¢»DataGeneral

—_—

EXTENDED
ALGOL

User’s Manual

093-000052—-05

EXTENDED
ALGOL

User’s Manual

093-000052—-05

Ordering No. 093-000052

© Data General Corporation 1971, 1972, 1973, 1974, 1975
All Rights Reserved.

Printed in the United States of America

Rev. 05, January 1975

Licensed Material - Property of Data General Corporation

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

Original Release February,1971
First Revision September,1971
Second Revision August, 1972
Third Revision February,1973
Fourth Revision March, 1974
Fifth Revision January,1975
086-000017-00 March, 1975

This revision of the Extended ALGOL User's Manual,
093-000052-05 and its addendum, 086-000017-00,
supersedes 093-000052-04 and 017-000016-00 and
constitutes a minor revision to the manual. A
vertical bar on the outer margin of each page
indicates substantially new, changed, or deleted
information. A list of changes is given following
the index to the Reference Manual section.

INTRODUCTIONR

Data General's Extended ALGOL compiler for all DGC computers

is suitable for business applications, for systems programming,
and for research and engineering applications. The extensions
to ALGOL 60 were selected to make DGC Extended ALGOL a general-
purpose language offering those features most wanted by users
rather than merely a language in which complex mathematical
algorithms could be concisely written.

The features of standard ALGOL 60 which differentiate ALGOL
from other commonly used languages include recursive procedures,
dynamic storage allocation, a modular "block" organization,

long variable names, integer or character labels, and a very
flexible generalized arithmetic.

Some of the major DGC extensions to ALGOL 60 provide for char-
acter string manipulation, file manipulation, DGC supplied I/O
procedures that allow free-form or formatted output and provide
a cache memory management facility, use of pointers and based
variables, multi-precision arithmetic allowing the user to
achieve, for example, up to 60 digits of precision, and sub-
scripted labels.

Character strings are implemented as an extended data type to
allow easy manipulation of character data. The program may,
for example, read in character strings, search for substrings,
replace characters, and maintain character string tables
efficiently. Dynamic conversion of data types includes con-
version of strings to and from integer real, pointer, and
Boolean data types, allowing the user an unusual degree of
freedom both in use of character strings and in their output
format.

The simplified I/O procedures for use by most ALGOL programmers
use one call for all data types. Free-form read and write or
formatted output according to a "picture" specification of the
output line are available. The I/O procedures provide for ran-
dom as well as sequential access of individual data values, a
number of bytes, a line of information, or all or part of a
file for reading and writing.

Cache memory management I/0 procedures may be used when very
large procedure and data files must be manipulated as in
compiler writing. The procedures allow access to single words,
blocks of words, and the contents of active files using a fast
buffering mechanism.

Pointers and based variables provide a programming technique
that allows a systems programmer, in particular, and other

programmers as well to achieve a high level of object code
efficiency. Pointers and based variables allow programmers
to explicitly manipulate machine addresses. For example, the
programmer can force a subscript calculation to be performed
only once in a frequently executed portion of a program. As
another example, if the programmer knows that an external
variable will not be modified by a call, he can convey this
knowledge to the compiler.

In effect, use of pointers and based variables bypasses compiler
generation of extra code usually needed to allow for "worst
case" computations where information is not available about a
variable until run-time.

Multi-precision arithmetic is available for both fixed and
floating point data types, allowing up to 15 computer words of
precision in both cases. Precision can be specified for both
variables and arithmetic literals. Radix conversion is permitted;
any radix from 2 through 10 can be specified.

Recursive procedures are allowed. An array declaration may be
any arithmetic expression, including function calls, negative
numbers, and subscripted variables. Integer labels and con-
ditional expressions can be used. Some of the other language
features and extensions to ALGOL are:

Dynamic conversion of parameter type (integer, real, string,
pointer, Boolean), allowing one program to process data of sev-
eral types.

Dynamic storage allocation, freeing the programmer from many
details of data layout and storage assignment.

N-dimensional arrays which may be allocated dynamically at run-
time.

Bit manipulation, using logical operators and octal or binary
literals. Built-in functions are provided to allow efficient
access to data at the bit level.

Efficient object code and commented assembly language output.
Code is optimized for register usage, generation of literals,
optimal use of machine instructions, and efficient storage
allocation.

Explicit diagnostics both at compile time and run-time. Compati-
bility with the Data General Symbolic Debugger aids run-time de-
bugging.

-ii-

Object code and run-time compatibility with assembly language
to permit referencing not only of external programs and data
compiled by the ALGOL compiler but of any object program.

Full label capability, permitting integer labels, identifier
labels and subscripted identifier labels to be used.

Declaration of literals permitting an identifier to be subscripted
for any type of literal within a program.

Declaration of operators permitting the user to declare, imple-
ment and use other operators besides the arithmetic and Boolean
operators provided with ALGOL.

-iii-

HOW TO USE THE EXTENDED ALGOL USER'S MANUALS

The Extended ALGOL User's Manuals is divided into two separate
parts. Part 1 is a tutorial called How to Program in ALGOL.

The tutorial presents the basic concepts of ALGOL for programmers
unfamiliar with ALGOL or with compiler languages.

Part 2 is a complete description of Extended ALGOL called the
Extended ALGOL Reference Manual.

Each part contains its own table of contents and separate index.

- -

HOW TO PROGRAM IN ALGOL

HOW TO PROGRAM IN ALGOL

CONTENTS

GENERAL PROGRAM ORGANIZATION..:.eeeeeocscocossoccsosns

DECLARATIONS ¢ cceceeocecsccoscscsscccsscscsscscsocsscssccsccccoeaos
Why Declarations Are Needed in ALGOL ceceeccossccese
Size of Storage for IdentifiersS..ceccececcccecccccss
Allocation and Release of storage for Identifiers.

Data TYPES cocecocsoscsccccsoscncssoccssscsscscscsscscssocscs
AYYaAYS eeceocecsccoesssosscsscssosscsscssssssccsscsces
Lists of Identifiers in DeclarationS.ececeecess
Local and Global IdentifierS.cceeceecesceccccccss

STATEMENTS ¢ ¢cecceeccccccossssscsccssssccsssssocsscsecs
Statement TerminatiON ¢ceeescecececccsssaccsccccs
Assignment Statement ...cceeeeccecsccccscccccns
go to Statement ..cccecececescecccscoccscscnscccse
1f Statement ceeeeeececcccososossasssssscscccccscs
for Statement ...ceeeeeeesscsoccscccossssscsncnns

PROCEDURES ¢ e e ocosoecocccccccscscsoosscscssscscsscsscscscscsece
Declaring a ProCedUre cesessecocccceccssssssscsns
Calling a ProCEdUrE eeesesssoscccosscsssassssssns
Returning from a Procedure «ceeeesececescscscscs
Identifiers Used in ProcedUreS cceeceeccescsacaese
External ProCedUreS ceeceeceescsccscscscscsscssccsscse
Parameters of ProcedUreS cccesecsccssscsoscsccsscse
FUNCEIiONS e e eeseeseesscsccsscssesscsscscsccsccscss
Recursive ProCedUreS ceeeeessosccccssossessoscsns
I/0 Procedures Supplied to the US€reeeeeeeceess
Functions Supplied to the US€r eeeeeececccooens

STRING VARIABLES AND ARRAYS cecceeccccsccccscccacss
BIT MANIPULATION ¢ ¢ e s e oo ccecoccoscccsccsccsscsoccccsse

CHANGE OF R.ADIX..ooooo.ocoono-ooooooooooo.ooooo'o

e e o o

.

WRITING AN ALGOL PROGRAM.oo0.000ooo.oooo.oocoooooc.o'o.

vii

.

.

‘.0'1

eeee3
ool
eees3
ool
eeedd
)
ceesd
p—i

«..10
eeoll
eeol2
«eol?
...18
«..20

e e22
eed22
eee23
eed23
oee24

0000.24

.

.

.ee24
«ee26
eed27
o2
eee32

0.032

0000034

.

'..35

aoo36

GENERAL PROGRAM ORGANIZATION

A basic ALGOL program starts with the word begin and ends with
the word end.

begin

. ~basic program
end

begin and end are written in italics because they are reserved
words (called keywords). ALGOL recognizes keywords as having a
special meaning; the user cannot change the meaning of keywords
or use them for his own program names. The user writes a key-
word at the teletypewriter either in all upper case letters or
all lower case letters.

A basic program is called a block.

Inside a block are declarations and statements. Declarations
list user program names and their characteristics. User program
names are called identifiers. Statements show the action the
program will take.

Declarations of identifiers must precede their use in statements.

| begin declarations;

declarations; -declarations precede statements
statements;

statements;

end;

!
i

An example of a block, containing declarations and statements is:

begin

real pi; —-declarations
integer X;

real R [300] , AREA [300];

pi := 3.1416;

for k :=1 step 1 until 150 do <statements
AREA [k] := pixR[k] 12;

end;

GENERAL PROGRAM ORGANIZATION (Continued)

An ALGOL program can be written in free form. This means that
a declaration or a statement can be continued from one line to
the next and that more than one statement or declaration can be
written on a line. For example, the previous program could be
written:

begin real pi; integer Kk; -but the program is hard

array R[300], AREA[300 to read if it does not
] ;pi:=3.1416; for k have some format.

:= 1 step 1 until 150 do

AREA [k] := pixR [k] t2; end;

Since the end of a line is not a delimiter in ALGOL as it is in
the DGC assembler, other delimiters must be used. A few common
ALGOL delimiters are the keywords themselves and the symbols:

H - usually ends a declaration, statement, or a comment.
’ - separates items in a list.

: - terminates a label definition.
separates the lower and upper bounds of array dimensions.

() - enclose parameters of procedures and built-in functions.
enclose precision of numeric variables.
enclose the maximum declared length of strings.
enclose expressions to be evaluated as entities.

[] - enclose dimensions of an array in a declaration or the
subscripts of an array or label in a statement.

space - separates identifiers that are not otherwise separated,
such as two keywords together or a keyword followed by
an identifier.

Examples of required blank spaces are shown below as triangles.
The other blanks are not significant and are used only for legi-
bility.

begin A real A pi; integer A k;
real O array A R[300], AREA [300];

Other delimiters will be introduced later in this manual. The
Reference Manual contains a complete list in Chapter 4.

-2~

DECLARATIONS

Why Declarations Are Needed in ALGOL

When a programmer writes a program for compilation in a high-
level language such as ALGOL, he uses several, sometimes a very
large number of program variables that are assigned different
values during execution.

A declaration tells the ALGOL compiler the name of a program
variable, called an identifier. In addition, a declaration
shows:

How much storage space the identifier needs.
How and when storage is allocated and released.
What kind of identifier is involved.

Much of this information does not actually appear in most
declarations but is given by default. For example:

integer k; - declaration of k.

tells the compiler:
The identifier is k.
k can have integer values.
Default storage for integers should be used for k.

Size of Storage for Identifiers

The basic storage unit is a 16-bit word. The default storage
for the various types of ALGOL identifiers is:

Integers - one word
Real (decimal) values - two words
Boolean values - one word
Pointers - one word
Strings - 32 characters (two characters

per word)

DECLARATIONS (Continued)

Size of Storage of Identifiers (Continued)

The default storage allocations can be overridden by the program-
mer by including precision in parentheses immediately following
the data type in the declaration. For numeric values, the pre-
cision indicates the number of machine words used to store the
datum. For strings, the precision indicates the maximum number
of characters the string may have.

integer (2) k, vy; -k and y are each stored in 2 words.
real (5) array x [10]; <each element of array x stored in 5 words.
string (50) line; <line has a maximum of 50 characters.

To approximate the number of decimal digits of precision that can
be stored in a given number of 16-bit words, use the following
formulas. n represents the declared precision in words.

l6n_

integer digits=5(n-1) +4 integer range=+2 1

real digits=5(n-1) +2 10777 < real range 51078

Allocation and Release of Storage for Identifiers

By default, an identifier is allocated storage when the block in
which it is declared is entered (begin keyword) and the storage
is released when the block is terminated (ewnd keyword).

A large ALGOL program can be made up of many basic blocks. Some
blocks are entered and exited many times. Allocating and releas-
ing storage by block makes more storage available for other
identifiers.

However, suppose a programmer wants to enter and exit a block
many times during program execution, The block contains a real
identifier, R. The programmer wants to enter the block each
time with R having the same value it had when the block was
last terminated.

If the programmer declares R with the keyword own, R will be
stored in a separate area from the other identifiers. 1In the
own area, space allocated to identifiers is never released until
the entire program terminates.

own real R;

DECLARATIONS (Continued)

Data Types

The declaration of a data type tells the compiler the kind of
values an identifier can have. The programmer must declare a
data type for all identifiers. There is no default declaration
of data type.

integer X; -has values like +15,3,-25

real Vi ~has values like 3.1416 and -.22266

boolean z; -has value true or false

string r; <has values like $5.25 or abcde

pointer p; <has an integer value. See Reference Manual.

Labels are explicitly declared by their use as labels; however,
formal parameters that are replaced by labels are declared label.
See section on procedures.

100: x :=3; <100 is a label on the statement
X :=3;

Arrays

So far, only identifiers that can have one value at a time have
been used. It is possible to declare an array. An array is an
identifier of an ordered set of values. Each member of the set
is called an array element.

Arrays, like simple identifers, are declared with a data type
and storage characteristics. These apply to each element in the
array.

integer (2) array Matrix;-declaration of array, Matrix. Each
element in Matrix can have an integer
value up to 9 digits long.

If you look at the declaration of Matrix, you see that the com-
piler has no way of knowing how many elements Matrix is supposed
to have. While this kind of array declaration is used under
circumstances described later, the programmer will usually declare:

How many elements are in the array.
How each element is to be numbered. (This also will

determine the order in which values are stored into
identifiers.)

DECLARATIONS (Continued)

Arrays (Continued)

This part of the array declaration is called dimensioning the
array. For example:

integer array Matrix [25];

The single number 25 tells the compiler that Matrix is an array
containing 26 elements, numbered:

Matrix [0], Matrix [1],..., Matrix [25]
and values are assigned in that order.
An array can have more than one dimension. In fact, it can have
up to 128 dimensions. For example, an array containing real

values for the lengths and diameters of pipe might be written with
two dimensions as follows:

real array pipe [5,5];

The declaration tells the compiler that the array, pipe, has 6x6
or 36 elements. The elements are

pipe(0,0], pipell,0], pipel2,0],...,pipel6,0], pipe[0,1], pipe [1,1
...,pipel6,1],...,pipe[5,6], pipel[6,6]

The identifying numbers of each element in the array are called
the subscripts of the array. If you look at the elements of
array plpe, you will see that the first subscript varies most
rapidly. In an array of several dimensions, values are assigned
in this way: the first subscript varies most rapidly, then the
second subscript, then the third subscript, etc.

If the programmer wishes, he can give an array a different
starting number from zero. For example, array pipe could have
been written:

real array pipe[-5:0,1:6];

Pipe still has 36 array elements but now they are numbered:
pipe[_srl], pipe[—4,l],..., pipe[‘l,6], Pipe [016]

-6-

DECLARATIONS (Continued)

Arrays (Continued)

The first number of each dimension gives the lower bound of the
dimension; the second number gives the upper bound. The lower
bound must be a smaller integer than the upper bound. Besides
integer and real arrays, arrays of strings can be declared. The
maximum length of each element of a string array can be declared;
otherwise, the default limit of 32 characters will be set for
each element.

begin string(8) array ID[9,9];

ID is declared as a two dimensional 10x10 array of strings. The
maximum length of each string is eight characters.

Variable strings are an extension to ALGOL. Some of the ways in
which they can be used are discussed later.

Lists of Identifiers in Declarations

The programmer does not have to write a separate declaration for
each and every program variable. Quite often a number of pro-
gram variables have the same data types and storage characteris-
tics. In this case, the programmer can write one declaration,
listing all the identifiers.

begin integer i,i1,1i2,i3;

real X,Y¥,2;

real array M[5,5], 2z[8,8], A,B[2,2]; «A and B have the same
- dimensions.

Local and Global Identifiers

The block structure of ALGOL permits blocks within other blocks.
In the following diagram, three blocks are shown. The blocks
labeled B2 and B3 are inside the block labeled Bl.

Bl: —— begin real A; <A is declared in block Bl.
B2: - begin boolean B; <B is declared in block B2.
i l—end B2; «B32 ends. end can be followed by a
| string of characters.
B3: —begin real C; ~C is declared in block B3.
—end B3; -B3 ends.
—-end Bl; =31 ends.

-7

DECLARATIONS (Continued)

Local and Global Identifiers (Continued)

Since B2 and B3 are both within block Bl, any identifier de-
clared in Bl, such as real A, is defined for blocks B2 and B3.

Identifier A is said to be local to block Bl (the block in which
it is declared) and global to blocks B2 and B3 (the blocks in
which it is defined.)

Identifier B is local to block B2 and identifier C is local to
block B3. Elsewhere, both these identifiers are undefined. Why
this is so can be seen in the following diagram of the blocks.

fond
¥
°

-storage is allocated for real A.

B2: ~storage is allocated for boolean B.
~-storage is released for B.

B3: -storage is allocated for real C.
-storage is released for C.

-storage is released for A.

Labels are declared by their appearance as labels within a given
block. For example, the blocks Bl, B2, and B3 might each con-

tain labeled statements.

B.: —begin real A;

B2: begin boolean B;
lab: ---; -lab is a label local to B2.

end B2;
! ttg: ---—; «-ttg is a label local to Bl and
i global to B2 and B3.
B3:-begin real C;

i22 2 ===y <22 is a label local to B3.
-end B3;)

— end B1l;

Like declared identifiers B and C, labels lab and 22 are undefined

except in their own blocks. Note, however, that the labels of
the blocks, B2 and B3, are outside the blocks they label and are
local to block Bl and global to blocks B2 and B3 as shown in the
following diagram.

DECLARATIONS (Continued)

Local and Global Identifiers (Continued)

Bl:
B2:
ﬁab: -——;
ttg: tjjj__——~
B3:
2: ===;

Even though a label does not appear in a declaration, it is a
data type; if an identifier is used as a label in a block, it
cannot be used as any other type of datum.

Arrays can be declared with variable dimension bounds such as:

real array z[i,3jl; The bounds are 0 to i and 0 to j.

The appearance of variable dimension bounds in an array declara-
tion constitutes a use of the identifiers. Identifiers must be
declared and defined before they are used. Thus i and j must be
global to the block containing the declaration of array z. For
example, the following is legal:

B: begin integer i,3; -i and j declared in block B.
i:=50; j:=100; <1 and j defined in block B.
C: begin real array A[i,j]l; +i and j used in dimensioning
end C; array A in Block C.
end Bj;

However, the following is illegal:

B: begin integer i,3;
real array Ali,jl;
end B;

A later section describes procedures and formal parameters of

-9-

DECLARATIONS (Continued)

procedures. Formal parameters are not allocated storage as are
actual program variables and therefore the rules of declaration
and definition before use do not apply to formal parameters.

STATEMENTS

Statements are programming instructions. They indicate how oper-
ations are to be performed using the declared identifiers.

ALGOL statements are very flexible so that programmers unfamiliar
with ALGOL can use short, simple statements. Experienced ALGOL
programmers, however, can nest statements within other statements.
In fact, an entire block may be treated as a single statement.

Some examples of simple statenments are:

A :=B+1.0; «-Assignment. B+1.0 is evaluated
and placed in location A.

go to Lb_13; -Unconditional transfer to the
statement labeled Lb_13.

if bool then go to B; - Conditional transfer.

c :=c/d;

bool is a Boolean variable. If bool has the value true, a trans-
fer is made to the statement labeled B. If bool is false, the
assignment statement is executed.

!tag2:; -Dummy statement providing a label

L to which to transfer.

for i :=0,2,25 do
I x[i] :=y[il+i; ~for statement.

The for statement causes a loop. The variable i is assigned the
first value (0) of the list 0,2,25, and the assignment statement
is executed. Then i is assigned the second value (2) and the
assignment statement is executed, etc.

proc23(x,y,2)7 -procedure call

-10-

STATEMENTS (Continued)

A call to a procedure named proc23 is made from the current block.

comment: Comments contain explanatory information;

ALGOL comments are written as statements, beginning with the
keyword comment and ending at the first semicolon.

Often, a programmer wants a group of statements to be treated as
a single statement. A common example is a group of statements
following a for statement, where the programmer wants the loop
to include the group of statements. He can use the keywords
begin and end to "block" his statements.

for p :=5,10,15,20
do begin
Alp] :=pt2;
B[p] :=A[p] -x;
Clpl :=Blp] +Al[pl;
end;

The three assignment statements will be executed for each value
of p.

Statement Termination

Statements shown previously have generally been terminated by a
semicolon. However, statements may be terminated in some
instances by the keyword end or the keyword else. For example,
the previous compound statement could be written:

for p :=5,10,15,20
do begin
A[p] :=pt2;
B[p] :=A[p] -x;
Clp] :=Blp] +Al[p] <-end terminates this statement
end;

The keyword else can terminate a statement in a conditional clause.

-11-

STATEMENTS (Continued)

Statement Termination (Continued)

1f x=0 then go to LABLAA else +else terminates go to LABLAA
1f x>0 then y :1=Xx

else «¢lse terminates y :=x

X 1=x +1;

Although end terminates one statement, the keyword does not sig-
nal that another statement or declaration can begin. The key-
word end can be followed by a string of characters. Anything
following end will be treated as a string wntil the next state-
ment terminator is encountered, that is, the keyword else, the
keyword end, or a semicolon.

end of block 25; «-string "of block 25" is terminated by a
semicolon.

Forgetting to terminate an end can lead to difficulties such as
the following:

end
begin integer 1i,j; <"begin integer 1i,j" is treated as a string
. following end, not as a declaration.

To avoid the problem, put a semicolon after the keyword end when
it is needed.

Assignment Statement

The basic statement is the assignment statement that permits the
value of an expression to be stored in a location represented by
an identifier.

variable := expression;

f

1
Assignment symbol

-12-

STATEMENTS (Continued)

Assignment Statement (Continued)

begin real B,C; integer Aj;boolean boo;

A :=0; - assignment of constants to variable

B :=C :=2.5; locations. Note that 2.5 is

boo := true; —assigned both location B and to
location C.

a :=a+2 —-assignment of simple expressions

b :=ct3; to variable locations. shows

boo := I"boo; exponentiation. ;7 means logical
not.

