h&% U A

CE

NESLETTER For USFRS oF ALGOL on HOVA COPUTERS awp ECLIPSES

T

MUANCE 4

1 HAY 1978

From the "Notes" of Dn. Richards:
BIT OPERATIOIS,

R. G. Richards

Bit operations can be used to manipulate the individual words. Used in con-
junction with their operands, the bit operators lead to the construction of bit
expressions. However, these resemble arithmetic expressions and need not
formally be distinguished from them.

The general form of a bit expression is:
A. for monadic operators:
< operator.- - operand>
B. for dyadic operators:
-~ opérandl > - operator>> - operand2>

In these expressions, an operand may be another bit expression, but in all

circumstances it should have the shape of a single (default) precision integer.
Thus an operand may be: T

A default precision integer variable or literal

A default precision integer array element

A pointer pointing to a single precision based integer

A bit expression ’

An arithmetic expression which evaluates to a single precision integer.

Attempts to use operands that are mulliprecision give rise o error messages
at compile time.

cao0om

Ther is one monadic bit operator:

NOT - OPERAND .-
Resull: each 0 (1) bit is changed to 1 (0).

There are three dyadic bit operators:
< OP1 .~ AND - OP2 >
The result in any bit position is 1 if and only if the bits in the corresponding
positions of OP1 and OP2 are both 1 (i.e. if ‘either is O, the result is 0).
-OP1 - OR - OP2
The result is 1 in any bit position if either the corresponding bit in OP1 or in
OP2 is 1 lie. if both are O, the result is 0).
<OP1 - XOR - OP2 .-
The result is O for each bit position if OP1 and OP2 are both O or both 1 (i.e.
OP1 and OP2 must be different to produce a result of 1). ‘

Note that the bit operations EQV and IMP have not been implemented, but
that no error message is produced at compile time il an attempt is made to use
them.

[Editor's note: EQV and IMP are implemented for Booleans only, e.g. they will
work when “false” corresponds 1o 0 and “true” to 1, e.g. one bit (position 15)
only. In complex bit expressions, an imbedded boolean assignment should be
used when these two operators are used. Nole also that EQV is identical to
NOT XOR. which is implemented for arbitrary bit patterns.]

Further bit operations such as EQV or IMP, can be delined using the
OPERATOR procedure.

All possible dyadic bit operations may be mimicked by suitable combina-
tions of the operators provided (in fact, by NOT and any other dyadic operator).

Besides these bit operators, two bit procedures are provided, they are called .

by the forms:
SHIFT (1,J) and ROTATE (1,J)

These are, formally, single precision integer procedures. The argument | can
take any of the forms specified as an operand fc}r\a bit operator. The argument
J must be an integer variable or literal, negative or positive.

The effect of SHIFT is to move the bit patiern of | by J places:
1. tothe left it J is negative; bits passing out to the left beyond position O are
lost; O's are introduced at the right as positions are vacated.
2. lotherightif Jis positive; bits passing out beyond position 15 are lost. 0's
are introduced at the left in the positions vacated.

The effect of ROTATE is to move the bit pattern of | by J places:
1. lotheleftif Jis negative; bils passing out o the left beyond position O are
reintroduced at the right as position 15 is vacated.
2. to the right if J is positive; bits passing out beyond position 15 are
reintroduced at the left as position 0 is vacated.

. The result of SHIFT(1,16) and SHIFT(l,—16) is O, that of ROTATE(I,16) and
ROTATE(l,—16) is I

The following notes may be useful:

Neither bit operations nor the bit procedures may be used with multipreci-
sion integers. If it is required to perform these operations on such integers, the
user may write his own procedure for doing this; the individual words of the
multiprecision integer may be addrgssed by using pointers.

Since the argument of a bit operator or procedure may be a pointer pointing
to a based integer, these operations may be carried out on words assigned to
variables of any type. This may be done by obtaining a pointer to the appropri-
ate word of slorage using the ADDRESS function and then pointing this at a
based integer in the operand or argument. Note that the based variable must

. be a based integer rather than a based variable of the type of the original

variable. .

The result of the SHIFT operation is not, in general, identical to multiplying or
dividing a binary number by 2. No overflow checking is done and the bit pat-
tern is not even interpreted as a binary number.

/**COMMENT:
ALGOL "“OVERSEAS"

For some reason, “overseas” at the East coast of the U. S. almost invariably
refers to England [Probably to increase the confusion.and misuse of “Eng-
land,” “Great Britain,” "U.K.,” etc]. In any case, there is a flourishing.
although small. Algol SIG group there, headed vigorously by Dr. E. G.
Richards of King's College in London [address, see the list of contributors].
They are holding meetings and share programs and information.

For the use of the local Algol SIG, Dr. Richards wrote “Notes on DGC Aigol,”
the best and most systematic description of the language published to date. it
should be required reading for anyone who starts out in this language, and has

continued on page 2

EDITORIAL

The ALGOL - SIG

Alter a somewhal hesilant start, the Algol SIG (and Nuance, which repre-
sents the views of the Algol users)is expanding in membership and activities.
There have been Algol meetings during the last three DGC General Users
Group meetings, and one is planned again for this fall in Boston. It is clear that
Nuance fills a need in user communication. More users are beginning 1o write
about their applications and solutions - rather than only about their initial
problems; at the readers request more program examples are given in Nuance.
Meanwhile, the Algol UG Library is expanding and being updated, and there
are persisient requests for larger articles and papers on specific program
areas.

Progress is such that in this editor’s view, the bottleneck in further expan-
sion is the editor himself [as proof, this issue originally was planned for Nov./
Dec. 1977!] If it is obvious that more users help is needed to increase the
usefuiness of Nuance and the SIG, it also is an opportune time for feedback
from the readers on how lo accomplish this. A few questions for which
answers are needed follow below, with some tentative and not necessarily
optimum answers, to start discussion.

First, is a more formal organization for the Aigol SIG needed? At present,
Nuance is distributed by DGC to all members of the general Users Group (a
superset of the Algol SIG). Active Algolists are writing in and for Nuance,and
have no other burdens, duties, or privileges. A case can be made that the extra
work associated with formal organization is superfluous, and thus not efficient.

Second, assuming that Nuance still is useful, is it preferable to publish it in
shorler intervals? The total volume is set by the amount of text writien by con-
tributors: should this be published in one large issue per year, in twelve
smaller monthly instaliments, and on a regular or “random” basis? Experience
shows that one large issue is less work, and that the random interval removes
one more deadline; but are the readers betler served?

Let us assume that 2 to 4 issues per year are oplimum. The additional work
involved can, in principle, be divided in a humber of ways. From the contents,
one logical solution would be to have separate editors for the Algo! UG Library,
for the DOC-BUG sectlion, for letters, and for a DG/L section [this will probably
expand considerably when this new language becomes available for more
machines.] Additionally, “clerical” work such as editing text, and typesetting is

involved in production. (The photo-ready mats are sent to DGC for copying’

and distribution).

If you have qualifications for any or all the these jobs - or no experience, but
just want to learn 1o help - write as soon as possible: perhaps by the time of the
Boston meeting a decision can be made on how to proceed. Perhaps one per-
son with more available time could take over the complete job, or the work
could be split; in any case, let your opinion be known even if you cannot volun-
teer for any of the specific jobs.

A. van Roggen

NUANCE,
NEWSLETTER rFor USERS ofF ALGOL
on NOVA COMPUTERS anp ECLIPSES

RSN

A NEWSLETTER OF VARIABLE SIZE,
PUBLISHED AT RANDOM INTERVALS
DEPENDING ON THE RATE OF FEEDBACK
TO THE EDITOR.

EDITOR:

Dr. A. van Roggen

DUPONT Experimental Station
Wilmington, DE 19898.
Tel: 302 - 772,2581

continued from page 1
_ N
a wealth of useful items for those who think they are familiar with DGC Algol,
but then stumble over something unexpected. To quote from the Notes:

“The primary purpose of these notes is to reconcile the manua! with the

implementation. The notes are written in the form of severa! shorl chaplers.
The reader will find that the same point is noted in several places. This is
deliberate, since the author has commonly observed that conciseness is not
always compatible with either clarity or usefulness.”

