
MAD it~ function & features

AT MICHIGAN
by BRUCE W. ARDEN, BERNARD A. GALLER,
and ROBERT M. GRAHAM, Univer'sityof Michigan, -Ann Arbor

[
""'.-.'-.'-. "'·",l The 'Michigan Algorithm Decoder (MAD), in op­

eration since February, 1960, was developed for
the specific purpose of training large numbers of

university students and handling the large volume' of uni­
versity research problems. The primaryi,':motivation for
writing this rapid translator may be traced directly to the
special environment of a university computing center.

A large university should not operate its computing
facility as a closed shop since the university's role is edu­
cational; moreover, it cannot operate in such a fashion
since the users, students and staff, may number in the
thousands. The computing implications of these facts are
that large numbers of relative novices will have direct ac­
cess to the machine. Like it or not, these users will work

.' at the level of an algebraic source language-often mak­
ing many compilations on programs which are not destined
to become long-run production programs. What is required'
in this environment (which is not necessarily peculiar to
universities) is an extremely' rapid translator accepting
a source:language which has a minimum number of re­
strictions. MAD was written to ~ulfill these, requirements.
ALCOL 58 provided the basic. pattern for the language
and to the extent that ALGOL ,58 is like ALCOL 60, MAD
is an ALCOL translator. The d~signcriteria were satis­
factorily achieved although, undeniably, the permitted
generality of expression reduced, in some instances, the
object program efficiency as compared to that p'roduced
from restricted source languages. ,

MAD translators now exist on the IBM 704, 709, and
7090, and a recent compilation of 785 statements took
one minute on the 7090, producing approximately 10,000
machine instructions. In another occasion, using' the Bell
Monitor System on the 7090, MAD compiled 84 programs
in 20 minutes. (MAD is also available as part of the FOR­
TRAN Monitor System.) The translator itself, contains
about 16,000 words, of which seyeral hundred are diagnos­
tic comments. Before we consider the reasons for the trans­
lation speed, we shall describe some of the features, of the
MAD language. Symbols consisLof'up to six alphanu­
meric characters, the first of Iwhich is a -letter. Function
names consist of a symbol and a terminating period, such
as SIN., SQRT., and so on. COIistants, as in FORTRAN,
have such forms as 1.2E-3, .006, -lE7, etc., except that one
may write the Boolean constants 1B and ()'B (repres'enting
true and false, respectively), and alphabetic constants,
such as ABC or $=$ (up to siX: Hollerith characters en­
closed in dollar signs). Arithmetic expressions are formed'

December 1961

in the usual way, using +, ~, ~" /, .ABS., and .P., with
the last two meaning "absolute value" and exponentiation,
respectively. Also available are the relations <, <, =, #,
>; and>, represented by .L., .LE., .E., .NE., .C., and .CE.,
respectively, and 1\ , V, -, , ::J, =, and exclusive or, repre­
sented 'by .AND., .OR., .NOT., .THEN., .EQV. and
.EXOR., respectively. Thus, one ,1)lightwrite the Boolean

. expression
X .P.3 .L. Y .P.3 .AND. I .NE. } .ORX ~ Y .C. 1

to repres~nt the expression ' ,
'X3 < y3 1\ I # } VXYI> 1

The mode of arithmetic of each variable and function
(floating point, integer, B~olean, etc.) is declared by ex­
ception. For ex'ample, inMADTRAN, the FORTRAN to
MAD· translator which was written in MAD, all variables
were of integer mode, since Hollerith constants are also
of integer mode. The statement

NORMAL MODE IS, INTECER

caused all variables to be integer, and if there had been
any floating point variables, they would have been so de­
clared. There also exist programs in which. the normal
mode is Boolean! Mixed expressions are allowed whenever
ordinary mathematical notation would allow it.

Besides the ordinary substituti~n statement, which has
the form

X = (-B + SQRT.(B~B-4.~A~C))/(2.~A)
there are many other statements. The most useful state­
ments are the simple and compound conditionals and the
two forms of the iteration statement. These are illustrated
by the following:

(a) The Simple Conditional

WHENEVER I .C.} .AND .. X .E. 3, TRANSFER TO
BETA(I)

(b) The Compound Condition,al;

WHENEVER I .C. } .AND. X .E. 3

C(I) = B(J)
X=2

TRANSFER TO BETA (I)
OR WHENEVER I' .C. J .AND. X.E. 2

C(I) = B(J) + X
X=X-1

27

OTHERWISE
. C(I) = B(J) - X
X=X-1

END OF CONDITIONAL
(c) The Iteration Terminated by a Boolean Expression

THROUGH A, FOR I -:- BZERO, F.(I) - I,
.ABS.F. (I) .L. EPSLON

This is interpreted as: Set I = BZERO, then test the
Boolean expression .ABS.F. (I) .L. EPSLON. If true, the
scope of the iteration is not executed at all. If false, it is
executed, then I is incremented by F. (I) --:- I (in effect,
I is replaced by F. (I) in this example) and the Boolean
expression is tested again.
(d) The Range of Values Iteration