ALGOL expressions can be relatively simple as shown above or can
represent highly complex processes. A few more simple expressions
might be

v

z+4

(=b+sgrt (d))/2/a -/ means division.

d+abs (w[0] -yxw[l] -sin (x/2) +« x means multiplication.

wlk[i]] - subscripts can be nested to
any depth.

Note the terms abs, sin, and sqrt in the expressions.

These are references to functions, and the parenthesized expres-
sions following the function reference are the actual parameters
passed to the function when it is referenced. Functions and how
they are referenced are described later in a section on pro-
cedures.

The variable on the lefthand side of the assignment and the
expression on the right must have compatible data types. Each
variable type can be assigned an expression of the same data
type as in:

-13-

STATEMENTS (Continued)

Assignment Statement (Continued)

begin real X,Y;
integer 1,3j; pointer p;
boolean b,c; string (8) char;
i :=j=-4; -integer to integer
X :=x/yx3.5; «real to real
b :=rc; -boolean to boolean
char :="$25,10"; -string to string
p :=address (y); <-address is a pointer function

In addition, many conversions are possible:

begin integer i,j; boolean b,c;
1 :=bAc; <boolean to integer. (A is logical and).
c :=3; «-integer to boolean.

If bAc evaluates to true (1), integer i will contain one and if
the expression evaluates to false, then i will contain a zero.
In integer to boolean conversion, the integer expression (j in
this case) is evaluated. c¢ will be assigned the value false if
j contains all zeroes and will be true in every other case.

begin integer 1i,j; pointer p;

j = p+5; -pointer to integer
p := i; -integer to pointer

A pointer is one word long and contains a memory location (integer).
Therefore, integer to pointer and pointer to integer conversion

is permissible with the limitation that the integer must be one
word long (default precision).

-14-~

STATEMENTS (Continued)

Assignment Statement (Continued)

begin pointer p, q;string S,T;

S :=p+2; ~pointer to string
q :=T; <-3tring to pointer

The integer value of the pointer expression will be assigned

as a character string of all digits to S. When converting to

a pointer, T will be examined and the result assigned to the
pointer g up to the first non-digit or up to the one-word limit
of g.

begin string S,T; boolean c, b;

<boolean to string
-string to boolean

0n
Il oo

H Q

The boolean expression is evaluated to a zero or one. A zero or
one will be assigned as the character of S. When T is evaluated,
the result will be assigned to b as false (zero) if the string
contains all zeroes. Otherwise, the value ¢ruye (one) will be
assigned.

begin string ST,V; integer 1i,3;

ST := i-25; -integer to string
j ; -string to integer

The integer expression evaluates to the following format:

where: n is a digit

[-] indicates that a minus sign is optional (neg-
ative integer).

-15-

STATEMENTS (Continued)

Assignment Statement (Continued;

The evaluated expression is assigned to the string ST. In con-
verting from string to integer, characters will be assigned to
the integer variable up to the first character that does not
follow the format above, such as a decimal point, or up to the
limit of the precision of the integer, which in this case is
one word.

begin string S,T;real a,b;

a/l.5; -real to string
T; ~string to real

S
b

The real expression evaluates to the following format:

[(-ln...nl[.n...n] [E[-]nn]

where: n is a digit.
[] surround optional parts of the format.
E indicates an exponent following.

The evaluated expression is assigned to the string S. In convert-
ing from string to real, characters will be assigned to the real
variable up to the first character that does not follow the format
above, or up to the limit of the precision of the real variable,
which in this case is two words.

begin integer 1i,j; real x;

.
.

i+2; -integer to real
x/3; -real to integer

. X
o

An integer expression is converted to real by evaluating it and
placing the decimal point after the last digit. A real expres-
sion is converted to integer by evaluating it and usina a function,
called the entier function, to select the nearest integer value.

All the expressions described in this section are simple expres-
sions. There are also conditional expressions which may be used

-16-

STATEMENTS (Continued)
Assignment Statement (Continued)

in assignment statements. Conditional expressions are described
in the Reference Manual.

go to Statement

A go to statement transfers control to another statement in the
program. The keywords go to are followed by a label or an
expression that evaluates to a label. The expression can be a
subscripted label variable or a switch identifier.

Labels are either identifiers (alphanumeric characters beginning
with a letter) or unsigned integers.

. = + . ; 3 1 y
tagl X x+1.0 «~identifier label

3
.

go to tagl;

go to 10;

e 0 o o

10 Y6 = yxX; -integer label

A subscripted label variable in a go to statement evaluates to
a subscripted label. Labels can have a single subscript.

tagl[l] : x := x+pi/4;)
tag[2]: ; 1= pi/2 > ~subscripted labels
tag[3]: ; := x+pi; y,
;o to tagl[Il; «-I evaluates to 1, 2, or 3.

Switch designators are described in the Reference Manual. They
also appear as subscripted expressions to be evaluated in the
go to statement.

-17-

STATEMENTS (Continued)

go to Statement (Continued)

Because of the way identifier storage is allocated and de-
allocated by block, a statement must transfer control within the
block or to an identifier global to the block.

A: 1begin integer j;
tag: ---; <——

— B: begin real z; ~global transfer

go to tag;

- t f
Lab: ———; - local transfer

-end B;
- end A;

1f Statement

2f statements use a truth value as a switch to determine trans-
fer of control. There are two formats..

<f boolean_expression then unconditional statement;

1f boolean_expression then unconditional statement else statement;

If the boolean expression evaluates to true the then statement
is executed; otherwise, the then statement is skipped. The arrows
in the example below show how control is passed.

, T 3 .
if true then statement; next logical_statement;

<f faZsé then statement; hext_statement;

) S i ! .
1f true then statement else statement; next logical statement;

! []
i1f false then statement else statement; next logical statement;

-18~

STATEMENTS (Continued)

+f Statement (Continued)

Boolean expressions and the logical and relational operators
used in forming them are described in the Reference Manual,
which should be consulted if you are not familiar with Boolean
logic. Briefly, a boolean expression consists of

a+b#c +simple arithmetic expressions (atb and c)
are used with relational operators

=< <#>2)

booAloob <boolean expressions (boo and loob must be
declared boolean), used with operators:
r (not) A (and) v (or) D (imp)= (equ) @ (xor)

a+b#cvbocAloob <a combination of the above two boolean ex-
pressions

The then statement can be any statement or set of statements as
long as it doesn't contain another 7<f statement.

r;f a#b then a :=b;
. simple then statements
1f c>d then go to 25;

1f e<5 then begin x :=y :=x42;
y :=y+25.25; blocked then statements

go to 30 end;

The else clause can be an 7f statement. This means that a series
of switches can be set up. For example, the previous statements
could be rewritten

1f a#b then a :=b else

1f c>d then go to 25 else

1f e<5 then begin
X 1=y :=x%2;
y :=y+25.25;
go to 30 end;

-19-

STATEMENTS (Continued)

1f Statement (Continued)

Simple expressions were discussed in the section on the assign-
ment statement. The sequence

1f boolean_expression then ...

is a conditional expression and can appear anywhere a simple
expression can be used, except following the keywords then and
go to. Conditional expressions follow the rules for data typing.
See the Reference Manual for information on conditional expres-
sions.

for Statement

The for statement allows a given statement or statements to be
executed repetitively with a controlled variable set to dif-
ferent values. The statement or statements are executed as many
times as there are values for the controlled variable. The
statement format is:

for controlled variable := list of values_and_expressions
do statement (s);

At its simplest, the list can contain only values as in:

j
. for j :=1, 25, 350, 4, -6 do A[i,j] :=BI[jl;

i
L

However, the list can contain variables and expressions.

-20-

STATEMENTS (Continued)

for Statement (Continued)

For j :=1, a+3,x/y, if x#y then 25 else -6 do Al[i,j] :=B[jl;

In addition, a list item can contain either the keyword while
or the keywords step and until. A while clause would be:

for X :=y/2 while y#z do...

The keyword while is followed by a boolean expression. The
statement following do executes as long as the boolean expres-
sion is true.

A step-until clause would be

for a :=1 step 2 until 101 do...
t 4 4

initial incre- final
value ment value

The list item is equivalent to the simple 1ist: 1,3,5,...,101.
The initial, incremental and final values can be any expression
or value. Some examples of for statements are:

for 1 :=0.1 step -0.01 until? .005
do x :=ix1ln (x):; <1ln(x) is the natural logarithm
function
for j :=1 step 1 until 100 do
Ali] :=B[i]l-CI[i];

for k :=1, k+1 while z[k]>k do

begin zl[k] := k; ~compound statement following
y[k] := k-1; begin. Both assignment state-
end; ments are executed as part of
the loop.

-21-

PROCEDURES

Procedures are basic ALGOL programs that are called for execution.
Begin blocks can be entered by sequential execution of statements.
Procedures are only entered when they are called.

Declaring a Procedure

The format of a procedure declaration consists of a heading and
the text or body of the procedure. The body of a procedure

can be a single statement, a group of statements delimited by
begin and end as described on page 11, or a block containing
declarations and statements.

At a minimum, the heading of a procedure must contain the word
procedure, followed by the procedure identifier. 1In addition,
the heading may contain additional information about the pro-

cedure, described later in this section.

The procedure identifier follows the word procedure in the
declaration. Then the text of the ALGOL procedure is written.

Z: begin

procedure ZERODIV; ~procedure ZERODIV is declared in block Z

. -statement containing procedure body

Rules that apply to other identifiers apply to procedures as
well. A procedure must be declared before it is used (called).
It must be declared in the block in which it is called unless,
like some identifiers, it is an external procedure.

Assume that ZERODIV is a program that is used to prevent errors
resulting from division by zero. ZERODIV sets up the following
algorithm:

given: c :=a/b the following results are produced:
a value b value resulting c value

any # 0 a/b

>0 0 999999

= 0 0

<0 0 -999999

-22-

PROCEDURES (Continued)

Declaring a Procedure (Continued)

The full declaration of ZERODIV could then be:

Z: Dbegin

procedure ZERODIV;
1f b#0 then c :=a/b else
1f a=0 then c :=0 else
1f a<0 then c :==-999999 else
c :=+999999;

Calling a Procedure

A procedure is called by writing its name as a statement.

Zz: begin real array R[10,10], =z[10,10,10], Y[10,10,10];
real a, b, c;

procedure ZERODIV;
1f b#0 then c :=
1f a=0 then c :=0 else
1f a<0 then c:=-999999 else
c := +999999;

a/b else

a :=R[1i,7]; ~-Assign array elements to dividend and
b :=z[i,]j,k]; divisor.

ZERODIV; Call ZERODIV.

Y[i,j,k] :=c; “<Put result in proper location.

Returning from a Procedure

When a procedure is called, it executes until the end of the

procedure is reached. The procedure then returns control to the
statement immediately following the calling statement. In the

ZERODIV example control returns to the assignment statement:

Y[i,j,k] :=c;

-23-

PROCEDURES (Continued)

Identifiers Used in Procedures (Continued)

ZERODIV is a block inside the block named Z. Both Z and
ZERODIV use the identifiers a, b, and c¢c. If a, b, and c are
declared within ZERODIV, they will be undefined in block Z by

the rules of block structure. Therefore, a, b, and ¢ are declared
in block Z.
l .

Z: begin real a,b,c;

procedure ZERODIV;

.

.

There are identifiers that are used only in a given procedure
and they can be declared in the procedure.

External Procedures

An ALGOL procedure declaration can be compiled separately from
any enclosing block. It can then be used as an external pro-
cedure by many programs. Assume that the procedure ZERODIV
was compiled separately from any other block. Now, any block
can call ZERODIV if the block has a declaration of ZERODIV as
external.

begin
external procedure ZERODIV;

ZERODIV; -call to ZERODIV

Parameters of Procedures

The previous example showing ZERODIV as an external procedure
raises the problem of identifiers a, b, and c once more. Must
they be declared in each and every program that wants to call
ZERODIV? ALGOL solves this problem by allowing the user to put
dummy identifiers, called formal parameters into a procedure
declaration. Then, the procedure can be called with real
identifiers, called actual parameters.

-24~

PROCEDURES (Continued)

Parameters of Procedures (Continued!

With formal parameters, the declaration of ZERODIV could be:

procedure ZERODIV (a,b,c); -a,b, and c are formal parameters

real a,b,c;

1f b#0 then c :=a/b else

1f a=0 then c :=0 else

2f a<0 then c :==999999 else
c :=999999;

<-a,b, and c are declared.

A parenthesized list of formal parameters follows the procedure
identifier. These formal parameters will be replaced when the
procedure is called.

The formal parameters must have data types specified. 1In the
example, a,b, and c are specified as real.

If the body of the procedure is a block, formal parameters must
be specified in the procedure heading, not in the block. If
parameters are declared inside the block that is the procedure
body, they will be undefined in the procedure heading.

Assume the same block used previously to call ZERODIV now wishes
to call it to obtain a value for YI[i,j,k].

begin real array rR([10,10], =z([10,10,10], Y[10,10,107;

ZERODIV(R[i,31, =zI[i,j,k1, Y[i,J,k]1); ~Call to ZERODIV

When ZERODIV is called, array element R[i,]j] replaces a,
z[i,3,k] replaces b and Y[i,]j,k] replaces c. There is no need
to assign the values in the calling block. The assignment is
made when the actual parameters are passed in the call.

The rules governing formal and actual parameters are given in the
Reference Manual. As a general rule, formal and actual parameters
must have the same shape; for example, a procedure or an array
cannot replace a simple variable. Some examples of legal sub-
stitutions are:

-25-

PROCEDURES (Continued)

Parameters of Procedures (Continued)

begin real x,y,2; external procedure sum; N
procedure XX(a,b,c,d,e,f); 3
real a,b,c; boolean d;
label e; real procedure f; Procedure
begin. ? Declaration
procedure body
(statement or .
end; Callin
block) J > Block g
XX (x,y,z, true, Exit, sum); «call
Exites=-—- Y,
end;

-

Because formal parameters are only dummy identifiers, their
declarations are not as restrictive as that of real identifiers.
Note in the example that a label can be declared. Also, it is
often useful to leave a parameter declaration somewhat vague to
allow a larger number of possible replacements. For example

an array formal parameter could be declared without dimensions.

Functions
A function is a procedure which, upon execution, results in a
value. In fact, at some point in the function, an assignment

statement assigns a value to the function identifier.

Since a function represents a value, it must have a data type.
A data type is included in the declaration of a function.

real procedure arctanh (x) ; -real preceding procedure declares
real X; arctanh as having a real value
arctanh := 0.5xIn((1l+x)/(1l-x));+value is assigned to arctanh

Since a function represents some value, a function call is part
of an assignment statement or other statement:

-26-

PROCEDURES (Continued)

Functions (Continued)

real procedure arctanh (x);

z :=zxarctanh (y); - function call to arctanh with actual param-
eter y

When execution of arctanh is complete, the value of arctanh
replaces the call in the assignment statement.

A function has one of the ALGOL data types: integer, real, string,
boolean, pointer, or Llabel. (A label can be specified as a
function type.)

Recursive Procedures

ALGOL permits recursive procedures. A procedure is recursive if
it calls itself. An example is factorial computation.

integer procedure factorial (I):;

integer I; Declaration of
factorial := Zf I=0 then 1 integer function,
else factorial (I-1)xI; -factorial calls itself | factorial.

I/0 Procedures Supplied to the User

ALGOL does not provide for I/O operations. Some externally com-
piled procedures are supplied with Extended ALGOL to handle user
I/0. The I/O routines are described very briefly here, and the
user should consult the Reference Manual before using the I/O
package.

Before proceeding with I/O operations, the user must open a file
for input or output. The "file" can be a data file in secondary
storage or an I/0 device. To open a file the user writes the
-call:

Fpen(number,string);

-27-

PROCEDURES (Continued)

I/0 Procedures Supplied to the User (Continued)

The number is one of the channels (0 to 7) that can be associated
with a given file and the string is the name of the file.

open (1, INDEVICE); <INDEVICE is a string containing the
file name.
open (2, "myfile"); <~myfile is the literal name of a
i disk file.
iopen (3, "sTTO") ; <STTO is the teletypewriter on output.

!

Once a file has been opened, data can be read or written from it.
The read and write calls are:

read (number, list);

write (number,list);

The number is again the channel number associated with the file.
The list is a list of variables, expressions, and string constants
to be read from or written to the file.

open (2, "myfile");

write (2, a, b, ¢, d "<15> timings follow: ", MATRX) ;

In the example, the user opens myfile and associates channel 2
with it. He then requests that certain variables a,b,c,d be
written to the file. They will be written out according to the
way they are formatted in the file and their data type; the user
does not have to format them. The user then inserts a string
constant 'timings follow:'. After this, MATRX, which is presumed
to be an array of timing information, will be written to the file.

Within the string constant are the characters, <15>. The value
15 is the octal eqguivalent of the ASCII character for carriage
return. Enclosed in angle brackets, the value is passed to the
assembler and interpreted as a carriage return. As shown in
the example, the data for a,b,c, and 4 are written on one line,
then a carriage return is given. The string, "timings follow:"

-28-

PROCEDURES (Continued)

I/0 Procedures Supplied to the User (Continued)

and the matrix values are then written on a line.

When I/O operation for a given file is completed, the file must
be closed. This insures proper updating of the file and releases
the association between the file and the channel number. The
format for the call is:

close (number) ;

Another I/O routine allows the user to generate data output in
a large number of possible formats. The call is:

. \ |
output (number, format, variable list) ;i

The number is the channel number, The variable list is a list
of variables, expressions, and string constants to be output.

Format is a format parameter that determines the format of the
output values. The format parameter is enclosed in either
accent marks or double quotation marks. The user can put text
in the format parameter, and the text will be output exactly
as written.

output (2," RESULTS OBTAINED ARE:");

RESULTS OBTAINED ARE:

The user can also set up a field format for his data, using
the character # to represent each character position of the data.

output (2, "RESULTS OBTAINED ARE: #<15>", A);

RESULTS OBTAINED ARE: 345

In the example, the list consists of the variable A. The datum
in location A is written in the format given.

If the output number is smaller than the field format, the
number is right justified in the field with leading blanks.

-29-~

PROCEDURES (Continued)

I/0 Procedures Supplied to the User (Continued)

If the output number exceeds the field, the length of the field
will be increased, thus, one # may be used to output any integer
regardless of length.

A decimal point can be used in a field format. Assume variables
have the following values: x=-456.78, y=999.123, z=.08

output (2, "#####.4 ",x,v,2);

-456.8 999.1 .1 <note rounding of fractional values.

Signs + or - can be used in a field format. Without the sign,
as previously shown, only negative values are output with a sign,
and the minus sign requires a field format position.

If a plus sign is given, both positive and negative values are
output with signs. If a minus sign is given, only negative
values are output with signs. However, in both cases, the sign
does not require a field format position.

output (2, "-####.# ",b,c)

-4567.2 5858.0 <both positive and negative numbers
can have four digits before the
decimal point

Character strings are output in the same format as decimal
numbers, using # for each character position. The character
string output can be from a variable in a file or can appear as
a literal in the 1list of variables of the output statement.

|
loutput (2, "#H4#4#4#4#44##4", 1i,J, "Priceid); +i and j are string
variables; Price is a
string literal
Item No. Stock No. Price <possible output

Character strings are left justified in the field format with
following blanks.

If the character string is longer than the field format, the
entire string will be written.

30.

PROCEDURES (Continued)

I/0 Procedures Supplied to the User (Continued)

output (2, "##4#", "ADDRESS");

ADDRESS

In the I/O procedure calls, read, write, and output, an array
identifier in the output list causes all elements of the array
to be transferred in order. In the next example, assume A is
an array of seven integer elements.

output (2, "#####", A);

345 777 567 23 4577 890 230

The octal equivalents of ASCII carriage control characters can
be enclosed in angle brackets and included in the format field.
The control characters are passed to the DGC assembler for in-
terpretation, and allow many special formats to be set up.

output (2, "#######4#4#<15>", "STOCK ITEM", A);

STOCK ITEM
345

777

567

23

4577

890

230

In the example above, octal 15 is the ASCII carriage return code.
Octal control characters, enclosed in angle brackets, can be
given in any literal string, not just in the format field of the
output parameter list.

The Reference Manual contains additional examples of how a user
can format output, such as preparing tables of values using for
loops with output calls.

-31-

PROCEDURES (Continued)

Functions Supplied to the User

ALGOL has certain standard arithmetic functions that are supplied
to the user, such as those for taking a sine, cosine, or square
root (sin, cos, sgrt). In addition, Extended ALGOL has a number
of additional functions, such as those permitting the user to
manipulate bit strings and character strings. Some of these
special functions will be discussed in sections following and
others are described in the Reference Manual.

STRING VARIABLES AND ARRAYS

By an extension to ALGOL, character strings can be manipulated.
Strings can be declared with a maximumt length.

string (9) a,b; -a and b have a maximum of 9 characters.
string (2) array c[l:8]; <+each element of c has a maximum of 2
characters.

The default string length is 32 charaaters: the maximum length
that can be declared is 16,283 characters. String literals are
delimited by either accent marks (ASCII characters 140g and 047g)
or double quotation marks.

E string (9) a,b;
a:="xXxXXyvyyzzz~;
b:="825.67";

Subsets can be taken of strings, using built-in function substr.

!
“string (9) a,b;

Sa:="XXXYyyzzz~; -a contains "xxxyyyzzz"
. b:= substr(a,3,7); <b contains "xyyyz"
' a:= substr (b, 3); -a contains "y"

The first parameter of substr names the string to be subset. The
second gives the position of the first character in the string;
the third is the position of the last character of the string.
String array elements, as well as scalar variables, can be sub-
set.

