
1

ALGOL W

RHPEBENC! MARUlL

JURE 1972

2

This manual describes the ALGOL w language and the compiler
constructed for the IB" 360 at Stanford University under the
direction of Niklaus Wirth. The language is based upon "A
Contribution to the Development of ALGOL" by Niklaus Wirth and
C.A. B. Hoare. The compiler was written by Henry R. Bauer,
Sheldon Becker, Susan L. Graham and Edwin H. Satterthwaite who
also documented the system.

Subsequently a number of minor amendments and several
extensions have been made to the language; substantial changes
have been made to the compiler to improve its ef~iciency and to
add to its capabilities. In particular, a debugging system has
been added which is a significant improvement on the programming
tools normally provided by compilers •. "any of these changes, the
work of Edwin Satterthwaite, have been described in the revised
documentation of the language and co ■piler prepared by Richard L.
Sites (Stanford University Techoical Report STAM-CS-71-230,
"ALGOL W REFERENCE "ANUAL") others have been described in RUMAC
Programming Notes 39 and 41. A few recent additions are
documented here for the first time. In preparing this edition of
the manual all of these sources have been used freely.

The manual consists of two distinct parts. In the first
part of the manual, sections one to eight define the ALGOL i
language. Sections nine to eleven fora the "Programmer's Guide
to ALGOL W". Section nine describes the compiler, sections ten
and eleven deal with aspects of the operating systems, !TS and
OS/360 respectively, which are relevant to the use of the ALGOL W
compiler. The second part of the manual is a transcription of
"Introduction to ALGOL W Programming• by Henry B. Bauer.
Amendments have been made here, to reflect changes to the
l,anguage and to simplify its transcription to machine readable
form. The author's permission to mak~ these changes is
gratefully acknowledged.

This edition of the ALGOL W manual supercedes the 1970
edition of the NUMAC ALGOL W aanual and replaces NUMAC
Programming Notes 21. 39 and 41. Changes since the previous
manual are summarised below.

1)

2)

3)

4)

5)

The introduction of three new basic
and !2rtg!, providing a nev
statement (cf.7.8) and the ability
defined procedures (cf.5.3.2.4).

symbols, ~llll!, algol
statement, the assert

to invoke externally

The use of the character"" as a character in identifiers
(cf.3.1).
Changes to the precision of arith ■etic; products (other
than of integer quantities) have the quality "long".
The precedence of operators has been changed (cf.6, 6.4).
This obviates the need for the intuitively unnecessary
parentheses in conditions involving relational and logical
operators, but implies changed interpretation of bit and
logical expressions involving these operators.
Block expressions are no longer restricted to defining
function procedure bodies but are permitted in any
expression (cf.6).

3

6) In comparing strings of equal lengths the shorter is
(effectively) extended vith blanks to the length of the
longer before comparison. String assignments are done in a
single action rather than character by character left to
right, removing the anomalous behaviour on assigning
strings to substrings of themselves (cf.6.Q,7.2)

7) Facilities for creating formatted output have been added to
the WRITE and WRITBON standard procedures (cf.7.9) using
additional predeclared variables.

8) An additional exceptional condition, ENDPILB, is detected
on input.

9) Sections 9, 10, 11 and Appendix II are nev.
10) The standard functions C0"PLEISQBT and L0NGCOftPLEXSQBT have

been deleted.

Except in the case of the completely new sections (9, 10,
11, and Appendix II) changes (in content as opposed to layout or
presentation) since the previous version of the manual are marked
with vertical lines in the left margin.

The manual describes the 01JULY72 version of the compiler.

June, 1972. J. Eve

4 Table of Contents

LANGU!Q] DESCRIPTION

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS -----8

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES•••• 10

].

4.

5.

6.

1.

2. 1

2. 2

Basic Symbols ··-···-----·-·-·-·-·-·····--·-
Syntactic Entities ·-·····-···-·-········---

IDENTIFIERS ··-············-·····--··---·--···-··

10

11

12

11J

14

15

VALUES AND TYPES ·····--···--·-·-·--·-··-·--·-···
4.1

4.2

4. 3

4.4

4. 5

Numbers ---·-------·····-·-·-·--·-·····--·--
Logical Values ··-·----------········-··--·-
Bit Sequences •••••••••••••••••••••••••••••• 15

Strings •••••••••••••••••••••••••••••••••••• 15

References ·········--···-··-···-·········--
DECLARATIONS ·-·········----······-·······-···---

16

17

17 5. 1

5. 2

5.3

5. 4

Simple Variable Declarations
Array Declarations ••••••••••••••••••••••••• 18

Procedure Declarations --·----··········-···
Record Class Declarations •.•...............