With that philosophy, the reader cannot go wrong, and indeed, the Notes are

much clearer than the manual. Hopefully, some of this will rub off by the time .

an official manual update is issued. The Notes are far too long o reproduce

here, but the section on Bit Manipulations will serve to give an idea of the style. =

[If there is interest, other sections can be reproduced in a future Nuancel]
 END **/

CONTRIBUTORS to NUANCE 4 S. M. Heidel

Dr. T. K. Sharpless
Memorial Sloan-Kettering
Cancer Center

J. Maloney,
Data General Corp.

\
\ 265 Freeport Road
B. Barnett)
Faultfinders, Inc. Pittsburgh, PA 15238
15 Avis Drive J. Hufiman,
Latham, NY 1211p Data General Corp.
‘S. D. Blessley * Westboro, MA 01581

«- Dana Computing Center
Univ. of Hartford
200 Bloomfield Ave.
West Hartford, CT 06117

J. Celko
Box 11023
Atlanta, GA 30310

Dr. H. W. Eber,

/ Psychological Resources
1422 W. Peachiree Str. NW
Atlanta, GA 30309

R. Fessenden,Hague International
\. 3 Adams Str.
S. Portland, MN 04106

N. Finn

ROLM Corp.

4900 Old lronsides Dr.
Santa Clara, CA 95050

B. Friedlander,
A.D. Little Systems
Burlington, MA

G. D. Jelatis

U. of Minn. Hospitals
420 Delaware Str. SE
Minneapolis, MN 55455

B. Johnson,

Data General Middle East
260 Syngrou Avenue
Athens, Greece

D. R. Kaye

Du Art Film Labs Inc.
245 W. 55 Str.

New York, NY 10019

N. M. Kittredge
Pacesetter Corp.
Marsh Road
Litchfield, CT 06759

Dr. P. Maas

Dept. Appl. Physics,

U. of Strathclyde
Glasgow, Scotland U. K.

Westboro, MA 01581
J. Miranda

”

“ Centro de Calculo de la

Universidad Politecnica -
Barcelona 14, Spain

Dr. E. G. Richards
Dept. of Biophysics
King's College

26-29 Drury Lane
London WC2 England

M. Ruggera

Dept of Chemistry
U. of California
Irvine, CA 92715

W. D. Selles,

New England Med. Center
171 Harrison Ave.
Boston, MA 02111

F. V. S. Shafer
RCA Astro Physics
PO Box 800
Princeton, NJ 08540

1275 York Ave.
New York, NY 10012

P. G. Smith

Dept. of Psychology
Stanford University
Stanford, CA 94305

A. J. Thomas

Institut d'Anatomie
Universite de Lausanne
Laysanne, Switzerland

C. Walers

RK Steedman & Assoc.
384 Rokeby Road i
Subiaco 6008

Western Australia

I. S. Wolfe

PO Box 1092
Longview, Wash. 98632

v The New DGC Algol:
DG/L

J. Maloney and J. Huffman

Data General has recently announced the availability of DG/L, a program-
ming language based on DGC's Algol. This new language was developed inter-
nally by DGC, and is designed for the implementation of a broad range of
applications across the entire DGC hardware/software product line. It is suita-
ble for heavy computation jobs as well as more "‘data processing” functions.
DG/L comes equipped with a multitasking runtime environment which, in con-
junction with its string handling and string arithmetic capabilities, make it an
ideal tool for the development of multi-terminal on-line applications for the
Nova and microNova product line, as well as for Eclipses, on which the com-
piler ilself operates.

The operaling system interface, virtual data structures, address manipula-
tion, and recursive procedure definition features make DG/L an extremely
useful tool for the development of system level software such as compilers,
assemblers, sort/merges, and other utilities. Designed as a highly compatible
superset of DGC Algol (the differences are documented in the DG/L manual),
DG/L is ideal for the use of structured programming techniques and variable
scoping, as well as extensive string management 1unchons that are well suited
for many commercia! applications.

Additional features include:
1. Algol-like syntax, block structured, procedure oriented.
2. Powerful memory management techniques, including dynamic allocate/
free and cache memory handlers for virtual structures.
3. Standard single and double precision integer arithmetic, optional single
and double precision real arithmetic.
4. String manipulation and string arithmetic.
5. Direct address manipulation and based variables.
6. Globally optimizing compiler; generated code is reentrant and recursive.
7. Multitasking runtime environment.
8. Compatibility across the entire line of DGC hardware and software. One
compiler can generate code for execution under AOS, Eclipse RDOS, Nova
RDOS, DOS, and RTOS, and microNova, from the same source file.

Perhaps the most attractive feature of the language is its compatibility: the
source language syntax includes a comprehensive operating sysiem inter-
face. The programmer codes in one form, regardless of the target system, and
the compiler and runtime library provide the proper object system program. A
programmer must compile on an Eclipse RDOS system, and can target his
code to any RDOS, RTOS, or DOS sysiem. Using an AOS program develop-
ment sysiem, a programmer may write, compile, and debug his code under
AOS and then create the RDOS, DOS, or RTOS save file and dump it on tape or
diskette for transport to the target machine. The compiler uses switch options
to control code generation for AOS, Eclipse RDOS, etc. The proper system libr-
aries (ASYS, BSYS, NSYS, etc.) must be loaded on the AOS disk, and with the
AOS utility “RDOSBIND,” an RDOS save file can be made.

END;
ADVANCED LOOP —MANSHIP

J. Celko

| will presume that the reader already knows that a loop is a programming
device used to execute repetitively a set of program statements, and that
loops are used o simplify and shorten programs. Some Algol formalisms and
tricks are described below.

The basic form of the loop statement is:
FOR ~cv> := <elem.list> DO <st>
. where < ¢cv.- = conirolled variable, < st> = a statement or compound state-
ment or block, and < elem.Ist> = alist of values and expressions, used for the
. controlled variable. FOR loops in Algol are very general structures compared
. to loop constructs in other languages; this flexibility lets the Algolist get a
good bit more out of his language than the BASIC or FORTRAN programmer.

THE ELEMENT LIST.

One form of the FOR loop consists of a list of elements of the same data type
as - cv. , separaled by commas. The trick here is that they do not have to be
integers as in Fortran; try using Real variables sometimes. But an even better
use is that in a string list; this is an extension in DGC Algol, and not a part of
the Algo!l-60 standard. String lists are very handy for text work, since the
sinings can be of dilferent lengths.

FORR:= 0.15,4.237 DO

BEGIN CIRC:=2"PI"R:WRITE(0.CIRC) END;
FOR ST:= "A’" "ALFA." “THE END" DO STRPROC;

where STRPROC is a procedure operating on the strings.
The step-until element.
In the revised Algol-60 report a step-until element is defined as
V:=A;
L1: IF (V—-C)*SIGN(B) > 0 THEN GOTO EE;
S1;
V.=V+8B;
GOTO L1;
EE: /*etement exhausted*/ £

as all old-timers will remember from their school days. The principal goodie
you got to use here was that the step size could vary with the execution of the
loop. As an exercise, try writing a binary search with one for-loop whose step
size keeps getting half sized, and whose sign changes with each execution.
[And has a properly defined exit! See also Nuance 3, p 9, the “Time reversal
problem,” for an unusual loop. Ed.)

This sort of changing variable is rough on a compiler and can cost you some
overhead because the machine cannot simply use register increments for the
control variable. Also, in the Revised Report, the control variable kept its last
value if the loop was exited through a goto, but it was undefined if it was exited
by exhausting the for-list elements. DGC Algol will save the last value in all
cases, but this is not standard.

The Modified Atlgo! Report from IFIP working group 2.1 has somé subtie
differences that the complete Algolist should know. First of all, the for-loop
step-until element is defined as: .

FORV:= ASTEPBUNTILCDOS;
which acts as

BEGIN -~ data type of B> BB;
V:=A;
LB: BB := B; .

IF (V—C)"SIGN(BB) <= 0 THEN \‘
BEGIN ' ’
S;
V:=V + BB; GOTO LB;
END;

END;

In short, the siep size is held constant, and in addition, the control variable
will retain the last value assigned to it on either exit condition.