-32-

STRING VARIABLES AND ARRAYS (Continued)

string (9) a; string (2) array c,d[1l:8];
Cas="xxxyyyzzz";

for i:= 1 step 1 until 8 do begin

i c[i] := substr (a,i,i+l);

| d[i] := substr (c[i],2,2); end;

I

When the for statement is executed, the contents of the elements
of arrays c¢ and d will be:

cl[l]::="xx"; c[2]:="xx"; c[3]:="xy"; c[4]:="yy"; c[5]:="yy"
cl[6]:="yz"; c[7]:="22"; c[8]:="zz2"; d[l]-= x"; d[2]:="x";
d[3]:="y"; dl[4]:="y"; d[5]:="y"; dl[e6]:="z"; d[7]:="z"; d[8]:="z

Concatenation of strings can be handled by the length built-in

function that returns the integer length of a string as its value.

string (10) a,b;

a:="xxx";
b:__..llyyyll;
" substr (a, length(a)+l, length(a)+length(b)) :=b;

L

The substring taken of a contains the original contents of a, to
which are added the contents of b; thus, the substring contains

"XxxYyyy".

The index built-in function returns a value that represents the
character position of a given character in the string.

string (10) a; integer b;
tar="xyzzz";
| b:=index (a, "y"); -~ statement is equivalent to b:=2;
l

Coding of the index function shows how string variables and the
length and substr built-in functions can be used in programming.

-33-

L
’

STRING VARIABLES AND ARRAYS (Continued)

integer procedure index(a,b); string a,b;

begin integer 1ij;

for i:= 1 step 1 until length (a) do

1f substr(a, i, i+length(b)-1) = b then go to done;
i:=0;

done: index:=i; end;

The ascii function can be used to convert a single character of
a string to its numeric value in the ascii collating sequence.

s:="ABCDEF";
i:=ascii(s,5); - statement is equivalent to i:=105RS8

In the example, the fifth character of the string, E, is con-

verted to its equivalent value, 1058.

BIT MANIPULATION

Extensions to ALGOL allow programmers to manipulate bits at a
level comparable to assembly language by using binary and octal
literals with boolean operators and by using the built-in
functions, shift and rotate. Bit manipulation is normally per-
formed upon integers of default precision (one word) or the
equivalent, such as boolean or pointer variables. Examples of
shift and rotate functions are

’ x:= shift(y, -4); <logical left shift y by 4 bits and assign to x.
! y:= rotate(y, +2); <logical right rotate y by 2 bits.

The programmer can use logical operations and binary and octal
literals to set bits, mask unwanted bits, or select bits from
an integer. For example, suppose x 1is an integer containing a
3-bit index into an array in bits 5,6,7.

0 567 15
N | - x

index

-34-

BIT MANIPULATION (Continued)

A variable, i, can be set to contain the index as follows:

i := shift(x,+8) and 111r2; +<r2 means radix 2.
or
i := shift(z,+8) and 7r8; «-r8 means radix 8.
ﬁndex
where: shift(x,+8) causes: 00000000xxxXxxXXX]|
and either 111r2 or 7r8 causes: mOOOOOOOOOOOOXxxl
index

When using a 6-digit octal literal as a mask, for example:

I
1077778

i

a one-word precision must be specified for the literal. Other-
wise, the leading two zeroes of the bit configuration will be
considered significant, and the literal will be generated as a
multi-precision (two-word) integer. Precision is specified as
the letter p followed by the number of words of precision,
which is one (1) in the case of a masking integer:

| 107777r8pl
|
? or

1 107777plr8

CHANGING A RADIX

The programmer can set any radix up to and including 10, as
shown for base 2 and base 8 in the section on bit manipulation.
Simply follow the literal with the letter r and the desired
radix:

l

i.lRB ~base 3.

| 1.3E9R4 ~base 4. The exponent is 49

| 101E-10R2 ~base 2. The exponent is 2-10

-35-

WRITING AN ALGOL PROGRAM

The steps to follow in writing an ALGOL program are:

1l. Study the problem. Can it be broken into several
algorithms? Can you further generalize the algorithms
for repetitive use? The first decisions are how to
structure the problem - nested blocks, separately com-
piled procedures, etc.

2, When you decide upon the structure of your program
you should decide what identifiers - variables, arrays,
parameters, etc. - need to be declared in each block.
Declaration of identifiers may be new to some program-
mers. It is essential to ALGOL programming.

Be sure the data types you select are suitable not
only for data storage but also as to compatibility
of formal and actual parameters and variables that
will be used together in expressions.

Decide on the precision of integer and real data
that you will need.

3. When the declarations have been written, the state-
ments that implement the program can be written.
Be sure to label statements you will transfer to
and to write comments. Comments will help both you
and other programmers.

4. Before attempting compilation, make a source-pro-
gram debugging check. Have you put in the proper
delimiters, blank spaces, and spelled the identifiers
correctly?

5. When you attempt compilation,!check the error
messages carefully against your source program
and make the necessary changes.

6. When you get your first ALGOL programs to compile,
chances are they will not be very efficient. Check
the compiled code carefully. Have you made full use
of supplied functions, nesting of procedures, and
external procedures? Have you used bit manipulation
facilities? Experiment with your source program
and see if you can improve the coding.

7. As you become more proficient in writing ALGOL
programs, try to use the additional facilities
described in the Reference Manual such as pointers
and based variables. These facilities for sophisticated
programmers such as systems programmers will also
improve your coding efficiency.

* % K
36

HOW TO PROGRAM IN ALGOL

INDEX
arithmetic expression 12-17 input/output 27-31
array 5-7, 32 keyword 1
ascii function 32 label 5, 7-9
assignment statement 12 length function 33
bit manipulation 34 local declaration 7-9
block 1 open call 27-28
boolean expression 18 output call 29-31
built-in function 32 parameters 24-26
carriage control of output 31 precision 3-5, 35
close call 29 procedure 22-27
comment 11 procedure call statement 10
conversion of data 14-16 program 1, 2, 36
data type 5 radix 35
declaration 3-9 read call 28
delimiters 2 recursion 27
dummy (null) statement 10 rotate function 34
formatted output 29-31 shift function 34
for statement 20 statement 10-21
function 26-27 storage allocation 3, 4, 7-9
global declaration 7-9 string 32-34
go to statement 17 substr function 32
identifier 1-9 termination of statement 11
1f statement 18 write call 28

index function 33

-37 =

EXTENDED ALGOL REFERENCE MANUAL

EXTENDED ALGOL REFERENCE MANUAL

CONTENTS

IDENTIFIERS AND KEYWORDS.¢eeeneee
KeywordS.eeeeeeeesoesssoccsonsss
Function KeywordS.eeeeeeeooosas

SCOPE OF IDENTIFIERS..:ecceceoscs

Variables, Arrays, Switches and

Labels.eeeeeeeesecceeccoeooonnnns
Parameters...iceeeeececcecenscncs
Scope and BloCKS..iieeeoeosocosss
Identifier Scope Not Associated With Blocks..........
External IdentifierS..i.ceceseecs

BLOCKS . et eeeeeosoenonssanosasasssoasse
Definition of a BlocKk..eeeeeooon
Contents of a BloCcKeeeeeeeeennns
Beginning and Terminating BlocKkS.:e..eeeeeee

DELIMITERS . eeteeeeeocccccsoccans

SeparatorsS..eeeececeses
Brackets ..iieiecececnns
Arithmetic Operations..
NUmMbers ...ceeeeeescess
Boolean Operations.....

© e o o 0 0 0

e e e o 0 0 o

@ e s 0 0 0 00 00
e e 0o 0 00 00 0 0

Procedures

e 0o 000 00 00
e e e 0o 0 0 00 0 0

e 0 0 00 00 00
® 060 000 0 0 0
e e 00 00 00 00

® e 0o 00 000 0 0

3

® oo 006 00 0 00

© o 000 0 00 0 o

Rules of Arithmetic and Boolean Expression Evaluation.

Bit OperationNS.eeeeee..

EXPRESSIONS . ceeesosocescas
Arithmetic Expressions.
Boolean Expressions....

® e o 0 0 o0

e e e o 0 0 0

® e 0 0 0 0 0

Pointer EXPressSiOnNS....ceeeces..
Designational EXpressionS......

STATEMENTS . et eeeececocses
Assignment Statement...
for Statement...eeeeees
go to Statement........
+f Statement...........

IDENTIFIER DECLARATION AND MANIPULATION.....
Shape of Identifierseeeeecescccocsanss

Data Type of Identifiers

e o 0o 0 0o o

Storage Class of Identifiers...
Precision of Identifiers.......
Data TyPeS.eeeeeesossssesssscscs
AYraAYSeeeeeooeososossssssssssss

e 0o 0 0 00 0 0 0

(] []
il

e o o e o
NN

L] L] L]
ww ww

e o o o
[G210, U, O}

e o o o
A OYOY OYOY

. . e o o .

B D DD

NN N NN

(N |
R N = =l

LI T A R N I R R |
NN

I I A |
= w N

LA B |
= wJwH

O ooJuUlds whH-

N N N

Character StringS..eeeeececceeses
LabelsSieeeeeeeeeseacaseannnanns
SWitCheS.eeeeeeeeessoeeocosonnse
cwn DeclaratOr.eeeeeceeceeesceseas
external DeclaratOr.eeeeeeeeess

Pointers and the Based Declarator.
LiteralS .. eeeeeeeeeeceeecasscacas

OperatorS.eeeeeeescscacscscescns

PROCEDURES. ¢ttt eevececcccscnscscsnse
Procedure DeclarationNS. ..eeeee.
External ProCedUreS...eeeeeeess
Procedure CallS...eeeeceeecocaes

.

e o 0o o

Calling a Procedure by Name and by Value..
Formal and Actual Parameters......
Specificators of Formal Parameters.

LIBRARY FUNCTIONS AND PROCEDURES....

Mathematical Functions.........
Entier Function......eeeeeeeees
Fix FUNCtIiON. . v.eeeeeeeeeccccses
Float FUNCtion..ieeeeeeeeaseess
Size Function
Array Bound Functions
Bit Manipulation Functions

(Lbound,

Address FUNCLION. e v eeesososcccsosses

String FUNCtioNS...eeeeeeeeeeen
Length Function...eeeeeeceess
Index Functioncecceececees
Substr FUNCtioN...eveeeeeeeee
Ascii Function ..eeeeeceoceccss

Memory Function ...eeeeececeess

Classify FunCtion..eeeeeeeeeeee

I/0 ProCedUreS.eeeeeeeeocoeeens
Open a File.iieieeeeeeaaeaeannnns
Close a Fil€.iieieeooeaeonnanns
Read a File
Write a File

® © e 06 00 000000 0 0 0 o0

Write Formatted Output(output)

Read or Write a Line

Positioning a File....eeeeesee
Position Procedur€....e.ee..
Filesize ProcedUre
Fileposition Procedure.....

Storage Allocation Procedures..
Allocate ProcedUre....eeeeseees
Free ProcedUr€...eeeecececeses

Setcurrent Procedure€....ceeceeee.

Comarg Procedure€.ceceecececcesscas

ii

(lineread,
Read or Write a Number of Bytes

® © 0 e 0 0 000000 00 000000000000

Hbound)....
(Rotate,

Shift)

linewrite)
(byteread,

o o o 0

7-7

. 7_10
.7-14

. 7_15
.7-16
. 7_21

.

bytewrite)

e e o o o . e o o . .)

O W W W WWWYWWLYWWWOWOLOWOLWWOLWOWOYOY

7-15

7=-22

QO 0 O 0O O O
1
O OoUTwN

U |
HHOWOVWOOOULTUTUTLE B WNDNDNDN

= O

=
NN

.9-13
.9-15
.9-20
.9-20
.9-21
.9=-21
.9-22
.9-23
.9-24
.9-24
.9-24
.9-25

9-26

Licensed Material - Property of Data General Corporation

File Manipulation ProCedUreS..ecesscceccssccccccscessssocsscesl=28
Delete @ Fil@ueeeeeseeeosesosasssesscossassscsssssassesssd=28
Rename a FilEeeeeecececscsscsscssocosscosssssssssscscecsssssesld—28

Error ProCedUrCecececcccesssscscscsssscsscscscsossssssssssseel—29

Program Swaps = Chain Procedure€....ecececececececsccccsscecseld=29

Real Time Clock ProCedUreS.ccceccssscsccccsccsssssssssssed=30
Stime ProcCedUrCececcccccccsvscscssscsssssscsssssscscsccsssel—30
Gtime ProCEAUYC..eceeeeccccsosccscsosscosscssscsssssssssesed=3l

Multiply and Divide ProCcedUreS..ceeceeecccccccccccssssscsseld=32
UMUL PrOCEAUICececeeccecssssesssscessssssosssssosscssscsssl—32
ReM ProCEAUrECeceeceeeeccsoscsossvssssssssssssosccascsoscsssssssld—33

Cache Memory ManagemMeNt.eceeeecceesssessscsssccsccscccscssesesl—34
Setting up a Buffer Pool (buffer)..cceceececececcccccceeeaead=35
Opening Buffered Files (aCCESS) ieeesssssssssccscssccsssld=39
Wordread/wordwrite ROULINES.ceeeceeoosscsssssssscssscsssd—dl
Routines Accessing File 0 NOJES:eeeeseessscoossscccecesld—d3
Routines Accessing a Single Word in a NOd€.eeeeeoeesssed—46
Clearing the Buffer Area (flush)..eeeececececcececoacsesa9-48
Hashread/hashwrite ROUtINES...eeeeececsccsccccscccsssssl—48

COMPILER ERROR MESSAGES....‘..0.'...............‘.........lo-l
INCLUDING FILES FOR COMPILATION (Z1CLlUdE) eeeeeaessssesessesll=l

DIFFERENCES BETWEEN EXTENDED ALGOL AND STANDARD ALGOL.....12=1
Extensions to Standard ALGOL..cecesosocscsccsccsessscosocsasesll2—l
Limitations of Extended ALGOL.c.cecececcecoccecscccscsscssosssell2=l

APPENDIX A ~ DATA TYPE REPRESENTATION. ¢cocececccocsocsccecsscsssA=l
INtegeTr SeeeeeeeescsccsasssssoncsvcssssassscsscsssscsssscsssasesssA=]
Real (Floating Point) NUMDErS..eeecesssscsccccccccoscssss Am2
Boolean Dat@.eeeceecscsessccscoscacescscssssssssssssscscscssaessA=3
PointeY Dat@ceeeeceececcscscescscososcsssscsssscscsssccsssssscsssssA=3
Strings, Numeric Arrays, and Arrays Of StringSeeceececeeees .A=3

APPENDIX B = THE RUN=TIME STACK., .::eeeeeeesscseccccccsccccsss
Run-Time StacCK,eeeeeeeescsocceescncsscosccccccsscsasocs
ALGOL StacCK.,.:ue.veceesseeecsoessosesssoscscnssscocanncsasssns
Assigned and Allocated Storage of the Stack.,....eceeeecececes
Parameter Descriptor AddressS WOrd., ...eeeeooeesccscssccssess
Parameter Descriptor Specifier Word.,ceeceecoeeeeccccecscess
Contents of Assigned StOrage....eceeeccescsccsccsccsoccns
Contents of Allocated StOrage......eeeeeececscccscscansss
Array Information in Allocated StOrag€..ecececcscececceceses
Scalar String and Substring Information in

Allocated StOrag€..eeessessscessssssseccsosscsosssssssssssebB—ll

Based Arrays and Strings in Allocated StOTrag€eesaessssessB=12
Own and External Storage.....«...........................B-l2

wwwwu'uwwww
HoOo~Noo N

0

iii

Licensed Material - Property of Data General Corporation

APPENDIX C - RUN-TIME ROUTINES .. cecececoosscsocscese
Stack Allocation and Deallocation Routines......
Routines that Perform Allocation to the Run-Time
General Purpose ROULINES.ceeeesssscccassssscssees
Run—-Time Error ROULINES.ececscoesscsccsccccccsscses
Input/Output Run-Time ROULINES.ceceeessccccccccsss
Subroutines Used by Run-Time RouUutineS.eeescececess
NUmber ROULINES.eeeeseeeccsosossscscsccccsscsssccses
Floating Point Interpretericececcecccccscscsccssccss
Cache Memory Management RoOUtinEeS..ceccecececcsccscas
Subroutines Referenced by Run-Time RoutineS.....
Routines That Use System CallS...cececcacscassse

APPENDIX D — OPERATING PROCEDURES..ccccecccccccscscs
Stand-Alone Operating SySteMeceeseececccccessssses
Loading the ALGOL Compiler.seeeessscccsccscces
Assembling Source ProgramSesesecceccscssccsssscccss
Loading User ProgramS.cecccescccccesccscsccscsccs
Executing and Restarting User ProgramS..coceses
Producing @ Triggereeeeeceecescescsccssscsccscsssaass
ErXror MEeSSAUES.eececsoscscsccscscscsosscscscscssssse
RDOS Operating SySteMeieceecececesscsscsscccccssscsss
Loading the ALGOL Compilereieeeeeccecccccssccccss

Stacks.

Compiling, Loading, and Executing ALGOL Programs

under RDOS ® ® © 0 O 0 0 0 0 0 O 0 OO O SO SO OO OO0 O e e e 0o
ALGOL Command ® © © 6 0 0 & 0 0 0 0 0 0 O O 0O S OO s 0 000 e 00 e 0o
Using Disk Files to Produce Stand-alone Files.

APPENDIX E - TIPS FOR EFFICIENT CODING AND REDUCED

EXECUTION TIME.:u:eeoececscscsccscscsscsccscssscscsssscsscsss
General.ceeeecscscseecsecceiooossssssssssasccccccscs
Numerics = Type and PreCiSiON...cecseccccccccaccss
EXPYESSiONSeeeeeeeeesosssssssscscscscssccscecncscsas
SUbSCriptingeceeeeescseecesceessscscccasscscsssasnsss
Bit Handling and MaskinNg.eeeceeeeeeosocscccccacesas
Comparison Oof Real ValuE€S..eeeeescesccsccccccscss
LiteralSeeeecececececscsacsssscossscsssssssccnssonsas
StatementsS...eeeeeeeceeeesescsscssoscssssesscocsacccans
StEriNgSeeeeeseeossseseessscscsasosasscscscscsscsasssccsas
Scope and Stack Handling.eeeeeeeeseceososooescscscs
Labels and TransferS...ceescecccccsccccccccscccscas
IdentifierSeeeeeeececsscescscsecosescscessssccnccansss
Functions and ProCedUreS..eeceeescecsccsscecsacccss
Compiler Overhead.eeeeeescesscosccescsessoocccccss
COMPiler ErrOrS.eeecescsecsscsscsccscssscsscssncsssacss
String SpecifierS.cecscccscesccscscecsosccscsnnasnas

iv

.
.
.
.
]
3
.
L

e o 00 0 00

.
.

e e 000 000

® e 00 0000

L]

UUUUOCIJUUOU
OO WO W

mmmmmmmmrﬁmmmmmmmm
HFOWONNNOAEESEDWWRHF

o

L]

Licensed Material - Property of Data General Corporation

APPENDIXF_SAMPLE PROGRAMS..Q...OOO.l..................'.

F=-1
FACtOridleeeeeeoeoeeoocosoecsosccsososcscsscscsoscsscssscsssssssnsssl—l
SatellitCeeeeeeccocscsccosoccscccsscssosssosscsassscssssssasceeel—3
I
ThousandString.eeeeeeeeccevecosssssssscsssscsocsososcscssssssel—8
A/D CONVEYrSiON.eceeeeeocococsossssssosscscsscscsssssscssssssscssceeb—l

F=2

Help.-o..oooo.ooo.ooo.oooo~000'.oooo.nooo.ooooo..oooo.ooo

APPENDIX G = DEBUGGING ALGOL PROGRAMS..¢ceeeecccccecsccssseeG-l
Correcting Compilation EXrOrS.eeesseecoscccsesssssscscssssssG-l
Debugging Using the Symbolic DebUgger.cccecescecscccscsesaG=3

Loading the Symbolic DebUgger..ecseeeccsescssceccccsscssssG-3
Operating the SymbolicC DebUJger.ceeeeeccccccsosccccassssG—4
Debugging Using the TRACE PrograM..eecceccecsescsccccssscessG-l
Calling TRACE at the ConsSOl€..ceeceeccccessccsscsccsessasG-1l0
Calling TRACE in an ALGOL ProOgraM..e.ssseessecsscsssceesG—10
Debugging Aids for Use with TRACE. .. ceeeesecsscoscecnssesG-1l2
Loading Programs for Use with TRACE...eeeecsscseccccessG-12
Using TRACE InformatiON.eseceecececececsceccescssccscsacscssssG—1l3
TRACE EXAMPlE.eeecececcecscscccccscsccsscssscsscscscsscscssssassei—1l5

CHAPTER 1 -- IDENTIFIERS AND KEYWORDS

An identifier is a string of one to 32 letters, digits, and
underscore symbols () that must begin with a letter. Identi-
fiers are names assigned by the programmer to variables and
other program entities. Upper or lower case letters may be
used. No blank spaces are permitted.

Examples:

a get_symbol ROUTINE2
A25 Aa omega

Identifiers serve to identify simple variables, arrays, labels,
switches, procedures, and pointers.

KEYWORDS

Certain keywords are completely reserved in ALGOL. They are:

and do go to operator switch

array else <f or then

based end imp own true

begin equ ineclude pointer until

boolean external integer procedure value

comment false label real while
for literal step xor

not string

Keywords must be written in all upper case or all lower case
letters.

FUNCTION KEYWORDS

Certain functions are provided with the ALGOL compiler. Names
of these functions can be redefined by the programmer provided
no ambiguity results from an attempt to use the identifier both
as an ALGOL function and as a programmer variable. The function
keywords are:

abs cos hbound 1n sign
address entier index memory sin
arctan exp lbound rotate size
ascii fix length setcurrent sqrt
byte float shift substr
classify tan

* % Kk

CHAPTER 2 -- SCOPE OF IDENTIFIERS

Simple variables, arrays, labels, switches, and procedures are
quantities which have a given scope. Scope is defined as the
set of statements and expressions in which the declaration of
the identifier associated with the quantity is valid.

Variables, Arrays, Switches, and Procedures

Variables, arrays, switches, and procedures must be declared,
and their scope is the block in which they are declared. By
extension, their scope includes inner blocks. An identifier

is considered local to the block in which it is declared and
global to any inner blocks, unless the identifier is redeclared
in an inner block to represent a different quantity as shown

in the example.