EXPRESSIONS ········-······-··-····-·-·········--

18

21

22

23

24

25

6. 1

6. 2

6. 3

6.4

6.5

6.6

6.7

6. 8

Vat:iables ········-·················-····--·
Function Designators ···········-········--·
Arithmetic Expressions ···--····--·-········
Logical Expressions•····•······•·•······•·· 27

Bit Expressions •••••••••••••••••••••••••••• 28

String Expressions --······--·······--------
Reference Expressions ···············-······

29

29

Conditional Expressions••••··•·•··········· 30

STATEfllENTS ·······-----···········-··········---- 31

31 7. 1

7.2

Blocks ·······-·-···-········-·--··-·······-
Assignment Statements •••••••••••••••••••••• 32

7. 3

7.4

7.5

7.6

7.7

7.8

7.9

Table of Contents

Procedure Statements ------·····--·-········ 33

34 Goto Statements ·······-·····-··············
If Statements •••••••••••••••••••••••••••••• 35

Case Statements •••••••••••••••••••••••••••• 36

Iterative Statements ····-······-·-········· 36

Assert Statements •••••••••••••••••••••••••• 38

Standard Procedures •••••••••••••••••••••••• 38

7. 9.1

7. 9. 2

7. 9. 3

7.9.4

The Input/Output System ••••••••••••• 38

Read Statements ••••••••••••••••••••• 39

Write Statements •••••••••••••••••••• 40

Control Statements •••••••••••••••••• 41

8. STANDARD FUNCTIONS AND PREDBCLABEO IDENTIPIEBS •• 44

8.1 Standard Transfer Functions •••••••••••••••• 44

8.2

8.3

8. 4

Standard Functions of Analysis ••••••••••• ·•• 45

Time Function •••••••••••••••••••••••••••••• 46

Predeclared Variables •••••••••••••••••••••• 46

8.5 Exceptional Conditions

PROGRA~~ER'S GUIDE

············-··-····· 1'1

9. THE ALGOL W CO"PILER ·········-···-······-·····-· 52

9.1 The Language ••••••••••••••••••••••••••••••• 52

9.2

9. 3

9.4

q_ 1. 1

9.1.2

9. 1. 3

symbol Representation ••••••••••••••• 52

Standard Identifiers ········--····-·
Restrict.ions ······-··-·······-····-·

53

53

Input Format ••••••••••••••••••••••••••••••• 54

Compiler Directives ••••••••••••••••••••••••

Debugging System --------·········-········-
9. 4. 1 Debugging Facilities ...••......•....

The DEB0G Directive --·······-··-··-·

54

54

55

56 9.4.2

9. 4 • .3 The TRACE Routine ••••••••••••••••••• 56

5

6

10.

11.

9. 5

9. 6

Table of contents

Compiler Output •••••••••••••••••••••••••••• 56

9. 5.1

9. 5. 2

The Source Program Listing

Debugging system output

57

58

Externally Defined Procedures •••••••••••••• 63

ALGOL i IN PITS ·-·-·-················-·--·-·····- 66

10. 1 MTS Summary ···········----····-········-·· 66

10 .. 2 MTS *IALGOLW Specifications ·····--·-·--·-· 67

10. 3 MTS *ALGOLW Specifications 68

10.4 MTS System Error f!essages ····-·····-······ 70

ALGOL W IN OS ····------·-·····-··----·-········- 71

11. 1 OS summary ···-···············-····--··-·-- 71

11.2 OS XALGOLW Specifications ----·------·····- 71

11.3 OS ALGOLW Specifications ---·-··--·-·····-- 73

11. 4 OS system Error !lessages•. 77

Appendix I. CHARACTER ENCODING ····------------···-····- 78

Appendix II. ERROR MESSAGES ···-···-·········-·--········ 79

1. Pass One Error Messages ••••••••••••••••••••••••• 79

2. Pass Two Error Messages ••••••••••••••••••••••••• 81

J. Pass Three Error Messages ••••••••••••••••••••••• 85

4. Loader Error Messages•••············•····•···•·· 86

5. Run-Time Error ~essages 87

7

ALGOL W

LANGUAGE DESCRIPTION

8

1 TERMINOLOGY, NOTATION AND BASIC DEPINATIONS

The Reference Language is a phrase structure language,
defined by a formal metalanguage. This metalanguage makes use of
the notation and definitions explained below. The structure of
the language ALGOL Wis determined by:

(1) VT, the set of basic (or terminaU symbols
of the language,

(2) VN, the set of syntactic entities
(or nonterminal symbols) ,and

(3) P, the set of syntactic rules (or productions).

1. 1 J!Qta_!:iO!!

