
THE CONSTRUCTION OF AN ALGOL
TRANSLATOR FOR A
SMALL COMPUTER

w. L. van der Poet

Dr. Neher Laboratory PTT,
Leidschendam, Netherlands

For the computer Zebra we have undertaken a project of con­
structing an Algol translator with the aim of being as complete
as possible (with the only exception of own variable arrays). As
a few new concepts are used in this design, it is thought to be
useful to communicate them in this form.

Zebra is a two address machine with a very limited fast store
and a reasonable drum store of 8192 words. The operation code
is a rather peculiar one. Every bit of the 15 bits of the function
part of an instruction is used separately for a different elemen­
tary function. The operations are in fact micro-operations and
more complicated actions such as multiplication, division, list
searching, etc. are not built in functions but can be readily pro­
grammed. This makes the code extremely powerful for just
those operations which are required for an Algol translator. On
the other hand it is not the appropriate object language for Algol.
Therefore we decided to create a new object language within the
machine which is used interpretatively. The structure of this
object language (called Intermediate Code or IC) is fully adapted
to the requirements of Algol. The analytic code of Zebra helps
a great deal in making the interpreter fast and c0.npact. Another
reason why an interpretive code is not such a drawback is that
the machine has no built-in floating point operations so that
these have to be programmed anyway.

The system as a whole works on a load-and-go basis. First
the translator is put into the machine, into the upper end of the
store and the Algol program is then fed in, translated and built
up in the lower part of the store. Then the interpreter over­
writes the translator and the program can start working. We
shall distinguish these phases by the names translate phase ~nd
run phase.

229

: i

I

i
.i

230 W. L. VAN DER POEL

During translation the store is divided into three lists:
(a) the program to be built-up,
(b) the identifier list (I-list),
(c) the L-list.

The arrangement is as follows:

program L-list
• •

I-list
----I

translator

The I-list starts at the high end of the store and has an exten­
sion reading into the translator for the fixed (pre-declared) iden­
tifier such as sin, read, etc.

The program is built up in the lower part; the L-list is some­
where in between. The reason for making the I-list running back­
ward is a very important one. For every occurrence of an identifier
the I-list must be searched for this identifier and this searching
process must of course be as fast as possible. In our analytic
code this can be done by a repetition instruction, searching in
ascending order through consecutive drum location. Thus a
fully optimum timing is attained and the last identifier placed in
the list is found first. This accounts for the local, non-local con­
cept. For fast searching see (1).

We shall call an Algol symbol an identifier, a number or a
delimiter. It is silently understood that the read routine already
composes the complete identifiers and numbers and also deter­
mines the correct delimiter expressed by a word such as proce­
dure. The read routine also skips all comment situations.we­
distinguish 3 such comment situations:

(a) the situation after comment
(b) the situation after end
(c) the situation after) followed by a letter.

The third kind of comment also copes with the parameter delim­
iter but far more than that. It is permitted in our translator to
have any string not containing (. All comments are skipped only

CONSTRUCTION OF AN ALGOL TRANSLATOR 231

after treatment of the foregoing symbol by the translator thus ob­
viating the difficulty of comment after the last end. Identifiers
are read as numbers in radix 37. (26 letters, 10 figures and 1
spare). More than 6 characters give an overflow of the capacity
of the word but this is allowed. Only a marking bit is kept which

i 0 distinguishes an identifier of more than 6 characters from one
I with 6 or less. Hence there is a risk that two identifiers of more

than 6 characters will be represented by the same word but we
have taken that extremely remote chance thus being able to place
no limitation on the number of characters in an identifier.

The L-list serves many different purposes. In the first place
it holds these Algol symbols which cannot be translated directly
because of their order of occurrence. E.g. in a + b * c +
the read routine reads a, +, b* and on seeing * it knows that it
has to go on reading until an operator of lower rank than * has
been read. On reading the + it translates into take b, multiply c
and only then remove a and + from the list by adding add a to the
program.

It will be clear from this example that we have only obeyed in
our translator to the rules of precedence for operators and we
have not adhered to any rule for the order of evaluation of the
primaries. The change of order into inverse polish notation is
now well known so that I can leave details about this process to
be read elsewhere.

In the second place the list L is used for string symbols like
begin together with several stack pOinters and variables as they
were at the moment of reading begin. E.g. in the case of begin
there are stored the address where the last instruction that has
been translated has been stored, the last location of the identifier
list and the last relative address given outside the block just be­
ing entered. Then after having translated the completed inside
of the block everything what happened inside has disappeared
from L and on finding end all pOinters and variables are re­
stored to their value before entering the block. When the pro­
gram meets L or L meets I, the list L is shifted up or down
wholesale.