1: begin
real A,B; A and B are real quantities, local
2: -begin to block 1
<A and B are not redeclared in 2 and
are real quantities global to block 2
end 2;
3: —begin
integer A,B; <A and B are redeclared as integer
quantities local to block 3. (A
and B as real quantities are not
valid.)
—end 3; -When block 3 ends, A and B are
end again real quantities local to
block 1
Labels

Labels may be explicitly declared by their use as a label in a
given block. When a label precedes the start of a block (begin),
the label is declared by its use in the block immediately out-
side the one that it serves to label and is global to the block
it labels.

SCOPE OF IDENTIFIERS (Continued)

Labels (Continued)

begin
B:[——begin <B is declared in block A.

—end B;

end A

Labels may appear in declarations. A formal parameter that is
to be replaced by a label is declared with the Zabel declarator.
When the same label or subscripted label appears in more than
one block of a program, the Zabel declarator may be used to
indicate that the local, rather than global, label is meant.

Parameters

Formal parameters that are replaced by name follow the scope
conventions of variables. Note that no conflict arises when

a formal parameter list is replaceéd by an actual parameter list
containing one or more of the same identifiers but associated
with different quantities. The actual parameters simply replace
the formal parameters, which have no scope in the real sense of
the term.

For example:

begin integer a,c; real b; h
procedure sample (a,b,c);
real a; integer b,c;
procedure
statement of procedure; declaration calling
. block
sample (b,a,c); -procedure call J

Actual parameters a and c replace formal parameters b and c;
actual parameter b replaces formal parameter a.

SCOPE OF IDENTIFIERS (Continued)

Parameters (Continued)

An actual parameter that replaces a formal parameter by value
is not altered in the calling procedure because of the call.
The called procedure uses a copy of the parameter during pro-
cedure execution.

Scope and Blocks

Storage for identifiers is normally allocated when the block

in which the identifier is declared is entered. Storage is
freed when control passes from the block in which the identifier
is declared.

In the diagram below, presume that each rectangle represents a
block and that the labels of the blocks are B, 1, A, and 2.
Identifiers declared in block B are defined in all blocks
unless a given identifier is redeclared in another block.
Identifiers declared in block 1 are defined for blocks 1 and

A unless redeclared in A.

Identifiers declared in block A are undefined in any other block;
the same is true of the identifiers of block 2. Note that the
labels of the blocks are clearly defined in the block outside
the block for which they act as labels.

B:
1:
Identifiers declared in darker
shaded blocks are undefined in
lighter shaded blocks
2

SCOPE OF IDENTIFIERS (Continued)

Identifier Scope Not Associated with Blocks

If an identifier is defined with the own declarator, storage
for the identifier is allocated in an area separate from block-
dependent identifiers. The identifier is then valid until the
program terminates.

External Identifiers

External variables and procedures are those that are allocated
storage 1in a manner independent of any of the blocks of the
program being executed. To reference an external identifier,
that identifier must be declared external in the block in which
it is referenced or in an outer block.

* Kk X

CHAPTER 3 -- BLOCKS

DEFINITION OF A BLOCK

In structure, a block is set of declarations and statements
that starts with the keyword begin and terminates with the key-
word end. Semantically, a single block is the smallest set of
statements within which a given declaration of an identifier of
a quantity is valid for that quantity.

Procedures are treated as blocks. Procedures usually contain
one or more identifier declarations, and these declarations are
local to the procedure.

Storage is allocated and deallocated to identifiers dynamically.
When a block is entered, storage is allocated to those identi-
fiers declared in the block. Storage for those identifiers is
released when exit is made from the block.

Storage is not deallocated when a block inside a block is entered.
For such a block, identifiers declared in the outside block
remain valid, global quantities. However, the identifiers may

be redeclared in an inner block to represent different quantities.
If so, the block cannot reference the same identifier outside

the block. For example:

A:__ begin
real X; integer 1i,J; ~X is declared as a real gquantity
Tag: X :=X+sin (X); -Tag is declared a label in block A.
B: —begin
real array Tagli,Jli .7ag is redeclared an array in block
real Z; -7 is declared a real quantity in B.
end B; <~When block B terminates, Tag is
. again valid as a label.
go to Tag;
L end A;

DEFINITION OF A BLOCK (Continued)

In the example, X is valid and can be referenced in block A and
in block B; Z is valid and can be referenced only in block B;
and Tag is valid only in A as a label and is valid only in B

as an array. Note that the variable dimensions of Tag are
valid as integer quantities in both blocks.

CONTENTS OF A BLOCK

Every identifier that is local to a given block must be declared
within that block. This rule applies to all identifiers, includ-
ing the controlled variable of a for statement and variables ap-
pearing on the lefthand side of assignment statements.

All identifier declarations must be made before any statement

can be given in a block. (Comments, although sometimes con-
sidered to be statements, can appear before all declarations
have been given.) It is important to note that ALGOL has a

null statement consisting only of the terminating semicolon(;).
An extra semicolon appearing in the declaration section of a
block will cause declarations following the semicolon to be
disregarded.

The statement section of a begin block can consist of a number
of separate statements. A procedure always consists of one
statement, which may be a begin block including other statements
and blocks.

BEGINNING AND TERMINATING BLOCKS

ALGOL permits the keyword end to be followed by a string of
characters that may include any characters except the keyword
else, the keyword end, or a semicolon (;). This allows the
programmer to describe preceding material. However, it also
means that the keyword end terminates a block but does not allow
the programmer to start a new block. For example:

end

21: begin integer A,C; <«everything up to the semicolon follow-
real b; ing C is simply a string following end,
. i.e., there is no begin block labeled
L] 21.

To prevent errors, put a semicolon after the keyword end or
after the string that follows the keyword, unless an else clause

3-2

BEGINNING AND TERMINATING BLOCKS (Continued)

follows.

Since procedures contain only a single statement, they normally
terminate with the semicolon that ends the statement.

* K Kk

The ALGOL delimiters are separators, operators,
and brackets, as listed in the table following.

CHAPTER 4 --- DELIMITERS

declarators,

specificators,

Since some ALGOL delimiters

are represented by symbols that do not appear on all consoles, the appropriate
transliteration for these characters is shown in the shaded area next to the
character.

TABLE OF DELIMITERS

[BRACKET]

| [Relational |

string

1]

array

+|procedure

externa

|

—{ own

I

ase

switeh

Q
i
D
R
N
<
[
3

[Ziteral]

bECLARATOR | [SPECIFICATOR] [SEPARATOR | Coreraror |
[integer | |—-[value | = I
| real] |—_taket |] [Sequential] [Arithmetic| [Logical
boolean all de- —] o z2f]
—|clarators
pointer — : 1 | for]

— =]

—(do 1]

omment

w\ A \ HE
MiRiR:

—[space} | goto | 71 |-=EI1%a7
—{Ror r] |—[fhen] {7]
| [P or p] else |
(Begin }——{end]
—(while] I = S

SEPARATORS

Symbol

10

(space)

R or r

P or p

step

until

while

comment

Separate items of lists.

Decimal point in real
numeric values.

Separate base from
power of a number, ind-
cating a power of 10.

Terminate a statement,
declaration, or comment.

Terminate label or sepa-
rate the upper and lower
bounds of an array dimen-
sion.

Separate a variable or
variables from the expres-
sion to be evaluated and
assigned to the variable.

Separate a based variable
from its pointer.

Separate variables and
keyword identifiers not
otherwise separated.

Separate radix from
number.

Separate precision from
number.

Separate initial and incre-
mental values of for.

Separate incremental and
terminal values of for.

Separate conditional ex-
pression from value in
for statement.

Begin a comment.

procedure RT(a, b, c);
real array Ali,jk,k3j,k];

0.011
2567.202E-6

25.210-3
.1i0+5

integer array D[1:20];

go to 101; comment: Trans-
fer to test results;

a: b: I:=1+2;

real array A[l:10, 1:i];
c:= c+l;

c:=d := f:=sin (x+1);
ptr-a

p-{a+2)

1f a=2 then go to 20
else a:=b;

0.001R2 .555r8
0.001R2P4 .555p5r8
-65.8888P3

for i:=1 step 2...
for i:=1 step 2 until n ...

for I:=(x+2) while a#0 ...

comment: Test program;

BRACKETS

Symbol
() Parentheses enclose formal procedure main (a,b,c);
and actual parameters, en- string (8) B;
close the precision of numerics integer (12) array Bli,]jl;
and length of character strings, ((A+B)/C)t2.5
and enclose expressions to be
evaluated.
[1] Square brackets enclose the integer array M[i,jl;
dimensions of arrays, sub- c :=A[1,2];
scripts of array elements, and go to BI[il;
subscripts of switches and
labels.
begin Keywords begin and end enclose begin real array act [0:20];
end blocks and compound statements.
begin act[m] :=j; k :=i
end
end
D Grave (ASCII character 1408) and “This is a “string”.”
acute (ASCII character 0478) ac-
cents enclose string values.
Note that strings can be nested.
" Double gquotation marks can also "DON'T GO!"

enclose a string value. Use of

a single accent mark is possible
in a double quotation string.
Strings enclosed in double
quotation marks cannot be nested.

ARITHMETIC OPERATIONS
Operator Operation Resulting Value Type
+ Addition If both operands are integer
- Subtraction the result is integer. Otherwise,
x Multiplication the result is real.
/ Division
+ Exponentiation Permitted combinations and re-
sults are described in the table
below for real and integer
values.
Base Exponent Type of Result
integer = 0 real or integer <0 undefined
real > 0 real 0.0
integer > 0 integer 0
integer < 0 any real undefined
‘ any integer integer
integer > 0 any real real
: any integer integer
;
real = 0 real = 0 undefined
: real # 0 real 0.0
integer £ 0 undefined
integer > 0 real 0.0
real < 0 any real undefined
any integer real
real > 0 any real or integer real

4-4

NUMBERS

Numbers are real or integer. Integers are signed or unsigned.
Real numbers may be signed or unsigned, have an optional decimal
point, and have an optional exponent part.

Integers Real Numbers
0 -200.845 0 -9.377+02
1775 1775
-25 1.01 +606 257094
+606 -25
+.0083 +2

10

Numbers having an integral power of 10 can be represented on the
teletypewriter with either an upper case E or lower case e in
place of the lowered 10.

ALGOL Representation TTY Transliteration
-976.33; ,+02 -976.33E+2

25, ,-4 25E-4

=107 -1E7

10+02 LE+02

Note in the third and fourth examples that a 1 appears before
the E or e to prevent interpretation of the number as an
identifier.

To approximate the number of decimal digits of precision that
can be stored in a given number of 16-bit words, use the fol-
lowing formulas. n represents the declared precision in words.

5(n-1)+4 integer range = 1216§~—1
-78 +75

integer digits

real digits 5(n-1)+2 10 < real rangeg 10

The maximum value of a single precision integer is +32767,,.

NUMBERS (Continued)

A number can be written with any radix from two through ten.
The numeric literal is written, followed by the letter R (or r),
followed by the number defining the radix.

1001R2 Base 2.

.12122R3 Base 3.

775-6R8 Base 8. The exponent is 870, where
the power, -6, remains base
10.

.3E+5R4 Base 4. The exponent is 4+>,

A number has the default precision of its type unless otherwise
specified. When computation involves a multiprecision value

and a fractional literal of default precision, results of com-
putation lose precision because the fraction cannot be expressed
exactly in binary representation. To control the precision of
the computation, the programmer may specify a precision in words
for the repeating binary fraction. The literal is followed

by the letter P, followed by an integer representing words of
precision.

. 3P6
.111R2P6
1.7E-2P4
.1R3P7

To build a 16-bit single-precision mask, force a precision of one,
e.g.,

177777R8 is a 2=word literal

177777R8P1 is an unsigned l-word literal

BOO

LEAN OPERATIONS

RELATIONAL OPERATORS LOGICAL OPERATORS
Symbol Operation TTY Symbol || Symbol Operation TTY Symbol
< less than same r logicgl
negation not
< less than =< A logical
or equal and and
v inclusive
or or
= equal same = equivalence equ
> greater than same D implication imp
z greater than >= 5 exclusive or xor
or equal
not equal < >
LOGICAL OPERATOR TRUTH TABLE
Operands Operations
Y Z not Y Y and Z Y or Z Y imp Z Y equv Z Y or Z
false false true false false true true false
false true true false true true false true
true false false false true false false true
trye true false true true true true false

RULES OF ARITHMETIC AND BOOLEAN EXPRESSION EVALUATION

The sequence of operations within an expression is generally
from left to right, with the following additional rules:

1. Precedence of operator evaluation

OPERATOR
> <Highest precedence (evaluated
first)
r 4t
x /
+_
< < #£ > 2=
A
\'%
)
= O
Y
:= +~Lowest precedence
2. i and t+ operations are evaluated from right to left.

3. Parentheses are used to alter the order of operator
precedence. A parenthesized expression is evaluated
as an entity before further evaluation proceeds.

The type of the result is determined according to the rules of
precedence, as follows:

first: real

second: integer, pointer
third: boolean

fourth: string

BIT OPERATIONS

Bit operations use binary and octal literals combined with
logical operators to manipulate bits of integer data.

AAB Result is 1 if and only if A is 1 and A :=11001R2;
(and) B is 1 in that bit position. B :=10100R2;
AAB :=10000R2;
i~ A Result is the bit complement of A. A :=110011R2;
(not) rA :=001100R2;
AV B Result is 1 if either A or B is 1 in A :=100111R2;
(or) that bit position. B :=110000R2;
Av B :=110111R2;
A®B Result is 1 if and only if A and A :=100100R2;
(xor) B are complements in that bit B :=001101R2;
position. A@®B :=101001R2;
A=B Result is 1 if and only if A and B A :=100100R2;
(eqv) have identical bits in that bit B :=001101R2;
position. A= B :=010110R2;
ADB Result is 1 if A is 0 in that bit A :=100100R2;
(imp) position or if both A and B are 1 B :=110001R2;
in that bit position. ADB :=111011R2;
For example, assume x is some integer.
| X :=x and 111111R2; First 10 bits of x set to zeroes,
X :=x and not 777R8; ILast 7 bits of x set to zeroes,
X :=x and not 52525R8; Alternate bits, beginning at bit 1,
are set to zeroes,
X :=x and 52525R8; Alternate bits, beginning at bit 0,
are set to zeroes.

* Kk K

CHAPTER 5 -- EXPRESSIONS

The primary constituents of an ALGOL program - which represents
algorithmic processes - are expressions. Expressions are
arithmetic, Boolean, designational, or pointer.

Each type of expression may be either a simple expression or a
conditional expression. Simple expressions are similar to
expressions in other programming languages; conditional expres-
sions are a unique ALGOL feature. In a conditional expression,

one out of several expressions (arithmetic, Boolean, designational,
or pointer) is selected for evaluation on the basis of the

truth value of a Boolean expression in an <f clause. An <f clause
has the form

. . !
1f Boolean - expression then ... |

Constituents of expressions (except for certain delimiters such

as () and [] and :=) are logical values, numbers, variables,
function designators, and elementary arithmetic, relational,
logical, sequential and pointer operators. Expressions may be

nested to any depth.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numerical
value.

A simple arithmetic expression is a collection of one or more

numbers, arithmetic variables and function designators combined
with arithmetic operators to form a meaningful mathematical
expression which always defines a single numerical value. Each
variable of the expression must already have a defined value.

Examples:
A+B/f x+ (k=4) x (y-2) suntcos (y+zx3)/7.39410—8
c-dxg+ti (=b+sgrt(d))2/a

Real numbers are stored in floating-point and integers are
stored in fixed point. An arithmetic expression consisting of

a real value and an integer value will require conversion of the
integer to floating-point. For example:

ARITHMETIC EXPRESSIONS (Continued)

begin real x;
y 1=x+1; <~conversion required

y :=x+1; <no conversion required

A conditional arithmetic expression contains at least one <f
clause with a Boolean expression, two or more arithmetic ex-
pressions, and may contain other sequential operations besides
1f and then.

2f g>0 then S+3xQ/A else 2xS+3+Qg
1f a<0 then U+V else <1f axn>17 then U/V else 1f k#y then V/U

Ali] := <f i<j then B[j]l+i
else B[j+1];

The subscripts of an array element may be given as simple or
conditional arithmetic expressions whose value is an integer.

The length of a string or the dimensions of an array can be
declared as simple or conditional arithmetic expressions
evaluating to integers if the values of the variables of the
expressions are defined when the block is entered.

A[n] :=A[<f y<0 then n else n+5];

real array Ali,Jj,k];

BOOLEAN EXPRESSIONS

A Boolean expression is a rule for computing a logical value
(true or false).

Simple Boolean expressions are collections of logical values,
Boolean variables and functions, and logical and relational

5-2

BOOLEAN-EXPRESSIONS (Continued)

operations. Relational operations consist of simple arithmetic
expressions and relational operations..

Example: Assume that A:= true; B:=true; W:=2; X:=4; Y:=6;

Statement Logical Value
D:= not A; false
E:=W>X; false
F:=W<X and W<Y; (true and true) true
G:=W#X and not A; (true and false) false
H:=not A or W=X; (false or false) false
J:=not (A and W>X); ([not (true and false)li.e.,not true
false)

A conditional Boolean expression contains at least one 7<f clause
and two or more Boolean expressions, and may contain certain
other sequential operators besides <f and then.

1f k<l then s>w else h<c

1f(2f(1f a then b else c) then d else f) then g else h<k

POINTER EXPRESSIONS

A pointer expression is a rule for obtaining a pointer to an
address.

A simple pointer expression is a pointer identifier or a sub-
scripted pointer identifier, which may be combined with integer
numbers or arithmetic expressions that evaluate to an integer
using the arithmetic operators + and -.

A conditional pointer expression contains at least one <f clause,
two or more pointer expressions and may contain other sequential
operators besides <f and then.

A pointer expression is often followed by the pointer operator -
and a based variable to which the expression points.

POINTER EXPRESSIONS (Continued)

p~a

1f k<1l then (p+i)—»a else (p+l)-a
plil-a

DESTIGNATIONAL EXPRESSIONS

A designational expression is a rule for obtaining the label of
a statement.

A simple designational expression is a label identifier, an un-
signed integer used as a label, a subscripted label identifier,
or a subscripted switch designator. The subscript of a label
identifier or switch designator evaluates to an integer value.

A conditional designational expression contains at least one

2f clause, two or more designational expressions and may contain
other sequential operators besides then and <f. Conditional
designational expressions cannot follow the keyboards then and
go to.

17

jo})

Choose [n-1]

TOWN [Zf y<0 then N else N+1]

1f AB<c then 17 else ql[if w<0 then 2 else nl]

* Kk &

CHAPTER 6 -- STATEMENTS

The statement is the basic operating unit of ALGOL. There are
six kinds of statements:

NAME EXAMPLE

assignment i :=i+l;
conditional (Zf) <f i+0 then go to 25;

transfer (go to) go to labelxx;

loop (for) for 1 :=1 step 1 until n do...
procedure call somefunction (x);
dummy or null tag:;

Statements are executed consecutively unless the sequence is
broken by an unconditional transfer (go to statement) or by
some condition that causes a statement sequence to be skipped
(Zf statement). Statements may have one or more labels.

Basic statements are often combined to form more complex units of
operation, for example, the following combination of assignment,
condition, transfer and looping statements:

[
2f i>0 then for i :=1 step 1 until n do A[i] :=B[i]+i else go to

Each statement within the combination of statements may be
labeled:

Tl:7f 1i>0 then T2:for i :=1 step 1 until n do
T3:A[1i] :=B[il+i else T4: go to 25;

A further level of freedom in statement sequencing is available.
A group of statements can be delimited by begin and end keywords
forming a compound statement. A compound statement is a block
in which there are no declarations.®

25;

STATEMENTS

(Continued)

7

begin integer 1i,k; real w;
for i :=1 step 1 until m do
for k :=i+l step .1 until m do
begin w :=A[i,k]; A[i.k]
Alk,1i]

:=A[kri] H

:=w end 1 and k;

Compound
Statement

)

> Block

end Z; p,

Note that a compound statement can contain other compound state-
ments.

Conditional expressions, which can be used whenever a simple ex-
pression can be used except following the keywords then and go
to, provide another degree of freedom. Such constructions as:

i !
i if(if...then...else...)then... |

are permitted in ALGOL.

ASSIGNMENT STATEMENT

Format:

where:

Purpose:

Notes:

<
i
[

v is a variable or list of variables.

e is an expression.

To assign the value of the expression on the righthand
side of the statement to the variable or list of
variables on the lefthand side.

1. v may be a subscripted variable.
2. Vv may be a procedure identifier if the assignment
statement appears in the body of the function that

defines the procedure identifier.

3. A list of wvariables on the lefthand side has the
format:

Variables in the list need not have the same data type.
The expression is converted to match the data type of
each variable, starting at the rightmost. Conversion
is made according to the rules given below.

4. The following data type conversions are permissible:

integer v := boolean e;

The boolean expression is evaluated to 0 or 1. A full
word of either 0's or 1's is assigned to v.

boolean v := integer e;

ASSIGNMENT STATEMENT (Continued)

The integer expression is evaluated. If the expression
has a value of 0, the value false is assigned to the
variable; otherwise, the variable is assigned the value
true.

integer V = pointer e;

A pointer expression evaluates to an integer that is
one word long and points to some location. The pointer
value can be assigned to an integer variable if the
variable has the default precision of one word.

pointer v := integer e;

The value of the integer expression is assigned to the
pointer variable. The integer must be of default
(one word) precision.

real v := integer e;

The integer expression e is evaluated and a decimal
point is placed after the last digit when assigning
a real value to v.

integer Vv := real e; ,

The real expression is evaluated. The value assigned
to the integer variable is entier(e+0.5). See the built-
in function entier.

string v := integer €; l

The integer expression is evaluated and assigned to
string v as a string of characters of the form:
[-Inn...n where each n is a digit.