A syntactic entity is denoted by its name (a sequence
consisting only of letters, digits and hyphens) enclosed in the
brackets< and>. A syntactic rule has the form

(a) ! :•= X

where <a> is a member of VN, and xis any possible sequence of
basic symbols and syntactic entities, simply to be called a
"sequence". In ALGOL w, the set P contains the syntactic rule

<bar> : := I

implying that I is a basic symbol of the language. Adopting the
convention that all references to this basic symbol in other
syntactic rules shall be replaced by <bar> permits the
unambiguous use subsequently of the notation

<a> : : = x I y I • • • I z

as an abbreviation for the set of syntacti~ rules

<a>::= X
<a>::= y

<a> : : = z

In the syntactic rule

<empty> .. -.. -
the sequence Contains zero symtols, i.e. the empty sequence.

1. A sequence xis said to gir~ctly p~g~y~e a sequence y
if and only if there exist (possibly empty) sequences u and
w, so that either (i) for some <a> in VN, x = u<a>v,
y = uvw, and <a> ::=vis a rule in P; or (ii) x = uv,
y = uvw and vis a "comment" (see below).

2. A sequence x is
only if there exists an
s[1], • • • , s(n J, so

said to prQQ~ a sequence y if and
ordered set of sequences s[O],

that x = s[O], s[n] = y, and s[i-1]

1.2 Definitions

directly produces s[i) for all i = 1, , n.

9

3. A sequence xis said to be an ALGOL W program if and
only if its constituents are members of the set VT, and x
can be produced from the syntactic entity <program>.

The sets VT and VN - {I} are defined Through enumeration of
their members in Section 2 (cf. also 4.4). The syntactic rules
are given throughout sections 1 to 8. To provide explanations for
the meaning of ALGOL w programs, lover case letter sequences used
in syntactic entities have been chosen to be English words
describing approximately the nature of the syntactic entity or
construct. Where words which have appeared in this manner are
used elsewhere in the text, they refer to the corresponding
syntactic definition. Along with these letter sequences the
symbol Tor Tn, where n is a digit, may occur. It is understood
that this symbol must be replaced by any one of a finite set of
English words (or word pairs). Unless otherwise specified in the
particular section, all occurrences of the symbol T within one
syntactic rule must be replaced consistently, and the replacing
words are

integer
real
long-real
complex
long-complex

For example, the production

logical
bit
string
reference

<T-expression-1> : := <T-expression-2> (cf .6)

corresponds to

<integer-expression-1>
<real-expression-1>
<long-real-expression-1>
<complex-expression-1>
<long-complex-expression-1>

The production

::= <integer-expression-2>
::= <real-expression-2>
::= <long-real-expression-2>
::= <coaplex-expression-2>
::= <long-coaplex-expression-2>

<TI.J-expression-8> ::= lo,!!g <T5-expression-8> (cf.6.3.1 and
6. 3.2. 7)

corresponds to

<long-real-expression-8>
<long-real-expression-8>
<long-complex-expression-8>

::= !ong <real-expression-8>
::= 12.!!g <integer-expression-8>
::= lggg <complex-expression-a>

It is recognized that typographical entities exist of lover
order than basic symbols, called characters. The accepted
characters are those of the IBN system 360 EBCDIC code.

The symbol £.Ql!.!!fil!.! followed by any sequence of characters
not containing semicolons, followed by a se■icolon, is called a
comment. A comment has no effect on the meaning of a program,

10 1. 2 Definitions

and is ignored during execution of the
(cf. 3. 1) immediately following the

regarded as a comment.

program. An
basic symbol

identifier
!U!.!l is also

The execution of a program can be considered as a sequence
of units of action. The sequence of these units of action is
defined as the evaluation of expressions and the execution of
statements as denoted by the program. In the definition of the
implemented language the evaluation or execution of certain
constructs is either (1) defined by System 360 operations, e.g.,
real arithmetic, or (2) left undefined, e.g., the order of
evaluation of arithmetic primaries in expressions, or (3) said to
be not valid or not defined.

2 SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1 J!~si.£ ~ymbQ1§ jVN-llll

AIBICIDIEIFJGIHJIIJIK
H I O t P I Q I R I S I T I U I V I V I I
0 I 1 I 2 1 3 I 4 I 5 1 6 t 7 I 8 I 9 I
try~ I !als~ I "I ~ul1 I t I ' I
i!!~g~~ I ~gl I £Q~Elei I !ggi£tl I aits I ntiBg I
£~!e~en£g J ll~ll I Er9cedure I ~~g I
, I ; I : 1 • I (I) t ~~gin I end I if I ,then I ~lse I
£g§~ lg! I + I - I * t / I ** I di! I rem I ~hr I 2.!ll I
g~~ I long I 2h9~! I gilg I 2.1: I~ I_ I= I~= I< I
<= 1 > I >= I :: I
:= J .9gto I g_g to I fo!
comment I value I ~esult

st!!£ I until I gQ I :!hi!!!
sl§2fil:! I UIDll I f Otlil.!!

