
t. Data General

EXTENDED
ALGOL

User's Manual

093-000052-05

Ordering No. 093-000052

EXTENDED
ALGOL

User's Manual

093-000052-05

© Data General Corporation 1971, 1972, 1973, 1974, 1975
All Rights Reserved.
Printed in the United States of America
Rev. 05, January 1975
Licensed Materia 1 - Property of Data Genera 1 Corporation

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

Original Release
First Revision
Second Revision
Third Revision
Fourth Revision
Fifth Revision
086-000017-00

February, 1971
September,1971
August, 1972
February,1973
March, 1974
January,1975
March, 1975

This revision of the Extended ALGOL User's Manual,
093-000052-05 and its ~ddendum, 086-000017-00,
supersedes 093-000052-04 and 017-000016-00 and
constitutes a minor revision to the manual. A
vertical bar on the outer margin of each page
indicates substantially new, changedi or deleted
information. A list of changes is given following
the index to the Reference Manual section.

INTnODUCTION

Data General's Extended ALGOL compiler for all DGC computers
is suitable for business applications, for systems programming,
and for research and engineering applications. The extensions
to ALGOL 60 were selected to make DGC Extended ALGOL a general­
purpose language offering those features most wanted by users
rather than merely a language in which complex mathematical
algorithms could be concisely written.

The features of standard ALGOL 60 which differentiate ALGOL
from other commonly used languages include recursive procedures,
dynamic storage allocation, a modular "block" organization,
long variable names, integer or character labels, and a very
flexible generalized arithmetic.

Some of the major DGC extensions to ALGOL 60 provide for char­
acter string manipulation, file manipulation, DGC supplied I/O
procedures that allow free-form or formatted output and provide
a cache memory management facility, use of pointers and based
variables, multi-precision arithmetic allowing the user to
achieve, for example, up to 60 digits of precision, and sub­
scripted labels.

Character strings are implemented as an extended data type to
allow easy manipulation of character data. The program may,
for example, read in character strings, search for substrings,
replace characters, and maintain character string tables
efficiently. Dynamic conversion of data types includes con­
version of strings to and from integer real, pointer, and
Boolean data types, allowing the user an unusual degree of
freedom both in use of character strings and in their output
format.

The simplified I/O procedures for use by most ALGOL programmers
use one call for all data types. Free-form read and write or
formatted output according to a "picture" specification of the
output line are available. The I/O procedures provide for ran­
dom as well as sequential access of individual data values, a
number of bytes, a line of information, or all or part of a
file for reading and writing.

Cache memory management I/O procedures may be used when very
large procedure and data files must be manipulated as in
compiler writing. The procedures allow access to single words,
blocks of words, and the contents of active files using a fast
buffering mechanism.

Pointers and based variables provide a programming technique
that allows a systems programmer, in particular, and other

-i-

programmers as well to achieve a high level of object code
efficiency. Pointers and based variables allow programmers
to explicitly manipulate machine addresses. For example, the
programmer can force a subscript calculation to be performed
only once in a frequently executed portion of a program. As
another example, if the programmer knows that an external
variable will not be modified by a call, he can convey this
knowledge to the compiler.

In effect, use of pointers and based variables bypasses compiler
generatiori" of extra code usually needed to allow for "worst
case" computations where information is not available about a
variable until run-time.

Multi-precision arithmetic is available for both fixed and
floating point data types, allowing up to 15 computer words of
precision in both cases. Precision can be specified for both
variables and arithmetic literals. Radix conversion is permitted;
any radix from 2 through 10 can be specified.

Recursive procedures are allowed. An array declaration may be
any arithmetic expression, including function calls, negative
numbers, and subscripted variables. Integer labels and con­
ditional expressions can be used. Some of the other language
features and extensions to ALGOL are:

Dynamic conversion of parameter type (integer, real, string,
pointer, Boolean), allowing one program to process data of sev­
eral types.

Dynamic storage allocation, freeing the programmer from many
details of data layout and storage assignment.

N-dimensional arrays which may be allocated dynamically at run­
time.

Bit manipulation, using logical operators and octal or binary
literals. Built-in functions are provided to allow efficient
access to data at the bit level.

Efficient object code and commented assembly language output.
Code is optimized for register usage, generation of literals,
optimal use of machine instructions, and efficient storage
allocation.

Explicit diagnostics both at compile time and run-time. Compati­
bility with the Data General Symbolic Debugger aids run-time de­
bugging.

-ii-

Object code and run-time compatibility with assembly language
to permit referencing not only of external programs and data
compiled by the ALGOL compiler but of any object program.

Full label capability, permitting integer labels, identifier
labels and subscripted identifier labels to be used.

Declaration of literals permitting an identifier to be subscripted
for any type of literal within a program.

Declaration of operators permitting the user to declare, imple­
ment and use other operators besides the arithmetic and Boolean
operators provided with ALGOL.

HOW TO USE THE EXTENDED ALGOL USER'S MANUALS

The Extended ALGOL User's Manuals is divided into two separate
parts. Part 1 is a tutorial called How to Program in ALGOL.
The tutorial presents the basic concepts of ALGOL for programmers
unfamiliar with ALGOL or with compiler languages.

Part 2 is a complete description of Extended ALGOL called the
Extended ALGOL Reference Manual.

Each part contains its own table of contents and separate index.

-v-

H
Z

:t:'
t-t
G)
o
t-t

HOW TO PROGRAM IN ALGOL

CONTENTS

GENERAL PROGRAM ORGANIZATION ••••••••••••••••••••••••••••••••• 1

.
Are Needed in ALGOL

for Identifiers ••
Release of storage for

DECLARATIONS •••••••
Why Declarations
Size of Storage
Allocation and
Data Types.
Arrays ••••

in Declarations Lists of Identifiers
Local and Global Identifiers •••••••••

STATEMENTS ••

. . .
Identifiers.

.3

.3
• .3

.4

.5
• •• 5
• •• 7
•• 7

Statement Termination.
Assignment Statement.
go to Statement.

.... •• 10
.11

if Statement •••••••
for Statement.

PROCEDURES ••
a Procedure
Procedure ••

Procedure

Declaring
Calling a
Returning from
Identifiers
External

a
Used in Procedures

Procedures •••••••••••
of Procedures ••••••• Parameters

Functions
Recursive Procedures
I/O Procedures Supplied
Functions Supplied to

to
the

the
User

.

User

• .12
• .17

.18
• .20

.22

.22

.23

.23
••••• 24

••• 24
. ...•. .. 24

• .26
• .27

.27
• .32

STRING VARIABLES AND ARRAYS ••••••••••••••••••••••••••••••••• 32

BIT ~NIPULATION ••••••••.••••••••••••••••••••••••••••••••••• 34

CHANGE OF RADIX ••• 3 5

WRITING AN ALGOL PROGRAM •••••••••••••••••••••••••••••••••••• 36

vii

GENERAL PROGRAM ORGANIZATION

A basic ALGOL program starts with the word begin and ends with
the word end.

begin

-basic program
end

begin and end are written in italics because they are reserved
words (called keywords). ALGOL recognizes keywords as having a
special meaning; the user cannot change the meaning of keywords
or use them for his own program names. The user writes a key­
word at the teletypewriter either in all upper case letters or
all lower case letters.

A basic program is called a block.

Inside a block are declarations and statements. Declarations
list user program names and their characteristics. User program
names are called identifiers. Statements show the action the
program will take.

Declarations of identifiers must precede their use in statements.

begin declarations;
declarations;
statements;
statements;
end;

-declarations precede statements

An example of a block, containing declarations and statements is:

begin
real pi;
integer k;
rea 1 R [300] , AREA [300];

pi := 3.1416;

-declarations

for k :=1 step 1 until 150 do -statements
AREA [k] .- pixR[k] t2;
end;

-1'--

GENERAL PROGRAM ORGANIZATION (Continued)

An ALGOL program can be written in free form. This means that
a declaration or a statement can be continued from one line to
the next and that more than one statement or declaration can be
written on a line. For example, the previous program could be
written:

begin real pi; integer k;
array R[300], AREA[300

] ;pi:=3.l4l6; for k
:= 1 step 1 until 150 do
AREA[k] := pixR [k] t 2; end;

-but the program is hard
to read if it does not
have some format.

Since the end of a line is not a delimiter in ALGOL as it is in
the DGC assembler, other delimiters must be used. A few common
ALGOL delimiters are the keywords themselves and the symbols:

- usually ends a declaration, statement, or a comment.

- separates items in a list.

- terminates a label definition.
separates the lower and upper bounds of array dimensions.

() - enclose parameters of procedures and built-in functions.
enclose precision of numeric variables.
enclose the maximum declared length of strings.
enclose expressions to be evaluated as entities.

[] - enclose dimensions of an array in a declaration or the
subscripts of an array or label in a statement.

space - separates identifiers that are not otherwise separated,
such as two keywords together or a keyword followed by
an identifier.

Examples of required blank spaces are shown below as triangles.
The other blanks are not significant and are used only for legi­
bility.

begin ~ real ~ pi; integer ~ k;
real ~ array ~ R[300], AREA [300];

Other delimiters will be introduced later in this manual. The
Reference Manual contains a complete list in Chapter 4.

-2-

DECLARATIONS

Why Declarations Are Needed in ALGOL

When a programmer writes a program for compilation in a high­
level language such as ALGOL, he uses several, sometimes a very
large number of program variables that are assigned different
values during execution.

A declaration tells the ALGOL compiler the name of a program
variable, called an identifier. In addition, a declaration
shows:

How much storage space the identifier needs.

How and when storage is allocated and released.

What kind of identifier is involved.

Much of this information does not actually appear in most
declarations but is given by default. For example:

integer k; -declaration of k.

tells the compiler:

The identifier is k.

k can have integer values.

Default storage for integers should be used for k.

Size of Storage for Identifiers

The basic storage unit is a l6-bit word. The default storage
for the various types of ALGOL identifiers is:

Integers

Real (decimal) values

Boolean values

Pointers

Strings

-3-

one word

two words

one word

one word

32 characters (two characters
per word)

DECLARATIONS (Continued)

Size of Storage of Identifiers (Continued)

The default storage allocations can be overridden by the program­
mer by including precision in parentheses immediately following
the data type in the declaration. For numeric values, the pre­
cision indicates the number of machine words used to store the
datum. For strings, the precision indicates the maximum number
of characters the string may have.

integer (2) k, y; -k and yare each stored in 2 words.
real (5) array x [10]; -each element of array x stored in 5 words.
string (50) line; -line has a maximum of 50 characters.

To approximate the number of decimal digits of precision that can
be stored in a given number of 16-bit words, use the following
formulas. n represents the declared precision in words.

16n
integer digits=5(n-l) +4 integer range=~2 -1

real digi ts=5 (n-l) +2 10- 75 ~ real range ~ 10 78

Allocation and Release of Storage for Identifiers

By default, an identifier is allocated storage when the block in
which it is declared is entered (begin keyword) and the storage
is released when the block is terminated (end keyword).

A large ALGOL program can be made up of many basic blocks. Some
blocks are entered and exited many times. Allocating and releas­
ing storage by block makes more storage available for other
identifiers.

However, suppose a programmer wants to enter and exit a block
many times during program execution_ The block contains a real
identifier, R. The programmer wants to enter the block each
time with R having the same value it had when the block was
last terminated.

If the programmer declares R with the keyword own, R will be
stored in a separate area from the other identifiers. In the
own area, space allocated to identifiers is never released until
the entire program terminates.

own real R;

-4-

DECLARATIONS (Continued)

Data Types

The declaration of a data type
values an identifier can have.
data type for all identifiers.
of data type.

tells the compiler the kind of
The programmer must declare a
There is no default declaration

integer x; -has values like +15,3,-25
real Yi _has values like 3.1416 and -.22266
boolean Z; -has value true or false
string r; -has values like $5.25 or abcde
pointer p; -has an integer value. See Reference Manual.

Labels are explicitly declared by their use as labels; however,
formal parameters that are replaced by labels are declared label.
See section on procedures.

1100: x :=3;

Arrays

-100 is a label on the statement
x : =3;

So far, only identifiers that can have one value at a time have
been used. It is possible to declare an array. An array is an
identifier of an ordered set of values. Each member of the set
is called an array element.

Arrays, like simple identifers, are declared with a data type
and storage characteristics. These apply to each element in the
array.

integer (2) array Matrix;-declaration of array, Matrix. Each
element in Matrix can have an integer
value up to 9 digits long.

If you look at the declaration of Matrix, you see that the com­
piler has no way of knowing how many elements Matrix is supposed
to have. While this kind of array declaration is used under
circumstances described later, the programmer will usually declare:

How many elements are in the array.

How each element is to be numbered. (This also will
determine the order in which values are stored into
identifiers.)

-5-

DECLARATIONS (Continued)

Arrays (Continued)

This part of the array declaration is called dimensioning the
array. For example:

I integer array Matrix [25];

The single number 25 tells the compiler that Matrix is an array
containing 26 elements, numbered:

Matrix [0], Matrix [1] , ••• , Matrix [25]

and values are assigned in that order.

An array can have more than one dimension. In fact, it can have
up to 128 dimensions. For example, an array containing real
values for the lengths and diameters of pipe might be written with
two dimensions as follows:

real array pipe [5,5];

The declaration tells the compiler that the array, pipe, has 6x6
or 36 elements. The elements are

pipe[O,O], pipe[l,O], pipe[2,0], ... ,pipe[6,0], pipe[O,l], pipe [1,1
•.• ,pipe[6,1] , ••• ,pipe[5,6], pipe[6,6]

The identifying numbers of each element in the array are called
the subscripts of the array. If you look at the elements of
array pipe, you will see that the first subscript varies most
rapidly. In an array of several dimensions, values are assigned
in this way: the first subscript varies most rapidly, then the
second subscript, then the third subscript, etc.

If the programmer wishes, he can give an array a different
starting number from zero. For example, array pipe could have
been written:

I real array pipe[-5:O,1:6];

Pipe still has 36 array elements but now they are numbered:

pipe[-5,ll, pipe[-4,1], ••• , pipe[-1,6]' pipe [0,6]

-6-

DECLARATIONS (Continued)

Arrays (Continued)

The first number of each dimension gives the lower bound of the
dimensioni the second number gives the upper bound. The lower
bound must be a smaller integer than the upper bound. Besides
integer and real arrays, arrays of strings can be declared. The
maximum length of each element of a string array can be declaredi
otherwise, the default limit of 32 characters will be set for
each element.

begin string(8) array ID[9,9]i

ID is declared as a two dimensional lOxIa array of strings. The
maximum length of each string is eight characters.

Variable strings are an extension to ALGOL. Some of the ways in
which they can be used are discussed later.

Lists of Identifiers in Declarations

The programmer does not have to write a separate declaration for
each and every program variable. Quite often a number of pro­
gram variables have the same data types and storage characteris­
tics. In this case, the programmer can write one declaration,
listing all the identifiers.

begin integer i,il,i2,i3i
real x,y,Zi
real array M[5,5], z[8,8], A,B[2,2]i -A and B have the same

dimensions.

Local and Global Identifiers

The block structure of ALGOL permits blocks within other blocks.
In the following diagram, three blocks are shown. The blocks
labeled B2 and B3 are inside the block labeled Bl.

Bl: I begin rea l Ai

! B2: [-begin boolean Bi

-end B2i

B3: ,-begin real Ci

-end B3i

-- end Bli

-A is declared in block Bl.

-B is declared in block B2.

-n2 ends. end can be followed by a
string of characters.

-c is declared in block B3.
-B3 ends.

-31 ends.

-7-

DECLARATIONS (Continued)

Local and Global Identifiers (Continued)

Since B2 and B3 are both within block BI, any identifier de­
clared in BI, such as real A, is defined for blocks B2 and B3.

Identifier A is said to be local to block BI (the block in which
it is declared) and global to blocks B2 and B3 (the blocks in
which it is defined.)

Identifier B is local to block B2 and identifier C is local to
block B3. Elsewhere, both these identifiers are undefined. Why
this is so can be seen in the following diagram of the blocks.

-storage is allocated for real A.
B2:

-storage is allocated for boolean B.

-storage is released for B.

B3:
-storage is allocated for real c.
-storage is released for C.

-storage is released for A.

Labels are declared by their appearance as labels within a given
block. For example, the blocks BI, B2, and B3 might each con­
tain labeled statements.

B" .:..: I-begin real A;

IB2: begin boolean B;

I
lab: ---;

end B2;
ttg: ---i

-lab is a label local to B2.

-ttg is a label local to BI and
global to B2 and B3.

-22 is a label local to B3.

Like declared identifiers Band C, labels lab and 22 are undefined
except in their own blocks. Note, however, that the labels of
the blocks, B2 and B3, are outside the blocks they label and are
local to block BI and global to blocks B2 and B3 as shown in the
following diagram.

-8-

DECLARATIONS (Continued)

Local and Global Identifiers (Continued)

Bl:

B2:
I lab: --- .
i

,

ttg: ---i

B3 :

p2: ---j

Even though a label does not appear in a declaration, it is a
data type; if an identifier is used as a label in a block, it
cannot be used as any other type of datum.

Arrays can be declared with variable dimension bounds such as:

I real array z[i,j]; The bounds are 0 to i and 0 to j.

The appearance of variable dimension bounds in an array declara­
tion constitutes a use of the identifiers. Identifiers must be
declared and defined before they are used. Thus i and j must be
global to the block containing the declaration of array z. For
example, the following is legal:

B: begi n integer i,j;

i:=50; j :=100;

C: begin real array A[i,j];

end C;

end B;

-1 and

.... i and

-i and
array

However, the following is illegal:

B: begin integer i,j;
real array A[i,j];

end B;

j

j

j
A

declared in block B.

Clefined in block B.

used in dimensioning
in Block C.

•

A later section describes procedures and formal parameters of

-9-

DECLARATIONS (Continued)

procedures. Formal parameters are not allocated storage as are
actual program variables and therefore the rules of declaration
and definition before use do not apply to formal parameters.

STATEMENTS

Statements are programming instructions. They indicate how oper­
ations are to be performed using the declared identifiers.

ALGOL statements are very flexible so that programmers unfamiliar
with ALGOL can use short, simple statements. Experienced ALGOL
programmers, however, can nest statements within other statements.
In fact, an entire block may be treated as a single statement.

Some examples of simple state~ents are:

A :=B+l. 0;

go to Lb 13;

if bool then go to B;

c :=c/d;

-Assignment. B+l.O is evaluated
and placed in location A.

-Unconditional transfer to the
statement labeled Lb 13.

-Conditional transfer.

bool is a Boolean variable. If bool has the value true, a trans­
fer is made to the statement labeled B. If bool is false, the
assignment statement is executed.

tag2:;

I for i :=0,2,25 do
I x [i] : =y [i] + i ;

-Dummy statement providing a label
to which to transfer.

-for statement.

The for statement causes a loop. The variable i is assigned the
first value (0) of the list 0,2,25, and the assignment statement
is executed. Then i is assigned the second value (2) and the
assignment statement is executed, etc.

proc23(x,y,Z)i -procedure call

,
-10-

STATEMENTS (Continued)

A call to a procedure named proc23 is made from the current block.

comment: Comments contain explanatory informationi

ALGOL comments are written as statements, beginning with the
keyword comment and ending at the first semicolon.

Often, a programmer wants a group of statements to be treated as
a single statement. A common example is a group of statements
following a fop statement, where the programmer wants the loop
to include the group of statements. He can use the keywords
begin and end to "block" his statements.

fop p :=5,10,15,20
do begin

A[p]
B[p]
C[p]

end;

:=pt 2 i
:=A[p] -Xi
:=B[p] +A[P]i

The three assignment statements will be executed for each value
of p.

Statement Termination

Statements shown previously have generally been terminated by a
semicolon. However, statements may be terminated in some
instances by the keyword end or the keyword eZse. For example,
the previous compound statement could be written:

fop p :=5,10,15,20
do begin

A [p]

I ~ ~~~
~

:=pt 2 i
:=A[p] -Xi
:=B[p] +A[p] -end terminates this statement

The keyword eZse can terminate a statement in a conditional clause.

-11-

STATEMENTS (Continued)

Statement Termination (Continued)

if x=O then go to LABLAA else .. else terminates go to LABLAA
if x>O then y :=x
else -else terminates y :=x
x : :.x +1;

Although end terminates one statement, the keyword does not sig­
nal that another statement or declaration can begin. The key­
word end can be followed by a string of characters. Anything
following end will be treated as a string wntil the next state­
ment terminator is encountered, that is, the keyword else, the
keyword end, or a semicolon.

I end of block 25; -string "of block 25" is terminated by a
semicolon.

Forgetting to terminate an end can lead to difficulties such as
the following:

end
begin integer i,j; .·"begin integer i,j" is treated as a string

following end, not as a declaration.

To avoid the problem, put a semicolon after the keyword end when
it is needed.

Assignment Statement

The basic statement is the assignment statement that permits the
value of an expression to be stored in a location represented by
an identifier.

variable := expression;

t
Assignment symbol

-12-

STATEMENTS (Continued)

Assignment Statement (Continued)

begin real B,C; integer A;boolean boo;

A : =0;
B :=C :=2.5;
boo := true;

a :=a+2
b : =c t 3;
boo : = [-boo;

-assignment of constants to variable
locations. Note that 2.5 is

-assigned both location B and to
location C.

-assignment of simple expressions
to variable locations. shows
exponentiation. r- means logical
not.

ALGOL expressions can be relatively simple as shown above or can
represent highly complex processes. A few more simple expressions
might be

v
z+4
(-b+sqrt (d))/2/a
d+abs (w[O] -yxw[l]
w[k[i]]

-sin (x/2)
-/
-x

means division.
means multiplication.
subscripts can be nested
any depth.

Note the terms abs, sin, and sqrt in the expressions.

to

These are references to functions, and the parenthesized expres­
sions following the function reference are the actual parameters
passed to the function when it is referenced. Functions and how
they are referenced are described later in a section on pro­
cedures.

The variable on the lefthand side of the assignment and the
expression on the right must have compatible data types. Each
variable type can be assigned an expression of the same data
type as in:

-13-

STATEMENTS (Continued)

Assignment Statement (Continued)

begin real x,y;
integer i,j; pointer p;
boolean b,c; string (8) chari

i :=j-4; ~integer to integer

x :=x/y x3.5; ~real to real

b :=ic; -boolean to boolean

char :="$25.10"; .. string to string

p :=address (y); ~address is a pointer function

In addition, many conversions are possible:

begin integer i,j; boolean b,c;

1 :=bI\C;
c : =j ;

-boolean to inteqer.
~integer to boolean.

(1\ is loqical and).

If b 1\ C evaluates to true (1), integer i will contain one and if
the expression evaluates to false, then i will contain a zero.
In integer to boolean conversion, the integer expression (j in
this case) is evaluated. c will be assigned the value false if
j contains all zeroes and will be true in every other case.

begin integer i,j; pointer p;

j .- p+5;
P .- i;

~pointer to integer
~integer to pointer

A pointer is one word long and contains a memory location (integer).
Therefore, integer to pointer and pointer to integer conversion
is permissible with the limitation that the integer must be one
word long (default precision) .

-14-

STATEMENTS (Continued)

Assignment Statement (Continued)

begin pointer p, q;string S,T;

S : =p+2 ;
q :=T;

-pointer to string
-3tring to pointer

The integer value of the pointer expression will be assigned
as a character string of all digits to S. When converting to
a pointer, T will be examined and the result assigned to the
pointer q up to the first non-digit or up to the one-word limit
of q.

begin string S,T; boolean c, b;

S := c; -boolean to string

I
b .- T; -string to boolean

The boolean expression is evaluated to a zero or one. A zero or
one will be assigned as the character of S. When T is evaluated,
the result will be assigned to b as false (zero) if the string
contains all zeroes. Otherwise, the value true (one) will be
assigned.

begin string ST,V; integer i,j;

ST := i-25;
j : = V;

-integer to string
-string to integer

The integer expression evaluates to the following format:

where: n is a digit

[-] indicates that a minus sign is optional (neg­
ative integer).

-15-

STATEMENTS (Continued)

Assignment Statement (Continued)

The evaluated expression is assigned to the string ST. In con­
verting from string to integer, characters will be assigned to
the integer variable up to the first character that does not
follow the format above, such as a decimal point, or up to the
limit of the precision of the integer, which in this case is
one word.

begin string S,T;real a,b;

S . - a/I. 5;
b := T;

..... real to string
..... !:itring to real

The real expression evaluates to the following format:

where: n is a digit.

[] surround optional parts of the format.

E indicates an exponent following.

The evaluated expression is assigned to the string S. In convert­
ing from string to real, characters will be assigned to the real
variable up to the first cha~acter that does not follow the format
above, or up to the limit of the precision of the real variable,
which in this case is two words.

begin integer i,j; real x;

x .- i+2;
j : = x/3;

..... integer to real
..... real to integer

An integer expression is converted to real by evaluating it and
placing the decimal point after the last digit. A real expres­
sion is converted to integer Py evaluating it and usinq a function,
called the entier function, to select the nearest integer value.

All the expressions described in this section are simple expres­
sions. There are also conditional expressions which may be used

-16-

STATEMENTS (Continued)

Assignment Statement (Continued)

in assignment statements. Conditional expressions are described
in the Reference Manual.

go to Statement

A go to statement transfers control to another statement in the
program. The keywords go to are followed by a label or an
expression that evaluates to a label. The expression can be a
subscripted label variable or a switch identifier.

Labels are either identifiers (alphanumeric characters beginning
with a letter) or unsigned integers.

tagl: x.- x+l.O;
-identifier label

go to tagl;

go to 10;

10: y6.- yxx; -integer label

A subscripted label variable in a go to statement evaluates to
a subscripted label. Labels can have a single subscript.

tag[l] x .- x+pi/4;

tag [2] : x := pi/2 -subscripted labels

tag [3] : x .- x+pi;

go to tag[1]; -I evaluates to 1, 2, or 3.

Switch designators are described in the Reference Manual. They
also appear as subscripted expressions to be evaluated in the
go to statement.

-17-

STATEMENTS (Continued)

go to S·tatement (Continued)

Because of the way identifier storage is allocated and de­
allocated by block, a statement must transfer control within the
block or to an identifier global to the block.

A: -begin integer j;

tag: ---;

,- B: begin real Z;

go to tag;
go to Lab;

Lab: ---;
-end B;

end A;

.... -)

if Statement

-global transfer

-local transfer

if statements use a truth value as a switch to determine trans­
fer of control. There are two formats •.

if boolean_expression then unconditional statement;

if boolean_expression then unconditional statement else statement;

If the boolean expression evaluates to true the then statement
1S executed; otherwise, the then statement is skipped. The arrows
in the example below show how control is passed.

r---t r-t
if true then statement; next_logical_statement;

T +
if false then statement; next_statement;

,,' f I + I •
v true then statement else statement; next_logical_statement;

I 'r-;
if false then statement else statement; next_logical_statement;

-18-

S'I'ATEMENTS (Continued)

if Statement (Continued)

Boolean expressions and the logical and relational operators
used in forming them are described in the Reference Manual,
which should be consulted if you are not familiar with Boolean
logic. Briefly, a boolean expression consists of

a+b;;ic +simple arithmetic expressions (a+b and c)
are used with relational operators
(= ~ < '1 ;> ~)

bOOl\loob +boolean expressions (boo and loob must be
declared boolean), used with operators:

r (not) 1\ (and) V (or) ::> (imp)::: (equ) @ (xor)

a+b;;icvbOOl\loob +a combination of the above two boolean ex­
pressions

The then statement can be any statement or set of statements as
long as it doesn't contain another if statement.

if a;;ib then a :=b;

if c>d then go to 25;

if e<5 then begin x :=y :=xt2;
y :=y+25.25;
go to 30 end;

simple then statements

blocked then statements

The else clause can be an if statement. This means that a series
of switches can be set up. For example, the previous statements
could be rewritten

if a;;ib then a :=b else
if c>d then go to 25 ebse
if e<5 then begin

x :=y :=xt2;
y :=y+25.25;
go to 30 end;

-19-

STATEMENTS (Continued)

if Statement (Continued)

Simple expressions were discussed in the section on the assign­
ment statement. The sequence

if boolean_expression then ...

is a conditional expressio~ and can appear anywhere a simple
expression can be used, except following the keywords then and
go to. Conditional expressions follow the rules for data typing.
See the Reference Manual for information on conditional expres­
sions.

for Statement

The for statement allows a given statement or statements to be
executed repetitively with a controlled variable set to dif­
ferent values. The statement or statements are executed as many
times as there are values for the controlled variable. The
statement format is:

or controlled variable
do statement (S)i

:= list of values and expressionJ
- - - - \

At its simplest, the list can contain only values as in:

for j :=1,25, 350, 4, -6 do A[i,j] :=B[j]i

However, the list can contain variables and expressions.

-20-

STATEMENTS (Continued)

for statement (Continued)

tor j :=1, a+3,x/y, if x~y then 25 else -6 do A[i,j] :=B[j];

In addition, a list item can contain either the keyword while
or the keywords step and until. A while clause would be:

tor x :=y/2 while y~z do ...

The keyword while is followed by a boolean expression. The
statement following do executes as long as the boolean expres­
sion is true.

A step-until clause would be

or a :=1 step 2 until 101 do ...

initial
value

incre­
ment

final
value

The list item is equivalent to the simple list: 1,3,5, ••• ,101.
The initial, incremental and final values can be any expression
or value. Some examples of fOl' statements are:

for i :=0.1 step -0.01 until .005
do x :=ixln(x); -In(x) is the natural logarithm

for j :=1 step 1 until 100 do
A[i] :=B[i]-C[i];

for k :=1, k+l while z[k]>k do
begin z[k] := k;

y[k] := k-l;
end;

function

-~ompound statement following
begin. Both assignment state­
ments are executed as part of
the loop.

-21-

PROCEDURES

Procedures are basic ALGOL programs that are called for execution.
Begin blocks can be entered by sequential execution of statements.
Procedures are only entered when they are called.

Declaring a Procedure

The format of a procedure declaration consists of a heading and
the text or body of the procedure. The body of a procedure
can be a single statement, a group of statements delimited by
begin and end as described on page 11, or a block containing
declarations and statements.

At a minimum, the heading of a procedure must contain the word
procedure, followed by the procedure identifier. In addition,
the heading may contain additional information about the pro­
cedure, described later in this section.

The procedure identifier follows the word procedure in the
declaration. Then the text of the ALGOL procedure is written.

Z: begin

procedure ZERODIV; -procedure ZERODIV is declared in block Z

-statement containing procedure body

Rules that apply to other identifiers apply to procedures as
well. A procedure must be declared before it is used (called).
It must be declared in the block in which it is called unless,
like some identifiers, it is an external procedure.

Assume that ZERODIV is a program that is used to prevent errors
resulting from division by zero. ZtRODIV sets up the following
algorithm:

given:

a value

any

>0
=0
<0

c :=a/b

b

~

0
0
0

the following results are produced:

value resul~ing c value

0 alb

999999
0
-999999

-22-

PROCEDURES (Continued)

Declaring a Procedure (Continued)

The full declaration of ZERODIV could then be:

Z: begin

.
procedure ZERODIVi

if b~O then c :=a/b else
if a=O then c :=0 else
if a<O then c :=-999999 else

c : =+ 999999 i

Calling a Procedure

A procedure is called by writing its name as a statement.

Z: begin real array R[lO,lO], z[lO,lO,lO], Y[lO,lO,lO]i
real a, b, Ci

procedure ZERODIVi
if b~O then c :=a/b else
if a=O then c :=0 else
if a<O then c:=-999999 else

c := +999999i

a : =R [i, j] i
b :=z[i,j,k]i
ZERODIVi
Y[i,j,k] :=Ci

Returning from a Procedure

-Assign array elements to dividend and
divisor.
Call ZERODIV.

-Put result in proper location.

When a procedure is called, it executes until the end of the
procedure is reached. The procedure then returns control to the
statement immediately following the calling statement. In the
ZERODIV example control returns to the assignment statement:

Y[i,j,k] :=Ci

-23-

PROCEDURES (Continued)

Identifiers Used in Procedures (Continued)

ZERODIV is a block inside the block named Z. Both Z and
ZERODIV use the identifiers a, b, and c. If a, b, and care
declared within ZERODIV, they will be undefined in block Z by
the rules of block structure. Therefore, a, b, and c are declared
in block Z.

Z: begin real a,b,ci
procedure ZERODIVi

There are identifiers that are used only in a given procedure
and they can be declared in the procedure.

External Procedures

An ALGOL procedure declaration can be compiled separately from
any enclosing block. It can then be used as an external pro­
cedure by many programs. Assume that the procedure ZERODIV
was compiled separately from any other block. Now, any block
can call ZERODIV if the block has a declaration of ZERODIV as
external.

begin
external procedure ZERODIVi

ZERODIVi -call to ZERODIV

Parameters of Procedures

The previous example showing ZERODIV as an external procedure
raises the problem of identifiers a, b, and c once more. Must
they be declared in each and every program that wants to call
ZERODIV? ALGOL solves this problem by allowing the user to put
dummy identifiers, called formal parameters into a procedure
declaration. Then, the procedure can be called with real
identifiers, called actual parameters.

-24-

PROCEDURES (Continued)

Parameters of Procedures (Continued)

With formal parameters, the declaration of ZERODIV could be:

procedure ZERODIV(a,b,c);
real a,b,c;
if b~O then c :=a/b else
if a=O then c :=0 else
if a<O then c :=-999999 else

c :=999999;

-a,b, and c are formal parameters

-a,b, and c are declared.

A parenthesized list of formal parameters follows the procedure
identifier. These formal parameters will be replaced when the
procedure is called.

The formal parameters must have data types specified. In the
example, a,b, and c are specified as real.

If the body of the procedure is a block, formal parameters must
be specified in the procedure heading, not in the block. If
parameters are declared inside the block that is the procedure
body, they will be undefined in the procedure heading.

Assume the same block used previously to call ZERODIV now wishes
to call it to obtain a value for Y[i,j,k].

begin real array R[lO,lO], z[lO,lO,lO], Y[lO,lO,lO];

.
ZERODIV(R[i,j], z[i,j,k], Y[i,j,k]); -Call to ZERODIV

When ZERODIV is called, array element R[i,j] replaces a,
z[i,j,k] replaces band Y[i,j,k] replaces c. There is no need
to assign the values in the calling block. The assignment is
made when the actual parameters are passed in the call.

The rules governing formal and actual parameters are given in the
Reference Manual. As a general rule, formal and actual parame~ers
must have the same shape; for example, a procedure or an array
cannot replace a simple variable. Some examples of legal sub­
stitutions are:

-25-

PROCEDURES (Continued)

Parameters of Procedures (Continued)

begin real x,y,z; external procedure
procedure XX(a,b,c,d,e,f);

sum;

real a,b,c; boolean d;
label e; real procedure f;

" procedure body
begin"}

end;" (statement or
block)

XX(x,y,z, true, Exit, sum);

Exit:--­
end;

Procedure
Declaration

-call

Calling
Block

Because formal parameters are only dummy identifiers, their
declarations are not as restrictive as that of real identifiers.
Note in the example that a label can be declared. Also, it is
often useful to leave a parameter declaration somewhat vague to
allow a larger number of possible replacements. For example
an array formal parameter could be declared without dimensions.

Functions

A function is a procedure which, upon execution, results in a
value. In fact, at some point in ~e function, an assignment
statement assigns a value to the function identifier.

Since a function represents a value, it must have a data type.
A data type is included in the declaration of a function.

real procedure arc tanh (x) -real preceding procedure declares
real x; arctanh as having a real value
arctanh := O.5xln((I+x)/(I-x));-value is assigned to arc tanh

Since a function represents some value, a function call is part
of an assignment statement or other statement:

-26-

PROCEDURES (Continued)

Functions (Continued)

real procedure arctanh (x);

z :=zxarctanh(y); -function call to arctanh with actual param­
eter y

When execution of arc tanh is complete, the value of arctanh
replaces the call in the assignment statement.

A function has one of the ALGOL data types: integer~ real~ string~
boolean~ pointer~ or label. (A label can be specified as a
function type.)

Recursive Procedures

ALGOL permits recursive procedures. A procedure is recursive if
it calls itself. An example is factorial computation.

integer procedure factorial(I);
integer I;
factorial := if I=O then I
else factorial (I-I)xI; -factorial calls itself

I/O Procedures Supplied to the User

Declaration of
inteqer function,
factorial.

ALGOL does not provide for I/O operations. Some externally com­
piled procedures are supplied with Extended ALGOL to handle user
I/O. The I/O routines are described very briefly here, and the
user should consult the Reference Manual before using the I/O
package.

Before proceeding with I/O operations, the user must open a file
for input or output. The "file" can be a data file in secondary
storage or an I/O device. To open a file the user writes the
call:

Fpen(number,string);

-27-

PROCEDURES (Continued)

I/O Procedures Supplied to the User (Continued)

The number is one of the channels (0 to 7) that can be associated
with a given file and the string is the name of the file.

open (1, INDEVICE) ; +-INDEVICE is a string containing the
file name.

open (2, "myfile") ; +-royfile is the literal name of a
disk file.

! open (3 , "$TTO") ; +-$TTO is the teletypewriter on output.

Once a file has been opened, data can be read or written from it.
The read and write calls are:

read (number, list);

write (number,list);

The number is again the channel number associated with the file.
The list is a" list of variables, expressions, and string constants
to be read from or written to the file.

open (2, "myfile");

write (2, a, b, c, d "<15> timings follow: " MATRX)i

In the example, the user opens myfile and associates channel 2
with it. He then requests that certain variables a,b,c,d be
written to the file. They will be written out according to the
way they are formatted in the file and their data type; the user
does not have to format them. The user then inserts a string
constant 'timings follow:'. After this, MATRX, which is presumed
to be an array of timing information, will be written to the file.

Within the string constant are the characters, <15>. The value
15 is the octal equivalent of the ASCII character for carriage
return. Enclosed in angle brackets, the value is passed to the
assembler and interpreted as a carrlage return. As shown in
the example, the data for a,b,c, and d are written on one line,
then a carriage return is given. The string, "timings follow:"

-28-

PROCEDURES (Continued)

I/O Procedures Supplied to the User (Continued)

and the matrix values are then written on a line.

When I/O operation for a given file is completed, the file must
be closed. This insures proper updating of the file and releases
the association between the file and the channel number. The
format for the call is:

flose (number);

Another I/O routine allows the user to generate data output in
a large number of possible formats. The call is:

rutput (number, format, variable ~) ,!

The number is the channel number, The variable list is a list
of variables, expressions, and string constants to be output.

Format is a format parameter that determines the format of the
output values. The format parameter is enclosed in either
accent marks or double quotation marks. The user can put text
in the format parameter, and the text will be output exactly
as written.

r output (2," RESULTS OBTAINED ARE:") ;

I RESULTS OBTAINED ARE:

The user can also set up a field format for his data, using
the character # to represent each character position of the data.

output (2, "RESULTS OBTAINED ARE: #<15>", A);

RESULTS OBTAINED ARE: 345

In the example, the list consists of the variable A. The datum
in location A is written in the format given.

If the output number is smaller than the field format, the
number is right justified in the field with leading blanks.

-29-

PROCEDURES (Continued)

I/O Procedures Supplied to the User (Continued)

If the output number exceeds the field, the length of the field
will be increased, thus, one # may be used to output any integer
regardless of length.

A decimal point can be used in a field format. Assume variables
have the following values: x=-456.78, y=999.123, z=.08

output (2, "#####. # ",x,y, z) ;

-456.8 999.1 .1 +note rounding of fractional values.

Signs + or - can be used in a field format. Without the sign,
as previously shown, only negative values are output with a sign,
and the minus sign requires a field format position.

If a plus sign is given, both positive and negative values are
output with signs. If a minus sign is given, only negative
values are output with signs. However, in both cases, the sign
does not require a field format position.

j

I output (2, "-####.# ",b,c)

I -4567.25858.0 -both positive and negative numbers
can have four digits before the
decimal point

Character strings are output in the same format as decimal
numbers, using # for each character position. The character
string output can be from a variable in a file or can appear as
a literal in the list of variables of the output statement.

output (2, "##########", i,j, "Price.'); -i and j are string
variables; Price is a
string literal

Item No. Stock No. Price -possible output

Character strings are left justified in the field format with
following blanks.

If the character string is longer than the field format, the
entire string will be written.

-30-

PROCEDURES (Continued)

I/O Procedures Supplied to the User (Continued)

output (2, "## #", "ADDRESS");

ADDRESS

In the I/O procedure calls, read, write, and output, an array
identifier in the output list causes all elements of the array
to be transferred in order. In the next example, assume A is
an array of seven integer elements.

output (2, "#####", A)~

345 777 567 23 4577 890 230

The octal equivalents of ASCII carriage control characters can
be enclosed in angle brackets and included in the format field.
The control characters are passed to the DGC assembler for in­
terpretation, and allow many special formats to be set up.

output (2, "##########<15>", "STOCK ITEM", A)~

STOCK ITEM
345
777
567

23
4577

890
230

In the example above, octal 15 is the ASCII carriage return code.
Octal control characters, enclosed in angle brackets, can be
given in any literal string, not just in the format field of the
output parameter list.

The Reference Manual contains additional examples of how a user
can format output, such as preparing tables of values using fop
loops with output calls.

-31-

PROCEDURES (Continued)

Functions Supplied to the User

ALGOL has certain standard arithmetic functions that are supplied
to the user, such as those for taking a sine, cosine, or square
root (sin, cos, sqrt). In addition, Extended ALGOL has a number
of additional functions, such as those permitting the user to
manipulate bit strings and character strings. Some of these
special functions will be discussed in sections following and
others are described in the Reference Manual.

STRING VARIABLES AND ARRAYS

By an extension to ALGOL, character strings can be manipulated.
Strings can be declared with a maximum length.

string (9) a,b; -a and b have a maximum of 9 characters.
string (2) array c [1: 8]; -each element of c has a maximum of 2

characters.

The default string length is 32 charaaters: the maximum length
that can be declared is 16,283 characters. String literals are
delimited by either accent marks (ASCII characters 1408 and 0478)
or double quotation marks.

string (9) a,b;
a:='xxxyyyzzz";
b:="$25.67";

Subsets can be taken of strings, using built-in function substr.

I
. string (9) a,b;
; a: =' xxxyyyzzz";
!b:= substr(a,3,7); i a:= substr(b,3);

-a contains "xxxyyyzzz"
-b contains "xyyyz"
-a contains "y"

The first parameter of substr names the string to be subset. The
second gives the position of the first character in the string;
the third is the position of the last character of the string.
String array elements, as well as scalar variables, can be sub­
set.

-32-

STRING VARIABLES AND ARRAYS (Continued)

string (9) a; string (2) array c,d[1:8];
a:="xxxyyyzzz";
for i:= 1 step 1 until 8 do begin
c [i] := substr (a,i,i+l);
d[i] :=substr (c[i] ,2,2); end;

When the for statement is executed, the contents of the elements
of arrays c and d will be:

c [1] : = " xx"; c [2] : = " xx"; c [3] : = " xy"; c [4] : = "yy"; c [S] : = "yy" ;
c[6] :="yz"; c[7] :="zz"; c[8] :="zz"; dIll :="x"; d[2] :="x";
d[3] :="y"; d[4] :="y"; drS] :="y"; d[6] :="z"; d[7] :="z"; d[8] :="z";

Concatenation of strings can be handled by the length built-in
function that returns the integer length of a string as its value.

string (10) a,b;
a:="xxx";
b: ="yyy";
substr(a, length (a)+l, length(a)+length(b)) :=b;

The substring taken of a contains the original contents of a, to
which are added the contents of bi thus, the substring contains
"xxxyyy" •

The index built-in function returns a value that represents the
character position of a given character in the string.

string (10) a; integer b;
a:="xyzzz";
b:=index(a, "y"); -statement is equivalent to b:=2;

Coding of the index function shows how string variables and the
length and substr built-in functions can be used in programming.

-::33-

STRING VARIABLES AND ARRAYS (Continued)

integer procedure index(a,b); strine a,b;
begin integer i;
for i:= 1 step 1 until length (a) do
if substr(a, i, i+length(b)-l) = b then go to done;
i:=O;
done: index:=i; end;

The ascii function can be used to convert a sinqle character of
a string to its numeric value in the ascii collating sequence.

s: ="ABCDEF";
i:=ascii(s,5); +statement is equivalent to i:=105RS

In the example, the fifth character of the string, E, is con­
verted to its equivalent value, 105S •

BIT MANIPULATION

Extensions to ALGOL allow programmers to manipulate bits at a
level comparable to assembly language by using binary and octal
literals with boolean operators and by using the built-in
functions, shift and rotate. Bit manipulation is normally per­
formed upon integers of default precision (one word) or the
equivalent, such as boolean or pointer variables. Examples of
shift and rotate functions are

x:= shift(y, -4); -logical left shift y by 4 bits and assign to x.
y:= rotate{y, +2); +logical right rotate y by 2 bits.

The programmer can use logical operations and binary and octal
literals to set bits, mask unwanted bits, or select bits from
an integer. For example, suppose x is an integer containing a
3-bit index into an array in bits 5,6,7.

0 567 15

I II , I
• I I ~

.. x
--.-
index

-34-

BIT MANIPULATION (Continued)

A variable, i, can be set to contain the index as follows:

i := shift(x,+8) and lllr2i
or

i := shift(z,+8) and 7r8i

-r2 means radix 2.

-r8 means radix 8.

where: shift(x,+8) causes:
Jindex

iO 0 0 0 0 0 OOxxxxXiXxxl , '

and either lllr2 or 7r8 causes: 10000000000000xxxj
~ndex

When using a 6-digit octal literal as a mask, for example:

107777r8

a one-word precision must be specified for the literal. Other­
wiset the leading two zeroes of the bit configuration will be
considered significant, and the literal will be generated as a
multi-precision (two-word) integer. Precision is specified as
the letter p followed by the number of words of precision,
which is one (1) in the case of a masking integer:

l07777r8pl

or
107777plr8

CHANGING A RADIX

The programmer can set any radix up to and including 10, as
shown for base 2 and base 8 in t:he section on bit manipUlation.
Simply follow the literal with the letter r and the desired
radix:

.lR3
1. 3E9R4
lOlE-lOR2

-base 3.
-base 4.
.-base 2.

The exponent is 49
The exponent is 2-10

-- 35-

WRITING AN ALGOL PROGRAM

The steps to follow in writing an ALGOL program are:

1. Study the problem. Can it be broken into several
algorithms? Can you further generalize the algorithms
for repetitive use? The first decisions are how to
structure the problem - nested blocks, separately com­
piled procedures, etc.

2. When you decide upon the structure of your program
you should decide what identifiers - variables, arrays,
parameters, etc. - need to be declared in each block.
Declaration of identifiers may be new to some program­
mers. It is essential to ALGOL programming.

Be sure the data types you select are suitable not
only for data storage but also as to compatibility
of formal and actual parameters and variables that
will be used together in expressions.

Decide on the precision of integer and real data
that you will need.

3. When the declarations have been written, the state­
ments that implement the program can be written.
Be sure to label statements you will transfer to
and to write comments. Comments will help both you
and other programmers.

4. Before attempting compilation, make a source-pro­
gram debugging check. Have you put in the proper
delimiters, blank spaces, and spelled the identifiers
correctly?

5. When you attempt compilation,1 check the error
messages carefully against your source program
and make the necessary changes.

6. When you get your first ALGOL programs to compile,
chances are they will not be very efficient. Check
the compiled code carefully. Have you made full use
of supplied functions, nesting of procedures, and
external procedures? Have you used bit manipulation
facilities? Experiment with your source program
and see if you can improve the coding.

7. As you become more proficient in writing ALGOL
programs, try to use the additional facilities
described in the Reference Manual such as pointers
and based variables. These facilities for sophisticated
programmers such as systems programmers will also
improve your coding efficiency.

*** -36-

HOW TO PROGRAM IN ALGOL

INDEX

arithmetic expression 12-17
array 5-7, 32

ascll function 32
assignment statement 12

bit manipulation 34
block 1

boolean expression 18
built-in function 32

carriage control of output 31
close call 29

comment 11
conversion of data 14-16

data type 5
declaration 3-9

delimiters 2
dummy (null) statement 10

formatted output 29-31
for statement 20

function 26-27
global declaration 7-9

go to statement 17
identifier 1-9

if statement
index function

18
33

input/output 27-31
keyword 1

label 5, 7-9
length function 33

local declaration 7-9
open call 27-28

output call
parameters

precision
procedure

29-31
24-26

3-5, 35
22-27

procedure call statement 10
program 1, 2, 36

radix 35
read call 28

recursion 27
rotate function 34

shift function 34
statement 10-21

storage allocation 3, 4, 7-9
string 32-34

substr function 32
termination of statement 11

write call 28

-37-

EXTENDED ALGOL REFERENCE MANUAL

CONTENTS

IDENTIFIERS AND KEYWORDS ..
Keywords••.....
Function Keywords .•

SCOPE OF IDENTIFIERS.
Variables, Arrays,
Labels •.•••.
Parameters.

Switches and Procedures.

••. 1-1
• ••• 1-1

. 1-1

.2-1
. 2-1

.2-1
• •••••••••• 2 - 2

.2-3 Scope and Blocks •.
Identifier Scope Not Associated With Blocks. . •• 2-4
External Identifiers •..••.. ..••..•....•..••. • •••• 2 - 4

BLOCKS •.••••••••••••••••
Definition of
Contents of

a Block.
Block .•.

Beginning
a

and Terminating Blocks .•

DELIMITERS •...
Separators ..
Brackets
Arithmetic
Numbers

Operations ..

Boolean Operations ...
Rules of Arithmetic and
Bit Operations.

EXPRESSIONS .•...••..•..•..
Arithmetic Expressions ..

Boolean Expression

Boolean Expressions ..•••........••
Pointer Expressions ..•.
Designational Expressions.

STATEMENTS .•....•.......
Assignment Statement .•...•..
for Statement ..••.
go
if

to Statement.
Statement

IDENTIFIER DECLARATION AND MANIPULATION ..
Shape of Identifiers ..•...•.
Data Type of Identifiers ...••.
Storage Class of Identifiers •.
Precision of Identifiers.
Data Types ..
Arrays ..•..••

i

3-1
· 3-1

• •• 3- 2
.3-2

......... . 4-1
• •••• 4 - 2

.4-3
· .. . 4-4

.4-5

.4-7
Evaluation 4-8

.4-9

· 5-1
· .5-1
.5-2
5-3

• .5-4

· ... 6-1
· .6-3

.6-7
. 6- 9

•• 6-10

· •.• 7-1
· ... 7-1

.7-1

.7-1
. .. 7-2

.7-2
· .. . 7-4

Character Strings.
Labels •••
Swi tches ••
own Declarator •••
external Declarator.
Pointers and the Based
Literals ••

Declarator ••

Operators.

