(block), def 4.1.1 synt 4.5.1 text 1,4.1.3, 5
(block head), def4.1.1
Boolean, synt 2.3, 5.1.1 text 5.1.3
(Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1,4.5.1,4.6.1 text

3.4.3
(Boolean factor), def 3.4.1
(Boolean primarv), def 3.4.1
(Boolean secondary), def 3.4.1
(Boolean term), def 3.4.1
(bound pair), def 5.2.1
(bound pair list), def 5.2.1
(bracket), def 2.3

(closed string), def 2.6.1

(code), synt 5.4.1 text 4.7.8, 5.4.6
colon :, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1
colon equal ::, synt 2.3,4.2.1,4.6.1, 5.3.1
cornma,, synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7 .1, 5. l. l, 5.2.1, 5.3.1, 5.4. I
comment, synt 2.3
comment convention, text 2.3
(compound statement), def 4.1.1 synt 4.5.1 text I
(compound tail), def 4.1.1
(conditional statement), def 4.5.1 synt 4.1.1 text 4.5.3

(decimal fraction), def 2.5.1
(decimal number), def 2.5.1 text 2.5.3
decimal point., synt 2.3,2.5.1
(declaration), def 5 synt 4.1.1 text l, 5
(declarator), def 2.3
(delimiter), def 2.3 synt 2
(designational expression), def 3.5.1 synt 3,4.3.1, 5.3.1 text 3.5.3
(destination), def 4.2.1
(digit), def 2.2.1 synt 2,2.4.1,2.5.1
dimension, text 5.2.3.2
divide / +, synt 2.3, 3.3.1 text 3.3.4,2
do, synt 2.3;4.6.1
(dummy statement), def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3,3.3.1,3.4.1, 3.5.1, 4.5.1 text 4.5.3.2
(empty), def 1. I synt 2.6.1, 3,2,1, 4.4.1, 4.7 .1, 5. l. l, 5.4.1
end, synt 2.3,4.1.1
exponentiation t, synt 2.3,3.3.1, text 3.3.4.3
(exponent part), def 2.5.1 text 2.5.3
(expression). def 3 synt 3.2.1,4.7,1 text 3

(factor), def 3.3.1
false, synt 2.2.2
for, synt 2.3,4.6.1
(for clause), def 4.6.1 text 4.6.3
(for list), def 4.6.1 text 4.6.4
(for list element), def 4.6.1 text 4.6.4.1. 4.6.4.2,4.6.4.3
(formal parameter), def 5.4.1, text 5.4.3
(formal parameter list), def 5.4.1
(formal parameter part>, def 5.4.1
(for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.5
(function designator), def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3,5,4.4

go to, synt 2.3,4.3.1
(go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

(identifier), def 2.4.1synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
(identifier list), def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1
(if clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.t text 3.3.3, 4.5.3.2
(ii statement), def 4.5.1 text 4.5.3.1
(implication), def 3.4. I
integer, synt 2.3, 5.1.1 text 5.1.3
(integer), def 2.5.1 text 2.5.4

label, synt 2.3,5.4.1
(label), def 3.5.1 synt 4.1.1, 4.5,1, 4,6,1 text l, 4.1.3, 4.7.6
(left part), def 4.2.tr
(left part list), def 4.2.1
(letter), def 2.1 synt 2,2.4.1,3,2,1,4,7.1
(letter string), def 3.2.1, 4.?.1
tocal, text 4.1.3

17

lso 1538-1984 (E)

(local or own), def 5.1.1, synt 5.4.i
(logical operator), def 2.3 synt 3.4.1 text 3.4.5
(logical value), def 2.2.2 synt 2, 3.4.1
(lower bound), def 5.2.1 text 5.2.4
minus -, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1

multiply x , synt 2.3,3.3.1 text 3.3.4.1
(multiplying operator), def 3.3.1

non-local, text 4.1.3
(number), def 2.5.1 rext 2.5.3,2'5.4

(open string), dei 2.6.1
(operator), del 2.3
own. synt 2.3, 5.1.1 text 5, 5.2.5

(parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3,3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1,5.4.1, text

3.3.5.2.
plus *, synt 2.3,2.5.1,3.3.1 text 3.3.4.1
(primary), def 3.3.1
procedure, synt 2.3, 5.4.1
(procedure body), def 5.4.1
(procedure declaration), def 5.4.1 synt 5 text 5.4.3
(procedure heading), def 5.4.1 text 5.4.3
(procedure identifier), def 3.2.1 synt 3.2.1, 4.2.1,4.7.1,5.4.1 text

4.7.5.4
(procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
(program), def 4.1.1 text I
(proper string), def 2.6.1

quantity, text 2.7

ral, synt 2.3,5.1.1 text 5.1.3
(relation), def 3.4.1 text 3.4.5
(relational operator), del 2.3, 3.4.1

scope, text 2.7
semicofon;, synt 2.3, 4.1.1, 5.4.1
(separator), def 2.3
(sequential operator), def 2.3
(simple arithmetic expression), def 3.3.1 synt 3.4'1 text 3.3.3
(simple Boolean), def 3.4.1
<.simp!e designational expression), def 3.5.1
(simple variable), def 3.1.1 synt 5.1.1 text 2.4.3
(specification part), def 5.4.1 text 5.4.5
(specificator), def 2.3
(specifier), def 5.4.1
standard functions and procedures, text 3.2.4
standard procedures, text 4.7.9
(statement), def 4.1.1 synt 4.5.1, 4'6.1, 5.4.1 text 4
statement bracket see: begin end
step, synt 2.3,4.6.1 text 4.6.4.2
string, synt 2.3,5.4.1
(string), def 2.6.1 synt 3.2.1, 4'7.1 text 2.6'3
string quotes t', synt 2.3,2'6.1 text 2'6.3

subscript, text 3.1.4.1
subscript bound, text 5.2'3.1
subscript brackets [], synt 2'3,3.1.1,3.5.1' 5.2.1
(subscripted variable), def 3'1'l text 3.1.4.1
(subscript expression), def 3.1.1 synt 3.5.1
(subscript list), def 3.1.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1
(switch declaration), def 5.3.1 synt 5 text 5.3.3
(switch designator), def 3.5.1 text 3.5.3

(switch identifier), def 3.5.1 synt 3.2.1 ,4.7.1, 5.3.1
(switch list), def 5.3.1

(term), def 3.3.1
ten ro, synt 2.3.2.5.1
then, synt 2.3, 3.3.1, 4.5.t
true, synt 2.2.2
(type), def 5.1.1 synt 5.4.1 text 2.8
(type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

(unconditional statement), def 4.1.1, 4.5.1
(unlabelled basic statement), def 4.1.1
(unlabelled block), def 4.1.1
(unlabelled compound), def 4.i.1
(unsigned integer), def 2.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2
(upper bound), def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1
value, text 2.8,3.3.1
(value part), def 5.4.1 text 4.7.3.1
(variable), def 3.1.1 synt 3.3.1, 3.4.1,4.2.1, text 3.1.3
(variable identifrer), del 3.1.1 synt 4.6.1

while, synt 2.3,4.6.1 text 4.6.4.3

18