All underlined words, which are called "reserved words", are
represented by the same words in capital letters in an actual
program, with no intervening blanks. Adjacent reserved words,
identifiers (cf.3.1) and numbers (cf.4.1) must include no blanks
and must be separated by at least one blank space. Otherwise
blanks have no meaning and can be used freely to improve the
readability of the program.

2.2 syntactic Entities

2.2 ~yntactig ~n!ities J.!!l

11

(with corresponding section numbers)

<actual-parameter> 7.3
<actual-parameter-list> 7.3
<assert-statement> 7.8
<bar> 1. 1
<block-body> 7.1
<block-head> 7. 1
<block> 7.1
<bound-pair> 5.2
<bound-pair-list> 5.2
<case-clause> 6.8
<case-statement> 7.6
<character> 4.4
<conditional-T-expression>6.8
<control-identifier> 3. 1
<declaration> 5
<digit> 3.1
<dimension-specification> 5.3
<empty> 1.1
<equality-operator> 6.4
<expression-list> 6.7
<external-reference> 5.3
<field-list> 5.4
<for-clause> 7.7
<for-list> 7.7
<formal-array-parameter> 5.3
<formal-parameter-list> 5.3
<formal-parameter-segment>S.3
<formal-type> 5.3
<goto-statement> 7.4
<hex-digit> 4.3
<identifier> 3. 1
<identifier-list> 3.1
<if-clause> 6.8
<if-statement> 7.5
<imaginary-number> 4.1
<increment> 7.7
<initial-value> 7.7
<input-parameter-list> 7.9
<iterative-statement> 7.7
<label-definition> 7.1
<label-identifier> 3. 1
<letter> 3.1
<limit> 7.7
<lower-bound> 5.2
<null-reference> 4.5
<open-string> 4.4
<procedure-declaration> 5.3
<procedure-heading> 5.3
<procedure-identifier> 3. 1

J <procedure-statement> 7.3
I <program> 7
I <proper-procedure-body> 5.3
I <proper-procedure-declaration>S.3
I <record-class-declaration> 5.4
I <record-class-identifier> 3.1
I <record-class-identifier-list>S.1
I <record-designator> 6.7
I <relation> 6.4
I <relational-operator> 6.4
I <scale-factor> 4.1
I <sign> 4. 1
I <simple-statement> 7
I <simple-T-variable> 6.1
I <simple-T-variable-declaration>
I 5. 1
I <standard-procedure-statement>7.9
I <statement> 7
f <statement-list> 7.6
I <string> 4.4
t <subarray-designator-list> 7.3
I <subscript> 6.1

<subscript-list> 6.1
<substring-designator> 6.6
<T-array-declaration> 5.2
<T-array-designator> 6.1
<T-array-identifier> 3.1
<T-assignment-statement> 7.2
<T-block-expression> 6.3
<T-constant> 4.1-4.5
<T-express~on> 6
<T-expression-i> 6-6.7
<T-expression-list> 6.8
<T-field-designator> 6. 1
<T-field-identifier> 3. 1
<T-function-designator> 6.2

I <T-function-identifier> 3.1
I <~-function-procedure-body> 5.3
t <T-function-procednre-
1 declaration>
I <T-left-part>
I <T-subarray-designator>
I <T-type>
I <T-variable>
I <T-variable-identifier>
f <transput-parameter-list>
I <unscaled-real>
I <upper-bound>
I <while-clause>

s. 3
7.2
7.3
5. 1
6. 1
3.1
7.9
4. 1
s. 2
7. 7

12

3 IDENTIFIERS

<identifier>::= <letter> I <identifier> <letter>
<identifier> <digit> I <identifier>

<T-variable-identifier> : := <identifier>
<T-array-identifier> ::= <identifier>
<procedure-identifier>::= <identifier>
<T-function-identifier> ::= <identifier>
<record-class-identifier>::= <identifier>
<T-field-identifier> ::= <identifier>
<label-identifier>::= <identifier>
<control-identifier>::= <identifier>
<letter>::= A I BI C I DI EI PIG HI I I J I KIL I ft

NtOIPI QI RI SI TJ 01 VI WI XIYIZ
<digit> : := O 1 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
<identifier-list>::= <identifier> I

<identifier list>, <identifier>

Variables, arrays, procedures, record classes and record
fields are said to be gy~.!!1!.tie§. Identifiers serve to identify
quantities, or they stand as labels, formal parameters or control
identifiers. Identifiers have no inherent meaning, and can be
chosen freely in the reference language. In an actual program a
reserved word cannot be used as an identifier.