PROCEDURES •••••••••••••••••••••••
Procedure Declarations.
External Procedures ••
Procedure Calls .•.•.•.••••
Calling a Procedure by Name and by Value.
Formal and Actual Parameters ••••.•.•.••.•
Specificators of Formal Parameters.

LIBRARY FUNCTIONS AND PROCEDURES.
Mathematical Functions.
Entier Function ••
Fix Function •••
Float Function.
Size Function

. '.

Array Bound Functions (Lbound, Hbound)
Bit Manipulation Functions
Address Function.

(Rotate, Shift)

String Functions.
Length Function.
Index Function
Substr Function.
Ascii Function ••••••

Memory Function •••••
Classify Function •••••••
I/O Procedures.

Open a File ••
Close a File •.
Read a File
Write a File
write Formatted
Read or Write a

Output (outPl1t)
Line (lineread,
Number of Bytes Read or Write a

Positioning a File •••.
Position Procedure.
Filesize Procedure
Fileposition Procedure.

Storage Allocation Procedures.
Allocate Procedure.
Free Procedure •.••••

Setcurrent Procedure ••
Comarg Procedure ••••••

ii

linewrite)
(byteread,

.... . 7-7
.7-10

..7-14
7-15

• ••• 7-15
• •••• 7-16

• •. 7-21
.7-22

. •. 8-1
.8-1

..8-2
• ••• 8- 3
• ••• 8-5

• •• 8-6
. 8-9

• •• 9-1
.9-1

• .9-2
• •• 9-2

· .. . 9-2
• •. 9-2

•• 9-3
.• 9-4
•• 9-4

. 9-5
.9-5

• •• 9-5
• •• 9-6

• ••• 9-9
• •• 9-9

• ••• 9-9
• •••• 9-10

. ••. 9-11
. 9-12

• •• 9-12
.•• 9-13

••••• 9-15
•• 9-20

bytewrite) •. 9-20
•• 9-21
.9-21

• •• 9-22
· •• 9-23
..9-24
.9-24

. ••• 9-24
. 9-25

· •• 9-26

Licensed Material - Property of Data General Corporation

File Manipulation Procedures.
Delete a File. • •••••
Rename a File

Error Procedure •••••••••••••••••
Program Swaps - Chain Procedure.
Real Time Clock Procedures ••

Stime Procedure ••••••••••••••
Gtime Procedure •••••••••••••••••••

Multiply and Divide Procedures ••
Umul Procedure ••••••••
Rem Procedure •••••••••••••

Cache Memory Management •••••
Setting up a Buffer Pool (buffer)
Opening Buffered Files (access).

·
. . .

· ·

.
Wordread/wordwrite Routines...... • •••••

· .

•••••• 9-28
••••• 9-28

. . .
..9-28

••• 9-29
••• 9-29

.9-30

.9-30
• ••••• 9-31

••••••• 9-32
•• 9-32

• ••• 9-33
.9-34

• ••••• 9-35
••• 9-39 ·
• •• 9-41

Routines Accessing File 0 Nodes......... • •• • •• 9-43
.9-46

• •• 9-48
.9-48

Routines Accessing a Sing"le Word in a Node ••
Clearing the Buffer Area (flush) ••••••
Hashread/hashwrite Routines.

COMPILER ERROR MESSAGES ••••••••• .10-1

INCLUDING FILES FOR COMPILATION (include)11-1

DIFFERENCES BETWEEN EXTENDED ALGOL AND
to Standard ALGOL ••

STANDARD ALGOL ••••• 12-1
Extensions
Limitations of Extended ALGOL •••••••

APPENDIX A - DATA TYPE REPRESENTATION.
Integers •••••••••••••
Real (Floating Point) Numbers ••
Boolean Data •••••••••
Pointer Data •••••••••
Strings, Numeric Arrays, and Arrays of Strings ••

APPENDIX B - THE RUN-TIME STACK ••
Run-Time Stack •••••••••••••••••
ALGOL Stack ••••••••••••••••••••
Assigned and Allocated Storage of the Stack ••
Parameter Descriptor Address Word •••
Parameter Descriptor Specifier Word.
Contents of Assigned Storage........ • •••••
Contents of Allocated Storage •••••••••••••••
Array Information in Allocated Storage.. • •••
Scalar String and Substring Information in

Allocated Storage ••••••••••••••••••••••••
Based Arrays and Strings in Allocated Storage ••
Own and External Storage •••••••••••••••••.•••••

iii

. . . . ·

•••• 12-1

· .

.12-1

• .A-l
.A-l

• .A-2
• •• A-3
• •• A-3

• .A-3

· .•. . B-1
•• B-1

••• B-2
• •• B-4
• •• B-6

· B-6
.B-7
.B-9

• •••• B-IO

.B-ll

.B-12
• ••• B-12

I

I

Licensed Material - Property of Data General Corporation

APPENDIX C RUN-TIME ROUTINES ••••••••••••••• C-l
Stack Allocation and Deallocation Routines.. • ••••••••• C-I
Routines
General
Run-Time

that Perform Allocation to the Run-Time Stacks •• C-7
Purpose Routines.. •••••••• ••••• • .C-IO
Error Routines.. •••••••••••••• • ••• C-17

Input/Output Run-Time Routines...... .C-19
Subroutines Used by Run-Time Routines............ ..C-25
Number Routines ••••••••••••••
Floating Point Interpreter ••
Cache Memory Management Routines ••
Subroutines Referenced by Run-Time Routines.
Routines That Use System Calls ••••••••••••••

APPENDIX D OPERATING PROCEDURES ••••••
Stand-Alone Operating System ••

Loading the ALGOL Compiler •••
Assembling Source Programs ••••••••••
Loading User Programs •••••••
Executing and Restarting User Programs.
Producing a Trigger.
Error Messages ••••••

RDOS Operating System.
Loading the ALGOL Compiler •••••••••

•• C-27
•••• C-40

.C-41
..C-44

• •• C-49

.D-I
• .D-I

· •••• • D-1
.D-3
.D-4

••• D-6
· 0-6

.D-8

.D-9
• •••• • D-9

Compiling, Loading, and Executing ALGOL Programs
under RDDS ••••••••••••••••••••••••••••••••••• .D-9

ALGOL
Using

Command ••••• .
Disk Files to Produce Stand-alone Files.

APPENDIX E
EXECUTION

TIPS FOR EFFICIENT CODING AND REDUCED
TIME ••••••••••••••••

General•.....
Numerics Type and Precision.
Expressions ••••••••••••••
Subscripting ••••••••••••••
Bit Handling and Masking.
Comparison of Real Values ••
Literals •••••••••••
Statements •••••••••••••••
Strings
Scope and Stack Handling ••
Labels and Transfers ••••••
Identifiers ••••••••••••••••
Functions and Procedures ••
Compiler Overhead ••
Compiler Errors •••
String Specifiers ••

.0. . . .
.

iv

. ..
....
.

. . .

· . . • .D-IO
• .D-II

••• E-I
• •• E-I

· E-l
.E-3

• ••••••• • E-3
.E-4

• •• E-4
• •• E-4

.E-4
• .E-6

.E-6
• ..•• E-7

• .E-7
• .E-7
• .E-9
• .E-9

• ••• E-IO

Licensed Material - Pl'operty of Data General Corporation

APPENDIX F SAMPLE PROGRAMS.
Factorial ••
Satellite ••

.F-I
.F-I

Plot ••••••
Thousandstring.
AID Conversion ••
Help ••••••

APPENDIX G DEBUGGING ALGOL

. ...

PROGRAMS. Correcting Compilation Errors •••••••
Debugging Using the Symbolic Debugger •••••••

Loading the Symbolic Debugger •••
Operating the Symbolic Debugger ••••

Debugging Using the TRACE Program. . .
Calling TRACE at the Console •••••
Calling TRACE in an ALGOL Program.
Debugging Aids for Use with TRACE •••••••
Loading Programs for Use with TRACE ••
Using TRACE Information •••

••• F-3
.F-6

• .F-8
• •• F-13

•••• F-21

.G-I
• ••• G-I

....• G-3
• .G-3

.G-4
• ••• G-IO

• •• G-IO
.G-IO
.G-12

•• G-12
.G-13

TRACE Example .•••..•.•..• . • . • . . • . • • . • . G-15

v

CHAPTER 1 -- IDENTIFIERS AND KEYWORDS

An identifier is a string of one to 32 letters, digits, and
underscore symbols () that must begin with a letter. Identi­
fiers are names assigned by the programmer to variables and
other program entities. Upper or lower case letters may be
used. No blank spaces are permitted.

Examples:

a
A25

get _.symbol
Aa

ROUTINE2
omega

Identifiers serve to identify simple variables, arrays, labels,
switches, procedures, and pointers.

KEYWORDS

Certain keywords are completely reserved in ALGOL. They are:

and do
array else
based end
begin eqv
boolean external
comment false

for

go to
if
imp
include
integer'
label
li tera Z
not

operator
or
own
pointer
procedure
real
step
string

switch
then
true
unti l
value
while
xor

Keywords must be written in all upper case or all lower case
letters.

FUNCTION KEYWORDS

Certain functions are provided with the ALGOL compiler. Names
of these functions can be redefined by the programmer provided
no ambiguity results from an attempt to use the identifier both
as an ALGOL function and as a programmer variable. The function
keywords are:

abs
address
arctan
ascii
byte
classify

cos
entier
exp
fix
float

hbound
index
Ibound
length

1-1

In sign
memory sin
rotate size
setcurrent sqrt
shift substr

tan

CHAPTER 2 -- SCOPE OF IDENTIFIERS

Simple variables, arrays, labels, switches, and procedures are
quantities which have a given scope. Scope is defined as the
set of statements and expressions in which the declaration of
the identifier associated with the quantity is valid.

Variables, Arrays, Switches, and Procedures

Variables, arrays, switches, and procedures must be declared,
and their scope is the block in \vhich they are declared. By
extension, their scope includes inner blocks. An identifier
is considered local to the block in which it is declared and
global to any inner blocks, unless the identifier is redeclared
in an inner block to represent a different quantity as shown
in the example.

1 :

2 :

3 :

Labels

begin
real A,B;

[begin

end 2;
- begin

integer A,B;

- end 3;
end

-A and B are real quantities, local
to block 1

-A and B are not redeclared in 2 and
are real quantities global to block 2

~A and Bare redeclared as integer
quanti ties local to block 3. (A
and B as real quantities are not
valid.)

~When block 3 ends, A and Bare
again real quantities local to
block 1

Labels may be explicitly declared by their use as a label in a
given block. When a label precedes the start of a block (begin),
the label is declared by its use in the block immediately out­
side the one that it serves to label and is global to the block
it labels.

2-1

SCOPE OF IDENTIFIERS (Continued)

Labels (Continued)

A: r--- begin

B: ,begin

-end Bi

-B is declared in block A.

end A

Labels may appear in declarations. A formal parameter that is
to be replaced by a label is declared with the label declarator.
When the same label or subscripte~ label appears in more than
one block of a program, the label declarator may be used to
indicate that the local, rather than global, label is meant.

Parameters

Formal parameters that are replaced by name follow the scope
conventions of variables. Note that no conflict arises when
a formal parameter list is replac~d by an actual parameter list
containing one or more of the same identifiers but associated
with different quantities. The actual parameters simply replace
the formal parameters, which have no scope in the real sense of
the term.

For example:

begin integer a,Ci real bi
procedure sample (a,b,c);
real ai integer b,c;

statement of nrocedure;) procedure
declaration

sample (b,a,c); -procedure call

calling
block

Actual parameters a and c replace formal parameters band C;
actual parameter b replaces formal parameter a.

2-2

SCOPE OF IDENTIFIERS (Continued)

Parameters (Continued)

An actual parameter that replaces a formal parameter by value
is not altered in the calling procedure because of the call.
The called procedure uses a copy of the parameter during pro­
cedure execution.

Scope and Blocks

Storage for identifiers is normally allocated when the block
in which the identifier is declared is entered. Storage is
freed when control passes from the block in which the identifier
is declared.

In the diagram below, presume that each rectangle represents a
block and that the labels of the blocks are B, 1, A, and 2.
Identifiers declared in block B are defined in all blocks
unless a given identifier is redeclared in another block.
Identifiers declared in block 1 are defined for blocks 1 and
A unless redeclared in A.

Identifiers declared in block A are undefined in any other block;
the same is true of the identifiers of block 2. Note that the
labels of the blocks are clearly defined in the block outside
the block for which they act as labels.

B:

1:

I 2:

2-3

Identifiers declared in darker
shaded blocks are undefined in
lighter shaded blocks

SCOPE OF IDENTIFIERS (Continued)

Identifier Scope Not Associated with Blocks

If an identifier is defined with the own declarator, storage
for the identifier is allocated in an area separate from block­
dependent identifiers. The identifier is then valid until the
program terminates.

External Identifiers

External variables and procedures are those that are allocated
storage in a manner independent of any of the blocks of the
program being executed. To reference an external identifier,
that identifier must be declared external in the block in which
it is referenced or in an outer b~ock.

2-4

CHAPTER 3 -- BLOCKS

DEFINITION OF A BLOCK

In structure, a block is set of declarations and statements
that starts with the keyword begin and terminates with the key­
word end. Semantically, a single block is the smallest set of
statements within which a given declaration of an identifier of
a quantity is valid for that quantity.

Procedures are treated as blocks. Procedures usually contain
one or more identifier declarations, and these declarations are
local to the procedure.

Storage is allocated and deallocated to identifiers dynamically.
When a block is entered, storage is allocated to those identi­
fiers declared in the block. Storage for those identifiers is
released when exit is made from the block.

Storage is not deallocated when a block inside a block is entered.
For such a block, identifiers declared in the outside block
remain valid, global quantities. However, the identifiers may
be redeclared in an inner block to represent different quantities.
If so, the block cannot reference the same identifier outside
the block. For example:

A: begin
real X; integer i,j; -X is declared as a real quantity

Tag: X :=X+sin(X); -Tag is declared a label in block A.

B: -begin
real array Tag[i,j]; -Tag is redeclared an array in block B.

real Z; -z is declared a real quantity in B.

end B;

, go to Tag;

l end A;

-vvhen block B terminates, Taq is
again valid as a label.

3-1

DEFINITION OF A BLOCK (Continued)

In the example, X is valid and can be referenced in block A and
in block Bi Z is valid and can be referenced only in block Bi
and Tag is valid only in A as a label and is valid only in B
as an array. Note that the variable dimensions of Tag are
valid as integer quantities in both blocks.

CONTENTS OF A BLOCK

Every identifier that is local to a given block must be declared
within that block. This rule applies to all identifiers, includ­
ing the controlled variable of a for statement and variables ap­
pearing on the lefthand side of assignment statements.

All identifier declarations must be made before any statement
can be given in a block. (Comments, although sometimes con­
sidered to be statements, can appear before all declarations
have been given.) It is important to note that ALGOL has a
null statement consisting only of the terminating semicolon (i) •
An extra semicolon appearing in the declaration section of a
block will cause declarations following the semicolon to be
disregarded.

The statement section of a begin block can consist of a number
of separate statements. A procedure always consists of one
statement, which may be a begin block including other statements
and blocks.

BEGINNING AND TERMINATING BLOCKS

ALGOL permits the keyword end to be followed by a string of
characters that may include any characters except the keyword
else, the keyword end, or a semicolon (i). This allows the
programmer to describe preceding material. However, it also
means that the keyword end terminates a block but does not allow
the programmer to start a new block. For example:

end
21: begin integer A,C;

real bi
-everything up to the semicolon follow­

ing C is simply a string following end,
i.e., there is no begin block labeled
21.

To prevent errors, put a semicolon after the keyword end or
after the string that follows the keyword, unless an else clause

3-2

BEGINNING AND TERMINATING BLOCKS (Continued)

follows.

Since procedures contain only a single statement, they normally
terminate with the semicolon that ends the statement.

3-3

CHAPTER 4 -- DELIMITERS

The ALGOL delimiters are separators, operators, declarators, specificators,
and brackets, as listed in the table following. Since some ALGOL delimiters
are represented by symbols that do not appear on all consoles, the appropriate
transliteration for these characters is shown in the shaded area next to the
character.

TABLE OP DELIMITERS

BRACKET

_I integer> -I va.lue

I r>ea l ~ label

-I do

goto 7 -1- Iii.

Ipr>oaedur>e I than

own

I based Ibegin lend

liter>al [J

4-1

SEPARATORS

Symbol

. ,

1 0

:=

(space)

R or r

P or p

step

unti Z

while

comment

Separate items of lists .

Decimal point in real
numeric values.

Separate base from
power of a number, ind­
cating a power of 10.

Terminate a statement,
declaration, or comment.

Terminate label or sepa­
rate the upper and lower
bounds of an array dimen­
sion.

Separate a variable or
variables from the expres­
sion to be evaluated and
assigned to the variable.

Separate a based variable
from its pointer.

Separate variables and
keyword identifiers not
otherwise separated.

Separate radix from
number.

Separate precision from
number.

Separate initial and incre­
mental values of for.

Separate incremental and
terminal values of for.

Separate conditional ex­
pression from value in
for statement.

Begin a comment.

4-2

procedure RT(a, b, c);
real array A[i,jk,kj,k];

0.011
2567.202E-6

25.210-3
.lio+5

integer array D[1:20];
go to 101; comment: Trans­
fer to test results;

a: b: I:=I+2;

real array A[l:lO, l:i];

c:= c+l;

c:= d := f:=sin(x+l);

ptr-a
p-(a+2)

if a=2 then go to 20
else a:=b;

0.001R2 .555rB

0.001R2P4 .555p5rB
-65.BBBBP3

for i:=l step 2 .•.

for i:=l step 2 until n

for I:=(x+2) while a~O .••

comment: Test program;

BRACKETS

Symbol

()

[]

begin
end

" "

Parentheses enclose formal
and actual parameters, en-
close the precision of numerics
and length of character strings,
and enclose expressions to be
evaluated.

Square brackets enclose the
dimensions of arrays, sub­
scripts of array elements, and
subscripts of switches and
labels.

Keywords begin and end enclose
blocks and compound statements.

procedure main (a,b,c);
string (8) B;
integer (12) array B[i,j];
«A+B)/C),2.5

integer array M[i,j];
c : =A [1,2] ;
go to B[i];

begin reaZ array act [0:20];

begin act [m] : =j; k : =i
end

end

Grave (ASCII character 1408) and 'This is a 'string~.~

acute (ASCII character 047 8) ac-
cents enclose string values.
Note that strings can be nested.

Double quotation marks can also "DON'T GO!"
enclose a string value. Use of
a single accent mark is possible
in a double quotation string.
Strings enclosed in double
quotation marks cannot be nested.

4-3

ARITHMETIC OPERATIONS

Operator

+

x

/

t

Base

linteger = a
i ,
I
linteger < 0
!
i

linteqer > 0
.
I
\real = 0
,

real < 0

Ireal > 0

Operation

Addition
Subtraction
Multiplication
Division

Exponentiation

Exponent

Resul~ing Value Type

If both operands are integer
the result is integer. Otherwise,
the result is real.

Permitted combinations and re­
sults are described in the table
below for real and integer
values.

Type of Result

real or integer ~ a
real > 0

undefined
real 0.0
integer 0 integer> 0

any real
any integer

any real
any integer

real = 0
real ~ 0
integer S 0
integer> 0

any real
any integer

any real or integer

4-4

undefined
integer

real
integer

undefined
real 0.0
undefined
real 0.0

undefined
real

real

NUMBERS

Numbers are real or integer. Integers are signed or unsigned.
Real numbers may be signed or unsigned, have an optional decimal
point, and have an optional exponent part.

Intes;!ers Real Numbers

0 -200.845 0 -9.310+02
1775 1775
-25 1. 01 +606 25 10- 4

+606 -25
+.0083 10+2

Numbers having an integral power of 10 can be represented on the
teletypewriter with either an upper case E or lower case e in
place of the lowered 10.

ALGOL Representation

-976.33 10 +02

25 10 -4

10+02

TTY Transliteration

-976.33E+2

25E-4

-lE7

lE+02

Note in the third and fourth examples that a 1 appears before
the E or e to prevent interpretation of the number as an
identifier.

To approximate the number of decimal digits of precision that
can be stored in a given number of 16-bit words, use the fol­
lowing formulas. n represents the declared precision in words.

integer digits

real digits

= 5(~-1)+4

= 5(~-1)+2

integer range = 16n +2 ~-l

10- 78 ~ real range~ 10+ 75

The maximum value of a single precision integer is ±3276710 •

4-5

NUMBERS (Continued)

A number can be written with any radix from two through ten.
The numeric literal is writuen, followed by the letter R (or r),
followed by the number defining the radix.

1001R2

• 12l22R,3

77E-6R8

• 3E+5R4

Bas.e 2 •

Base 1.

BaS8~. The exponent is 8- 6 , where
the power, -6, remains base
10.

Base 4. The exponent is 4+5 •

A number has the default precision of its type unless other~ise
specified. When computation involves a multiprecision valu~
and a fractional literal of default precision, results of cmm­
putation lose precision because the fraction cannot be expressed
exactly in binary representation. TID control the precision of
the computation, the programmer may ~pecify a precision in words
for the repeating binary fraction. The literal is followed
by the letter P, followed by an integer representing words of
precision •

• 3P6

.111R2P6

1.7E-2P4

.lR3,P7

To build a 16-bit single-precision mask, force a precision of one,
e. g. ,

177777R8 is a 2-word literal

177777R8Pl is an unsigned l-word literal

4-6

BOOLEAN OPERATIONS

RELATIONAL OPERATORS LOGICAL OPERATORS

Symbol Operation TTY Symbol Symbol Operation TTY Symbol

< less than same logical r negation not

~ less than =< /\ logical
or equal and and

V inclusive
or or

= equal same - equivalence eqv

> greater than same ~ implication imp

~ greater than >= e exclusive or xor
or equal

":I not equal < >

-,

LOGICAL OPERATOR TRUTH TABLE

Operands 9perations

Y Z not Y Y and Z Y or Z Y imp Z Y eqv Z Y or Z ---

false false true false false true true false

false true true false true true false true

true false false false true false false true

true true false true true true true false

4-7

RULES OF ARITHMETIC AND BOOLEAN EXPRESSION EVALUATION

The sequence of operations within an expression is generally
from left to right, with the following additional rules:

1. Precedence of operator evaluation

OPERATOR

+

r t

x /

+ -

< < ~

A

V

~

~ e
.-

> ~ =

+Highest precedence (evaluated
first)

+Lowest precedence

2. rand t operations are evaluated from right to left.

3. Parentheses are used to alter the order of operator
precedence. A parenthesized expression is evaluated
as an entity before further evaluation proceeds.

The type of the result is determined according to the rules of
precedence, as follows:

first:
second:
third:
fourth:

real
integer~ pointer
boolean
string

4-8

BIT OPERATIONS

Bit operations use binary and octal literals combined with
logical operators to manipulate bits of integer data.

AAB
(and)

I-A
(not)

AV B
(or)

AEl:)B
(xor)

A=B
(eqv)

A::::)B
(imp)

Result is 1 if and only if A is 1 and
B is 1 in that bit position.

Result is the bit complement of A.

Result is 1 if either A or B is 1 in
that bit position.

Result is 1 if and only if A and
B are complements in that bit
position.

Result is 1 if and only if A and B
have identical bits in that bit
position.

Result is 1 if A is 0 in that bit
position or if both A and Bare 1
in that bit position.

For example, assume x is some integer.

x :=x and llllllR2; First 10 bits of x set

A :=11001R2i
B :=10100R2i

AAB :=10000R2i

A :=110011R2i
r A :=001100R2i

A :=100111R2i
B :=110000R2i

AV B :=110111R2i

A :=100100R2i
B :=001101R2i

AEBB :=101001R2;

A :=100100R2i
B :=001101R2;

A= B :=010110R2;

A :=100100R2;
B :=11OOOlR2i

A ::::)B :=111011R2i

to zeroes,
x :=x and not 777R8; Last 7 bits of x set to zeroes,
x :=x and not 52525R8; Alternat:e bits, beginning at bit 1,

are set to zeroes,
x :=x and 52525R8; Alternate bits, beginning at bit 0,

are set to zeroes.

4-9

CHAPTER 5 -- EXPRESSIONS

The primary constituents of an ALGOL program - which represents
algorithmic processes - are expressions. Expressions are
arithmetic, Boolean, designational, or pointer.

Each type of expression may be either a simple expression or a
conditional expression. Simple expressions are similar to
expressions in other programming languages; conditional expres­
sions are a unique ALGOL feature. In a conditional expression,
one out of several expressions (arithmetic, Boolean, designational,
or pointer) is selected for evaluation on the basis of the
truth value of a Boolean expression in an if clause. An if clause
has the form

if Boolean - expression then ...

Constituents of expressions (except for certain delimiters such
as () and [] and :=) are logical values, numbers, variables,
function designators, and elementary arithmetic, relational,
logical, sequential and pointer operators. Expressions may be
nested to any depth.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numerical
value.

A simple arithmetic expression is a collection of one or more
numbers, arithmetic variables and function designators combined
with arithmetic operators to form a meaningful mathematical
expression which always defines a single numerical value. Each
variable of the expression must already have a defined value.

Examples:

A+B/f

c-dxgti

xt (k-4) x (y-z)

(-b+sqrt(d))2/a

sumtcos (y+zx3)/7.394 10 -8

Real numbers are stored in floating-point and integers are
stored in fixed point. An arithmetic expression consisting of
a real value and an integer value will require conversion of the
integer to floating-point. For example:

5-·1

ARITHMETIC EXPRESSIONS

begin real Xi
y :=X+li

y :=X+li

(Continued)

+conversion required

+no conversion required

A conditional arithmetic .expression contains at least one if
clause with a Boolean expression, two or more arithmetic ex­
pressions, and may contain other sequential operations besides
if and then.

if g>O then S+3xQ/A else 2xS+3tq

if a<O then U+V else ifaxn>17 then u/v eZse if kty then v/U

A[i] .- if i<j then B[j]+i
eZse B[j+l]i

The subscripts of an array element may be given as simple or
conditional arithmetic expressions whose value is an integer.

The length of a string or the dimensions of an array can be
declared as simple or conditional arithmetic expressions
evaluating to integers if the values of the variables of the
expressions are defined when the block is entered.

A[n] :=A[if y<O then n else n+5] i

real array A[i,j,k]i

BOOLEAN EXPRESSIONS

A Boolean expression is a rule for computing a logical value
(true or false).

Simple Boolean expressions are collections of logical values,
Boolean variables and functions, and logical and relational

5-2

BOOLEAN-EXPRESSIONS (Continued)

operations. Relational operations consist of simple arithmetic
expressions and relational operations ••

Example: Assume that A:= true; B:=true; W:=2; X:=4; Y:=6;

Statement

D:= not A;
E:=W>X;
F:=W<X and W<Y;
G:=wtx and not A;
H:=not A or W=X;
J:=not(A and W>X);

(true and true)
(true and false)
(false or false)
([not(true and false)]i.e.,not
false)

Logical Value

false
false
true
false
false
true

A conditional Boolean expression contains at least one if clause
and two or more Boolean expressions, and may contain certain
other sequential operators besides if and then.

if k<l then s>w else h<c

if(if(if a then b else c) then d else f) then g else h<k

POINTER EXPRESSIONS

A pointer expression is a rule for obtaining a pointer to an
address.

A simple pointer expression is a pointer identifier or a sub­
scripted pointer identifier, which may be combined with integer
numbers or arithmetic expressions that evaluate to an integer
using the arithmetic operators + and -.

A conditional pointer expression contains at least one if clause,
two or more pointer expressions and may contain other sequential
operators besides if and then.

A pointer expression is often followed by the pointer operator ~
and a based variable to which the expression points.

5-3

POINTER EXPRESSIONS (Continued)

if k<l then (p+i)~a else (p+l)~a

p[i]~a

DESIGNATIONAL EXPRESSIONS

A designational expression is a rule for obtaining the label of
a statement.

A simple designational expression is a label identifier, an un­
signed integer used as a label, a subscripted label identifier,
or a subscripted switch designator. The subscript of a label
identifier or switch designator evaluates to an integer value.

A conditional designational expression contains at least one
if clause, two or more designational expressions and may contain
other sequential operators besides then and if. Conditional
designational expressions cannot follow the keyboards then and
go to.

17

p9

Choose [n-l]

TOWN [if y<o then N else N+l]

if AB<c then 17 else q[if w<O then 2 else n]

5-4

CHAPTER 6 -- STATEMENTS

The statement is the basic operating unit of ALGOL. There are
six kinds of statements:

NAME EXAMPLE

assignment i :=i+l;

conditional (if) if i+O then go to 25;

transfer (go to) go to labelxx;

loop (for) for i :=T step 1 until n do •••

procedure call somefunction (x);

dummy or null tag :i

Statements are executed consecutively unless the sequence is
broken by an unconditional transfer (go to statement) or by
some condition that causes a statement sequence to be skipped
(if statement). Statements may have one or more labels.

Basic statements are often combined to form more complex units of
operation, for example, the following combination of assignment,
condition, transfer and looping statements:

if i>O then for i :=1 step 1 until n do A[i] :=B[i]+i else go to 25;

Each statement within the combination of statements may be
labeled:

Tl:if i>O then T2:for i :=1 step 1 until n do
T3:A[i] :=B[i]+i else T4: go to 25;

A further level of freedom in statement sequencing is available.
A group of statements can be delimited by begin and end keywords
forming a compound statement. A compound statement is a block
in which there are nodeclarations.~

6-1

STATEMENTS (Continued)

Z: begin integer i,k; real w;
for i :=1 step 1 until m do
for k :=i+l step.l until m do

begin w :=A[i,k]; A[i~kl :=A[k,i];} Compound
A[k,i] :=w end i and k; Statement

end Z;

Block

Note that a compound statement can contain other compound state­
ments.

Conditional expressions, which can be used whenever a simple ex­
pression can be used except following the keywords then and go
to, provide another degree of freedom. Such constructions as:

if(if ... then ... else ...)then ...

are permitted in ALGOL.

6-2

ASSIGNMENT STATEMENT

Format:

where: v is a variable or list of variables.

e is an expression.

Purpose: To assign the value of the expression on the righthand
side of the statement to the variable or list of
variables on the lefthand side.

Notes: 1. v may be a subscripted variable.

2. v may be a procedure identifier if the assignment
statement appears in the body of the function that
defines the procedure identifier.

3. A list of variables on the lefthand side has the
format:

vI :=v2 := ••• vn

Variables in the list need not have the same data type.
The expression is converted to match the data type of
each variable, startin~r at the rightmost. Conversion
is made according to the rules given below.

4. The following data type conversions are permissible:

I in tegeY' ~ : = boo Zean ~;!

The boolean expression is evaluated to 0 or 1. A full
word of either O's or l's is assigned to v.

boo lean v : = in tege Y' ~;I

6--3

ASSIGNMENT STATEMENT (Continued)

The integer expression is evaluated. If the expression
has a value of 0, the value false is assigned to the
variablei otherwise, the variable is assigned the value
true.

linteger v := pointer ei
I

!~----------------------------

A pointer expression evaluates to an integer that is
one word long and points to some location. The pointer
value can be assigned to an integer variable if the
variable has the default precision of one word.

Ipointer ~ := integer ~i

The value of the integer express~on is assigned to the
pointer variable. The integer must be of default
(one word) precision.

(real v .- integer ~i 1
The integer expression e is evaluated and a decimal
point is placed after the last digit when assigning
a real value to v.

jinteger ~ :=. real e;

The real expression is evaluated. The value assigned
to the integer variable is entier(~+0.5). See the built­
in function entier.

Istrin g ~ := integer ~i

The integer expression is evaluated and assigned to
string v as a string of characters of the form:
[-]nn •• ~~ where each n is a digit.

6-4

ASSIGNMENT STATEMENT (Continued)

~nteger ~:= string ~i I
I

~------------------------~

Characters of the string expression will be assigned
to the value ~ up to the first non-integer character,
such as a decimal point. The precision of v governs
how many characters will be assigned. An acceptable
form of string is: [-]nn •.• n where each n is a
digit. --

rtring v:= real ei

The real expression is evaluated and assigned to
string v as a string of characters of the form:

[-] nn •.. n [• n~ ••• n] [E [-] nn]

where each n is a digit and bracketed portions of the
form are optional.

peal v:= string ~i
!

The string expression is evaluated. Characters of the
string will be assigned to the value v up to the
first non-real character or up to the-limit of the
precision of v. The acceptable form of string is
shown above for real to string conversion.

ftring ~ := boolean ei

The boolean expression is evaluated to a zero or one
(false or true). The zero or one is assigned to the
string ~.

foolean ~ := string ei

The string expression is evaluated. The result will be
assigned to v as faZse (zero) if the string contains
all zeroes. -Otherwise the value true (one) will be
assigned.

6-5

ASSIGNMENT STATEMENT (Continued)

~tring ~ := pointer e~

The pointer ·expression is evaluated. The result,
having the form: nn .•. ~, will be assigned to v.

fainter v := string e~

The string expression is evaluated. The result is
assigned to pointer v up to the first non-digit or up
to the one-word limit of the pointer.

Examples:

I S[a,k+2] := 3-arctan(Sxzeta)~

The lefthand subscript is first evaluated, the arithmetic
expression is evaluated and assigned to S[a,k+2].

I T := AIJ + N;

The pointer expression is evaluated and assigned to pointer
T or T may be an integer of default precision.

string STR(20)~ real x~
integer i~ pointer p~
boolean b~ literal STR ("$2504.25 FOR 12")

x .- substr(STR,
i .- substr(STR,
b .- substr(STR, .-
p . - substr(STR, .-

2,8) ~
3,6) ~
4) •
14,15) ~

x contains 2504.25
i contains 504
b contains false
p contains 12

The substr function, as described in Chapter 9, takes a substring
of a string from the character whose position is given in the
second parameter through the character whose position is given

6-6

ASSIGNMENT STATEMENT (Continued)

in the third parameter. If the third parameter is not present
only a single character forms the substring. Note that only
allowable characters are converted and assigned; in the second
assignment; i will contain only 504, and the character in char­
acter position 6 (.) is ignored and processing ceases when such
a character is encountered.

~oo :=b>c and d;

A truth value is assigned to Boo when the Boolean expression
b>c and d is evaluated.

r :=address (f);

The pointer p is assigned the address of f.

formula :=diff/ (x - 2);

Formula is a function procedure and the assignment statement
appears as the body of the function.

faY' STATEMENT

Format:

faY' cv : =list do ~; I
!

where: cv is a controlled variable, which may be sub­
scripted.

Purpose:

list is a list of value3 the controlled variable
can assume.

~ is a simple or compound statement.

To permit repetitive execution of statement s with
the controlled variable set to values specifIed
by list.

6--7

for STATEMENT (Continued)

Notes:

Notes:

1. list may be a simple list of values or expressions
to be evaluated. In addition, list can include
for clauses. A for clause contains either key­
words step and until, or the keyword while.

for i :=1 step 1 until 10 do A[i] :=itij

t t t
initial increment final
value value limit

The example above is equivalent to the simple list:

for i :=1,2,3,4,5,6,7,8,9,10 do A[i] :=itij

Values of the list are assigned to i beginning
with the leftmost value and terminating with the
rightmost value. When the list is exhausted, the
next statement in logical sequence will be
executed.

A while construction is shown in the statement:

Ifor j :=0, 1, vx2 while v<n do m:=j/5;

Note that the while construction is included as
part of a simple list. A list may include any num­
ber of for clause constructions. For example:

Ifor j :=i+k,2,i+2,1 step 1 until n, x while x~O do . ..

2. The statement following do may be a for statement,
or a compound statement that includes a for state­
ment, i.e., for statements may be nested.

3. Parts of a for statement may be labeled, but an
attempt to transfer to a label within a for state­
ment from outside the statement will cause an un­
defined result.

6-8

for STATEMENT (Continued)

Examples:

for I := 1 step 2 until n do
XCI] := XCI] t2+Ii

for k := O,n do u[k] := u[k]/2i

for a [bottom] :=min(a[bottom] , a[top]) while top>bottom do
begin top :=top-li

~ ________ ~bottom := bottom+li end;

go to STATEMENT

Format:

go to d;

where: d is a label or designational expression.

Purpose: To transfer to the statement having the label d.

Notes: 1. Transfer cannot be made from outside a block into
the block. Transfer can only be made to labels
defined locally or globally in the block containing
the go to.

2. Designational expressions may be:

a. Labels with a variable subscript.

b. Switches.

3. If the value of a switch or a label subscript
expression is undefined, no transfer occurs and the
statement following the go to is executed. (A.
switch is undefined if the value is greater than the
number of labels declared for the switch or is less
than or equal to~. A. label subscript expression
is undefined if it evaluates to a subscript for
which there is no matching label.)

6-9

go to STATEMENT (Continued)

Examples:

19O to 10;

Transfer is made to the statement labeled 10.

Igo to a [i] ;

i is evaluated and transfer is made to the appropriate sub­
scripted label, a[i], a[2],

ISWitCh F :=labone, xl, labtwo, x2;

I

go to F [j] ;

If j evaluates to 1, transfer is made to the statement labeled
labone; if j evaluates to 2, transfer is made to the statement
labeled xl, etc.

if STATEMENT

Format:

if be then uc;
if be then uc eZse c;

J if be then uc e Zse If

where: be is a Boolean expression.

Purpose:

uc is an unconditional clause, which may be a
statement, compound statement, or block, but cannot
contain another if clause.

c is any clause, which may be a statement, a com­
pound statement, or a block.

To provide conditional transfer of program control.
If the Boolean expression be is true, the uncon­
ditional then clause is executed. If be is false,
the next statement or block following the

6-10

if STATEMENT (Continued)

Purpose: unconditional clause is executed. This may be the

Examples:

next statement or block following a semicolon
(Format 1) or the statement or block following the
keyword else (Format 2) •

Since else clauses may contain conditional statements
(Format 3), it is possible to set up a series of
conditions for transfer of program control. The
series terminates when a Boolean expression is true,
causing a then clause to execute.

Blocks and statements contained in then or else
clauses may be labeled~

if i=O then go to END PROG;

if j<kt then begin
k := factor[j]+i; j:= j+i;
lab7: i:= i+l; S [i]:= j ;go to 5;

end lab7 else go to 15;

if g<O 1\ h<O then isign .- -1 else
if g>O 1\ h<O then isign : = +1 else 0;

6-11

CHAPTER 7 -- IDENTIFIER DECLARATION AND MANIPULATION

Programmers must declare the characteristics of all identifiers
to be used in a program. Keyword declarators and certain
bracketed information are used to define identifier character­
istics.

The characteristics that can be declared for identifiers are
their shape, data type, storage class, and precision. Appendix
B explains how declaration of these characteristics is used by
the compiler to generate parameter descriptor code which, in
turn, provides information for allocation and freeing of
identifier storage.

SHAPE OF IDENTIFIERS

The four possible shapes of an identifier are scalar, array,
procedure, and program. The default shape is scalar and need
not be explicitly declared. Program identifiers are recognized
as such by the compiler and need not be declared. Arrays are
declared with the keyword array, and procedures are declared with
the keyword procedure. The keyword operator is used to declare
a special kind of procedure.

DATA TYPE OF IDENTIFIERS

There are six possible identifier data types -- integer, real,
boolean, string, pointer, and label. All identifiers except
labels must be declared with one of the 'keyword identifiers,
integer, real, boolean, string, pointer, or label. A label
declarator is required for a formal parameter that will be
replaced by a label. The label declarator may also be used to
identify a local from a global label of the same name. However,
the appearance of a label precedin~r a statement usually consti­
tutes its explicit declaration as a label.

STORAGE CLASS OF IDENTIFIERS

The storage classes of identifiers are local, own, based, param­
eter, value, external, built-in function, and function value.
The default storage class is local and need not be explicitly
declared. A local identifier is one that is allocated when the
block in which it is declared is entered and freed when the
block is exited.

The storage classes that can be explicitly declared by the pro­
grammer are own, based, and external. Identifiers that are
declared with the literal declarator have the storage class,
value. Formal parameters, built-in functions, and function values
are recognized as such by the compiler and are not declared.

7-1

PRECISION OF IDENTIFIERS

Default precision for identifiers and the declaration of pre­
cision are described in relation to storage in Appendix A.
Precision is declared as an intege. literal enclosed in paren­
theses immediately following the data type declarator. Precision
can be declared for numeric identifiers, integer and real,
where precision represents words of storage. Precision may also
be declared for strings, where precision represents maximum number
of characters that the string may have.

DATA TYPES

The data type declarators are real~ integer~ string~ boolean~
pointer~ and label. They are mutually exclusive. Data types
apply to all identifier shapes except those procedures that are
not functions.

A real declarator declares a scalar, array, or procedure that
returns a number value that is not an integer. Default storage
of real values is two words. Maximum precision is 15 words.

real n, pi, m;
real array a, b, c[i,j];
real procedure X;
real (3) y;
real (4) array Z [2,5] ;

An integer declarator declares a scalar, array or procedure that
returns an integer numeric value. Default storage is integer
values is one word. The limit of default integer values is
+ 2 15 _1. Maximum precision of a multi-precision integer is
15 words.

integer array A[i,j];
integer i,ji
integer (4) q, ri
integer (2) procedure XXi

7-2

DATA TYPES (Continued)

A string declarator declares a scalar, array, or procedure that
returns a character string value. Default storage of string
values is 32 characters. Strings have a maximum length of
16,283 characters.

string (200) chari
string procedure sym (X,y)i
string (20) array mt[lO]i

A boolean declarator declares a scalar, array, or procedure that
returns a truth value of true or false. A boolean value is
always stored in one word.

boolean zero, nosolutioni

A pointer declarator declares a variable array, or procedure
that returns an address as its value. A pointer value is always
stored in one word.

pointer array LOCUS [8]i
pointer pI, p2, p3i

A label declarator declares a scalar or array that returns a
value that is an address. A label value is always stored in
one word.

label tag[lO] i

7-3

ARRAYS

An array is declared with the explicit shape array, and one
of the data types, real, integer, boolean, string, pointer or
label.

Precision and storage class may be declared if other than default
characteristics are wanted.

In addition, the identifier of the array is followed by dimension­
ing information, enclosed in brackets. The bracketed information
consists of a list of subscript bounds of the general form:

The following rules apply to array subscripts:

1. When a subscript bound consists of a pair of values
or expressions, separated by a colon, the'first
value or expression gives the lower bound and the
second value gives the upper bound.

2. If a single value or expression is given as a sub­
script bound, it represents the upper bound and
the lower bound is assumed to be O.

3. Up to 128 subscript bounds can be given in the list.

4. If an integer expression containing a variable is used
in array dimensioning, the variable must be global to
the block in which the array declaration appears.

5. The outermost block of a program must have only integer
constant subscript bounds, unless it is a procedure
with array formal parameters.

6. During execution, subscripts are checked against declared
subscript bounds, and an error message results if the
subscript exceeds the possible bounds.

7. The lower subscript bound must be smaller than the upper
subscript bound.

8. Negative subscript bounds are permitted.

9. own arrays can have variable dimensions; however, the
total size of the array is bounded by the original
dimensions.

7-4

ARRAYS (Continued)

Examples:

integer array ORG[-10:10,0:20];

pointer array pp[9];

real (3) array A[i,j,k];

own string (5) array NAME[14];

integer array Z[O:i, i:i+5,7,j];

In the examples:

1. ORG is a 21x21-element integer array of default
precision.

2. pp is a 10-element pointer array.

3. A is a 3-dimensional real array with 3-word precision.
The upper subscript bounds, i, j, k, must have been
deflned in an outer block or must be formal parameters
to be replaced by integer values.

4. NAME is a 15-element string array. Each element has a
maximum length of 5 characters. own storage is used
for the string.

5. Z is a 4-dimensional integer array. Note that some
subscript bounds are paired while others are not, and
that a pair of subscript bounds may contain a constant
and an expression.

A number of array identifiers can be included in a single declara­
tion; for example:

real (3) array a,b,c,d[1:5, 0:9];

where a, b, c, and d are all identifiers of real 2-dimensional
arrays of 50 elements.

7-5

ARRAYS (Continued)

Each element of an array is a subscripted variable of the form:

larray-name [sub ,sub , •.• ,sub
---1 ---2 ---n

where: array-name is the name of the array.

each sub is an integer value or expression giving
a subscript of the array. If the subscript is real,
it is converted to type integer by the function:
entier (sub-value+O.5).

For example:

A [25] B [i , j] C [x+ 10] D [2 , 3, 4 , 1]

could all be array elements.

The first subscript of an array varies most rapidly, then
the second, then the third, etc. For example, if the 360-
element array X is declared as:

real array X[3,5,4,2];

then the values are stored in the following order:

l. X[O,O,O,O]
X[l,O,O,O]
X[2,0,0,O]
X[3,0,0,O]

5. X[O,l,O,O]

8. X[3,1,0,O]

357. X[0,5,4,2]

360. X[3,5,4,2]

7-6

ARRAYS (Continued)

The address of each array element may, if desired, be accessed
by pointer manipulation.

The most common use of arrays is in loop manipulation. See for
statement.

CHARACTER STRINGS

Scalars, arrays, and procedures may be declared with the string
data type. By default, the precision of a character string is
a maximum of 32 characters. The maximum length that can be
declared for a string is 16, 283 characters. Examples of string
declarations are:

string (10) a:

string (20) g,h,i:

String a has a maximum of 10 characters, beginning at character
position 1. Strings g, h, and i each have a maximum of 20
characters, beginning at character position 1.

String literals are delimited by accent marks (ASCII characters
1408 and 047 8) or by quotation marks.

'$25.00 FOR EACH~

"One Hundred"

String literals in accent marks may be nested to any depth.

'He said: 'This 'string~ is nested.~~

A null string may be assigned to a string variable.

g __ IIII • . - ,

7-7

CHARACTER STRINGS (Continued)

When a programmer writes a long literal string that requires two
or more lines, the carriage returns at the end of ~ach line
are invisible and do not require a character position.

Control characters, such as the carriage return and form feed,
can be passed as text directly to the assembler, using the
The octal code of the ASCII control character is enclosed in
The ocatal code of the ASCII control character is enclosed in
the angle brackets and will be passed directly to the assembler
without interpretation by the compiler. For example:

"THE END <15>" +015 is the octal code for carriage
return.

Subsets may be taken of strings using the built-in function,
substr.

string (9) Xi

X:="AlO=$1.25"i

substr(x,1,9)
substr(x,1,3)
substr(x,5,9)
substr(x,4)

+evaluates to the entire string.
+evaluates to AlO.
+evaluates to $1.25.
+evaluates to =

The second parameter of substr gives the position of the start­
ing character and the third parameter gives the position of the
last character.

An array of character strings can be d~clared. Each element of
the array must have the same maximum length. For example:

string (2) symb[l:lOO]i +each element of symb has a maximum
length of two characters.

Each element of a string array can be subset using the function,
substr.

7-8

CHARACTER STRINGS (Continued)

string (30) a;
string (3) array b, c [1:25];
a:="ABCDEFGHIJKLMNOPQRSTUVWXYZ"; . .
for
b [i]
c [i]

i·-.-
.-
.-

1 step 3 untiZ 24 do begin
substr(a, i, i+2);
substr(b[i], 2,3); end

Contents of the array elements after the for statement is
executed will be.

b[i] :="ABC";b[4] :="DEF"; b[7] :="GHI", ••• b[19] :="STU";b[22] :="VWX";
c[l] :="BC"; c[4] :="EF"; c[7] :="HI"; •.. c[19] :="TU"; c[22] :="WX";

Two other built-in functions are commonly used in string manipu­
lation. These are the length function and the index function.
The length function has a string variable as a parameter and
returns the number of characters in the string as a value.

The index function searches a specified string variable (param­
eter 1) for a given character configuration (parameter 2) and
returns as a value the starting location in the string of the
first character of the configuration.

Examples:

string (4) v;
v:="abcd" ;
i:=length(v) ;
j :=index (v, "cd");

+i:=4;
+j:=3;

Some examples of how strings may be used are shown in the follow­
ing examples:

7-9

CHARACTER STRINGS (Continued)

comment: Pattern Match and Replacement;

i : = index (a," ");
for i :=i+l whiZe substr(a,i+l) ~" " do
substr(a,i) := "*";

comment:

comment:

Search the string a for some character delimited
by blanks and replace the character with an
asterisk character;

Editor Command Table Lookup;

externa Z string (1) procedure Readchar;
string (10) commands;
switch S := Top, Search, Append, Insert;
commands := "TSAI";
loop: i:= index (commands, (Readchar));

comment: Readchar is a function that

LABELS

reads a character;
go to Sri];
error("illegal command");
go to loop;

Begin blocks and statements (including statements within com­
pound statements) may be labeled. Declarations cannot be
labeled. A label appears as either an identifier or an unsigned
integer, delimited from the statement or block by a terminating
colon (:) • A block or statement may have more than one label,
each of which has a terminating colon. The appearance of an
unsigned integer or an identifier followed by a colon constitutes
an explicit declaration of that integer or identifier as a label.

7-10

LABELS (Continued)

begin

15: AI: x:=x+l;

go to 15; .
go to AI;

end of block;

+15 is an integer label and Al is an
identifier label.

+transfer to the assignment statement.

+transfer to the assignment statement.

A label is declared in its smallest enclosing block.

B: begin peal S;

A: begin peal Z; +A (like S) is declared in Block B

x: Z:=Z/S;

end A;

end B;

and is valid in both blocks A and
B.

+x (like Z) is qeclared in Block A
and is valiq only in Block A.

Labels can be declared with the label declarator. A label
declarator is often used to identify a label that is not other­
wise known in the block in which it is referenced.

7-11

LABELS

error:

(Continued)

begin integer i; label error; +error declared as label

begin real X;

if X = 0 go to error;

end;

end;

+transfer outside of block
to error.

A label declarator is also used to~insure that transfer of control
will be made to the correct label whenever a possible ambiguity
exists.

error:

error:

begin integer i;

begin real x; label error;

go

end;

end;

transfer made to label error in the
block in which it is declared Zabel.

7-12

LABELS (Continued)

A dummy statement may be written in ALGOL. A dummy statement
provides only a label to which a transfer can be made. For
example, a transfer can be made to a labeled end delimiter ter­
minating a compound statement or block.

begin integer j;

if j = 0 then go to Z;

Z: end; +labeled end

An identifier label may be subscripted with a simple integer sub­
script. If a block contains ten labels, a[i],a[2], •.• ,a[lO],
execution of the statement

go to [j];

causes j to be evaluated and transfer to be made to the correspond­
ing statement label. If j evaluates to a value outside the range
of statement labels, e.g., 25, then the next consecutive state­
ment after the go to is executed. Numeric labels cannot be
subscripted.

