ABTEILUNG MATHEMATIK

TECHNISCHE HOCHSCHULE MUNCHEN, 8000 MONCHEN 2, ARCISSTRASSE 21

ALGOL 68 M
by

U. Hill, H. Scheidig, H. Wdssner

Technical University of Munich

Report Nr. 7005

The "ALGOL 48 group” of the Techaical University of Munich has been
concerned for the past two years with the implementation of ALGOL 68.
Essentially, the full language is handled, without the facilities of

parailel processing and the synchronization operations, and with some
further *‘:ec&micai‘* restrictions. The implementation is nearly completed,
and we expect that the compiler will go inte multi-test-phase during 1971,
The following pages attempt to summarige our ex;;arieuces “resulting
from this intensive effort with ALGOL 8.

- First of all, it sheuld be noted that ALGOL 68, due to the extent and
content of the Ian{gua.ge and the consistency of its dsacription, is
extremely well suited for studying and using nearly all the general
concepts and principles which have been included in any of the present

day higher level programming languages.

In consequence of thie high generality of ALGOL 68, however, the size
of an ALGOL 68 compiler will resch & multiple of that of an ALGOL 60
compiler {in our case, as compared to the existing ALGOL 60 compiler,
the factor will be abeut 6). For the translation time there will be a
gimilar increasing facter, and alsc for "norvmsal programe®, that s,

for relatively cimple programe which do not use extreme properties

of the language. ’ﬁw gremt latituds in the representation of the

ALGOL 68 symbols (especially, the overloading of the round parentheses
. and the ayatactic ambiguities occurring in cosnection with the application
of indicants} and these features of the lunguage which are rather rarely

" used, force the coranpiler to an organizational expense which also -

burdens the transiatioa process of normal pwtxgr&nﬁs.

Now, one can argue that the increase of translation time is not so
important as long as the run~time efficiency of the program is
guaranieed. To this point of view we must say that, on the one hand,
the increasing factor of compiler size and translation time, is too
great to be completely neglected and, on the other hand, that certain
problemQ arise which affect as well the run-time efficiency of an
ALGOL 68 prograra. For exampié, the handling of local generators
and intermediate results({particularly multiple values), and the
storage allocation for certain noneelementary values introduce some
problems which leagthen the object program as well as its execution
time. If we must, as in the last éxample, reserve storage in the
working stack for a nonwelementary value « the mode of which can be
"defined by means of indications espeefally when recursive « we are
cohcerned with two tasks: We have firstly to elaborate the constituent
boundscripts, if any, and to make the necessary checks and, secondly,
to determine the storage needed by the considered object. These
processes have to léak into the mode of this object, what can be
pérfcrmeﬁ by generating all corresponding instructions in the object
program or, "half-interpretatively™, by X"ﬁéf&?r?ing to an entry in a

table which contains repregentations of all medes used in the program.

So, it turns out for ALGOL 68 that, compared t¢ ALGOL 690, the
compiler length and the translation time will be considerably increased

and that we must also expect a certain loss of efficiency at run=time.

- The question is now whether this is a necessary price to pay for having

a better and more comfortable language. To this point, we admit that
we must of course, pay for such a language. But the expense can be
cenﬁidmkﬁy reduced by imposing certain restrictions to ALGOL 68
‘which are to a large extent of a notational nature and which do not

reduce the power of the language very much. Such restrictions would

especially take note of the "normal user” whose predominant interest
will be that the language enable him to formulate his problems without
requiring excessive time for learning the language. We should take
into account that many of the people here denoted as Muormal users”
already have difficulties in understanding some concepts of ALGOL 60
(e. g. procedure and biock concépt). it will be very hard for such
people to get accustomed to the use of the full ALGOL 68; in particular,
it will be difficult for them to come to an adequate understanding of the

whole system of coercions and connected facilities.