Every identifier used in a progra ■ must be defined. This is
achieved through

(a) a declaration (cf. Section ~, if the identifier
identifies a quantity. It is then said to denote that
quantity and to be a T variable identifier, T array
identifier, T procedure identifier, T function identifier,
record class identifier or T field identifier, where the
symbol T stands for the appropriate word reflecting the
type of the declared quantity;

(b) a label definition (cf.7.1), if the identifier stands as a
label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5. 3). It is
then said to be a formal parameter;

(d) its occurrence following the symbol [,2~ in a for clause
(cf.?.7). It is then said to be a control identifier;

(e) its implicit declaration in the language. Standard
procedures, standard functions, and predefined variables
(cf. 7.9 and 8) may be considered to be declared in a block
containing the program.

The recognition of the definition of a given identifier is
determined by the following rules:

3. 2 Seman tics 13

Step 1. If the identifier is defined by a declaration of
a quantity or by its standing as a label within the
smallest block (cf.7.1) embracing a given occurrence of
that identifier, then it denotes that quantity or label. A
statement following a procedure heading (cf.5.3) or a for
clause (cf.7.7) is considered to be a block, as is a block
expression (cf.6).

Step 2. Otherwise, if that block is a procedure body and
if the given identifier is identical with a formal
parameter in the associated procedure heading, then it
stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for
clause and the identifier is identical to the control
identifier of that for clause, then it stands as that
control identifier.

Otherwise, these rules are applied considering the smallest
block embracing the block which has previously been considered.

If either step 1 or step 2 could lead to aore than one
definition, then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a
control identifier is the set of statements in which occurrences
of an identifier may refer by the above rules to the d·efinition
of that quantity, label, formal parameter or control identifier.

I
PERSON
ELDERSIBLING
X15, X20, X25
NEW_PAGE

14

4 VALUES AND TYPES

Constants and variables (cf.6.1) are said to possess a
value. The value of a constant is determined by the denotation
of the constant. In the language, all constants (except
references) have a reference denotation (cf.4.1 - 4.4). The
value of a variable is the one most recently assigned to that
variable. A value is {recursively) defined as either a simple
value or a structured value (an ordered set of one or more
values). Every value is said to be of a certain type. The
following types of simple values are distinguished:

1!!.!~gg,r: the value is a 32 bit integer,
~ggl: the value is a 32 bit floating point number,
!Q!!g £gg1: the value is a 64 bit floating point number,
£Q!!.Ele,!: the value is a complex number composed of two

numbers of type I:!!.i!l,
12~g £2~Ele,!: the value is a complex number composed

of two lo.ng ~eal numbers,
.!Q..9!91: the value is a logical value,
bi!§: the value is a linear sequence of 32 bits,
§1~ing: the value is a linear sequence of at least one and

at most 256 characters,
reference: the value is a reference to a record.

The following types of structured values are distinguished:

g!:~g,I: the value is a an ordered set of values, all of
identical type,

I~Qrd: the value is an ordered set of values.

A procedure may yield a value, in which case it is
be a function procedure, or it may not yield a value,
case it is called a proper procedure. The value of a
procedure is defined as the value which results
execution of the procedure body (cf.6.2.2).

said to
in which
function

from the

Subsequently, the reference denotation of constants is
defined. The reference denotation of any constant consists of a
sequence of characters. This, however, does not iaply that the
value of the denoted constant is a sequence of characters, nor
that it has the properties of a sequence of characters, except,
of course, in the case of strings.

4~ 1. 1 Syntax

<long-complex-constant>::= <complex-constant>L
<complex-constant>::= <imaginary-constant>
<imaginary-constant>::= <real-constant>! I

<integer-constant>I
<long-real-constant>::= <real-constant>L I

<integer-constant>L
<real-constant>::= <unscaled-real> I

<unscaled-real><scale-factor> I
<integer-constant><scale-factor> I
<scale-factor>

4.1 Numbers

<unscaled-real>::= <integer-constant>.<integer-constant>
.<integer-constant> I <integer-constant>.

<scale-factor>::= •<integer-constant> I
•<sign><integer-constant>

<integer-constant>::= <digit> I <integer-constant><digit>
<sign>::=+ I -

4.1.2 Semantics

15

Arithmetic constants are numbers interpreted according to
the conventional decimal notation. A scale factor denotes an
integral power of 10 which is multiplied by the unscaled real or
integer number preceding it. Each number has a uniguely defined
type. (Note that all <T-constant>s are unsigned.)

4.1.3 Examples

1 .5
0100 1 1 3

3.1416 6.02486'+23
2.718281828459045L

4. 2. 1 Syntax

<logical-constant>

4.3 Bit Seguences

4. 3. 1 Syn tax

··­.. -

1I
0.671
1IL
2. 3 1 -6

<bit-constant>::= t <hex-digit> I
<bit-constant><hex digit>

<hex-digit> : := O J 1 I 2 I 3 t 4 · 1 5 1 6 I 7 I 8 I 9 I
AIBICIDIEIF

Note that 2 I ... t P correspond to 2 I ••• I 15
10 10

4.3.2 Semantics

The number of bits in a bit constant is 32 or 8 hex digits.
The bit constant is always represented by a 32 bit word with the
specified sequence of bits right justified in the word and zeros
filled in on the left.