Formal parameters of procedures are declared with the label decla­
rator if a label is to be passed replacing the parameter.

procedure ALPHA (x,y,n,exit); label exit;
real x,y; integer n; value n;

Formal parameter exit will be replaced by a label when ALPHA is
called.

7-13

SWITCHES

Switches are variables that identify a number of alternate labels
to which program control may transfer. A switch is declared with
a list of labels and designational expressions. The position
occupied by a label or designational expression in the list
determines whether that label is the one to which transfer is
made.

Examples:

switch TESTPROG:=a,b,if x>O then i else d,10,5,c,8,op,3,y3i

Switch TESTPROG is defined with 10 alternate labels or expressions
evaluating to a label, where a has a position value of 1 and y3
has a position value of 10. If the following statement is
encountered during execution:

go to TESTPROG [j]i

j is evaluated: If j=2 transfer is made to label bi if j=3,
transf8~ is made to either label i or d, based upon the evalua­
tion of the designational expression.

switch SF:=a,bl,bw,c,d,7i +declaration of switch SF

go to SF [i] i +transfer to one of the labels

In this example i will be evaluated. If i=l, transfer is made
to the statement labeled a, if i=2, transfer is made to the
statement labeled bl, etc.

If a switch variable evaluates to a value that is outslde the
range of the switch, the next statement after the go to is
executed. For example, in the second example, there are 6
possible values for i: 1,2,3,4,5 or 6. If i evaluates to a
larger integer, the next statement after the go to is executed.

7-14

own DECLARATOR

Storage for a block is dynamic. Identifiers declared within a
block are allocated storage when the block is entered, and
storage is released at the time of exit from the block. If a
block is entered more than once during execution of a program,
variables will be undefined each time the block is entered.

The own declarator allows the programmer to specify a variable or
variables whose value at the time of exit from the block will be
retained. When the block is subsequently reentered, own variables
are defined.

Example:

a: begin integer i, j; own real Hs, s;

end

Each time block a is entered, variables i and j are undefined.
However, after the first execution of a, variables Hs and shave
a specified value each time a is entered, the values being that
of Hs and s at the time the block was last exited.

external DECLARATOR

variables may be external to a given program. Such variables
must be stored in an external area by assembly. They can be
used in a given program if the external variable is declared
external in the program in which it is used.

Example:

al: begin external integer k;
integer i, j;

end ali

7-15

POINTERS AND THE BASED DECLARATOR

Use of pointers and based variables is a programming technique
which allows the systems programmer to achieve a very high level
of object code efficiency.

In most high level languages certain information is available
to the programmer that is not available to the compiler through
the source program. The compiler must always assume the "worst
case" in order to generate safe code.

For example, any subprogram call can potentially redefine all
external variables. An assignment to any element of an array
will force the compiler to assume that all values in the array
have been modified. In the case of arrays passed as parameters,
the compiler must generate "worst case" code for computing sub­
scripts, since neither the bounds, precision, nor number of
dimensions may be known until run time.

Pointers and based variables provide a mechanism for explicitly
manipulating machine addresses. Using this facility, the
programmer can, for example, force a subscript calculation to be
performed only once in a frequently executed part of his pro­
gram. As another example, if the programmer knows that an ex­
ternal variable will not be modified by a call, he can use
pointers and based variables to convey this knowledge to the
compiler.

The programmer declares an identifier, called a pointer. The
pointer's value is the address of some program variable. Pointer
expressions are allowed, so that address offsets can be given.
When the pointer is used, it points to a based variable with the
operator +j in effect, the pointer and based variable have been
substituted for the precise address the programmer wants.

A single pointer can be reset to point to different program
variables within a program. There are several ways in which a
pointer can be set to a given program variable: use of the
address function, use of the allocate procedure or simple
assignment.

The declared based variable has all the characteristics of the
program variable except for storage. That means that the data
type of the based variable should match that of the program
variable.

7-16

POINTERS AND THE BASED DECLARATOR (Continued)

In the example,following, y is declared as a real based variable
and can be used, together with pointer p, to perform address
modification involving either real program variable x or z.

begin real X,Zi
based real Yi

pointer Pi

p :=address (X)i +address function used to set pointer
p to the address of x

+statement is equivalent to x :=X+2i

The based variable can be considered a template of the program
variable. As long as the pointer is set to x, the pointer and
based variable can be used to modify the address. In this way
the programmer can perform address modification and manipulation
at very little cost in code generation.

The pointer can be reset to z, and the based variable can then be
used in a similar way, representing program variable z.

Example:

B: begin real X,Zi based real Yi
pointer Pi

11: p :=address (X)i

22: p+y :=p+ y+2

33: p :=address (Z)i

44: p+y :=p+ y+3i

7-17

+x,y, and Z are all real. y
is declared based. p is de­
clared a pointer

+pointer p is assigned the
address of x.

+based variable y is super­
imposed upon x. Statement
22 is the equivalent of
x :=x+2i

+p is reassigned the address
of z.

+based variable y is super­
imposed upon z. Statement
44 is equivalent to z :=Z+3i

POINTERS AND THE BASED DECLARATOR (Continued)

The program variable referenced by the pointer can be a simple
variable, an array, or an element of an array.

begin pointer ai integer array bi integer ii
based integer Xi

a:=address(b[i]) i

b[i+l] .- a-+Xi

+a is assigned the address
of array element b[i].

+the statement is equivalent
to: b [i + 1] . - b [i] i

Assignment of a pointer to the address of a program variable
made without using the address function is shown in the example
below.

begin pointer'Ai real Ci based integer bi

A .- address(c)i

(A+l)-+b := Oi +location c+l is set to o.

Pointer arrays may be declared and pointer expressions may be
used in address manipulation.

begin pointer array A[n]i
based pointer array B[n]i
based integer ii

p := A[5]-+B[4] i

y := p-+ii

+pointer array element A[5] points to a
based pointer array element B[4]. The
pointer value assigned to p can later
point to another based variable such
as i.

7-18

POINTERS AND THE BASED DECLARATOR (Continued)

When using a based array, it is assumed that the pointer always
points to the first word of data in the array, e.g.,

based array x[-1:5]i if p-+i[O]

p-+ I i[-l]
t--------1

i [0]

i[5

A diagram of the arrays of pointers indicates the assignment of
p in the statement, p:=A[5]-+B[4] i

A

!r-~
1
L

3
4 I

2
3
4 -

i/
/

some location

5 5
6 · · · · · ·
n i n

A pointer can be set to a given number of words using the
allocate procedure.

integer L, Mi
pointer IL, IU,ILM,IUMi
based integer Ni

alloCate(IL,8) i
allocate(IU,8)i

ILM .- IL+Mi
IUM .- IU+Mi

+8 words of storage pointed to by IL
+8 words of storage pointed to by IU

7-19

POINTERS AND THE BASED DECLARATO~ (Continued)

Use of pointers can be shown in list processing. Suppose the
programmer wishes to search a singly threaded list, list_x, for
a location called key.

begin pointer list x;
based integer i;

+a pointer and a default-precision
integer are interchangeable.

p := address (list x);

LOOP:if((p:=p~i)=O) then go to EXIT
eZse if (p+l)~i=key then go to EXIT
eZse go to LOOP;

EXIT: ---;

7-20

+if key does not exist.
+if key is found.

LITERALS

Literals are identifiers that are declared with a given value.
They provide a means of generating constants with names, so
code will be efficient and all occurrences of a constant may
be modified in one place. For example:

begin
literal MAX(lOO);
literal Size (MAX);
integer array X [0 :MAX];

+100 will replace all occurrences
of M.AX in the block. If the paren­
thesized value is changed, all
occurrences of MAX will be changed.

Literals adhere to block structure. A literal declared in an
outer block will be local to that block and global to all inner
blocks in which the literal declaration is unchanged.

An identifier declared with a literal value in an outer block
can be redeclared with another value in an inner block.

begin literal R(O);

.
. begin literal Z (0), R(1);

Any legal value may appear in a literal declaration.

becrin literal y (true), s("A-I023"), oct(-15R8), z(.OJ:P4);

It is convenient to use literals to supply formatting information
for output procedures. Several examples are included in the
sample programs in Appendix F.

7-21

OPERATORS

An identifier can be defined as an operator having a given
precedence. Operators are given the data type of the value to
be returned as a result of the operation. In effect, use of an
operator in a statement is identical to a reference to an external
function procedure, as described in the sections following on
procedures.

externaZ string (100) operator (+) cat;

In the example, cat is declared an operator that returns a string
value having up to a maximum of 100 characters and which has the
same precedence value as the operator, +.

If cat is to be an operator used in concatenating strings, an
external procedure must be set up for cat, defining the con­
catenation function and providing formal parameters that con­
stitute the return value, and the two operands.

begin externaZ string (100) operator (+) cat;
string s;
s:="ABC" cat "DEF" cat "GHI"; +references to cat
end;

procedure cat (a,b,c);
string a,b,c;
begin a:=b;
substr (a,length (a)+l,

length(a)+length(b» :=c;
end;

+the formal parameters must be
positioned so that the first
represents return value, the
second the first operand and
the third the second operand.
All procedures representing
operators follow this format.

When the assignment statement is executed, control is trans­
ferred to procedure cat. For the first concatenation, "ABC"
replaces band "DEF" replaces c. The result, returned in place
of a, is concatenated with "GHI", and the result returned to s.

7-22

CHAPTER 8 --- PROCEDURES

A procedure is a block of code that is executed only when it
is called from another block and which returns to the other
block when procedure execution is complete. There are two
kinds of procedures and procedure calls.

A procedure can be called by a procedure statement in the calling
block. The procedure executes and returns to the statement
following the procedure statement.

A procedure can be called by a function reference contained
,in a statement in the calling block, for example in an assign­
ment statement. Such a procedure returns a value of a given
data type to the point at which it was referenced.

PROCEDURE DECLARATIONS

The declaration of a procedure consists of defining:

1. The procedure identifier.

2. A procedure data type (if the procedure identifier
represents a value, i.e., a function procedure.)

3. A list of formal parameters (if actual parameters
are to be passed to the procedure when it is called.)

4. Specification of characteristics of the formal
parameters.

5. The body of the procedure, which consists of a
simple statement or a block that acts as a statement.

Items 1 to 4 constitute the heading of the procedure.

The usual rules of local and global identifiers apply to pro­
cedures when procedures contain other blocks. An example of a
procedure declaration is:

real procedure arcsin(x)
real Xi

arcsin :=arctan (x/sqrt (1-xt2))i

The procedure identifier is arcsin. Arcsin is a function that
returns a real value. There is a single formal parameter x,

8-1

PROCEDURE DECLARATIONS (Continued)

which is specified real. The statement body consists of the
single assignment statement.

Below is an example of a declaration of a procedure that is not
called as a function.

procedure innerproduct (a,b,n,sigma);
comment: compute innerproduct of vectors a and b with
n components each. Store result as sigma;
array a,b; integer n; real sigma;
begin integer k;
sigma :=0;
for k :=1 until n do
sigma :=sigma + ark] x b[k];
end innerproduct;

Note that in the example the procedure, innerproduct, contains
a begin block. Whether a block is contained within another begin
block or within a procedure, the rules for local and global iden­
tifiers are the same. In the example, integer k is local to the
begin block and is undefined in the outer procedure. Arrays a
and b, integer n, and real variable sigma are global to the begin
block.

Many procedure declarations include formal parameters that are re­
placed by actual parameters when the procedure is called. How­
ever, procedures need not have parameters; for example, a pro­
cedure that generates a random number may not require that param­
eters be passed.

A procedure, like a variable, must be declared in the block in
which it is used (that is, called). This means that the calling
block must include the procedure declaration, including the full
text of the procedure body, as part of the declarations at the
beginning of the block, except under the conditions noted in the
next section.

All ALGOL procedures are recursive and reentrant.

EXTERNAL PROCEDURES

The declaration of a procedure can be compiled as a separate
entity. Such a procedure is called an external procedure since
it is not declared in some other block.

To be called from some other block, the name of the procedure
and its external characteristic must be declared in the calling
block. For example:

8-2

EXTERNAL PROCEDURES

CALLING BLOCK

begin real s;
integer y;
external real procedure arcsin;

x:=x x arcsin (x);

PROCEDURE

real procedure arcsin (x);
real x;

arcsin :=arctan (x/sqrt(l-xt2));

Like external variables, external procedures can be called (used)
by a number of blocks in which they are declared to be external.

PROCEDURE CALLS

Calls to procedures are of two forms: procedure statements and
function references.

A procedure statement has the form:

procedure_name

where: procedure_name is the identifier of the procedure.

EI, E2, ••. ,En is a list of actual parameters that
replace the formal parameters given
in the procedure declaration. The
list may be empty.

A procedure statement causes transfer of control to the named
procedure and execution of the procedure body using the actual
parameters of the calling statement. When the procedure body
has been executed, control returns to the calling block at the
statment following the procedure statement.

In the example following, the body of procedure A contains the
bodies of procedures Band D, and the body of procedure B con­
tains the body of procedure C; calls may be made as follows:

8-3

PROCEDURE CALLS (Continued)

procedure A +A can call Band D but not C

procedure B +B can call A and C but not D

[procedure c +C can call A and B but not D

[procedure D +D can call A and B but not C

An example of a procedure call is:

begin real a,b; real array A[l:lOO];

.
rocedure sub one (a,b,A);

real a,b; real array A;
statement;

sub_one (a,b,A) ;
X: ---;

procedure
declaration calling

block

When sub one is executed, control returns to the statement
labeled X.

A function reference has the form:

where: procedure_name is the identifier of the procedure.

El, E2, ••• ,En is a list of actual parameters that
replace formal parameters given in
the procedure declaration. The list
may be empty.

where: ••• the initial dots indicate that the
function reference is part of a
statement.

8-4

licensed Material - Property of Data General Corporation

PROCEDURE CALLS (Continued)

A function reference causes transfer of control to the named
procedure and execution of the procedure body using actual
parameters. When the procedure body has been executed, a value
for the procedure is returned to the calling statement. An
example of a function reference is:

begin real y;
real procedure arctan (x) ; real x;
statement;) procedure

declaration

z .- 0.215 x arctan(y); +-procedure call

Calling a Procedure by Name and by Value

calling
block

When an actual parameter is substituted for a formal parameter,
the actual parameter may be some variable whose value when
passed will be altered one or more times in the course of
execution of the called procedure. If so, this is a call by
name. The values of certain input variables to the procedures,
however, will not be altered in the course of executing the
called procedure. When such a parameter is passed, it consti­
tutes a call by value.

Formal parameters that are consistently called by value are
given the value specificator in the procedure declaration.

Example:

real procedure tan (x); value x: real x;
tan := sin (x)/cos (x);

The actual parameter to be substituted for x in the example
is an input value that is unaltered in computing the tangent
function.

The rules of default precision apply to value parameters. In
the example above, x would have default real precision. It is
particularly important to declare precision for string value
parameters since the default length is limited to 32 characters
and any additional characters would be lost.

8-5

I

Licensed Material - Property of Data General Corporation

Calling a Procedure by Name and by Value (Continued)

real procedure sort (s); value s; string s [100];

Sometimes it is desirable to pass a parameter by value to a
procedure that does not include a value specificator. In that
case the actual parameter in the calling procedure is enclosed
in double parentheses to indicate a by value assignment.
Example:

begin integer input;

Routine ((input»;

When a function identifier is passed as a parameter, the
distinction between by name and by value call is as shown below;

begin external integer procedure input;

Routinel (input) ;

Routine2 ((input» ;

+call to Routinel. The address of
input is passed.

+call to Routine2. Function input
is called as the parameter of
Routine2.

FORMAL AND ACTUAL PARAMETERS

The formal parameters that appear in a procedure declaration are
replaced by actual parameters when the procedure is called.
Actual parameters will be evaluated at the time of the call only.
Actual parameters may be values or variables, but they must match
the formal parameters of the declaration as shown in the follow­
ing rules:

8-6

Licensed Material - Property of Data General Corporation

FORMAL AND ACTUAL PARAMETERS (Continued)

1. Data types of actual parameters must be compatible with
those of formal parameters. There is no conversion of
parameters.

begin reaL alpha, beta; integer gamma;

•

procedure xx(a,b,c);
reaL a,b; integer c;
begin

end;

xx (alpha, beta, gamma);

PROCEDURE
DECLARATION

-<;.-call to xx

CALLING
BLOCK

2. The number of actual parameters in a parameter list must
match the number of formal parameters.

DECLARATION

real procedure yy(i,j);
integer i,j;

CALLING BLOCK

m :=m/yy(l,k); ~two actual para­
meters replace two
formal parameters.

3. If a formal parameter is an array, it must be replaced by
an actual parameter that is an array having the same or
fewer array elements. The type and precision of the arrays
must match exactly.

DECLARATION

procedure gnp(fyl,fy5,SET);
integer fyl,fy5;
array SET[15,15];

CALLING BLOCK

begin integer i,j;array 1[1:200];
• · · gnp (i, j , I) ;

8-7

I

Licensed Material - Property of Data General Corporation

FORMAL AND ACTUAL PARAMETERS (Continued)

In the example, 1[1] replaces SET[O,O], 1[2] replaces SET[l,O],
••• , 1[199] replaces SET[6,12], and 1[200] replaces SET[7,lO].

4. A formal parameter that is called by value cannot be a switch
identifier or a procedure identifier. An exception is a
procedure identifier that has no formal parameters and that
defines the value of a function designator. For example, if
part of the declaration of procedure x is:

p~ocedu~e x(dd); vaZue dd;

and if x is called by:

x «FD»;

intege~ p~ocedu~e FD;

FD : = ••• ;

intege~ dd; begin

~where FD is a procedure, then
FD must have the form:

~no parameters

~FD is assigned some value.

5. A formal parameter that occurs on the lefthand side of an
assignment statement and is not called by value must be
replaced by an actual parameter that is a variable. This
rule is a logical extension of the rules of assignment
statements.

6. Specification of formal parameters may place further re­
strictions upon the actual parameters associated with them.
Such restrictions must also be observed in the body of the
procedure.

7. The value of a function is parameter O. The following are
equivalent, where x is a function with one input parameter:

x(A,y); and A:=x(y);

8-8

Specificators of Formal Parameters

Characteristics of formal parameters are specified in the pro­
cedure declaration as shown in preceding examples of procedure
declaration. The parameter rules indicate that there must be
a match between data types of formal and actual parameters and
a match on the shape, i.e., a simple variable cannot replace a
formal parameter that is used as an array.

The keyword declarators are also used as specificators. In
addition there are the previously described value specificator
and the label specificator, which allows the programmer to pass
a label identifier as an actual parameter.

8-9

licensed Material - Property of Data General Corporation

CHAPTER 9 -- LIBRARY FUNCTIONS AND PROCEDURES

Certain functions and procedures are supplied with the ALGOL
compiler.

MATHEMATICAL FUNCTIONS

Arguments to the mathematical functions can be real or integer.
Each function (except the sign function) yields a real value.
If the argument to these functions is integer, the number of
words returned is two. If the argument is real the number of
words returned is the same as the number of words in the argu­
ment. The sign function, however, always yields an integer
value.

FORMAT

abs (x)

arctan (x)

cos (x)

exp (x)

ln (x)

sign (x)

sqrt (x)

IvlEANING AND EXAMPLES

Absolute value of expression, x. labs (g)t(i/m)
I

Principal value of tan- l
Where expression ~ is ln

(x). larctan (y-x)
- I

radians. I

I
Cosine of expression ~, where ~
is in radians.

I cos (n-pi/2)
I
I
I

Exponential function of the valuelexp
of x which is the value of the I
Eulerian constant e raised to x: I
e~. - I

J

Natural logarithm of expression
x.

I
Iln
t

(a[lO])

(a/2)

Sign of expression ~, which is: sign (a/b)

+1 for x>O
0 for x=O

-1 for x<O -
Sine of expression ~, where x is - sin (omega x t)
in radians.

Square root of expression x. sqrt(abs (x-y))

Tangent of expression ~, where ~ tan (a/b)
is in radians.

9-1

licensed Material - Property of Data General Corporation

ENTlER FUNCTION

I The entier function returns an integer, resulting from trunca­
tion of a real expression. Unlike the fix function, described
below, the entier function will return multi-precision values
where appropriate.

I entier (x)

where: x is a real expression.

entier (y/cos(y))

FIX FUNCTION

The fix function returns a single precision integer, resulting
from truncation of a real expression. The function has the
form:

fix (x)

where: x is some real expression.

FLOAT FUNCTION

The float function returns a real value of default precision
resulting from floating an integer expression. The function
has the form:

[float (~d
where: x is some integer expression.

SIZE FUNCTION

The size function returns as a value the number of characters
ln a scalar string or the number of elements in an array. The

9-2

SIZE FUNCTION (Continued)

function has the form:

size (v) :]

where: v is the identifier of a string
or an array.

When v represents an array of strings, the number of elements
in th~ array will be returned as a value.

size (alpha) +if alpha is a l2-element array, the
value 12 is returned.

ARRAY BOUND FUNCTIONS (LBOUND, HBOUND)

The hbound function returns an integer giving the upper bound
of a specified dimension of an array: the lbound function re­
turns an integer giving the lower bound of a specified array
dimension. The functions have the form:

lbound (~, n)

hbound (~, n)

where: v is the identifier of the array

n is an integer representing the
positional value of the dimension.

If array v has less than n dimensions or if n has a value less
than or equal to 0, the function value is undefined.

I.

rea Z array A [1:9, 25, -2: 4] :

lbound (A, 1) +returns 1
lbound (A, 2) +returns ° lbound (A, 3) +returns -2

hbound (A, i) +if i=l, returns 9
if i=2, returns 25
if i=3, returns 4

9-3

ARRAY BOUND FUNCTIONS (LBOUND, HBOUND) (Continued)

If the second parameter ln the examples is not 1, 2, or 3,
the value of the lbound or hbound function is undefined.

BIT I~~NIPULATION FUNCTIONS (ROTATE, SHIFT)

The shift function permits contents of a location to b~ shifted
left or right; the rotate function permits the contents to be
rotated left or right. The functions have the form:

shift (~, ~)

rotate (~, n)

where: v is an integer variable or octal literal.

n is an integer constant or variable.

The integer n indicates the number of bits to be displaced. A
negative integer indicates left shift or rotate, and a positive
or unsigned integer indicates right shift or rotate.

i :=rotate (x,-4);

x :=shift (x,+4);

~DDRESS FUNCTION

+value stored in i is contents bf ~ left
rotated by four bits.

+right shift by 4 bits the contents of x.

The address function permits assignment of the location of a
variable as the value of a pointer. The function has the form:

address (v)

where: v is a subscripted or unsubscripted
program variable.

As described in Chapter 7, Pointers and the based Declarator,
the address function is an extension to AtGot that p~rmits
variable addressing on a level comparable to assembly language

9-4

ADDRESS FUNCTION (Continued)

programming. Refer to that section for further information on
use of pointers and based variables with the address function.

Example:

begin pointer Pi integer array bi

integer ii based integer Xi

p :=address (b[i]) +pointer p is assigned the
address of array element
b [i].

STRING FUNCTIONS (LENGTH, INDEX, SUBSTR, ASCII)

Length Function

The length function returns as a value the length of its char­
acter string argument. The function has the form:

length (~)J

where: v is a string variable.

Examples:

string (10) Xi integer ii
x := "abcd";
i:= length (x) i +The assignment is the same as i:=4;

Index Function

The index function searches a specified character string for a
given character configuration. The function returns the start­
ing location of the configuration as its value. The function

9-5

Index Function (Continued)

has the form:

index (~, ~)

where: v is a string variable.

Examples:

c is one or more characters of v. If c is
not found, index returns a zero value.

string (10) v; integer i;
v := "abcdefg";
i := index (v,"bc"); +The assignment is the same as i:=2;

v .- "abcdefg";
i := index (v, "b"); +~he assignment is the same as i:=2;

Substr Function

The substr function extracts from a given string a substring
whose length is defined by the user. Substr will treat an
integer or based integer datum as if it were a string, extracting
a subset of the datum. Use of the substr function gives Extended
ALGOL much of its flexibility in manipulating strings.

The function has the form:

where: v is a string, integer, or based integer
variable.

~l is an integer giving the position in v of the
first character or digit to be extracted.

n is an integer giving the position in v of the
-2 last character to be extracted.

9-6

Substr Function (Continued)

If n is not given, the character indexed by n is returned. If
-2 -1

n is greater than the maximum num6er of characters, all char­
-2
acters from n to the end of string or datum are returned. If

-1
~l evaluates to less than 1, the index begins at the first char-

acter of v.

liteY'al X ("ABCDEFGH") ;
substr(x, 1,8)
substr (x, 5,7)
substr(x, 4)
substr(x, 0,3)
substr(x, 6,9)

references the entire string ABCDEFGH.
references EFG.
refere:nces
references ABC.
references FGH.

In the following three examples, assume the declarations and
assignments to be:

stY'ing a, b, c;
a := "abcdefg"; b :=" XXX ";

To join contents of b with contents of a, producing "abcdefgxxx":

1 substr(a, length(a)+l, length(a)+length(b)) :=b;
I

To replace part of string a by string b, producing "abcdxxx":

substr(a, length(a)-3, length(a)) :=b;

To insert the contents of b into s~ring a, producing "abcxxxdefg",
requires a temporary string and the setcurrent procedure, ex­
plained later in this chapter.

9,-7

Substr Function (Continued)

I c:=substr(a, 4,7);
setcurrent (a,3);
substr(a,length(a)+l,length(a)+length(b» :=b;
substr(a,length(a)+l,length(a)+length(c» :=Ci

+-a="defg"
+-a="abc"
+-a="abcxxx"
+a="abcxxxdefg"

Digits of an integer or based integer are treated as string
characters:

integer i,j;
i :=1776;
j : = subs tr (i , 2 , 3) ; +-j contains 77.

Accessing of multiple substrings of the same string can be
accelerated by setting a pointer to the address of the string
and using a based string or a based integer in the substr
function. The pointed-to based integer is not treated as an
integer value as in the example above, but is treated as a
string. Faster execution is obtained by making use of substr
handling of based integers rather than based strings. This
feature is useful, for instance, in accessing various string
fields in a large record in core. The user must be careful
when using pointers since no core protection is provided.

based integer bi;
pointer p; string
s:= substr (p~bi,

s:= substr (p~bs,

based string bs;
s;
1, 5);
1, 5);

Ascii (byte) Function

+-The assignment statements are the
same except that the based integer
is faster. The pointer must have
been set up previous to these two
statements.

The ascii or byte function, like substr, can be used to manip­
ulate either a string character or byte of an integer or based
integer. Byte and ascii are equivalent function names. The
function returns the numeric value of a character or a byte of
a datum. The function has the form:

9-8

Ascii (byte) Function (Continued)

I ascii (~ [,~] or byte (~ [,~])

where: v is a string variable or literal or integer
variable.

n is an integer giving the position of the byte
of v to be returned.

If n is not given, the first byte is returned. If n is greater
than the number of bytes in ~, the last byte is returned.

ZiteraZ s("ABCD"); string s2; based integer bi;
pointer p; integer a;

a :=ascii(s,4); +returns 1048 in a.
s2 :=ascii(p+bi, 2); +returns the second byte of the area

pointed to by p in s2.

NEMORY FUNCTION

The memory function returns an integer value giving the remain­
ing number of words of core available to the user and is used
to keep track of core for allocation, s!ack space, arrays, etc.
The function has the form:

memory

CLASSIFY FUNCTION

The classify function permits the user to obtain an integer
which represents the predefined class of ASCII characters to
which the first parameter passed by classify belongs. The
function reference has the format:

classify (integer, class-table-ptr)

9-9

CLASSIFY FUNCTION (Continued)

where: integer is an integer or an expression
evaluating to an integer in the
range of octal equivalents of
ASCII characters.

class-table-ptr is a pointer to a user-written table
classifying ranges of ASCII char­
acters. The class, table and
pointers are usually external to
the block in which referenced.

The user defines a class table for ASCII characters as a
series of ranges of the form:

character-minl
character-maxl
result l

character-minn
character-maxn
resultn

} range1

} rangen

Any number of ranges may be defined. For example, all upper­
case alphabetics could constitute one range, digits 0 through
9 could constitute another range, the single character, left­
parenthesis, could constitute a third range, etc. The final
range in the table, however, must include the entire ASCII
character set, providing the default range with default return
cla,s si f iCq tion.

i:= classify (ascii(x,l) ,ptable)

I/O PROCEDURES

Since standard ALGOL was designed to be a language independent
of specific processors or devices, no I/O statements or con­
ventions are included in the ALGOL specification.

For user convenience, a number of I/O procedures are imple­
mented in Extended ALGOL to handle I/O. These procedures are

9-10

I/O PROCEDURES (Continued)

run-time routines that can be called by a user program using a
procedure statement. If the user wishes, he can implement
additional I/O features by writing his own external procedures
to handle input and output.

Open a File

Call Format:

I lopen (channel, string_ [error-label]);1

where: channel is one of 8 channels (0-7) that can
be associated with a given file.
Under RDOS up to 63 channels can be
made availabl~ using the RLDR local
C switch.

string is the character string giving the
file name. It can be either a
literal such as "$LPT" or "DATAFILE"
or a string containing the file name.

error-label is an optional identifier label of a
statement in the calling program to
which transfer is made if an error
occurs in opening a channel. If an
error-label is given and the file
does not exist, transfer will be
made to the error-label without
creating the file. If the file does
not exist, and no error-label is
supplied, the file will be created.

Purpose: The procedure opens a file for reading or writing and
associates a channel with the file.

Examples:

open (2, infilel, openerr);

open (3, "$TTI");

open (4, "$TTO", no_open);

9-11

Close a File

Call Format:

~lose (channel);
;

where: channel is the channel number currently
associated with the file through
an open procedure.

Purpose:

Example:

close (1);

Read a File

Call Format:

The procedure is called to close a file after
I/O is completed.

kead (channel, list [,eof-label, error-label]);

where: channel is the channel number associated with
the file to be read.

Purpose:

list is a list of input data.

eof-label is an optional label of a statement
in the calling procedure to which
transfer is made if an end-of file is
encountered on readinq. For console
input, an end-of-file is defined as
a CTRL Z. For all other devices and
files, an end-of-file is written auto­
matically by the system.

error-label is an optional label of a statement in
the calling procedure to which trans­
fer is made if a read error occurs.

The procedure is called to input data from a
file.

9-12

Read a File

Input data:

Examples:

(Continued)

Data will be read in free format. All legal
numeric or strin~r literals are acceptable as
input. If a string begins with a quotation
mark, the string will terminate at the next
quotation mark. If a string does not begin
with a quotation mark, the remainder of the
input line will be considered as part of the
string, excluding the carriage return.

Generally, only one record (that is, only data
up to the first carriage return or form feed)
is input by read., If list specifies more data
than is on a sfnsrle record, the next record is
read automatically until the number of argu­
ments in list is input. Additional. data, if
any, in the record are lost.

read (1, B[I], OMEGA, EOFTAG, ERROR25) i

for 1:=0 step 1 until 10 do
read(2, A[I], B[I])i

Write a File

Call Format:
I

write (channel, list [,errOr-label])1

where: channel is the channel number associated with
the file to be written.

list is a list of output data.

error label is an optional label of a statement in
the calling procedure to which transfer
is made if any error, including an end­
of-file, occurs.

9-1.3

Write a File

Purpose:

Output Data:

Examples:

(Continued)

The procedure is called to output data to a file.

Data may be variables, or numeric or string
literals. The write procedure provides no
formatting of output; for complete control
of formatting, the output procedure should
be used. For limited format control, con­
trol characters interpreted by the assem­
bler can be included in the list.

A null character is appended to each output
datum in list. The read procedure ignores
nulls following list. The read procedure
ignores nulls following input data. However, if
the output from write is to be used by a Data
General Assembler, all nulls must be deleted
from the output. The user can first input the
output file to the Text Editor, which deletes
all nulls, then use the Editor output as input
to the assembler.

Output can be input by the read procedure
without change.

write (2, IIEND SORT<15>1I, A, 11<15>11);

END SORT is a string literal. Inclusion of the characters
"<15> II following END SORrr causes a carriage return. The value
of the variable A will then be printed, followed by another
carriage return.

write (3, y, x, z, sub[il, errortag);

The list of variables to be written is y, x, z, and sub[il.
Values for the variables will be written with a single space
between value fields. If a write error occurs, a transfer is
made to the error label, errortag.

9-14

write Formatted Output

Call Format:

Purpose:

~utPut (channel, "format", list [,error-labe~]) ;1

where: channel is the channel number associated with
the file to be written.

format is a string specifying output format.

list is a list of variables to be written
out according to the given format.

error-labe~ is an optional label of a statement in
the calling procedure to which trans­
fer is made if any error, including an
end-of-file, occurs on output.

I

The procedure permits the programmer to set
up his own format for data being output, rather
than using the default format of the write
statement.

The format specification may include literals to be output,
formats for numeric and string va,lues of variables given in
list, and carriage control, tabulation, and form feed informa­
tion.

A null character is appended to each output datum in list.
The read procedure ignores nulls following input data~ow­
ever, if the output from this procedure is to be used by a
Data General assembler, all nulls must be deleted from the
output. The user can first inpub the output file to the Text
Editor, which deletes all nulls, then use the Editor output as
input to the assembler.

Formatting information for list variables must precede the
variables to be output. Literal strings containing carriage
control, form feed, and tabulation information and character
string literals may appear where needed within list. An
example of a literal to be output~precisely as given in format
would be:

output (1, "Data 'Reduction");

Data Reduction

9--15

+resultant output

write Formatted Output (Continued)

A "picture" specification of data to be output is set up in
the format field, using the character # to represent each
character position of the datum. Numeric values that have
fewer characters than the positions given by the format field
will be right-justified in the field. Numeric values having
more characters than the positions given by the format field
will be output in full; i.e. a single # can be used to output
numbers of any length.

output (1, "DATA REDUCTION: ####11, A);

DATA REDUCTION: 901495 +resultant output if A
has the value 901495

When formatting floating point numbers, a decimal point can
be part of the field format, indicating the number of digits
that should follow the decimal point in the output format.
The programmer should round the data to the number of digits
desired.

output (2, "####tF.# ", w+.05, x+.05, y+.05, z+.05);

b.b.b.b. 1. 2b.b. -99. Ob.b.b.b.b. .lb.b. 999.9 +possible resultant output;
b. represents a blank
position

To round each datum to the nearest tenth, .05 is added to each
datum.

A field format may have a positive sign, negative sign, or can
be unsigned. Resultant output will differ in the following
manner:

Unsigned Field: If the datum is positive, the
output value is not signed. If
the datum is negative, the out­
put datum is signed and re­
quires a field position, e.g.,
the range of field ###.###
would be from -99.999 to 999.999.

9-16

write Formatted Output (Continued)

Positive (+) Field:

Negative (-) Field:

The sign will be output for both
positive and negative numbers
and requires no field position,
e.g., the range of field
+###.### would be from
-999.999 to +999.999.

The sign will be output only
for negative numbers. It
requires no field position,
e.g., the range of field
-###.### would be from
-999.999 to 999.999.

An exponent field is allowed as part of a decimal field that
has an explicit decimal point. An exponent field is signalled
by the letter E followed by # signs representing exponent
digit positions. The exponent will be right justified in the
exponent field. Output of signs for the exponent follows the
sign conventions given above.

output (2, "-#####.##E##", a+.005, b+.005, c+.005, d+.005);

12345. 25E-4.6..6..6.. 99. 04E.6.0.6..6. 9876. 97E-6.6..6. -555. 55E60 +-possible
output

The # symbol can also be used to represent string variables
in the list of the output procedure call. The string will be
left justified in the output field with trailing blanks. How­
ever, if the string or substring is longer than the field
format the entire string will always be written out.

output (2, "########", STl, ST2, ST3);

TITLE.6..6..6. NUNBER.6..6. CHARACTERISTICS +-possible output

Numeric values for output can be converted to strings. They
will then be left justified in the output field.

String literals for output may appear anywhere within the out­
put list.

9-17

Write Formatted Output (Continued)

output (2, "#######","SERIAL NUMBER",A[2], "FIVE ON ORDER");

SERIAL NUMBER 201555 FIVF. ON ORDER

ASCII carriage control characters, written in octal code and
enclosed in angle brackets, can be incorpo+ated ~nto the
format. In the examples below, 011 is the octal code for the
tab character and 015 is the carriage return character.

output (2, "####.##<11>", a,b,c,d "<15>");

4678.23 -234.40 1678.49 -233.43

output (2, "####<11>####<15>", a,b,c,d):

4678
1678

-234
-233

An array identifier in a variable list causes all elements of
the array to be written out in normal array sequence.

output (2, "#####", A);

34 5781 777 1234 354

+A is a ten-element array

9 100 4555 9000 888 +possible
output

By setting up loops containing output procedure calls, it is
possible to produce output data in a number of formats.

9-18

Write Formatted Output (Continued)

for j := 1 step 5 until 100 do begin
for i := j step 1 until j+4 do
output (2, "#### " a[i])i
wr i te (2, "< 15> ") i
end;

a
7060

555

1020
-354
9000

4545
765

34

6123
20

-10

9081
-1

563
~part of possible output

beg i n lit era l s (" A [#: # #] = # # # ii # # ~f # # # # # f:' It #: # # :J. if *i < 15 > ") i
based integer array ba[0:4]i pointer Pi

, for j := 1 step 5 until 100 do
begin p := address(a[j])i

output (2 , s, j ,p-+ba) i
end;

. A [1] = 1005 1195 3142 5222 1110
; A[6] = 19 3001 -100 25 5111
. A [11] = 211 -4 4321 2 444 ~part of possible output

A[96] = 35 -567 2378 888 200

Note in the last example that the format field for the array
has been set up as a literal.

9-19

Read or write a Line

Call Formats:

line read (channel, pointer, count [,error-label]);

linewrite (channel, pointer, count [,error-label]);

where: channel is the channel number associated with
the file to be read or written.

Purpose:

Example:

pointer is a pointer to the word in core at which
reading or writing begins.

count is a return value giving the number of bytes
read or written.

error-label is an optional label of a statement to
which return is made if any error, including
an end-of-file, occurs.

The procedures provide for reading and writing a
line of data into an area, rather than into var­
iables (read and write procedures). Otherwise,
the procedures are identical to read and write.

The pointer contains the address of a core word at
which reading or writing begins. The data is trans­
ferred from that point up through the first car­
riage return, null or form feed character.

If an EOF occurs on a lineread, count will contain
the number of bytes read up to the EOF.

In using lineread with strings, note that it is
necessary to provide the count of bytes read
using the setcurrent procedure as shown in the
example:

lineread (0, address(s), n, er);
setcurrent (s, n);

+s is a previously declared
string. setcurrent (see
setcurrent procedure) sets
the length of s to the count
of bytes read in lineread.

9-20

Read or v·Jri te a Number of Bvtes .
Call Formats:

byteread (channel,pointer,count [,error-label]);

ytewrite (channel,pointer,count [,error-label]);

where: channel is the channel number associated with
the file to be read or written.

pointer is a pointer to the word in core where
reading or writing begins. pointer can
be an address expression.

count specifies the number of bytes that the
user wishes to be read or written.

error-label is an optional laber' of a statement to
which return is made if any error,
including an end-of-file, occurs.

Purpose: The procedures provide facilities for binary
reading and writing of data, rather than ASCII.

Example:

allocate (buffer,lOO);
byteread (0, buffer,200);

POSITIONING A FILE

Position Procedure

Call Format:

+allocate allocates 100 words in
the file starting at pointer,
buffer. byte read reads 200
bytes starting from buffer.

I position (channel, ~ [, error-label]); \

where: channel is the channel number associated with
the file to be positioned.

byte is the number of the byte to which the
file is to be positioned.

9-·21

Position Procedure (Continued)

where:

error-label is an optional label to which a return is
made if the file given cannot be positioned to
the indicated byte.

Purpose: The procedure permits random access to records and
is called before attempting to read or write
random. The byt~ specified may be an integer, real,
or multi-precision integer whose value is between a
and 4,294,967,296 bytes (the limit of file bytes).

Examples:

position (2, 5000);

read (2, A [i]) ;

position (0, bytpos);

+position to byte 5000 in file
on channel 2 and read A[i].

bytewrite (0, buffer, 200);

+position to a byte (bytpos)
which is beginning byte of
previously allocated area
pointed to by pointer, buffer,
and write 200 bytes. (See
allocate procedure.)

Filesize Procedure

Call Format:

file size (channel~ D);

where: channel is the channel number associated with
a file.

n is the identifier of the value to be
returned, representing the length in
bytes of the file. n may be integer,
real, or multi-precision integer.

9-22

Filesize Procedure (Continued)

Purpose: The procedure returns the current length in bytes of
a disk file, providing information useful in
positioning the file.

Example:

filesize (0, n) i
posi tion (0, n) i
bytewrite (0, ptr, 200) i

+A call to filesize makes it
possible to position to the
end of the file for writing.

Fileposition Procedure

Call Format:

fileposition (~hannel, D) i

where: channel is the channel number associated with a
file.

n is the identifier of the value to be
returned, representing the position of
the byte currently pointed to in a disk
file. ~ may be integer, real, or multi­
precision integer.

Purpose: The procedure returns the position of the byte
currently pointed to in the given file, providing
information useful in positioning a file.

Example:

fileposition (l,n) i
position (1, n+300) i

+After finding the current
position, the user positions the
file to a byte 300 bytes
beyond.

9-23

STORAGE ALLOCATION PROCEDURES

The programmer can designate that a certain number of words of
storage be allocated with a pointer to the first word. At a
later time, the storage can be deallocated for reuse.

Allocate Procedure

Call Format:

allocate (pointer, number);

where: pointer is the identifier of a previously
declared pointer.

number is the number of words of storage to
be addressed by the pointer.

Purpose: To allocate a number of words of storage for manipu­
lation by the pointer-based variable method.

The algorithm used for allocate is a first fit
method only if the size in words on the free list
equals the size requested. Otherwise, a new area
is allocated.

begin integer m,i,j; pointer il,iu;
based integer n;

allocate (iI, 8);
allocate (iu, 8);

i:=(il+m)-+n;
j:=(iu+m)-+n;

Free Procedure

Call Format:

free (pointer);

where: pointer is the identifier of a pointer that
appears in a previous allocate call.

9-24

Free Procedure (Continued)

Purpose: To make available for reallocation the previously
allocated words of storage.

free (il);
free (iu);

Setcurrent Procedure

Call Format:

setcurrent (~tring, bytes);

where: string is the identi~ier of a previously
declared string.

bytes is the number of bytes (characters)
to be se1: as the current maximum
length of string.

Purpose: To insure that the current length of a given
string is the length desir~d for manipulation.

If bytes is larger than the declared maximum
length of the string, string will be set to
the declared maximum.

The procedure is of particular value in insuring
that the length of the buffer for reading and
writing random is correct.

string (128) S;

position (1, 155);
byteread (1, address(S), 128);
setcurrent (S, 128);

9-25

+declare l28-byte string S.

+transfer 128 bytes to core.
+insure current length of S
is maximum length.

Comarg Procedure

Call Format:

comarg (channel, string [,bo<:?_lean-array:J [,eof]) ;!

where: channel is the channel number of an ROOS command
file.

string is the identifier that will contain an
argument of the command file.

boolean-array is a 26-element boolean array that
may optionally contain switch settings
of the command argument.

eof is an optional label of a statement to
which return is made when the end of the
command file is encountered.

Purpose: The procedure is used to read ROOS commands from a
command line into a command file. (The creation of
a command file, COM.CM, is described in Appendix C
of the ROOS User's Manual.) Briefly, COM.CM
contains a given command line in the following format:

9-26

Comarg Procedure (Continued)

Purpose:

Command File Format

byte

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

file conten1t

F
0
0

null
01000000
00010100
00000000
00

A
null

M
B

null
10000000
00000000 1

00000001!
01

377

}
}
)

}
)

}

Command: FOO/B/L/N A MB/A/X/Z

_ First argument FOO.

Global settings of switches;
set tor B, L, and N.

- Second argument A.

No local switches for n.

- ~1ird argurnen'L Iv'iB.

Local switches set for MB
are A, X, and Z.

- End of file indicator.

To obtain the contents of COM.CM as given above:

string COM1,COM2,COM3;
booZean array Bl,B2,L3[25];

open (1, "COM.CM");

comarg (1, CON1, Bl);
comarg (1, COM2, B2);
comarg (1, COM3, B3);

9-27

Comarg Procedure (Continued)

The open procedure associates COM.CM with channell. When the
three comarg procedures are executed, COMI will contain FOO,
COM2 will contain A, and COM3 will contain MB.

Those boolean array elements of Bl, B2, and B3 that correspond
to the bit positions set in the command file will be set to
true. Thus, the elements of B2 are all set to false (0) while
elements B3[0], B3[23], and B3[25] are set to true.

FILE MANIPULATION PROCEDURES

The file manipulation procedures are useful when files are
maintained on disk. They permit deletion and renaming of given
files. The named file must exist and must be closed at the time
of a deletion or renaming.

Delete a File

Call Format:

delete ("file");

where: file is the name of a previously created file.

Purpose: The routine deletes the named file from the disk.

Example:

delete ("oldfile.SR");

Rename a File

Call Format:

rename ("filel", "file2");

where: filel is the name given a previously created file.

file2 is the name to be substituted for filel.

9-28

Rename a File

Purpose: The routine allows a file to be renamed.

Example:

rename ("main", "sub2");

ERROR PROCEDURE

Call Format:

error ("error-message");

where: error-message is a string

Purpose: The procedure allows the user to write his own
error messages. The error message will be output
at the console when an error occurs, processing
will t~rminate, and return wil~ be made to the
operatlng system.

PROGRAM SWAPS

Call Format:

where:

Purpose:

CHAIN PROCEDURE

I chain (" filenamE~

filename is the name of a save file. The
loader adds the extension .sv to
filename, so the programmer should
include the extension when giving a
literal filename in the chain pro­
cedure.

The procedure allows an executable program file
on disk to be brought into core for execution,
replacing the currently executing program.
The call to chain should be the last statement
in the program. Any number of saved files can
be chained, providing each ends with a call
to chain.

9-29

PROG~~ SWAPS - CHAIN PROCEDURE (Continued)

Example:

chain ("plot.sv"):

REAL TIME CLOCK PROCEDURES

The ALGOL real time clock procedures, stime and gtime, allow the
user to change or retrieve the current date and time in an
ALGOL program.

Stime Procedure

Call Format:

/stime (~, month, ~, ~, minute, second) :\

where: year is an integer constant or variable represent­
ing the current year less 1968: e.g., 1974
is represented as 6.

month is an integer constant or variable represent­
ing the current month, in the range of 1
through 12.

day is an integer constant or variable represent­
ing the current day, in the range of 1
through 31.

hour is an integer constant or variable represent­
ing the current hour, in the range of 0
through 23: 0 is the midnight hour: 23 is
11 PM.

minute is an integer constant or variable represent­
ing the current minute, in the range of 0
through 59.

second is an integer constant or variable represent­
ing the current second, in the range of 0
through 59.

9-30

Stime Procedure

Purpose:

Example:

The procedure sets th'2 real time system clock
and calendar to the specified date and time.

stime (6, 1, 1, 0, 0, 1)

Gtime Procedure

Call Format:

I gtime (~, month, ~, ~, minute,
1

second) i '

where:

Purpose:

Example:

year, month, day, ~~, min~te, and second are
integer variables for which real time clock
values are returned. The range of these
variables is the same as for the stime procedure.

The procedure returns the current date and time
in the user-specified variables.

integer year, month, day, hr, min, seCi

gtime (year, month, day, hr, min, sec) i

9-31

MULTIPLY AND DIVIDE PROCEDURES

The multiply and divide procedures perform unsigned multiplica­
tion, expressing the result as a product and overflow, and
division, expressing the result as a quotient and remainder.

Umul Procedure

Call Format:

umul (multipli~an~, multiplier, adder, overflow, product);

where: multiplicand is an integer constant or variable
containing a value to be multiplied.

Purpose:

Ex~mple:

multiplier is an integer constant or variable
containing a value to be multiplied.

adder is an integer constant or variable
containing a value to be added to the
result obtained from multiplying the
first and second arguments.

overflow is an integer variable to which the
overflow of product, if any, is
returned.

product is an integer variable to which the
result of multiplication is returned.

The umul procedure provides unsigned mUltiplication
of the form:

(multiplicand x multiplier) + adder+ (product + overflow)

integer plicand, plier, adder, ovflo, prodt;

umul (plicand, plier, adder, ovflo, prodt);

\
9-32

Rem Procedure

Call Format:

I
Fern (dividend, divisof' quotient, remainder);
I

where: dividend is an integer constant or variable
containing the value of the dividend.

Purpose:

Example:

divisor is an integer constant or variable
containing the value of the divisor.

quotient is an integer variable to which the
quotient obtained by the division is
returned.

remainder is an integer variable to which the
overflow of division is returned.

The rem procedure obtains the result of division
as a quotient and remainder.

integer a, b, quotn, mander;

rem (a, b, quotn, mander);

9-33

)

CACHE MEMORY MANZ~"GEMENT

A capability of Extended ALGOL, which is designed to meet
specialized file access needs of certain programmers, is called
Cache Memory Management (CMM). Extended ALGOL without CMM
will handle efficiently most scientific and business program­
ming applications. Cache Memory Management is a powerful tool
for programmers who deal with very large programs and large
data "bases -- primarily systems programmers such as com-
piler writers. CMM provides more efficient means of file access
when the size of a file is considerably larger than available
memory (for example, three or more times larger).

CMM provides means of buffering large files into 256 word
blocks and determining which blocks reside in core on a usage
basis. For example, suppose a new block is required in core
from a disk file. The block will be swapped in, replacing
the block currently in core which has the oldest reference
time. Thus, CM}1 will replace the least recently used block
with the block from disk.

To use CMM the programmer sets up a buffer pool consisting
of a fixed number of blocks and a header area (buffer procedure) •
He can then open a given file (or create and open the file) to
a given file number and set up access to the file through the
buffer (access procedure). The remaining general procedures
and functions used in Cache Memory Management are listed below:

wordread/wordwrite

hashread

used in reading from or writing
to any area of any file. These
are the most general of the rou­
tines for r~uJing and writing.

used in reading any area of a file
into a core buffer and returning
the precise location of any word
of data as the address of a
block of core and an offset into
the block of the specific word.
No actual data transfer happens.
This routine has been typically
used in files hash-coded by the
user for the purpose of finding
data without its being modified.