The restrictions for ALGOL 68 which we coneider to be desirable from
the implementors point of view as well as from the aspect of teaching

and Ieatn-ing the language are listed in the following sections. (By
changing a feature of the language, the obvious consequences for involved
extensions and for the wording of the semantics are not explained.)
ALGOL 68 restricted and changed in the following way is called

HALGOL 68 M™.

1. Substa,ntiai changes

1. Modes and deciarations

1. Y. Bestrictions for imodes

The following changes concerning the metaproduction rules of MODE
are introduced:
1.2.1. ¢} TYPE: PLAIN; format; PROCEDURE; REFSETY NONREF.
1.2.1. h) LONGSETY: long; EMPTY.
1.2.1. o) STOWED: structured with FIELD3; ROWS NONSTOWED;
ROWS REF STOWED.
1.2.1. q) FiELD: REF ROWS NON‘S-TOWED; REFSETY structured with
~ FIELDS; REFSETY NONREST. |
The following metaproduction rules are édﬁed:
2.1. 2z} REF: reference té; reference to reference to.
1.2.1.aa) REFSETY: REF; EMPTY. |
2.}.ab) NONREST: UNITED; PLAIN; format; PROCEDURE.

"1.2.1.ac) NONREF: NONREST; STOWED.

A%

‘This vestricts the number of long's and ref's to } and 2, respectively;
_further, an eiement of a multiple value {structured value} cannot be a

structured value {multiple valus}. To extend these restriciions also to
union-modes, the corresponding productions in section 7. 1.1 must be

changed in an obvicus way.

By this, restiriction on modes, on the one hand, the problem pointed out
above concerning the storage éiiocatien and checking process (at
run-time)} for valuez of non-elementary modes becomes easier and,
“on the other hand, copying operations occurring in connection with
assignations of such values are minimized.

For example, the mode~declaration

struct m = (..., f?:mg real x, ...}

is no longer allowed whereas

structm = {. ... mi__f:g real %, ...}
etill is.

¥, 2. Reintroducing the void svymbol

The representation of the void symbol is reintroduced (as proposed in
Habay~la~Neuve) in
7.%. 1.2} virtual void declarer: void symbel.

In 8.3.0. 1, correspondingly, MODE is replaced by MOID.

1. 3. The declaration condition

' -:_Sectiern 4.4.4 iz extended by the following condition:

4..4, 4.d) If the actual-declarer of a_lmade-&e‘ciaratien is or contains
a mode-indication, th_tm the occurrence of this indication
is called a "neutral® cccurrence.

4.4.4.¢) No proper prégram containg an indication-applied occurrence
which is not neutral and which is not preceded by the

indication-defining sccurrence identifisd by it.

Therefore the following is no proper program:

-

begin s z:struct g = (... });... end

bat

%o

| p e Fiam B 3
begin gtrgya g® i,;m a, § b}

moda t = real;

E& ...
end
wittaiBlec

is a proper program {with respect to this new condition}.

With this restriction, the compiler can, during the syntactical analysis,

7
easily distinguizh between mode«indications and adic-indications, and

" all difficuities which otherwise can occur in connection with indications

are removed,

2. Constructiong

2. % (Eg}iater&} clapses

In 6.2. ¥ the following changes are introduced:

6.2.1.c) STRONGETY collateral row of MODE clause: row symbol,
STRONGETY MODE unit liet proper pack.

6.2.1.d) firm collateral row of MODE clause: row symbol, firm
MODE balance pack.

At all other places in 6. 2. 1, "PACK" ie tc be replaced by "'pack". By
this change a clear distinction between collateral row of MODE c¢lauses
and structured with FIELDS clauses is made. Therefore, the balancing

- process for collateral clauses is simplified and the identification of

operators becomes easier; in particular, for the uniqueness condition

4.4.2 the version of MR 99 i# sufficient.