4. 3. 3 Examples

t4P - 0000 0000 0000 0000 0000 0000 0100 1111
19 = 0000 0000 0000 0000 0000 0000 0000 1001

4. 4. 1 syntax

<string-constant>::= <string>
<string>::= "<open-string>"
<open-string>::= <character> I <open-string><character>

16 4.4 Strings

4.4.2 Semantics

Strings consist of any sequence of (at least one and at most
256) characters accepted by the system 360 enclosed by "• the
string quote. If the string quote appears in the sequence of
characters it must be immediately followed by a second string
quote which is then ignored. The number of c~aracters in a
string is said to be the length of the string. The characters
accepted by the IBM system 360 are listed in Appendix I.

4.4.3 Examples

"JOHN"
"""" is the string of length 1 consisting of the string

quote.

4.5 References

4. 5. 1 Syntax

<reference-constant>::= n.!!l!

4.5.2 Semantics

The reference value null fails to designate a record; if a
reference expression occurring in a field designator (cf.6.1) has
this value. then the field designator is undefined.

17

5 DECLARATIONS

Declarations serve to associate identifiers with the
quantities used in the program, to attribute certain permanent
properties to these quantities (e.g type, structure), and to
determine their scope. The quantities declared by declarations
are simple variables, arrays, procedures and record classes.

Upon exit from a block, all quantities declared or defined
within that block lose their value and significance (cf. 7.1.2
and 7. 4. 2).

Syntax:

<declaration>::= <simple-T-variable-declaration> I
<T-array-declaration> I <procedure-declaration>
<record-class-declaration>

5.1 Sim,Ple Variable De£lagti.Q.!!§

5. 1. 1 syntax

<simple-T-variable-declaration> : := <T-type><identifier-list>
<integer-type>::= int~g~~
<real-type> : := real
<long-real-type>::= long ~~sl
<complex-type>::= g2.!!.E.l!ll
<long-complex-type> ::= !2ng £2lll~!
<logical-type>=== logicAl
<bits-type>::= bi!§ I ~it 2 (32)
<string-type>::= 2W.!!g t 2tri,ng (<integer-constant>)
<reference-type>:::

£ef~£~!!~ (<record-class-identifier-list>)
<record-class-identifier-list>::= <record-class-identifier>t

<record-class-identifier-list>,<re·cord-class-identifier>

5.1.2 Semantics

Each identifier of the identifier list is associated with a
variable which is declared to be of the indicated type. A
variable is called a simple variable, if its value is si■ ple (cf.
Section 4). If a variable is declared to be of a certain type,
then this implies that only values which are assignment
compatible with this type (cf. 1.2.2) can be assigned to it. It
is understood that the value of a variable is equal to the value
of the expression most recently assigned to it.

A variable of type l!its is always of length 32 whether or
not the declaration specification is included.

A variable of type ~trilliJ.
integer in the declaration
integer may not be less than 1
simple type is given only as
is 16 characters.

has a length equal to the unsigned
specification. The value of this

or greater than 256. If the
§tring, the length of the variable

A variable of type ~efe£~~ may refer only to i::ecords of
khe record classes whose identifiers appear in the record class

18 5.1 Simple Variable Declarations

identifier list of the reference declaration specification~

5. 1. 3 Examples

i]t~g_!ll'. I, J, K, "• M
£§al X, Y, Z
12!!9 £Q.!J2 le,! C
lgg!g~! L
!!it§ G, H
St£iEg (10) S, T
£~.t~£fil!£~ (PERSON) JACK, JILL

5.2 Arrgy Declarations

5. 2. 1 syntax

<T-array-declaration> ::= <T-type> ~Il~Y <identifier-list>
(<bound-pair-list>)

<bound-pair-list>::= <bound-pair> I
<bound-pair-list>,<bound-pair>

<bound-pair>::= <lower-bound>:: <upper-bound>
<lower-bound>::= <integer-expression>
<upper-hound>::= <integer-expression>

5. 2. 2 Seman tics

Each identifier of the identifier list of a• array
declaration is associated with a variable which is declared to be
of type ~mi. A variable of type a{r~i is an ordered set of
variables whose type is the type preceding the syabol Allll• The
dimension of the array is the number of entries in the bound pair
list.