9-34

CACHE r.1E~mRY ~1ANAGEMENT (Continued)

hashwrite used to mark hashread data as
having been modified.

flush used to write to disk the contents
of all modified data buffers
before a file is closed.

close used to close a file that has
been previously accessed. The
file should be flushed before
bei.ng closed.

Besides the general procedures, there are a group of specialized
procedures available in CMM. These procedures provide extra
speed and simplicity through two features:

1. They are only used to acce~s file number O.

2. They allow the user to make block 0, the first 256
words of the file, an area of restricted access to
be used for vital information and pointers into the
general data area.

The specialized procedures are:

noderead/nodewrite

fetch/stash

nodesize

used in reading from or writing
to file number 0, excluding the
first 256 words. File access is
on a nodal basis, where a node
(which resembles an ALGOL array)
is described later.

used in reading from or writing
to file number O. The first
256 words of the file may optional­
ly be read or written. A single
word is accessed by these routines,
where access is on a nodal basis.

used to obtain the number of
words in a given node.

9-·35

CACHE ~1EMORY MANAGEL'lENT (Continued)

Setting up a Buffer Pool (buffer)

Before a file can be accessed using the cache memory facility,
the programmer must establish a buffer pool to be associated
with the file. To establish the buffer pool, the programmer
must determine the size required, which is the number of words
of the file that can be maintained in core at a given time. The
buffer pool is allocated at the high address end of user stack
space. The buffer pool consists of a buffer pool header of
1610 words, 4 words of descriptors for each buffer, four words
of terminating descriptor, and the required number of 25610 word
buffers.

A buffer pool of ~ buffers is configured as shown:

i Buffer Pool Header
161()

MiUi RDOS Channel No.
File Block No.

Last Time Referenced
Block Core Address

·
·
·

Buffer Pool \
i

·
·
·

'-,

9-36

'\

~
i

'-, ,
\

/

1''\

1"/

Descriptor 1

Descriptor n

Terminating
Descriptor

Buffer 1

Buffer n

Setting up a Buffer Pool (buffer) (Continued)

The buffer pool header is 16 words of information needed by
CMM to control the buffer pool. It includes a save area,
data pointers, counters, and a clock that maintains the cur­
rent time.

Following the header is a set of buffer descriptors. Each
buffer in the pool has a corresponding four-word buffer de­
scriptor of the buffer and its usage. The buffer descriptor,
as shown in the previous 'figure, contains the following:

Word

1

2

3

4

Contents

Bit 0 = M (modify bit) indicating if the
contents of the buffer have been modified
since last read in.

Bit 1 = U (usage bit) indicating if the
buffer is curredtly occupied.

Bits 2-15 RDOS channel number, corresponding
to a user-assigned file number in the access
call.

File block number.

Core address of the first word of the
buffer.

Time of the last reference to the buffer.

The descriptors are allocated by CMM in the same order as the
buffers. The first descriptor corresponds to the first buffer,
etc. Following all descriptors are four words terminating the
descriptors.

Immediately after the four words terminating the descriptors are
the actual CMM buffers. The buffers are 256 10 words (one block)
in length.

The user sets up the buffer pool and thus makes it possible to
use CMM through the buffer procE!d,\re. The call to buffer is

where:

! buffer (pointer, poolsize) ; I
pointer is a previously declared integer variable

or pointer. CMM selects the buffer pool
area and returns the address of the start
of the buffer pool in pointer.

9-37

Setting up a Buffer Pool (buffer) (CoLtinued)

where: poolsize is the size of the buffer pool, in
words. The user can specify an integer
expression, indicating the number of
words in the buffer or use the built-in
function memory \(or memory/n, where
n is an integer), indicating that the
rest of available memory (or the
indicated fraction of available
memory) is to be used for the buffer
pool.

The actual size used by CMM for the buffer pool is always the
largest available memory space less than or equal to poolsize.
The, formula used by CMM to compute this value is:

(256 + 4) .!. + 20 ~ poolsize

wh-ere 256 is the number of words in a block, 4 is the number
of words in the buffer descriptor, and 20 is the number of words
needed for the buffer pool header plus terminating descriptor.
Thus, the number of buffers allocated (i) is the largest integer
satisfying the inequality: -

number of buffers (i) ~ poolsize - 20
260

Thus, once allocated, the buffer pool is configured as:

Buffer Pool
Header

+-pointer

adjusted
poolsize

The user can then open the file via the access routine for disk
access.

The following example reserves half of remaining memory for
the buffer pool and returns the address of the start of the

i pool in PTRI.

9-38

Setting up a Buffer Pool (buffer) (Continued)

pointer PTRl;

buffer (PTRl, MEMORY/2);

Openinq Buffered Files (Rccess) (~ontinued)

Once the buffer pool has been set up with a pointer to the
starting address, the programmer may\open files for accessing
via the buffer pool. Files are opened, or are created and
then opened, using the access routine call, which has the
format:

access (filenumber, filename, pointer [,elementsize);
(

where: filenumber is the file number that is associated
with a file.

filename is the character string giving the file
name. It can be either a literal in
quotation marks or a string variable
containing the file name.

pointer is the buffer pool pointer used in the
buffer routine.

elementsize is an integer representing the size range
of the file to be opened as follows: -

Size of the File

o -
65 -

131 -
196 -

65K words
l31K words
196K words
262K words

elementsize

1
2
3
4

elementsize has a default value of 1; thus if the size
of the file !5 65K, the parameter need not appear in the
routine call.

9-39

Opening Buffered Files (access) (Continued)

C~~ stores all file positions as a l6-bit unsigned integer.
This means that only 65K words (the largest value that can
be stored in 16 bits) can be addressed directly. If a file
is larger than 65K words, the user specifies an element size
(elementsize) of two or more to indicate that two or more
consecutive words are to be considered a single element and
all file positions are addressable by C~.

The actual file address of a word becomes:

file address = fileposition/elementsize

When reading or writing the file, the user must specify the
file address of the first word in the element to be assured
of accessing the correct data. Given a file address, CJ1M
then calculates the block number of the element using the
formula:

file block number = file address x elementsize

256

If the file does not exist when access is called, C~ creates
a randomly organized file of length 0 with the specified file
name. The file is then opened via the RDOS command .OPEN,
which associates the file with a channel number and makes the
file available for both reading and writing.

The following example opens the file LEXICAL and assigns it to
file number 1 with PTRl pointing to the beginning of the
buffer pool. The size of the buffer pool passed is 5000 words,
although by computation the buffer will only use 4880 words.
Because the file is l27K words long, an element size of two is
specified in the call to access.

pointer PTRli

buffer (PTR1, 5000)
access (1, "LEXICAL", PTR1, 2)

9-40

CACHE MEMORY MANAGEMENT (Continued)

'ir7ordread/wordwri te Routines

The routines WORDREAD and WORDWRITE allow the programmer to
read from or write into any area of a file. The format of the
call to WORDREAD is:

wordread (filenumber, fileaddress, coreptr [, words])

where:

filenumber is a user-assigned integer file number
previously associated with the file in a
call to access.

fileaddress is an integer constant or variable specifying
the file address IQf the first word of the
file to be read.

coreptr is a previously declared integer variable
or pointer specifying the first word of
memory to contain the data read.

words is an integer constant or variable specifying the
number of words to be read. If words is omitted,
the routine looks for the count of words as the
first word indicated by fileaddress in the file
and reads using that count for words.

Before performing the data transfer, CMM determines if the
block containing fileaddress is in memory; if it is not, the
block is read in.

The following example opens the file LEXICAL and assigns it
to file number 1 with BUFPTR pointing to the beginning of
the buffer pool. The wordread procedure then accesses file
address 200, which is file position 400 because elementsize
is 2, and reads two words into the memory area pointed to by
COREPTR.

9-41

Wordread/wordwrite Routines (Continued)

pointer BUFPTR, COREPTR

buffer (BUFPTR, 5~~~)
access (1, "LEXICAL", BUFPTR, 2)
wordread (1, 2~~, COREPTR, 2);

To write a block of data onto disk, the user can use wordwrite.
The call format is:

wordwri te (filenumber, fileaddress, coreptr [, words])

where:

filenumber is a user-assigned integer file number
previously associated with the file in a
call to access.

fileaddress is an integer constant or variable specifying
the file address of the first word of the file
to contain the data written.

coreptr

words

is a previously declared integer pointer
or variable specifying the first word of
memory containing the data to be written.

is an integer constant or variable specifying
the number of words to be written. If words
is omitted, the routine looks for the count of
words as the first word indicated by fileaddress
in the file and uses that count for words.

Wordwrite first sets the Modify bit in the buffer descriptor,
indicating that a change has been made to the block. Note that
execution of I,':ordwri te does not necessarily cause the words
modified to be written back onto disk. The actual data transfer
does not take place until the buffer space must be released to
bring in another block or until the buffer is flushed. When
buffer space must be released, the least recently used block is
written back if modified.

9-42

Wordread/wordwrite Routines (Continued)

The following example opens DATAFILE to file number 1 with
BUFPTR pointing to the beginning of the buffer pool. The
wordwrite procedure then aCCE~sses file position 200 and writes
one word from the memory area pointed to by COREPTR to the
appropriate position in the file buffer.

pointel' BUFPTR, COREPTR;

buffer (BUFPTR, MEMORY/2) ;
access (1, "DATAFILE", BUFPTR)

\<]ordwrite(l, 2(1(1, COREPTR, 1)

,

Accessing File 0 Nodes (noderead/nodewrite/nodesize)

As defined for Cache Memory Management, a node is an ordered
set of data similar to an ALGOL array. In the ALGOL runtime,
the lower bound of the nodal array is named MINRES and has a
default valUe of -3. The upper value of the array, K, is
defined by the user.

To use the default value of MINRES, the user declares MINRES as:

literal MINRES(-3);

The array NODE[MINRES:K] can then be represented as:

NODE [MINRES] -+ K+4 .

NODE[O] -+

· · ·
NODE[K] -+

I ,

The user can change the default value of MINRES in an assembly
language program. The maximum value of MINRES, however, is -1,
allowing one word that will contain the size of the node. For
example, to change the value of MINRES to -1:

. E:NT MINRES
• Z,REL

MINRES: -1
.END

9-43

Accessing File 0 Nodes (noderead/nodewrite/nodesize (Continued)

In that case, MINRES can be declared within the ALGOL program
as external integer MINRES or as ZiteraZ MINRES (-1).

Node access by C~~ is only possible within a block of file
number O. All other blocks must be accessed using wordread/
wordwrite or hashread/hashwrite.

An entire node may be transferred by using the noderead/node­
write routines. A single word within a node may be transferred
using the fetch/stash routines. There is also a function, node­
size, that returns the size of a given node.

When using noderead and,nodewrite, the first 256 file addresses
in a file are protected from user access. These locations can
be used for storage of non-nodal data. When transferring data
via fetch and stash, the first 256 file addresses can be ac­
cessed; however, an optional argument permits the user to
protect these addresses from access.

noderead and nodewrite allow the programmer to transfer an
entire node. The format of the call to node read is:

where:

I noderead
I

(fileaddress, array) 1
fileaddress is the file address of the first word of

a node. Access is inhibited if file­
address is in the range 0 to 255.

array is a user-defined array into which the
node is to be read.

Similarly, the format of the call to nodewrite is:

! nodewrite (fileaddress, array) ;\

where: fileaddress is the file address of the first word
of a node into which the array is to

array

be written. Access is inhibited if file­
address is in the range 0 to 255.

is a user-defined array containing the
data to be written.

9-44

Accessing File 0 Nodes (noderead/nodewrite/nodesize (Continued)

Note that in both routines the parameter array must be the
name of a user-defined array, not a pointer to the array, and
that the user must set the contents of the first element of
the array, MINRES, to the total count, K+4, before executing a
nodewrite. (See examples.) Examples of the procedures are:

literal array A[MINRES:6], B[MINRES:10]; +-A and B are declared.
literal MINRES (-3); +-MINRES is declared.

noderead (100 ,A) ; +-Read into A starting at file address 100.

11(:= 10;
IB[MINRES]:= K+4;
rOdewrite(200,B); +-write from B into file starting at file

address 200.

nodesize is a function that allows the user to determine the
number of words in a node. The format of the function is:

I: = nodesize (fileaddress) ;\
I

where: fileaddress is the file address of the first word
of the node.

nodesize reads the number of words in a node from the first
word of the node and returns it as ifs value.

The following example reserves a buffer of 6*260+20 words,
giving the CJl.1M six 256-word buffE~rs, with PTRl pointing to the
beginning of the buffer pool. The file DATAl is then opened
on file number O. The nodesize function is used to return the
size of the node at file address 400 into the variable SIZE200.

I .
Ipot-n ter PTR1;
I.

It-nteger SIZE200;

I .
buffer(PTR1, 6*260+20);
access(O, "DATAl", PTR1, 2);

SIZE200 := nodesize(400);

9-45

Accessing a Single Word in a Node (fetch/stash)

If file number 0 is accessed, the user can read or write a sinqle
word in a node using the fetch function or the stash procedure.

The fetch function returns a single word in a node. The format
of the function reference is:

[- i '-:-=-f-e-t-c-h-(-[-f-i-I-e-a-d-d-r-e-s-s-,]--O-f-f-s-e-t-)-;-t

where:

fileaddress is the file address of the first word of a node.

offset

i

If fileaddress is specified, the first 256 file
addresses of the file are inaccessible to CMM
as described below.

is the offset into the node of the word to be
accessed. If no fileaddress is given, the off­
set is from the beginning of the file.

is the integer identifier that is to contain
the fetched value.

If fileaddress is specified, fetch returns the word at (file­
address+offset-MINRES) as its value. This format does not per­
mit accessing of the first 256 file addresses but allows the
user to protect the first 256 elementsize words of a file from
modification. These locations can be used for storage of special
data, not to be changed during CMM use. If fileaddress is not
specified, no checking of file addresses is performed and all
addresses are accessible to CMM. In this case, the word at off­
~ is returned.

The following example allocates a buffer one third the size of
available memory (or less). PTRI points to the beginning of the
buffer pool. DATAFILE is then opened on file number~. The
fetch function is used to return the value of 300+3-MINRES in
the node that starts at file address 300 into NODEI.

pointer PTRI;
integer NODEI;

buffer (PTRI, memory/3);
access (0, "DATAFILE", PTRI)

NODEI :=fetch (300, 3);
1.. •..

9-46

Accessing a Single Word in a Node (stash/fetch) (Continued)

stash writes a sinqle word of a node to file number O. The for­
mat of the call to stash is:

where:

i

~tash (i [,fileaddress] , offset); I

is the integer identifier whose value is written
to file number 0 ..

fileaddress is the file addrE~ss of the first word of the node
to contain the data. If %ileaddress is specified,
the first block of the file is inaccessible to cr~1.

offset is the offset into the node of the word to con­
tain the datum. If no fileaddress is given, the
offset is from the beginning of the file.

If fileaddress is specified in 1:he stash call, the datum at i
is written onto the 'disk file at (fileaddress+offset-MINRES).­
As with fetch, this format does not allow accessing of the first
256 file addresses. If offset is not specified, no checking of
file addresses,is performea and 1:he first 256 file addresses are
accessible to CMM. In this case f \the single word at i is written
onto disk at offset.

The following example allocates a buffer of 2000 words (or less)
with PTRI pointing to the beginning of the buffer pool. NODEFILE
is then opened on file number O. The stash procedure writes the
value of VALl onto disk at the node that starts at file address
100.

pointer
integer

buffer
3.ccess

PTRli
VALli

(PTRl, 2000);
(0, "NODEFILE" , PTRl)

stash (VALl, 100);

9-47

Clearinq the Buffer Area (flush)

Once the user has completed modification of a file, the buffer
area must be cleared using the flush procedure. The format of
the call to flush is:

where:

flush (pointer);

pointer is the buffer pool pointer prev­
iously associated with the file
in a call to access ..

When a call to flush is executed, CMM writes onto disk all
blocks that have been modified (as indicated by the Modify bit
in the buffer descriptor); unmodified blocks are not written
back onto disk.

Flush does not close a file. The user must explicitly close a
file using the close procedure:

close (filenumber)

where: filenumber is the user-assigned file
number associated with the
file to be closed.

Hashread/hashwrite Routines

Transfer of data from any file to core can be performed using
the hashread procedure. The hashread procedure is particularly
efficient for the transfer of files that have been hash-coded
by the user; however, it is not necessary that the file be
hashcoded to use this method of reading data from the file. Note
that if the file to be hashread is hash-coded, the default
elementsize must be used in opening the file for access via the
access procedure; this provides that the file is one-word
addressable.

The hashread procedure differs from other CMM read procedures in
that it returns a pointer to the core address of the block of
data and an offset into the block, so that the user has immediate
access to the datum he may wish to modify.

9-48

Hashread/hashwrite Routines (Continued)

There is no special procedure for transferring hashread data
back to the file. For example, the d~ta may be transferred
when the file is flushed or a hashread block may be transferred
when all buffers are full and new data must be read in. If
hashread data is modified while in core, the user must immediately
set the modify bit in the buffer descriptor. The modify bit is
set by issuing a hashwrite call. This insures that the proper
data will be written whenever the block is written to the file.
Failure to indicate modification of hashread data by a hash-
write call can wipe out a user progra,ll.

The hashread procedure brings a specified block of a file into
core. The format of the call to hashread is:

hashread (filenumber,hashcode,block-pointer,block-offset) ;\

where: filenumber is the number of the file to be read.

hashcode indicates the word within the file used
to compute the requested file block.

block-pointer is a variable that will contain the
core address of t~e block referenced by
hashcore.

block-offset is a variable that will contain the
offset into the block given by block­
pointer.

The hashwrite procedure marks the last block referenced by a
hashread as having been modified. The format of the call to
hashwrite is: '

hashwrite (buffer-pool-pointer);

where: buffer-pool-pointer is the buffer pool pointer defined
in the buffer routine for the hash­
read file.

9-49

Hashread/hashwrite Routines (Continued)

The hashwrite procedure should be called immediately after data
has been modified. The procedure does not write the modified
block to the file; this is' done when buffer space must be re­
leased to bring in another block.

The following example allocates a buffer one twelfth the size
of memory with BPTR pointing to the beginning of the buffer pool.
FILE4 is then opened on file number 4. Execution of the hash­
read procedure brings the file block, computed from the hash
code at file address FILENODE, into core and returns value for
BLOCKPTR and INDEX, so that the user can modify the block. The
program checks as to whether the current value of the datum
differs from the value that will replace the current value. If
there is a difference, an assignment sta~ement modifies the
block and the user im .. '1lediately indicates the modification
in a hashwrite. If tnere is no difference, there is no need to
perform a hashwrite.

integer FILENODE, INDEX, NEWVALUE, OLDVALUE; +OLDVALUE is the
current value of
the datum and
NEWVALUE is the
modified value.

pointer BPOOL, BLOCKPTR;
based integer BI;

buffer (BPOOL, memory/12);
access (4, "FILE4", BPOOL);

hashread (4, FILENODE, BLOCKPTR, INDEX);

OLDVALUE :=(BLOCKPTR+INDEX)+BI,)
if OLDVALUE == NEWVALUE then go to DONE;

(BLOCKPTR+INDEX) + BI : = NEtvVALUE;
hashwrite(BPOOL);

DONE: OLDVALUE :== NEWVALUE;

9-50

+Access file to be
hashread.

+Read block, obtain­
ing pointers to
datum to be mod­
ified.

+Test whether OLD­
VALUE is equal
to NEv-NALUE.

+Modify the datum
and set the mod­
ification bit.

+Value of the
datum is unchanged.

CHAPTER 10 -- COMPILER ERROR MESSAGES

All ALGOL error messages are printed out and are self explan­
atory. An up arrow (t) points from the message to the source
statement in which the error was detected.

The up arrow (t) does not necessarily indicate the exact
location of the error. It only indicates the character at
which the error was detected. If no error is found where the
arrow points, check to the left and the right of the arrow for
a possible error. If an error still cannot be found, see if an
earlier statement with an error could affect the statement so
that the error was caused.

If the message

ER nn +nn is some number

should ever occur, notify Data General~ this indicates a
compiler error.

Some examples of error messages are:

I := 3*I+J~
t

*** UNDEFINED VARIABLE ***

J := J J~
t

***MISSING OPERATOR IN EXPRESSION ***

BEGIN REAL (1*2) X~
t

*** PRECISION MUST BE AN INTEGER LITERAL ***

10-1

COMPILER ERROR MESSAGES (Continued)

I := I*Si
t

*** ILLEGAL USE OF A STRING ***

BEGIN INTEGER Ii REAL X, Y, Ii
t

*** DUPLICATE SYMBOL DEFINITION ***

J : = J + * Ji
t

*** MISSING VARIABLE IN EXPRESSION ***

J := J+MATRIXi
t

*** NO SUBSCRIPTS SPECIFIED ***

PRINT (2, 1+4, X, SUBSTR) i

*** ILLEGAL OPERAND OR PARAMETER ***

BEGIN REAL (32) Xi

t
*** PRECISION CAN NOT EXCEED 15 WORDS ***

I : I := I+1i

*** IDENTIFIER IS NOT A LABEL ***

10-2

COMPILER ERROR MESSAGES (Continued)

L[l]: I := 1+1;
L[2]: I := 1+1;
L[l]: I := 1+1;

t
*** DUPLICATE SUBSCRIPT ***

I := 93R8;

*** ILLEGAL DIGIT FOR THIS RADIX ***
*** MISSING VARIABLE IN EXPRESSION ***

I := 1+;
t

*** MISSING VARIABLE IN EXPRESSION***

I := J + IF I>~;
t

*** EXPRESSION DOES NOT END PROPERLY ***

BEGIN REAL X; BOOLEAN B;

B := TRUE;
X := X+B;

t
*** BOOLEAN IN REAL EXPRESSION ***

I := I? + 1;
t

*** ILLEGAL CHARACTER ***

10-3

+caused because illegal
number was ignored.

COMPILER ERROR MESSAGES (Continued)

19 PROCEDURE X (I); INTEGER I; VALUE I;

*** ERROR IN DECLARATION ***

rROCEDURE XlI); INTEGER

,*** ILLEGAL SYNTAX ***

I := I + 2 •• ;
t

Ii VALUE Ii
t

*** MORE THAN ONE DECIMAL POINT IN NUMBER ***

Ll: I := I+Ll;
t

*** ILLEGAL USE OF LABEL ***

GO : = 1.7;
t

*** ILLEGAL USE OF RESERVED WORD ***
*** STATEMENT DOES NOT END PROPERLY ***

FOR I := 1 UNTIL 1~ STEP 1 DO
t

*** 'UNTIL' MUST FOLLOW 'STEP' ***

I := I + (IF (IF I>~ THEN 1) ELSE 2;
t

*** PARENTHESES DO NOT BALANCE ***

10-4

Licensed Material - Property of Data General Corporation

COMPILER ERROR MESSAGES (Continued)

I := 1+1
I := 1*3;

+no semicolon causes error in
next statement

*** MISSING OPERATOR IN EXPRESSION ***

MEMORY OVERFLOW - A memory overflow occurs in phase 1 of I
compilation. Besides a true overflow of
memory, it may indicate that the user
omitted the second quotation mark that
would close a quoted string.

Run-time errors are described in Appendix C. Run-time error
messages may, by option, be printed out in full or given as a
numeric code.

10-5

Licensed Material - Property of Data General Corporation

CHAPTER 11 -- INCLUDING FILES FOR COMPILATION (include)

Extended ALGOL has a facility permitting users to bring in files
in source language to be compiled as part of an ALGOL program.
To do so, the keyword include is followed by a filename desig­
nating the file to be brought in for compilation at that point.
include may appear in the declaration section of a program if
the file to be compiled contains declarations or include may
appear in the statement section of a program if the file to be
compiled contains statements. In either case, the keyword
include must follow either the keyword begin or the terminator
semicolon. The keyword include cannot follow such keywords as
else, do., then., etc.

When the keyword include is encountered during compilation, the
file designated by the file name following the keyword will be
compiled as part of the ALGOL program. When the file has been
included, compilation of the program resumes at the declaration
or statement following the included file. The name of the file
must be complete, including any extensions to the file name.
Unlike file names that appear as literals in procedure calls,
the file name appearing in the include does not have to be in
quotation marks.

The included file must consist of complete declarations or
statements; a file terminating in a partial statement or
declaration cannot be used.

The include keywords cannot be nested, for example, an include
keyword cannot appear in a file that is to be included.

begin include DECLARE.AL;

open (0, "INFILE", ERR);

end

begin integer array B[l,lOO);
integer I,J,K;

include STMTS.ALi

end

+DECLARE.AL contains declarations
for the program to be compiled.

+STMTS.AL contains statements
for the program to be compiled.

11-1

Licensed Material - Property of Data General Corporation

CHAPTER 12 -- DIFFERENCES BETWEEN EXTENDED ALGOL AND STANDARD
ALGOL

EXTENSIONS TO STANDARD ALGOL

external procedures and variables.

Character string variables and arrays. String manipulation
using index, length, ascii, and substr built-in functions.

Bit manipulation using binary and octal literals and the
shift and rotate built-in functions.

I/O routines providing free-form read and write, random-record
read and write, formatted output, and cache memory I/O.

based and pointer variables for efficient addressing. Library
routines used in pointer addressing are address, allocate, and
free.

Subscripted labels.

Functions that return array data: hbound, Ibound, and size.

literal declaration. operator declaration.

I

include keyword. I
Data type conversions of the form:

integer to boolean and boolean to integer
integer to pointer and pointer to integer
string to integer~ real~ boolean~ or pointer
integer~ real~ boolean, or pointer to string

Conversion to any radix from two through ten.

File manipulation library routines, rename and delete.

xor boolean operator.

LIMITATIONS OF EXTENDED ALGOL

Data types must be declared for all parameters.

Division of an integer by an integer produces an integer result. I

12-1

APPENDIX A

DATA TYPE REPRESENTATION

INTEGERS

Integers are stored in packed, twos complement form. Single­
precision integers are one word long.

o 1 15

I I
sign (O=plus, l=minus)

Multi-precision integers can be defined by giving the number of
words of precision in the integer declaration.

o 1 15

I
+ word 2

· · I ·
+ word n

Single-precision integers (and pointers) are designed to provide
the greatest efficiency in speed of calculation and in amount of
core required. To provide this efficiency, no checking for
overflow is done; overflow will cause erroneous results.

Multi-precision integers are checked for overflow. The result,
if overflow occurs, will be the largest possible number that can
be stored. To force overflow checking of single-precision integers
declare the integer with a precision of 1.

integer (1) X;

The limit of a single-precision integer is

= 777778 = 32,76710

A-l

REAL (FLOATING-POINT) NUMBERS

Real numbers of default precision are stored in two words.

o 1 78 1516

t ~'--
sign exponent

-------...----
mantissa

characteristic

The contents of bits 1 through 7 are interpreted as an
integral exponent in excess 64 (1008) code. Exponents
from -64 to +63 are therefore represented by the binary
equivalents of 0-1~7 (0-177 8),

1008 represents an exponent of 0

1778 represents an exponent of 6310

1 represents an exponent of -6310

31

The mantissa is treated as a hexadecimal fraction between
.0625000 and .9999999. All floating-point numbers are main­
tained in normalized form. Default real numbers have 6 or 7
decimal digits of significance, depending upon their normalized
hexadecimal representation. Negative mantissas are identical
to their positive counterparts, except that the sign bit is
1 instead of O. Any real number having a mantissa of all
zeroes will be represented in true zero form with bits 0-31
set to zero.

The precision of real numbers can be set to a number of words
up to a limit of 15. The additional words are used to expand
the mantissa.

o 1 78

s I exponen t I man-
tissa

15
I

+- word 2

+- word 3

+- word n

It is also possible to declare a one-word real number. Note,
however, that only very small (2 or 3 decimal digit) mantissas
are possible in a one-word real number.

A-2

BOOLEAN DATA

A Boolean datum is stored in a single word. If the word
contains all zeroes, the Boolean value is false; otherwise,
the value is true. If a Boolean value of true is being
stored into a word, that word will be set to one; however,
any single word that does not consist of all zeroes will be
interpreted as the Boolean value of true.

o 15

POINTER DATA

A pointer datum is stored in a single word. The word contains
an address. The pointer datum resembles a positive integer
of default precision.

o 15

STRINGS, NUMERIC ARRAYS, AND ARRAYS OF STRINGS

Previously described data types are of fixed length and are
stored on a user's stack in the formats given. When the
length of a datum may vary-- such as an array of any type or a
string -- the information stored on the user's stack merely
describes the datum and points to the beginning location of
storage to be generated as needed for the datum at run time.
The information about the datum is called a specifier.
Storage of data or varying length is described in Appendix B,
page B-4 and following.

A-3

Licensed Material - Property of Data General Corporation

APPENDIX B

THE RUN-TIME STACK

ALGOL run-time stack discipline is described in this appendix.
A full description of the run-time routines used to maintain
the stack is given in Appendix C.

RUN-TIME STACK

After loading ALGOL source program binary tapes and the ALGOL
run-time library routines, the beginning address of available
memory is set by the Extended Relocatable Loader as NMAX (non­
zero maximum). NMAX, together with the end-of-memory address,
is used by the ALGOL initialization routine, SPINIT, to initialize
three stack areas and an area for permanent allocation.

The first stack is a data block of 50 octal words used by the
run-time routines as temporaries. The stack address is pointed
to by a page zero word .RP. The .RP pointer to the stack is
bumped by the number of temporaries a given routine requires
at run-time. This insures that a called routine has, essentially,
a free temporary area and is not using the same temporary as
the calling routine.

The second stack is a number stack, which is allocated only when
arithmetic routines or functions, the I/O package, or number
conversion routines are loaded. The stack is a block of 200
octal words used to push or pop numbers in unpacked form to be
used by the number routines. The number stack is allocated, for
example, when routine FADD (floating addition), function EXP
(exponentiation), or routine STCV (string-number conversion) is
required. The stack is pointed to by page zero location, NSP.

The third stack is the ALGOL stack, used by ALGOL procedures and
most run-time routines for variables, arrays, strings, and
pertinent information such as procedure level and hardware
registers. Different areas of this stack are pointed to by three
page-zero words, .FP, QSP, and .SP. The ALGOL stack will
frequently be referred to as the stack.

The permanent allocation area initially has zero length. It is
found at the end of memory and is pointed to by page zero
location, .SSE. .SSE is used for the allocation of data to 9wn
arrays and own strings. As space is allocated, the address of
.SSE is pushed back in memory, reducing the size available for
the stack. In general, the area is never released for other use.

B-1

Licensed Material. Property of Data General Corporation

RUN-TIME STACK (Continued)

A general diagram of memory allocation after initialization is:

.LOC 1000
-}

.RP
-}

NSP
-}

t
• SSE

ALGOL STACK

ALGOL User Programs

ALGOL Run-Time

Routines

Temporaries' Stack

Number Stack (if
i

allocated) I
I 1---------------------- ··1
i

ALGOL Stack - contains i
the main portion of
program data

stack shortens as perman­
ent area is allocated and
.SSE pointer is moved
back from the end of memory

End of Available Memory •

The stack is actually a list of sub-stacks, called user stack
frames. Each stack frame has the same format but a variable
size. Stack frames are allocated during run time for use by
each ALGOL procedure. They contain storage for the variables,
arrays, and strings of the procedure, and certain information
required by the procedure. The stack frame is divided into
three sections: the fixed area, which contains information
required by the procedure; the variable area in which are
stored variables of fixed length (assigned storage); and the
allocated variable area in which data for arrays and strings
are stored (allocated storage).

The fixed area is allocated at the top of the stack, which is
set at -200 8 words from the frame pointer (.FP). The fixed

area contains eleven octal words as follows:

B-2

Licensed Material - Property of Data General Corporation

ALGOL STACK (Continued)

-200
-177
-176
-175
-174
-173
-172
-171
-170

Stack frame length
Previous stack address pointer
Current stack level (of procedure)
Stack parameter list pointer
Save for hardware Carry
Save for hardware register 0
Save for hardware register 1
Save for hardware register 2
Subroutine return location address

Since .FP points 200 octal words past the first word of the
frame, the remainder of the page, -167 to +177 octal words or
3668 words are available for the variable area (assigned
variables). However, more or less space can be used for the
variable area as needed. If less than 3668 words are used, the
remainder will become part of the allocated variable area.

If more then 366 8 words are needed for the variable area, a
second pointer, .SP, is used. .SP points to offsets from
.FP in increments of a page (377 8 words) and is set by the
run-time routine GETSP, described in Appendix C. The sub­
sections of 3778 words are denoted as sublevels and passed
as parameters to GETSP.

The last storage area of the user stack frame is called the
allocated variable area and is used to store data for arrays
and strings. The allocated variable area is divided into
blocks, each block corresponding to a block in the ALGOL pro­
gram.

At the beginning of each block is a two-word area. The first
word is used for freed string data area pointers (described
later). The second word is a pointer to the beginning of the
previous block. In the case of the first allocated variable
block, the pointer is set to the beginning of the allocated
variable area. As data areas are allocated within the block,
the address pointer (second word) is pushed down the list while
the free list pointer is untouched.

When a block is exited, the block start address is loaded
and the previous one is reset, thereby deleting all arrays and
strings allocated in the block just terminated. This provides
for dynamic allocation and freeing of areas within blocks for
arrays and strings.

On the page following is a portion of ALGOL source code and the

B-3

licensed Material - Property of Data General Corporation

p..LGOL STACK (Continued)

portion of the stack which would be built to correspond to the
code. Note that data stored in the variable area and in the
allocated variable area will vary in length; the use of one line
for each datum does not mean allocation of one word to each
datum.

(oE'P) -200 8

I
fixed I
area \
QSP+ l

-assigned I

variable I

area)

.FP+ l
,

I
alio-

J cated
variable
area

lenqth
old stack pointer
procedure level
paramo list ptr
carry
register 0
reqister I
register 2
return _____ A ____________

_____ B ____________

-----~------------~----~ff~Y-~1-----
----_Q_-----------_____ ~ff~Y_~~ _____
_____ §ifin9_§ _____

,..
~----~------------~~lQ~~-l-ff§§-Eif-
~bff~Y-bl-Qsis----

,[Block I address
~~----------------_~lQ~~_~_ff§§_Qif_

Block 2 address
-~----------------_~lQ~~_J_ff§§_Qif_
_bffsY_b~_Qsis ____
_ §ifiD9_§_Qsis ____
Block 3 address

begin integer A, B, C;
integer array AI[IO];

hegin integel'l D;

o

begin real array A2[3]~
string S;

end;

end;

end;

In the diagram of the stack frame, a thread pointer, QSP, is
indicated, pointing to the register 2 save storage. QSP is the
"quick stack pointer" used by run-time routines to save the
AC's without destroying the contents of any.

All page zero requirements for run-time (such as oFP) are
allocated in a relocatable library routine called ZERO. ZERO
contains entries to all the page zero writable data.

ASSIGNED AND ALLOCATED STORAGE OF THE STACK

Execution of a SAVE dall, described in Appendix C, causes a new

B-4

licensed Material - Property of Data General Corporation

ASSIGNED AND ALLOCATED STORAGE OF THE STACK (Continued)

stack frame to be created with an initial size equal to that
needed for the fixed information and for assigned storage. The
size needed is determined from the first word following the call
to SAVE.

The coding of the SAVE contains the level of the procedure, where
1 is the first or outer procedure, 2 is the first level of inter­
nal procedures, etc.i the number of parameters, including any
function return valuei and a list of parameter descriptors.

A parameter descriptor consists of two words: the parameter
address and a parameter specifier. The parameter specifier
contains the information that identifies all necessary char­
acteristics of the parameter.

In the coding below, BESSEL is an outer procedure (level 1) that
has three parameters, the function return value BESSEL, X, and N.

REAL PROCEDURE BESSEL (X,N) i

.TITL

.EXTU

.ENT

.EXTN

.EXTN

.EXTN

.EXTN

.EXTN

• JOREL
.LP: LP+200

.NREL

BESSEL

+ defines all external displacements in
BESSEL.
EXP
ALG
FM
FD
FENTL

program

• TXTM 1

BESSEL: JSR
FS.0
lB7+3
SP+.0
.0.03442
SP+2
.0.02.042
SP+4
.0.01.021

@SAVE
+ initial frame size
+ 1 = procedure leveli +3 means 3 parameters
+ address i BESSEL } Descriptor of
+ specifier ;REAL PARAMETER BESSEL
+ address iX } Descriptor
+ specifier iREAL VALUE of X
+ address iN } Descriptor
+ specifier iINTEGER PARAMETER of N

VALUE Xi REAL Xi INTEGER Ni

B-5

Licensed Material - Property of Data General Corporation

Parameter Descriptor Address ~'iTord

The first word of each parameter descriptor is a parameter
address of the form:

n

where: SP = a positive stack offset. If set to 0, the
address of a scalar is a machine address. If the
bit is 1, the address refers to a word in the
current or previous stack frame that points to the
actual data- (or to an array or string as described
later) •

n = an offset in words to the frame pointer for
the current or previous frame. n indicates the
offset for the parameter. In the previous
example, the first parameter of the SAVE call
has an offset of 0, the second of 2, and the
third 4.

As previously indicated, .SP is the same as .FP as long as
the assigned storage area requires only a single page (the
zeroeth page of the stack frame). This is true for the
example given.

If more than one page is needed for assigned storage, run­
time routine GETSP is called to add a page to tne stack frame
and move the temporary pointer .SP to that page as shown in
the diagram:

page 0 of stack frame

page 1 of stack frame

page 2 of stack frame

. ---------------------
age n of stack frame

.SP = .FP

.SP = .FP+lx3778

.SP = .FP+2 x 3778

SP = .FP+n x377 8

Parameter Descriptor Specifier Word

The second word of the parameter descriptor is a specifier
that contains all the information needed to define the param­
eter and set aside the proper amount of storage. The

B-6

Licensed Material - Property of Data General Corporation

Parameter Descriptor Specifier Word (Continued)

parameter specifier has five fields:

o 1 4 8 12 15

\I! shape storage class data type \ precision \

where: I is set to 1 to indicate the parameter descriptor
address word is indirect.

The specifier fields define the parameter. Precision shows the
number of words of precision. For a string, precision is either
2 or 3 depending upon the size of the string specifier in
assigned storage. Meaning of other field contents is given
below:

Shape Storage Class Data Type

0 scalar 0 local 0 undefined
1 array 1 own 1 integer
2 program 2 parameter 2 real
3 procedure 3 based 3 boolean

4 value 4 label
5 external 6 pointer
6 built-in function 7 multi-precision
7 function value 8 string

Contents of Assigned Storage

Information in the parameter specifier determines how many
words are set aside for the parameter in assigned storage.
Numeric scalars are stored in their entirety in assigned storage.
If the scalar is a real datum of default precision, 2 words are
used to store the datum; if the specifier indicates a real datum
of 6-word precision, 6 words are used to store the datum.
Appendix A shows the format in which scalar numerics are stored
in assigned storage.

However, each array has two words in assigned storage and each
string has either two or three words in assigned storage. The
assigned storage for arrays and strings has a fixed format;
array and string data is allotted in the allocated storage area.

The two words for an array in assigned storage are called an
array specifier. Both words point to areas of allocated storage.
The first word points to array data; the second word points to

B-7

Licensed Material - Property of Data General Corporation

Contents of Assigned Storage (Continued)

another area in allocated storage containing the control table
for the array. The table is called the array dope vector.

Each string has two or three words in assigned storage, called
a string specifier. The first word is a pointer to the first
byte of the string in allocated storage. The second word (if
the string is 5127 characters) contains the current and max­
imum length of the string. The short string specifier has the
form:

0\ maximum current length

o 1 789 15

t

unused

If the string is greater than 127 characters, the second word
of the specifier contains the maximum length and the third
word contains the current length.

Each substring has two or three words in assigned storage, called
a substring specifier. The first word is a pointer to a word
in allocated storage that contains the string specifier. (The
string specifier of a substring is in allocated storage.) If
the string that is being subset is ~ 127 characters, the second
word contains an index into the string that shows the starting
character of the string and the length of the substring in
characters.

If the string is greater than 127 characters, the index is
contained in the second word and the length in the third word.

word address
index to string length of substring

o 1 7 8 9

1

t
unused

t

unused

word address
index to string

length of substring

B-8

Licensed Material - Property of Data General Corporation

Contents of Assigned Storage (Continued)

The address for a substring specifier is a word address; the
string specifier has a byte address.

The indirect bit is set for a substring; the direct bit for a
string.

The length of the string, not the length of the substring, deter­
mines whether the substring specifier is two or three words long.

Contents of Allocated Storage

As described in the section 'Run-Time Stacks', allocated stor­
age for a block is created when a block is entered at run-time.
It contains one word for the allocated storage free list, dope
and data for arrays and strings, and a terminal word pointing
to the beginning of allocated storage for the block.

The allocated storage free list is described in detail in
Appendix C in the section 'Routines that Perform Allocation to
Run-Time Stacks'.

The threaded block pointers, as indicated on page B-3, assure
a proper return through a number of block levels. When a block
is entered, the allocated storage free list and the block
pointer are created whether or not the block contains any
declarations of arrays- or strings.

[allocated st~raqe free list:
end of stack 1

When a block containing data for allocated storage is entered,
the allocated storage area appears as shown:

1. Block A entered

i+' 0
allocated storage free list

arrays and
strings for
block A

I-- block A pointer

B-9

Licensed Material· Property of Data General Corporation

Contents of Allocated Storage (Continued)

When a second block is entered:

2. Block B entered

~ 0
allocated storage free list

arrays and
strings for
block A

"-

~ block A pointer
allocated storage free list

arrays and
strings for
block B

'-Iblock B pointer

Array Information in Allocated Storage

Two areas in allocated storage are set aside for an array.
The first is the data area calculated to be needed for the
array. The second is the area for array dope.

Array dope is a variable number of words, depending upon the
number of dimensions of the array. The first word contains the
number of array dimensions, the second is the parameter specifier,
and the remaining words of array dope contain the dimensions.
No specifiers are given for the dimensions, since they have
been converted to single-precision integers.

The fields of the parameter specifier are identical to those of
the scalar parameter specifier described earlier. The shape
field will be 1, indicating an array.

The run-time routine ARRAY is used to build array information
and is described in Appendix C. In the coding of the call to
ARRAY, array address is a pointer to the array specifier in
assigned storage. A diagram of array information as it is
stored in assigned and allocated storage is:

B-10

Licensed Material - Property of Data General Corporation

Array Information in Allocated storage (Continued)

CODING OF
ARRAY

ASSIGNED
STORAGE

ALLOCATED STORAGE

§rray addressl~~.~~ata addressr~--;=~~===;====~~.~
~ope address~hl dimensions

~_ata array

paramo specif. · Ibound dim. #1 ·
~bound dim. #1 · · · · lbound dim. #n
hbound dim. #n

The data area of an array of strings contains the two or three­
word specifier for each string. The first word of the specifier
is a byte pointer, followed by one or two words containing the
current and maximum lengths of the str.ing.

Scalar String and Substring Information in Allocated Storage

For a string scalar, enough words are reserved in allocated
storage to store the maximum byte length of the string. For
example, if the maximum number of characters in the string is
25, 13 words will be reserved.

For a substring, the string specifier (defined in the section
on assigned storage) is in allocated storage and points to
the allocated area that is used to store the string, as shown
below.

ASSIGNED STORAGE

~yte 1 I byte

· · · I

If a substring is taken of a long string, three words of
allocated storage are needed for the string specifier.

B-ll

2

Licensed Material - Property of Data General Corporation

Based Arrays and Strings in Allocated Storage

When a based array or string is referenced, its array or string
specifier, respectively, is built dynamically.

The first word of a based string specifier is a byte pointer
corresponding to the pointer variable used to reference the
based string. For example, for p~x, the first word of char­
acter data begins at the word specified by p. The pointer is
followed by the current and maximum lengths, but in a based
string the current length is always set equal to the maximum
length. The byte pointer points to the first word of string
data.

Except for building the array specifier dynamically, based
arrays of scalars and strings resemble local arrays. The based
array of strings has a data area with a specifier for each
string in the array. The strings are word aligned.

OWN AND EXTERNAL STORAGE

As described in the section "Run-Time Stack", storage for own
strings and arrays is handled in a separate area that is grown
by moving pointer .SSE down in available memory.

Assigned storage for own and e:rternal variables is in page zero.
Both assigned and allocated own storage contain the same data
as that stored for local variables in the ALGOL stack. external
variables are allocated by the user in assembly language.

B-12

Licensed Material - Property of Data General Corporation

APPENDIX C

RUN-TIME ROUTINES

Following are descriptions of all routines used to allocate
and manipulate the run-time stack. On return, all routines
restore hcb, AC1, AC2, and Carry, and set AC3=.FP.

In describing run-time routines, the following conventions are
used:

desc

n

A parameter descriptor consisting of two words -­
an address and a parameter specifier.

An integer used to represent a count of items
to follow, such as parameter descriptors.

STACK ALLOCATION AND DEALLOCF.TION ROUTINES

Routine Coding

CALL JSR @CALL
subr
n
descl

desc
11

SAVE JSR @SAVE
size
level+n
desc l

descn

Meaning

CALL saves the subroutine return address
(pointing to n) which points to the sub­
routine parameter list of descriptors.
Note rules given under SAVE if parameter
descriptors differ in properties or num­
ber between the CALL and the SAVE lists.

SAVE builds a new user stack frame, having
an initial size in words equal to size
(the assigned storage size). SAVE copies
the parameter descriptors into assigned
storage with the following limitations:

If one or more parameter descriptors
differs in properties beh!een -the CALL
and SAVE lists, the descriptor(s) will
be converted to those of the SAVE
descriptor and later converted back.

If the number of parameter descriptors
differs between the CALL and SAVE
lists, the number stored will be the
shorter list.

C-l

Licensed Material - Property of Data General Corporation

STACK ALLOCATION AND DEALLOCATION ROUTINES (Continued)

Routine Coding

SAVE
(Continued)

RETURN

ABRETN

ASAV

ARET

RSAV

JSR @RETURN

JRS @ABRETN
loc

JRS @ASAV

JMP @ARET

JMP @RSAV
size

Meaning

SAVE sets the end of stack and stack
level (level = internal procedure
depth), sets the old stack pointer
to the previous stack level, saves
accumulators and Carry, and jumps
to the location following the last
parameter descriptor.

RETURN destroys the current stack
frame, restoring ACO-2 and Carry.
RETURN checks for top of stack (an
illegal return call) and sets .SP=
.FP with AC3 set to .FP for the re­
set previous stack. RETURN returns
all parameters passed to the previous
stack, following the rules described
in SAVE, and returns to the location
following the last CALL parameter
descriptor.

ABRETN destroys the current stack
and restores parameters as described
for RETURN and then jumps to the
location specified by loco ABRETN
returns normally if loc points to O.
(To be used in place of RETURN for
abnormal return to a label.)

ASAV stores the accumulators on the
stack and sets the parameter list
pointer. ASAV returns to the location
after the jump. It does not set AC3
to .FP and requires that it be called
via a 'JSR' through a page zero word.

ARET returns from a routine which
called ASAV. It restores ACO-2, sets
AC3 to .FP, then jumps to the address
in the parameter list pointer on the
stack. Caution: the caller should
have bumped the list pointer address
to the end of the parameter list.

RSAV is a quick form of SAVE that
passes and expects n parameters.

C-2

Licensed Material - Property of Data General Corporation

STACK ALLOCATION AND DEALLOCATION ROUTINES (Continued)

Routine Coding

RSAV
(Continued)

RRET JMP @RRET

BLKSTART JSR @BLKSTART

BLKEND JSR @BLKEND

GETSP

SPINIT

JSR @GETSP
level+sublevel

Meaning

Frame size of the required number of
temporaries is found in size. RSAV
returns to the word after-sIze.

RRET returns from a quick save. It
restores the accumulators and the
previous stack, then returns to
the address in the previous stack's
return.

When a new block is added, BLKSTART
sets the two-word marker.

BLKEND removes the block marker
last set by BLKSTART, which des­
troys the current block. Finding
a 0 denotes an illegal block-end
error.

GETSP determines the current .SP
searching for level+sublevel (zeroeth
page of the stack frame + pages of
offset as defined in Appendix B)
or until level 0 is found. GETSP
then adds one (another page) to
sublevel and places the new .SP in
AC3. GETSP checks to insure that:

next-level last-level = 0 or 1

SPINIT initializes the run-time
stacks. There is no coding; the
starting location is 7778'

In the routines above, there are two ways in which a stack can
be allocated. The first uses routines CALL, SAVE, and RETURN.
This method is used by ALGOL for all internal and external
procedures, including the I/O procedures. CALL, SAVE, and
RETURN expect a parameter count and parameter descriptors (or
a 0 for no parameters.)

C-3

Licensed Material - Property of Data General Corporation

STACK ALLOCATION AND DEALLOCATION ROUTINES (Continued)

The CALL-SAVE-RETURN method has the following two forms:

(1)

JSR @CALL
subr
n
desc l

desc
--n

subr: JSR @SAVE
size
revel+m'
desc,

JSR @RETURN

(2)

JSR @CALL
subr
o

JSR @SAVE
size
1eVel+O

JSR @RETURN

In form 1, if n in CALL and m in SAVE are equal, all parameters
will be passed-tosubr's stack frame; if not equal, the shorter
list count is passed. If either m or £ is zero, no parameters
are passed. In form 2, both m aad n are zero and no parameters
are passed. In either form, RETURN--will return the same
number of parameters that were passed by the SAVE routine.

The second method of stack allocation uses routines RSAV
and RRET and expects no parameters. In this method, the
routine must pick up all parameters itself and reset the return
pointer in the previous stack to;the first word following the
parameters. The parameter list is pointed to by the return

C-4

Licensed Material - Property of Data General Corporation

STACK ALLOCATION AND DEALLOCATTON ROUTINES (Continued)

location in the previous stack. The calling sequence for the
RSAV-RRET stack allocation method is:

JSR @subrp

d~SCl }

desc
~-n

subrp: subr

subr: JMP @RSAV
size

}
JMP @RRET

+ page zero pointer to subr.

+ descriptors if any

+ in page zero

+ routine called

+ return from subr

The ARET and ASAV routines are used by most of the run-time
routines. They do not allocate a stack but simply save the
accumulators and set the stack parameter list pointer. The
calling sequence is:

JSR @subrp
descl

+page zero pointer to subr

--
subrp: subr

subr: JMP @ASAV
LDA 3, .FP

JMP @ARET

+ in page zero

+ ASAV does not load AC3

C-5

Licensed Material - PrCDperty of Data Gen.,..1 Corporation

STACK ALLOCATION AND DEALLOCATTONROUTINES (Continued)

The parameter list pointer must be bumped to the return
location (usually done while picking up parameters) for the
return.