The effect of a goto leading into a loop body (S, in the above example), was
undefined in the Revised Report, but in the Modified Report the body of the
loop is taken to be a block, so all labels are local to it, and cannot be used from
some statement outside of the body. But of course, nobody writes goto’'s any
more, so this does not apply to good Algolisti!

Most readers should know that a step-until construct is better than using a
list, because of the use of machine features to generate the element list.

WHILE—LOOPS. .

It is pretty clear to even a beginner that he can write the step-until element
of a for-loop in terms of a while-loop construct directly from the definitions
given in the last section of this article. Don’t do it in most cases: the step-until
is going to run faster. ¢

A while-loop is useful if the termination of the loop is due to other factors
than the value of the loop control. For example, in a linear table search, you
would stop the loop because the target has been found or because you came
to the end of the table. One way to write this would be:

FOR L:=1,1+1

WHILE (NOT EDT AND NOT FOUND) DO S;

A little more polished method is McCarthy's logical operators in Aigol form.
Let us suppose that we have a very large table, and we expect to find almost
every value we are looking for, so that the loop will terminate on a found condn-
tion most of the time. We could then write:

FOR I:=1, 14+ 1 WHILE

(IF FOUND THEN TRUE ELSE NOT EDT) DO S;

The boolean can be adjusted a bit further to get rid of the negations by using
boolean algebra:

IF FOUND THEN FALSE ELSE NOT EDT

While this is messy in one way, it buys some speed in the cases where the
compiler does its logical work by bit commands (as in DG's case). In an
optimizing compiler this would be done as part of the compiling.

Structured programming people will remember that there are two classic
program loops, named the While-loop and the Until-loop. These loops are also
named Pre-test and Post-test loops, to avoid confusion with the Algol
keywords. We can make these classic loops in Algol with “while.” For a pre-

3 connnuez on paye 4

conun'ued from page 3
test loop, use:

FOR I:=1 WHILE (B) DO S;
and as a post-test loop:

FOR I:=I, | WHILE (B) DO S;

The post-test loop is the same thing as the Pascal “"Repeat S until (not B)"
construct. That negation might throw the Pascal programmer off a bit at first!

END;
ALGOL INPUT/OUTPUT DATA CONVERSION PROBLEMS

P. Maas

The Algol READ routine (Rev.: RDOS 5.00, Algol 2.03) makes very few tests
for compatibility between external data and internal variables. Even worse, it
often makes unwarranted assumptions about conversions 1o be made. And
since data conversion does not cause an exil to an error label, there is no way
for a user to validatle his input.

In the examples given below, the following declarations hold:

BOOLEAN B;

INTEGER 1y

REAL R;
and EOFL and ERRL are labels to which iransfer is made when an end-oi-file,
respectively an input error, is found.

First, consider the statement
READ(0,B.EOFL,ERRL);
Any input string beginning with character “T" is treated as equivalent to the
strings “T" and “TRUE. " Any other input string beginning with a letter differing
from “T" is treated as equivalent to “FALSE. " Worse, if the input is a number,
the variable is set to FALSE and no error indication is given.

Nexi, consider the statement
READ(0,LEOFL,ERRL);
If input is an integer which is in range, all goes well. If input is an integer out of
range of the 1-word precision, (such as 44444), the error is trapped as an
integer conversion error, but the error return is not taken. H a real number is
given {(such as 1.5), the input error is untrapped, and the integer is set to the
integer part of the input number. If input is an alphanumeric string, the conver-
sion error is not trapped again, and a value built from the numerals in the string

"is assigned to the variable!

Finally, consider the statement
READ(O,R,EOFL.ERRL);
If the input datum is real and in range, all goes well. However, if the datum is
real and oul of range (e.g. 1.0E—78), an arbitrary value is assigned to the
variable and no error return taken. If an integer datum is supplied, it is
“widened" to the corresponding real value and assigned correctly to the varia-
ble. Finally, if an alphanumeric string is input, no error indication is given, and
the real variable is set to zero.

For all three versions of the READ statement, if the last datum in the input file
is followed immediately by the end-of-file (EOF) and not by any other field ter-

. minator, (e.g. OR, LF, FF, TAB, SPACE, etc.), then the last datum is not read.

Instead the READ routine immediately jumps to the EOFL label.

What might we ask DGC to do about this? In theory, the user can write his
own input routines using BYTEREAD and LINEREAD, and do his own conver-,
sions and data validation. This does involve many users in additional program-
ming effort, and in extra 170 overhead in all programs:

If DGC wishes to reserve ERRL for hardware 1/0 errors, then the READ
routine might be rewritten to provide a third error label return for data conver-
sion errors. Return to such a label should be made whenever an unacceptable
datum is encountered. In addition, an error message should be provided, giv-
ing the specific form of error.

What should be the acceptable input data for each data type? | think the
following limits should suffice:

BOOLEAN T to TRUE, F or FALSE only

INTEGER any in-range integer only

REAL any in-range real or integer only

STRING any string < max. length
(in-range implies the precision of the variable for which the assignment is

- made.)

Since Algol is structured to encourage both careful and defensive program-
ming, it is well suiled to the production of user generated ulility programs.
Utility programs are robust only if the programmer is able to verily his input
(and thus defend his program against “‘garbage in""). At present, the READ pro-
cedure provides the user with little opportunity to defend his program. It would

significantly improve life for us all, if a revised READ procedure were produced A
for the runtime library by DGC.

So let me finish with a plea 1o DGC software development and maintenance
groups. .. “You have a good product in Algol, together with users interested in
improving the product. Please, take my advice, and start fixing it up. If you can-
not devote corporate time and money 1o the problem, why not release the
source code version of the compiler and runtime package to the Algol users
SIG so we can fix it for you?

[Editor's note: One other problem with READ of strings, is that a conversion
takes place from lower to upper case. This makes word-processing applica-
tions rather awkward. For more on upper/lower case handlmg. see DS in this
issue's DOCBUG. }

ALGOL UG LIBRARY UPDATES END:

In addition lo the library programs listed in Nuance 3, new programs are
being announced. Nuance will publish descriptions of such programs that are
written in Algol, or useful with Algol. There also are updates of older programs
being submitted; for example, in the spirit of ternational cooperation, Alex and
Alglib are being updated in a combined effort from Scotland and the US (to
incorporate more error checking and more flexible operation, and a version of
Alex for Foriran programs is on its way).

MAKEPRETTY

A copy of this program was sent 1o Nuance by the author, N. Finn. The pro-
gram takes as input, an ASM or MAC source file, and reformats this text into a
better readable one with uniform appearance. In the same time, it manages to
correct mistakes in the input file (unfortunately, only typing errors. not faulty
programming) and checks for format legality in ASM or MAC. For example,

MAKEPRETTY/M X.SR XN.SR 30/C 19/N

tests file X.SR according to MAC rules, reformats it with opcodes starting at .
column. 19, and comments at column 30, and puts the result into file XN.SR. On
the sample programs provided, the change was incredible. True, the input file
was no! a real program (hope nobody makes that messy a job) but a test text

Double commas were removed, the indirect sign moved to a standard location,
depending on the code [JMP Q2,3 but LDA 2.Q3]. double labels put on con-
secutive lines, and - as was 1o be expected, everything was lined up properly.
Those who use ASM only as a palch to Aigol (and thus usually as a compiler
generaled source) may not have much use for the program Makepretty, but
once you have to write device drivers 1o make your favorile gadgets Aigo!
callable, or other ASM or MAC programs, Makepretty will come in very handy.

The program compites and runs properly (Nova MRDOS) with a size of 15.3
kbytes for the .SV file.
XXREF Cross - References
This program was contributed by F. V. S. Shafer, and operates on a slan-
dard RLDR command line, e.g.
RLDR FILE1 FILE2 LIBR.LB
If this string is used (with or without the “RLDR") as argument for XXREF, the

program causes a three-part output. The first part is a listing in load line
sequence of all program modules, their entry points, and external references:

TJITL= DEVE6

ENT= T70 L41 C70 DOFRE
EXTN= ERIN XMT .REC
(etc)

The second part of XXREF's output is the cross reference listing by module i
name. This contains all entry points which RLDR would have loaded, cross
referenced with all modules that refer to them:

TITL ENTRY REFERENCED BY
RTI RTI -

AREC AREC DASSE

BGICM TIMGI _FGSEN

RTSPR USERD TASKS

RTCHR SC CVWOR TASKS
CLOSE CLOSE TPU RTSIO RISIN
{etc)

The third part of the outpul contains a list of unsatisfied externals and the
modules that use them.