THROUGH A, FOR VALUES OF Q = 50,25, 10,5, 1
In this case the scope is executed for each of the listed

values (which could be arbitrary expressions) in turn.
While the dimension statement in MAD causes a fixed

block of storage to be set aside for each array, the num­
ber of dimensions (i.e., the number of subscripts), the
range of each subscript, and the base point of the array
within the block are stored as ordinary values of a vector
and may all be modified or set during execution. Format
information, similar in form to that used in FORTRAN,
can likewise be modified or set at execution time. On the
other hand, all of this information may be pre-set by a gen­
eral declarative statement which can pre-set values of
any array or vector. Input-output statements which make
use, of a symbol table and require no format information,
such as

READ DATA

have recently been added to the 709/7090' version, as
well as the ability to define new operations into the lan­
guage.

There are also facilities for defining internal or external
functions. The latter correspond to the FORTRAN sub­
routine, while the former are similar to the ALGOL pro­
cedure, in that they are defined within the body of the
calling program and variables not listed as arguments are
common to both programs. It is possible to define recursive
functions, also, and still other statements provide a push­
down list mechanism. While multiple subscripting is han­
dled by a set of standard subroutines, the user may provide
his own storage function for each array, if he chooses, by
designating the name of the new function. This function,
whose definition program may be written in MAD, may
then allow one to store one-half of a symmetric or upper
triangular array, only non-zero entries, etc.

There are many other features in MAD, 'such as the
EQUIVALENCE, ERASABLE, and PROGRAM COM­
MON declarations, and so on, but let us return to the
question of the reason for the speed of translation. Proba­
bly the greatest single factor in this speed is the minimi­
zation of the use of the magnetic tapes. In the 709/7090
version, programs containing under 200 statements require
no tape movement other than reading the source program
from the input tape and writing the translated object pro­
gram onto the output tapes. (The MAD translator is itself
one record on the master tape.) Longer programs require
intermediate tape storage, but in a highly buffered way.
Another factor is the internal structure of the translator,
with a heavy dependence on just a few tables of informa­
tion. Also the statement structure is such that statement
types are discernable without an analytic scan. A final and,
perhaps, second order reason is that the group writing the
translator was small-three people. As a result the intra­
group communication was good, and the program ineffi­
ciencies which are so often introduced in developing large,

28

group-effort programs were held to a mmlmum. The
writing of the 704 MAD translator took 2 man-years, and
the rewriting for the 709/7090 took about 3 man-months.

The use of this translator has made it possible to assign
rather formidable problems to students. In a one-semester
course assuming no computer experience, the following
problems have been assigned (each one as the last prob­
lem in a different semester). (1) Symbolic differentiation,
(2) An interpretive program for a simplified MAD-like
language, (3) An assembly program for a language much
like FAP for the 709/7090, (4) The complete scan and
decomposition of arithmetic expressions from MAD. Usual­
ly 30-50% of the 100 or more students in the course have
the program checked out by the end of the semester. The
following is a portion of a solution to the analytic differ­
entiation problem. It deals with the input expression, and
might be found in any of the problems described above.
It is included here to illustrate some of the symbol manipu­
lation features of the language. Problems involving evalu­
ation of algebraic expressions would appear much more
conventional than this.

R FUNCTION CONST. THIS BOOLEAN
FUNCTION

R RETURNS A VALUE OF 1B (TRUE)
IF ITS ARGUMENT IS

R INCLUDED IN THE SET OF CONSTANTS
0-9,A-Z (except X)

RAND OB (FALSE) OTHERWISE.
INTERNAL FUNCTION (Z)
BOOLEAN CONST.
ENTRY TO CONST.

SCON1 THROUGH SCON1, FOR B =
1,1, Z .E. TAB(B) .OR. B .E. 36
WHENEVER B .L. 36

FUNCTION RETURN 1B
OTHERWISE

FUNCTION RETURN OB
END OF CONDITIONAL
END OF FUNCTION
VECTOR VALUES TAB(l) =0,1,2,3,

4,5,6,7,8,9,
1 A,B,C,D,E,F,G,H,I,

J,K,L,M,N,
2 O,P,Q,R,S,T,U,V,W,

Y,Z,
R FUNCTION P. THIS FUNCTION ASSIGNS A
R PRECEDENCE VALUE TO THE OPERATORS.

INTERNAL FUNCTION (Z)
ENTRY TO P.
WHENEVER Z .E. $.P.$

PREC=8
OR WHENEVER Z .E. $ - U$

PREC=7
OR WHENEVER Z .E.$/$.OR. Z .E. 11

PREC=6
OR WHENEVER Z .E.$-$.OR. Z .E. $+$

PREC=5
~ OR vVHENEVER Z .E. RTEND .OR. Z .E. LFTEND

PREC=4
OTHERWISE

PREC=3
END OF CONDITIONAL
FUNCTION RETURN PREC
END OF FUNCTION

DRTRMRTION

w.