The remaining routines described in this appendix are usually
found in procedures which use the CALL-SAVE-RETURN method of
stack allocation. For example, SETCURRENT is a routine de­
scribed in the "General Purpose Routines" section. This
routine uses a three-word string specifier.

;SETCURRENT

;SETS THE CURRENT LENGTH FOR A STRING UNLESS
;IT EXCEEDS THE MAXIMUM (WHICH SETS CURRENT = MAXIMUM) •

** IGNORES ALL SUBSTRINGS **

;CALLING SEQUENCE

JSR @CALL
SETCURRENT
2
STRING DESCRIPTOR
CURRENT DESCRIPTOR (INTEGER)

S= -167
SP= IB,0-S
STR= S

.TITLE

.ENT

.EXTU

.NREL

CNT= STR+3
CSHm= CNT+I-S
STRLOC=l,0Bll+3
INTVAL=4B7+1Bll+l

SETCURRENT
SETCURRENT

;STACK ARGUMENT DISPLACEMENT
; STACK ARGm'lENT INDICATOR
;STRING ARGUMENT
;CURRENT LENGTH
;STACK FRAME SI~E
;STRING SPECIFIER
;INTEGER VALUE SPECIFIER

C-6

Licensed Material· Property of Data General Corporation

STACK ALLOCATION AND DEALLOCATTON ROUTINES (Continued)

SETCU:

SKIP:

JSR
CSI~E

2
SP+STR
STRLOC
SP+CNT
INTVAL
LDA
MOVL#
JM.P
LDA
LDA
SUB~#
MOV
STA
JSR

@SAVE

%,STR+l,3
%,%,S~C
SKIP
%,CTN,3
1,STR+l,3
~,l,SNC
1,%
%,STR+2,3
@RETURN

.END

iALLOCATE A NEW STACK FOR SETCURRENT
iALLOCATE THIS MANY DATA WORDS

PASS THE FOLLOWING TWO ARGUMENTS
THE STRING

STRING LOCAL SPECIFIER
CURRENT LENGTH

INTEGER VALUE SPECIFIER
iGET THE SECOND WORD OF THE STRING
iIS THE STRING A SUBSTRING?
iYES, IGNORE THE CALL.
iGET THE NEW CURRENT LENGTH
iGET THE STRING MAXIMUM LENGTH
iSKIP IF THE CURRENT <= ~~XIMUM.
iNO, SET THE CURRENT TO MAXIMUM
iSTORE THE NEW CURRENT LENGTH.
iRETURN TO THE CALLER.

ROUTINES THAT PERFORM ALLOCATION TO THE RUN-TIME STACKS

The three basic forms of allocation are for arrays, strings,
and data buffer areas used with pointers (based data). In
addition to the desc and n conventions used for a parameter
descriptor and a count of-items, this section uses the following
convention:

loc a single word containing an address

Areas allocated to strings and to based data can be freed when
the allocated area will not be needed again. Routines used to
allocate areas to strings and based data will check the free
list to see if a previously allocated area is available for use.

The string free list for local data is a list of addresses
whose second word is the word count of the data area. A zero
always ends the free list pointers. For example:

C-7

Licensed Material - Property of Data General Corporation

ROUTINES THAT PERFORlO{ ALLOCA'rION 'TO THE RUN-TIME STACKS
(Continued)

STACK

--~-,..-.

f~n-l address

ALLOCATED VARIABLE AREA IN STACK
FRAr·m

n free list ~ , ___________ --,

countl ~.----------~ ~ ________ ~' ~ 0
lock #n address

--~-- -,,--~.-.,
.. ,

The format of the free list for own data (see ALLOCATE and FREE
routines in this section) is similar to the string free list
for local data, except that the count is always kept in the
address minus one word. Thus, count+l words are allocated.
For example:

PAGE ZERO .SSE AREA

.OFP

I~
~ count2

o

C-8

Licensed Material - Property of Data General Corporation

ROUTINES THAT PERFORr1 ALLOCATION TO THE RUN-TI~1E STACKS
(Continued)

Routine

ARRAY

ALLOCATE

FREE

SALLOC

Coding

JSR @ARRAY
n
array-loc
dim-loc l
dim-loc2

dim-locn _ l

JSR @CALL
ALLOCATE
2
descl
desc2

JSR @CALL
FREE
1
desc

JSR @SALLOC
desc
n

Meaning

ARRAY sets up the two-word specifier
in assigned storage, builds the con­
trol table (array dope) in allocated
storage, calculates the data area
needed in allocated storage, and
adjusts the end of the user stack.
array-loc is the word pointer to
the array specifier in assigned
storage. If bit 0 is set to 1, bits
1-15 of array-loc may contain a
displacement to be added to .FP.

While adjusting the stack in accord­
ance with the array, ARRAY performs
a series of checks on dimensions,
array specifier, and the stack. Note
that the dimensions do not need
specifiers, since they are assumed
to be integer. ARRAY restores all
registers, and sets AC3=.SP.

See Appendix B for a graphic re­
presentation of array information
stored in the user stack.

ALLOCATE allocates an area of n
words, pointed to by desc? (integer)
in the own area and sets the start­
ing address in desc] (pointer).

FREE frees an area, allocated by
ALLOCATE, that has the pointer desc.
desc is the address of the data---­
area. The free list for this
routine is a page zero pointer
called .OFP.

SALLOC builds a string specifier in
assigned storage, pointed to by the
address in desc and then allocates
an area of n/2 words, setting max­
imum character count to n. Alloca­
tion is performed by the-STCOM
routine.

C-9

Licensed Material - Property of Data General Corporation

ROUTINES THAT PERFORM ALLOCATION TO THE RUN-TIME STACKS
(Continued)

Routine

SARRAY

STCOM

SFREE

Coding

JSR @SARRAY
desc
n

JSR @STCOM

JSR @SFREE
desc

GENERAL PURPOSE ROUTINES

Meaning

SARRAY builds and allocates a string,
in the same way as SALLOC, for each
element of the string array pointed
to by desc. The maximum character
count is n. Allocation is performed
by the STeOM routine.

STCOM allocates n/2 words to the
allocated storage area for all strings
except own strings. STCOM allocates
n/2 words for own strings by bumping
back .SSE by n/2 words. Parameters
are passed in-the run-time temporary
stack as follows:

.RP+I

.RP+2

.RP+3

.RP+5

.RP+7

string address
string parameter specifier
byte count (n)
stack length-
stack allocation area

pointer

SFREE places the string pointed to
by desc on the string free list.
Only the data area is freed. If a
substring is detected, the associated
string is freed.

These routines are either called by the user to produce a
special result (non-I/O) or by ALGOL source programs to facil­
itate run-time functions that do not involve floating point.
Some of the routines, such as mod, random, rem, and seed, are
not included in the reference manual as user calls since they
do not follow the type-conversion conventions of general func­
tions. However, they can be used, if desired. For example,
the user can declare:

extepnaZ integep ppocedupe random;

and then call random from his program.

C-IO

GENERAL PURPOSE ROUTTNES

Routine Coding

SUBSCRIPT JSR @SUBSCRIPT
n
computed-loc
array-loc
subscript-loCI
subscript-loc2

Licensed Material - Property of Data General Corporation

(Continued)

SUBSCRIPT computes the address of
the data for the array (computed­
loc), using the algorithm given
below.

subscript-locn _ l

Subscript Algorithm

If the position value of a dimension of array A is n, the upper
(U) and lower (L) bounds of that dimension can be written as:

and the maximum value that the dimension can assume is:'

For any given dimensionality, the subscript value of any sub­
script and the maximum subscript value are shown below:

-

DIMENSION AND FORMAT SUBSCRIPT VALUE MAXIMUM VALUE

1 A[bLl:bu] b l bi''lAXl

2 A[bLl:bUl,bL2:bU2] b 1 +bMAXlx(b2-l) bMAXl xbi'1AX2

3 A[bLl:bUl,bL2:bU2,bL3:bU3] bl+bMAXlx(b2-1)+ I bMAXIXbMAX2ybMAX3

· i bMAXl xb~1AX2 x (b 3-l)
· I · I

n A[bLl:bUl,···bLn:bUn] j bl+bMAXlx(b2-l)+ ... + bHAXl x .•. x bMAXn -

..• xbjV1Axn_2 xbMAXn_lx
i

(bn -1)

b l , b 2 , ••• , b n are subscript expressions.

C-ll

Licensed Material - Property of Data General Corporation

GENERAL PURPOSE ROUTINES (Continued)

Routine Coding

HBOUND

LBOUND

SIZE

BSARR

BSSTR

JSR @I-mOUND
desc
lOCI
loc2

JSR @LBOUND
desc
locI
loc?

JSR @SIZE
desc
loc

JSR @BSARR
desc
loco,
loc2

JSR @BSSTR
desc
n
loc

INDEX JSR @CALL
INDEX
3
descI
desc2
desc3

SUBSTR JSR @SUBSTR
3 [4]
desc
locI

[loc2]
loc3

Meaning

HBOUND computes the upper bound for
the dimension given by locI of the
array pointed to by desc. The
result is stored at loc2.

LBOUND computes the lower bound
for the dimension given by locI of
the array pointed to by desc. The
result is stored at loc?-.---

SIZE computes the maximum character
cr_:mnt_ is a string- (dese) or the
element count for an array (desc)
and stores the result in loc-.---

BSARR builds a based array specifier
in allocated storage pointed to
by loc. desc points to the
allocated data area and loc to
the based array from wh~ch ~~ get
the control table dope vector.

BSSTR builds a substring specifier
in allocated storage pointed to by
loco desc points to the data area
and ~ is the character count, where:

n = current = maximum character
count

INDEX produces an integer index
count of a string pointed to by
desc2 into a string pointed to by
~l' and stores the result in
~esc3. An error or non-existent
1ndex returns a zero.

SUBSTR builds a substring specifier
at loc3 for the string pointed to
by desc. The substring's first
character is pointed to by locI
as an integer count from the s"tart
of string (desc) IOC2 points to

C-12

Licensed Material - Property of Data General Corporation

GENERAL PURPOSE ROUTINES

Routine

SUBSTR
(Continued)

Coding

SETCURRENT JSR @CALL
SETCURRENT
2
descl
desc2

MOVSTR JSR @MOVSTR
descl
desc2

STREQ JSR @STREQ
descl

STRCMP

ASCII

desc2

JSR @STRCMP
descl
desc2

JSR @ASCII
2 [3]
desc

[locI]
loc2

(Continued)

Meaning

the final character; if loc2 is not
given, it is assumed only one char­
acter is needed. Character count
is: C(loc2) - C(locl) + 1.

SETCURRENT sets the current length
of the string pointed to by descl
to the integer pointed to by desc2.
If the integer exceeds the maxi­
mum, the current length is set to
the maximum length.

MOVSTR moves data from the string
pointed to by descl to the string
pointed to by desc2' Both may be
substrings. The smaller character
count is moved. If the first char­
acter moved to desc2 is moved to a
position beyond the current length
of desc2, the initial positions
are filled with blanks.

STREQ compares data values for
strings pointed to by descl and
desc2 If equal in value and their
current lengths are equal, Carry
is set.

STRCMP compares the strings pointed
to by descl and desc2' If their
current lengths are-equal, their
data values are compared. Indica­
tors are set as follows:

stringl
stringl

> string2
<= string2

Carry=l
Carry=O

ASCII produces the ASCII equivalent
(e.g., A=1018) for a character of
a string pointed to by desc. The
result is stored in loc~loCl
points to an integer index into
the string for the character. If
lOCI is 1 or does not exist, the
value returned is for the first
character of the string.

C-13

licensed Material - Property of Data General Corporation

GENERAL PURPOSE ROUTINES

Routine

LENGTH

MEMORY

ADDRESS

GETADR

REM

MOD

Coding

JSR @LENGTH
desc
loc

JSR @CALL
MEMORY
I
desc

JSR @ADDRESS
desc
loc

JSR @GETADR
desc
IeVeI+sublevel
loc

JSR @CALL
REM
4
descI
desc2
desc3
desc4

JSR @CALL
MOD
descI
desc2
desc3

(Continued)

Meaning

LENGTH calculates the current
length of the string pointed to by
desc and stores the result at loco

MEMORY computes the available
memory from the current .SSE (stack
end) to the caller's end of stack
(indicated by the stack length)
minus 2008 words and stores the
result at desc.

ADDRESS computes the full word
address of data pointed to by desc.
If it is an array, ADDRESS sets the
data address; if it is a string,
ADDRESS gets the address of the
word containing the first charac­
ter. The address is stored at loco

GETADR computes the stack address
as does GETSP, using level and
sub-level. Then GETADR computes
the parameter address with respect
to this stack. The address is
stored at loco The parameter is
found at desc.

REM performs an unsigned division
on integers found in descI and
desc2 (descl/desc2) and stores the
result in desc3 and the remainder
in desc4.

MOD produces an unsigned int~ger
modulo result for

at descl. C(desc) means the integer
found at desc-.---

C-14

Licensed Material - Property of Data General Corporation

GENERAL PURPOSE ROUTINES (Continued

Routine

CVST

STCV

SDIV

SHIFT

ROTATE

Coding

JSR @CVST

JSR @STCV
descl
desc2

JSR @SDIV
desc
loc]
loc2

JSR @SHIFT
desc
loc l
loc 2

JSR @ROTATE
desc
loc l
loc 2

Meaning

CVST converts a number pointed to
bydescl into a string pointed to

by desc2 • The string will have

the format:

[-]nnn ••• n[.nnn ••• n] [E[-]nn]

where: E notation is used as in
WRITE standard format. The
format and length will be
dependent on the type and
precision of data.

STCV converts a string pointed to
by desc1 into a number pointed to

by desc~. The string can have the
form:

[-]nnn ••• n[.nnn ••• n] [E[-]nn]

where E notation is used as in
WRITE standard format.

SDIV performs a signed division of
ACl by AC2 with the result in AC1.
ACO is assumed O. ACO and AC2
are restored on return. Overflmv
is checked.

SHIFT shifts the integer pointed
to by desc the number of bits
indicated by the counter at loc]

(+ = right; - = left) and stores
the result in loc2.
Caution: this is a logical shift.

ROTATE rotates the integer pointed
to by desc the number of bits
specified by the counter at loc].
(+ = right; - = left). The result
is stored at loc2.

C-15

Licensed Material - Property of Data General Corporati:>n

GENERAL PURPOSE ROUTINES (Continued)

Routine

RANDOM

SEED

UHUL

EXSBSC

SBSCR

Coding

JSR @CALL
RANDOM
1
desc

JSR @CALL
SEED
1
desc

JSR @CALL
UMUL
5
descl
~2
desc 3
desc 4
descS

JSR @EXSBSC
n + 1
array-desc
subscript-locl
subscrlpt-loc2

subscript-locn

JSR @SBSCR
array-loc
subscript-loc

Meaning

RANDOM generates a linear congruent
sequence of the form:

X (N+l) := (X(N)*A+C)mod2**16

producing a (pseudo-) random
sequence of integers in the range
0<N<2**16-1, with bit 0 the most
significant bit. The number is
stored at desc.

SEED sets the initial pseudo-ran
dom number (X(l)) to the integer
found at desc. This is known as
seeding the sequence.

UIvlUL performs an unsigned integer
mJltiply of desc l and desc2' then

adds desc3. The result is stored

in descS with overflow, if any,
in desc4 •

EXSBSC calculates the address of an
element in an n-dimensional globally
defined array, checking each sub­
script value for legality. Result­
ing address is returned in AC2.

SBSCR calculates the address of an
element in a l-dimensional array,
checking for legality. Resulting
address is returned in AC2.

C-16

GENERAL PURPOSE ROUTINES

Routine Coding

CLASSIFY JSR @CLASSIFY
desc l
desc 2
desc 3

BYTE JSR @BYTE
desc l

[desc 2]
desc 3

TRACE JSR @CALL
TRACE
~

ONTRACE JSR @CALL
ONTRACE
~

OFFTRACE JSR @CALL
OFFTRACE
~

RUN-TIME ERROR ROUTINES

licensed Material - Property of Data General Corporation

(Continued)

Meaning

CLASSIFY searches for integer in
descl in range table specified by

desc2 and returns the value of the
range in desc3.

BYTE returns the ASCII equivalent
of a character in the buffer
pointed to by desc l , indexed by

desc 2 (or one) and stored in desc3·

TRACE traces the current stack and
returns.

ONTRACE initiates a trace on a
break and sets the break address
on return.

OFFTRACE removes a trace on a break
and break address.

The first run-time error routine allows the user to write
messages on the console. The remaining routines are used by
ALGOL run-time routines to output messages to the console
when an error is encountered.

Run-time error messages may be output in long form or short
form. By default, the short form of error messages is loaded,
unless one of the I/O routines, read, write, or output is
required. If read, write, or output is used, the long form of
error messages is loaded.

The short form outputs only an error number via an error return
to the system. The long form outputs a message indicating the
error, and if the error was fatal, a break to the system is
executed, storing the run program as a save file called BREAK.SV
(see RDOS manual, #093-000075, for information on save files).
If the error is not fatal, the program is resumed.

C-17

Licensed Material - Property of Data General Corporation

RUN-Tum ERROR ROUTINES (Continued)

The user can control loading of either the short or long form
of error messages by inserting either external procedure LONG
or external procedure SHORT in his source program.

The run-time error responses in both long and short form are:

Short

SOO
SOl
502
503
504
505
506
S07

SIO
511
S12
S13
S14
51S
S16
S17

S20
S21
S22

>S22

subscript out of bounds"
stack overflow"
integer overflow"
division by zero"
I/O parity error"
end of file"
illegal file name"

"illegal channel number"

"exponent over/underflow"
"out of disk space"
"illegal use of a file"
"I/O format error"
"illegal parameter"
"program not loaded"
"dimension error"
"floating point error"

"square root of negative number"
"procedure nesting error"
"conversion error"
"unknown error"

The routines used by ALGOL run-time to output messages have
the following run-time formatted error code ; where:

NUJ:.1 = any number from SOOS to S22 8

ANOP = @lOS for an arithmetic NO-OP

AMES = IBll for the start of the number location

FATAL = IBI for the fatal message indicc?tor

C-1S

Licensed Material - Property of Data General Corporation

F.UN-TIME ERROR ROUTINES (Continued)

The error has the code:

NUM. *AMES+ANOT [+FATAL]

t
indicates a decimal number.

Routine

ERROR

.RTER

.RTE~

.ARER

Coding

JSR @CALL
ERROR
1
desc

JSR @.RTER
run-time format­
ted error code

JSR @.RTE~
run-time format­
ted error code

JSR @.ARER
run-time format­
ted error code

Meaning

ERROR outputs an error message
given by the string at desc to the
console via the system call .PCHAR
and returns to the system.

.RTER outputs the error message as
described for ERROR with the loca­
tion found at .API, a page zero
pointer set by ASAV .

• RTE~ outputs the error message as
described for ERROR with the loca­
tion found in AC~.

.ARER outputs the error message as
described for ERROR with the
location found in the parameter list
pointer of the current stack.

INPUT/OUTPUT RUN-TIME ROUTINES

The I/O run-time routines are described in the ALGOL manual;
only a brief description is included here. All the I/O run­
time routines have the following coding sequence:

JSR @CALL
routine-name
n
desc l

desc
--n

where: n is a count of parameter descriptors and
desc indicates a parameter descriptor.

C-19

licensed Material - Property of Data General Corporation

INPUT/OUTPUT RUN-TIME ROUTINES (Continued)

Routine

READ

WRITE

OUTPUT

Coding

JSR @CALL
READ
n
desc I

JSR @CALL
WRITE
h
desc1

9.e~cn

JSR @CALL
OUTPUT
n
desc I
desc2

•
desc --n

Meaning

READ inputs data of types integer,
real, boolean, pointer, and string
from a previously opened file whose
number is pointed to by descl. On
an end-of-file error, transfer is
made to an address pointed to by
descn _ l if descn _ l is a label. If

descn_l is not a label, end-of-file
is considered a normal error. Other
errors transfer to descn if both
descn and descn_l are labels.

WRITE outputs all arguments as
described in READ in an unformat­
ted form to a file indicated by
desc]. Errors transfer to descn's
address if descn is a label.

0U~PUT outputs in a format given
by the string pointed to by desc2
to a file pointed to by desc]. All
those arguments specified by READ
errors cause transfer to the loc­
ation pointed to by descn if descn
is a label •

C-20

Licensed Material - Property of Data General Corporation

INPUT/OUTPUT RUN-TIME ROUTINES (Continued)

Routine

OPEN

CLOSE

COMARG

DELETE

RENAME

Coding

JSR @CALL
OPEN
2 [3]
desc l
desc
[deSC~]

JSR @CALL
CLOSE
1
desc

JSR @CALL
COMARG
2 [3] [4]
desc]
desc2
desc3
desc4

JSR @CALL
DELETE
1
desc

JSR @CALL
RENAME
2
descl
desc2

Meaning

OPEN opens a file pointed to by
desc l with the name in the string
pointed to by desc2. If there is
an error, transfer is made to the
label at desc3. If desc3 does not
exist, an attempt is made to create
the file. If an error again occurs,
an error message is output.

CLOSE closes the file pointed to
by the file number at desc.

COMARG reads the command file
pointed to by the file number at
desc" placing the string in desc2.
If a boolean array exists at desc3'
true is set for the first 26 ---­
elements corresponding to 26
switch letter possi~ilities. If
end-or-file, transfer is made to
the label at desc4 or a normal
return is made if desc4 does not
exist.

DELETE deletes the file name
found in the string pointed to by
desc.

RENAME renames the file whose name
is contained in the string pointed
to by desc] to the name in the
string at desc3.

C-2l

Licensed Material - Property of Data General Corporation

INPUT/OUTPUT RUN-TIME ROUTINES (Continued)

Routine Coding

POSITION JSR @CALL
POSITION
2 [3]
descl
desc 2

[desc3]

FILESIZE JSR @CALL
FILESIZE
2
descl
desc2

FILEPOSITION JSR @CALL
FILEPOSITION
2
desc l
desc 2

BYTE READ JSR @CALL
BYTE READ
3 [4] [5]
descl
desc 2
desc 3

[desc 4]

LINE READ JSR @CALL
LINEREAD
3 [4] [5]
descl
desc2
desc3

[desc4]

Meaning

POSITION sets the internal byte
pointer for reading and writing in
a disk file specified by desc" to
the byte specified by desc2_ desc2
may be an integer, real, or multi­
precision integer whose value is
between 0 and 4,294,967,296 bytes_
If an error occurs and desc3 is
present, a transfer is made to the
label specified by desc3_

FILESIZE returns the length in bytes
of a disk file specified by descl -
The length is returned in the real,
integer or multi-precision integer
specified by desc 2-

FILEPOSITION returns the position of
the byte currently pointed to in
the disk file specified by desc,_
The position is returned in the
rea~, integer, or multi-precision
integer specified by desc2_

BYTE READ inputs data bytes from a
previously opened disk file whose
number is pointed to by desc ,
beginning at the byte pointe! to
by desc2 and continuing for the
number of bytes given in the count
pointed to by desc3_ desc4 may be
a label giving a transfer point on
occurrence of end-of-file_ If not
present, end of file is considered
a normal transfer_

LINEREAD inputs a line of data from
a previously opened file whose
number is pointed to by desc],
beginning at the byte pointed to
by desc2_ On return, desc3 points
to the count of bytes read for the
line_ desc4 may be a label giving

C-22

Licensed Material - Property of Data General Corporation

INPUT!OUTPUTRUN-TIMEROUTINES (Continued)

Routine

LINE READ
(continued)

BYTEWRITE

LINEWRITE

OVLOD

OVOPN

FORMAT

Coding

JSR @CALL
BYTEWRITE
3 [4]
desc1
desc 2
desc 3

[desc 4]

JSR @CALL
LINEWRITE
3 [4]
desc1
desc2
desc
[deSC~]

JSR @CALL
OVLOD
1
desc

JSR @CALL
OVOPN
2
desc l
desc2

JSR @CALL
FORMAT
n
descl
desc2

•

desc --n

Meaning

a transfer point on occurrence of
end-of-file. If not present, end
of file is considered a normal
transfer.

BYTEWRITE outputs data bytes
beginning at the byte pointed to by
desc2 and terminating when the
count of bytes reaches that given
by desc3 to the file indicated by
descl • desc4 is an optional error

transfer label.

LINEWRITE outputs a line of data
to the file given by desc1 begin­
ning at the byte pointed to by
desc2. On return, desc3 points
to the count of bytes read. desc4
is an optional error transfer label.

OVLOD loads an overlay node using
the overlay number contained in
desc.

OVOPN opens an overlay file on the
channel in descl and the file­
name in desc2 _

FORMAT outputs arguments desc3
through descn in a format given by
desc2 to a file pointed to by
desc]_

C-23

Licensed Material - Property of Data General Corporation

INPUT/OUTPUT RUN-TIME ROUTINES (Continued)

Routine

GTIME

STIME

PRINT

CHAIN

APPEND

Coding

JSR @CALL
GTIME
6
descI
desc2
desc3
desc4
descS
desc6

JSR @CALL
STIME
6
descI
desc 2
desc 3
desc 4
descS
desc 6

JSR @CALL
PRINT
n
descI
desc 2

desc
--n

JSR @CALL
CHAIN
I
desc

JSR @CALL
APPEND
2 (or 3)
desc I
desc 2

[desc 3]

Meaning

GTIME returns the date and time in
the arguments, as follows:

desc I - year
desc 2 - month
desc 3 - day
desc 4 - hour
desc S - minute
desc 6 - second

STIME sets the date and time to
the value in the arguments, as
follows:

descI - year
desc2 - month
desc3 - day
desc4 - hour
descS - minute
desc6 - second

PRINT outputs all arguments as
described in WRITE in an unformat­
ted form to a file indicated by ,
desc l • Errors transfer to descn s
address if descn is a label.

CHAIN suspends the current pro­
gram execution and invokes another
save file from disk whose name
is specified by a string in desc
(terminated by a null).

APPEND appends a file using the
number in descI with the name in

the string pointed to by desc2.
If desc3 does not exist, an attempt
is made to create the file. If an
error occurs again, an error mes­
sage is output.

C-24

Licensed Material - Property of Data General Corporation

INPUT/OU'l'PUT RUN-TIME ROUTINES (Continued)

Routine

PUTRANDOM

GETRANDOM

Coding

JSR @CALL
PUT RANDOM
3
descI
desc 2
desc 3

JSR @CALL
GET RANDOM
3
descI
desc2
desc3

Me Cl.:::ling

PUTRANDOM writes a record to the
file opened on channel desc] start-
ing at the record number in desc2'
using the data pointed to by desc3.

GETRANDOM reads in a record from
the file opened on channel desc]
from the record number in desc2
into the data area pointed to by
desc3·

SUBROUTINES USED BYRON-TIME ROUTINES

Each of the subroutines represents coding required for more
than one run-time routine. The parameters are all passed either
in the accumulators (ACO through AC3) or on the temporary
stack (.RP+n where n is an offset to the stack pointer).

Routine Coding

ADDRS JSR @ADDRS

OADDR JSR @OADDR

SUSET JSR @SUSET

~1eaning

ADDRS computes the address of the
present stack frame of a variable.
If bit 0 is set, the pointer is to
an offset to the stack; if bit 0
is not set, the pointer is to an
absolute address. ACI contains the
pointer and the result is returned
in ACI. Other accumulators are
preserved with AC3 set to .FP.

OADDR computes the address of
a variable exactly as ADDRS except
that the address is for the prev­
ious stack frame.

SUSET evaluates a substring for
string manipulation routines. ACI
contains a string pointer; AC2
contains a substring pointer; and
Carry is set for three-word strings.

C-25

Licensed Material - Property of Data General Corporation

SUBROUTINES USED BY RUN-TTME" ROUTINES (Continued)

Routine

SUSET
(continued)

SUNSET

WRITA

CONTR

DIMMU

Coding

JSR @SUNSET

JSR @WRITA

JSR @CONTR

JSR @DIMMU

Meaning

On return, AC1 contains a byte
pointer to the first character and
ACO contains the byte count. If
the substring begins beyond the
current length, 0 is returned in
ACO for a null string.

SUNSET evaluates a substring for
string manipulation routines. AC1
contains a substring pointer and
Carry is set for three word strings.
On return AC1 contains a byte
pointer to the first character and
ACO contains the byte count. .RP+6
contains an end-of-data byte count
(byte pointer+current length).

WRITA allocates a data area for an
array (local) and writes the
control table (via CONTR). WRITA
requires:

.RP+O

.RP+2

.RP+3

.RP+7

.RP+11

.RP+13

array dimension count+1
array specifier pointer
array control table address
temporary
array word count (set)
temporary

CONTR writes the control table
(dope) for an array. It requires:

.RP+O

.RP+3
• RP+13

array dimension count+1
array control table address
temporary

DIMMU multiplies the dimensions of
an array, checking for legal array
bounds on the dimensions. It
requires:

AC1
.RP+O
.RP+4
.RP+12
.RP+13
• RP+14

C-26

array control table address
array dimension count +1
temporary
temporary
temporary
temporary

Licensed Material - Property of Data General Corporation

SUBROUTINES USED BY RUN-TIME ROUTINES (Continued)

Routine Coding

ASTR JSR @ASTR

MPY JSR @MPY

DVD JSR @DVD

NUMBER ROUTINES

Meaning

ASTR allocates a buffer of 2408
words to the end of the current
stack frame, returning a word
pointer in ACO. It requires:

.RP+l

.RP+2
temporary
temporary

MPY is unsigned multiply of ACl*
AC2 with the result in ACl, over­
flow in ACO. ACO is assumed 0 to
start.

DVD is unsigned divide of ACI by
AC2 with the result in ACl, re­
mainder in ACO. ACO is assumed 0
to start.

The run-time number routines are the routines required to do the
arithmetic for ALGOL run-time, including conversion, functions,
and stack manipulation. Each routine uses a number stack,
allocated by the initialization routine previously described.
Following is a diagram of the stack and the representation of
the number.

[
next]
number

~!eded Operand 1
[OP3]~

1------\ - - - - - - - - - - - - - .--------,

opl

op2

current
number

last
number

C-27

opls
oplx

oplp

oplm

sign
exponent (hex)
precision
mantissa
(one to 15 words)

•

Licensed Material - Property of Data General Corporation

NUMBER ROUTINES (Continued)

All the operands have the same format. Allocation is always
for maximum (IS words+3) size.

The number routines are described with the notation:

opl
op2
op~s

op~x

op~p

where:

Routine

IPTNR

OPTNR

operand one - current number
operand two - last number
operand n sign
operand n exponent (hex)
operand n mantissa

n is replaced by 1, 2, or 3.
:sp+~ is the current stack variable area plus 1.

Coding

JSR @CALL
IPTNR
S
desc l
desc2
desc 3
desc 4
descS

JSR @CALL
OPTNR
S
descl
desc 2
desc 3
desc4
descS

Meaning

IPTNR converts a character string
into a number which is either
integer, real, or pointer. It
requires:

desc l
desc 2
desc 3
desc 4
desc S

byte pointer to string
result number
number type
number precision
number radix

OPTNR converts a number to an
unformatted, simplified string of
either form:

[-]nn ••• nnn[.nn ••• nn] or

[-] • nn ••• nnE [-] nn

It requires:

desc l string byte pointer
desc 2 number address
desc3 number type
desc 4 number precision
descS number radix

C-28

NUMBER ROUTINES (Continued)

Routine

NROPT

ASCNU

NUMASC

lOUT

Coding

JSR @CALL
NROPT
11
desc,
desc2
desc3
desc4
descS
desc6
desc7
desclO
descll

JSR @ASCNU

JSR @NUMASC

JSR @IOUT

Licensed Material - Property of Data General Corporation

Meaning

NROPT converts a number to a format­
ted, specified string similar to
the unformatted form, but specify­
ing which type of format will be
used. It requires:

descl - string byte pointer
desc2 - number address
desc3 - number type
desc4 - number precision
desc S - number radix
desc6 - sign indicator
desc7 - integer field width
desclO_ fraction field width
descll_ exponent field width

ASCNU converts a character string
to a number. It requires:

ACO string byte pointer (ter­
minated by null)

AC2 radix of number

The number goes to OPl, which is
assumed created.

NUMASC converts a number found in
OPI to an ASCII character string.
It requires:

ACO string byte pointer

AC2 number radix

NUMASC returns the digit count in
ACO.

lOUT sets the proper sign and moves
the integer part of a number char­
acter string from string pointer
to output pointer. It requires:

C-29

Licensed Material - Property of Data General Corporation

NUMBER ROUTINES (Continued)

Routine

lOUT
(continued)

FOUT

GETBT

PUTBT

PUSH

POP

POWER

SQR

Coding

JSR @FOUT

JSR @GETBT

JSR @PUTBT

JSR @PUSH
desc

JSR @POP
desc

JSR @POWER
desc l
desc 2
desc 3

JSR @SQR

Meaning

ACO
ACl
AC2
.SP+ 1
.SP+l2

digits of precision
field width
sign indicator
string byte pointer
output byte pointer

FOUT moves the fractional part of
a number character string from
string pointer to output pointer.
It requires:

ACO
ACl
.SP+ 1
.SP+12

digits of precision
field width
string byte pointer
output byte pointer

GETBT gets a character from the
temporary stack (.RP) minus a two­
byte pointer (i.e., .RP-2+ byte
pointer) •

PUTBT puts a character to the byte
pointer found at .RP-l.

PUSH pushes a number to the number
stack. desc points to one of the
following type numbers: integer or
real.

POP pops a number from the number
stack to desc, pointing to one of
the following type numbers:
integer or real.

POWER raises a base (descl) to a
power (desc2) for both infeger and
real bases and powers and stores
the result as desc3 which must be
real.

OPl = SQRT(OPl)

The algorithm uses constants A and
B to obtain an initial approxima­
tion and iterates:

C-30

NUMBER ROUTINES (Continued)

Routine

SQR
(continued)

SIN
COS

ATN

Coding

JSR @SIN
JSR @COS

JSR @ATN

Licensed Material - Property of Data General Corporation

Meaning

approx. ~ (number/approx.+approx.)/2

OPI = SIN(OPl)
OPI COS (OPl)

Algorithm:

COS (arg) = SIN(arg+PI/2)

Set A = arg*2/PI
Break into integer (I) and real
(R) parts.

Q = 0 or 1 for SINE and COSINE
QARG = SIGN(R)+SIGN(R)*Q+I
If QARG is odd, set R=l.-R
SIN(arg/3) = S = P(R**2)*R
SIN (arg) = (3.-4.*S**2)*S

OPI = ARCTAN(OPl)

Algorithm:

Set X = ABS(arg) or l/ABS(arg)
if ABS(arg) greater than or
equal 1.0

Set Y = X - TAN(PI/12)

Set R = X or if Y greater than or
equal 0

=(X*SQRT(3)-1)/(SQRT(3)+X)

Evaluate P(R**2), Q(R**2)
Evaluate P*R/Q and add PI/6 if

Y>=· 0

Subtract PI/2 if ABS(arg)~=O
Set SIGN as that or original argo

C-3l

Licensed Material - Property of Data General Corporation

Nm·1BER ROUTINES (Continued)

Routine Coding

TAN JSR @TAN

ALG JSR @ALG

EXP JSR @EXP

Heaning

OP1 = TAN(OP1)
Algorithm:

arg = ABS (arg) *4/PI

Break arg into integer (I) and
real (R) parts.

If I is odd, then R = 1.-R

SIGN(R) = MOD2(SIGN(orig arg)+I/2)

Set COT switch if MOD4(I) = 2,3

Evaluate R(R**2), Q(R**2)

TAN (arg) = Q/P*R/8 if COT switch
is set.

OP1 = LN (OP1)

Algorithm:

LN of exponent obtained as:
LN(2)*exponent radix(2)

LN of mantissa evaluated in terms
of iteration:

, R = (arg.-0.5 [or 1.0]/(arg.+0.5
[or 1.0] according to arg
<= or > 1/SQRT(2)

Evaluate P(R**2, Q(R**2)

Set LN(mantissa) = P*R/Q

OP1 = EXP (OP1)

Algorithm:

Compute X = arg*LOG2(E)

Break X into integer (IX) and
real (RX) parts.

C-32

NUMBER ROUTINES (Continued)

Routine

EXP
(continued)

ABS

VPRC

PLY

Coding

JSR @ABS

JSR @VPRC

JSR @PLY

Licensed Material - Property of Data General Corporation

Meaning

Set R = RX-.5 (for RX>=O)
= RX+.S (for RX <0)

I = IX (for RX>=O)
= -(IX+l) (for RX <0)

Ge t P (R * * 2), Q (R* i: 2)

Set mantissa as (Q-P*R)/(Q+P*R)
or its reciprocal if RX<O.

Halve as many times as (I)MOD4.
Add (I) radix 4 to exponent and
multiply by SQRT(2).

OPl = ABS(OP1)

Set the sign to positive.

Set ACO: = +1 for OP1>O
o for OP1=0

-1 for OP1<0

OPl is unchanged.

Determine the highest order co­
efficient required by the function
P(X) or Q(X), depending on the
exponent of the argument and the
exponents of the coefficients.

ACO - high order coefficients
ACl - low order coefficients
OPl - argument

Given the coefficients, evaluate
P(X) to the form:

(••• (C (N) *arg+C (N-l)) *arg+
C (N-2)) •••) *arg+C (0))

Result is in OP1.

ACO - high order coefficients
ACl - low order coefficients
OPl - argument

C-33

Lansed Material - Property of Data General Corporation

NUMBER ROUTINES (Continued)

Routine Coding

CMOVE JSR @CMOVE

BREAK JSR @BREAK

FLIP JSR @FLIP

FHALF JSR @FHALF

HADD JSR @MADD

MSUB JSR @MSUB

MMPY JSR @MMPY

MDVD JSR @MDVD

Meaning

CMOVE pushes the constant pointed
to by ACO to the new OPI, setting
the precision: by OP2 (old OPI).

BREAK breaks the current number at
OPI into integer and real parts
with the integer in ACI and the
real at OPI.

FLIP swaps the top two operands.
OPI becomes OP2 and OP2 becomes
OPI.

OPI = OPI/2

Shift the mantissa of OPI right
one bit, forcing a zero from the
left, thus dividing by two.

OPI = OPI+OP2

For mUlti-precision integers. The
result is one word greater than the
larger precision number.

OPI = OP2-0PI

For multi-precision integers. The
result is one word greater than the
larger precision number.

OPI = OPI*OP2

For multi-precision integers. The
result has a precision equal to the
sum of the two precisions or else
the maximum precision.

OPI = OP2/0PI

For multi-precision integers. The
result has a precision equal to the
sum of the two precisions or else
the maximum precision.

C-34

NUMBER ROUTINES (Continued)

Routine Coding

MAND JSR @MAND

MOR JSR @~-1.0R

MNOT JSR @MNOT

FML JSR @FML

FDV JSR @FDV

Licensed Material - Property of Data General Corporation

Meaning

OPl = OPl and OP2

For multi-precision integers. The
resulting precision is that of the
larger with excess words zeroed
from the top. The rest are full
word ands of the original operands.

OPl = OPl or OP2

For multi-precision integers. The
resulting precision is that of the
larger with excess words of the
larger untouched from the top down.
The remaining words are full word
operations of the form:

complement OP1,OPl
and OP1,OP2
add complement OP1,OP2

OPl = not (OP1)

The result is a full word comple­
ment of the multi-precision integer
at operand 1.

OPl = OP1*OP2

For multi-precision real data. Both
numbers are assumed normzlized and
the result has the same precision
as the larger number.

OPl = OP2/0Pl

For multi-precision real data where
neither real is considered normal­
ized. The result has the same
precision as the larger number.

C-35

Licensed Material - Property of Data General Corporation

NUMBER ROUTINES (Continued)

Routine

FMDC

MMUL

MDIV

ENTlER

FCMP

FEQC

UPAC

XUPK

Coding

JSR @FMDC

JSR @Hf).1UL

JSR @MDIV

JSR @ENTIER
desc l
desc2

JSR @FCMP

JSR @FEQC

JSR @UPAK

JSR @XUPK

Meaning

FMDC determines the resulting
characteristics for a multiplication
or a division (Carry set for
divide), and sets operand 3 with the
following data: OP3S, OP3X, OP3P •

. MMUL mUltiplies operand 1 by the
single (unsigned) word in AC2.
ACO contains the addend for the
first multiply. Overflow is
returned in ACO.

MDIV divides operand 1 by a full
word (unsigned) integer in AC2.
The remainder is returned in ACI.

ENTlER converts the real number
pointed to by desc] to an integer
pointed to by desc 2 (one to 15
words depending upon desc2.)

FCMP compares operand 1 to operand
2 and sets Carry = 0 for OPl>OP2

1 for OPl<=oP2

FEQC compares operand 1 and operand
2 for equality, and sets Carry if
OPI = OP2.

UPAK unpacks a multi-precision real
number to form a new operand 1.

ACO = memory address
AC2 = memory precision

XUPK unpacks a multi-precision
integer number to form a new
operand 1.

ACO = memory address
AC2 = memory precision

C-36

NUMBER ROUTINES (Continued)

Routine Coding

PACK JSR @PACK

XPACK JSR @XPAK

FAD JSR @FAD

FSB JSR @FSB

MAD JSR @HAD

MNEG JSR @MNEG

RONDH JSR @RONDH

XUNM JSR @XUNM

licensed Material - Property of Data General Corporation

Meaning

Pack packs operand 1 to a multi­
precision real number and deletes
OPl.

ACl = memory address
AC2 = memory precision

XPACK packs operand one to a multi­
precision integer number and deletes
OP1.

ACI = memory address
AC2 = memory precision

OPI = OP1+OP2

For real, multi-precision, normal­
ized numbers. The result has the
same precision as the larger num­
ber.

OPl = OP2-0Pl

For real, multi-precision normal­
ized numbers. The result has the
same precision as the larger num­
ber.

MAD adds the mantissas of two
multi-precision numbers with the
same precision.

MNEG negates the mantissa of an
operand indicated by

AC2 = -1 for OP2
AC2 = 0 for OPl

RONDH rounds a number in operand 1
to a specified hexidecimal digit
indicated by ACl and numbered
from o.

XUNM unnormalizes a mUlti-precision
integer in operand 1 to a desired
precision contained in AC1.

C-37

Licensed Material - Property of Data General Corporation

NUMBER ROUTINES (Continued)

Routine

XFL

FLX

FLF

FXF

CKOU

CKOUI

FSN
SIGN

Coding

JSR @XFL

JSR @FLX

JSR @FLF

JSR @FXF

JSR @CKOU

JSR @CKOUI

JSR @SIGN

Meaning

XFL converts a multi-precision
integer in operand 1 to a multi­
precision real number in operand 1
(with the smallest precision
possible) •

FLX converts a multi-precision real
number in operand one to a multi­
precision integer in operand one
(with the smallest precision
possible) •

FLF converts operand
precision integer in
1 is not destroyed.
for overflow.

1 to a single
ACOi operand
Check is made

FXF converts a single-precision
integer in ACO to a normalized
real number in operand 1. Operand
1 is assumed created.

CKOU checks operand 2 for overflow
or underflow:

overflow
underflow

exponent>=2 00s
negative exponent

(i.e., the exponent must have the
form

o < E < 2008

to pass the over/underflow check.

CKOUI checks operand 1 for over/
underflow as described for CKOU.

FSN and SIGN indicate the sign of
a multi-precision number and set
ACO as follows:

ACO = +1 if OPl>O
ACO = - if OPl=O
ACO = -1 if OPl<O

C-38

NUMBER ROUTINES (Continued)

Routine Coding

FNOR JSR @FNOR

ROND JSR @ROND

ROMDM JSR @ROMDM

RST JSR @RST

LST JSR @LST

IOVFL JSR @IOVFL

HOVE JSR @MOVE

Licensed Material - Property of Data General Corporation

r1eaning

FNOR normalizes the operand indi­
cated by AC2(=O for OP1; = -1 for
OP2) to a hexadecimal digit (i.e.,
the top four bits), decrementing
the exponent for every shift left.
ACl contains the extended carry*
word to be shifted in from the
left.

ROND rounds the register whose
address is in ACO (address of un­
packed register or operand) if the
extended carry word in ACl has
bit 0 set.

ROMDH rounds the register whose
address is in ACO, as in ROND, to
a precision found in AC2 (memory
precision) •

RST shifts an operand indicated
by AC2(-1 for OP2, 0 for OP1) one
hex digit to the right, shifts the
extended carry in ACl into the
operand from the right and shifts
out a new carry to AC1.

LST shifts an operand to the left
one hex digit following the same
method as described for RST, ex­
cept for the left shift.

AC2 operand indicator
ACl extended carry

IOVFL outputs an integer overflow
error message and sets the operand
indicator by AC2 (-1 for operand
2, 0 for operand 1) to a maximum
integer with desired precision in
AC1.

MOVE moves the operand from address
in ACO to address in AC1. Both are
(and will be) unpacked operands
whose data addresses are in ACO, AC1.

*Note: Carry = hardware register; carry = logical carry

C-39

Licensed Material - Property of Data General Corporation

COpy JSR @COPY

Floating Point Interpreter

COpy copies an operand whose ad­
dress is in ACO to the top of
stack (i.e., it becomes the newest
pushed number to stack). OPI will
be created and the number must be
unpacked.

ALGOL uses an interpreter to perform floating point and multi­
precision integer arithmetic. The calling sequence is:

FENTL (.EXTN) (real) XENTL (integer)

<instruction set> <instruction set>

FEXT FEXT

with the following instruction set:

FPRC n
FLDA adr
FSTA adr
FNEG E,£
FMOV r, E.
FPOS E.,r
FSUB E.,E.
FADD E.,E.
FXFL E., r <to floating register>
FLFX E.,E. <to real register>
FSGH E.,E
FSEQ E., r
FIPT r,r < .• ·EXTN IPT>
FLDA r,adr
FSTA r,adr
FMUL E., r <.EXTN FM> <.EXTN XM>
FDIV E.,r <.EXTN FD> <.EXTN XD>
FALG E.,E. <.EXTD ALG>

C-40

Licensed Material - Property of Data General Corporation

Floating Point Interpreter (Continued)

FATN
PCOS
FSIN
FTAI-J
FEXP
FSQR

r,r
E,E
E., r
E., r
r,r
r,E

<.EXTD ATN>
<.EXTD COS>
<.EXTD SIN>
<.EXTD TAN>
<.EXTD EXP>
<.EXTD SQR>

where: n is an integer from 1 to 15
r is a pseudo-register

adr is an absolute, indexed, or indirect displacement
<.EXTN name> or <.EXTN name> are external definitions for

the routines required.

CACHE MEMORY MANAGEMENT ROUTINES

The following run-time routines are internal ALGOL routines
used to create and maintain Cache Memory, which provides for
automatic transfer between disk and core of blocks of data.
They provide an alternative to the usual I/O routines and
should be used when very large files are being transferred.
See the description of Cache Memory in Chapter 9.

Routine

BUFFER

ACCESS

Coding

JSR @CALL
BUFFER
2
desc]
desc2

JSR @CALL
ACCESS
3 [4]
descl
desc2
desc3
desc 4

Meaning

BUFFER allocates buffer of desc2
words in length with descl pointing
to the first word of the buffer.

ACCESS opens a file named desc2'
with file number in desc] and
element size desc4' desc3 must
be the name of the buffer pointer.

C-41

Licensed Material - Property of Data General Corporatiolll

CACHE MEMORY IYlANAGE:MENT ROUTINES (Continued)

Routine

WORDREAD

WORm'JRITE

FETCH

STASH

NODESIZE

NODEREAD

NODEWRITE

Coding

JSR @CALL
WORD READ
3 [4]
desc]
desc2
desc3

[desc4]

JSR @CALL
WORDWRITE
3 [4]
desc l
desc 2
desc 3

[desc 4]

JSR @CALL
FETCH
1 [2]
desc]

[desc2]

JSR @CALL
STASH
2 [3]
desc l
desc2

[desc 3]

JSR @CALL
NODESIZE
1
descl

JSR @CALL
NODE READ
2
descl
desc2

JSR @CALL
NODEWRITE
2
desc l
desc 2

Meaning

WORDREAD reads a block from the
file whose file number is in desc],
beginning at file address desc2,
into the core area pointed to by
desc3_ Only the number of words
given in desc4 are read_

WORDWRITE writes a block into the
file whose file number is in descl'
beginning at file address desc2'
from the area pointed to by desc3_
Only the number of words given in
desc 4 are written_

FETCH returns the single word at
file address desc] with the offset
desc 2 -

STASH writes the word in descl onto
disk at file address desc2 with
offset desc3-

NODESIZE returns the number of
words in a node, pointed to by desc l _

NODEREAD reads a node from the file
address in descl into the core area
pointed to by desc2_

NODEWRITE writes the node pointed
to by desc2 onto disk beginning at
the file address in descl-

C-42

Licensed Material - Property of Data General Corporation

CACHE MEMORY MANAGEMENT ROUTINES (Continued)

Routine

HASH READ

HASHWRITE

FLUSH

Coding

JSR @CALL
HASHREAD
4
desc l
desc2
desc 3
desc 4

JSR @CALL
HASHWRITE
1
desc l

JSR @CALL
FLUSH
1
desc,

Meaning

HASHREAD returns the core address
in desc 3 of the block referenced
in desc2 in the file opened on
descl and returns the offset into
the block in desc4.

HASHWRITE marks the last block
referenced by HASHREAD with buffer
pointer desc, as being modified.

FLUSH clears the buffer area
pointed to by desc,.

Four other run-time routines are used by the c~rn routines,
but are inaccessible to the user:

Routine

• CAER
• CAPO
• CARD
• CAWR

Function

Performs C~1 error reporting •
Returns the position of data wi thin the CM~1 buffer •
Reads data into the CMM buffer •
Wri tes data from the C~1M buffer onto disk •

C-43

Licensed Material - Property of Data General Corporation

SUBROUTINES REFERENCED BY RUN-TIME ROUTINES

The following table lists the run-time routines alphabetically,
together with the names of subroutines called by them. Page
zero variables (e.g., .FP, .SP, etc.) are excluded and are all
contained on a single program tape, entitled ZERO.