ASSIGNMENT STATEMENT (Continued)

integer vi= string e€;
[l

]

Characters of the string expression will be assigned
to the value v up to the first non-integer character,
such as a decimal point. The precision of v governs
how many characters will be assigned. An acceptable
form of string is: [-]nn ...n where each n is a
digit. T - -

ktring v:i= real €;

The real expression is evaluated and assigned to
string v as a string of characters of the form:

[-lnn...n[.nn...n] [E[-]nn]

where each n is a digit and bracketed portions of the
form are optional.

real vi= string e;

The string expression is evaluated. Characters of the
string will be assigned to the value v up to the

first non-real character or up to the limit of the
precision of v. The acceptable form of string is
shown above for real to string conversion.

string VvV := boolean e;

The boolean expression is evaluated to a zero or one
(false or true). The zero or one is assigned to the
string v.

boolean v := string e;

The string expression is evaluated. The result will be
assigned to v as false (zero) if the string contains

all zeroes. Otherwise the value true (one) will be
assigned.

ASSIGNMENT STATEMENT (Continued)

string v := pointer e;

The pointer expression is evaluated. The result,
having the form: nn...n, will be assigned to v.

pointer Vv := string e€;

The string expression is evaluated. The result is
assigned to pointer v up to the first non-digit or up
to the one-word limit of the pointer.

Examples:

Sla,k+2] := 3-arctan (Sxzeta);
-

The lefthand subscript is first evaluated, the arithmetic
expression is evaluated and assigned to S[a,k+2].

T == AIJ - N;j;

The pointer expression is evaluated and assigned to pointer
T or T may be an integer of default precision.

string STR(20); real x;
integer i; pointer p;
boolean b; literal STR ("$2504.25 FOR 12")

substr (STR, 2,8);
substr (STR, 3,6);
substr (STR, 4).
substr (STR, 14,15);

contains 2504.25
contains 504
contains false
contains 12

T O H- X
T O k- X

The substr function, as described in Chapter 9, takes a substring
of a string from the character whose position is given in the
second parameter through the character whose position is given

6-6

ASSIGNMENT STATEMENT (Continued)

in the third parameter. If the third parameter is not present
only a single character forms the substring. Note that only
allowable characters are converted and assigned; in the second
assignment; i will contain only 504, and the character in char-
acter position 6 (.) is ignored and processing ceases when such
a character is encountered.

hoo :=b>c and 4d;

l

A truth value is assigned to Boo when the Boolean expression
b>c and d is evaluated.

% :=address (f);

The pointer p is assigned the address of f.

Formula :=diff/ (x - 2);

Formula is a function procedure and the assignment statement
appears as the body of the function.

for STATEMENT

Format:

for cv :=list do s;

where: cv is a controlled variable, which may be sub-
scripted.

list is a list of valuesa the controlled variable
can assume.

s is a simple or compound statement.
Purpose: To permit repetitive execution of statement s with

the controlled variable set to values specified
by list.

for STATEMENT (Continued)

Notes: 1. 1list may be a simple list of values or expressions
to be evaluated. In addition, list can include
for clauses. A for clause contains either key-
words step and until, or the keyword while.

for i :=1 =step 1 until 10 do A[i] :=i+ti;
4 4 4
initial increment final
value value limit

The example above is equivalent to the simple list:

for i :=1,2,3,4,5,6,7,8,9,10 do A[i] :=i+ti;

Values of the list are assigned to i beginning
with the leftmost value and terminating with the
rightmost value. When the list is exhausted, the
next statement in logical sequence will be
executed.

A while construction is shown in the statement:

for j :=0, 1, vx2 while v<n do m:=j/5;

Note that the while construction is included as
part of a simple list. A list may include any num-
ber of for clause constructions. For example:

for j :=i+k,2,i+2,1 step 1 until n, x while x#0 do.

Notes: 2. The statement following do may be a for statement,
or a compound statement that includes a for state-
ment, i.e., for statements may be nested.

3. Parts of a for statement may be labeled, but an
attempt to transfer to a label within a for state-
ment from outside the statement will cause an un-
defined result.

for STATEMENT (Continued)

Examples:

for I := 1 step 2 until n do
X[I] := X[I] +2+I;

for k := 0,n do ulk] := ulkl/2;

for albottom] :=min (a[bottom], al[topl) while top>bottom do
begin top :=top-1;
bottom := bottom+l; end;

go to STATEMENT

Format:

where:
Purpose:

Notes: 1.

go to d; |
1

d is a label or designational expression.
To transfer to the statement having the label d.

Transfer cannot be made from outside a block into
the block. Transfer can only be made to labels
defined locally or globally in the block containing
the go to.

Designational expressions may be:
a. Labels with a variable subscript.
b. Switches.

If the value of a switch or a label subscript
expression is undefined, no transfer occurs and the
statement following the go to is executed. (A
switch is undefined if the value is greater than the
number of labels declared for the switch or is less
than or equal to @. A label subscript expression

is undefined if it evaluates to a subscript for
which there is no matching label.)

go to STATEMENT (Continued)

Examples:

go to 10;

Transfer is made to the statement labeled 10.

go to alil;

i is evaluated and transfer is made to the appropriate sub-
scripted label, alil, al2], ...

switeh F :=labone, x1, labtwo, x2;

go to F[jl;

If j evaluates to 1, transfer is made to the statement labeled

labone; if j evaluates to 2, transfer is made to the statement
labeled x1, etc.

1f STATEMENT

Format:

1f be then uc;
'\ 1f be then uc else c;
| 2f be then uc else if ...
[uc

where: be is a Boolean expression.
uc is an unconditional clause, which may be a
statement, compound statement, or block, but cannot
contain another <f clause.

c is any clause, which may be a statement, a com-
pound statement, or a block.

Purpose: To provide conditional transfer of program control.
If the Boolean expression be is true, the uncon-
ditional then clause is executed. If be is false,
the next statement or block following the

6-10

1f STATEMENT

(Continued)

Purpose:

Examples:

1f i=0 then

1f j<kt the
k := factor
lab7: i:=
end lab7 els

2f g<0 Ah<0
7f g>0 A h<0

unconditional clause is executed. This may be the
next statement or block following a semicolon
(Format 1) or the statement or block following the
keyword else (Format 2).

Since e¢lse clauses may contain conditional statements
(Format 3), it is possible to set up a series of
conditions for transfer of program control. The
series terminates when a Boolean expression is true,
causing a then clause to execute.

Blocks and statements contained in then or else
clauses may be labeled,

go to END_PROG;

n begin
[§1+i; J := j+i;
i+l; S[il:= jigo to 5;
e go to 15;
then isign := =1 else
then isign := +1 else 0;
* % &

CHAPTER 7 -- IDENTIFIER DECLARATION AND MANIPULATION

Programmers must declare the characteristics of all identifiers
to be used in a program. Keyword declarators and certain
bracketed information are used to define identifier character-
istics.

The characteristics that can be declared for identifiers are
their shape, data type, storage class, and precision. Appendix
B explains how declaration of these characteristics is used by
the compiler to generate parameter descriptor code which, in
turn, provides information for allocation and freeing of
identifier storage.

SHAPE OF IDENTIFIERS

The four possible shapes of an identifier are scalar, array,
procedure, and program. The default shape is scalar and need
not be explicitly declared. Program identifiers are recognized
as such by the compiler and need not be declared. Arrays are
declared with the keyword array, and procedures are declared with
the keyword procedure. The keyword operator is used to declare

a special kind of procedure.

DATA TYPE OF IDENTIFIERS

There are six possible identifier data types -- integer, real,
boolean, string, pointer, and label. All identifiers except
labels must be declared with one of the keyword identifiers,
integer, real, boolean, string, pointer, or label. A label
declarator is required for a formal parameter that will be
replaced by a label. The Zabel declarator may also be used to
identify a local from a global label of the same name. However,
the appearance of a label preceding a statement usually consti-
tutes its explicit declaration as a label.

STORAGE CLASS OF IDENTIFIERS

The storage classes of identifiers are local, own, based, param-
eter, value, external, built-in function, and function value.
The default storage class is local and need not be explicitly
declared. A local identifier is one that is allocated when the
block in which it is declared is entered and freed when the
block is exited.

The storage classes that can be explicitly declared by the pro-
grammer are own, based, and external. Identifiers that are
declared with the literal declarator have the storage class,
value. Formal parameters, built-in functions, and function values
are recognized as such by the compiler and are not declared.

7-1

PRECISION OF IDEWTIFIERS

Default precision for identifiers and the declaration of pre-
cision are described in relation to storage in Appendix A.
Precision is declared as an integey literal enclosed in paren-
theses immediately following the data type declarator. Precision
can be declared for numeric identifiers, integer and real,

where precision represents words of storage. Precision may also
be declared for strings, where precision represents maximum number
of characters that the string may have.

DATA TYPES

The data type declarators are real, integer, string, boolean,
pointer, and label. They are mutually exclusive. Data types
apply to all identifier shapes except those procedures that are
not functions.

A real declarator declares a scalar, array, or procedure that
returns a number value that is not an integer. Default storage
of real values is two words. Maximum precision is 15 words.

real n, pi, m;

real array a, b, cli,jl;
real procedure X;
real(3) y;

real (4) array z[2,5];

An integer declarator declares a scalar, array or procedure that
returns an integer numeric value. Default storage is integer
values is one word. The limit of default integer values is

+ 215-1., Maximum precision of a multi-precision integer is

15 words.

integer array Ali,jl;
integer 1i,3;

integer (4) q, r;

integer (2) procedure XX;

DATA TYPES (Continued)

A string declarator declares a scalar, array, or procedure that
returns a character string value. Default storage of string
values is 32 characters. Strings have a maximum length of
16,283 characters.

string (200) char;
string procedure sym (X,Y);
string (20) array mt[10];

A boolean declarator declares a scalar, array, or procedure that
returns a truth value of true or false. A boolean value is
always stored in one word.

boolean zero, nosolution;

A pointer declarator declares a variable array, or procedure
that returns an address as its value. A pointer value is always
stored in one word.

pointer array LOCUS [8];
pointer pl, p2, p3;

A label declarator declares a scalar or array that returns a

value that is an address. A label value is always stored in
one word.

label tag[l0];

ARRAYS

An array is declared with the explicit shape array, and one
of the data types, real, integer, boolean, string, pointer or
label.

Precision and storage class may be declared if other than default
characteristics are wanted.

In addition, the identifier of the array is followed by dimension-
ing information, enclosed in brackets. The bracketed information
consists of a list of subscript bounds of the general form:

sby,Sbys ..., sb

The following rules apply to array subscripts:

1. When a subscript bound consists of a pair of wvalues
or expressions, separated by a colon, the first
value or expression gives the lower bound and the
second value gives the upper bound.

2. If a single value or expression is given as a sub-
script bound, it represents the upper bound and
the lower bound is assumed to be 0.

3. Up to 128 subscript bounds can be given in the list.

4., If an integer expression containing a variable is used
in array dimensioning, the variable must be global to
the block in which the array declaration appears.

5. The outermost block of a program must have only integer
constant subscript bounds, unless it is a procedure
with array formal parameters.

6. During execution, subscripts are checked against declared
subscript bounds, and an error message results if the
subscript exceeds the possible bounds.

7. The lower subscript bound must be smaller than the upper
subscript bound.

8. Negative subscript bounds are permitted.

9. own arrays can have variable dimensions; however, the
total size of the array is bounded by the original
dimensions.

7-4

ARRAYS (Continued)

Examples:

integer array ORG[-10:10,0:20];
pointer array ppl9];

real (3) array Ali,j,k];

own string (5) array NAME[14];

integer array Z[0:1i, i:i+5,7,3]1;

In the examples:

1. ORG is a 21x2l-element integer array of default
precision.

2. pp is a l0-element pointer array.

3. A is a 3-dimensional real array with 3-word precision.
The upper subscript bounds, i, j, k, must have been
defined in an outer block or must be formal parameters
to be replaced by integer values.

4. NAME is a l5-element string array. Each element has a
maximum length of 5 characters. own storage is used
for the string.

5. Z is a 4-dimensional integer array. Note that some
subscript bounds are paired while others are not, and
that a pair of subscript bounds may contain a constant
and an expression.

A number of array identifiers can be included in a single declara-
tion; for example:

real (3) array a,b,c,d[l:5, 0:9];

where a, b, ¢, and d are all identifiers of real 2-dimensional
arrays of 50 elements.

ARRAYS (Continued)

Each element of an array is a subscripted variable of the form:

larray—name [sub ,sub ,...,sub]
1 2 ~—n

where: array-name is the name of the array.

each sub is an integer value or expression giving

a subscript of the array. If the subscript is real,
it is converted to type integer by the function:
entier (sub-value+0.5).

For example:

A[25] B[i,j] CI[x+10] DI[2,3,4,1]

could all be array elements.

The first subscript of an array varies most rapidly, then
the second, then the third, etc. For example, if the 360-
element array X is declared as:

real array XI[3,5,4,2];

then the values are stored in the following order:

1. X[0,0,0,0]
X[1,0,0,0]
X[2,0,0,0]
X[3,0,0,0]

5. X[0,1,0,0]

.

8. X[3,1,0,0]

357. X[OI5I4I2]

360. X[3,5,4,2]

ARRAYS (Continued)

The address of each array element may, if desired, be accessed
by pointer manipulation.

The most common use of arrays is in loop manipulation. See for
statement.

CHARACTER STRINGS

Scalars, arrays, and procedures may be declared with the string
data type. By default, the precision of a character string is

a maximum of 32 characters. The maximum length that can be
declared for a string is 16, 283 characters. Examples of string
declarations are:

|
string (10) a;

I string (20) g,h,i;

String a has a maximum of 10 characters, beginning at character
position 1. Strings g, h, and i each have a maximum of 20
characters, beginning at character position 1.

String literals are delimited by accent marks (ASCII characters
1405 and 0478) or by quotation marks.

i
|

~$25.00 FOR EACH”
"One Hundred"

String literals in accent marks may be nested to any depth.

“He said: “This “string” is nested.””

A null string may be assigned to a string variable.

!

| e —=nn

' g:=""7

CHARACTER STRINGS (Continued)

When a programmer writes a long literal string that requires two
or more lines, the carriage returns at the end of bach line
are invisible and do not require a character position.

Control characters, such as the carriage return and form feed,
can be passed as text directly to the assembler, using the

The octal code of the ASCII control character is enclosed in
The ocatal code of the ASCII control character is enclosed in
the angle brackets and will be passed directly to the assembler
without interpretation by the compiler. For example:

"THE END <15>" <015 is the octal code for carriage
return.

Subsets may be taken of strings using the built-in function,
substr.

string (9) x;

®:="A10=$1.25";

substr(x,1,9) <~evaluates to the entire string.
substr(x,1,3) <evaluates to AlO.

substr(x,5,9) +~evaluates to $1.25.

substr (x,4) <~evaluates to =.

The second parameter of substr gives the position of the start-
ing character and the third parameter gives the position of the
last character.

An array of character strings can be d&clared. Each element of
the array must have the same maximum length. For example:

string (2) symb[l1:100]; <each element of symb has a maximum
length of two characters.

Each element of a string array can be subset using the function,
substr.

CHARACTER STRINGS (Continued)

|
L string (30) a;

string (3) array b, cl[l:25];
a:="ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;

i
H
I
!
1
|

i for i:= 1 step 3 until 24 do begin
b[i] := substr(a, i, i+2);
- c[i] := substr(b[i], 2,3); end

Contents of the array elements after the for statement is
executed will be.

b[i]:="ABC";b[4]:="DEF"; b[7]:="GHI",...b[19]:="STU";b[22] :="VWX";
C[l]:':"BC"; C[4]:="EF"; C[7] :="HI"; ...C[l9]:="TU"7 C[22]:="WX";

Two other built-in functions are commonly used in string manipu-
lation. These are the length function and the index function.
The length function has a string variable as a parameter and
returns the number of characters in the string as a value.

The index function searches a specified string variable (param-
eter 1) for a given character configuration (parameter 2) and
returns as a value the starting location in the string of the
first character of the configuration.

Examples:

string (4) v;

v:="abcd";
i:=length (v); <~i:=4;
j:=index (v,"cd"); «j:=3;

Some examples of how strings may be used are shown in the follow-
ing examples:

CHARACTER STRINGS (Continued)

comment: Pattern Match and Replacement;

i := index(a," ");
for i :=i+1 while substr(a,i+l) #" " do
substr (a,i) := "*";

comment: Search the string a for some character delimited
by blanks and replace the character with an
asterisk character;

—

| comment: Editor Command Table Lookup;

external string (1) procedure Readchar;
string (10) commands;

switeh S := Top, Search, Append, Insert;
commands := "TSAI";
loop: 1 := index(commands, (Readchar)):;

comment: Readchar is a function that
reads a character;

go to S[i];

error ("illegal command");

go to loop:;

LABELS

Begin blocks and statements (including statements within com-
pound statements) may be labeled. Declarations cannot be
labeled. A label appears as either an identifier or an unsigned
integer, delimited from the statement or block by a terminating
colon (:) . A block or statement may have more than one label,
each of which has a terminating colon. The appearance of an
unsigned integer or an identifier followed by a colon constitutes
an explicit declaration of that integer or identifier as a label.

~
I

10

LABELS (Continued)

begin

end of block;

<15 is an integer label and Al is an
identifier label.

<~transfer to the assignment statement.

<transfer to the assignment statement.

A label is declared in its smallest enclosing block.

B: —— begin real S;

A: — begin real Z; <A (like S) is declared in Block B
. and is valid in both blocks A and
¢ B.
X é::z/s; <X (like Z) is declared in Block A
. and is valid only in Block A.
l__ end A;
end B;

Labels can be declared with the Zabel declarator. A label
declarator is often used to identify a label that is not other-
wise known in the block in which it is referenced.

7-11

LABELS

(Continued)

error:

begin integer i; label error; <error declared as label
begin real x;

= 0 go to error; <~transfer outside of block
to error.

Q,
.

I\ .
eI e e e
b

end;

A label declarator is also used totinsure that transfer of control
will be made to the correct label whenever a possible ambiguity

exists.

error:

error:

begin integer i;

begin real x; label error;

go to error;
. transfer made to label error in the

. block in which it is declared Zabel.

LABELS (Continued)

A dummy statement may be written in ALGOL. A dummy statement
provides only a label to which a transfer can be made. For
example, a transfer can be made to a labeled end delimiter ter-
minating a compound statement or block.

begin integer j;

1f § = 0 then go to Z;

Z: end; <~labeled end

An identifier label may be subscripted with a simple integer sub-
script. If a block contains ten labels, alil,al2],...,all0],
execution of the statement

go to [j];

causes j to be evaluated and transfer to be made to the corresvpond-
ing statement label. If j evaluates to a value outside the range
of statement labels, e.g., 25, then the next consecutive state-
ment after the go to is executed. Numeric labels cannot be
subscripted.

Formal parameters of procedures are declared with the Zabel decla-
rator if a label is to be passed replacing the parameter.

procedure ALPHA (x,y,n,exit); label exit;
real X,Y; integer n; value n;

Formal parameter exit will be replaced by a label when ALPHA is
called.

~
|

13

SWITCHES

Switches are variables that identify a number of alternate labels
to which program control may transfer. A switch is declared with
a list of labels and designational expressions. The position
occupied by a label or designational expression in the 1list
determines whether that label is the one to which transfer is
made.

Examples:

switeh TESTPROG:=a,b,7zf x>0 then i else 4,10,5,c,8,0p,3,Y3;

Switch TESTPROG is defined with 10 alternate labels or expressions
evaluating to a label, where a has a position value of 1 and y3
has a position value of 10. If the following statement is
encountered during execution:

go to TESTPROG [j];

j is evaluated. If j=2 transfer is made to label b; if j=3,
transfer is made to either label i or d, based upon the evalua-
tion of the designational expression.

switeh SF:=a,bl,bw,c,d,7; +~declaration of switch SF

.

go to SF [i]; «transfer to one of the labels

In this example i will be evaluated. If i=1l, transfer is made
to the statement labeled a, if i=2, transfer is made to the
statement labeled bl, etc.

If a switch variable evaluates to a value that is outside the
range of the switch, the next statement after the go to is
executed. For example, in the second example, there are 6
possible values for i: 1,2,3,4,5 or 6. If i evaluates to a
larger integer, the next statement after the go to is executed.

own DECLARATOR

Storage for a block is dynamic. Identifiers declared within a
block are allocated storage when the block is entered, and
storage is released at the time of exit from the block. If a
block is entered more than once during execution of a program,
variables will be undefined each time the block is entered.

The own declarator allows the programmer to specify a variable or
variables whose value at the time of exit from the block will be
retained. When the block is subsequently reentered, own variables
are defined.

Example:

a: begin integer i, j; own real Hs, s;

end

Each time block a is entered, variables i and j are undefined.
However, after the first execution of a, variables Hs and s have
a specified value each time a is entered, the values being that
of Hs and s at the time the block was last exited.

external DECLARATOR

variables may be external to a given program. Such variables
must be stored in an external area by assembly. They can be
used in a given program if the external variable is declared
external in the program in which it is used.

Example:

al: begin external integer k;
integer i, J:;

end al;

POINTERS AND THE BASED DECLARATOR

Use of pointers and based variables is a programming technique
which allows the systems programmer to achieve a very high level
of object code efficiency.

In most high level languages certain information is available
to the programmer that is not available to the compiler through
the source program. The compiler must always assume the "worst
case" in order to generate safe code.

For example, any subprogram call can potentially redefine all
external variables. An assignment to any element of an array
will force the compiler to assume that all values in the array
have been modified. 1In the case of arrays passed as parameters,
the compiler must generate "worst case" code for computing sub-
scripts, since neither the bounds, precision, nor number of
dimensions may be known until run time.

Pointers and based variables provide a mechanism for explicitly
manipulating machine addresses. Using this facility, the
programmer can, for example, force a subscript calculation to be
performed only once in a frequently executed part of his pro-
gram. As another example, if the programmer knows that an ex-
ternal variable will not be modified by a call, he can use
pointers and based variables to convey this knowledge to the
compiler.

The programmer declares an identifier, called a pointer. The
pointer's value is the address of some program variable. Pointer
expressions are allowed, so that address offsets can be given.
When the pointer is used, it points to a based variable with the
operator -; in effect, the pointer and based variable have been
substituted for the precise address the programmer wants.

A single pointer can be reset to point to different program
variables within a program. There are several ways in which a
pointer can be set to a given program variable: use of the
address function, use of the allocate procedure or simple
assignment.

The declared based variable has all the characteristics of the
program variable except for storage. That means that the data
type of the based variable should match that of the program
variable.