Every element of an array is identified by a list of
indices. The indices are the integers between and including the
values of the lover bound and the upper bound. Every expression
in the bound pair list is evaluated exactly once upon entry to
the block in which the declaration occurs. The bound pair
expressions can depend only on variables and procedures global to
the block in which the declaration occurs. If, for any bound
pair, the value of the upper bound is less than the value of the
lower bound, the array has no elements.

5. 2. 3 Examples

int~g~I gl'.IgI H(1::100)
:r;;:gal !C.t:ll A, B (1:: M, 1:: N)
§tri~g (12) ~~I~I STREET, TOWN, CITY (J::K + 1)

5. 3. 1 syntax

<procedure-declaration>::= <proper-procedure-declaration> I
<T-function-procedure-declaration>

<proper-procedure-declaration>::= J2£2£edn~
<procedure-heading>; <proper-procedure-body>

<TO-function-procedure-declaration> : :=

5.3 Procedure Declarations

<TO-type> EIQ£ed~£~ <procedure-heading>;
<T1-function-procedure-body>

<proper-proc'edure-body> ::= <statement> I
<external-reference>

<T-f unct.ion-procedure-body> : := <T-expression>
<external-reference>

<procedure-heading>::= <identifier> I
<identifier> (<formal-parameter-list>)

19

<formal- parameter-list> : : = <f ormal-parameter-seg11ent> 1
<formal-parameter-list>;<foraal-parameter-segment>

<formal-parameter-segment>::= <formal-array-parameter> t
<formal-type><identifier-list>

<formal-type>::= <T-type> I <T-type> !~l!!~ I
<T-type> ~§Ul! I <T-type> ~al~ ll§.Ylt I
<T-type> H-0£~~ll~ I J:!.IOgedu~

<formal-array-parameter> : := <T-type> ~.I
<identifier-list> {<dimension-specification>)

<dimension-specification>::=* I
<dimension-specification>, *

<external-reference>::= !2I!:-I~.!l <string> I ~!gol <string>

5.3.2 Semantics

A procedure declaration associates the procedure body with
the identifier immediately following the symbol ~£!lure. The
principal part of the procedure declaration is the procedure
body. Other parts of the block in whose heading the procedure is
declared can then cause this procedure body to be executed or
evaluated. A proper procedure is activated by a procedure
statement (cf.7.3), a function procedure by a function designator
(cf.6.2). Associated with the procedure body is a heading
containing the procedure identifier and possibly a list of formal
parameters. The type of a function procedure body, T1, must be
assignment compatible (cf.7.2.2) with the type, TO, of the
procedure.

5.3.2.1 Type specification of formal parameters. All formal
parameters of a formal parameter segment are of the same
indicated type. The type must be such that the replacement of
the formal parameter by the actual parameter of this specified
type leads to correct ALGOL W expressions and statements
(cf. 7. 3. 2).

5.3.2.2 The effect of the symbols _!al_y~ and J;~suJ:1 appearing in
a formal type is explained by the following rule, which is
applied to the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols beg.!,n and
~1!.2,

(2) For every formal parameter whose formal type contains the
symbol value or result {or both),

(a) a declaration followed by a semicolon is inserted
after the first begin of the procedure body, with
a type as indicated in the formal type, and with
an identifier different from any identifier valid
at the place of the declaration;

(b) throughout the procedure body, every occurrence of

20 5.3 Procedure Declarations

the formal parameter identifier is replaced by the
identifier defined in step 2a;

(3) If the formal type contains the symbol y~ly~. an assignment
statement (cf.7.2) followed by a semicolon is inserted
after the declarations in the outermost block of the
procedure body. Its left part contains the identifier
defined in step 2a, and its expression consists of the
formal parameter identifier. The symbol Yalue is then
deleted;

(4) If the formal type contains the symbol ~~§Ul!, an
assignment statement preceded by a semicolon is inserted
before the symbol ~nd which ter11inates the procedure body.
Its left part contains the formal parameter identifier, and
its expression consists of the identifier defined in step
2a. The symbol g~~ll is then deleted.

5.3.2.3 Specification of array dimensions. The number of "*"'s
appearing in the formal array specification is the diaension of
the array parameter.