Routine

ABRETN
ABS
ACCESS
ADDRESS
ADDRS
ALG

ALLOCATE
APPEND
ARET
ARRAY
ASAV
ASCII

ASCNU
ASTR
ATN
BLREND
BLKSTART

BREAK
BSARR
BSSTR
BUFFER
BYTE
BYTEREAD
BYTm'JRITE

CALL
CHAIN
CKOU
CKOUI
CLASSIFY
CLOSE
C~lOVE

COMARG
CONTR
COPY

t

*

t
*
t
t
t

t

t
t

t

*
*
t
*

*

*
t

Subroutines Called

ADDRS, OADDRS, .ARER

SAVE, RETURN, .RTER
ARET, ASAV

C!10VE, COPY, FAD, FDV , FLIP, F!1L, FNOR, FSB, PLY, • RTER

RETURN,SAVE,.ARER
SAVE,RETURN,SUBSTR,ABRET,MOVSTR,SALLOC,.RTER,RTE~

ADDRS,ARET,ASAV,CONTR,WRITA,.ARER

ADDRS,ARET,ASAV,.ARER

FLF,FNOR,GETBT,MDIv,r~1UL,RONDH,RST,.RTER

.ARER
CMOVE,COPY,FAD,FDV,FLIP,FML,FSB,PLY
ARET , ASAV , .ARER
ARET , ASA V, • ARER

FLF,FSB,FXF
ARET,ASAV
ARET,ASAV
.RTE~,CALL,DVD,SAVE,ALLOCATE,RETURN,.RTER
ARET,ADDRS,ASAV
ABRETN,RETURN,SAVE
ABRETN,RETURN,SAVE

SAVE
FNOR, .RTER
FNOR, .RTER
ARET,ADDRS,ASAV
RETUru~,SAVE,.RTER

ABRETN,ASTR,MOVSTR,OADDR,RETURN,SAVE,.RTER
ADDRS, DIlli1U, .ARER, MPY

* ~outfnes that call the operating system.
t Routines that modify stack or own pointers.

C-44

Licensed Material - Property of Data General Corporation

SUBROUTINES REFERENCED BY RUN-TIME ROUTINES (Continued)

Routine

COS
CVST

DELETE
DH1MU
DVD
ENTIER
ERROR
EXP

EXSBS

FAD
FCMP
FDV
FENT

FEQC
FETCH

*

*

FHALF
FILEPOSITION *
FILESIZE *
FLF
FLIP

FLUSH
FLX
FMDC
FML
FNOR
FORMAT
FOU'!'

FREE
FSB
FSN
FXF
GETADR
GETBT

GETRANDOM
GETSP
GTIME
HASHREAD

*

*

t

*

*

Subroutines Called

BREAK,CMOVE,FAD,FLIP,FML,FSB,MOVE,PLY,VPRC
ASTR,CALL,OADDR,RET,RSAV,.ARER,INDEX,OPTNR

LENGTH,MOVSTR,RETURN,SALLOC,SAVE,SUBSTR,.RTER
.ARER,MPY

ADDRS,ARET,ASAV,FLF,FLX,UPAK,XPAK
SAVE, .ARER
BREAK,CHOVE,COPY,FAD,FDV,FHALF,FLIP,FML,FSB,
PLY, VPRC, • RTER
.ARER,MPY

CKOU,MAD,MNEG,MOVE,RST
RSB
CKOU,FMDC,FNOR,MAD,MOVE,ROND,RST,DVD,MPY
RINTR

FSB
• CAER, • CARD
CKOUl,FNOR
OADDR,PACK,RETURN,SAVE,XFL,XPAK
FLF,OADDR,PACK,RETURN,SAVE,XFL,XPAK
RONDM

.RTE~,CALL,DVD,SAVE,ALLOCATE,RETURN,.RTER
FNOR,IOVFL,RST

CKOU,FMDC,FNOR,MAD,MOVE,ROND,RST,DVD,MPY
LST,ROND
SAVE,OADDR,RETURN,.RTER
GETBT,PUTBT

RETURN,SAVE,.ARER
CKOU , :rvlAD , MNEG , MOVE, RS T

FNOR
ADDRS,ARET,ASAV,.ARER

SAVE,RETURN,.RTER
.ARER,ARET,ASAV
SAVE,RETURN,.ARER
SAVE,RETURN,.CAPO

C-45

Li«tnsed Material - 'roperty of Data General Corporation

SUBROUTINES REFERENCED BY RUN-TIME ROUTINES (Continued)

Routine

HASHWRITE
HBOUND
IINTR

lOUT
IOVFL

IPTNR
LBOUND
LENGTH
LINEREAD
LINEWRITE

LST
:rvlAD
MADD
HAND
MDIV
MDVD
HEMORY
Jl1HPY
Ivlf:.1UL
MNEG

MNOT
MOD
HOR
HOVE
MOVSTR

ic1PY
MSUB
NODE READ
NODESIZE
NODEWRITE
NROPY

NUMASC
OADDR
OFFTRACE
ONTRACE

*
*

Subroutines Cctlled

SAVE,RETURN,.CAPO
ADDRS,ARET,ASAV
FDV,FML,FLX,FLF,FEQS,SQR,ARET,TAN,MMPY,COPY,
SIN,MOVE,MADD,FHALF,COS,MDVD,RSAV,XPAK,FUPK,
PACK,UPAK,FNOR,ATN,FXF,ASAV,ALG,MSUB,FSB,
RP~T,FAD,EXP,SIGN,.RTE~

GETBT,PUTBT
.RTER

ASCNU,PACK,RETURN,SAVE,XPAK
ADDRS,ARET,ASAV,.ARER
ADDRS,ARET,ASAV
ABRETN, RETURN, SAVE
ABRETN,RETURN,SAVE

FAD,FLX,FNOR
FLIP,FLX
DVD
FDV,FLIP,FLX,FNOR
RETURN, SAVE
FLIP,FLX,FML,FNOR
MPY

FLX
RETURN, SAVE, DVD,MPY
FLIP,FLX

ADDRS,ARET,ASAV,SUNSET,SUSET

FLX,FNOR,FSB
• CAER, • CARD
.CAER, • CARD •
.CAER, .CAWR
FOUT,FXF,IOUT,NUMASC,PUTBT,RETURN,SAVE,UPAK,
XFL,XUPK
FNOR,GETBT,MDIV,MMUL,PUTBT,RONDH,RST,.RTER,DVD

SAVE, RETURN
SAVE, RETURN

C-46

Licensed Material· Property of Data General Corporation

SUBROUTINES REFERENCED BY RUN-TTME "ROUTINES (Continued)

Routine

OPEN

OPTNR

OUTPUT

OVLOD
OVOPN
PACK
PLY

POP
POSITION
POWER

PRINT

PUSH
PUTBT

PUTRANDOM
RANDOM
READ

REM
RENAME
RETURN

RINTR

ROND
RONDH
RONDM
ROTATE
RRET
RSAV
RST
SALLOC
SARRAY
SAVE
SBSCR

SDIV
SEED

*

*
*

*

*

*

*

*
t

t
t

t

Subroutines Called

ABRETN,LENGTH,MOVSTR,RETURN,SALLOC,SAVE,SUBSTR,
.RTER
FOUT ,FXF, lOUT , NUJ'.lz\SC ,PUTBT ,RBTURN, SAVE, UPAK,
XFL,XUPK
ABRETN ,ASTR, CALL ,OADDR, RETURN', SAVE, • RTER,HPY,
NROPT
SAVE, RETURN
SAVE,RETURN
ROND!vl, RST
CMOVE, FAD ,FML,MOVE

ARET,ASAV,FLF,PACK,XPAK
ABRETN,OADDR,RETURN,SAVE,UPAK,XUNM,XUPK
ADDRS,ALG,ARET,ASAV,CMOVE,COPY,EXP,FDV,FLIP,
FML,FXF,PACK,SIGN,UPAK,XFL,XUPK
CALL,SAVE,OADDR,RETURN,ABRET,ASTR,.RTE~,r1PY,
OPTNR
ARET,ASAV,FXF,UPAK,XUPK

SAVE,RETURN,.RTER
RETURN, SAVE
ABRETN,ASTR, CALL,OADDR, RETURN, SALLOC, SAVE,
.RTE~, .RTER,IPTNR,MPY
RETURN,SAVE,DVD
LENGTH,MOVSTR,RETURN,SALLOC,SAVE,SQBSTR,.RTER
ADDRS,OADDRS,.ARER

FDV,FML,FLX,FLF,FEQS,SQR,ARET,TAN,~~Y,COPY,SIN,
MOVE,MADD,FHALF,COS,MDVD,RSAV,XPAK,FUPK,PACK,
UPAK,FNOR,ATN,FXF,ASAV,ALG,MSUB,FSB,RRET,FAD,
EXP ,SIGN, .RTE~
RST
FNOR,RST
RST
ADDRS,ARET,ASAV
.RTER
.RTER

ADDRS,ARET,ASAV,STCOM
ADDRS,ARET,ASAV,DIMMU,STCOM
ADDRS,ASAV,OADDR,.RTER
.ARER,MPY

ARET ,ASAV, .ARER, DVD
RETURN , SAVE

C-47

Licensed Material - Property of Data General Corporation

SUBROUTINES REFERENCED BY RUN-TTME- ROUTINES (Continued)

Routine

SETCURRENT
SFREE t
SHIFT

SIGN
SIN
SIZE
SQR
STACH
STCOM t

STCV
STIME *
STRCMP
STREQ
SUBSCRIPT
SUBSTR

SUNSET
SUSET
TAN
TRACE *
ur-mL
UPAK
VPRC

WORD READ
WORDWRITE
WRITA t
WRITE *

XENTL
XFL
XPAK
XUNM
XUPK

.ARER

.CAER

.CAPO
• CARD
.CAWR
.RTE,0'
.RTER
.SPINIT

*

*
*
*t

Subroutines Called

RETURN, SAVE.
RETURN, SAVE, .ARER
ADDRS,ARET,ASAV

BREAK,CMOVE,FAD,FLIP,FML,FSB,MOVE,PLY,VPRC
ADDRS,ARET,ASAV,DIMMU,.ARER
CMOVE,FAD,FDV,FHALF,FML,FNOR,MOVE,.RTER
.CAER, .CAWR
.ARER

ASTR,CALL,OADDR,RRET,RSAV,.ARER,IPTNR
SAVE,RETURN,.ARER
ADDRS,ARET,ASAV,SUSET
ADDRS,ARET,ASAV,SUSET
.ARER,MPY
ADDRS,ARET,ASAV,.ARER

BREAK,CMOVE,COPY,FDV,FLIP,FML,FSB,PLY,VPRC
SAVE, RETURN
SAVE,RETURN,MPY
LST

• CAER, • CARD
• CAER, • CAWR
ADDRS,DIMMU,.ARER,MPY
ABRETN,ASTR,CALL,OADDR,RETURN,SAVE,.RTE,0',MPY,
OPTNR
PACK,UPAK,XPAK,XUPK,MSUB,MADD,IINTR
FNOR,IOVFL,RST
IOVFL,MNEG,XUMN
FLX,IOVFL,RST
FLX,MNEG

.RTE,0',CALL,DVD,SAVE,ALLOCATE,RETURN,.RTER

.RTE,0',CALL,DVD,SAVE,ALLOCATE,RETURN,.RTER

.RTE,0',CALL,DVD,SAVE,ALLOCATE,RETURN,.RTER

.RTE,0',CALL,DVD,SAVE,ALLOCATE,RETURN,.RTER

.ARER,MAIN (ALGOL source routine)

C-48

Licensed Material - Property of Data General Corporation

ROUTINES THAT USE SYSTEM CALLS

The following table lists system routines alphabetically,
together with the names of run-time routines that call them.

System Call

.APPEND
• BREAK
.CHSTS
.CLOSE
.CRAND
.DEBL
.DELETE
.EOPEN
.ERTN
.EXEC
.GDAY
.GPOS
.GTOD
.MEM
.MEMI
.OPEN
.OVLOD
.OVOPN
.PCHAR
.RDB
.RDL
.RDR
.RDS
• RENAME
• RESET
.RTN
.SDAY
.SPOS
.STOD
.SYSI
.WRB
.WRL
.WRR
.WRS

Routines that Use the System Call

APPEND
.ARER (long error), TRACE
FILESIZE
CLOSE
APPEND, OPEN, ACCESS
.SPINIT
DELETE
ACCESS
.RTER (short error), TRACE
CHAIN, TRACE
GTIME
FILEPOSITION
GTIME
.SPINIT
.SPINIT
OPEN
OVLOD
OVOPN
ERROR, .ARER (long error)
• CARD, • CA~'i1R, • CAPO
COMARG, LINEREAD,READ
GETRANDOM
COMARh, BYTE READ
RENAME
.SPINIT
.SPINIT, .ARER (long error)
STIME
POSITION
STH-1E
.SPINIT
FLUSH, .CARD, .CAWR, .CAPO
LINEWRITE, WRITE, OUTPUT, FORMAT, PRINT
PUTRANDOM
BYTEWRITE

C-49

APPENDIX D

OPERATING PROCEDURES

STAND-ALONE OPERATING SYSTEM

Loading the ALGOL Compiler

Extended ALGOL is a two-pass compiler for DGC computer config­
urations having 12K or more of memory. The tapes for ALGOL are:

Pass 1

Page 2

Tape #1
Tape #2

Tape #1
Tape #2

The user should exercise care in loading the ALGOL compiler.
Loading will take some time and, if interrupted, must be re­
started from the beginning.

To start the loading process, Tape #1 of Pass 1 is mounted in
the input device (PTR or TTR) and loaded. When the tape is
loaded, the system gives the following prompt:

LOAD PASS 1 TAPE #2, STRIKE ANY KEY

Tape #2 of Pass 1 is mounted in the reader, and the user strikes
any teletypewriter key. When the tape is loaded, the system
will ask what input device is being used as follows:

INPUT (l-TTR, 2-PTR):

The user responds with 1 or 2 as appropriate and follows the
digit with a carriage return. The system then asks what output
device is being used with the following prompt:

OUTPUT (l-TTP, 2-PTP):

The user responds with 1 or 2 as appropriate and follows the
digit with a carriage return. The system then gives the
following prompt:

INPUT: ALGOL SOURCE PROGRAM
LOAD ~, STRIKE ANY KEY

D-l

+xxx is TTR or PTR

Loading the ALGOL Compiler (Continued)

The user then mounts the ALGOL source program in the TTR or PTR.
The source program is to be read from the input device, and an
intermediate tape is to be punched out on the output device
(TTP or PTP). The user makes sure that the output punch is
turned ON, and then strikes a teletypewriter key. When the
intermediate tape has been punched, the following prompt is
given.

LOAD PASS 2, TAPE #1, STRIKE ANY KEY

The user loads the tape into the reader and strikes a teletype­
writer key. When the tape is read in, the following prompt
is given:

LOAD PASS 2, TAPE #2, STRIKE ANY KEY

The user loads the tape into the reader and strikes a teletype­
writer key. when the tape is read in, the following prompt
is given:

INPUT: INTERMEDIATE TAPE
LOAD xxx, STRIKE ANY KEY +xxx is TTR or PTR

The user loads the intermediate tape into the appropriate device
and strikes a teletypewriter key. When the tape is loaded,
results of compilation of the source code are output to the
appropriate output device.

The sequence of prompts and responses for paper tape reader
and punch as input and output devices would appear as follows:

LOAD PASS 1, TAPE #2, STRIKE ANY KEY
INPUT (l-TTR, 2-PTR): 2)
OUTPUT (l-TTP, 2-PTP) :-2)
INPUT: ALGOL SOURCE PROGRAM
LOAD PTR, STRIKE ANY KEY
LOAD PASS 2, TAPE #1, STRIKE ANY KEY
LOAD PASS 2, TAPE #2, STRIKE ANY KEY
INPUT: INTERMEDIATE TAPE
LOAD PTR, STRIKE ANY KEY

D-2

+user responses underlined
) is carriage return

Assembling Source Programs

The output of compilation must be assembled with the DGC Extended
Assembler. Each ALGOL-generated program is complete, with all
necessary declarations and pseudo-ops to assemble using the Extended
Assembler. (Although operation of the assembler is explained in
the following paragraphs, the user can obtain additional information
in the Extended Assembler User's Manual, document number 093-000040.)

The assembler can be loaded from paper tape, at which point it prints
the prompt ASM. If the system has a cassette or magnetic tape unit,
the CLI command ASM should be issued. In either case, the format of
the ASH command line is:

ASM {~} filename-l .• , filename-n)

The ASM command line assembles one or more ASCII source files.
Output can be an absolute or relocatable binary file. Files are
assembled in the order specified in the command, from left to
right. The same cassette or magnetic tape unit cannot be used
for more than one output file or for both input and output, but
can be used for more than one input file.

Action taken by the assembler is determined by the key (0, 1, or 2)
specified in the ASM command line, as follows:

o

1

2

Assembler Action

Perform pass one on the specified source file,
then halt with the highest symbol table address
(SST) in ACO.

Perform two passes on the specified input files,
producing the specified binary and listing files.
At the completion of pass two, the assembler
outputs a new prompt (ASM) and awaits a new
command line.

Perform pass two only on the specified input files,
producing the specified relocatable binary and
listing files. At the completion of this pass, the
assembler outputs a new prompt (ASM) and awaits a
new command line.

D-3

Assembling Source Programs (continued)

The following global switches can be appended to the key number.

Switch

IE

IT

Iu

Assembler Action

Suppress assembly error messages, normally
output to the $TTO. Because many errors can
pass the compiler, but are detected by the
assembler (especially errors in the use of
reserved mnemonics), the assembly error mes­
sages should not be suppressed.

Suppress the listing of the symbol table.

Include local (user) symbols in the binary
output file.

The following local switches can be appended to a file name:

Switch

IB

IL

IN

IP

IS

I!!.

Assembler Action

Output absolute or relocatable binary file on
the specified device.

Output the listing file on the specified device.

Do not list the specified input file on pass two.

Pause before accepting input from the specified
device. The message:

PAUSE - NEXT FILE, devicename

is printed by the assembler, which waits until
any key is struck on the Teletype console before
continuing assembly.

Skip the specified source file during pass two.

Repeat the specified source file n times, where
n is a digit in the range of 2 through 9.

Loading User Programs

The Extended Relocatable Loader is used to load the binary tapes
produced by the assembler. (For additional information on the loader,
refer to the Extended Relocatable Loaders User's Manual, document
number 093-000080.) All ALGOL relocatable binary programs must be

D-4

Loading User Programs (continued)

loaded first. If no main program is designated, the first program
loaded is regarded as the main program at the start of execution.
If a main program or procedure is designated, programs can be
loaded in any order: a jump is made to the designated main program
at the start of execution. A main program is designated by the
word MAIN as the identifier of a procedure with no formal parameters
or as the label of a begin block, as follows:

procedure MAIN; or MAIN: begin

The Relocatable Loader can be loaded from paper tape, at which
point it prints the prompt RLDR. If the system has a cassette
or magnetic tape unit, the eLI command RLDR should be issued.
In either case, the format of the RLDR command line is:

RLDR main [subprograms] ALGOL-library-tapes trigger t

[
cassette-library] SOS-main-library)
mag-tape-library

where:

main is the name of the ALGOL main program or procedure.

subprograms are the names of one or more optional procedures
to be called by main.

ALGOL-library-tapes are the names of ALGOL library tapes, to
be loaded in the following order:

1. ALGOL Library Tape #1
2. ALGOL Library Tape #2
3. ALGOL Library Tape #3
4. One of the following library tapes:

Nova Hardware Multiply/Divide Tape,
if the machine configuration has the
Nova multiply/divide hardware option.

Nova 800.j1200/Supernova Hardware
Multiply/Divide Tape, if the machine
configuration has the Nova 800, Nova 1200,
or Supernova multiply/divide hardware
option.

Software Multiply/Divide Tape, if the
machine configuration has no multiply/
divide hardware option.

D-5

Loading User Programs (continued)

trigger is the SOS trigger, created during SOS system
generation, containing external symbols for
those devices that are part of the system.
(Refer to the Extended Relocatable Loaders
User's Manual.)

cassette-library is the name of the tape containing the cassettl
-- library, to be loaded only when cassette units are

part of the system.

mag-tape-library is the name of the tape containing the mag­
netic tape library, to be loaded only when mag­
netic tape units are part of the system.

SOS-main-library is the name of the tape containing the main
library and all driver routines for SOS I/O,
except cassette and magnetic tape units.

Upon completion of a successful load, the message

OK

is printed on the console and the system halts with the loaded
program in core.

Executing and Restarting User Programs

A loaded program can be executed by pressing CONTINUE or by using
the restart procedures:

1. Set switches to 000377.

2. Press RESET.

3. Press START.

Producing a Trigger

A trigger is produced using the SOS SYSGEN program, the binary loade:
or the core image loader/writer. Basically, the SYSGEN program acceI
a command line containing device driver entry symbols and outputs a
file containing external references to the named devices. When the
trigger is loaded in the RLDR command line (preceding other SOS
libraries), the external normal references on the trigger load the
named device drivers from the SOS libraries.

D-6

I
I

Producing a Trigger (Continued)

The format of the SYSGEN command line is:

(SYSG) driverl, .•• drivern .RDSI [.CTB] output-device/O

[triggername/T]

where: driverlis one or more device driver entry
symbols selected from the following chart:

Device Name Device Driver Device
Entry Symbol

$CDR .CDRD card reader
CTO .CTAD cassette unit ° CTO,l .CTUl cassette units ° and 1
CTO,1,2 .CTU2 cassette units 0,1, and 2

· · · · · · · · ·
CTO,1,2,3,4,5,6,7 .CTU7 cassette units 0,1,2,3,4,5,

6 and 7
$PTP . P'I'PD high-speed paper tape punch
$PTR .PTRD high-speed paper tape

reader

$LPT .LPTD 8O-column lineprinter
.L132 132-column line printer

MTO .MTAD magnetic tape unit ° MTO,l .MTUl magnetic tape units ° and 1

· · · · · · · · ·

I

i

MTO,1,2,3,4,5,6,7 .MTU7 magnetic tape units 0,1,2,3,1
I 4,5,6 and 7

$PLT .PLTD incremental plotter
$'l'TO/$TTI .STTY teletype printer and key- I

board
TTI1/TTOl .TTIl second teletype printer

and keyboard
.R'rCl real time clock, 10HZ
.RTC2 real time clock, 100HZ
.RTC3 real time clock, 1000HZ
.RTC4 real time clock, 60HZ

.RTC5 I real time clock, 50HZ

For more detailed instructions for producing a trigger for SOS
systems, refer to the Stand-alone Operating System User's Manual,
093-000062.

D-7

Error Messages

The possible error messages resulting from the ASM or RLDR
command lines are:

Error Message Meaning

NO END No END statement was specified in
any source program.

NO INPUT FILE
SPECIFIED No input file name was specified.

SAVE FILE IS READ/ The save file device must permit
WRITE PROTECTED both reading and writing: only

cassette and magnetic tape units
are Eermitted as save file devices.

I/O ERROR n Input/output error n - -where n =
1 Illegal file name.
7 Attempt to read a read-protected

file.
10 Attempt to write a write-

protected file.
12 Non-existent file.

D-8

ASM RLDR

X

X

X

X X
X X

X X

X X

RDOS OPERATING SYSTEM

Loading the ALGOL Compiler

The ALGOL compiler for the Real Time Disk Operating System
configuration is supplied, as are other system tapes, as dumped
tapes to be loaded using the LOAD command as described in the
RDOS Manual, Document #093-000075. The tapes are:

ALGOL Dump Tape #1

ALGOL Dump Tape #2

Tape #1 contains AL1.SV, ALGOL.SV and LIBRARY.CM. Tape #2 con­
tains AL2.SV. The ALGOL debugger, TRACE.SV, is supplied on a
separate tape.

The ALGOL library tapes for RDOS are transferred to disk using
the XFER command. The library tapes are input in the following
order.

ALGOL Library Tape #1
ALGOL Library Tape #2
ALGOL Library Tape #3
Multiply/Divide tape, as described 1n Step 4, page D-5.*
Dummy SOS.LB

Compiling, Loading, and Executing ALGOL Programs under RDOS

The command invoking the ALGOL compiler to compile a main pro­
gram or subroutine 1S described on the following page.

Each ALGOL program is compiled separately. The main program, its
subprograms, and the library are theh loaded (RLDR command) .

To execute, give the name of the main program and a carriage
return, as described in the RDOS Manual.

A sequence of commands for compilation, loading, and executing
a program might be:

ALGOL MAIN))
ALGOL SUB1)
ALGOL SUB2
RLDR MAIN SUBl SUB2 @LIBRARY.CM@)
MAIN)

*Note: The appropriate Multiply/Divide tape can be linked by
the user to SOFTMPYD.LB or LIBRARY.CM can be changed.

D-9

COMMAND
FORMAT:

PURPOSE:

SWITCHES:

GLOBAL:

LOCAL:

ALGOL inputfilename [outputfilename]

To compile an ALGOL source file. Output may be
a relocatable binary file, intermediate source
file, listing file, or combinations of all three.
Asterisk and dash conventions are not permitted in
the command line.

By default, command execution produces an inter­
mediate source file, inputfilename.SR (compiler
output), and a relocatable binary file inputfile­
name.RB (assembler output). Once assembly is
successfully completed, the intermediate source file
is deleted. By default, no listing is produced.

/A
/B
/E

/L
/N
/S

/B

/E
/L

/S

Suppress assembly.
Brief listing (compiler source program input)
Suppress compiler error messages at $TTO.
(Do not suppress assembler error messages.)
Produce listing to inputfilename.LS.
Do not produce relocatable binary file.
Save intermediate source output file.

Direct relocatable binary output to specified
file name. (Overrides global /N.)
List errors to specified file name.
Direct listing to specified file name.
(Overrides global /L.)
Direct intermediate source output to spec­
ified file name.

EXTENSIONS: On input search for inputfilename.AL. If not found,
search for inputfilename. On output, produce
inputfilename.RB by default and other files with
.LS or .SR extensions as determined by switches.

EXAMPLES: ALGOL MAIN)

Produce relocatable binary file, MAIN.RB.

ALGOL/E/B SUBR $LPT/L)

Produce relocatable binary file SUBR.RB with a
brief ALGOL source listing to the line printer.
Suppress compiler error messages.

ALGOL/A RAY $PTP/S)

Do not invoke an assembly phase. Punch inter­
mediate source output on high speed punch.

D-10

using Disk Files to Produce Stand-Alone Files

To use RDOS to produce a stand-alone ALGOL program:

1. Compile the program as usual under RDOS.

2. Produce an appropriate Trigger using SOS SYSGEN.

3. Make sure that the actual SOS.LB (not the dummy) is on
the system.

4. Load the assembled program, the trigger, and library,
using the /c switch which causes the save file to start
at location zero.

5. Make an absolute binary file, using the MKABS command
with a /Z switch.

ALGOL OCTAL +compile program

PROGRAM IS RELOCATABLE
R
LIST SOS.LB
SOS.LB 8578 +size of SOS.LB shows that this is

actual stand-alone operating system.
@LIBRARYaCM@+load program with library begin­

ning at O •

R
RLDR/C OCTAL TRIG

• MAIN

R

NMAX ,016227
~MAX 16,016150
CS~E

EST
SST

MKABS/~ OCTAL $PTP
R

+Make absolute binary for SOS.

If SOS.LB is not on disk"read it in, e.g.,

XFER $PTR SOS. LB)

To restart the loaded program, examine the contents of location
405 through the console switches. Location 405 contains the
starting address of the program.

D-ll

APPENDIX E

TIPS FOR EFFICIENT CODING AND_

REDUCED EXECUTION TIME

1. GENERAL

Any ALGOL expression or statement that maps directly into
an assembler instruction will provide maximum efficiency,
e.g., adding and subtracting integer 1 or mUltiplying by
integer 2 when values are single-precision

2. NUMERICS - TYPE AND PRECISION

A. Default one-word (single-precision) integers and pointers
are fast and efficient. They are not checked for over­
flow and may, in case of overflow, produce erroneous
results.

Multi-precision integers and floating-point values
take more space, since interpreters must be brought in.

It is possible, if overflow checking is desired on one­
word integers, to force checking by declaring the
precision to be onei this forces use of the multi­
precision interpreter.

rnteger (1) array A[3,4], +array elements checked for
overflow

It is also possible to declare a floating-point number
with one-word precision. However, only a two or three
digit decimal value can be stored in a one-word man­
tissa.

B. Unnecessary type conversion should be avoided.

real X,Yi integer

X:=y+2.0i
j:=i+2i

i,ji

E-l

+not X:=y+2i
+not j:=i+2i

2. NUMERICS - TYPE AND PRECISION (Continued)

C. Unnecessary resetting of precision should be avoided.
Less code is generated when the precision of variables
is kept the same.

D. When raising a number to a power, the most efficient
code is generated when a number is raised to an integer
literal. A power >5 will require the use of the float­
ing-point interpreter.

E. When floating-point precision is greater then default,
care should be taken to insure that literals used with
the variable in expressions have a like precision if
the literal is a repeating fraction in binary. To
define the precision of a literal, the number is fol­
lowed by the letter P which in turn is followed by the
precision in words.

For example, suppose x has a precision of 4 words. The
result of evaluation when 1/3 is added to x will differ
depending upon the precision of the literal.

real (4) x, y;

y: = x+ 1. 0/3.0;

y:= x+l.OP4/3.0P4;

~1/3 has only default precision

~1/3 has 4-word precision

F. When formatting floating-point numbers using the I/O
procedure, output, round the output to the number of
digits desired.

output (1, "#.##", x+.005); ~.005 provides rounding to
2 decimal places

The procedures write and print do not require rounding-­
only the format specification of the output procedure
requires this.

G. When formal and actual parameter types do not agree,
both specifiers are generally kept. If the precisions
differ, then the precision of results cannot be defined.
Be careful about matching precision in passing param­
eters.

E-2

2. NUMERICS - TYPE AND PRECISION (Continued)

H. The precision of run-time routines is limited to 15
words on mUlti-precision integers and floating-point
(60 digits).

I. The precision of ALGOL library mathematical functions
is limited to about 25-30 digits.

J. Some type conversion errors are caught on the first
compiler pass, but many do not show up until the
second pass. As a general rule, the compiler initially
accepts any type, whether or not it exists or is legal
in the given expression, and later on in Pass 2 gives
the error message:

illegal operand

3. EXPRESSIONS

If an expression is used several times, it is more effi­
cient to do the arithmetic once only. This includes
pointer expressions and subscripting.

ip := p+i;

ip+J •••

ip+k

m : = z [nl ;

Rl .- mt2+m;

4. SUBSCRIPTING

It is more efficient to use based variables than subscripts
of arrays.

E-3

4. SUBSCRIPTING (Continued)

begin based integer j; pointer p;
allocate (p,30);
(p+i)~j:=expression;

is more efficient than:

begin integer array A[O:lOO];
a[i] .- expression;

5. BIT HANDLING AND MASKING

Whenever possible, keep masking literals within the default
one-word integer limit. Multi-precision integers can be
used with and~ or~ and not operations, but they will bring
in the multi-precision interpreter, requiring additional
code. Any literal >2 16 _1 forces multi-precision arithmetic
unless the user specif~es single-precision by appending Pl
precision.

Use of binary and octal literals is more efficient than
use of the shift and rotate functions.

6. COMPARISON OF REAL VALUES

Be careful about equality comparisons involving real vari­
ables. Real variables are very seldom equal.

7. LITERALS

Declaring a literal is more efficient than assigning a
value to a variable.

literal pi(3.14159);

is more efficient than:

pi := 3.14159;

8. STATEMENTS

A. In a for statement, a step clause 1S more efficient than
a list.

E-4

8. STATEMENTS (Continued)

B. The control variable in a for statement must be declared
with the precision needed for the range of the variable.

for i := -32000 step 1 until 32000 ~be sure i is de-
do ••• clared: integer (2)

C. In many instances, multiple assignment generates better
code than individual assignment.

X := Y := 0; is more efficient than:

X .- 0;
y := 0;

D. The null statement is defined by a semicolon. An extra
semicolon appearing in the declaration section of a
block or procedure will cause termination of declarations
since it will be interpreted as the beginning of the
statement section.

begin; integer a,b; ~no declarations will be inter­
preted because of the semi­
colon after begin.

begin real c;; integer a; ~the integer declaration will
not be interpreted because
of the null statement follow­
ing the real declaration.

E. Programmers who are used to BASIC must be careful about
the order of clauses in the for statement.

for • •• step • .. un ti l. .. do

E-5

~step and until are both re­
quired and attempts to use
a FOR-TO or FOR-UNTIL for­
mat as in BASIC will cause
errors.

9. STRINGS

A. To make a string shorter, assign a shorter string to
the string variable function.

I x :=: substr

I x : = "";

(x,1,3); +if x was originally 5
characters, the result of
the first assignment is a
3-character string and of
the second is a null string.

B. To make a substring of a string, using the same string
identifier, first copy the string.

a:="XYZYZX";
b:=a;
a:=substr(b,2,4); +avoids attempting to copy

string a to itself.

D. Although a based string 'looks like a string, the pro­
grammer should remember that the specifiers are dif­
ferent and that the current length is always equal to
the maximum length for a based string. For example,
if p is a pointer and s is a based string:

p-+s : = "";

The statement in the example does nothing. No adjust­
ment of string length can be made when there is no
current length.

10. SCOPE AND STACK HANDLING

A. Strings and arrays require more space than scalars. For
such quantities, setting up a number of blocks so that
space is allocated and released as blocks are entered
and exited is efficient. (The BLKSTART and BLKEND run­
time routines are quite efficient.)

B. Temporaries (assigned storage) can be reused so that the
limit of a page need not be exceeded, and temporaries
should be limited to a single page whenever possible.
With each additional page of assigned storage, the loss

E-6

10. SCOPE AND STACK HANDLING (Continued)

B. in space and time becomes greater. .SP must be reset
many times. Temporaries usually exceed the page limit
only when there are a great many large-precision tempo­
raries and long strings.

C. Page 0 contains one word for .FP,
for each run-time routine called.
own and assigned external storage
can cause an overflow of page O.
and external variables.

11. LABELS AND TRANSFERS

A. Declarations cannot be labeled.

one for .SP, and one
In addition, assigned

is in page 0, which
Avoid too many own

B. Coding between two labels is optimized. Therefore, it
is efficient to keep transfer points down to a min­
imum and to create, where possible, a single body of
code into which to transfer.

C. The only way to transfer to (go to) another procedure is
through a parameter label.

12. IDENTIFIERS

A. External variable and procedure names must not conflict
with ALGOL Library routine identifiers. For a com­
plete list of these identifiers, print a core map
during loading.

B. External identifiers must be unique within the first
five characters for assembler compatibility.

C. Every variable must be declared even if it appears only
on the lefthand side of an assignment or as the control­
led variable in a for statement.

13. FUNCTIONS AND PROCEDURES
•

A. Use of built-in functions is relatively inexpensive in
space.

B. Parameters of built-in functions are converted as re­
quired.

C. It is not possible to pass built-in functions by name.

E-7

13. FUNCTIONS AND PROCEDURES (Continued)

D. Care must be taken when passing procedures by name when
three or more levels of procedures are involved. When
stack frames are created, the outermost procedure is
at level one, the next at level two, etc. When an
attempt is made to reference a global variable from a
procedure at a lower level, the search is conducted for
the next higher level, then the next, etc. However,
it is possible that the search will actually encounter
a lower level:

Stack Frames

level 1

level 2

X

Y

Z

Stack frame of X; level 1.

Stack frame of Y, a procedure
internal to X at level 2.

I level 3
Z is a procedure internal to Y at
level 3

i

I level 3
I
I

I level 2

z

Y2

Z calls itself; level 3.

Y2 is a procedure internal to X
at level 2 and passed as a param­
eter to Y and Z.

Suppose X passes Y2 to Z. Then later there is a refer­
ence within Y2 to a variable that is global to Y2 and
local to X. When a search is attempted up the stack
frames from a level 2 procedure, the search algorithm
expects either to encounter the same level procedure
(2) or a higher level procedure (1). When level 3 is
encountered instead, results of referencing the global
variable are undefined.

E. Taking the address of a function value will produce an
undefined result.

F. Some built-in functions, such as the mathematical
functions, allow expressions to be used as parameters.
Other built-in functions, such as the address function,
allow only variables to be used as parameters. For
such built-in functions, be sure to assign the desired
expression to a variable and then use the variable as
the function parameter.

E-8

14. RUN-TIME OVERHEAD

For any ALGOL programming, the following programs are
always required:

SPINIT 89 words Stack initialization.
CALL 17

} SAVE 239 Standard ALGOL call/savel
RETURN 166 return.

ASAV}
ARET 27 Runtime save and return.

ARER 119 (short fOrm)} Runtime error.
ARER 453 (long form)
ADDRS 13
OADDR 14 Used by runtime to inter-

pret parameter descriptors.
BLKSTART} 25
BLKEND Block start and end.

The basic package, as defined above, does not include floating
point, the string package, or the I/O package supplied with
ALGOL. It requires 15 words of page zero and approximately
.6K additional words. (Under RDOS, page 1 is always reserved
by the loader; this is not included in the stated requirements.)

The basic package plus array allocation requires 1.1 K.

The basic package plus floating point requires 1.2 K. The use
of floating point functions is not included.

fue basic package plus generalized floating point and multi­
precision integer requires 2.5 K.

The basic package plus string package requires 1.4 K.

The basic package plus formatted I/O requires 3.4 K.

If all the above features are included, the package requires
4.3 K plus 55 words in page zero.

For the stand-alone operating system, add 1.2 K to the overhead
given above.

15. COMPILER ERRORS

The up arrow does not necessarily point to the error itself.
If no error is found where the arrow points, check to the
left and to the right of the arrow in the statement. If
there still appears to be no error, check previous

E-9

15. COMPILER ERRORS (Continued)

statements that would affect the statement in which the
error was found.

16. STRING SPECIFIERS

In allocated storage, the data area for a string scalar
contains the string data. However, the data area for an
array of strings contains the string specifier for each
string of the array. To manipulate specifiers rather
than the data, use a based string array consisting of
one element.

E-IO

APPENDIX F

SAMPLE PROGRAMS

The programs following show some of the features of DGC ALGOL.
They range from very simple programs, such as FACTORIAL, to a
sophisticated program', HELP.

FACTORIAL, defined in the main program shown below, is a recursive
procedure. The precision of values returned is set at 15 to allow
large mUlti-precision integers. Output in the main program is
directed to the teletype by the open call. Note also the output
call, where the format permits a variable string of digits,
immediately followed by a carriage return. The first three number
symbols allow up to three digits for the value of N. That value
is followed by a triple space and then by tne value of factorial
N and the carriage return.

Output from the program is shown on the following page.

BSGIN

INTEGER (15) PROCEDURE fACTORIAL (N); INTEGER (15) N;
FACTORIAL := If N>1 THEN N*FACTORIAL(N-l) ELSE 1;

INTEGER (15) N;

OPEN (I., "STTO");
FOR N : = 1 STEP 1 UNTIL 50 DO

OUTPUT (1., "### #<15>"., t·J., fACTORIAL(N»;

END

F-l

1
? ?
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

18 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
21 5109094217170944~000

22 1124000727777607680000
23 25852016738884976640000
24 620448401733239439360000
25 15511210043330985984000000
26 403291461126605635584000000
27 10888869450418352160768000000
28 304888344611713360501504000000
29 8841761993739701954543616000000
30 265252859312191053636308480000000
31 8222838654177922817725562880000000
32 263130836933693530167218012160000000
33 868331761R811886495518194401280000000
34 295232799039604140847618609643520000000
35 10333147966386144929666651337523200000000
36 371993326789901217467999448150835200000000
37 13763753091226345046315979581580902400000000
38 523022617466601111760007224100074291200000000
39 20397382081197443358640281739902~97356800000000
40 815915283247897734345611269596115894272000000000
41 3345?526613163807103170062053440751665152000000000
42 1405006117752879898543142606244511569936384000000000
43 60415263063373835637355132068513997507264512000000000
44 26582715747884487680436258110146158903196385280000~00g0

45 119622220865480194561963161495657715064383733760000000000
46 5502622159812088949850305428800254892961651752960000000000
47 258623241511168180642964355153611979969197632389120000000000
48 12413915592536072670862289047373375038521486354677760000000000
49 608281864034267560872252163321295376887552831319210240000000000
50 3~414093201713378043612608166064768844377641568960512000000000002

F-2

The program on the page following uses a for loop to compute
a series of X-Y coordinates for an earth satellite at equal
time intervals.

Note that a large part of the header information for output and
the format for real values to be output are written as literals,
referenced in output statements. Shorter formatting information
appears directly in the output call format.

The values of the coordinates and the information on which the
coordinates are based is declared with 8-word precision to pro­
vide greater accuracy.

F-3

BEGIN

COMMENT: *****************************
* * * SATELLITE ORBIT PROBLEM *
* *

THIS PROGRAM COMPUTES THE PATH OF A SATELLITE IN AN XY
COORDINATE SYSTEM. THE POINTS SPECIFY THE POSITION OF THE
SATELLITE AT EQUAL TIME INTERVALS, I. E., THE SATELLITE
REQUIRES THE SAME AMOUNT OF TIME TO MOVE FROM POSITION 2
TO POSITION 3 AS FROM POSITION 1 TO POSITION 2. C IS A
CONSTANT DETERMINED BY THE GRAVITATIONAL ATTRACTION OF THE
EARTH AND THE TIME INTERVAL;

INTEGER K, N;
REAL (8) C, Xl, Y1, X2, Y2, X3, Y3;

LITERAL
TITLE ("<15>COORDINATES OF SATELLITE
HEADER ("POINT X COORDINATE
FORMAT ("## ###.################

OPEN (I, "$TTI");
OPEN (2, "$TTO");
OUTPUT (2, "NUMBER OF POINTS: ");
READ (1, N);
OUTPUT (2, "GRAVITATIONAL CONSTANTc
READ (1, C);
OUTPUT (2, "COORDINATES: If);

READ (1, Xl, Y1, X2, Y2);

OUTPUT (2, TITLE);
OUTPUT (2, HEADER) ;

OUTPUT (2, FORMAT, 1 , Xl, Y 1);
OUTPUT (2, FORMAT, 2, X2, Y2);

FOR K := 1 STEP 1 UNTIL N DO BEGIN

ORBIT<15><15>"),
Y COORDINATE<15><15>"),

###.################<15>");

If) ;

X3 := 2 * X2 + Xl * (C/«Xlt2+Y1t2) t 1.5) -1);
Y3 := 2 * Y2 + Yl * (C/«X1t2+Y1t2) t 1.5) -1);
OUTPUT (2, FORMAT, K+2, X3, Y3)J
Xl: = X2;
X2 := X3;
Y1 := Y2;
Y2 := Y3J
ENDJ

END
R
ALGOL SATELLITE

F-4

SATELLITE
NUMBER OF POINTS: 10
GRAVITATIONAL CONSTANT: 1000
COORDINATES: 1031 64~ 94 1 81

COORDINATES OF SATELLITE ORBIT

POINT

1
2
3
4
5
6
7
8
9

10
11
12
R

X COORDINATE

103.0000000000000000
94.0000000000000000
85.0577616620752599
76.1647242968633792
67.3105891368010237
58.4854161679414929
49.6808463553870941
40.8904370928790893
32.1094811295371042
23.3346450477221041
14.5636091560343964

5.7947744332426462

SATELLITE

Y COORDINATE

64.0000000000000000
81.0000000000000000
98.0358907414836566

115.1141780658369049
132.2373033010300066
149.4042015409320096
166.6115764110970910
183.8551251825812089
201.1303768977927635
218.4331453544294743
235.7597177981035999
253.1068951511053371

NUMBER OF POINTS: 4
GRAVITATIONAL CONSTANT: 1000
COORDINATES: 1031 100.51 941 81

COORDINATES OF SATELLITE ORBIT

POINT

1
2
3
4
5
6

X COORDINATE

103.0000000000000000
94.0000000000000000
85.0345613476326838
76.1183236679782270
67.2756193048082811
58.5485482974201304

R
SATELLITE

Y COORDINATE

100.5000000000000000
81.0000000000000000
61.5337224799716963
42.1098415428129842
22.7391716602875985

3.4324719501779192

NUMBER OF POINTS: 4
GRAVITATIONAL CONSTANT: 1400
COORDINATES: 1031 100.51 941 81

COORDINATES OF SATELLITE ORBIT

POINT X COORDINATE

1 103.0000000000000000
2 94.0000000000000000
3 85.0483858866857573
4 76.1656531351695178
5 67.3858275531441648
6 58.7676396500004157

Y COORDINATE

100.5000000000000000
81.0000000000000000
61.5472114719603748
42.1537781599381779
22.8348159769868502

3.6053119497447690

F-S

The program following produces a plot of a two-dimensional func­
tion:

Z = F (X, y)

using strings. The program demonstrates the way in which the
substr function can be used to plot topological pro~lems such
as the earth's magnetic field or land contours, using different
letters within a string to represent different values.

BEGIN REAL x .. Y;
STRING (80) LINE;
LITERAL SYMBOL (itA BCD E F G H I J K ") .. CR ("< 15>"H
EXTERNAL REAL PROCEDURE FNC;

OPEN (0.. "$TTO") ;

FOR Y := 30 STEP -1 UNTIL -30 DO BEGIN

END

FOR X := -35 STEP 1 UNTIL 35 DO

SUBSTR(LINE .. X+36) := SUBSTR(SYMBOL .. FNC(X .. Y»;

WRITE(0 .. LINE .. CR);
END

REAL PROCEDURE FNC (X .. Y); VALUE X .. Y; REAL X .. Y;
FNC := (COS(X/7) + COS(Y/7) + 2) * 2.5;

F-6

BBB AAAAAAAAA BBB ecce ecce BBB AAAAAAAAA BB8
BB AAAAAAAAAAA BB eeeee eeeee BB AAAAAAAAAAA BB

BBB AAAAAAAAAAAAA BBB eeeeeeeeeceee BBB AAAAAAAAAAAAA BBB
BBB AAAAAAAAAAAAAAA BBB eeeeeeecece BBB AAAAAAAAAAAAAAA B8B
BB AAAAAAAAAAAAAAAAA BBB eeeeceeee BBB AAAAAAAAAAAAAAAAA BB
8B AAAAAAAAAAAAAAAAA BBB eeeeeee BBB AAAAAAAAAAAAAAAAA 8B
B AAAAAAAAAAAAAAAAAAA BBB eeeee B8B AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA BBB eee B8B AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA B8B e 8B8 AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA B8B e BBB AAAAAAAAAAAAAAAAAAA B
8 AAAAAAAAAAAAAAAAAAA BBB eee BBB AAAAAAAAAAAAAAAAAAA B
B8 AAAAAAAAAAAAAAAAA BBB eeeee BBB AAAAAAAAAAAAAAAAA 88
B8 AAAAAAAAAAAAAAAAA B88 eeeeeee BBB AAAAAAAAAAAAAAAAA 88
88B AAAAAAAAAAAAAAA 8B8 eeeeeeeee B88 AAAAAAAAAAAAAAA BBB

B88 AAAAAAAAAAAAA B88 eeeeeeeeeee BBB AAAAAAAAAAAAA BBB
BB AAAAAAAAAAA BB ecce ecce BB AAAAAAAAAAA BB
BBB AAAAAAAAA BBB eee eee BB8 AAAAAAAAA 8BB

e BBB AAAAA B88 eee eee BBB AAAAA BB8 e
ee BBBB BBB8 eee DDDDD eee 8BBB BBBB ee
eee BBBB BBBB ee DDDDDDDDD ee B888 B888 eee
eee BB8B 8BBB ee DDDDDDDDDDD ee BB88 8BBB eee
eee BBBBBBBB8BB ee 00000 00000 ee BBB8BBBBB88 eee
eee BBB8BB8BB ee DODD DDDD ee BBBBBBBBB eee

D ecce BBBBB eee DDDD DDDD eee BBBB8 ecce o
D

DD
ODD
DDD

DOD

D
DO
DOD
DOD

DOD
DOD
ODD
DOD
DOD

DOD
DDD
DO
o

ecce eee DOD £EEEE DOD eee ecce
ecce eee DOD EEEEEEE DDD eee ecce
ecce eee DOD EEEEEEEEE DOD eee ecce
eeeee ecce DOD EEEEEEEEEEE DOD ecce eeeee
eeeee ecce DOD EEEEEEEEEEEEE DOD ecce eeeee
eeeeee eeeee ODD EEEEEEEEEEEEE ODD eeeee eeeeee
eeeeeeeeeeeee DOD EEEEEE EEEEEE DOD eeeeeeeeeeeee
eeeeee eeeee DOD EEEEEEEEEEEEE ODD eeeee eeeeee
eeeee ecce DOD EEEEEEEEEEEEE DDD ecce eeeee

eeeee ecce DOD EEEEEEEEEEE DDD ecce eeeee
ecce eee DOD EEEEEEEEE DOD eee ecce

ecce eee DDD EEEEEEE DDD eee ecce

DDD
DOD
ODD
DDD

DOD
ODD

DD
ecce eee DOD EEEEE DOD eee ecce 0

D ecce 8BBBB eee DODD DDDD eee BBBBB ecce D
eee BBBBBBBBB ee DODD DDDD ee BBBBBBBBB eee

eee BBBBBBBBBBB ee DDDDD DDDDD ee BBBBBB8BBBB eee
eee 8BBB BBBB ee DDDDDDDDDDD ee BBBB BBBB eee

eee BBBB BBBB ee DDDDDDDDD ee BBBB BBBB eee
ee BBBB B88B eee DDDDD eee BBBB BB88 ee
e 8BB AAAAA BBB eee eee BB8 AAAAA B8B e

BBB AAAAAAAAA BBB eee eee B8B AAAAAAAAA B88
BB AAAAAAAAAAA 8B ecce ecce BB AAAAAAAAAAA BB

BBB AAAAAAAAAAAAA BBB eeeeeeeeeee BBB AAAAAAAAAAAAA BBB
BBB AAAAAAAAAAAAAAA BBB eeeeeeeee BBB AAAAAAAAAAAAAAA BBB
BB AAAAAAAAAAAAAAAAA BBB eeeeeee BBB AAAAAAAAAAAAAAAAA BB
BB AAAAAAAAAAAAAAAAA BBB eeeee BBB AAAAAAAAAAAAAAAAA BB
B AAAAAAAAAAAAAAAAAAA BBB eee BBB AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA BBB e BBB AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA BBB e BBB AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA BBB eee BBB AAAAAAAAAAAAAAAAAAA B
B AAAAAAAAAAAAAAAAAAA BBB eeeee BBB AAAAAAAAAAAAAAAAAAA B
BB AAAAAAAAAAAAAAAAA BBB eeeeeee BBB AAAAAAAAAAAAAAAAA BB
BB AAAAAAAAAAAAAAAAA BBB eeeeeeeee BBB AAAAAAAAAAAAAAAAA BB
BBB AAAAAAAAAAAAAAA BBB eeeeeeeeeee BBB AAAAAAAAAAAAAAA BBB

BBB AAAAAAAAAAAAA BBB eeeeeeeeeeeee BBB AAAAAAAAAAAAA BBB
BB AAAAAAAAAAA BB eeeee eeeee BB AAAAAAAAAAA BB
BBB AAAAAAAAA BBB ecce ecce BBB AAAAAAAAA BBB

R

F-7

The following four pages contain the source code and some output
for a program that produces character representation of integers
input by the user. Procedures THOUSANDSSTRING and HUNDREDSSTRING
provide,respectively, character representations of integers 100
or greater and integers less than 100. Note, in particular, the
use of subscripted labels in HUNDREDSSTRING.