Various swilch options are possible, e.g. the inclusion or omission of library
listings, the systems library, elc.

Use of this program is highly recommended for any sysiem consisting of
large programs with overlays, external devices with their drivers, and large
numbers of external procedures. Even when used not as a debugging tool, the
program is of great value in getting a proper systems documentation. -

[From program description only, no run tests made.]

4

g A REPORT ON THE
* ALGOL-SIG MEETING

San Francisco, 28 Oct. 1977

The Algo! SIG had a well-attended session in San Francisco during the DGC
Users Group meeting. The session started with a short report on the current
situation in Algol. The increase in Algol aclivity is reflected in the number of
programs submitted to the Users Library (See Nuance3). A request was made
to the users to submit more writlen articles, etc. on Algol, specifically program
examples, solutions to problems, questions and needs in Algol, etc. Currently,

- Nuance is being distributed by DGC, due to efforts by Dale Silva, John
Maloney, and others who work in the User Group support. Their support is
appreciated by the Algol users.

The next item on the agenda also indicates that Algol is flourishing: Brad
Friedlander announced that the next revision of Algol (Rev. 2.10) is in produc-
tion, and will be released soon. In this Rev, all integer arithmetic bugs have
been cured, as well as the global “goto,” the bug in referencing global varia-
bles and labels, in blocks that are two or more levels up.

_ An application of the CMM (cache memory management) package was de-
'scribed by A. van Roggen. This package from the DGC Algo! extensions, is
available in Algol and in DG/L, and is very useful for database manipulation.
Examples of database structures were §hown with the corresponding binary
trees. It was then shown how links could be set up (in addition to those per-
_taining to the tree structure), so that items from the database can be accessed
much faster than from regular files with sequential reads. This difference in
speed can be crucial: a small database with 80 sequential items, each having
13 attributes, takes about 45 seconds for each “edit” operation. The binary

tree method takes about two seconds. (An updated version, based on tuples,

rather than binary trees, is even faster: more than 100 items with 18 attributes
_is “instantaneous” relative to the console writing speed.) The CMM pro-
cedures handle files essentially as an extended virtual memory. If the user
sets up a strategy, such as the tuples or tree structure mentioned, whereby
only 2 file reads have to be made to access any item in the database, DGC's
extensions improve this to “a maximum of 2 file reads,” e.g. to 1 or even O file
reads: files are read in blocks, and active blocks remain longer in fast memory.

The last part of the Algol meeting was taken up by B. Friedlander, who

introduced the new DG/L, with emphasis on its technical features, the -

differences with Algol60 and DGC Algol. Most Nuance readers will be familiar
with DGC Algol; DG/L essentially is an enormously extended version which
“solves" almost all of the problems that users have encountered in Rev2.03
Algol. DG/L's code runs much faster, Jue to optimal compiling; a choice can
be made between integer and real results in division of two integers; an even
further extended looping statement is provided; multitasking is fully sup-
ported; string operations are extended; the regular Fortran math package can
be used; and procedures exist for executing machine language instructions
immediately from the DG/L program. For all these improvements, a few opera-
tions from DGC Algol have been dropped. These include the extended (up to
15 word) precision of integers and reals (only single and double precision are
supported), and the akility to define operators (but a string concatenation
operator is now included.)

Another useful feature in DG/L is its conditianal compile: a statement can be
either compiled or not, depending on the setting of a switch during compila-
tion. Other methods of commenting are implemented, to facilitate even further
the in-program documentation inherent in Algol. New conditional expressions
are WHILE B DO S; and DO S WHILE B; with equivalent statements using
UNTIL instead of WHILE.

Brad mentioned that he had updated all his Algol programs to DG/L and that
the effort was well worth the little effort, because of the increase in speed and
the extra features. Regular Algol programs hardly need any change 1o be com-
pileable in DG/L - you have to watch out only if you have used special ASM
procedures or other “tricks” in your Algol programs.

From the audience response, it was apparent that DG/L is the way to go, and
those who have Eclipses probably are switching over. The main item that will
hold the majority of Algol users back is that DG/L, although it can run on any
DGC machine, including the microNova, it can be compiled only on an Eclipse.
In the Software Panel discussion, this problem was discussed, as well as the
way DG/L will be released to the users. Hopefully, a DG/L version for Novas
will be announced soon.

At the end of the presentation, there was a rush to the front desk where
many names were added to the list of people requesting a copy of the DG/L
manual (which had not yet been printed). In all, an enthusiastic ending to a
worthwhile Algo! SIG meeting.

A. van Roggen

One simple, and one flexible procedwe to shift upperllower case smngs See
DOC-BUG, D5. :

'

PROCEDURE UPSHIFT (S);
STRING S;
/*Shifts string to upper case*/
BEGIN INTEGER IL,A;
L:=LENGTH(S);FOR I:=1 STEP 1 UNTIL L DO
IF (A:=ASCIHI(S,]))>96 AND A<123 THEN
BEGIN A:=A—40R8;SUBSTR(S,)):=SUBSTR(A,2) END

END UPSHIFT;

PROCEDURE CAPSHIFT(S,F);

VALUE F;STRING (130) S;INTEGER F;

/*Shifts strings to upper or lower or mixed case.

With F<1 gives all lower case, F>1 all upper case.
When F=1 the first letters are capitalized of all words.*/
BEGIN LITERAL AU(65),AL(97),ZU(90), ZL(122);

INTEGER L,I,C;BOOLEAN SPC,LC,UC,FRST,UP,DN;
PROCEDURE CASE;
BEGIN
LC:=C>=AL AND C<=ZL;UC:=C>=AU AND C<=2ZU
END CASE;
L:=LENGTH(S);SPC:=TRUE;FRST:=F=1;UP:=F>1;DN:=F<1;
FOR I:=1 STEP 1 UNTIL L DO
BEGIN
C:=ASCII(S,l);CASE;
IF (LC AND UP) OR (LC AND SPC AND FRST) THEN
SUBSTR(S,): =SUBSTR((C:=C—40R8),2)/*up*/
ELSE
IF (UC AND DN) OR (UC AND FRST AND NOT SPC) THEN
SUBSTRI(S,l): = SUBSTR((C:=C+40R8), 2)Nown /;
SPC:=C=32/"space*/
END;
END CAPSHIFT;

END;

LETTERS:

FROM: T. K. Sharpless, Sloan-Kettering. .

Should we be working for a more efficient realization of Algol on the NOVA"
computers? Or does it intrinsically cost three times as much to use Algol as
Fortran?

| enclosed results of a simple speed test in which the Basic, Fortran, and

Algo! current to RDOS Rev 5.00 were compared without and with the aid of
integer mult/div hardware on a NOVA 1220 (Programs below). The results .

were certainly not flattering to DGC’s implementation of Algol. Particularly -

striking is the fact that the absolute time savings in using hardware M/D was
twice as great for Algol as for Fortran and Basic, implying that Algol uses twice
as much arithmetic to get the answer. While there may be some specific defect
in FLOAT or COS, | suspect that the runtime overhead (linkage and subscript-

ing) are equally at fault, since | have consistently seen dlsappointed in the :

speed of Algol for compute-bound applications.

Much of the benefit of a rational, standardized language disappears when
one is fprced to learn to “code around” defects in an implementation. | would
rather devote that kind of ingenuity to ASM programming.