2.2. Generators

Local generators are dropped out everywhere with exception of the

right band side of identity declarations by the following replacements:

7.4.1.a) identity dazi&'mtwa:l@rml MODE parameter, squals ‘symbai,
| ‘genersl actual MODE parameter.
? 4.1.¢) general acmaivMODE parameter: strong actual MODE

parameter; MODE local generator; apecial MODE assgignation.
8.3.1. 3;‘&) special reference to MODE assignation: special reference
17 M‘{)EE destindtion, becomes symbol, MODE scurce.

8.3.1.%.e) special MODE destination: MODE local generator,
2.5. 1, 1. a) MODE generator: MODE global generator.
The use of global generstors is further restricted by excluding them
as boundscripts.
- The me&niﬁg of the last restriction is obvicus; for the first one see{Z}. ,
That paper outlines that we can handle local generators by imtroducing
an order for the silabowmtion of assignations and row and structured

_displaye. We quote here the last sentence {of the conclusion) of {3}:

"However, one can ask oneself whether it is sound to determine an
order in 2 coliateral slaboration for this purpose and not for e. g.
optimization ¢f code generation. The other alternatives are either
to complicate the organization of the working stack, which results

in runstime inefficiencies, or to reserve locations on the heap which

is from a conceptual point of view not very attractive.

. These and other considarations lead us to remove local generators
as cchesions {for local generators the same problem can arise as

mentioned in II}. H

2. 3. Reintroducing the depression

In certain situations it can be useful to have an explicit notation for a
dereferencing operation. Therefore, the MODE deprecsion is

reintroduced in the same way as in MR 99.

2.4. Gall

We replace 5. 4. T. ¢ and 4 by

5.4.1.¢} VICTAL PARAMETERS and PARAMETER: VIC¢TAL PARAMETERS,
comma symbol, VICTAL PARAMETER.

The effect of this restriction is th&i‘ﬁhe identity declarations resulting

from the formal and actual parameters pack are not serially elaborated.

In fact, their elaboration is defined as “quasi-collateral” in the following

sense: At firstall actual parameters are claborated in turn and the

actual values are stored in successive cells of the slorage part reserved

for the cailing routine. Subsequently, the rouline is entered, which means

that the organization required for pm?:aﬁura callg is performed, e.g.,

storing of organizational data, loading of an index register for adressing

1)

This point and another one following in 2.4 was discussed with the

Brussels M. B. L. E. ALGOL 68 group.

purposes. This concept avoids unneceasary recursive calls caused
by the actezl parameters. MNow, before elaborating the routine, the declarars
of the formal parameters pack are evaluated if they contain any expressions,

and checks of formal and actuzl boundlists are made.

The main reason for introducing the serial elaboration of parameters

was to allow gide effects as in the example

e

precp={ R :E real a; L1 : upb a}- real b} .

This effect ist preserved by the quasi~collateral daboration of
T - %
proc p={ [} :3 real a, {? : uphb a}; real bj.

But, it is no longer possible to bave any defined side effects between

formal and acteal parameters, as intended, e.g., by

proc p = { gi :{n = 3)] reala; int b} ..
e (1. 2, 3im)

. Reasons for this restriction are:

One of the aims in designing ALGOL 68 was 1o improve and simplify the
procedure concept of ALGOL 60, especially by 2liminating the
“name-calls”, which reguire the actual parameters to be transiormed
into subroutines. But, in fact, these name-calls are gtill necessary,

af least in the phase of the actual ?a&ramﬁmm transfer. More precisely,
if the i-th and the {{ + 1}-th formal parameter are separated by a
 go-on-symbol the formal &es:l_arer of the i-th parameter must be