The program shows how the length function is used to keep track
of current string length, providing the next location to be
filled, while the substr function is used in filling the
appropriate locations in the string.

F-8

BEGIN

INTEGER (1) I; STRING S; REAL X;
EXTERNAL STRING (20) PROCEDURE HUNDREDSSTRING;
LITERAL F'ORMAT ("# DOLLARS AND # CENTS <15><15>");

COMMENT: **********************************

* * * THO USANDSSTRIN G PRO DUCES THE *
* CHARACTER REPRESENTATION F'OR *
* AN INTEGER LESS THAN 32768. *
* HUNDREDSSTRING IS CALLED F'OR *
* INTEGER PARTS LESS THAN 100. *

* *
*******************************~**

STRING (60) PROCEDURE THOUSANDSSTRING (NUMBER);
VALUE NUMBER; INTEGER NUMBER;

BEGIN STRING (60) OUT;
INTEGER THOUSANDS~ HUNDREDS~ UNITS;

PROCEDURE PUT (S); STRING S;
BEGIN INTEGER N;

N : = LENGTH(OUT);
IF' N>0 THEN BEGIN

SUBSTR(OUT~N+ 1) : = " It;
I\J := N+lJ
END;

SUBSTR(OUT~N+l~N+LENGTH(S» := SJ
END;

THOUSANDS := NUMBER/1000;
HUNDREDS := (NUMBER-THOUSANDS*1000)/100;
UNITS := NUMBER-THOUSANDS*1000-HUNDREDS*100;

IF' THOUSANDS>0 THEN BEGIN
PUTCHUNDREDSSTRING(THOUSANDS»;
PUT C "THO USAN D") ;
END;

IF' HUNDREDS>0 THEN BEGIN
PUTCHUNDREDSSTRINGCHU~DREDS»J

PUT C "HUNDRED");
END;

IF' CUNITS>0) OR CLENGTHCOUT)=0) THEN
PUTCHUNDREDSSTRING(UNITS»;

THOUSANDSSTRING := OUT;
END;

F-9

.
~

COMMENT: **********************************

* * * THE MAIN PROGRAM IS EXECUTED *
* AS A COMMAND FROM DOS WITH A *
* SINGLE ARGUMENT TO BE PRINTED *
* IN CHARACTER FORM AS DOLLARS *
* AND CENTS. *

* *

OPEN (1 ~ "COM. CM" >.;
OPEN (2~"$TTO");

COMARG (1 ~ S);
COMARG (1 ~ S >.;
I := X := S;

;

OUTPUT (2~ FORMAT~ THOUSANDSSTRING(I)~ (X-I)*100);

END

STRING (20) PROCEDURE HUNDREDSSTRING (NUMBER);
VALUE NUMBER; INTEGER NUMBER;

BEGIN INTEGER N~ M; STRING (20) SI~ S2~ OUT;
S 1 : = S 2 : = OUT : = "";
M := NUMBER/10; N := NUMBER-M*10;

TENS: GOTO TEN(M]; COMMENT: DISPATCH ON TENS DIGIT;

TEN(0]: GOTO ONES;
TEN(I]: GOTO TEEN(N]; COMMENT: TEENS ARE SPECIAL;

TEEN[0]: OUT := "TEN"; GOTO DONE;
TEEN(I]: OUT · - "ELEVEN If; GO TO DONE; .-
TEEN(2]: OUT · - "TWELVE"; GO TO DONE; .-
TEEN(3]: OUT .- "THI RTEEN"; GO TO DONE; .-
TEEN(4]: OUT .- "Fa URTEEN"; GO TO DONE; .-
TEEN(S]: OUT .- "FI FTEEN"; GO TO DONE; .-
TEEN(6]: OUT .- "SI XTEEN"; GO TO DONE; .-
TEEN(7]: OUT .- "SEVENTEEN"; GO TO DONE; · -
TEEN(8]: OUT · - "EI GHTEEN"; GO TO DONE; .-
TEEN(9] : OUT · - "N I NETEEN"; GOTO DONE; .-
TEN(2]: SI .- "TWENTY"; GOTO ONES; · -
TEN (3]: SI .- "THIRTY"; GOTO ONES; .-
TEN (4]: SI .- "FORTY"; GOTO ONES; · -
TEN(5]: SI · -.- "FI FTY"; GOTO ONES;
TEN[6]: SI .- "SIXTY"; GOTO ONES; .-
TEN [7]: St .-.- "SEVENTY"; GO TO ONES;
TEN [8]: St .-· - "EIGHTY"; GOTO ONES;
TEN(9] : SI · - "NINETY"; GO TO ONES; .-

F-IO

ONES:

ONE[01:

ONE[ll:
ONE[2J:
ONE[3 J:
ONE[4J:
ONE[5]:
ONE[6]:
ONE[7 J:
ONE[8J:
ONE[9 J:

PACK:

DONE~

GOTO ONE[NH COMMENT: DISPATCH ON ONES DIGIT;

IF LENGTH(SI)=0 THEN OUT: ="cERO"
ELSE OUT . - SI; GOTO DONE; .-

S2 .- "ON E"; GOTO PACK; .-
S2 .- "TWO"; GO TO PACK; .-
S2 .- "THHEE"; GO TO PACK; .-
S2 · - "FOUR"; GOTO PACK; .-
S2 · - "FIVE"; GOTO PACK; .-
S2 · - "SI X"; GOTO PACK; .-
S2 · - "SEVEN"; GOTO PACK; .-
S2 .- "EI GHT"; GO TO PACK; .-
S2 · - "NINE"; GOTO PACK; · -

IF LENGTH(Sl»f2j THEN BEGIN

ELSE

N : = L EN G T H (0 U T) + I;
SUBSTR(OUT~N~N+LENGTH(Sl)-l) := SI;
N := LENGTH(OUT)+I;
SUBSTR(OUT~N) := "-";
N : = N+ 1;
SUBSTR(OUT~N~N+LENGTH(S2)-I) := S2;
END

OUT := S2;

HUNDREDSSTRING := OUT; END

F-ll

R
CHECK 29.98
TWENTY-NINE DOLLARS AND 98 CENTS

R
CHECK 100
ONE HUNDRED DOLLARS AND 0 CENTS

R
CHECK 1971
ONE THOUSAND NINE HUNDRED SEVENTY-ONE DOLLARS AND 0 CENTS

R
CHECK 34000
INTEGER,OVERFLOW: LOCATION 11015
THIRTY-TWO THOUSAND SEVEN HUNDRED SIXTY-SEVEN DOLLARS AND 0 CENTS

R
CHECK 19.27
NINETEEN DOLLARS AND 27 CENTS

R
CHECK 12.07
TWELVE DOLLARS AND 7 CENTS

R
CHECK 100.02
ONE HUNDRED DOLLARS AND 2 CENTS

R
CHECK 1000.02
ONE THOUSAND DOLLARS AND 2 CENTS

R
CHECK 10000.02
TEN THOUSAND DOLLARS AND 2 CENTS

R
CHECK 2999
TWO THOUSAND NINE HUNDRED NINETY-NINE DOLLARS AND 0 CENTS

R
CHECK 2.19
TWO DOLLARS AND 19 CENTS

R

F-12

To understand the following program, refer to "How to Use the
Nova Computers", Chapter 6 on Analog Conversion.

Procedure SAMPLE is an assembly language program called from
an ALGOL main program. SAMPLE collects data from an A/D con­
verter with Extended Interface, Type 4033 (page 6-6 of "How to
Use the Nova Computers"). SAMPLE initiates a request for
data from multiple channels. The sample rate is controlled by
an internal clock in the A/D converter. The clock rate is vari­
able from 100 KHz to 10 Hz.

The number of channels to be sampled is determined by the upper
bound of the first dimension of an array passed to SAMPLE. Mul­
tiple samples for each channel may be specified by dimensioning
the array for two dimensions, where the upper bound of the second
dimension specifies the number of samples per channel.

After I/O is initiated from the converter, S&~PLE will immediately
return to the caller. The caller may choose to wait for I/O
completion at any time by calling WAIT or SAMPLE for another
array. This allows sampling to be buffered.

In the example, a 12-bit converter is used. The least significant
bit is .0024 volts. The program double buffers its samples, aver­
aging and outputting one set of samples while another set is be­
ing collected.

Procedure SAMPLE examines interrupts for ADCV interrupt. Other
interrupts are passed to the operating system.

The ALGOL main program declares SAMPLE as an external procedure
and contains the array information to be passed as a parameter
to SAMPLE.

Note in SAMPLE the equivalence statements for the array specifier,
conversion word count, highest channel scanned, and frame size.
Unlike normal ALGOL conventions as given in Appendix B, the
stack argument displacement S is included as part of the defini­
tion of the variable name in the assembly language program. This
provides for more conventional use of the variables as displace­
ments in machine instructions.

F-13

BF.GIN

LOOP:

EXTERNAL PROCEDURE SAMPLE;
LITERAL HIGHCH (5)# TIMES (2~;

INTEGER ARRAY A# B[0:HIGHCH# 1:TIMES);

PROCEDURE AVGOUT (A); INTEGER ARRAY A;

BEGIN REAL AVERAGE; INTEGER 1# J;
FOR I := 0 STEP 1 UNTIL HIGHCH DO BEGIN
AVERAGE := 0;
FOR J := 1 STEP 1 UNTIL TIMES DO

AVERAGE := AVERAGE + (A[I#JJ/HIGHCH)*.0024;
OUTPUT (1# "AVERAGE: #.###<15>"# AVERAGE>;
END;
END;

OPEN (1# "$TTO");
SAMPLE (BH
SAMPLE (A);
AVGOUT (BH
SAMPLE (R);
AVGOUT (AH
GO TO LOOP;

END

F-14

;
;

· ,
· ,

************************************ * A/D CONVERSION PROGRAM FOR THE *
* EXTENDED INTERFACE TYPE 4033 *

; THIS PROCEDURE INITIATES AN I/O REQUEST TO
; THE A/D CONVERTER TO READ SAMPLES FROM A
; NUMBER OF CHANNELS INTO A TWO-DIMENSIONAL
; ARRAY. THE ARRAYS (MULTIPLE ARRAYS MAY BE
; USED FOR BUFFERING> SHOULD BE DECLARED IN
; THE CALLING PROGRAM AS:
· ,
; INTEGER ARRAY A~ B(0:HIGHCH~ I:TIMESJ;
· ,
; WHERE A AND B ARE ARRAYS~ HIGHCH IS
; THE HIGHEST CHANNEL SAMPLED AND TIMES
; IS THE NUMBER OF SAMPLES PER CHANNEL.

; TWO ENTRIES ARE PROVIDED TO THE PROGRAM -
; SAMPLE~ WHICH WAITS FOR I/O TO BE COMPLETED
; AND INITIATES A NEW CONVERSION REQUEST AND
; WAIT~ WHICH SIMPLY WAITS FOR I/O TO FINISH.
; I/O MAY BE BUFFERED BY CALLING SAMPLE FOR
; ONE ARRAY AND THEN PROCESSING DATA FOR A
; SECOND ARRAY WHILE THE I/O IS .IN PROGRESS.

· THE ,
;
;
;

CALLING SEQUENCES ARE:

SAMPLE (A);
tvA I T;

.TITL ADCONV
• ENT SAMPLE
• ENT WAIT
.EXTU

T.INTEGER=IBll+l ;TYPE SPECIFIER FOR INTEGER
C.PARAMETER=2B7 ;STORAGE CLASS FOR PARAMETER
S.ARRAY=lB3 ;SHAPE SPECIFIER FOR ARRAY
ASPCF=T.INTEGER+C.PARAMETER+S.ARRAY

S=-167
SP=IB0-S

ADATA=S
WDCNT=ADATA+2
HIGHCH=WDCNT+l
FSIeE=HIGHCH-S+l

F-15

;INITIAL VARIABLE DISPLACEMENT
;PARAMETER DESCRIPTOR ADJUSTMENT

;TWO WORD ARRAY SPECIFIER
;WORD COUNT FOR CONVERSION
;HIGHEST CHANNEL SCANNED
;ASSIGNED STACK FRAME SItE

• cREL

SYSINT: • BLK
SAVAC0: • BLK
PENDFL: • BLK

.NREL

1
1
1

; INITIATE 1/0 REQUEST

SAMPLE: JSR @SAVE
FSlz:E
1
SP+ADATA
ASPCF'
JSR @SIz:E
SP+ADATA
ASPCF'
SP+vIDCNT
JSR @HBOUND
SP+ADATA
ASPCF
Cl
SP+HIGHCH
LOA 0 .. PENDFl.
MOV 12'" 0. S~R
JMP .-2
INTDS
LDA 0 .. 1
STA 0.SYSINT
LOA 0 .. IADR
STA 0 .. 1
LOA 0.ADATA .. 3
DOB 0 .. ADCV
LOA 0 .. WDCNT .. 3
DOC IZJ .. ADCV
LOA 0.HIGHCH .. 3
DOAP IZJ .. ADCV
ISz: PENDF'L
INTEN
JSR @RETURN

;SAVED SYSTEM INTERRUPT ADDRESS
;SAVED AC FOR INTERRUPT HANDLER
; INTERRUPT PENDING FLAG FOR WAIT

; SAVE REG I STERS .. ALLOCATE FRAME
;STACK FRAME SIz:E
;ONE PARAMETER
;THE ARRAY SPECIFIER (TWO lMJRDS>
;INTEGER PARAMETER ARRAY
;THE SIz:E OF THE ARRAY (TOTAL NUt-1BER
;OF WORDS ALLOCATED> I S THE NUMBER
;OF WORDS TO TRANSFER .. FILL THE
;ARRAY. WORD COUNT SET.
; HI GH 80 UNO 0 F THE FI RST DIMEN SION
;IS THE HIGHEST CHANNEL NUMBER
; TO BE SCANNED.
; DIMENSION 1.
;SET HIGHEST CHANNEL NUMBER.
;IS THERE 1/0 IN PROGRESS?
;IF YES THEN WAIT FOR IT TO FINISH.
; YES.. TRY AGAIN.
;DISABLE INTERRUPTS WHILE WE MESS
;AROUND WITH THE INTERRUPT LOCATION.
;SAVE SYSTEM INTERRUPT ADDRESS.
;PROCEDURES'S INTERRUPT HANDLER.
;INTERCEPT ALL INTERRUPTS.
;POINTER TO ARRAY DATA.
;LOAD ADCV CURRENT ADDRESS.
; 1'1 UMBER 0 F WO RDS TO TRAN SFER.
; LOAD ADCV WJ RD CO UNT.
;HIGHEST CHANNEL TO SCAN.
;LOAD FINAL ANALOG CHANNEL AND START.
;INTERRUPT IS NOW OUTSTANDING.
; WE BETTER LET THEM IN NO w.
; RETURN TO CALL ER.

F-16

; WAIT FOR 1/0 TO COMPLETE

IIJAI T: JSR @SAVE
FSlcE
121
LOA 0, PENDFL
MOV 121, 121, St:R
JMP • -2
JSR @RETURN

. INTERRUPT HANDLER ,

INTRP: SKPDN ADCV
JMP @SYSINT
STA f21,SAVACf21
LOA f21,SYSINT
STA 121, 1
SUBC 121,121
STA 121, PENDFL
NIOC ADCV
LOA f21,SAVACf21
INTEN
JMP @f21

IADR: INTRP
C 1 : 1

• END

;SAVE REGISTERS, ALLOCATE FRAME
; WE DON' T REALLY NEED THI S MUCH.
;NO PARAMETERS, JUST WAIT.
; ARE THERE INTERRUPTS PENDING?
;IF 1/0 NOT FINISH THEN LOOP.
;PICK UP FLAG AND TRY AGAIN •
;1/0 IS DONE, RETURN TO CALLER.

; I F NO TOUR INTERRUPT THEN LET
; THE SY STEM PRO CESS IT.
; IT' SOURS, SAVE AN AC.
; RESTORE SYSTEM INTERRUPT HANDLER
;WE MAY NOT PASS THIS WAY AGAIN.
; SET INTERRUPT DONE INDICATOR.

;OLEAR THE AID INTERRUPT.
;RESTORE THE SAVED AC.
;LET THE OTHERS IN.
; RETURN TO IN TERRUPTED PRO GRAM.

;ADDRESS OF INTERRUPT HANDLER
; CO N STAN T FO R H BO UN 0

F-17

R
ADCON
AVERAGE: 3.607
AVERAGE: 3.609
AVERAGE: 3.611
AVERAGE: 3.604
AVERAGE: 3.607
AVERAGE: 3.616
AVERAGE: 3.609
AVERAGE: 3.614
AVERAGE: 3.607
AVERAGE: 3.609
AVERAGE: 3.611
AVERAGE: 3.604
AVERAGE: 3.607
AVERAGE: 3.616
AVERAGE: 3.609
AVERAGE: 3.614
AVERAGE: 3.607
AVERAGE: 3.609
AVERAGE: 3.61 1
AVERAGE: 3.604
AVERAGE: 3.607
AVERAGE: 3.616
AVERAGE: 3.609
AVERAGE: 3.614
AVERAGE: 3.607
AVERAGE: 3.609
AVERAGE: 3.61 1
AVERAGE: 3.604
AVERAGE: 3.607

The page following shows an alternative program for reading in
single words from an A-D converter.

F-18

; BASIC AID CONVERSION

; THIS PROCEDURE READS A SINGLE WORD FROM
J THE SPECIFIED CHANNEL RETURNING THE
; WORD AS THE VALUE OF THE FUNCTION.

J SEE 'HmJ TO USE THE NOVA COMPUTERS' #
J EDITION 4# PP. 6-4 TO 6-6.

J CALLING SEQUENCE:

; I := ADCONV(CHANNEL);

; WHERE I IS AN INTEGER AND ADCONV IS
; DECLARED AS AN 'EXTERNAL INTEGER PROCEDURE'

.TITL

.ENT

.EXTU

.NREL

ADCONV
ADCONV

T.INTEGER=lBll+l
C.PARAMETER=2B7
C.VALUE=4B7

S=-167
SP=lB0-S

CHANNEL=S
RESULT=CHANNEL+l
FSI~E=RESULT-S+l

ADCONV: JSR @SAVE
FSlz::E
2
SP+RESULT
T.INTEGER+C.PARAMETER
SP+CHANNEL
T.INTEGER+C.VALUE

INTDS
LDA
DOAS
SKPDN
JMP
DICC
INTEN
STA
JSR

.END

0#CHANNEL#3
0#ADCV
ADCV
.-1
0 .. ADCV

0 .. RESULT .. 3
@RETURN

;TYPE SPECIFIER FOR INTEGER
;STORAGE CLASS FOR PARAMETER
;STORAGE CLASS FOR VALUE

;INITIAL VARIABLE DISPLACEMENT
;PARAMETER DESCRIPTOR ADJUSTMENT

JDISPLACEMENT FOR CHANNEL NUMBER
;DISPLACEMENT FOR FUNCTION VALUE
;ASSIGNED FRAME SI~E

;SAVE REGISTERS .. ALLOCATE FRAME
JNUMBER OF WORDS TO SAVE
JTWO PARAMETERS INCLUDING RESULT
JRETURNED FUNCTION VALUE
JINTEGER PARAMETER
JCHANNEL NUMBER FOR CONVERSION
Jl NTEGER VALUE

JDISABLE INTERRUPTS DURING 1/0
;CHANNEL NUMBER => AC0
JLOAD CHANNEL SELECT AND START
JWAIT FOR END OF CONVERSION

JREAD DATA INTO AC0 .. CLEAR DONE
JINTERRUPTS ARE OK NOW
JSTORE FUNCTION VALUE FOR RETURN
JRETURN TO CALLER

F-19

HELP is a natural language question-answering program designed to
provide a computerized library reference service. The program is
based on the HELP/QAS system developed at Project Genie, University
of California at Berkeley. The program supplies interactive re­
sponses to requests for information in the form of keywords or
sentences containing keywords. The program scans an input line for
keywords and responds to a keyword with limited or more detailed
information as desired.

Cross-referencing between keywords is implemented, so that addi­
tional information can be supplied. When information on a subject
is exhausted, the program prints out a message to that effect.

HELP was implemented in Data General ALGOL to show relatively so­
phi,.sticated uses of several of the language features. Note, for
example, how the hashing procedure HASH uses the functions length,
ascii, and shift, together with logical operations, to develop in
a relatively succinct code an integer hash value based on the
original keyword string.

Use of string procedures and string manipulating facilities, in par­
ticular the substr function, are shown in some detail in the string
procedure FETCH, which parses the question line. Note also how
FETCH uses two boolean procedures, DELIMITER and TERMINATOR, to test
for delimiters and terminators.

Essentially, when the user asks a question, the question line is
parsed, and each word of the question is hash-encoded by forming a
16-bit value from the number of characters in the word and the
first, middle, and last character. If this value is located in the
hash table, the word is assumed to be a keyword and is added to the
keyword list for the question. When all the words have been pro­
cessed, redundant keywords are eliminated from the list and the
list is sorted.

This sorted list of encoded keywords is passed to COMBINATIONS, a
recursive procedure which builds a new keyword list for each pos­
sible combination of the original keyword list. Each of these new
lists is passed to the procedure TREEMAINTAINER.

TREEMAINTAINER is used to locate and append branches to a binary tree
structure representing the set of all known answers. Each node of
the answer tree has three fields, a left link, a right link, and a
value. The value is either an index into the keyword hash table or
a flag indicating the end of the answer list. To obtain an answer,
TREEMAINTAINER follows a path through the tree structure until. an
end node is encountered. The path is such that the first key in
the answer may be reached by following right links. When that node
is reached, its left link points to the chain of right links that
leads to the second key in the answer, etc. The figure following
shows how the binary tree structure is implemented.

F-20

ROOT NODE

~, - Pointer to response

x - "End" flag set

f... - End of thread

Paths: nl<n2<n3<n4
nl<nS<n6<nS
n3<n7

Defined Keyword Lists: {nl,n5},{nl,n6},{nl,n6,nS},
{n2},{n3,n7},{n4}

left link-f I f I :t-right link

value

F-2l

When an answer is found, the REPLY procedure positions the script
file to the byte indicated for a response. A reference in this re­
sponse of the form [name] will cause the procedure ANSWERPOINTER t<
be called to locate the byte position for answer "name" in its an­
swer list, and REPLY will then be called recursively. The assembl~
language source code for ANSWERPOINTER is included at the end of tt
source code for HELP.

The HELP program is provided with a script
sponse with one or more sets of keywords.
has as its first line a name or number for
zero or more keywords. Lines of the entry
are responses for this set of keywords.

which associates a re~
E.ach entry in the scriI

the response followed b~
following the first linE

After a response has been used, it will be deleted, with the excep­
tion of the last response in the entry, which will be reused. Eact
response will be either one line or several lines surrounded by
quotes. The text \vill be formatted into 60-character lines on out­
put. Formatting may be suppressed by enclosing part of a response
in percent signs (%).

An entry may refer to other entries by enclosing the entry name in
square brackets. An entire entry may be made a synonym for a pre­
viously defined entry by providing the same entry name on the first
line. In this case, the entry would be only one line long.

A sample script for HELP, containing information on Data GeneralIs
software, is shown on following pages. Note cross-referencing;
for example, a reference to LANGUAGES also references FORTRAN and
ALGOL.

The user of HELP need not phrase his questions precisely. For ex­
ample the queries:

OPEN FILE?

and

HOW DO I OPEN A FILE?

will produce equivalent responses.

To avoid repetitive responses, the script includes messages indica­
ting the end of available information such as:

THE ARGUMENTS TO OPEN HAVE BEEN DESCRIBED EARLIER.

The ALGOL source tapes fot HELP are available from Data General.

F-22

R
HELP

Sample HELP Teletype Session

> WHAT LANGUAGES ARE AVAILABLE
ALGOL AND FORTRAN ARE AVAILABLE FOR THE NOVA LINE OF MINICOMPUTERS.

> IS STAND ALONE OPERATION POSSIBLE?
STAND ALONE OPERATION IS SUPPORTED AS WELL AS DISK OPERATION.

> WHAT LANGUAGES ARE AVAILABLE FOR STAND ALONE?
BOTH FORTRAN AND ALGOL ARE AVAILABLE FOR STAND-ALONE USE.

> IS THE BASIC LANGUAGE AVAILABLE?
TIME SHARED BASIC IS AVAILABLE FOR ST~~D ALONE USE.

> ARE FILES ALLOWED IN BASIC?
FILES ARE NOT PRESENTLY ALLOWED IN BASIC

> CAN FILES BE USED AT ALL?
FILES CAN BE USED UNDER THE DISK OPERATING SYSTEM.

> HOl.-J DO I OPEN A FILE UNDER DOS?
TO OPEN A FILE FROM DOS USE THE SYSTEM COMMAND '.OPEN '. THE ARGUMENTS
ARE:

AC0 - BYTE POINTER TO FILE NAME
ACt - FILE ATTRIBUTES TO BE OVERRIDDEN
AC2 - ERROR NUMBER RETURNED

THE CHANNEL NUMBER IS IN THE COMMAND OR MAY BE 77 SIGNIFYING THAT
THE CHANNEL NUMBER IS IN AC2.

> HO\oJ DO I OPEN A FILE FROM ALGOL?
TO OPEN A FILE FROM AN ALGOL PROGRAM USE THE CALL:

OPEN (CHANNEL .. FILENAME);

> HOW DO YOU OPEN A FILE?
TO OPEN A FILE FROM DOS USE THE SYSTEM COMMAN 0 '.0 PEN'. THE ARGUMENTS
WERE DESCRIBED BEFORE. FROM ALGOL USE THE 'OPEN' CALL.

> HOW DO I OPEN A FILE FROM ALO~GOL?
FROM ALGOL USE THE 'OPEN' CALL.

F-23

Sample HELP Script

1 2 0 P EN 1'1 L E
[14](13]

13 OPEN FILE ALGOL
"TO OPEN A FILE FROM AN ALGOL PROGRAM USE THE CALL: %

OPEN <CHANNEL" FILENAME);
%"
"FROM ALGOL USE THE 'OPEN' CALL. "

14 OPEN FILE DOS
"TO OPEN A 1'1 L E FRO M DO S USE THE SYSTEM COMMAN D '.0 PEN'. (0 A]"

OA
"THE ARGUMENTS ARE:%

AC0 - BYTE POINTER TO FILE NAME
ACI - FILE ATTRIBUTES TO BE OVERRIDDEN
AC2 - ERROR NUMBER RETURNED

%THE CHANNEL NUMBER IS IN THE COMMAND OR MAY BE 77 SIGNIFYING
THAT THE CHANNEL NUMBER I S IN AC2. "
"THE ARGUMENTS WERE DESCRI BED BEFORE. ..

8 FILES
FILES CAN BE USED UNDER THE DISK OPERATING SYSTEM.

9 PLOTTER
"ALGOL AND FORTRAN PROVI DE A COMPREHENSI VE COLLECTION
OF PLOTTER RO UT IN ES."

1 FORTRAN
[DG] FORTRAN COtvJPILER IS A SUPERSET OF ANSI FORTRAN.
FORTRAN HAS BEEN MENTIONED EARLIER.

2 ALGOL
[DG] EXTENDED ALGOL COMPILER PRO VI DES A SUPERSET 0 I' THE ALGOL 60 LAN GUAI

3 LANGUAGES AVAILABLE
ALGOL AND FORTRAN ARE AVAILABLE FOR THE NOVA LINE OF MINICOMPUTERS.

6 LANGUAGES
[3] [1] [2]

F-24

Sample HELP Script (Continued)

4 STAND ALONE LANGUAGES
BOTH FORTRAN AND ALGOL ARE AVAILABLE FOR STAND-ALONE USE.

5 STAND ALONE
STAND ALONE OPERATION IS SUPPORTED AS WELL AS DISK OPERATION.

DG
DATA GENERAL'S

11 BASIC
"BASIC IS A FULL IMPLEMENTATION OF THE BASIC LANGUAGE DEVELOPED
AT DARTMOUTH COLLEGE"

7 BASIC FILES
FILES ARE NOT PRESENTLY ALLOWED iN BASIC

10 BASIC LANGUAGE
TIME SHARED BASIC IS AVAILABLE FOR STAND ALONE USE.

F-25

BEGIN

COMMENT: *********************************

* *
* * * **** * *** *
* * * * * * * *
* **** *** * *** *
* * * * * * *
* * * **** **** * *
* *
* A NATURAL LANGUAGE QUESTION *
* ANSWERING PROGRAM BASED ON *
* THE HELP SYSTEM DEVELOPED AT *
* PROJECT GEN IE .. UNIVERSITY OF *
* CALIFORNIA .. BERKELEY. *
* *

LITERAL TABLESIcE (459)J
INTEGER ARRAY TABLE[0:TABLESIcE1J

INTEGER PROCEDURE HASH eS)J

COMMENT: THE HASH VALUE FOR A KEY WORD IS DEVELOPED
BY PACKING THE LENGTH AND THE RADIX 16 VALUE
OF THE FIRST .. MIDDLE .. AND LAST CHARACTERS OF
THE WORD INTO AN UNSIGNED INTEGERJ

BEGIN

STRING SJ

INTEGER I .. J .. KJ

J := K := LENGTHeS)J

FOR I := 1 .. eK+1)/2 .. K DO
J := SHIFTeJ .. -4) OR ASCIIeS .. I) AND 17R8J

HASH := ABSeJ)J
ENDJ

INTEGER PROCEDURE HASHINDEX eN)J

COMMENT: AN INDEX INTO THE HASH TABLE IS DETERMINED
BY THE HASH VALUE FOR THE WORD MODULO THE
SIcE OF THE HASH TABLEJ

INTEGER NJ

HASHINDEX := N-eN/TABLESIcE)*TABLESIcEJ

F-26

J

EXTERNAL POINTER PROCEDURE ANSWERPOINTER;
EXTERNAL PROCEDURE TREEMAINTAINER;
EXTERNAL STRING PROCEDURE FETCH;
EXTERNAL PROCEDURE COMBINATIONS;
EXTERNAL PROCEDURE SORT;

INTEGER ARRAY KEYLIST[I:20];
INTEGER I~ J~ N~ ANSWER~ KEYS;
BASED INTEGER Bt;
LITERAL CR C"<15>");
STRING (512) S;

COMMENT: *********************************
*
*
*

ANSWER DEFINITION *
*
* *********************************

OPEN Cl~ "HELP.$$");
FOR I := 0 STEP 1 UNTIL TABLESlcE DO

TABLE[I] : = 0;

DEFINE: S := FETCH;

1 :

IF S = CR THEN GO TO DEFINE;
ANSWER := ANSWERPOINTERCS);
KEYS := 0;

S . - FETCH; .-
IF S = CR THEN GO TO 2;
IF S = .," THEN GO TO EOr;
KEYS . - KEYS+U .-
N . - HASHC S); .-
TABLE[HASHINDEXCN)] . -.- N;
KEYLI ST[KEYS] . - N; .-
GO TO U

2: IF KEYS = 0 THEN GO TO 3;
SORT CKEYLIST~ 1~ KEYS);

;

TREEMAINTAINER CKEYLIST~ KEYS~ ANSWER~ TRUE);

3: READ Cl~ s~ EOF);
IF S = THEN GO TO DEFINE;
ANSWER->BI := ANSWER->BI + 1;
GO TO 3;

EOF: CLOSE Cl);
OPEN C 1 ~ "$TTI");
OPEN C2~ "$TTO tl);

OPEN C 3~ "HELP. $$tI);

F-27

COMMENT: *********************************
* *
*
*

MAIN PROGRAM LOOP *
* *********************************

PARSE: WRITE (2" "<15» ");
S : = fETCH;
KEYS := 0;

4: II' S = "?" THEN GO TO 6J
IF S = CR THEN GO TO 7J
N : = HASH(S);
II' TABLECHASHINDEX(N)l = N THEN BEGIN

FOR I := 1 STEP 1 UNTIL KEYS DO
II' KEYLISTCIl = N THEN GO TO 5;
KEYS : = KEYS+ 1 J
KEYLISTCKEYSl := N;
END;

5: S :=1' ETCH;
GO TO 4;

6: II' fETCH <> CR THEN GO TO 6;

7: SORT (KEYLIST" 1" KEYS);
FOR N := 0 STEP 1 UNTIL KEYS-l DO BEGIN

COMBINATIONS(KEYLIST" KEYS" KEYS-N" J);
II' J > 0 THEN GO TO PARSE;
END;

WRITE (2" "I DON'T KNOW.<15>"U
GO TO PARSE;

END

F-28

PROCEDURE TREEMAINTAINER CKEYLISTI KEYSI ANSWERI.DErINITION)J

COMMENT:

BEGIN

INTEGER ARRAY KEYLISTJ
INTEGER KEYSI ANSWERJ
BOOLEAN DErINITION;

* * * TREEMAINTAINER MAINTAINS A BINARY *
* TREE STRUCTURE WITH EACH NODE *
* CONSISTING Or THREE rIELDSI ALErT *
* LINKI A RIGHT LINKI AND A VALUE. *
* THE VALUE FIELD CAN BE EITHER AN *
* INDEX INTO THE KEY WORD HASH TABL"E *
* OR A rLAG INDICATING THE END Or AN *
* ANSWER LIST. A COMPLETE PATH rROM *
* THE ROOt NODE TO AN END NODE IN *
* THE STRUCTURE DESCRIBES THE SET Or *
* KEY WORDS WHICH WILL ELICIT A *
* PARTICULAR ANSWER. *
* * ***************************************

POINTER PI LINKI NEW;
OWN POINTER ROOT;
INTEGER KEYI NEXT;
BASED POINTER BP;
BASED INTEGER BI;
LITERAL NULL(0)1 LErT(1)1 RIGHT(2);

LINK := ADDRESSCROOT)J
P : = ROOT;
NEXT : = 1.;
KEY := KEYLIST[NEXT1;

.
I

COMMENT: rOR AN ORDERED SET Or KEYS COMPRISING A VALID
ANSWER LIST THERE EXISTS A PATH THROUGH THE TREE
SUCH THAT THE rIRST KEY IN THE ANSWER MAY BE
REACHED BY rOLLOWING RIGHT LINKS. WHEN THIS NODE
IS REACHED ITS LErT LINK POINTS TO THE CHAIN Or
RIGHT LINKS LEADING TO THE SECOND KEY IN THE
ANSWER AND SO rORTH rOR EACH KEY IN THE LIST;

RIGHTSEARCH:
Ir P = NULL THEN GO TO NOTrOUNDJ
Ir P->8I = KEY THEN GO TO LErTSEARCH;
Ir P-~BI > KEY THEN GO TO NOTrOUND;
LINK := P+RIGHT;
P := LINK->BPJ
GO TO RIGHTSEARCH;

F-29

LErTSEARCH:
II' KEY = NULL THEN GO TO rOUND;
LINK := P+LErT;
P := LINK->BP;
NEXT : = NE:XT+ lJ
KEY := II' NEXT =< KEYS THEN KEYLIST[NEXTJ ELSE NULL;
GO TO RIGHTSEARCH;

NOTrOUND:
II' DErINITION THEN BEGIN

ALLOCATE (NEW~ 3);
NEW->BI := KEY;
(NEW+RIGHT)->BP := P;
LINK->BP :="p := NEW;
GO TO RIGHTSEARCH;
END

ELSE BEGIN

ANSWER : = 0;
GO TO DONE;
END;

rOUND: II' DErINITION THEN (P+LErT)->BI := ANSWER
ELSE ANSWER := (P+LErT)->BI;

DONE: END

STRING PROCEDURE rETCH;

COMMENT:

BEGIN

* * * rETCH PARSES THE INPUT STREAM *
* INTO ENGLISH WORDS~ NUMBERS~ *
* AND CERTAIN SPECIAL SYMBOLS. *
* * ***********************************

BOOLEAN PROCEDURE DELIMITER (C);
STRING (1) C;
DELIMITER := NOT«C >= "A") AND (C =< "z:")

OR (C >= "01t) AND (C =< "9") OR (C = It$"»;

BOOLEAN PROCEDURE TERMINATOR (C);
STRING (1) C;
TERMINATOR := (C = "?") OR (C = "<15>");

F-30

STRING (1) C;
STRING (12) S;
OWN STRING (127) LINE;
OWN INTEGER LINEINDEX;

1: IF (LINEINDEX = 0) OR
(LINEINDEX > LENGTH(LINE» THEN BEGIN
READ (1~ LINE~ EOF);
SUBSTRCLINE~ LENGTH(LINE)+1) := "<15>";
L INEINDEX : = 1J
END;

C := SUBSTRCLINE~ LINEINDEX);
IF NOT(DELIMITERCC» THEN GO TO 2;
LINEINDEX := LINEINDEX+l;
IF TERMINATOR(C) THEN GO TO 3;
GO TO 1J

2: SUBSTRCS~ LENGTHCS)+l) := C;
LINEINDEX := LINEINDEX+!;
C := SUBSTRCLINE~ LINEINDEX);
IF LINEINDEX > LENGTH(LINE) THEN GO TO 4;
IF DELIMITER(C) THEN GO TO 4;
GO TO 2;

3: S : = C;

4: FETCH := S;
EOF: END;

F-31

POINTER PROCEDURE ANSWERPOINTER (ANSWER);

COMMENT:

BEGIN

STRING ANSWER;

* *
* ANSWERPOINTER MAINTAINS A LIST *
* OF NAMES OF ANSWER STRINGS AND *
* THEIR ASSOCIATED POSITION IN *
* THE SCRIPT FILE. IF GIVEN THE *
* NAME OF AN ANSWER THE PROGRAM *
* WILL RETURN A POINTER TO A *
* STRUCTURE ASSOCIATED WITH THE *
* ANS\.JER. IF THE NAME IS NOT *
* FOUND A NEW ANSWER STRUCTURE *
* WILL BE CREATED. *
* *

OWN POINTER ANSWERLIST;
POINTER P;
LITERAL NULL (0), ELMTS~ (6);
LITERAL THREAD (1), FPOS (2), LGTH (3), NAME (4);
EXTERNAL PROCEDURE FILEPOSITION;
BASED INTEGER BI;
BASED POINTER BP;
BASED STRING (4) BS;

P := ADDRESS(ANSWERLIST) - THREAD;

FOR P := (P+THREAD)->BP WHILE P <> NULL DO

IF SUBSTR«P+NAME)->BS, 1, (P+LGTH)->BI) = ANSWER
THEN GO TO FOUND;

ALLOCATE (P, ELMTS~);

(P+THREAD)->BP := ANSWERLIST;
ANSWERLI ST : = P;
(P+LGTH)->BI := LENGTH(ANSWER);
(P+NAME)->BS := ANSWER;
FILEPOSITION (1, (P+FPOS)->BI);

FOUND: ANSWERPOINTER:= P;
END

F-32

PROCEDURE COMBINATIONS (A~ N~ M~ ANSWER);

COMMENT:

BEGIN

VALUE N;
INTEGER ARRAY A;
INTEGER N~ M~ ANSWER;

**
* * * SEARCH THE ANSWER LIST HIERARCHY FOR *
* THE LONGEST SUB-LIST OF THE KEY WORD *
* LIST. RETURN THE RECORD NUMBER FOR *
* AN ANSWER OR cERO IF NONE IS FOUND. *
* EACH CALL FROM THE MAIN PROGRAM WILL *
* PRODUCE REPLIES FOR ALL N-ELEMENT *
* SUB-LISTS FOUND IN THE HI£RARCHY. *
* * **

INTEGER ARRAY B[l:N];
INTEGER I~ J~ K;
EXTERNAL PROCEDURE REPLY~ TREEMAINTAINER;

IF N = M THEN BEGIN

TREEMAINTAINER (A~ N~ ANSWER~ FALSE);
IF ANSWER> 0 THEN REPLY (ANSWER);
END

ELSE BEG IN

ANSWER : = 0;
FOR J := 1 STEP 1 UNTIL N DO BEGIN

FOR I := 1 STEP 1 UNTIL N DO
B[IF I>J THEN 1-1 ELSE I] := A[I];

COMBINATIONS (B~ N-l~ M~ K);
IF K <> 0 THEN ANSWER :; K,
END;

END;

END;

F-33

PROCEDURE REPLY CAP)J

COMMENT:

BEGIN

POINTER APJ

**
* * * REPLY FORMATS AND PRINTS A SPECIFIED *
* ANSWER. REFERENCES IN THE ANSWER OF *
* THE FORM (NAME] WILL CAUSE REPLY TO *
* BE CALLED RECURS I VEL Y FOR "NAME". *
* * **

EXTERNAL POINTER PROCEDURE ANSWERPOINTER;
EXTERNAL PROCEDURE FILEPOSITIONJ
LITERAL CR C"<15>")1 FPOS (2);
OWN INTEGER LEVEL;
OWN STRING (80) LOUT;
BASED INTEGER BI;
STRING (512) S;
STRING (4) T;
STRING Cl) CJ
INTEGER I;

POSITION C31 CAP+FPOS)->BI);
READ C 31 S)J
IF AP->Bl > 1 THEN BEGIN

AP->BI := AP->BI - 1;
FILEPOSITION C31 (AP+FPOS)->BI);
END;

LEVEL := LEVEL+l; _
FOR I := 11 1+1 WHILE I <= LENGTHCS) DO BEGIN

T : = 'I" J

C := SUBSTRCSI I);
IF C = "(" THEN BEGIN

S := SUBSTRCSI 1+11 LENGTHCS»;
T:= SUBSTRCSI 11 INDEXCSI "]")-1);
I := LENGTHCT)+I;
REPLY CANSWERPOINTERCT»;
END

F-34

J

ELSE IF C = "%" THEN BEGIN

WRITE (21 LOUT);
LOUT : = .11';
S := SUBSTR~SI 1+11 LENGTH(S»J
I := INDEX(SI "%")J
WRITE (21 SUBSTR(SI 11 1-1»;
END

ELSE I I" (C = " ") AND LENGTH(LOUT) > 60
THEN BEGIN

WRITt_(21 LOUTI CR);
LOUT : = '"';
END

ELSE IF C = CR THEN
SUBSTR(LOUTI LENGTH(LOUT)+ 1) ::: " "

ELSE SUBSTR(LOUTI LENGTH(LOUT)+l) := C;

END;

LEVEL := LEVEL-I;
IF LEVEL = 0 THEN BEGIN

END

WRITE (21 LOUTI CR);
LOUT : = '''';
END;

F-35

PROCEDURE SORT (A" N" M);

COMMENT:

BEGIN

BUBBLE:

INTEGER ARRAY A;
INTEGER N" M;

* *
* A SIMPLE BUBBLE SORT *
* TO ORDER THE RELATIVELY *
* SHORT KEY WORD LISTS. *
* *

INTEGER I" T;
BOOLEAN DONE;

DONE . - TRUE; .-
FOR I := N STEP 1 UNTIL M-l DO

IF A[Il > A[I+ll THEN BEGIN

T : = A[I l;
A[Il := A[I+ll;
A[I+IJ := TJ
DONE := FALSE;
END;

IF NOT DONE THEN GO TO BUBBLE;

END;

F-36

J

; POINTER PROCEDURE ANSWERPOINTER (ANSWER);

.TITL ANSWERPOINTER

.EXTU

.ENT ANSWERPOINTER

.EXTN ALLOCATE

.£XTN fILEPOSITION

• ZiREL
00000-000401'.LP: LP+200

000001-0P: .BLK 1

.NREL
000001 • TXTM 1

ANSWERPOINTER:
00000'006011$ JSR @SAVE
00001~000014 fS0
00002·000402 IB7+2
00003~100000 SP+0
00004~003541 003541
00005'100001 SP+l
00006·001203 001203

;
; STRING ANSWER;

;ANSWERPOINTER
;POINTER PARAMETER
;ANSWER
;STRING PARAMETER

COMMENT: ************************************

00007'006003$

;
;
;

; .
~

;
;
;
;

*
*
*
*
*
*
*
*
*
*
*
*

*
ANSWERPOINTER MAINTAINS A LIST *
Of NAMES Of ANSWER STRINGS AND *
THEIR ASSOCIATED POSITION IN *
THE SCRIPT fILE. If GIVEN THE *
NAME Of AN ANSW~R THE PROGRAM *
WILL RETURN A POINTER TO A *
STRUCTURE ASSOCIATED WITH THE *
ANSWER. If THE NAME IS NOT *
fOUND A NEW ANSWER STRUCTURE *
WILL BE CREATED. *

* .
~ ************************************

; BEGIN OWN POINTER ANSWERLIST;
; POINTER P;
; LITERAL NULL (0)~ ELMTSZi (6);
; LITERAL THREAD (1)~ fPOS (2)~ LGTH (3)~
; NAME (4);
; EXTERNAL PROCEDURE fILEPOSITIONJ
; BASED INTEGER BI;
; BASED POINTER BP;
; BASED STRING (4) BS;

; P := ADDRESS(ANSWERLIST) - THREAD;

JSR @BLKSTART

F-37

00010'006001$ JSR @AOORESS
00011'000001- OP+0 ;ANSWERLIST
00012'000541 000541 ;POINTER OWN
00013'100007 SP+7 ; TEMPORARY
00014'021620 LOA 0 .. S+7 .. 3 ; TEMPORARY
00015'100400 NEG 0 .. 0
00016'100000 COM 0 .. 0
00017'041615 STA 0 .. S+4 .. 3 ;P

;
; FOR P .-.- (P+THREAO)->BP WHILE P <> NULL DO

00020'021615 .G3: LOA 0 .. S+4 .. 3 ;P
00021'101400 INC 0 .. 0
00022'111000 MOV 0 .. 2
00023'021000 LOA 0 .. 0 .. 2
00024'041615 STA 0 .. S+4 .. 3 ;P
00025' 126400 SUB 1 .. 1 ; (0)
00026'106404 SUB 0 .. 1 .. Si:R
00027' 126520 SUBi:L 1 .. 1
00030'125005 MOV 1 .. 1 .. SNR
00031'000406 JMP .G4
00032'006401 JSR @.+1
00033'000041' • G2
00034'034014$ LOA 3 ... SP
00035'002401 JMP @.+1
00036'000020' .G3
00037'002401 .G4: JMP @.+1
00040'000111' .Gl
00041'165400-.G2: INC 3 .. 1 ; SAVE

; . IF SUBSTRCCP+NAME)->BS .. 1 .. (P+LGTH)->BI) ..
; = ANSWER

00042'034014$ LOA 3 ... SP
00043'021615 LOA 0 .. S+4 .. 3 ;P
00044'034000- LOA 3 ... LP
00045'031605 LOA 2 .. L+5 .. 3 ;LITERAL
00046'113000 ADD 0 .. 2
00047'034014$ LOA 3 ... SP
00050'051620 STA 2 .. S+7 .. 3 ; TEMPORARY
00051'006004$ JSR @BSSTR
00052'100007 SP+7 ; TEMPORARY
00053'000021 000021 ; INTEGER
00054'000004 4
00055'100010 SP+10 ; TEMPORARY
00056'034000- LOA 3 ... LP
00057'031604 LOA 2 .. L+4 .. 3 ;LITERAL
00060'113000 ADD 0 .. 2
00061'031000 LOA 2 .. 0 .. 2
00062'034014$ LOA 3 ... SP
00063'051620 STA 2 .. S+7 .. 3 ; TEMPORARY
00064'006013$ JSR @SUBSTR
00065'000004 4
00066'100010 SP+10 ; TEMPORARY
00067'000202 000202 ; STRING

F-38

00070'000203'
00071'100007
00072'"100012

00073'006012$
00074'100012
00075' 000202
00076' 100001
00077'"001203
00100'152560
00101'045620
00102'151015
00103'002402
00104'000402
00105'000110'
00106'002401
001 07 ' 0001 7 5 '
00110'"003620 .G5:

.
~

LP+2
SP+7
SP+12

THEN

JSR
SP+12
000202
SP+l
001203
SUBCL
STA
MOV#
JMP
JMP
.G5
JMP
.Ll
JMP

GO TO FOUND;

@STREQ

2,,2
1" S+7" 3
2"2,,SNR
@.+2
.+2

@.+1

@S+7,,3

; ALLOCATE (P" ELMTSc);

00111'006005$.Gl:
00112'177777
00113'000002
00114'100004
00115'000141
001 1 6'" 0002 02 '
00117'000021

JSR @CALL
ALLOCATE
2
SP+4
000141
LP+l
000021

JLITERAL
JTEMPORARY
J TEMPORARY

; TEMPORARY
; STRING
JANSWER
;STRING PARAMETER

; TEMPORARY

;P
; POI NTER LOCAL
;LITERAL
;INTEGER

J (P+THREAD)->BP := ANSWERLIST;

00120'021615
00121'101400
00122'111000
00123'020001-
00124'041000

00125'021615
00126'040001-

00127'025615
00130'034000-
00131'"031604
00132'133000
00133'006006$
00134'100001
00135'"001203
00136'100007
00137'021620

.
~

LOA
INC
MOV
LOA
STA

0" S+ 4" 3
0" 0
0,,2
0" OP+0
0" 0" 2

ANSWERLIST := P;

LOA
STA

;P

JANSWERLI ST

JP
J ANSWERL 1ST

; (P+LGTH)->BI := LENGTH(ANSWER)J

LOA
LDA
LOA
ADD
JSR
SP+l
001203
,SP+7
LOA

1" S+4" 3
3" • LP
2"L+4" 3
1" 2
@LENGTH

F-39

JP

JLITERAL

JANSWER
;STRING PARAMETER
; TEMPORARY
J TEMPORARY

10101410'1041101010 STA 10 .. 10 .. 2

; (P+NAME)->BS . -.- ANSWER;

1010141'1034101010- LDA 3 ... LP
1010142'1021605 LDA 0 .. L+5 .. 3 ;LITERAL
1010143"'12310100 ADD 1 .. 10
1010144 9 10341014$ LDA 3 ... SP
10101451"10416210 STA 10 .. 5+7 .. 3 ; TEMPORARY
1010146'1010610104$ JSR @BSSTR
1010147"'1101010107 SP+7 ; TEMPORARY
10101510'1010101021 1010101021 ; INTEGER
1010151'10101010104 4
10101521"110101012 SP+12 ; TEMPORARY
1010153'1010610107$ JSR @MOVSTR
1010154"1101010101 SP+l ; ANSWER
10101551"10101203 101012103 ;STRING PARAMETER
10101561"110101012 SP+12 ; TEMPORARY
1010157'1010102102 1010102102 ; STRING

· FILEPOSITION (1 .. (P+FPOS) ->BI); ..
10101610'1034101010- LDA 3 ... LP
1010161'10216103 LDA IO .. L+3 .. 3 ;LITERAL
1010162"'123101010 ADD 1 .. 10
10101631"111101010 MOV 0 .. 2
10101641"10341014$ LDA 3 ... SP
1010165'1051620 STA 2 .. 5+7 .. 3 ; TEMPORARY
0101661"1010610105$ JSR @CALL
1010167'177777 FILEPOSITION
101017101"10101010102 2
100171"1010102103' LP+2 ;LITERAL
100172'0100021 10001021 ; INTEGER
100173'101010107 SP+7 ; TEMPORARY
1010174"10101021 @lOeJ101021 ;INTEGER

;

· FOUND: ANSWERPOINTER := P; ..
1010175'1021615 • L 1 : LDA 0 .. S+4 .. 3 ;P
10101761"041611 STA IO .. S+IO .. 3 ;ANSWERPOINTER

; END

1010177'1010610102$ JSR @BLKEND
101021010"1010610110$ JSR @RETURN

1010101014 FSIO= 14

F-40

177600 L= -200
177611 S= -167
100000 SP= IB0

00201'000000 LP:
00202 Y 000006
00203 Y 1300001
00204 Y 000002
0020S'-000003
00206 Y 000004

13007
ADORE
ALLOC
ANSWE
BLKEN
BLKST
BSSTR
CALL
rILEP
rS0
L
LENGT
LP
MOVST
OP
RETUR
S
SAVE
SP
STREQ
SUBST
.Gl
.G2
.G3
.G4
.GS
.L 1
.LP
.SP
R

ANSWE
000001$X
000112'X
000000 Y

000002$X
000003$X
000004$X
00000S$X
000167'X
000014
177600
000006$X
000201 '
000007$X
000001-
000010$X
177611
000011$X
100000
000012$X
000013$X
000111'
000041 '
000020 Y

000037'-
000110'-
00017S'
000000;;
000014$X

000000
000006
000001
000002
000003
000004

.END

.........
F-41

APPENDIX G

DEBUGGING ALGOL PROGRAMS

This appendix describes, through
compilation errors and debugging
Debugger and the TRACE program.
for all examples is RDOS.