BEGIN
EXTERNAL PROCEDURE GTIME;
REAL ARRAY A[100,5];
INTEGER ILJK,Y,MO,DHM,S,T;
OPEN(0,“$TTO");GTIME(Y,MO,D,H,M,S);
TL=S+60°(M+60°H);
FOR K:=1 STEP 1 UNTIL 10 DO
FOR I:=1 STEP 1 UNTIL 100 DO
FOR J:=1 STEP 1 UNTIL 5§ DO
AllLJl: =COS(FLOAT(I)/FLOAT(J));
GTIME(Y,MO,D,HM,S);
T:=S+60°(M+60°H)-T;
WRITE(0,T,” sec for 5000 cosines<15>");
CLOSE(0);
END;

continued on page 6

e g M e e e e 8] e 8 e

e v o W

o

“continued from paye 5

DIMENSION A(100.5)
INTEGER T
CALL FOPEN (0,"STTO")
CALL FGTIME (IH.IM.IS)
=1S+ 60°(IM+ 60°1H)
DO 10K=1,10
DO 101=1,100
DO 10J=15
A(1.J)=COS(FLOATI)/FLOAT(J))
10 CONTINUE
CALL FGTIME(IH,IM,IS)
T=1S+60"(IM+ 60°IH) -
WRITE(0.100).T
100 FORMATI(IH,I5."SEC FOR 5000 COSINES™/)
END :

[Tne Basic program was not provided.]
TIMING TABLE (sec)

LANGUAGE HW M/D SW M/D
Algol 127 153
Fortran 22 34
Basic) 62 73

My most pressing software problem is how to provide a “time sharing”
environment for interactive data collection and analysis, on a system of 32K
NOVA line processors, linked by MCA units (DGC's best hardware idea), one
of which is a “backend” machine devoled to maintaining a file system (4x2.5
Mbyte disks. magtape. printer) under RDOS. The “frontend’” machines require
very flexible faciliies {or filing and retrieval, including dynamic procedure
loading and linking. and multi (well, at least two —) user support with con-
siderable multitasking RTOS is the obvious executive, but would need such
extensive fortification that a standalone system might be as easy to build. Do
you know of anyone with relevant experience, software, or free time?

Keep the newsletter coming: with better typography it would be a real liter-
ary pleasure

/**COMMENT:

For more déetails on iming of floating point operahons see the letter from B. .

Johnson, this issue .
END °*/ . S

FROM: M. B. Ruggera, U of CA, Irvine

We have a NOVA3 with a Tekironix 4006-1, Versatec 1200A printer plotter,
4234 top-loader disk, and high-speed paper tape reader. We are running
under RDOS5.00, Algol2.03. In this environment, | have discovered one
peculiarity and one bug which brings down the system when programming
(forgive me!) games.

The peculiarity is demonstrated in a program which generates mazes with
only one path through. Part of this program goes as follows:

OKLEFT:= ... ;OKRIGHT:= ...;
OKUP.= ...; OKDOWN:= ... ;
/* GOTO XXX;: GOTO GOUP; GOTO GODOWN;
GOTO GORIGHT;GOTO GOLEFT;
XXX: */
IF OKLEFT AND OKUP AND OKRIGHT THEN
BEGIN
SWITCH XYZ:= GOLEFT, GOUP, GORIGHT;
GOTO XYZIRAMD3]
END

GOUV: ..
GORIGHT: ...
GOLEFT: ...

This program, with the /* */ comments as shown, gives a set of compiler
errors:
“Use of incorrectly declared variable” for the labels GOLEFT, GOUP,
GORIGHT. However, if the labels are used earlier, e.g. by removing the com-
ment markers, (and then, of course, bypassed by using the dummy label XXX),
the program compiles and runs correctly.

The bug which blows the system occurs in a program DUKEDOM, which
uses a large set of string literals. In compiling, the system bombs with the
ulterance “Statement does not end properly” at a very proper statement. |
attempted compiling this program at our local (Santa Ana) DGC otfice. There,
the program did not bring down the system, but reported “E21,” a compiler

error. We notified DGC about this more than a year ago, but have not had a
response from them. My feeling is that this error is related to the number of
literals: by removing the literal strings, the error can be moved about.

| was very happy to receive Nuance. It is reassuring to know that | am not the
only person having problems with this compiler. | have encountered most of
the bugs described. Could you give information on how to submit programs for
the Users Group?

/** COMMENT:

See the DOCBUG section for a possible bypass of the-excess literal prob-
lem, and for another contribution by Ruggera. The unrecognized
GOANYWHERE labels of the example probably are fixed in Algol 2.10. The
current version cannot find some variables in global blocks. The final question
is easy to answer: the most difficult thing in contributing programs is to write
them, and to provide enough documentation that people can run them - and
learn by studying the code. After that, just send the program 1o the Users
Group at DGC in Westboro Mass. At the same time, a description of the pro-
gram should be sent for inclusion in Nuance (address, see p.2) if the program
is in Algol or has Algol related applications.

, END °°/

" FROM: B. Barnett, Faultfinders Inc.

After reading the November 1977 igsue of Focus, | would like to express a
great desire o join your Algol SIG. | represent a group of 10 programmers. We
primarily use RDOS Fortran, Algol, and ASM. In two months, we will get an
AOS system with DG/L. With the new syslem we will use Algol and DG/L for
systems development.

| hope we can help each other through the Algol SIG.
s END **/

FROM: S. D. Biessley, U. of Hartford. .\
We are interested in membership of the DGC Algol SIG, either as individuals
or as an organization. Most here have found Algol to be a frustrating and
uncooperative language to work with - only myself and a few brave souls here
at DANA have gotten DGC Algol to work for us, rather than we for it.

| received the third issue of Nuance; it was nothing shor! of fantastic in my
opinion. Myself and others would like {o acquire previous and future issues if
possible.

Our experiences with DGC have been short of desirable in some cases, par-
ticularly in regard to communication with the Users Group in nearby Westboro,
Mass. | presume the SIGs are independent of their organization.

. END **/

FROM: N. M. Kittredge, Pacesetter Corp.

| enjoyed reading Nuance3. Please send me back issues of the newsletter
and place me on the mailing list. Sometime in the near future, | hope to con-
tribute an article.

. END **/
FROM: J. Miranda, Un. Politecnica Barcelona.

Our computing center for the Technical University at Barcelona, Spain, is
interested in receiving information on using Algol on our S-200 and NOVA 2/
10 computers. Please add us to your mailing list.

; END **/

FROM: A. J. Thomas, U. de Lausanne

Please put me on the mailing list of Nuance. | am using Aigol on a NOVA for

- image processing of electron micrographs, and am delighted that from now on

| will not have to discover the pleasures and (considerable) perils of DGC Algol
on my own!
/** COMMENT:

The above letters are typical of the requests that come in for Nuance. Since
issue 3, the DGC Users Group is distributing Nuance with their Focus, and
thus all that is needed to get future Nuance issues is to make certain that you
are on the Users Group list. Of course, the generation of future issues depends
heavily on contributions (in writing!) from users; this is also true for Focus
which needs more active users support in areas of technical articles and
applications.

. END **/

continued on page 7

e .

» continued from paye 6

FROM: D. R. Kaye, Du Art Film Labs

We are very heavy users of DGC's Algol and also of our own language Procal
(Process control Algol) which uses a much modified version of the DGC com-
piler. We are finally ready 1o report our results with the compiler and library
modifications. Additionally, we are evaluating DGC's DG/L compiler and would
be willing to write a short “review" of the language and its compiler.

/** COMMENT: : ‘
Nuance readers will not only be inferested in a review of DG/L, but also in

Procal, its availability, and the design criteria that have gone into this effort.

There are a number of fairly similar languages (e.g Pascal, C) each with its

own “philosophy" and utility. Familiarity with several of these makes for better

programmers. '

. END **/

FROM: B. Johnson, DGC Athens, Greece.

/°** See “Matrix Inversion,” Nuance3, p.15 ***/

Where does the array index checking time go? You came close to an accur-
ate answer in the following sentence. If you had said “Is it negligible with the
overhead in software floating point calculations?”, the answer would be yes. A
compute bound program running under RDOS incurs less than 5% overhead
penalty if no system (. SYSTM) calls are being executed and the clock is
sysgen’ed for 10 Hz. | am assuming an 800 series processor. The effect you
were seeing was the fact that subscript checking takes on the order of 10's of
microseconds, and software floating point emulation (especially with the
variable length mantissa code our Algol uses) takes around 2 to 10 millise-
conds. This is thus a faclor of 200 1o 1000. Unless your use of subscripted
variables exceeded your use of floating point operations to a considerable
degree, you should not expect to notice the penalty. In default integer pro-
grams, however, the effect can be monstrous.