" evaluated before the {i +-1}-th actual parameter. This means in practice,
that the compiler has to transform either actual parameters into
 subroutines which may be called by'the prbgiam, parts produced {rom
fcrmﬂ parameters, or formal paramesters into subroutines which may
be called by the object program paris corresponding te the actual |
‘parameters. The consequences are, in principle, the same for both
possibilities. For both practical and aesthetic reasone we prefer the

first sclution which corresponds to the methods generally used for

ALGOL 6. {Of course, once the parameters transfer is completed,
the farther handling of the parameters is simpler than in the case

of ALGOL 60, since new subroutine calls are not needad. }

The compiler, then, has to preserve the following tasks: the routine

is entered before evaluating actual parameters, the formal parameters
are evaluated and the actual subroutine corresponding to each is immediately
calied. Such = subroutine call requires a similar effort as a procedurs
call, with all consequences, concerning reloading of index registers,

€. g

The ALGQOL 68 Report does not define any correspondence between the
sequences of gommae in the formal or virtual and the actual parameiers
pack. Therefore, the compiler has no information on whether the
parameters are to be elaborated collaterally or not, when handling
procedurs calls {especially not, if the primary of the call is an

expression or a formal parameter).

‘The non-collateral case therefore must always be preserved. Nevertheless,
there are certain optimization possibilities: {1} all parameters can be
evaluated collateraliy (without using subroutines), if no bound check is
needed; {2} if the i-th parameter, i * §, ..., k -~ 1, does not contain
boundlists, but the k-th does, then these parameters can all be handled
collaterally, that is, evﬁnman*;; transformed into one single subroutine.
These optimizations can be easily implemented, since no prepass or

" gpecial search mechanism iz required.

B;at, in spite of such optimizations, compiler as well as object program
and run~time remain burdened and, furthermore, since this concept
will in general not be used by "normal users” who avoid, as it is well
known, constructions whose consequences are not immediately obvious,

the restriction & gquaki-collateral han&liﬁg of parameters iz made.

- 10 -

a’i{}»

£. 5, Rapetitive statement

The repetitive statements are changed in the following way:

a} "de E* is, at all places in 9. 3, veplaced by
Ydo E done®.
b} If E is, in particular, a strong-closed-veid-clause and S its serial

clausge, then “do £ done’ may further be replaced by "do S done'.

Fimally, it could be useful to introduce a facility similar to the for-list

{with more than one element) in ALGOL 60.

3. Goercions

3. 1. Proceduring and rowing

The coercions proceduring and rowing are dropped out {by re:ﬁmving

the sections 8. 2.3 and 8. 2. 6).

In cgn&quénm, the following changes are made;

" B5.4. 1, a)+ routine denctation: PROCEDURE denotation.

5.4 1.b) procedurs with PARAMETERS MOID denotation: routine symbol,
formal PARAMETERS pack, MOID cast.

The following rule i aAdded:

5.4 1. g) procedure MOID denotation: routine symbol, MOID cast.

Correspondingly, the void cast pack is removed from 8. 6.0. 1.b

{sea 1. 1.2},

3. 2. Extension of the seleciion

In connection with the decumentation of our ALGOL 68 Compiler we had
the experience that, if we use ALGOL 68 itself as description language,
it is very awkward in that we have, by means of 2 selection, no direct
access tu an object the mode of which is a union made and the value is

a structured value. In this case we always have to go through a conformity

- 1Y .

operation even if we are sure about the actual value. This fact makes
the description of the compiler {in ALGOL 68) unneaeasari!g complicated

and long.

“Therefore, we change . 2.3, m and make the following additions:

A.2.3.m) FITTED: dereferenced; deprocedured; decomposead.

1.2.3. v} WEAV: weak; exclusive. B ' |

. L2.3.0) S’I‘Aiﬁ:m; fair.

“8.2.0.1.h) exclusive COERCEND: COERCEND; exclusively
FITTED to COERCEND.

8.2.2.1.d) exclusively deprocedured to MODE FORM: praceéure
MODE E‘ORM, fairly FITTEE} to procedure MODE FORM.

in 8. 2. 1 1.2 and 8. 2. 2. 1.a "STIRMIly" is repiamed by *’STAmly” and in
8.2. 1. b "weakly® by "WEAVIy".