CORRECTING COMPILATION ERRORS

the use of examples, correcting
ALGOL programs with the Symbolic
The operating environment used

Compilation errors are detected by the ALGOL compiler, which gives
explicit error messages and the source statement in which the error
was detected. (Refer to Chapter 10 for illustrations of compiler
error messages.) These errors can be corrected using the Text Editor.
The following example shows errors detected at compilation and illus­
trates the use of the Text Editor for correcting these errors. For
details on the operation of the Text Editor, refer to Text Editor
Manual, document number 093-000018.

The procedures shown in this example are general in nature and can
be used to correct any source program. The procedures are:

1. Obtain a copy of the source programs (TEST.AL and
SORT.AL) on the program console using the ROOS command
TYPE. This command is issued here to give the program­
mer an accurate copy of the source programs before
compilation.

2. Compile the programs with the ALGOL command. Source
errors in TEST and SORT are printed on the console.

3. Call the Text Editor with the EDIT command to correct
these errors. The Text Editor commands

GvTESTl.AL$
md

GWSORTl.AL$

write the corrected files into TESTI and SORTl,
respectively. These file names must be used when
the programs are recompiled.

4. Use the ALGOL command again to compile the corrected
programs, TESTI and SORTI. The IU global switch
includes user symbols, required for debugging, in the
output. Both programs compile without error.

G-l

CORREC'l'ING COMPILATION ERRORS (Continued)

TYPE TEST.AL +RD03 command to type TEST.

BEGIN

R

INTEGER I;
INTEGER ARRAY A[0:10J;
EX1ERNAL PROCEDURE SORT;

OPEN (}, "$TTI");
OF EN (2 , " $ T TO") ;

FOR I := 0 UN1IL 10 STEP I DO BEGIN
viRITE (2, "> ")J
H EA D (I, A, [I J) ;
END;

hlR IT E (2, "S OR T < I 5>") ;
SOHT (A);
NRI1E (2, "END SORT<15>", A, "<IS>");

END

Source pro­
gram for TEST
as written.

TYPE SORT .AL +RDOS command to type SORT.

PROCEDURE SORT CA)J INTEGER APRAY A;

BEGIN

BUBBLE:

INTEGER I;
800LEAN DOl\:E;

DOl\:E := TRUE;
FOR I := LBOUND(A,I) STEP I UNTIL HBOUNDCA,l)-1 DO

IF A[IJ > A[I+l] THEN DO BEGIN

T := A[IJ;
AU] := P.[l+lJJ
A[l+IJ := 1;
DONE := FALSE;
END;

IF NOT DONE THEN GO TO BUBBLE;

END

G-2

1
lsource pro­

gram for SORT
as written.

CORRECTING COMPILATION ERRORS (continued)

ALGOL/U TEST; ALGOL/U SOfn +- Compile TEST and SORT
FOR I := 0 UNTIL 10 STEP 1 DO BEGIN

t

*** 'UNTIL' MUST FOLLOW 'STEP' ***

PFOG~AM IS RELOCATABlE
IF A[IJ > A[I+IJ THEN DO BEGIN

t

*** STATEMENT DOES NOT 2ND PROPERLY ***
A[I+1J := T;

t

*** UNDEFINED VARIABLE ***

PROGRAM IS RELOCATABLE

R
EDIT

.TIll

*GRTEST.ALSGWTEST1.ALSYSS

SORT

*CUNTIL 10 STEP 1 SSTEP 1 UNTIL 10 SS
*PGCSS
*GRSORT.AlSGWSORTl.Al$YSS
*SINTEGER 1511 TSS
*L1 TS!
BEGIN INTEGER II T;
*CTHEN DOSTHENSS
*PGCHSS
R
ALGOL TEST1;ALGOL/U SORTI

~
PROGRAM IS RELOCATABLE

PROGRAM IS RElOCATABLE
.TITL SORT

DEBUGGING USING THE SYMBOLIC DEBUGGER

)

+- Source error in TEST

+- Source errors in SORT

+- User enters Editor.

User edits source
program, correcting
errors and exits the
Editor.

U means "compile with
symbol output". Sym­
bols needed for debug­
ging.

Once compilation errors have been corrected in an ALGOL program, the
Symbolic Debugger can be used to detect run-time errors.

Loading the Symbolic Debugger

To debug an ALGOL program, the following programs must be loaded
together with the RLDR command:

1. The Symbolic Debugger, which is loaded automatically
when the command line contains the /D global switch.

2. The ALGOL programs to be debugged.

G-3

Loading the Symbolic Debugger (Continued)

3. User symbols, output during compilation, which are
loaded with the /U local switch.

4. The contents of the ALGOL library, LIBRARY.CM, loaded
with the @ indirect convention, which brings in all
necessary ALGOL run-time routines.

5. The file to contain the output save file, which
is loaded using the /S local switch.

The format of the RLDR command, then, is:

jRLDR/D inputfilename-l/U [••• inputfilename-n] @LIBRARY.CM@

I savefilename/S)

RLDR/D inputfilename-l/U [••• inputfilename-n] @LIBRARY.CM@ savefilenc

The sample programs used in the explanation of correcting
compilation errors and the debugger can be loaded with the
command:

R ,~----------------------------------- /D loads the debugger.
RLDR/D TESTl SORT1/U @LIBRARY.CM@ SORT/S

.MAIN
SORT

\ -.....-- / lL.. Output save file with
\ symbols.

~------------- Loads the library.
R

The save file is named SORT. This name must be used in the DEB
command, which starts the debugger.

Operating the Symbolic Debugger

General debugging procedures are described below; for additional
information on the debugger, the user is referred to the
Symbolic Debugger User's Manual, document number 093-000044.
The sample programs described previously are again used to
illustrate the use of the Symbolic Debugger. A listing of the
source file, obtained at compilation with the /L switch, is
used as an aid in debugging.

To ,understand the use of the debugger in this example, the user
must first know the functions to be performed by the procedures.
Basically, the TEST procedure performs all I/O. TEST reads
values input at the console into array A. It first types a >

and waits for the user to type a value, followed by a carriage
return. When eleven values have been requested and input, TEST
types the word SORT, followed by a carriage return. It then
calls in the SORT procedure which performs a bubble sort of thie

G-4

Operating the Symbolic Debugger (Continued)

eleven values in array A. Values are sorted so that the
smallest is the first value in the array. When sorting is com­
plete, control returns to TEST, which prints END SORT, followed
by a carriage return and the contents of the array, each value
of which is terminated by a carriage return.

The following command begins debugger execution:

DEB savefilename)

The user must then enable all local and global symbols for a
procedure with the debugger command:

procedure-name %

where procedure-name is the name of a procedure. This procedure
must have been compiled separately.

User commands to the debugger at this point will depend on the
program being debugged. (To follow this example of debugging,
the user should refer to the actual debugging session and the
partial listing of SORT, shown on the next pages.) For this
example, the next two commands open the location .Ll, print its
contents, and set a breakpoint at that location. A listing of
SORT indicates the locations where breakpoints should be set to
halt the debugger at critical points in execution. .Ll is the
first location in SORT. Note that if a breakpoint is set on a
JSR instruction, the breakpoint must be deleted before execution
proceeds.

The main program is started with the $R command. When eleven
values have been requested and input, control is passed to SORT.
Because a breakpoint is set on the first instruction in SORT,
execution stops and the location of the breakpoint and the
contents of the accumulators are printed by the debugger.

The $= command instructs the debugger to print all output in
numeric (octal) format. The next two commands open the loca­
tions .FP and .SP, the frame and stack pointers, and print their
contents.

To understand the next command, refer to the listing of SORT.
The location immediately following the JSR call to the run-time
routine LBOUND contains a pointer to the first data in the array.
(This can be verified by checking the calling sequence for
LBOUND, described in Appendix C under the heading "General
Purpose Routines.") The command S+.0+16146/ opens the location
containing the address of array A.

G-5

Operating the Symbolic Debugger (Continued)

This command illustrates a useful format for determining the
address of data on the stack:

where:

S+offset+C (. SP)

S is the initial stack offset.

offset is an integer offset from S into the stack.

C (.SP) is the contents of the stack pointer. (In the
listing, the stack plus offset are expressed as SP+~.)

The command S+~+16146/ shows the first value of the array 1S

in location 15731. That location is then opened with "/" to
reveal a 7, which is the first data input to the array.
Successive line feeds open the next five locations and print
their contents.

Satisfied that the array contains the correct data, the user sets
a breakpoint at location .G4. This location contains a JSR
indirect instruction to the run-time routine HBOUND. By setting
a breakpoint here, the user can examine the lower bound of
array A before the upper (high) bound is computed. The Proceed
command ($P) continues execution until this breakpoint is
encountered. The location of the breakpoint and the contents
of the four accumulators are printed automatically.

The next command opens the location containing I, the subscripting
index, and shows its value to be~. Because I is an integer,
the contents of the location S+offset+C(.SP) is the actual data
in the location, not a pointer to the data. (Refer to Appendix
B for a description of storage of the various data types on
the stack.) The command S+5+16146/ opens the location for tem­
porary storage, which is the result from LBOUND, and prints its
contents, also zero.

Before execution can proceed, the breakpoint on the JSR @HBOUND
instruction must be deleted. This is accomplished with the
command 6$D.

The next command to the debugger examines the contents of .G4+5.
The contents of this location shows the assembled data value
and the instruction LDA ~ -162 3. (The value of the initial
stack offset S is -167; 8+5, as displayed in the listing, is
-167+5.) To check that the high bound of array A is correct,
the user sets a breakpoint at location .G4+5. Execution proceeds
until the breakpoint is encountered. The location S+5+16146 is
examined for the value of the high bound. It is shown to be
12; thus, the bounds of the array are correct (0 to 11).

G-6

Operating the Symbolic Debugger (Continued)

$P continues execution until breakpoint 7 is encountered. At
this time, some data values should have been sorted. The user
checks the locations 15731 through 15734 to verify that the
sort is proceeding. The program is then run two more times
(3$P) before the breakpoint stops execution. A spot-check of
the same four locations shows sorting continues correctly. All
breakpoints are deleted with $D and the program is allowed to
run normally. The outputted data confirms that SORT and TEST
have executed without error.

R
DEB SORT + Command to start in debugger.

SORT% + User symbols made known to debugger.
• L1 /L DA 3 • LP
• $8
SR

+ Open location .Ll and print its contents .
+ Set breakpoint at .Ll in SORT .

> 7
> -2
> 10
> 7777R8
> 3.5
> -4
> 27~
> 2
> 0
> 1 1
> 3~00

SORT

7B .Ll

1
J

+ Start program.

+ Data read by main program.

+ Printed by main program.

+ Breakpoint 7 encolmtered.
o 0f)0013 1 177776 2 177777 3 0161~6 + Contents of accumulators
$= .. Numeric (octal) mode. printed by debugger .
• FP/0161 ~6} ~ _____________ Check stack pointers •
• SP/0161~6~~ .lst data word (S+O is array A)
S+0+161~6/015731 /000007 .. 7
15732 177776" -2
15733 0001312'" 10
1573~ 007777.. 7777R8
15735 000003.. 3 (truncated 3.5)
15736 1 Ti77~ .. -4
• G ~$8 1--------- Set breakpoint on JSR @HBOUND (at .G4)
$P
6B • G~
o 000000 1 177776 2 006~11 3 0161~6
S+2+161~6/000000

S+5+161~6/000000

6$0 ..
.. .. S+2 is I

S+5 is temporary
Must delete breakpoint on JSR

G-7

@HBOUND

Operating the Symbolic Debugger (continued)

.G4+5/021616 ;LOA 0 -162 3

.$8 ~.~---------- Set breakpoint at .G4+5
$F
68 .G4+5
o 000000 1 177776
6$0

2 006335 3 016146

S+5+16146/000012
$P
78 .Ll

2 006335 3 016146 o 000001 1 000012
15731/177776 ~.~----------

15732 0e0007
-2

15733 000012
15734 000003
3$P • .------------ Break before 3rd time executing .LI
78 .Ll

2 006335 3 016146 o 000001 1 000012
15731/177776 ~.~-------------
15732 177774~.~-------------

15733 000003
15734 000002
$0
$PENO SORT
-4
-2
o
2
3
7
10
11
274
3400
4095
R

-2
-4

Delete all breakpoints.

G-8

Operating the Symbolic Debugger (continued)

The following portions of the SORT listing show coding where
breakpoints were set on . Ll, . G4, and . G4+5.

J DONE := 1hUE;

00006'03~000- .L1:
00007 i 021600
00010'03~010$

00011'0~1615

LOA
LOA
LOA
!::iTA

3,.LP
0,L+0,3
3,.SP
0,S+~,3

JLITERAL

;OONE

J FOR I := LBOUNOCA,1) S1EP 1 UNTIL HBOUNO(A,l)-1 DO

00012·00600~.$.. G3: JSR @LBOUND
00013'100000 SP+O ;A
(:HJ01tj'011021 01 1021
0D015'000157'

JINTEGER PARAMETER ARRAY
LP+l JLITERAL

00016'100005 SP+5 ; TEMPORARY
00017'021616 LDA 0"S+5 .. 3 JTEMPORARY
00020'0~1613 STA 0"S+2,,3 ; I

SORT

00C21'006003$ /- G ~: JSR @HBOUND
00022'100000 SP+0 JA
00023'011821 01 1021 JINTEGER PARAMETER ARRAY
0002"'000157' LP+1 ;LITERAL
013025 '1 £10005 SP+5 J TEMPORARY
OC026'021616 LDA 0"S+5,,~ JTEMPORARY
010(-)27' 100~00 NEG 0 .. 0
00030' 100000 COM 0,,0
00031'025613 LOA I"S+2,,3 ; I
(181;;32 '122500 SUBL 1"Q)
01H33..3 ' 101002 MOV Q)"Q)"Si::C

G-9

DEBUGGING USING THE TRACE PROGRAM

Program debugging can use the TRACE procedure rather than the
Symbolic Debugger. TRACE gives the user a complete picture
of user stack frames created at run-time.

TRACE is supplied as an RDOS dump tape.
at the console or in a user program.

Calling TRACE at the Console

It can be called either

TRACE can be called at the console to be used only with a break
file. The break file must be created before TRACE is called.
During execution of an ALGOL program, the break file, BREAK.SV,
can be created in either of two ways:

• When a fatal run-time error occurs, or

• When the user generates a console break by issuing
the CTRL C combination.

The user can then trace the ex~cution In the break file by
issuing the command:

TRACE [filename])

where: filename is the name of the break file, if the break
file has been renamed. If the break file has not
been renamed, this argument should be omitted.

The /L global switch can be appended to TRACE to indicate out­
put is directed to the line printer. If this switch is omitted,
output is directed to the console.

Calling TRACE in an ALGOL Program

An ALGOL program can call the TRACE procedure in either of two
ways:

1. By declaring TRACE an external procedure and calling
TRACE when an error is encountered. In this case,
TRACE begins execution when it is called. The following
example includes a call to TRACE in an ALGOL program.

G-10

Calling, TRACE in an ALGOL Program (Continued)

PROG:

ERR1:

BEGIN INTEGER I;
REAL (3) X;
STRING (1.0) S;
INTEGER ARRAY IA[l:l.0];
EXTERNAL PROCEDURE TRACE;

X : = • 333333R8;
FOR I := 1 STEP 1 UNTIL 1.0 DO

IA [I] : = -1;

OPEN (1, "$TTI");
READ (1, S);
OPEN (1, S, ERR1);

FOR I := 1 STEP 1 UNTIL 1.0 DO
READ (1, IA[I]);

TRACE;

END

~declare an external pro-
cedure.

~label to transfer to on
occurrence of error.

~on error, call

2. By declaring ONTRACE and OFFTRACE external procedures
and calling these procedures to make TRACE available
or unavailable to the procedure. At any time after a
call to ONTRACE is executed, the user can bring in the
TRACE program by causing a break (CTRL C) at the console.
OFF'l'RACE can be called later in the proqram to turn off
the availability of the TRACE program. The following
example illustrates the use of ONTRACE and OFFTRACE
to trace parts of an ALGOL program.

G-ll

Calling TRACE in an ALGOL Program (continued)

prog: begin integer i;
re a l (3) x;
string (10) s;
integer array , A[l: 10];
external procedure ontrace, off trace;

x := .333333r8;
for i := 1 step 1 until 10 do

A[i] .- -1;

ontrace; +- turn on TRACE
open (1, "$TT I") ;
read (1, S) ;
open (1, S) ;
off trace;
for i := 1 step

read (1,
ontrace;

+- turn off TRACE while reading.
1 unti l 10 do
A [i]) ;

+- turn TRACE on again.

Debugging Aids for Use with TRACe

To understand the stack information printed by TRACE, the user
should obtain the following:

. A full listing of the input source files, output at
compilation with the /L switch.

A load map, containing a list of symbols in numeric order,
output at load time with the /L switch.

In addition, the user can load the Symbolic Debugger (with the /D
global switch) with the programs to be traced. The debugger can be
used in conjunction with TRACE to aid in debugging.

Loading Programs for Use with TRACE

To debug an ALGOL program with TRACE, the following programs should
be loaded together with the RLDR command:

1. Symbolic Debugger, optionally loaded if the command
line contains the /D global switch.

2. The ALGOL programs to be debugged.

G-12

Loading Programs for Use with T&~CE (Continued)

3. User symbols output during compilation, which are loaded
with the /U local switch.

4. The contents of the ALGOL library, LIBRARY.CM, loaded
with the @ indirect convention, which brings in all
necessary ALGOL run-time routines.

5. The file to contain the output save file (if it is to
be different from the first input file name), which
is loaded using the /S local switch.

6. A listing of symbols output with the /L switch.

The format of the RLDR command, then, is:

RLDR/D inputfilename-l/U [••• inputname-n/U] @LIBRARY.CM@I

[savefilename/S] outputfilename/L

Using TRACE Information

Regardless of how it is called, when TRACE begins it types the
following information for each procedure being traced.

PROGRAM NAME: procname

RETURN LOCATION: xxxxx

CALLED LOCATION: xxxxx

G-13

+The name of the procedure
being traced. The last
procedure called is the
first procedure traced. If
the procedure is not loaded
with user symbols-C;U local
switch), this line is
omitted.

+The address, xxxxx, to
which control returns when
the procedure completes
execution. If the traced
procedure is called by
another program, it is a
location in the calling
procedure.

+The address, xxxxx, at
which the procedure begins
execution.

Using TRACE Information

STACK POINTER: xxxxx

(Continued)

+The contents of .SP when
the procedure was called.

AC~ xxxxx ACl xxxxx AC2 xxxxx +The contents of the ac­
cumulators when the pro­
cedure was called

CARRY x STACK LEVEL x +The state of Carry and the
stack level of the pro­
cedure.

Following this header information is a table of five columns of
stack information. This table displays the contents of each
location in the stack, printed four locations per line. The
first column in the table is of the form:

xxxxx/S+~

where xxxxx is the octal core address of the data in the first
column and S+n is its octal address relative to the beginning
of the stack. S+O is the first location on the stack; S+4 is
the fifth location; S+n is the n+l th location. The next four
columns give the actual data in-the four consecutive stack
addresses. For example:

data at location 15544,
stack-relative address S+~

15544/S+~
1555~/S+4

~
15475
4

t
15471
3

core t 1 data at location 1555~,
address stack-relative address S+4

stack-relative
address

data at location 15547,
stack-relative address S+3

4
33354

~
4
40

t
data at location 15553,
stack-relative ctddress
S+7

TRACE then prints the number of parameters, if any, passed to
the procedure and the stack-relative address of the parameters.
The actual data on the stack is explained in the following
example.

G-14

TRACE Example

The following example illustrates use of TRACE and its output. This
example consists of a main program, TEST, and a procedure SHELLSORT.
TEST merely reads data input at the Teletype into array AR. It then
calls SHELLSORT, passing the values in the array to it, which performs
a string sort on the data. As shown in the source code, the bounds
of array AR are dimensioned ~ to 6 in TEST, but the for statement
of SHELLSORT indicates a lower bound of 1 and an upper bound of
size(a), which will cause an error at run time. A listing of TEST
and SHELLSORT follows.

TEST: REGIN STRING (3) ARRAY AR[0:6J;
EXTERNAL PROCEDURE SHELLSORTJ

OPEN «(I), "STTI");
OPEN (1, "STTO");
READ <til, AR)J
SKELLSORT (AR);
END

PROCEDURE SHELLSORT (A);

STRING (3) ARRAY.A;

BEGIN INTEGER I, J, K, M;
STRING W;

FOR 1:= STEP I UNTIL SI~E(A) DO M := 2*1-1;
FOR M := M/2 WHILE M <> Vl DO

BEGIN K := SI~E(A)-MJ

FOR J := 1 STEP 1 UNTIL K DO

BEGIN FOR I := J STEP -M UNTIL 1 DO

BEGIN IF A[I+MJ >= A[IJ THEN GO TO 1;
W := A[IJ; A[IJ := A[I+MJ; A[I+MJ := W;

END I;

1 : END J

END M

END SHELLSORT;

G-IS

TRACE Example (Continued)

The programs are then loaded together with the debugger and the
contents of the ALGOL library. (The file name for the SHELL­
SORT procedure is SORT.)

RLDR/D TEST/U SORT/U @LIBRARY.CM@
TEST

SHELL

R

+load TEST and SHELLSORT
with symbols and debugger

Execution of the loaded programs begins when the user calls
TEST. TEST waits for the user to type sevel input strings at
the Teletype. The strings are read into array AR. When SHELL­
SORT is called by TEST, a run-time error is reported, execution
ceases, and a break file (BREAK.SV) is created.

TEST
~~~ 

AAA 
BBC 
REX 
YU 
AA.l\ 
Bll 

+ run loaded program 

. 
+ strings read into array AR 

SUBSCRIPT OUT OF BOUNDS: LOCATION 1275 + ~rror message 
BREAK + core image is saved 
R in "BRt:AK.SV" 

The user then calls TRACE at the console with the TRACE command. 
Output of TRACE is shown on the following page. Words in italics 
in the trace are comments, inserted here only to aid the reader 
in understanding the data in the stack. 

G-16 



TRACE Example (continued) 

tRACE +- user brings in TRACE.SV 
to trace "BREAK.SV" 

PROGRAM NAME: SHELL +- called by TEST; see next frame. 

RETURN LOCATION: 
CALLED LOCATION: 
STACK POINTER: 
AC0 4 
CARRY 0 

15544/S+0 
15550/S+4 
15554/S+10 
15560/S+14 
15564/S+20 
15570/S+24 
15574/S+30 
15600/S+34 
15604/5+40 

1045 
1071 

15733 
ACI 1252 

STACK LEVEL 1 

+- return address in TEST 
+- starting address for SHELL 

AC2 15503 

;array' data. ~ arl"'ay dope ptr 
15475 +-Al 15471 +-A2 4 +-T 4 +-J 
4 +- 1: 3 +- M 33354 +- W 1 40 +- W 2 

o 1 160 1207 7 (I +M) 
1252 33360 0 0 
S+16 0 S+20 30415 
6400 0 0 0 
o 0 0 0 
S+12 0 0 0 
o 0 S~20 

end of bloak ptr 
PARAMETER 1: ARRAY AT CALLERS S+0 

PROGRAM NAME: TEST 

RETURN LOCATION: 
CALLED LOCATION: 
STACK POINTER: 
AC0 0 

5625 
1000 

15652 
AC 1 0 

+- starting address for TEST 

AC2 -1 
CARRY 0 STACK LEVEL 1 

15463/S+0 
15467/S+4 
15473/S+10 
15477/S+14 
15503/S+20 
15507/S+24 
15513/5+30 
15517/S+34 
15523/S+40 
15527/S+44 

¥array 
S+12, 
S+2 ! 
o lbound AR 
33232 
33242 
33252 
55132 ZZ 
41102 BB 
54525 YU 
41061 B1 

NO PARAMETERS PASSED 

data _pt-n.-apzoay dope ptr 
S+:i ..... , .0 o ~3 dope sipe 
6 emn d Ah3226 AR UJ:: 
1403 33236AR[2] 
1403 33246 
1403 33256 
55000 Z 40501 AA 
41400 C 51105 RE 
o 40501 AA 
30400 1 S+4 

o 
10202 
1403 
1403 
1402 
1403 
40400 
54000 
40400 

array spe a'l- j"'z,er­
max/aur 

A 
X 
A 

end of bloak ptr 

G-17 



TRACE Example (continued) 

The run-time error message 

SUBSCRIPT OUT OF BOUNDS: LOCATION 1275 

indicates the location of the error. Using the load map, a portion 
of which is shown, the user can locate the procedure containing the 
error. 

SUSET 000140 
ASTR 000141 
SUNSE 000142 
TEST 001000 
SHELL 001011 
READ 001403 
LONG 002506 
RTER 002501 
ARER 002511 
RTE0 002530 
OPEN 003403 

~~~~~~ 
~

Portion of the load map, showing
that the location of the subscript
error (1275) is in SHELLSORT.

The load map gives the starting location of each run-time routine
and procedure. Since 1275 is between the starting locations of
SHELL and READ, the error must have occurred somewhere in SHELLSORT.
To check the exact coding for the error, the user subtracts the
starting location of SHELL from the error location:

1275 - 1071 = 204

and checks location 204 in the coding. The portion of the assembly
code showing that location follows.

G-1B

TRACE Example (continued)

1313174'13341313$
1313175'021613
1313176'1331616
013177'11313013
1302013'1351624
130201'006012$
00202'0131313132
00203'100000

~ 13132134 ' 10131313
13132135'1351624
13132136'13061312$
0132137'1313131302
00210'1000013
013211'113130132
00212'1351625
00213'006011$
00214'11301314

. ,

LDA
LDA
LDA
ADD
STA
JSR
2
SP+eJ
SP+13
STA
JSR
2
SP+0
SP+2
STA
JSR
SP+14

BEGIN IF A[I+MJ >= A[IJ THEN GO TO 1;

3,.SP
eJ,S+2,3 ; I
2,S+5,3 ;M
0,2
2,S+13,3 ; TEMPORARY
@SUBSCRIPT

;A
; TEMPORARY

2,S+13,3 ;TEMPORARY
@SUBSCRIPT

;A
; I

2,S+14,3 ; TEMPORARY
@STRCMP

; TEMPORARY
00215'10 @000203 ;STRING

3 ;TEMPORARY
;STRING

Location 204 contains SP+13. This is the octal address of the error,
relative to the start of the stack. The stack information output by
TRACE shows that this location contains a 7. This value, according
to the calling sequence for SUBSCRIPT, is the value of the subscript.
Since TEST declared an upper bound of 6 for the subscript, the value
is out of bounds.

This example also illustrates the kind of information output during
a trace. For example, because SHELLSORT was the last procedure
called, its trace is printed first. The header information for the
trace indicates the return and called locations, the contents of the
stack pointer and accumulators, the state of Carry, and the stack
level. The actual stack information following this header shows
that the first word of data on the stack is at location 15544. This
word contains the pointer to array A (the first variable declared in
SHELLSORT). This pointer is a location (15475) in the run-time
stack for TEST. The trace for TEST shows a 33226 at that location.
33226 is, in turn, a byte pointer to the first word of data in array l~R.
When 33226 is converted to a data address and pointer (bits 0 through
14 is the data address; bit 15 indicates the right or left byte), it
yields 15513. Location 15513 contains 55132, the ASCII code for ZZ,
which is the first two characters input to the array. The remaining
data in the array is stored in consecutive locations in TEST's stack.

G-19

TRACE Example (continued)

Back in the trace for SHELLSORT, the second location (15545) contains
an array dope pointer to the array control table. The pointer is
an address (15471) in the stack for TEST. Address 15471 contains the
dope size (3); the next location in the stack is the array specifier,
followed by the dimensions of the array (the low bound is ~; the
high bound, 6).

The third through sixth locations in the stack for SHELL80RT are the
values of the integers I, J, K, and M. Note that these variables
are pushed on the stack in the order in which they are given in the
procedure. At the time of the run-time error, I, J and K were 4;
M was 3. (The subscript that caused the error was, in fact, I+M or
7.) The next three words in the stack constitute the string specifie
for W. Additional words on the stack are internal data used by ALGOL

Finally, the last word of data, 8+20, is an end-of-block pointer, whi
is a list of bounds of data areas used by the run-time routines. 8+2
points to a stack-relative address. This address, in turn, contains
a pointer to stack-relative address 8+l6,which contains a zero •

•••
G-20

I

Licensed Material - Property of Data General Corporation

INDEX

+ - X / t 4-1, 4-4
9-15
< < = ~ > > 4-1, 4-7 -, 4-2

4-2
4-2
4-2

A V :: :::) ~. ED 4-7
1-1

lo(E,e) 4-2, 4-5
:= 4-2
(space) 4-2
() 4-3
[] 4-3
.. , "" 4-3
-+ -> 4-2
* 4-1

abs built-in function 9-1
accent marks 4-3
access procedure 9-38
actual parameters 8-5 to 8-8
addition 4-4
address built-in function 9-4
addressing by pointer 7-18, 9-4
ALGOL

calls and returns C-l
correcting compilation

errors G-l
debugging programs G-3
error messages Chap. 10
extensions Chap. 12
limitations Chap. 12
loading of D-l, D-9
run-time routines App. C
sample programs App. F.
versions App. D.

allocate procedure 7-19, 9-23
allocate storage

arrays in B-10
based arrays in B-12

based strings in B-12
variable area B-2

allocation of run-time stack
B-1, C-l

allocation of storage App. B
and 4-7, 4-9
arctan built-in function 9-1
arithmetic

assignment 6-3
built-in functions 9-1
evaluation 6-3
expressions 5-1
numbers 4-6
operator precedence 4-8
operators 4-4

array declarator 7-1, 7-4
array

bound functions 9-3
data type 7-4
declarator 7-4
element 7-6
of pointers 7-18
of strings 7-8
storage when passed as

parameter B-10
subscripts 7-4

arrow exponent indicator 4-4
arrow separator 7-16, 4-2
ascii built-in function 9-9
assembly D-3
assigned storage

array specifier in B-7
scalar in B-7
string specifier in B-8
variable area B-2

assignment statement 6-3

base of number
based declarator
based variables

4-6
7-16ff

array storage B-12
definition 7-16
string storage B-12

begin bracket Chap. 3, 4-3
bit manipulation functions 9-4
bit operation 4-9

INDEX - 1

Licensed Material - Property of Data General Corporation

blank space 4-2
block !

begin Chap.
beginning a
contents of
definition
inner 3-1

3
3-2
3-2

3-1

nesting of 3-1
scope of Chap. 2, Chap.3
terminating a 3-2

boolean declarator 7-3
boolean

conversion 6-3, 6-5
data type 7-3
expression 5-2
operator 4-7
operator precedence 4-8
storage A-3
value 4-7

bounds of arrays 7-4
bracket 4-3

TTY transliteration 4-1
buffer procedure 9-36
built-in function

abs 9-1
address 9-4
arctan 9-1
ascii 9-8
byte 9-8
classify 9-9
cos 9-1
entier 9-2
exp 9-1
fix 9-2
float 9-2
hbound 9-3
index 9-5
lbound 9-3
length 9-5
ln 9-1
m~mory 9-9
ro'tate 9-4
shift 9-4
sign 9-1
sin 9-1
size \9-2
sqrt 9-1
substr 9-6
tan 9-1

byte built-in function 9-8

byteread I/O procedure 9-21
bytewrite I/O procedure 9-21
cache memory 9-34ff
call

by name 8-5
by value 8-5
specification of parameters

for 8-6ff
to function 8-4
to procedure 8-3
run-time -s C-l

chain procedure 9-29
channel I/O 9-11
character string (see string)
classify built-in function 9-9
clock procedures 9-31
close I/O procedure 9-12, 9-49
coding examples App. F
colon 4-2
comarg procedure 9-25
comma 4-2
comment 4-2
compilation App. D

compilation errors G-l
compound statement 6-1
conditional

expression 5-1, 6-1, 6-2
statement 6-10

controlled variable 6-7
conversion of data types 6-3ff
correcting compilation errors G-l
cos built-in function 9-1

data types
boolean 7-3
conversion of
definition of
integer 7-2
label 7-3

6-3ff
7-2

parameter 8-6ff
pointer 7-3
real 7-2
string 7-3

deal location of run-time stack
C-l

debugging
using Symbolic Debugger G-3
using TRACE G-10

INDEX - 2

Licensed Material - Property of Data General Corporation

decimal point 4-2
declaration

array 7-4
based variable or array
data type 7-1
definition of Chap. 7
external procedure 8-2
external variable 7-15
label 7-l0f
literal 7-21
own variable 7-15
pointer 7-l6ff
procedure 8-1

eqv 4-7, 4-9
error messages Chap. 10, D-8
error procedure 9-28

7-16 error routines, run-time C-17
evaluation of expressions 4-8
execution App. D
exp built-in £tinction 9-1
exponent 4-4, 4-5
exponentiation 4-4

TTY Transliteration 4-1
expression

string variable or array 7-7ff
switch 7~14

arithmetic 5-1
boolean 5-2
conditional 5-3, 6-2
designational 5-4 '

declarator, list of 7-1
delete procedure 9-28
delimiter I

bracket· 4-3
declarator 4-1
list of 4-1
operator

arithmetic 4-4
bit 4-9
logical 4-7
relational 4-7
sequential 4-1

separator 4-2
specificator 4-1
transliteration 4-1

designational
expression 5-4

diagnostics Chap. 10
dimension of arrays 7-4
divide procedure 9-34
division 4-4
do 6-7
dummy (null) statement 6-1,7-13

e, E 4-2,4-5
else 6-10
end

bracket Chap. 3, 4-3
of block Chap. 3
of compound statement

entier built-in function
equal 4-7

6-1
9-2

evaluation 4-8
pointer 5-3
simple 5-1

extensions to ALGOL Chap. 12 I
external

declarator 7-15
identifier 2-3
procedure 2-3, 8-2
storage B-12

false 4-7
fetch function 9-46
file

command 9-25
byte position in 9-22
deleting 9-28
length 9-22, 9-23
manipulation procedures 9-28
renaming 9-28
very large 9-33ff

fileposition procedure 9-23
filesize procedure 9-22
fix built-in function 9-2
float built-in function 9-2
flush procedure 9-48
for statement 6-7
formal parameter 8-6ff
formatted output 9-14
.FP B-1
free procedure 9-24
function

built-in
keywords
procedure

Chap. 9
1-1

8-1

INDEX - 3

Licensed Material - Property of Data General Corporation

function (continued)
referencing 8-4

global identifier 2-1
go to statement 6-9
greater than 4-7
greater than or equal 4-7

TTY transliteration 4-1
gtime procedure 9-31

hashread procedure 9-48ff,9-34
hashwrite procedure 9-48ff,9-35
hbound built-in function 9-3

identifier

if

data type 7-1, 7-2
declaration of 7-1
definition of 1-1
global 2-1
keyword 1-1
length 1-1
local 2-1
precision 7-2
scope of 2-1
shape 7-1
storage of 7-1

clause 5-1
statement 6-10

imp 4-7,4-9
inc~ude 11-1
index built-in function 7-9,9-5
integer declarator 7-2
integer

conversion 6-3,6-4
data type 7-2
number 4-5
storage A-l

I/O procedure calls
byteread 9-21
~bytewrite 9-21
close 9-12
lineread 9-20
linewrite 9-20

I/O procedure calls (cont.)
open 9-11
output 9-15
read 9-12
write 9-13

keyword 1-1

label
declaration of
definition of
designational

2-1, 7-1
7-l0f

expression
5-4

in go to 6-9
scope of 2-1
subscripting 7-13, 6-10
data type 7-3

~abe~ specificator 7-1, 7-11,

lbound built-in function
length built-in function

7-12
9-3

less than 4-7
iess than or equal 4-7

TTY transliteration 4-1
library functions and

7-9,
9-5

procedures Chap. 9
lineread I/O procedure 9-20
linewrite I/O procedure 9-20
~itera~ declarator 7-21
literal

declarations 7-21
number of different bases

4-5
precision 4-5

ln built-in function 9-1
loading ALGOL App. D
local identifier 2-1
logical

operator 4-7
value 4-7, 4-9

loop 6-1

mathematical functions
memory built-in function
multiplication 4-4

9-1
9-9

INDEX - 4

multiplication (continued)
TTY transliteration 4-1

multiply and divide procedures
9-32

name, call by 8-5
node definition 9-43
noderead procedure 9-44
nodesize function 9-45
nodewrite procedure 9-44
not 4-7, 4-9
not equal 4-7

TTY transliteration 4-1
NSP B-2
number 4-5
number run-time routines C-27

open r/o procedure 9-11
operating procedures App. D
operator 7-22
operator

arithmetic 4-4
bit 4-9
logical 4-7
precedence of 4-8
relational 4-7
sequential 4-1

or 4-7, 4-9
TTY tr~nsliteration 4-1

output
formatted using output
call 9-14
using write call 9-13

own
declarator 7-15
storage B-12

parameter
actual 2-2, 8-6ff
address B-6f
descriptor B-5
formal 2-2, 8-6ff
specifier B-6

parentheses 4-3, 4-8

pointer declarator 7-16 to
7-20

pointer
conversion 6-4 to 6-6
data type 7-3
expression 5-3
storage A-3

position procedure 9-21
power of 10

in number 4-5
transliteration 4-1

precedence of operations 4-8
precision

array 7-4
boolean 7-3
default 7-2
label 7-3
of identifier 7-2
of literal 4-6
pointer 7-3
scalar 7-2
string 7-3

procedure declarator 8-1
procedure

block 3-1
body 8-1
call 8-3
call by name 8-5
call by value 8-5
declaration of 8-1
definition of 8-1
external 8-2
function 8-4
parameters 8-6 to 8-8
recursive (reentrant) 8-2
specificators 8-5, 8-9
statement 6-1

programs, sample
A-D conversion F-13
factorial F-l
help F-13
plot of function
satellite orbit
thousandstring

programming tips

F-6
F-3

F-8

bit handling and masking E-4
comparison or real values

compiler errors
compiler overhead

E-9
E-9

E-4

INDEX - 5

programming tips (continued)
expressions E-3
functions and procedures E-7
identifiers E-7
labels and transfers E-7
literals E-4
number precision E-l
number type,s E-l
stack handling E-6
statements E-4
string specifiers E-IO
strings E-6
subscripting E-3

QSP B-1, B-4
quotation marks 4-3

radix, changing the 4-6
RDOS D-9
read I/O procedure 9-12
re~l declarator 7-2
real

conversion 6-4, 6-5
data type 7-2
number 4-5
storage A-2
transfer to integer 9-2
truncation to integer 9-2

real time clock
procedures 9-31

real time disk operating system
D-9

recursive (reentrant)
procedure 8-2

reterencing a function 8-4
relational

operator 4-7
value 4-7

rem procedure 9-34
rename procedure 9-28
return

from function 8-5
from procedure 8-3

rotate built-in function 9-4
.RP B,l
run-time

pointers to B-1 to B-3
stack App. B

run-time routines
abretn C-2

run-time ~outines (continued)
abs C-33
access C-41
address C-14
addrs C-25
alg C-32
allocate C-9
append C-24
aret C-2, C-5
array C-9
asav C-2, C-5
ascii C-13
ascnu C-29
astr C-27
atn C-31
blkend C-3
blkstart C-3
break C-34
bsarr C-12
bsstr C-12
buffer C-.41
byte C-16
byteread C-22
bytewrite C-23
call C-l, C-3, C-4
chain C-24
cl<ou C-38
ckoul C-38
classify C-16
close C-21
cmove C-34
comarg C-21
contr C-26
copy C-40
cos C-31
cvst C-15
delete C-21
dimmu C-26
dvd C-27
entier C-36
error C-19
exp C-32
exsbsc C-16
fad C-37
fcmp C-36
fdv C-35
fentl C-35
feqc C-36
fetch C-42
fhalf C-34
fileposition C-22

INDEX - 6

run-time routines (continued) run-time routines (continued)
file size C-22 nodewrite C-42
flf C-38 nropt C-29
flip C-34 numasc C-29
flush C-43 oaddr C-2S
flx C-38 off trace C-17
fmdc C-36 ontrace C-17
fml C-3S open C-21
fnor C-39 optnr C-28
format C-23 output C-20
fout C-30 ovlod C-23
free C-9 ovopn C-23
fsb C-37 pack C-37
fsn C-38 ply C-33
fxf C-38 pop C-30
getadr C-14 position C-22
getbt C-30 power C-30
getrandom C-2S print C-24
getsp C-3 push C-30
gtime C-24 putbt C-30
hashread C-43 putrandom C-2S
hashwrite C-43 random C-16
hbound C-12 read C-20
index C-12 rem C-14
iout C-29 rename C-21
iovfl C-39 return C-2, C-3, C-4
iptnr C-28 romdm C-39
lbound C-12. rond C-39
length C-14 rondh C-37
lineread C-22 rotate C-1S
linewrite C-23 rret C-3, C-4
1st C-39 rsav C-2, C-4
mad C-37 rst C-39
madd C-34 salloc C-9
mand C-3S sarray C-1O
mdiv C-36 save C-l, C-3, C-4
mdvd C-34 sbscr C-16
memory C-14 sdiv C-1S
mmpy C-34 seed C-16
mmul C-36 setcurrent C-6, C-13
mneg C-37 sfree C-1O
mnot C-3S shift C-1S
mod C-14 sign C-38
mor C-3S sin C-31
move C-39 size C-12
movstr C-13 spin it B-1, C-3
mpy C-27 sqr C-30
msub C-34 stash C-42
noderead C-42 stcom C-1O
nodesize C-42 stcv C-1S

INDEX - 7

run-time routines (continued)
stime C-24
strcmp C-13
streq C-13
subscript C-ll
substr C-12
sunset C-26
suset C-25
tan C-32
trace C-17
umul C-16
upak C-36
vprc C-33
wordread C-42
wordwrite C-42
writa C-26
write C-20
xfl C-38
xpak C-37
xunm C-37
xupk C-36
.arer C-19
.caer C-43
.capo C-43
.card C-43
.cawr C-43
.rte.0 C-19
.rter C-19
.spini C-3

scope of identifiers Chap. 2, 3
semicolon 3-2, 4-2
separator 4-2
sequential operator 4-1
setcurrent procedure 9-24
shape of variables 7-1
shift built-in function 9-4
sign built-in function 9-1
simple expression 5-1
sin built-in function 9-1
size built-in function 9-2
SOS D-l
specification of parameters 8-5,

8-9
specificator 8-5
.SP B-1, B-3
sqrt built-in function 9-1
square brackets 4-3

.SSE B-1, B-12
stack allocation and deallocation

routines C-l
stack frame B-2
stack pointer B-2
stand-alone operating system

D-l
stash p~ocedure 9-47
statement

assignment 6-3
comment 4-2
compound 6-1
conditional 6-1
dummy (null) 6-1
for 6-7
go to 6-9
if 6-10
looping
procedure
transfer

step 6-8

6-1
6-1

6-1

stime procedure 9-31
storage

allocation App. B
allocation and release 9-24
array B-7, B-lO
assigned B-7
based 7-16 to 7-20, B-12
boolean 7-3, A-3
classes of 7-1
external 7-15, B-12
integers 7-2f, A-I
label 7-3
literal 7-1
local 3-1
multi-precision integers 7-2
own 7-15, B-12
pointers 7-3, A~3
real 7-2, A-2
scalar B-7
strings 7-3, B-8, B-ll
value 7-1

string declarator 7-7ff
string

arrays 7-8
ascii control in
conversion 6-4 to
data type 7-3
declaration 7-7
functions 9-6ff,

7-8
6-6

7-8 to 7-10

INDEX - 8

string (continued)
nesting of constant -s 4-2
setcurrent procedure 9-24
storage B-8, B-ll
substrings 6-6, 7-8,

subscript
expression 5-2

9-6

in assignment variable 6-3
of array element 7-4
of controlled variable 6-7
of label or switch 7-13, 7-14

substr built-in function 6-6,
7-8, 9-6

substring
definition 9-6
storage B-8, B-ll

subtraction 4-4
switch declarator 7-14
switches 6-9, 7-14
Symbolic Debugger G-3

tan built-in function 9-1
then 6-10
tips on using ALGOL App. E
TRACE program G-10
transfer of control

conditional 6-1, 6-10
unconditional 6-1, 6-9

true 4-7
truth tables 4-7
types of data Chap. 7

umul procedure 9-32
underscore 1-1
until 6-8

value specificator 8-5
value

arithmetic 4-5
boolean 4-7
call by 8-5
designational 5-4
integer 4-5
pointer 7-16
procedure 8-1

value (continued)
string 7-7
use of own to retain 7-15
real 4-5
storage class 7-1

variable
controlled 6-7
identifier (see identifier)

while 6-8
wordread procedure 9-41, 9-34
wordwrite procedure 9-42, 9-34
write I/O procedure 9-13

xor 4-7, 4-9

INDEX - 9

Changes from Revision 4 to Revision 5 of the ALGOL User's Man­
uals, 093-000052.

34

5-4,6-2

6-3

7-20

8-8

9-9,9-10

9-10

9-16,9-17

9-27

9-28

9-29

9-34ff

11-1

B-7

C-22

C-41ff

Nature of Change

a and b are string variables

Conditional designational expressions never
follow then or go to keywords.

Under note 3, only the lefthand side of the
assignment statement is now given in the format.

The statement tagged LOOP has been corrected in
the example.

Array elements of SET have been corrected.

The format of the classify function has been
corrected.

The classify example uses the ascii function,
not the substr function.

The output examples required a fourth list item
for the output given.

Null bytes are required after arguments in the
COM.CM file.

The array is correctly identified as B2.

Correction was made to the manner in which
chaining operates.

Cache Memory Management procedures (formerly
called Software Virtual Memory procedures) have
been incorporated into the manual, obsoleting
application note 017-000016.

Reference to condition signalling has been re­
moved. Reference to cache memory has been added.

Complex data type has been removed.

Descriptors of byteread and lineread are limited
to four, instead of five.

Software Virtual Memory has been changed to
Cache Memory Management.

Changes - 1

Changes from Revision 4 to Revision 5 of the ALGOL User's Man­
uals, 093-000052 (Continued)

C-49

D-7

D-9

D-ll

App.D, App.G

Nature of Change

The section on ALGOL routines that use system
calls now reflects the calls that have been
added to the RDOS system.

SYSGENing under SOS has been updated to reflect
SOS Rev. 9.

The dummy SOS.LB is included in the list of
library tapes. A note on linking the multiply/
divide library or changing LIBRARY.CM has been
added.

Loading must include the SOS trigger.

References to the ALGOL library file in the RLDR
command line have been corrected to read
@LIBRARY.CM@.

Changes - 2

___ No. ________________ __

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

Senior System Analyst
Analyst/Programmer

Operator
Other ____________________________________ __

What programming language(s) do you use?

Somewhat
o
o
o
o
o
o
o

Is the manual easy to read?
Is it easy to understand?
Is the topic order easy to follow?
Is the technical information accurate?
Can you easily find what you want?
Do the illustrations help you?

Introduction to the product
Reference
Tutorial Text
Operating Guide

FOLD DOWN FIRST FOLD DOWN

--

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage will be paid by:

Data General Corporation
Southboro, Massachusetts 01772

ATTENTION: Software Documentation

FIRST
CLASS
PERMIT
No. 26

Southboro
Mass. 01772

--
FOLD UP SECOND FOLD UP

	Introduction
	How to Program in ALGOL
	Contents
	General Program Organization
	Declarations
	Statements
	Procedures
	String Variables and Arrays
	Bit Manipulation
	Changing a Radix
	Writing an ALGOL Program
	Index

	Extended ALGOL Reference Manual
	Contents
	1. Identifiers and Keywords
	2. Scope of Identifiers
	3. Blocks
	4. Delimiters
	5. Expressions
	6. Statements
	7. Identifier Declaration and Manipulation
	8. Procedures
	9. Library Functions and Procedures
	10. Compiler Error Messages
	11. Including Files for Compilation
	12. Differences Between Extended ALGOL and Standard ALGOL
	A. Data Type Representation
	B. The Run-Time Stack
	C. Run-Time Routines
	D. Operating Procedures
	E. Tips for Efficient Coding and Reduced Execution Time
	F. Sample Programs
	G. Debugging ALGOL Programs
	Index
	Changes from Rev 4 to Rev 5