7-16

POINTERS AND THE BASED DECLARATOR (Continued)

In the example,following, y is declared as a real based variable
and can be used, together with pointer p, to perform address
modification involving either real program variable x or z.

begin real x,2z;
based real V;
pointer p;

.

p :=address (Xx):; «address function used to set pointer
. p to the address of x
P>y :=p> v+2; <statement is equivalent to x :=x+2;

The based variable can be considered a template of the program
variable. As long as the pointer is set to x, the pointer and
based variable can be used to modify the address. In this way
the programmer can perform address modification and manipulation
at very little cost in code generation.

The pointer can be reset to z, and the based variable can then be
used in a similar way, representing program variable z.

Example:

B: begin real x,z; based real y; <«x,y, and z are all real. y
pointer p; is declared based. p is de-
. clared a pointer
11: é :=address (x); <~pointer p is assigned the
. address of x.
22: pr>y 1=p> y+2 ; <based variable y is super-
. imposed upon x. Statement
: 22 is the equivalent of
X 1=x+2;
33: p :=address (z); +<p is reassigned the address
. of z.
44: pry :=p> y+3; <based variable y is super-

imposed upon z. Statement
44 is equivalent to z :=z+3;

POINTERS AND THE BASED DECLARATOR (Continued)

The program variable referenced by the pointer can be a simple
variable, an array, or an element of an array.

begin pointer a; 1integer array b; integer 1i;
based integer x;

a:=address (b[i]); <a is assigned the address
: of array element b[i].

b[i+l] := a-»x; +~the statement is equivalent
to: b[i+l] := b[i];

Assignment of a pointer to the address of a program variable

made without using the address function is shown in the example
below.

begin pointer A; real C; based integer b;

A := address(c);

(A+l)+b':

0; «location c+l1 is set to O.

Pointer arrays may be declared and pointer expressions may be
used in address manipulation.

begin pointer array Alnl;
based pointer array B[n];
based integer 1i;

p := A[5]>B[4]; <pointer array element A[5] points to a
. based pointer array element B[4]. The
. pointer value assigned to p can later
o et s point to another based variable such
y = prii as 1i.

7-18

POINTERS AND THE BASED DECLARATOR (Continued)

When using a based array, it is assumed that the pointer always
points to the first word of data in the array, e.g.,

based array x[-1:5]; if p»i[0]

p> i[-1]
i[0 1]

i[5 1]

A diagram of the arrays of pointers indicates the assignment of
p in the statement, p:=A[5]-B[4];

A B
0 1o | some location |

1 1

2 2

3 3 |

z Z /

5 5

6 .

n n

A pointer can be set to a given number of words using the
allocate procedure.

integer L, M;
pointer 1L, IU,ILM,IUM;
based integer N;

3

allotate (IL,8);
allocate (IU, 8);

+8 words of storage pointed to by IL
+~8 words of storage pointed to by IU

ILM := IL+M;
JUM := IU+M;

POINTERS AND THE BASED DECLARATOR (Continued)

Use of pointers can be shown in list processing. Suppose the
programmer wishes to search a singly threaded list, list x, for
a location called key.

begin pointer list x; <a pointer and a default-precision
based integer 1i; integer are interchangeable.

p := address(list x);

LOOP: 2f ((p:=p+i)=0) then go to EXIT +<if key does not exist.

else 1f (p+l)~>i=key then go to EXIT «if key is found.
else go to LOOP;

LITERALS

Literals are identifiers that are declared with a given value.
They provide a means of generating constants with names, so
code will be efficient and all occurrences of a constant may
be modified in one place. For example:

begin

literal MAX(100); <100 will replace all occurrences
literal Size (MAX):; of MAX in the block. If the paren-
integer array X [0 :MAX]; thesized value is changed, all

. occurrences of MAX will be changed.

Literals adhere to block structure. A literal declared in an
outer block will be local to that block and global to all inner
blocks in which the literal declaration is unchanged.

An identifier declared with a literal value in an outer block
can be redeclared with another value in an inner block.

begin literal R(0);

L begin literal Z(0), R(1);

Any legal value may appear in a literal declaration.

lbeqin literal Y (true), s("A-1023"), oct(-15RE), 7 (.01P4) ;

It is convenient to use literals to supply formatting information
for output procedures. Several examples are included in the
sample programs in Appendix F,.

OPERATORS

An identifier can be defined as an operator having a given
precedence. Operators are given the data type of the value to

be returned as a result of the operation. In effect, use of an
operator in a statement is identical to a reference to an external
function procedure, as described in the sections following on
procedures.

external string (100) operator (+) cat;

In the example, cat is declared an operator that returns a string
value having up to a maximum of 100 characters and which has the
same precedence value as the operator, +.

If cat is to be an operator used in concatenating strings, an
external procedure must be set up for cat, defining the con-
catenation function and providing formal parameters that con-
stitute the return value, and the two operands.

begin external string (100) operator (+) cat;

string Ss; (

s:="ABC" cat "DEF" cat "GHI"; <references to cat

end;

procedure cat (a,b,c); <the formal parameters must be

string a,b,c; positioned so that the first

begin a:=b; represents return value, the

substr (a,length (a)+1, second the first operand and
length(a)+length (b)) :=c; the third the second operand.

end; All procedures representing

operators follow this format.

When the assignment statement is executed, control is trans-
ferred to procedure cat. For the first concatenation, "ABC"
replaces b and "DEF" replaces c. The result, returned in place
of a, is concatenated with "GHI", and the result returned to s.

CHAPTER 8 -- PROCEDURES

A procedure is a block of code that is executed only when it
is called from another block and which returns to the other
block when procedure execution is complete. There are two
kinds of procedures and procedure calls.

A procedure can be called by a procedure statement in the calling
block. The procedure executes and returns to the statement
following the procedure statement.

A procedure can be called by a function reference contained
-in a statement in the calling block, for example in an assign-
ment statement. Such a procedure returns a value of a given
data type to the point at which it was referenced.

PROCEDURE DECLARATIONS

The declaration of a procedure consists of defining:
1. The procedure identifier.

2. A procedure data type (if the procedure identifier
represents a value, i.e., a function procedure.)

3. A list of formal parameters (if actual parameters
are to be passed to the procedure when it is called.)

4, Specification of characteristics of the formal
parameters,

5. The body of the procedure, which consists of a
simple statement or a block that acts as a statement.

Items 1 to 4 constitute the heading of the procedure.
The usual rules of local and global identifiers apply to pro-

cedures when procedures contain other blocks. An example of a
procedure declaration is:

l

i real procedure arcsin(x) ;

E real X;

l arcsin :=arctan (x/sgrt (1-x*2));

The procedure identifier is arcsin. Arcsin is a function that
returns a real value. There is a single formal parameter x,

8-1

PROCEDURE DECLARATIONS (Continued)

which is specified real. The statement body consists of the
single assignment statement.

Below is an example of a declaration of a procedure that is not
called as a function.

procedure innerproduct (a,b,n,sigma);
comment: compute innerproduct of vectors a and b with
n components each. Store result as sigma;
array a,b; integer n; real sigma; '
begin integer k;
sigma :=0;
for k :=1 until n do
sigma :=sigma + al[k] x blk];
end innerproduct;

Note that in the example the procedure, innerproduct, contains

a begin block. Whether a block is contained within another begin
block or within a procedure, the rules for local and global iden-
tifiers are the same. In the example, integer k is local to the
begin block and is undefined in the outer procedure. Arrays a
and b, integer n, and real variable sigma are global to the begin
block.

Many procedure declarations include formal parameters that are re-
placed by actual parameters when the procedure is called. How-
ever, procedures need not have parameters; for example, a pro-
cedure that generates a random number may not require that param-
eters be passed.

A procedure, like a variable, must be declared in the block in
which it is used (that is, called). This means that the calling
block must include the procedure declaration, including the full
text of the procedure body, as part of the declarations at the
beginning of the block, except under the conditions noted in the
next section.

All ALGOL procedures are recursive and reentrant.

EXTERNAL PROCEDURES

The declaration of a procedure can be compiled as a separate
entity. Such a procedure is called an external procedure since
it is not declared in some other block.

To be called from some other block, the name of the procedure
and its external characteristic must be declared in the calling
block. For example:

EXTERNAL PROCEDURES

CALLING BLOCK PROCEDURE
begin real s; real procedure arcsin (x);
integer Yy; real Xx;

external real procedure arcsin; arcsin :=arctan (x/sqrt(l-x+2));

X:=X x arcsin (x);

Like external variables, external procedures can be called (used)
by a number of blocks in which they are declared to be external.

PROCEDURE CALLS

Calls to procedures are of two forms: procedure statements and
function references.

A procedure statement has the form:

procedure name (pl,p2,...,pn);

where: procedure name is the identifier of the procedure.

pl, p2, ...,pn is a list of actual parameters that
replace the formal parameters given
in the procedure declaration. The
list may be empty.

A procedure statement causes transfer of control to the named

procedure and execution of the procedure body using the actual
parameters of the calling statement. When the procedure bcdy

has been executed, control returns to the calling block at the
statment following the procedure statement.

In the example following, the body of procedure A contains the
bodies of procedures B and D, and the body of procedure B con-
tains the body of procedure C; calls may be made as follows:

PROCEDURE CALLS (Continued)

procedure A <A can call B and D but not C
procedure B <B can call A and C but not D
procedure C <C can call A and B but not D

procedure D <D can call A and B but not C

An example of a procedure call is:

\
begin real a,b; real array A[1:100];
procedu}e sub_one (a,b,A);
real a,b; real array A; procedure
statement; declaration > calling
: block
sub_one(a,b,A); <procedure call
X: ===;
S

When sub_one is executed, control returns to the statement
labeled X.

A function reference has the form:

[+« -procedure name (pl,p2,...,pn)

where: procedure_name is the identifier of the procedure.

pl, p2,...,pn 1is a list of actual parameters that
replace formal parameters given in
the procedure declaration. The list
may be empty.

where: ... the initial dots indicate that the
function reference is part of a
statement.

Licensed Material - Property of Data General Corporation

PROCEDURE CALLS (Continued)

A function reference causes transfer of control to the named
procedure and execution of the procedure body using actual
parameters. When the procedure body has been executed, a value
for the procedure is returned to the calling statement. An
example of a function reference is:

begin real y;

real procedure arctan(x); real X; procedure

statement; declaration calling
. block

z = 0.215 x arctan(y); <procedure call

Calling a Procedure by Name and by Value

When an actual parameter is substituted for a formal parameter,
the actual parameter may be some variable whose value when
passed will be altered one or more times in the course of
execution of the called procedure. If so, this is a call by
name. The values of certain input variables to the procedures,
however, will not be altered in the course of executing the
called procedure. When such a parameter is passed, it consti-
tutes a call by wvalue.

Formal parameters that are consistently called by value are
given the value specificator in the procedure declaration.

Example:

real procedure tan (x); value x: real X;
tan := sin (x)/cos (x);

The actual parameter to be substituted for x in the example
is an input value that is unaltered in computing the tangent
function.

The rules of default precision apply to value parameters. In
the example above, x would have default real precision. It is
particularly important to declare precision for string value
parameters since the default length is limited to 32 characters
and any additional characters would be lost.

8-5

Licensed Material - Property of Data General Corporation

Calling a Procedure by Name and by Value (Continued)

real procedure sort (s); value s; string s [100];

Sometimes it is desirable to pass a parameter by value to a
procedure that does not include a value specificator. In that
case the actual parameter in the calling procedure is enclosed
in double parentheses to indicate a by value assignment.
Example:

begin integer input;

Routine ((input));

When a function identifier is passed as a parameter, the
distinction between by name and by value call is as shown below;

begin external integer procedure input;

Routinel (input) ; <call to Routinel. The address of
. input is passed.
Routine2 ((input)); <call to Routine2. Function input

is called as the parameter of
Routine?2.

FORMAL AND ACTUAL PARAMETERS

The formal parameters that appear in a procedure declaration are
replaced by actual parameters when the procedure is called.
Actual parameters will be evaluated at the time of the call only.
Actual parameters may be values or variables, but they must match
the formal parameters of the declaration as shown in the follow-
ing rules:

Licensed Material - Property of Data General Corporation

FORMAL AND ACTUAL PARAMETERS

(Continued)

1. Data types of actual parameters must be compatible with

those of formal parameters.

parameters.

begin real alpha, beta;

procedure xx(a,b,c);
real a,b; integer c;
begin =---

xx (alpha, beta, gamma) ;

There is no conversion of

integer gamma;

PROCEDURE
DECLARATION > CALLING

BLOCK

+call to xx

2. The number of actual parameters in a parameter list must
match the number of formal parameters.

DECLARATION

real procedure yy(i,]j):;
integer 1i,7;

3. If a formal parameter is an array,

CALLING BLOCK

m :=m/yy(l,k); <«two actual para-
meters replace two
formal parameters.

it must be replaced by

an actual parameter that is an array having the same or

fewer array elements.
must match exactly.

DECLARATION

integer fyl,fy5;
array SET[15,15];

procedure gnp(fyl,fy5,SET);

The type and precision of the arrays

CALLING BLOCK
begin integer i,j;array I[1:200];

[
L d

gnp (i,3,I);

8=7

Licensed Material - Property of Data General Corporation

FORMAL AND ACTUAL PARAMETERS (Continued)

In the example, I[1] replaces SET[0,0], I[2] replaces SET[1,0],
eee, I[199] replaces SET[6,12], and I[200] replaces SET[7,10].

4.

A formal parameter that is called by wvalue cannot be a switch
identifier or a procedure identifier. An exception is a
procedure identifier that has no formal parameters and that
defines the value of a function designator. For example, if
part of the declaration of procedure x is:

procedure x(dd); value d4d; integer dd; begin

and if x is called by:

x ((FD)); <where FD is a procedure, then

FD must have the form:

integer procedure FD; <no parameters
FD t=...; <FD is assigned some value.
5. A formal parameter that occurs on the lefthand side of an

assignment statement and is not called by value must be
replaced by an actual parameter that is a variable. This
rule is a logical extension of the rules of assignment
statements.

Specification of formal parameters may place further re-
strictions upon the actual parameters associated with them.

Such restrictions must also be observed in the body of the
procedure.

The value of a function is parameter 0. The following are
equivalent, where x is a function with one input parameter:

x(A,y); and A = x(y);

Specificators of Formal Parameters

Characteristics of formal parameters are specified in the pro-
cedure declaration as shown in preceding examples of procedure
declaration. The parameter rules indicate that there must be
a match between data types of formal and actual parameters and
a match on the shape, i.e., a simple variable cannot replace a
formal parameter that is used as an array.

The keyword declarators are also used as specificators. 1In
addition there are the previously described value specificator

and the label specificator, which allows the programmer to pass
a label identifier as an actual parameter.

X xx

8-9

Licensed Material - Property of Data General Corporation

CHAPTER 9 -- LIBRARY FUNCTIONS AND PROCEDURES

Certain functions and procedures are supplied with the ALGOL
compiler. :

MATHEMATICAL FUNCTIONS

Arguments to the mathematical functions can be real or integer.
Each function (except the sign function) yields a real value.
If the argument to these functions is integer, the number of
words returned is two. If the argument is real the number of
words returned is the same as the number of words in the argu-
ment. The sign function, however, always yields an integer
value.

FORMAT MEANING AND EXAMPLES
abs (x) Absolute value of expression, x. j1abs (g)*(i/m)
I
arctan (x) Principal value of tan~1 (x) . :arctan (y=x)

Where expression X is in radians.
: |
cos (x) Cosine of expression x, where X lcos (n-pi/2)
is in radians. :
. . |
exp (Xx) Exponential function of the value exp (a[l0])
of x which is the value of the 1
Eulerian constant e raised to X:

in radians.

sqrt (x) Square root of expression X. sqrt(abs (x-y))

tan (x) Tangent of expression X, where x | tan (a/b)

is in radians. -

l
X 1
ex, i
I
In (x) Natural logarithm of expression ln (a/2)
X. t
- 1
sign (x) Sign of expression x, which is: :sign (a/b)
]
+1 for x>0 !
0 for x=0 :
-1 for x<0)
|
sin (x) Sine of expression x, where x is Isin (omega x t)
- - - I
|
|
|
I
!
|
1

Licensed Material - Property of Data General Corporation

ENTIER FUNCTION

The entier function returns an integer, resulting from trunca-
tion of a real expression. Unlike the fix function, described
below, the entier function will return multi-precision values
where appropriate.

entier (x)

where: X is a real expression.

entier (y/cos(y))

FIX FUNCTION

The fix function returns a single precision integer, resulting
from truncation of a real expression. The function has the
form:

fix (x)

where: x is some real expression.

FLOAT FUNCTION

The float function returns a real value of default precision
resulting from floating an integer expression. The function
has the form:

float (x)

where: x is some integer expression.

SIZE FUNCTION

The size function returns as a value the number of characters
1n a scalar string or the number of elements in an array. The

SIZE FUNCTION (Continued)

function has the form:

size (v) ;

where: v is the identifier of a string
or an array.

Wwhen v represents an array of strings, the number of elements
in the array will be returned as a value.

size (alpha) <if alpha is a l2-element array, the
value 12 is returned.

ARRAY BOUND FUNCTIONS (LBOUND, HBOUND)

The hbound function returns an integer giving the upper bound
of a specified dimension of an array; the lbound function re-
turns an integer giving the lower bound of a specified array

dimension. The functions have the form:

lbound (v, n)

hbound (v, n)

where: v is the identifier of the array

n is an integer representing the
positional value of the dimension.

If array v has less than n dimensions or if n has a value less
than or equal to 0, the function value is undefined.

real array A [1:9, 25, =2:4];

lbound (A,1l) «returns 1

lbound (a,2) <returns O

lbound (a,3) <returns -2

hbound (A,1i) «<if i=1, returns 9

if i=2, returns 25
if i=3, returns 4

9-3

ARRAY BOUND FUNCTIONS (LBOUND, HBOUND) (Continued)

If the second parameter in the examples is not 1, 2, or 3,
the value of the lbound or hbound function is undefined.

BIT MANIPULATION FUNCTIONS (ROTATE, SHIFT)

The shift function permits contents of a location to bd shifted
left or right; the rotate function permits the contents to be
rotated left or right. The functions have the form:

shift (v, n)

rotate (v, n)

where: v 1s an integer variable or octal literal.

n is an integer constant or varxiable.
The integer n indicates the number of bits to be displaced. A
negative integer indicates left shift or rotate, and a positive
or unsigned integer indicates right shift or rotate.

i :=rotate (x,-4); «value stored in i is contents bf # left
rotated by four bits.

X :=shift {(x,+4); <right shift by 4 bits the conténts of x.

ADDRESS FUNCTION

The address function permits assignment of the location of a
variable as the value of a pointer. The function has the form:

address (2)1

where: v is a subscripted or unsubscripted
program variable.

As described in Chapter 7, Pointers and the based Declarator,
the address function is an extension to ALGOL that pérmits
variable addressing on a level comparable to assembly language

9-4

ADDRESS FUNCTION (Continued)

programming. Refer to that section for further information on
use of pointers and based variables with the address function.

Example:

begin pointer p; integer array b;

integer 1i; based integer Xx;

p :=address (b[i]) ; <pointer p 1s assigned the
. address of array element
. b [i].

STRING FUNCTIONS (LENGTH, INDEX, SUBSTR, ASCII)

Length Function

The length function returns as a value the length of its char-
acter string argument. The function has the form:

length (v)

where: v is a string variable.

Examples:

string (10) x; integer 1i;
x := "abcd";
i:= length (x); <~The assignment is the same as i:=4;

Index Function

The index function searches a specified character string for a
given character configuration. The function returns the start-
ing location of the configuration as its value. The function

Index Function (Continued)

has the form:

index (v, ¢)

where: v is a string variable.

c is one or more characters of v. 1If ¢ is
not found, index returns a zero value.

Examples:

string (10) v; integer 1i;

v := "abcdefg";
i := index (v,"bc"); «The assignment is the same as i:=2;
v := "abcdefg";
i := index (v, "b"); <The assignment is the same as i:=2;

Substr Function

The substr function extracts from a given string a substring
whose length is defined by the user. Substr will treat an
integer or based integer datum as if it were a string, extracting
a subset of the datum. Use of the substr function gives Extended
ALGOL much of its flexibility in manipulating strings.

The function has the form:

substr (v, n, [,BZ])

where: v is a string, integer, or based integer
variable.

n. is an integer giving the position in v of the
first character or digit to be extracted.

is an integer giving the position in v of the
last character to be extracted.

Substr Function (Continued)

If EQ is not given, the character indexed by El is returned. 1If
22 is greater than the maximum number of characters, all char-
acters from n, to the end of string or datum are returned. 1If

o, evaluates to less than 1, the index begins at the first char-

acter of v.

literal x("ABCDEFGH") ;

substr(x, 1,8) references the entire string ABCDEFGH.
substr (x, 5,7) references EFG.

substr(x, 4) references 7.

substr (x, 0,3) references ABC.

substr(x, 6,9) references FGH.

In the following three examples, assume the declarations and
assignments to be:

string a, b, C;
a := "abcdefg"; b :="xxx";

To join contents of b with contents of a, producing "abcdefgxxx":

Isubstr(a, length(a)+1l, length(a)+length(b)) :=b;
l

To replace part of string a by string b, producing "abcdxxx":

}substr(a, length(a) =3, length(a)) :=b;
i

To insert the contents of b into string a, producing "abcxxxdefg",
requires a temporary string and the setcurrent procedure, ex-
plained later in this chapter.

Substr Function (Continued)

c:=substr(a, 4,7); <~a="defg"
setcurrent (a,3); <~a="abc"

substr (a,length(a)+l,length(a)+length (b)) :=b; <a="abcxxx"
substr (a,length(a)+1,length(a)+length(c)) :=c; =<a="abcxxxdefg"

Digits of an integer or based integer are treated as string
characters:

f
teger 1,3;
=1776;

in
i
j s:=substr(i,2,3); <j contains 77.

Accessing of multiple substrings of the same string can be
accelerated by setting a pointer to the address of the string
and using a based string or a based integer in the substr
function. The pointed-to based integer is not treated as an
integer value as in the example above, but is treated as a
string. Faster execution is obtained by making use of substr
handling of based integers rather than based strings. This
feature is useful, for instance, in accessing various string
fields in a large record in core. The user must be careful
when using pointers since no core protection is provided.