A new section 8. 2.9 is added:
- 8. 2.9 Decomposed coescends

{Caerceads are decomposed when it ig required that the & priori mode
ghould be change:d'from union of LMOODSETY structured with FIELDS
| RMOO.DSETY’ in 'structured with FIELDSY, e.g.. ina of x when x is

deciarad as ﬁnitm {int, stract (int 2, resl ISBES

8.2.9.1. Syatax

a) exclusively decomposed to LREFSETY REFSETY structured with
FIELDS FORM: fairly FITTED to LREFSETY union of LMOODSETY
REFSETY structured with FIELDS RMOODSETY mode FORM;

" LREFSETY union of LMOODSETY REFSETY structured with
FIELDS RMOODSETY mode FORM.

b) fairly decomposed to REFSETY REPROTY atmgmrea with \EQELDS FORM:
fairly FITTED to REFSETY union of LMOODSETY REPROTY
étmcth&d with FIELDS RMOODSETY mode ?‘QRM; REFSETY
- union of LMOODSETY REPROTY structured with FIELDS
RMCODSETY mode FORM.

#’3»

- 12 - ,

8.2.9. 2. Semantics

A decomposed-coercend is elaborated in the following steps:
Step !: It is preelaborated; the value yielded is considered.

Step 2: If the mode of the considered value is enveloped by the original
of the decomposed-coercend, then the considered value ia the
value of the decomposad-coercend. Otherwise the further

~slaboration is undefined. ™

rha) icz &escrapizan c»f the c:{wrci:ms after t’mzse chaagtm

by tasans of 4 graphs. The modes of theps ﬁm i
- modified productwns frami'&} 8.2 ané; the éwactiim of e

corresponds to thez direction of the productions.

- 13 -

a) strong coercions (s):

“ 13 -

8 :
\N\
g
s ADAPTED
P
i “““m_,
\\‘# .
8 vm thped 8 AD.}USTED & widened
2/ /,aw*""/ ;
/ i;ﬁ//
,ﬂ; w
£ s FITTED
8 zmte& l ,,/lm A
LA (_//)
. 8 deprocedursed s dereferenced
sﬁf

f depr cBaured

}
g

f dereferenced

3

‘t‘s{*&%w

iy

{ united

e
L
8

s

- 14 -

- i4 .

¢} axclusive {2) and fair {fr} coercions:

:&*‘é‘f .Ave
A
' e FITTED
e S
g o &-; M‘%“"“w, :
L & ﬁ"“"-«,,\ .
—
/’ﬂ ¥ T,
e deptiﬁaad&red e deveferenced © &ece?pas&d
e
g 7

fr FITTED

; . Ry,
e ;,/ % , ‘
B e P
fr deprocedured fr dereferenced ir decomposed
l l Y
7 o | & ¥

d}) weak coerciona {w}:

s
e @ /
w deprocedured w dereferenced

o —

y/ “ @ ;g

e) eoft coercions (t):

- ‘ ¥ | ;&a?rnaaﬁuraé

“?5&

- 18 «

Now, 8.5.2. 1. a is replaced by]

8.5.2. L,a) REFETY MODE selsction: MODE field TAG selector,
of symbol, exclusive REFETY structured with
\PELDSETY MODE field TAG RFIELDSETY

secondary,
Eiam;:le: begin
’ struct 8! = (in a, real bl

struct 82 = {int a, bool c};

union u = (s 1, 8 2};
wu: = if condition then (1, 1.0} else (0, false) fi;

aofu

entd

Depending on the condition the value of the foregoing closed-clause is

1 or G.

I we want to avoid thiz high degree of generality which allows u to be of
a mode united from two siructured modes both containing the fleld
identifier a, then we may add the féiiowixag restriction:

if the gecoudary of a selection 3 is a decomposed cosrcend C then

the mode enveloped by the éﬁgix&al of the fonly} direct descendent of C -
ﬁmy not be united from {at lzast] two structured modes which beth
contain a field identifier i&&ﬁticai»wﬁb the selector of 8.