/** COMMENT:

Data from the (Trojan??) horse's mouth! This is the type of useful informa-
tion which is not in the manual and normally very difficult to get (or time con-

suming to find out the hard way). It implies that the ‘extra effort needed to set]

up pointers, compared to direct array usage with subscripts, is not needed in
most cases where REALs are concerned, but should be considered.in some
INTEGER array operations.

; END **/

FROM: S. M. Heidel, Pittsburgh

Just a note to say that | have enjoyed reading the past few issues of Nuance,
which are very interesting.

You seem fo be interested in getting more programs into the DGC Users
Group Library; however, it takes them forever to announce a program in a
newsletter. It fook them literally several years to announce one of my pro-
grams, and they still have not released another one. | have one more program
that is aimost ready, however, it hardly seems worth the effort. | suspect that
things will get worse now that Tom Streck is no longer running the users
group. | may be wrong, but | also get the impression that DGC is not really
interested in the scientific user these days. The sales people | meet from DGC
do not seem to know much about either DGC's or DEC's otferings.

/°* COMMENT:

| hope that the delays are a trauma of the past: there has been a vast
improvement the last year, with a new catalog of programs, and a more
systematic method of listing and ordering. | do not know how frequent the
catalog will be updated, but one sure way 1o beat this is to write a description
of the program with examples, etc. for Nuance, or for Focus if the program is
not Algol related. '
END **/

EROM: P. G. Smith, Stanford U.

| enjoyed the Database talk at the Users Group meeting in San Francisco,
and can use this type of programs.

* With stimulation from Nuance, | have finished my first Algol program, after
15 years of Fortran. The newsletter is of great help.
. END **/

- FROM: R. Fessenden, Hague Int'l.

More on Entier

In order 10 maintain correct precision to the nearest penny on REAL {4}
numbers in our commercial applications, we needed a working function like :
ENTIER. Unfortunately, the fixes suggested so far in Nuance are only good for
default precision. Having concluded that Algol provided no help, we turned to
ASM in desperation.

The first thing we did was to compare statements identical in all respects,
except for the Entier function. Two such stalements are shown:in Fig.1a and 1
b.

FIGURE 1a
: KEEP:=B + C; P

11 JSR QBLKSTART

12 FENTL

13 FPRC 4

14 FLDA 05+4.3 : B

15 FLDA 1.5+103 ic

15 FADD 0.1

17 FEXT

20 XENTL

21 FPRC 2

22 FSTA 1.5+163 :KEEP
FIGURE 1b
; KEEP := ENTIER(B + C);

11 JSR OQBLKSTART

12 FENTL

13 FPRC 4

14 FLDA 0S+43 B

15 FLDA 1.5+103 - c

16 FADD 0.1 :

17 FEXT

20 XENTL) .

21 FMOV 1.1

22 FPRC 2 !

23 FSTA 1.5+16.3 :KEEP
; DECPART := KEEP;

24 FEXT

25 FENTL

26 FPRC 4

27 FSTA 1.5+203 :DECPART

Note that in Fig.1a, B and C are real (4), while KEEP is integer (2). Further- .
more, in both Figs.1 a and b, the above statement was followed by DECPART
;= KEEP;. The statements shown in Fig.1 are exactly as compiled in both
cases. DECPART is real (4). In both examples, the program works incorrectiy!
First,in 1b, the FMDV 1,1 did nothing, and “explains” why entier does not work.
However, even 1a failed to truncate properly. The result of 1a is the same as if
it were coded DECPART := B+ C; KEEP := DECPART. The reason is clear:
(a) the contents of register 1 contain the result from adding B and C, (b)
Register 1 is sent 1o KEEP, where of necessity it becomes integer (2), and (c}
register 1 is sent to DECPART, where it remains unchanged! The code
inseried after statement 24 in 1b will properly truncate the real (4) number to
an inleger (2) form. If you really want an Entier function that works, you can
follow van Roggen (Nuance 2, p.17), with only minor variations:

INTEGER (2) PROCEDURE ENTIER(R);
REAL (4) R;

BEGIN ENTIER:=R;

IF R<0.0P4 AND ENTIER< >R THEN

ENTIER:=ENTIER — 1;

END ENTIER; : ‘

Now - can anyone tell me how to make the above procedure to work for any
precision, as the one in the book is supposed to? o
/** COMMENT:

Has anyone succeeded in manipulating the argument precision, or alter-
natively, retrieving the precision of a procedure argument inside the body of
the procedure? Only literals are allowed as precision specifiers, and it is not
immediately obvious how to retrieve the precision.

. END **/

FROM: W. D. Selles, N. E. Medica! Center
1 have been looking for a good documenti-formatting program to run on a

NOVA, and remember that Nuance was prepared with such a program. Is this
available to other users?

/°* COMMENT:
The early nuances were prepared on a timeshare system with their resident

continued on page 8

b
continued from page 7

formatter. However, since last year, the program SCRIBE has been available
from the DGC Users Group; this.is the program that is now used fo format the
text. The only thing missing for Nuance is a good and readable printer.

; END **/ '

FROM: G. D. Jelatis, U. of Minn.

I received a copy of Nuance 3 with Focus, and it renewed my interest in the

Newsletter. Would you please add me to your mailing list and sénd me a copy .

of Nuance 2, (somehow, | got a copy of Nuance 1)?

I am starting 1o use DGC Algol and hope 1o implement some of the utility
software routines described in Software Tools (a la Unix) in Algol, which |
believe is a better choice for such things than Ratfor.

L END **/

A procedure to accept upper and loser case from a console. See this issue, DOC-
BUG D5. and Nuance 3 p.4, under ALGPROC. Use CONSOLE to define CNSO,
CNSI.

STRING (130) PROCEDURE ASKS(L,M);
VALUE M;INTEGER L;STRING M; -

-,
t"\.s‘%*‘/- -
— \% -

D1. — FORE / BACKGROUND [N. Finn]

See N. 3-D18: The method described to find the foreground w»ll work only in a

mapped system. The following will work in both mapped and unmapped
systems:

BOOLEAN FRG:;BASED INTEGER IC;POINTER P;

LITERAL USTP(12R8) USTPC(OR8);/*from PARU. SR*/

P:=USTP; FRG:=((USTPC+P)—>IC)— >-IC) AND 1;

D2. — FORE / BACKGROUND [C. Walers}

We solved this problem, after much headscratching and readmg various DGC
manuals, as follows. A procedure INDEV was wrmen which is called by the
main program:

EXTERNAL STRING (6) PROCEDURE INDEV,;

STRING (6) TTI,INTEGER AB.C;

TTl= INDEV(TTI);OPEN(O,TTI);
READ(0,A.B.C);....
INDEV is made with the following code:.
- TITL INDEV
ENT INDEV
- EXTU
NREL .
S=-167
SP=1B0-S
STR1=S

STR2=STR1+2
CSIZE=STR2+2~-S

STRFN=7B7+10B11+2
STRPM=2B7+10B11+2
INDEV: JSR QSAVE
CSIZE
2 :2 PARAM.
SP+STR1 :INDEV RET ADDR
STRFN INDEV SPECIFIER
SP+STR2 :TTI ADDR -
STRPM :TTI SPECIFIER '
LDA 0.STR1.3
SYSTM
GCIN
JMP +1
LDA 0,STR1+1,3

/*Formatied string input from console, types string M, ;
returns bylelength L, and reads upper/iower case.
The DEL/RUBOUT key echoes and deletes previously typed characlers as
in EDIT.
BEGIN LITERAL CR("~ 15> "), RUB(" <177 >");
EXTERNAL INTEGER CNSO,CNSI;
POINTER P;STRING (1) C:STRING (130) SL;
WRITE(CNSOM);L:=0;SETCURRENT(C,1);P:=ADDRESS(C);
NXT: BYTEREAD(CNSI,P,1).IF C=RUB THEN
BEGIN Ay
WRITE(CNSO,SUBSTR(SL,L));SUBSTR(SL,L):="<0>";
IF (L:=L—1)<0 THEN L:=0,GOTO NXT;
END ELSE
BEGIN
WRITE(CNSO.C);IF C>CR THEN
BEGIN SUBSTR(SL,(L:=L+1)):=C.:GOTO NXT END
END; '
SETCURRENT(SL,L(:ASKS:=SL;
END ASKS;

END;

DOC BUGS CRAWLS OUT :

NOTES ON ALGOL DOCUMENTATION
AND)
BUG REPORTS

N

LDA 1.CHRCNT
ADD 1.0
STA 0,STR+1,3
- JSR QRETURN
CHRCNT: 6
END N

By changing TTIto TTO, and using .GCOUT, a similar procedure for the TTO is

made.