During run time the translated program is already built up in
the store. The translator is now overwritten by the interpreter
(or for smaller Algol programs both can be held in the store to­
gether). The remainder of the store is again used for two stacks.
The Q-stack is used for all simple variables and simple interme­
diate results. These intermediate results are stored in the true

232

program

W. L. VAN DER POEL

..
P-stack Q-stack

1-------11
interpreter

stack fashion on top and are exactly used in the reverse order
in which they are put in the stack. Intermediate results are
stored in unpacked form. The P-stack is used for arrays, fixed
and variable. The allocation is fully dynamic and is only deter­
mined during run time.

Constants, own simple variables and own (constant bound)
arrays are imbedded in the program itself. For a single con­
stant the instruction using it automatically jumps over the con­
stant placed consecutively. For own arrays the space for it is
reserved at the time the declaration is translated.

The greatest advantages from the two stack system come
from the allocation system during translation. There are two
kinds of locations which cannot be given an absolute address
during translation time; one is the variable array, which is dy­
namically allocated during run time; the other one is the space
for formals in procedures.
As procedures .can be used recursively a single absolute
address is not sufficient for all levels of activation. The mech­
anism for allocations therefore is staged as follows: Every in­
struction has an operation part, an address part and a rank. As
long as the translator is not translating the inside of a procedure
declaration and hence is not dealing with any formals, all sim­
ples can be given absolute addresses. They get a rank O. Also
the entering of blocks does not necessitate other than absolute
addresses. But as soon as a procedure is translated it is not
known when or where or at what level this procedure is acti­
vated. Then all formals are given relative addresses, and the
instruction referring to a formal gets an appropriate rank ;z!c O.
The first translated procedure gets a rank 1. When inside that
procedure again another procedure is declared, this gets rank
2 etc. Hence the system of ranks is a static picture of the level
of a procedure, not a dynamic one during run time. The top of
the stack at run time when calling a procedure is put into the
stack together with the link and some other quantities. Then the
called procedure starts work and formals within the body are
using the relative addresses given during translation relative to
the beginning point determined during run time. When for exam­
ple in a procedure of rank 20 a non-local quantity of rank 5 is

1

! .

CONSTRUCTION OF AN ALGOL TRANSLATOR 233

needed, the interpreter sees that the rank of the quantity needed
is not the same as the present rank and then goes through the
action of chain searching. The link of rank 20 contains the top
of the stack at rank 19 and these quantities again contain the
top of the stack at rank 18 etc.