The check of this condition can be easily performed by the compiler,

80 that - at least with this restriction - the given generalization of

ﬁm selection does not essentially burden the impleménwtmn.

Ii. A further restriction &@aerﬁ%&g slices

Lot us congider the following example:

begin

int a;

a:e begin [1: 5] int b= zow (1, 2, 3, 4, 5); bend[tert]
and

- 16 -

w V6 -

At m&ﬁmﬂs; after the elaboration of the lnnerx ci&aséwei&nﬂe the working stack
for thia cioesd-clanse contains the multiple value which is "i,ts result. If we
leave the inner closed-clause then, of course, we waunt to give up the space

on the véa_rking stack belonging to it, but in that case this is not possible
because the "intermediate” result is still needed. Now, we have two

possibilities {applying the usual stack technique}:
;) We do not give up in such cases the storage containing the result.

b} We transport the result into this part of the working stack which

belongs to the embracing closedeclause.

The last method §$ very time-consuming becaase, in gensral, we caunot

‘ make this transport Yen Mét“'zlmf;, if we want to avoid zhi# transport of
intermediate results - by the firet method - we loose storage on the
working stack {of s:mi:?se, the same can goour in connection wiﬁ; procedure

resulta).

' 8o, if we want to remove this problem - this can be important if the storage
of the available cornputer is small - we introduce the following restriction

. concerning the nee of slices.
8.6.1.2. Stép 2 is changed by:
"Step 2: The multiple valus which is, or is referred to by, the value of
~ the primary, i9 consideved; if the considered value is inadmissible
. {_by the following aefiﬁitiaa}, then the further elaboration is
andefined; otherwiss, a copy ... "
Definition of "inadmissible™:
The valus V of a block {see III) or a routine denotation C is called

®inadmissible™, if it is the value possessed by either

a).a collateral row of MODE clause,
b) an applied occurresce of @ row of MODE
. identifier identifying a defiving pccurrence contained in C, or

cla row of MODE siice.

- 17 -

HI. Neotational changes

“w VF -

The changes are listed in the following table:

Section aymbol represgentation rema rk

in {%I

3.LLe formatter - £ $ removed
flip - ' 1 n
flop - [/ "
space - blank : 0
binary b new
octal - o0 T
hex - » h s
digit ten - a 5
digit eleven - b t
digit twelve - ¢ "
digit thirteen - d #
digit fourtesn - e m
digit fifteen - £ "

3.@. [

over and becomes »

moduio and
hecores -

;s‘mi -

is &t moet
iz at least
QVET -

modulo -

th element of -

powar -

iower bound of «

sverb
ORI ON R

modb

and

<= le

over

mod

elem sl
T we

iwh

v ¥ rarnoved

flim H

i 1 4
Ad
% 5t
2 k21
% &
P n
™~ 1]
Lud

new
§_ﬂ remaoved

- 18 -

«lﬁm

represaniation

Section symabol | remark
in E‘l} ‘
3.i.t.¢ upper boand of upb I removed
lower state of » lws L "
upper atate of - ups { u
plus i times - i bt "
not - ~% not ~ "
down - down < "
gp - up T Aﬁ’f 1
bacomes - = m P "
conforms to and :
becomes - = L= ctab o= new
is not - #: is not . #: isnt removed
3.1.h.d void - void new
priority - priority prigo pric 7
3.1 le sub - r £/ {/ "
bus - 1N hHooo
at - at @ removed
- Y Yasac "
chgs ~ cage new
i - i { "
Gt - aut | "
esac - egac "
of « ?3; | -p TEMOVad
routing - ?@aﬁix&g eXDT new
TOW - row "
ity skip - skip ﬁg, removed
ﬁi‘i - &i}, & E14
3.1.1.4 quote - » quote ™
cormment - oo comment %f; ®

.19 .

Of course, such changes are made with regard to 3 special hardware.