D3. — IMBEDDED ASSIGNMENT [N. Finn]

See N3-D1: The operator *:=" has been assigned a lower precedence than
=." Therefore, |: = INDEX(S1,52) =0 is passed by comparing the result from

INDEX with 0, and assigning the resulting boolean to # |.

D4. — FORMAT, OUTPUT [I. S. Wolfe]

My experiments with the built-in FORMAT procedure show the lollowmg‘ T

differences from OUTPUT:
1. Only string and defaull precision integers can be used.
2." Each variable requires 1 and only 1 *=,” and will be output in full. Covn- v

secutive “#" 's each represent one vanable printed without intervening =

spaces. ‘
3. Excess “«" 's, relalive 1o the number of variables, will be prmled out

literally, i.e. as #'s.

4. One obvious consequence of ilem 2 is that FORMAT lacks many of the
nice features from OUTPUT. [But it has a drastically shorter codel}
5. When one wants lo concatenate output in OUTPUT one can use
OUTPUT(CH, "« <0>=#", 1, S); :

The null byte permits concatenation while preserving all the other formamng_
power from output. i

D5. — UPPER, lower case [I. S. Wolle]

All Algol users should read the RDOS manual thoroughly. Many of lhe ques- T i

tions and comments in Nuance are answered there, including LINEREAD's

treatment of nulls and linefeeds (like system call. RDL), inability to use lower . .

case on STTI when opened with the standard OPEN, because it does not mask
DCLTU, etc. The solution to this problem is to write your own procedure. | call
mine “OPN,” so | can still use OPEN if | want to. OPN accepts an extra argu-
ment, the mask word. I this is the last argument, it can be left out when not
. wanted and will default to zero. Of course, input of filenames, etc. in lower case
is useless unless you write another procedure (rmne is called CAP) to shift
cases.
continued on page 9

3

N

continued from page 8

/**COMMENT:

True, the RDOS and other books should be studied. However, the minimum
requirement in the Algol documentation is that it should give references to this
kind of information, or betler yet, Algol-like definitions of the various pro-
cedures. As the example below shows, it is easy to bypass some of the default
setlings, but no user will know whether this is needed without specific docu-
mentation on the built-in procedures.

An allernate, and perhaps better, solution is to maintain the standard OPEN
(e.g. with the procedure Console from Algproc), and to wrile a separate Algol
procedure which does a byteread on the console. Then, items which need to
be in caps (e.g. for comparision with stored data or sorting) can be read by
READ(CNSI,X), typing either upper, lower, or mixed case text. The special pro-
cedure (ASKS, see p.7) is used when case preservation is required. As men-
tioned above, a case shifting procedure also is needed, like the simple one
(UPSHIFT, p.5) which shifts to all upper case, or for more fancy shiftwork,
CAPSHIFT (p.5) can be used which shift either up, down, or capitalizes words
in the first letter only (e.g. the day and month pointers in Algol are returning e.g.
MONDAY, whereas Monday is a more useful representation).

D6. — RANDOM [M. B. Ruggera]

The random number generator RANDOM can make negalive as well as posi-
tive integers: the result is a 16-bil integer with bit 0 as the most significant bit,
which is interpreted by regular integers in Algol as the sign.

D7. — LITERALS.

Declaration of named literals in a program is very efficient when the literal
does not have to be changed during program run: it can be changed uniformiy
in the program by an edit and recompilation, without affecting the rest of the
code. This is especially true for siring literals, e.g. declarations such as
TTO("STTO”), AL(*. AL"), etc. However, there are problems if very large num-
bers of literals are used in.a program module (see below), and declarations
with imbedded brackets are illegal. Use the second statement instead of the
first one, substituting octal ASCIl values for the brackets. The fact that these
oclal values are placed within brackets, is the cause for the above require-
ment.

OPER("<(> =+ -")

OPER(* < 74> <76>=+-")

An example of the use of such literals is to exiract an operator from an lnput
string by using the INDEX procedure.

D8. — LITERALS [R. Fessenden]

During phase 2 of a compile, the cryptic ERR29 may occur. The book simply
says to call DGC. The problem is caused by too many literals in a large, con-
versational program. Probably an overflow of the literal stack. You can fix it by
chaining segments of a program together, or by removing portions of the pro-
gram to External Procedures.

D9. — LITERALS [M. B. Ruggera)

Using a large number of literals can cause problems (see the letler by Rug- .

gera, this issue). There are several ways to bypass this, using datafiles with
the required information. One additional advantage of such data files is that
the messages can be modified without having to recompile the program, and
that several programs can access the same data. The basic, and simplest,
method is to write a string procedure with the following skeleton:

STRING PROCEDURE OUTMSG(N);

VALUE N;INTEGER N;

/"Returns message number N*/

BEGIN STRING S;INTEGER I;

FOR I:=1 STEP 1 UNTIL N DO READ(7,S); '
OUTMSG: =S;POSITION(7,0);/*reset file*/

END OUTMSG;

In the main program, file 7 will have to be opened to the message file, which
contains lines with the data. The program uses this procedure as WRITE(TTO,
OUTMSG())); to type message line | from the file. There are a number of ways
to improve the speed: the data can be stored as nodes with the CMM pro-
cedures (the first step to a database system!), or (using FILEPOSITION and
POSITION) the fileposition of each of the lines can be stored in an array, and
then read with only one file access which positions the file to the wanted line,
eg.:

POSITION(7.LOCIN]);READ(7.S);

The array LOC is filled at the start of the program by teadmg once through the
file.

D10. — OPERATORS
The correct declaration of an operator is

INTEGER (2) OPERATOR (]) POWER;

But if the precedence specilier (here: |) is omitted, the compiler crashes and
results in a TRAP and BREAK, instead of a regular compiler error message

D11. — WHILE — DO loop [N. Finn]

Although Algol lacks some features of more structured languages in particu-
lar the *'repeat until” and the “while do” constructs, the same effect can be
achieved with:

INTEGER DUMMY:
FOR DUMMY:=1 WHILE ... DO... ;

at a cost of only two useless instructions per iteration-(a SUBZL and STA)

D12. — FOR loops [N. Finn]
The syntax of the FOR statement is not clear from the manual. The way to think
of it is of the form:

FOR - VAR := <LIST>DO... ;

where < LIST> is a list of elements separated by commas. Each element is
one of the forms:

a) <EXPRESSION>

b) <EXPRESSION> WHILE <BOOLEAN EXPR>

c) <EXPR> STEP <EXPR>UNTIL <EXPR>

Form (a) evaluates the expression, assigns it to the variable, and then
executes the DO statement once. Form (b) evaluates the expression, assigns
it, evaluales the boolean expression, and if true, performs the DO statement.
This evaluation, assignment, evaluation, test, perform cycle is repeated until
the test shows false. Form (c) is properly explained in the manual.

Thus:
FOR 1:=1,3 STEP 1 UNTIL 7,1+1 WHILE BOOL DO ..
FOR I:=N,P WHILE BOOL, J STEP K UNTILM DO ..
are legal, but
FOR 1:=1,3 STEP 1 UNTIL 7 WHILE BOOL DO ..
is not: you cannot have two tests (“while” and “until”) running at the same

time. ~N

D13. — Mixed FOR loops [N. Finn]
Watch out for fancy FOR statements. This one:
FOR I:=5 STEP F UNTIL 7, 14+1 WHILE I<11 DO ... is equivalent to
FOR1:=5,6,7.9,10DO0... where the 8" is missing, because.l is stepped to
8 before testing in the “until” clause, and thus the first 1+ 1" clause steps it to
9.
/** COMMENT:
For more on loop programming, look back to Celko's article on p.3 of lhls = 5
issue. ;

D14. — ADDRESS [N. Finn} .
The address function is very limited. Use it only for single or subscribed varia-
ble names or literals. It fouls up royally on pointer expressions, substrings, etc.