[
based integer bi; based string bs;
pointer p; string S;
s:= substr (p»bi, 1, 5); <The assignment statements are the
s:= substr (p~bs, 1, 5); same except that the based integer
is faster. The pointer must have
been set up previous to these two
statements.

Ascii (byte) Function

The ascii or byte function, like substr, can be used to manip-
ulate either a string character or byte of an integer or based
integer. Byte and ascii are equivalent function names. The
function returns the numeric value of a character or a byte of
a datum. The function has the form:

Ascii (kyte) Function (Continued)

ascii (v [,n] or byte (v [,nl)|

where: v is a string variable or literal or integer
variable.

n is an integer giving the position of the byte
of v to be returned.

If n is not given, the first byte is returned. 1If n is greater
than the number of bytes in v, the last byte is returned.

literal s("ABCD"); string s2; based integer bi;
pointer p; integer a;

a :=ascii(s,4); <«returns 104g in a.
s2 :=ascii(p»bi, 2); <returns the second byte of the area
pointed to by p in s2.

MEMORY FUNCTION

The memory function returns an integer value giving the remain-
ing number of words of core available to the user and is used
to keep track of core for allocation, stack space, arrays, etc.
The function has the form:

memory

CLASSIFY FUNCTION

The classify function permits the user to obtain an integer
which represents the predefined class of ASCII characters to
which the first parameter passed by classify belongs. The
function reference has the format:

classify (integer, class-table-ptr)

9-9

CLASSIFY FUNCTION (Continued)

where: integer is an integer or an expression
evaluating to an integer in the
range of octal equivalents of
ASCII characters.

class-table-ptr is a pointer to a user-written table
classifying ranges of ASCII char-
acters. The class, table and
pointers are usually external to
the block in which referenced.

The user defines a class table for ASCII characters as a
series of ranges of the form:

character—minl
character-max; range,
resultl

character—minn

character-maxy range
result,

Any number of ranges may be defined. For example, all upper-
case alphabetics could constitute one range, digits 0 through
9 could constitute another range, the single character, left-
parenthesis, could constitute a third range, etc. The final
range in the table, however, must include the entire ASCII
character set, providing the default range with default return
classificetion.

i:= classify (ascii(x,l),ptable)

I/0 PROCEDURES

Since standard ALGOL was designed to be a language independent
of specific processors or devices, no I/0 statements or con-
ventions are included in the ALGOL specification.

For user convenience, a number of I/0 procedures are imple-
mented in Extended ALGOL to handle I/O. These procedures are

9-10

I/0 PROCEDURES (Continued)

run-time routines that can be called by a user program using a
procedure statement. If the user wishes, he can implement
additional I/O features by writing his own external procedures
to handle input and output.

Open a File

Call Format:

bpen (channel, string [error-labell]) ;'

where: channel is one of 8 channels (0-7) that can

Purpose:

Examples:

be associated with a given file.
Under RDOS up to 63 channels can be
made availablg using the RLDR local
C switch.

string is the character string giving the
file name. It can be either a
literal such as "SLPT" or "DATAFILE"
or a string containing the file name.

error-label is an optional identifier label of a
statement in the calling program to
which transfer is made if an error
occurs in opening a channel. If an
error—-label is given and the file
does not exist, transfer will be
made to the error-label without
creating the file. If the file does
not exist, and no error-label is
supplied, the file will be created.

The procedure opens a file for reading or writing and
associates a channel with the file.

open
open

open

infilel, openerr);
" $TTI") ;
"$TTO", no_open);

Close a File

Call Format:

where:

Purpose:

Example:

close (1);

Read a File

Call Format:

where:

channel

Eclose (channel);i

|

is the channel number currently
associated with the file through
an open procedure.

The procedure is called to close a file after
I/0 is completed.

&ead (channel, list [,eof-label, error-labell)

I

;o

channel

list

eof-label

error—-label

Purpose:

is the channel number associated with
the file to be read.

is a list of input data.

is an optional label of a statement

in the calling procedure to which
transfer is made if an end-of file is
encountered on reading. For console
input, an end-of-file is defined as

a CTRL Z. For all other devices and
files, an end-of-file is written auto-
matically by the system.

is an optional label of a statement in
the calling procedure to which trans-
fer is made if a read error occurs.

The procedure is calléed to input data from a

file.

9-12

Read a File (Continued)

Input data:

Examples:

read(2, A[1l,

Write a File

Call Format:

where:

read (1, BI[I],

Data will be read in free format. All legal
numeric or string literals are acceptable as
input. If a string begins with a quotation

mark, the string will terminate at the next

quotation mark. If a string does not begin

with a quotation mark, the remainder of the

input line will be considered as part of the
string, excluding the carriage return.

Generally, only one record (that is, only data
up to the first carriage return or form feed)
is input by read. If list specifies more data
than is on a sfngle record, the next record is
read automatically until the number of argu-
ments in list is input. Additional. data, if
any, in the record are lost.

OMEGA, EOFTAG, ERROR25);

for I1:=0 step 1 until 10 do
B[1l);

write (channel, list [,error-labell);

channel is the channel number associated with
the file to be written.

list is a list of output data.

error label is an optional label of a statement in

the calling procedure to which transfer
is made if any error, including an end-
of-file, occurs.

Write a File (Continued)

Purpose: The procedure is called to output data to a file.

Output Data: Data may be variables, or numeric or string
literals. The write procedure provides no
formatting of output; for complete control
of formatting, the output procedure should
be used. For limited format control, con-
trol characters interpreted by the assem-
bler can be included in the list.

A null character is appended to each output
datum in list. The read procedure ignores
nulls following list. The read procedure
ignores nulls following input data. However, if
the output from write is to be used by a Data
General Assembler, all nulls must be deleted
from the output. The user can first input the
output file to the Text Editor, which deletes
all nulls, then use the Editor output as input
to the assembler.

Output can be input by the read procedure
without change.

Examples:

write (2, "END SORT<15>", A, "<15>");

END SORT is a string literal. Inclusion of the characters
"<15>" following END SORT causes a carriage return. The value
of the variable A will then be printed, followed by another
carriage return.

!

|

The list of variables to be written is y, x, 2z, and sub[i].
Values for the variables will be written with a single space
between value fields. If a write error occurs, a transfer is
made to the error label, errortag.

write (3, y, X, z, sub[i], errortag);

9-14

Write Formatted Output

Call Format:

kutput (channel, "format", list [,error-label]);

where: channel is the channel number associated with
the file to be written.

format is a string specifying output format.

list is a list of wvariables to be written
out according to the given format.

error-label is an optional label of a statement in
the calling procedure to which trans-
fer is made if any error, including an
end—of-f%le, occurs on output.

Purpose: The procedure permits the programmer to set
up his own format for data being output, rather
than using the default format of the write
statement.

The format specification may include literals to be output,
formats for numeric and string values of variables given in

list, and carriage control, tabulation, and form feed informa-
tion.

A null character is appended to each output datum in list.

The read procedure ignores nulls following input data. How-
ever, if the output from this procedure is to be used by a
Data General assembler, all nulls must be deleted from the
output. The user can first input the output file to the Text
Editor, which deletes all nulls, then use the Editor output as
input to the assembler.

Formatting information for list variables must precede the
variables to be output. Literal strings containing carriage
control, form feed, and tabulation information and character
string literals may appear where needed within list. An

example of a literal to be output,precisely as given in format
would be:

output (1, "Data Reduction");

| Data Reduction <resultant output

Xe}
H

15

Write Formatted Output (Continued)

A "picture" specification of data to be output is set up in
the format field, using the character # to represent each
character position of the datum. Numeric values that have
fewer characters than the positions given by the format field
will be right-justified in the field. Numeric values having
more characters than the positions given by the format field

will be output in full; i.e. a single # can be used to output
numbers of any length.

output (1, "DATA REDUCTION: ####", A);

DATA REDUCTION: 901495 <resultant output if A
has the value 901495

When formatting floating point numbers, a decimal point can
be part of the field format, indicating the number of digits
that should follow the decimal point in the output format.
The programmer should round the data to the number of digits
desired.

output (2, "#####.# ", w+.05, x+.05, y+.05, z+.05);

AAAAN 1, 20N =-99.0AALAAL 1AAN999.9 <possible resultant output;
A represents a blank
position

To round each datum to the nearest tenth, .05 is added to each
datum.

A field format may have a positive sign, negative sign, or can
be unsigned. Resultant output will differ in the following
manner:

Unsigned Field: If the datum is positive, the
output value is not signed. If
the datum is negative, the out-
put datum is signed and re-
quires a field position, e.g.,
the range of field ###.###
would be from =-99.999 to 999.999.

Write Formatted Output (Continued)

Positive (+) Field: The sign will be output for both
positive and negative numbers
and requires no field position,
e.g., the range of field
+###.### would be from
-999.,999 to +999.999.

Negative (-) Field: The sign will be output only
for negative numbers. It
requires no field position,
e.g., the range of field
-###.4#4 would be from
-999.999 to 999.999.

An exponent field is allowed as part of a decimal field that
has an explicit decimal point. An exponent field is signalled
by the letter E followed by # signs representing exponent
digit positions. The exponent will be right justified in the
exponent field. Output of signs for the exponent follows the
sign conventions given above.

output (2, "-####4 #4E44", a+.005, b+.005, c+.005, d+.005);

12345,.25E-4AAA 99 ,04EAQAL 9876,97E-6LAA -555,55EA0 «possible
output

The # symbol can also be used to represent string variables

in the list of the output procedure call. The string will be
left justified in the output field with trailing blanks. How-
ever, if the string or substring is longer than the field
format the entire string will always be written out.

output (2, "########", ST1, ST2, ST3);

TITLEAAA NUMBERAA CHARACTERISTICS <possible output

Numeric values for output can be converted to strings. They
will then be left justified in the output field.

String literals for output may appear anywhere within the out-
put list.

9-17

Write Formatted Output (Continued)

output (2, "######4#","SERIAL NUMBER",A[2], "FIVE ON ORDER");

SERIAL NUMBER 201555 FTVFE ON ORDER

ASCII carriage control characters, written in octal code and
enclosed in angle brackets, can be incorporated into the
format. In the examples below, 011 is the octal code for the
tab character and 015 is the carriage return character.

output (2, "####.##<11>", a,b,c,d "<155")

4678.23 -234.40 1678.49 -233.43

output (2, "####<1l1l>#%###<15>", a,b,c,d);

4678 -234
1678 -233

An array identifier in a variable list causes all elements of
the array to be written out in normal array sequence.

|
| output (2, "####4", A); <A is a ten-element array

34 5781 777 1234 354 9 100 4555 9000 883 «possible

output

By setting up loops containing output procedure calls,

it is
possible to produce output data in a number of formats.

Write Formatted Output

for j := 1 step 5 until 100 do b
for 1 := 3j step 1 until j+4 do
output (2, "#### ", alil);
write (2, "<15>");
end;
0 1020 4545 6123 9081
| 7060 -354 765 20 -1
555 9000 34 -10 563
[
begin literal s(" A[###] = ###:
based integer array bal0:4]; pot
" for j := 1 step 5 until 100 do
begin p := address(aljl);
output (2,s,j,p>ba);
b end;
.A[1] = 1005 1195 3142 5222
Al 6] = 19 3001 -100 25
~A[11] = 211 -4 4321 2
Al 96] = 35 =567 2378 388

Note in the last example that the
has been set up as a literal.

9-19

(Continued)

egin

<part of possible output

NTRTRNTNTA

L4l
ki & S A

N R T

#4itd

nter p;

fand <15>");

1110
5111

444 <part of possible output

200

format field for the array

Read or Write a Line

Call Formats:

line read (channel, pointer, count [,error-labell);

linewrite (channel, pointer, count [,error-label]);

|

where: channel is the channel number associated with
the file to be read or written.

pointer is a pointer to the word in core at which
reading or writing begins.

count is a return value giving the number of bytes
read or written.

error—-label is an optional label of a statement to
which return is made if any error, including
an end-of-file, occurs.

Purpose: The procedures provide for reading and writing a
line of data into an area, rather than into var-
iables (read and write procedures). Otherwise,

the procedures are identical to read and write.

The pointer contains the address of a core word at
which reading or writing begins. The data is trans-
ferred from that point up through the first car-
riage return, null or form feed character.

If an EOF occurs on a lineread, count will contain
the number of bytes read up to the EOF.

In using lineread with strings, note that it is
necessary to provide the count of bytes read
using the setcurrent procedure as shown in the

example:
Example:
lineread (0, address(s), n, er); <s is a previously declared
setcurrent (s, n); string. setcurrent (see
setcurrent procedure) sets

the length of s to the count
of bytes read in lineread.

‘O

=20

Read or Write a Number of Bytes

Call Formats:

byteread (channel,pointer,count [,error-labell);

bytewrite (channel,pointer,count [,error-labell]);

where: channel is the channel number associated with
the file to be read or written.

pointer is a pointer to the word in core where
reading or writing begins. pointer can
be an address expression.

count specifies the number of bytes that the
user wishes to be read or written.

error-label is an optional label® of a statement to
which return is made if any error,
including an end-of-file, occurs.

Purpose: The procedures provide facilities for binary
reading and writing of data, rather than ASCII.

Example:
allocate (buffer,100); <allocate allocates 100 words in
byteread (0, buffer,200); the file starting at pointer,
buffer. byteread reads 200

bytes starting from buffer.

POSITIONING A FILE

Position Procedure

Call Format:

5 position (channel, byte [,error-labell);

where: channel is the channel number associated with
the file to be positioned.

byte is the number of the byte to which the
file is to be positioned.

9-21

Position Procedure (Continued)

where:

error-label is an optional label to which a return is
made if the file given cannot be positioned to
the indicated byte.

Purpose: The procedure permits random access to records and
is called before attempting to read or write
random. The byte specified may be an integer, real,
or multi-precision integer whose value is between 0
and 4,294,967,296 bytes (the limit of file bytes).

Examples:

position (2, 5000); <position to byte 5000 in file
on channel 2 and read A[i].
read (2, A[i]);

position (0, bytpos); <position to a byte (bytpos)
which is beginning byte of
bytewrite (0, buffer, 200); previously allocated area

pointed to by pointer, buffer,
and write 200 bytes. (See
allocate procedure.)

Filesize Procedure

Call Format:

~
- filesize (channel, n);

1
i

where: channel is the channel number associated with
a file.

n is the identifier of the value to be
returned, representing the length in
bytes of the file. n may be integer,

real, or multi-precision integer.

9-22

Filesize Procedure (Continued)

Purpose: The procedure returns the current length in bytes of
a disk file, providing information useful in
positioning the file.

Example:

filesize (0, n); <A call to filesize makes it
position (0, n); possible to position to the
bytewrite (0, ptr, 200); end of the file for writing.

Fileposition Procedure

Call Format:

!fileposition (channel, n);

S

where: channel is the channel number associated with a
file.

n is the identifier of the value to be
returned, representing the position of
the byte currently pointed to in a disk
file. n may be integer, real, or multi-
precision integer.

Purpose: The procedure returns the position of the byte
currently pointed to in the given file, providing
information useful in positioning a file.

LExample:
fileposition (1,n); <After finding the current
position (1, n+300); position, the user positions the
file to a byte 300 bytes
beyond.

O

-23

STORAGE ALLOCATION PROCEDURES

The programmer can designate that a certain number of words of
storage be allocated with a pointer to the first word. At a
later time, the storage can be deallocated for reuse.

Allocate Procedure

Call Format:

allocate (pointer, number) ;

where: pointer is the identifier of a previously
declared pointer.

number is the number of words of storage to
be addressed by the pointer.

Purpose: To allocate a number of words of storage for manipu-
lation by the pointer-based variable method.

The algorithm used for allocate is a first fit
method only if the size in words on the free 1list
equals the size requested. Otherwise, a new area
is allocated.

begin integer m,i,]J; pointer il,iu;
based integer n;

allocate (il, 8);
allocate (iu, 8);

i:=(il+4+m)->n;
je=(iu+m)->n;

Free Procedure

Call Format:

free (pointer);

where: pointer is the identifier of a pointer that
appears in a previous allocate call.

Free Procedure (Continued)

Purpose: To make available for reallocation the previously
allocated words of storage.

free (1il);
free (iu);

Setcurrent Procedure

Call Format:

F;étcurrent (string, bytes);
l

where: string is the identifier of a previously
declared string.

bytes is the number of bytes (characters)
to be set as the current maximum
length of string.

Purpose: To insure that the current length of a given
string is the length desiréd for manipulation.

If bytes is larger than the declared maximum
length of the string, string will be set to
the declared maximum.

The procedure is of particular value in insuring
that the length of the buffer for reading and
writing random is correct.

string (128) S; <declare 128-byte string S.
position (1, 155);

byteread (1, address(S), 128); <transfer 128 bytes to core.
setcurrent (S, 128); +<insure current length of S

is maximum length.

Comarg Procedure

Call Format:

i comarg (channel, string [,boolean-array] [,eof])ﬂ

where: channel is the channel number of an RDOS command
file.

string is the identifier that will contain an
argument of the command file.

boolean-array is a 26-element boolean array that
may optionally contain switch settings
of the command argument.

eof is an optional label of a statement to
which return is made when the end of the
command file is encountered.

Purpose: The procedure is used to read RDOS commands from a
command line into a command file. (The creation of
a command file, COM.CM, is described in Appendix C
of the RDOS User's Manual.) Briefly, COM.CM
contains a given command line in the following format:

9-26

Comarg Procedure (Continued)

Purpose:

Command File Format Command : FOO/B/L/N A MB/A/X/Z
byte file content

0 F

1 0 .

5 S <« F1rst argument FOO.

3 null

4 01000000

5 00010100 Global settings of switches;

6 00000000 set for B, L, and N,

7 00

8 A -« Second argument A,

9 null

14 M

15 B

16 null

17 10000000
18 00000000
19 00000001
20 01

21 377

«ﬁlird argument MB.

Local switches set for MB
are A, ¥, and Z.

10
11 :} No local switches for A.

< End of file indicator.

To obtain the contents of COM.CHM as given above:

string COM1,COM2,COM3;
boolean array Bl1,B2,b3[251;

open (1, "COM.CM");

comarg (1, COM1l, B1l);
comarg (1, COM2, B2);
comarg (1, COM3, B3);

Comarg Procedure (Continued)

The open procedure associates COM.CM with channel 1. When the
three comarg procedures are executed, COMl will contain FOO,
COM2 will contain A, and COM3 will contain MB.

Those boolean array elements of Bl, B2, and B3 that correspond
to the bit positions set in the command file will be set to
true. Thus, the elements of B2 are all set to false (0) while
elements B3[0], B3[23], and B3[25] are set to true.

FILE MANTIPULATION PROCEDURES

The file manipulation procedures are useful when files are
maintained on disk. They permit deletion and renaming of given
files. The named file must exist and must be closed at the time
of a deletion or renaming.

Delete a File

Call Format:

delete ("file");

where: file is the name of a previously created file.
Purpose: The routine deletes the named file from the disk.

Example:

delete ("oldfile.SR");

Rename a File

Call Format:

rename ("filel", "file2");

where: filel is the name given a previously created file.

file2 is the name to be substituted for filel.

9-28

Rename a File

Purpose: The routine allows a file to be renamed.

Example:

rename ("main", "sub2");

ERROR PROCEDURE

Call Format:

error ("error-message");

where: error-message is a string

Purpose: The procedure allows the user to write his own
error messages. The error message will be output
at the console when an error occurs, processing
will terminate, and return wilg be made to the
operating system.

PROGRAM SWAPS - CHAIN PROCEDURE

Call Format:

chain ("filename") ;

where: filename is the name of a save file. The
loader adds the extension .SV to
filename, so the programmer should
include the extension when giving a
literal filename in the chain pro-
cedure.

Purpose: The procedure allows an executable program file
on disk to be brought into core for execution,
replacing the currently executing program.

The call to chain should be the last statement
in the program. Any number of saved files can
be chained, providing each ends with a call

to chain.

PROGRAM SWAPS = CHAIN PROCEDURE (Continued)

Exanmple:

chain ("plot.sv");

REAL TIME CLOCK PROCEDURES

The ALGOL real time clock procedures, stime and gtime, allow the
user to change or retrieve the current date and time in an
ALGOL program.

Stime Procedure

Call Format:

stime (year, month, day, hour, minute, second)ﬁ

where: ear is an integer constant or variable represent-
ing the current year less 1968; e.g., 1974
is represented as 6.

month is an integer constant or variable represent-
ing the current month, in the range of 1
through 12.

day is an integer constant or variable represent-
ing the current day, in the range of 1
through 31.

hour is an integer constant or variable represent-
ing the current hour, in the range of 0
through 23: 0 is the midnight hour; 23 is
11 PM.

minute is an integer constant or variable represent-
ing the current minute, in the range of 0
through 59.

second is an integer constant or variable represent-
ing the current second, in the range of 0
through 59.

Stime Procedure

Purpose: The procedure sets the real time system clock
and calendar to the specified date and time.

Example:

stime (6, 1, 1, 0, 0, 1);

Gtime Procedure

Call Format:

i
gtime (year, month, day, hour, minute, second);

where: year, month, day, hour, mindte, and second are
integer variables for which real time clock
values are returned. The range of these
variables is the same as for the stime procedure.

Purpose: The procedure returns the current date and time
in the user-specified variables.

Example:

|
integer year, month, day, hr, min, sec;

gtime (year, month, day, hr, min, sec);

MULTIPLY AND DIVIDE PROCEDURES

The multiply and divide procedures perform unsigned multiplica-
tion, expressing the result as a product and overflow, and
division, expressing the result as a quotient and remainder.

Umul Procedure

Call Format:

umul (multiplicand, multiplier, adder, overflow, product)J

|
4

where: multiplicand is an integer constant or variable
containing a value to be multiplied.

multiplier is an integer constant or variable
containing a value to be multiplied.

adder is an integer constant or variable
containing a value to be added to the
result obtained from multiplying the
first and second arguments.

overflow is an integer variable to which the
overflow of product, if any, is
returned.

product is an integer variable to which the
result of multiplication is returned.