So, the reprzsentations

s M s OLIUTLE N Ferenng

-S4

are not available in the character »aet of th@-&fé units of or our installation
{card reader and printer ueing IBM 026H code} and, therefore, are

removed,

-According to the new representations for sub- and bus-symbol, the
' divided-by-symbeol is, in addition to the equals- and the timea-symbol,
only allowed as dyadic oparator. {The corresponding changes of

3.0.4.2,b and 4. 2. l.c are obvious. }

The changes in 3.1, T.¢ allow a simple analysis of closed«, conditional-
and case-clansea in an obvious way. In order to avoid the remaining
avayrissa&iﬁg of the open- and close-symbols, we rsmmove the emtension

9. 2. g and, morecver, adopt the following changes:

| §.3. 1.2} SORTETY closed MOID clause: SORTETY MOID block
package; BORTETY MOID compound g&bkg
‘ & F.i.a) BORTETY gerial MOID clause: 3@3&?&‘3’.“’%’ MOID block:
| SORTETY MOID compound. -
6.1.1.m) SORTETY MOID block: declaration preiude sequence,
3@%‘2’%"1‘? %@Iﬁ compound.
~ 6 ¥, i.a) SORTETY kﬁ}?ﬁ compoundisnite of SORTETY MOID
, _ c%am&e teains, '
6. 1. 2 a}m sevial clause: SORTETY serial m@ﬁsx
SORTETY MOID block; SORTETY MOID compound.

Finally, .-we introduce the fallowing cmgs of the bits-denotation {Mm{z 3) IR
' replacing 5.Z. l.c and 3.0. 3.e by ' -
8.2, V.¢c) structured with row of boolean field letter aiﬁyh &m@%&t‘iﬁw
binary symbol, zercone %@aﬁawmt '
wotal eymbol, oozl sequence;
hex symh@, hox sequence.

.20

= 20 -

5.2. 1.4} seroome: digit sero; digit oune,
5.2 1.6} octal: digit sero; digit one; digit two; digit three; digit four;
: ﬁigﬁt five; digit six; giigit seven; digit eight,
5.2.1.6) hew DIG
digit pwelve symbol; ﬁig%tmit&eaﬁ symbol;

-"‘?.’;ﬁigﬁ ten symbol; digit eleven symbol;

diﬁi& fourteen symbol, digit fifteen symbol.

k 5, &, 2 all OCERErEnces of flipflep, {lip<syraboel, and {lop-symbol
ars ?&‘?i&&ﬁé by s@rwﬁa, digit zero, and digit one, respectively;
moreever, at the beginning of section §, 2.2 the following sentence

iz added:

ﬁgﬁi‘{ﬁw birg«denctation simris with an octal-symbol then the octal-symbol
ie replaced by s binazy-symbol and sach octal is replaced by three

seroonee which represoent the octal in the binary namber system.
M the bits-denotation sturts with a hex-symbol then the hex-symbol
is replaced by 2 binarv-symbol and each hex is replaced by four
seroones which represent the hex in the binary number system.

. After these replacements, w’? any, the mim, of the bi ts-denotation is
: mweﬁ ae Kﬁ?giﬁe’&ﬁ“*‘ :

&- van ﬁ?‘i@xﬁg&m}@&ﬂ im) & J. Maillowx, J. E. L. Peck,
and C.H. A, ka&ér, 2] ﬁ om %%m aigﬁn%:%zmia hﬁgmga &LGOL 48,
Mum. Math. ,gé_:gg%&?}i. ey _ . ,

] P. Bronquast, J. Lewi, and . P. Cardisael, Local Generators
and the ALGOL 68 Working Stack, Technical Note N62, M. B. L. E.
Brassels, September 1978, o

{3} G. Goos, Eiam Mgﬁmnﬁamg von &Lmi,. 8. Report Nr. 6906,
MEmmtm doy Tﬁ@h’ﬁi&&%ﬁa g@iwm&&t Mtnchen, 3%&9»