D15. — INTEGER COMPARE [N. Finn)

Signed compares are wrong. The compiler generates code for Nova single
instruction signed compares, which are really MOD(32768) compares, not
signed compares. The generated code only works when the difference bet-
ween the compared numbers is equal or less than 32768:

-1 ‘ <0 _ OK
o < 30000 OK
—30000 © <o) OK
—30000 > 30000 BAD
—-10000 < 22768 OK
-10000 > 22769 BAD

D16. — INTEGER ARITHMETIC [N. Finn)

The following source generates bad code:

INTEGER LJ; J:=1; :=J — J;

The compiler generates code for:

li= —J —J;

D17. — COMPATIBLE FILE FORMAT [J. Celko}

Algol, Fortran, and Basic all can use files having a format with comma separa-
tors, quoted strings, elc. Such files cannot be produced with Algol using the

OUTPUT or WRITE procedures, because these stuff NULLS all over the file. It -

is 1oo clumsy to run such files through EDIT or SPEED, or my own NULLKILL
program. However, if all output data is changed to strings, the length of these
strings can be found, and the appropriate BYTEWRITE used:

LITERAL CM(",");INTEGER I L;

POINTER AS;STRING S;

AS:=ADDRESS(S);:= ... ;

S:=| CONCAT CM;L:=LENGTH(S);BYTEWRITE(CH,AS L);

after having opened the proper file.
D18. — ALLOCATE [H. W. Eber]
continued on page 10

[
\J
~ con;inued from page 9
I one plans to Byleread a cerlain number of bytes, and Allocates the exact
number of bytes to be read, the Byteread command does not obtain the data:

ALLOCATE (P,10);
/*This allocates 20 byles*®/

BYTEREAD (CHAN, P, 20);
Does not work. This problem again occurs in RDOS Rev6 after having been

previously resolved. Some mystified users will be wondering why programs

which worked last year, or the year before, no longer do so!
END;

THE COVER

The cover of Nuance 4 is inspired by one of John Cage's musical composi-
tions, which consists of N measures of silence. Nuance's blank space has an
even deeper philosophical meaning: it symbolizes the lack of time to prepare
the issues, especially in a period where the material available for Nuance is
increasing. The editorial on p.2 gives some ideas how readers may help, but
any other suggestions are welcome. Perhaps in the next issue there will be
quotés again, indicating that there was at least time for reading other material!

END;

A STAIRCASE ??

A program “trick” found in one of the UG Library programs: a staircase func-
tion where the height is stepped depending on the riser. To get an average
slope differing from 1, a multiplying factor can be used inside the loop.

-6 -8
-5 -8
—4 —4
-3 -4
-2 —4
-1 -4
o] 0
1 0 R
2 0
3 o]
4 4
5 4
INTEGER HEIGHT ,RISER,TOP,I;
RISER: =4,
FOR I:=—6 STEP 1 UNTIL 5 DO
BEGIN
HEIGHT:=! AND —RISER;
WRITE <CNSO |, TB,HEIGHT,CR); N
END;

END;

LANGUAGES and DIALECTS

A. van Roggen

N

With the rather hesitant introduction of DG/L on the market, one more Algol-
_ derived computer language has made the scene, among a dozen or so
 "modern” languages and dialects which are block-structured, procedure
- oriented, and facilitate both in-source documentation and the building of large,
~ complex program structures.

-Anyone who has even casually looked.into the plethora of languages, agrees
. that for the computer architecture of today, the “modern” ones are increasing
- in usage at the cost of the older ones (Fortran used to be the most used one in
this group, although now the number of Basic programmers may even exceed
. those that work with Cobol). There is also an agreement that all these
languages and dialects will Iast; there are just too many, resulting in excessive

- maintenance costs, documentation, etc. In the unavoidable shakeout, proba-

bly a few will remain which are specialized on applications (e.g. for business,
scientific, and control purposes). It is anybody’s guess which languages will
last; the more machines run a language, the more the durability of that
language - witness the tenacity of Fortran.

My guess (prediction?) is that DGC Algo! will be complele\y. abandoned by
the users and perhaps by DGC, in favor of DG/L, once this much improved

superset of Algol becomes available for machines other than the Eclipse. Of ;

course, given enough time, this whole question may become academic: the
next “generation” computer architecture will be built to fit the language, and
perhaps will be swilchable to allow for some degree of multiprocessing or

pipelining. A start towards this end already can be seen in the current work on
microprocessor networks. Will DG/L stand up against the onslaught of this

advance? Based on extrapolation from DGC Algol, the answer is both yes and

no. No, because there are not enough users; as a bare minimum it will require :
DG/L availability not only on Novas, but on microNovas as well, and perhaps

on other machines to make it “portable.” However, technically, the answer is
“yes": the language is betler defined than DGC Algol. it allows for easy
introduction of new datastructures and can thus be extended by DGC and/or
the users. Pointer operators (to these structures) from Algo!l can be replaced in
DG/L by pointer procedures, perhaps with no loss in power. It will be of interest
to hear from users who have experimented along these lines.

Meanwhile, for those who want 1o work with or get a feel for other higher
languages besides Algol: both DG/L and PL/I were released by DGC - but for

Eclipses only. Nova users can get Pascal (available from Gamma Technology, - -

Palo Alto, CA 94304). This language is also used on microprocessors (e.g.

National's) and is strongly Algol oriented, but somewhat less powerful than -

Algol-60. A very powerful language used for artificial intelligence work, LISP,
is also available for the Nova (from the Users Group Library). This language is
fully procedure, operator, and list-structure orientéd, but does not resemble
Algol. Lisp programs see no ditference between “data” and “programs” and
thus a program can change itself during runtime. This is difficult lo accomphsh
in Algol or DG/L! : B

END
Page-fill Proceduqss

Two useful procedures: a modified Lineread which ends on CR's only and elimi-
nates nulls, and a string compare (upperfiower case) which is alphabetically cor-
rect.

PROCEDURE READLINE(CH,PTR,CNT,ERLB); -
VALUE CH,PTR;INTEGER CH,CNT,POINTER PTR;LABEL ERLB;

/*Fix for DGC's “lineread’ to return only lines delimited by CR's. Nulls are dis-
carded.

BEGIN LITERAL NUL("");INTEGER I,L;

STRING (133) S;POINTER P;BASED STRING (133) BS;
P:=ADDRESS(S);PTR— >BS:=NUL;CNT:=0;

BIS: LINEREAD(CH,P,L.ERLB);SETCURRENT(S,L);
SUBSTR(PTR—>BS,CNT+1,(CNT:=CNT+L)):=S;

IF ASCI{SL)=0 THEN BEGIN CNT:=CNT—1,GOTO BIS END;

END READLINE;

BOOLEAN PROCEDURE LESSP(A,B);

VALUE AB;STRING (130) AB;

/*Returns TRUE when predicate A<B in alphabetic order. Upper and lower
case are sorted properly*/

BEGIN ¢
INTEGER LLALB,C,BA. BB: BOOLEAN RES;
C:=0;

L:=1F (LA:=LENGTH(A)) <(LB:=LENGTH(B)) THEN LA ELSE LB;
VOLG
IF C=L THEN
RES:=IF LA<LB THEN TRUE ELSE FALSE
ELSE
BEGIN
IF (BA:=ASCII(A(C:=C+1)))<1 73R8 AND BA>140R8 THEN
BA:=BA—40R8;
IF (BB:=ASCII(B,C)) <173R8 AND BB>140R8 THEN BB:=BB—-40RS8;
IF BA=BB THEN GOTO VOLG;
RES:=BA<BB,; :
END;
LESSP:=RES
END LESSP;

END;

10