Purpose: The umul procedure provides unsigned multiplication
of the form:

(multiplicand x multiplier) + adder-> (product + overflow)

Example:

integer plicand, plier, adder, ovflo, prodt;

umul (plicand, plier, adder, ovflo, prodt);

Rem Procedure

Call Format:

rem (dividend, divisor, quotient, remainder) ;
N

|

where: dividend is an integer constant or variable
containing the value of the dividend.

divisor is an integer constant or variable
containing the value of the divisor.

quotient is an integer variable to which the
quotient obtained by the division is
returned.
remainder is an integer variable to which the
overflow of division is returned.
Purpose: The rem procedure obtains the result of division

as a quotient and remainder.

Example:

integer a, b, quotn, mander;

rem (a, b, quotn, mander) ;

9-3

CACHE MEMORY MANAGEMENT

A capability of Extended ALGOL, which is designed to meet
specialized file access needs of certain programmers, is called
Cache Memory Management (CMM). Extended ALGOL without CMM

will handle efficiently most scientific and business program-
ming applications. Cache Memory Management is a powerful tool
for programmers who deal with very large programs and large

data bases -- primarily systems programmers such as com-

piler writers. CMM provides more efficient means of file access
when the size of a file is considerably larger than available
memory (for example, three or more times larger).

CMM provides means of buffering large files into 256 word
blocks and determining which blocks reside in core on a usage
basis. For example, suppose a new block is required in core
from a disk file. The block will be swapped in, replacing
the block currently in core which has the oldest reference
time. Thus, CMM will replace the least recently used block
with the block from disk.

To use CMM the programmer sets up a buffer pool consisting

of a fixed number of blocks and a header area (buffer procedure).
He can then open a given file (or create and open the file) to

a given file number and set up access to the file through the
buffer (access procedure). The remaining general procedures

and functions used in Cache Memory Management are listed below:

wordread/wordwrite - used in reading from or writing
to any area of any file. These
are the most general of the rou-
tines for rcading and writing.

hashread - used in reading any area of a file

into a core buffer and returning
the precise location of any word
of data as the address of a
block of core and an offset into
the block of the specific word.
No actual data transfer happens.
This routine has been typically
used in files hash-coded by the
user for the purpose of finding
data without its being modified.

CACHE MEMORY MANAGEMENT (Continued)

hashwrite -

flush -

close -

used to mark hashread data as
having been modified.

used to write to disk the contents
of all modified data buffers
before a file is closed.

used to close a file that has

been previously accessed. The
file should be flushed before

being closed.

Besides the general procedures, there are a group of specialized

procedures available in CMM.

These procedures provide extra

speed and simplicity through two features:

1. They are only used to access file number 0.

2. They allow the user to make block 0, the first 256

words of the file,

an area of restricted access to

be used for vital information and pointers into the

general data area.

The specialized procedures are:

noderead/nodewrite -

fetch/stash -

nodesize -

used in reading from or writing
to file number 0, excluding the
first 256 words. File access is
on a nodal basis, where a node
(which resembles an ALGOL array)
is described later. ’

used in reading from or writing

to file number 0. The first

256 words of the file may optional-
ly be read or written. A single
word is accessed by these routines,
where access is on a nodal basis.

used to obtain the number of
words in a given node.

9-35

CACHE MEMORY MANAGEIENT (Continued)

Setting up a Buffer Pool (buffer)

Before a file can be accessed using the cache memory facility,
the programmer must establish a buffer pool to be associated
with the file. To establish the buffer pool, the programmer
must determine the size required, which is the number of words
of the file that can be maintained in core at a given time. The
buffer pool is allocated at the high address end of user stack
space. The buffer pool consists of a buffer pool header of
1610 words, 4 words of descriptors for each buffer, four words
gff%erminating descriptor, and the required number of 25673 word
uffers.

A buffer pool of n buffers is configured as shown:

Buffer Pool Header

M| U} RDOS Channel No. N

File Block No. \Descri tor 1
Last Time Referenced / p

Block Core Address J

.

‘l Descriptor n

; " Terminating
Buffer Pool \ \ Descriptor

v
N

R Buffer 1

i

A\

\ Buffer n
i a2
L L/

Setting up a Buffer Pool (buffer) (Continued)

The buffer pool header is 16 words of information needed by
CMM to control the buffer pool. It includes a save area,
data pointers, counters, and a clock that maintains the cur-
rent time.

Following the header is a set of buffer descriptors. Each
buffer in the pool has a corresponding four-word buffer de-
scriptor of the buffer and its usage. The buffer descriptor,
as shown in the previous figure, contains the following:

Word Contents
1 Bit 0 = M (modify bit) indicating if the
contents of the buffer have been modified

since last read in.

Bit 1 = U (usage bit) indicating if the
buffer is curreﬁtly occupied.

Bits 2-15 RDOS channel number, corresponding
to a user-assigned file number in the access

call.

2 File block number.

3 Core address of the first word of the
buffer.

4 Time of the last reference to the buffer.

The descriptors are allocated by CMM in the same order as the
buffers. The first descriptor corresponds to the first buffer,
etc. Following all descriptors are four words terminating the
descriptors.

Immediately after the four words terminating the descriptors are
the actual CMM buffers. The buffers are 25674 words (one block)
in length.

The user sets up the buffer pool and thus makes it possible to
use CMM through the Luffer procedqfe. The call to buffer is

buffer (pointer, poolsize) ;

where: pointer is a previously declared integer variable
or pointer. CMM selects the buffer pool
area and returns the address of the start
of the buffer pool in pointer.

9--37

Setting up a Buffer Pool (buffer) (Cor.tinued)

where: poolsize is the size of the buffer pool, in
words. The user can specify an integer
expression, indicating the number of
words in the buffer or use the built-in
function memory (or memory/n, where
n is an integer), indicating that the
rest of available memory (or the
indicated fraction of available
memory) is to be used for the buffer
pool.

The actual size used by CMM for the buffer pool is always the
largest available memory space less than or equal to poolsize.
The formula used by CMM to compute this value is:

(256 + 4) i + 20 < poolsize

where 256 is the number of words in a block, 4 is the number

of words in the buffer descriptor, and 20 is the number of words
needed for the buffer pool header plus terminating descriptor.
Thus, the number of buffers allocated (i) is the largest integer
satisfying the inequality:

number of buffers (i) < poolsize - 20
260

Thus, once allocated, the buffer pool is configured as:

Buffer Pool Y\ <pointer
Header

_ > adjusted

poolsize

y

The user can then open the file via the access routine for disk
access.

The following example reserves half of remaining memory for
the buffer pool and returns the address of the start of the
,pool in PTRI1.

f

W 9-38

Setting up a Buffer Pool (buffer) (Continued)

pointer PTRl;

.

buffer (PTR1, MEMORY/2);

Crening Buffered Files (access) (Continued)

Once the buffer pool has been set up with a pointer to the
starting address, the programmer may‘'open files for accessing
via the buffer pool. Files are opened, or are created and
then opened, using the access routine call, which has the

format:

access (filenumber, filename, pointer [,elementsize]);
X

1

where: filenumber is the file number that is associated
with a file.

filename is the character string giving the file
name. It can be either a literal in
quotation marks or a string variable
containing the file name.

pointer is the buffer pool pointer used in the
buffer routine.

elementsize is an integer representing the size range
of the file to be opened as follows:

Size of the File elementsize
0 - 65K words 1
65 - 131K words 2

131 - 196K words 3

196 - 262K words 4

elementsize has a default value of 1; thus if the size
of the file < 65K, the parameter need not appear in the

routine call.

Opening Buffered Files (access) (Continued)

CMM stores all file positions as a 1l6-bit unsigned integer.
This means that only 65K words (the largest value that can
be stored in 16 bits) can be addressed directly. If a file
is larger than 65K words, the user specifies an element size
(elementsize) of two or more to indicate that two or more
consecutive words are to be considered a single element and
all file positions are addressable by CMM.

The actual file address of a word becomes:

file address = fileposition/elementsize

When reading or writing the file, the user must specify the
file address of the first word in the element to be assured
of accessing the correct data. Given a file address, CMM
then calculates the block number of the element using the
formula:

file address x elementsize
256

file block number =

If the file does not exist when access is called, CMM creates
a randomly organized file of length @ with the specified file
name. The file is then opened via the RDOS command .OPEN,
which associates the file with a channel number and makes the
file available for both reading and writing.

The following example opens the file LEXICAL and assigns it to
file number 1 with PTR1l pointing to the beginning of the
buffer pool. The size of the buffer pool passed is 5000 words,
although by computation the buffer will only use 4880 words.
Because the file is 127K words long, an element size of two is
specified in the call to access.

pointer PTR1;

buffer (PTRl, 5809) ;
access (1, "LEXICAL", PTR1l, 2) ;

9-40

CACHE MEMORY MANAGEMENT (Continued)

Yordread/wordwrite Routines

The routines WORDREAD and WORDWRITE allow the programmer to
read from or write into any area of a file. The format of the
call to WORDREAD is:

wordread (filenumber, fileaddress, coreptr [, words]) ;

where:

filenumber is a user-assigned integer file number
previously associated with the file in a
call to access.

fileaddress is an integer constant or variable specifying
the file address of the first word of the
file to be read.

coreptr is a previously declared integer variable
or pointer specifying the first word of
memory to contain the data read.

words is an integer constant or variable specifying the
number of words to be read. If words is omitted,
the routine looks for the count of words as the
first word indicated by fileaddress in the file
and reads using that count for words.

Before performing the data transfer, CMM determines if the
block containing fileaddress is in memory; if it is not, the
block is read in.

The following example opens the file LEXICAL and assigns it
to file number 1 with BUFPTR pointing to the beginning of
the buffer pool. The wordread procedure then accesses file
address 200, which is file position 400 because elementsize
is 2, and reads two words into the memory area pointed to by
COREPTR.

X}
I

41

Wordread/wordwrite Routines (Continued)

pointer BUFPTR, COREPTR ;

buffer (BUFPTR, 5888) ;
access (1, "LEXICAL", BUFPTR, 2) ;
wordread (1, 2@@, COREPTR, 2);

To write a block of data onto disk, the user can use wordwrite.
The call format is:

wordwrite (filenumber, fileaddress, coreptr [, words]) ;

where:

filenumber 1is a user-assigned integer file number
previously associated with the file in a
call to access.

fileaddress is an integer constant or variable specifying
the file address of the first word of the file
to contain the data written.

coreptr is a previously declared integer pointer
or variable specifying the first word of
memory containing the data to be written.

words is an integer constant or variable specifying
the number of words to be written. If words
is omitted, the routine looks for the count of
words as the first word indicated by fileaddress

in the file and uses that count for words.

Wordwrite first sets the Modify bit in the buffer descriptor,
indicating that a change has been made to the block. Note that
execution of wordwrite does not necessarily cause the words
modified to be written back onto disk. The actual data transfer
does not take place until the buffer space must be released to
bring in another block or until the buffer is flushed. When
buffer space must be released, the least recently used block is
written back if modified.

9-42

Wordread/wordwrite Routines (Continued)

The following example opens DATAFILE to file number 1 with
BUFPTR pointing to the beginning of the buffer pool. The
wordwrite procedure then accesses file position 200 and writes
one word from the memory area pointed to by COREPTR to the
appropriate position in the file bufﬁer.

pointer BUFPTR, COREPTR;

buffer (BUFPTR, MEMORY/2) ;
access (1, "DATAFILE", BUFPTR)

.
4

wordwrite (1, 2¢@, COREPTR, 1) ;

Accessing File 0 Nodes (noderead/nodewrite/nodesize)

As defined for Cache Memory Management, a node is an ordered
set of data similar to an ALGOL array. In the ALGOL runtime,
the lower bound of the nodal array is named MINRES and has a

default value of -3. The upper value of the array, K, is
defined by the user.

To use the default value of MINRES, the user declares MINRES as:

literal MINRES (-3);
The array NODE [MINRES:K] can then be represented as:

NODE [MINRES] > K+4
NODE [0] >
NODE [K] >
The user

can change the default value of MINRES in an assembly
language program. The maximum value of MINRES, however, is -1,
allowing one word that will contain the size of the node.

For
example, to change the value of MINRES to -1:

.ENT MINRES
.ZREL
MINRES: -1

.END

9-43

Accessing File 0 Nodes (noderead/nodewrite/nodesize (Continued)

In that case, MINRES can be declared within the ALGOL program
as external integer MINRES or as [literal MINRES (-1).

Node access by CMM is only possible within a block of file
number 0. All other blocks must be accessed using wordread/
wordwrite or hashread/hashwrite.

An entire node may be transferred by using the noderead/node-
'write routines. A single word within a node may be transferred
using the fetch/stash routines. There is also a function, node-
size, that returns the size of a given node.

When using noderead and,nodewrite, the first 256 file addresses
in a file are protected from user access. These locations can
be used for storage of non-nodal data. When transferring data
via fetch and stash, the first 256 file addresses can be ac-
cessed; however, an optional argument permits the user to
protect these addresses from access.

noderead and nodewrite allow the programmer to transfer an
entire node. The format of the call to noderead is:

noderead (fileaddress, array):;

where: fileaddress is the file address of the first word of
a node. Access is inhibited if file-
address is in the range 0 to 255.

array is a user-defined array into which the
node is to be read.

Similarly, the format of the call to nodewrite is:

[nodewrite (fileaddress, array)ﬂ

i
t

where: fileaddress is the file address of the first word
of a node into which the array is to
be written. Access is inhibited if file-
address is in the range 0 to 255.

array is a user-defined array containing the
data to be written.

Accessing File 0 Nodes (noderead/nodewrite/nodesize (Continued)

Note that in both routines the parameter array must be the
name of a user-defined array, not a pointer to the array, and
that the user must set the contents of the first element of
the array, MINRES, to the total count, K+4, Lefore executing a
nodewrite. (See examples.) Examples of the procedures are:

literal array A[MINRES:6], B[MINRES:10]; «A and B are declared.
literal MINRES (-3); <MINRES is declared.

noderead (100,A); <Read into A starting at file address 100.

K = 10;

B[MINRES] := K+4;

nodewrite (200,B); <«Write from B into file starting at file
address 200.

nodesize is a function that allows the user to determine the
number of words in a node. The format of the function is:

—

i Te= nodesize(fileaddress)ﬁ
l

where: fileaddress is the file address of the first word
of the node.

nodesize reads the number of words in a node from the first
word of the node and returns it as its value.

The following example reserves a buffer of 6*260+20 words,
giving the CMM six 256-word buffers, with PTR1l pointing to the
beginning of the buffer pool. The file DATAl is then opened
on file number 0. The nodesize function is used to return the
size of the node at file address 400 into the variable SIZE200.

pointer PTR1;
linteger SIZE200;

buffer (PTR1, 6*260+20);
access (0, "DATAl", PTR1l, 2);

SIZE200 := nodesize (400) ;

Accessing a Single Word in a Node (fetch/stash)

If file number 0 is accessed, the user can read or write a single
word in a node using the fetch function or the stash procedure.

The fetch function returns a single word in a node. The format
of the function reference is:

i := fetch ([fileaddress,] offset);

where:

fileaddress is the file address of the first word of a node.
If fileaddress is specified, the first 256 file
addresses of the file are inaccessible to CMM
as described below.

offset is the offset into the node of the word to be
accessed. If no fileaddress is given, the off-
set is from the beginning of the file.

i is the integer identifier that is to contain
the fetched value.

If fileaddress is specified, fetch returns the word at (file-
addresstoffset-MINRES) as its value. This format does not per-
mit accessing of the first 256 file addresses but allows the

user to protect the first 256 elementsize words of a file from
modification. These locations can be used for storage of special
data, not to be changed during CMM use. If fileaddress is not
specified, no checking of file addresses is performed and all
addresses are accessible to CMM. In this case, the word at off-
set is returned.

The following example allocates a buffer one third the size of
available memory (or less). PTRl points to the beginning of the
buffer pool. DATAFILE is then opened on file number g. The
fetch function is used to return the value of 300+3-MINRES in
the node that starts at file address 300 into NODEl.

pointer PTRL;
integer NODEL;

huffer (PTR1, memory/3);
access (0, "DATAFILE", PTR1l) ;

NODE1l :=fetch (300, 3);

Xo)
|

46

Accessing a Single Word in a Node (stash/fetch) (Continued)

stash writes a single word of a node to file number 0. The for-
mat of the call to stash is:

'stash (i [,fileaddress] , offset);

where:

i is the integer identifier whose value is written
to file number O.

fileaddress is the file address of the first word of the node
to contain the data. If fileaddress is specified,
the first block of the file is inaccessible to CMM.

offset is the offset into the node of the word to con-
tain the datum. 1I1f no fileaddress is given, the
offset is from the beginning of the file.

If fileaddress 1is specified in the stash call, the datum at i

is written onto the disk file at (fileaddress+offset-MINRES).
As with fetch, this format does not allow accessing of the first
256 file addresses. If offset is not specified, no checking of
file addresses is performeda and the first 256 file addresses are
accessible to CMM. 1In this case, \the single word at i is written
onto disk at offset.

The following example allocates a buffer of 2000 words (or less)
with PTR1 pointing to the beginning of the buffer pool. NODEFILE
is then opened on file number 0. The stash procedure writes the
value of VALl onto disk at the node that starts at file address
100.

pointer PTR1;
integer VALL;

buffer (PTR1, 2000);
access (0, "NODEFILE", PTR1l) ;

stash (VALl1, 100);

Clearing the Buffer Area (flush)

Once the user has completed modification of a file, the buffer
area must be cleared using the flush procedure. The format of
the call to flush is:

flush (pointer);

where: pointer is the buffer pool pointer prev-
iously associated with the file
in a call to access.

When a call to flush is executed, CMM writes onto disk all
blocks that have been modified (as indicated by the Modify bit
in the buffer descriptor); unmodified blocks are not written
back onto disk.

Flushh does not close a file. The user must explicitly close a
file using the close procedure:

f close (filenumber)

where: filenumber is the user-assigned file
number associated with the
file to be closed.

Hashread/hashwrite Routines

Transfer of data from any file to core can be performed using
the hashread procedure. The hashread procedure is particularly
efficient for the transfer of files that have been hash-coded

by the user; however, it is not necessary that the file be
hashcoded to use this method of reading data from the file. Note
that if the file to be hashread is hash-coded, the default
elementsize must be used in opening the file for access via the
access procedure; this provides that the file is one-word
addressable.

The hashread procedure differs from other CMM read procedures in
that it returns a pointer to the core address of the block of
data and an offset into the block, so that the user has immediate
access to the datum he may wish to modify.

Hashread/hashwrite Routines (Continued)

There is no special procedure for transferring hashread data

back to the file. For example, the dgta may be transferred

when the file is flushed or a hashread block may be transferred
when all buffers are full and new data must be read in. If
hashread data is modified while in core, the user must immediately
set the modify bit in the buffer descriptor. The modify bit is
set by issuing a hashwrite call. This insures that the proper
data will be written whenever the block is written to the file.
Failure to indicate modification of hashread data by a hash-

write call can wipe out a user programm.

The hashread procedure brings a specified block of a file into
core. The format of the call to hashread is:

I ,
| hashread (filenumber,hashcode,block-pointer,block-offset) ;

|

where: filenumber is the number of the file to be read.

hashcode indicates the word within the file used
to compute the requested file block.

block=-pointer is a variable that will contain the
core address of th block referenced by
hashcore.

block-offset is a variable that will contain the
offset into the block given by block-
pointer.

The hashwrite procedure marks the last block referenced by a
hashread as having been modified. Tbe format of the call to
hashwrite is:

| hashwrite (buffer—pool—pointer);!

I

where: buffer-pool-pointer is the buffer pool pointer defined
in the buffer routine for the hash-
read file.

Hashread/hashwrite Routines (Continued)

The hashwrite procedure should be called immediately after data
has been modified. The procedure does not write the modified
block to the file; this is done when buffer space must be re-
leased to bring in another block.

The following example allocates a buffer one twelfth the size
of memory with BPTR pointing to the beginning of the buffer pool.
FILE4 is then opened on file number 4. Execution of the hash-
read procedure brings the file block, computed from the hash
code at file address FILENODE, into core and returns value for
BLOCKPTR and INDEX, so that the user can modify the block. The
program checks as to whether the current value of the datum
differs from the value that will replace the current value. If
there is a difference, an assignment statement modifies the
block and the user immediately indicates the modification

in a hashwrite. If there is no difference, there is no need to
perform a hashwrite.

integer FILENODE, INDEX, NEWVALUE, OLDVALUE; <+OLDVALUE is the
current value of
the datum and
NEWVALUE is the
modified value.

pointer BPOOL, BLOCKPTR;
based integer BI;

buffer (BPOOL, memory/12);

access (4, "FILE4", BPOOL); +<Access file to be
hashread.
hashread (4, FILENODE, BLOCKPTR, INDEX) ; +<Read block, obtain-

ing pointers to
datum to be mod-

ified.
OLDVALUE :=(BLOCKPTR+INDEX)->BI: +Test whether OLD-
2f OLDVALUE = NEWVALUE then go to DONE; VALUE is equal

to NEWVALUE.
(BLOCKPTR+INDEX) - BI := NEWVALUE; <~Modify the datum
hashwrite (BPOOL) ; and set the mod-

ification bit.

DONE: OLDVALUE := NEWVALUE; <Value of the
datum is unchanged.

* % %k

CHAPTER 10 -- COMPILER ERROR MESSAGES

All ALGOL error messages are printed out and are self explan-
atory. An up arrow (4) points from the message to the source
statement in which the error was detected.

The up arrow (+) does not necessarily indicate the exact
location of the error. It only indicates the character at
which the error was detected. If no error is found where the
arrow points, check to the left and the right of the arrow for
a possible error. If an error still cannot be found, see if an
earlier statement with an error could affect the statement so
that the error was caused.

If the message

ER nn <nn 1is some number

should ever occur, notify Data General; this indicates a
compiler error.

Some examples of error messages are:

I := 3*I+J;
t

*** UNDEFINED VARIABLE ***

J :=J J;
4
***MISSING OPERATOR IN EXPRESSION **%*

BEGIN REAL (I*2) X;
t

**% DPR<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>