chain

~~~ • Q stack 

IIII working space IIII working space IIII 
g, 5- of 2 g, 5- of proc. 1 link 
~w ~w ~1 

The reason for not fixing down the beginning points of the rela­
tive addresses in procedures is that it can happen very well that 
in a procedure at level 20 a non-local quantity of level 5 is 
called which appears to be a new parameter-less procedure call 
rising to level 30 in itself and building up a completely new 
chain of relative addresses in the top of the stack from 5 to 30. 
This does not interfere with the old chain which still remains in 
the stack lower down. When this last procedure has been evalu­
ated, everything needed for the evaluation has disappeared again 
from the stack and the former level 20 proceeds. 

The process of chain searching is a very fast one in our com­
puter as it can be done by underwater programming techniques. 
For a fuller account of this see (1). 

To give a better insight into the coding of a procedure we 
shall give here an abbreviated form of the structure. 
The procedure declaration is coded as: 

X : An instruction calling the displacer subroutine.' The dis­
placer sets the link and makes the full formal actual cor­
respondence. 

Dl : A specification pattern giving information about type, 
value, etc. of the first formal parameter 

D2 : Specification pattern of second parameter 

Dk : Specification pattern of last parameter. All D's are posi­
tive. 

-r : The rank of this procedure put there negatively so that the 
displacer can see the end. 

i 
, 

! I 



234 W. L. VAN DER POEL 

body: Here follow all instructions of the procedure body in Ie 
or machine code. 

Y : The procedure body ends with a subroutine Y called the 
counter displacer which returns and restores the stack 
top pOinters to their previous values in the calling pro­
gram. 

The procedure call looks as follows: 

J : A jump to the X of the procedure to be called 
s : A link address to where the procedure must return, 

which at the same time gives an indication of the place 
where to find the key of the first actual 

Object progr. of Y 1: The object program for the evaluation of 
the first actual expression when this is not 
a simple variable. Absent when Yi is a 
simple 

Obj ect progr. of Y 2: etc. 

Object progr. of Yk: 
o A zero which signals the end of the retro­

gressive list of keys for actuals 
Key of Yk : The key of Yk gives information about the 

I kind of the actual, whether formal or actual. 
I It can be a simple, an expression, a proce-

Key of Y 2 dure, a label or switch, an array, a string 
Key of Y 1 or a formal 

The displacer treats all actuals in turn and compares the pat­
tern Dk with the keys, transpo;ts the quantities called by value 
and transforms type when the specified type is not the same as 
the type of the actual. In fact the type speciflcation and the value 
list is the only information extracted from the speCification. 
Procedure, label, switch, array, string automatically are clear 
from the parameter keys. 

The structure of the instruction is worth reviewing for a while. 
The bits are numbered from left to right. Bit q = 10 - 16 from the 
type of operation. When 10 = 0 the instruction is a real machine 
code instruction and is not interpreted. When 10 = 1 then q > 64. 

The operations 64 ~ q < 96 are the arithmetic, relational and 
Boolean operations such as add, equal, implies etc. Bit 16 serves 



CONSTRUCTION OF AN ALGOL TRANSLATOR 235 

the purpose of indicating whether a non-commutative operation 
is progressive or regressive i.e whether e.g. a subtraction has 
to form a-b or -a+b. Hence all operations such as division, im­
plication, greater are only present in one version. The other 
version is produced by interchange of operands. 

The operations 96 ~ q < 104 are the extractive operations such 
as take, take negatively, take inverse). 

The operations 104 ~ q are called the non-extractive opera­
tions. They contain the storing operations of different kinds 
(store accu, store address, store factor, store procedure) and 
many organizational operations as test, jump, pass, adjust (for 
the dynamic block begin), restore (for the restoration of stack 
pOinters on leaving a block) and verify. The last one is a very 
peculiar one and is inserted where during tra.nslation no infor­
mation about the kind can be extracted from the quantity itself 
as for example a constant as an actual parameter of a procedure 
which is itself called by name. Or in the case that a non-speci­
fied actual is a subscripted variable but where it is not known 
whether this is a designational expression or an arithmetical 
expression. The verify order is then substituted and during run 
time when of course the kind is clear from the actual keys the 
true operation is executed. Some operations are true 
machine code operations such as X, calling the displacer and Y, 
calling the counter displacer, restore (for labeled places for re­
storing stack pointers as entrance from jump leaving from inner 
blocks), return (for returning from an evaluation of an actual 
which is an expression), several kinds of for instructions for 
doing the for, step and while elements. 

The bit hindicates the type of the operation. 17 = 0 indicated 
integer or Boolean type and 17 = 1 indicates real type. It has an 
advantage to have Booleans represented by the integers 
o -- 0 and 1 -- 1. In that case the logical operations of 
intersection etc. on binary numbers can then be very simply 
done by applying Boolean operators on integers. But of course 
this must be hidden in a machine code body procedure looking 
like Algol on the inside as this sort of tricks does not belong to 
Algol. 

The bit Is = 1 indicates in an extractive instruction that the 
type declared is not in correspondence with the type required. 
Then an automatic transfer of type takes place. For example in 
formal instructions the type bits 17 and Is are copied from the 
parameter keys during the formal actuat"correspondence. 



236 W. L. VAN DER POEL 

At last the bit 19 = 0 indicates that a formal parameter is used, 
19 = 1 indicates that the operation concerns an actual. 

110 - 119 denote the rank of the instruction which initiates the 
chain searching when the rank of the instr, at hand is not in line 
with the rank of the procedure at hand. 120 - 132 is the absolute 
or relative address. 

We have thus created within a machine not made for Algol an 
operation code and address system which comply very admirably 
with the requirements of Algol. 

There is one further subject on which I should like to make 
some explanations. It is not required in our system to give pro­
cedure declarations or switch declarations in any prescribed 
order. It can very well happen that in a procedure A a procedure 
B is called while B has still to be declared, provided it is de­
clared in the same block. Also a go to statement can lead to a 
label which is only declared latertn The block or even can be 
declared later or earlier outside the block. (A label followed by 
colon is considered to be the declaration of a label). The solu­
tion has been found as follows: every occurrence of an actual or 
a label in a go to statement is counter-declared and placed in the 
I-list, also when already a declaration outside the block has oc­
curred. Only on finishing the translation of a block all counter­
declarations are treated and looked up whether they correspond 
with a normal declaration. They are then cancelled and all in­
structions concerned are adjusted accordirigly. If not, they are 
shifted down in the identifier list and incorporated in the identi­
fier list of the enclosing block. When then the declaration comes 
in the outer block they are treated there. At last no counter dec­
larations may be left over otherwise there is an error. It follows 
that as switches are fully treated in the same way as labels, a 
switch declaration may in principle be given anywhere in the 
block. 
Acknowledgement. A great many ideas for the realization of 
this translator have been contributed by Dr. G. v.d. Mey to whom 
I must express my warmest gratitude. Also to Mr. Mulders who 
coded a big part of the translator and brought the technique for 
underwater programming so peculiar for Zebra to a new height. 

REFERENCES 

1. W. L. van der Poel, Microprogramming and trickology, in Digitale 
Informationswandler, ed. W. Hoffmann Vieweg 1962. 


	Image
	Image (2)
	Image (3)
	Image (4)
	Image (5)
	Image (6)
	Image (7)
	Image (8)