J 5.l.2.4 External references. Ose of an external reference as a
t procedure body indicates that the actual procedure body is
I specified by the environment in which the program is to be
t executed. The information in the external reference is used to
I locate and interpret that procedure body. The detail~ of such
I use depend upon the specific environment. (cf. 9.6, 10.3 and
I 11,.3)

5.3.3 Examples

.E~Q£edurg INCREMENT; X := X+1

£~g! .E~~£Q MAX (~~l yalye x, Y);
i! X < Y ll~!! Y el~~ X

.E.£Q£gdu~~ COPY (~g! .ll:Ill u. V (• •• , ; integ§t ViilU~ A. B) ;
fo£ I •- 1, until A ,g_g
_!.Q.[J := 1 .!!!!ti! B do U(I,J) := V(I,J)

£ggl .E~.Q£gg~n HORNER (I~sl! ~I[~l A(*) ; int~!U.: lli.Q!J! N;
~! ~lug X);
begin I~g! S; S := O;

fQI I:= N §te,E -1 !rn1i! 0 gg S := S * X + A(I);
s

.!.2~~ ~gg! ~~.Q.£gg~ soft (integ~r K, N; lgng real X);
Q~llB 12!!9 I~l Y; Y := O; K := N;

vh,ile K >= 1 gQ
hggi~ Y := Y + X; K := K - 1
g~g;
y

~eference {PERSON) f~.Q£QQ~£~ YOUNGESTONCLE
(I~fe£~£g (PERSON) B);

5.3 Procedure Declarations

begin reference (PERSON) P, M;
P := YOUNGESTOFFSPRING (FATHER (FATHER {R)));
whi.!g p-,= null filLQ ., MALE (P) .Q!:

P = FATHER (R) gQ
P : = ELDERS IBLING (P) ;

l1 := YOUNGESTOFFSPRING (MOTHER (MOTHEB (R)));
while M ~= null and ., MALE ('1) do

f'II:= ELDERSIBLING {Pl);
11 P = nu!l th~~ Pl elsg
if"= !!.Y!l l!lgn P tl~~
ii AGE(P) < AGE(N) !hgn p els~"

fil!Q

21

~[Q£~durg PLOTSUBROUTINE (!nt.fill£{ lllY~ I); fo~!liB "PLOTSB"

5.4 Beczg £la~ Declarations

5. 4. 1 Syntax

<record-class-declaration>::=
!:~Q~Q <identifier> (<field-list>)

<field-list>::= <simple-T-variable-declaration> t
<field-list>; <simple-T-variable-declaration>

5.4.2 Semantics

A record class declaration serves to define the structural
properties of records belonging to the class. The principal
constituent of a record class declaration is a sequence of simple
variable declarations which define the fields and their types for
the records of this class and associate identifiers with the
individual fields. A record class identifier can be used in a
record designator (cf. 6.7) to construct a new record of the
given class.

5. 4. 3 Examples

re£QI1! NODE (~!~fil!£.! (NODE) LEFT, RIGHT)

~g£Q!:1 PERSON (§tri.!UJ NAME; int~gg~ ~GE; lggig! !ALE;
!:~fe~n£~ (PERSON) FATHER• "OTHER, YOUHGESTOPPSPBING,
ELDERSIBLING)

22

6. EXPRESSIONS

Expressions are rules which specify bow new values are
computed from existing ones. These new values are obtained by
performing the operations indicated by the operators on the
values of the operands. The operands are either constants,
var.iables or function designators, or other expressions, enclosed
by parentheses if necessary. The evaluation of operands other
than constants may involve smaller units of action such as the
evaluation of other expressions or the execution of statements.
The value of an expression between parentheses is obtained by
evaluating that expression. If an operator has two operands,
then these operands may be evaluated in any order with the
exception of the logical operators discussed in 6.4.2.2.

I Expressions are distinguished by a type and a precedence level,
I the former depending on the types of the operands and the latter
I resulting from the precedence hierarchy imposed upon operators in
I the syntactic rules which follow. The syntactic entities naming
J different kinds of expression in these rules display these
I attributes, the word "expression" being prefixed by a type and,
I usually, postfixed by an integer indicating the precedence level.
I (Higher precedence is implied by increasing magnitude of this
f integer). The operators and their precedence levels are:

1
I
I
I
I
I
I
I
I
I

level

1
2
3
4
5
6
7
8

operators

QI
ll9 ..,
< <= = -,: >= > li
+ -
• I 1iY !:~!!
211! 21!!: ••
lolliJ ShQ!:1 il2

I When the types allow an operator at level i to be applied to
f operands, the resulting expression, which belongs to the
I syntactic class <T-expression-i>, has the intuitive meaning given
I in the second column of the table.

I
I
I
t
I
I
I
t

' I

syntactic Entity

<T-expression-1>
<T-expression-2>
<T-expression-3>
<T-e x pressio n- 4>
<T-expression-5>
<T-expression-6>
<T-expression-7>
<T-expression-8>

.. eaning

disjunction
conjunction
negation
rela t.ion
sum
term
factor
primary

Definitions

6, 6. 4, 6.5
6, 6.4, 6.5
6, 6.4, 6.5
6, 6.4
6, 6.3
6, 6. 3
6, 6. 3, 6. 5
6, 6. 3, 6.1

I The third column of the table indicates sections where
I definitions of these syntactic entities occur.

Throughout section 6 and its subsections the symbol T has to
be replaced consistently as described in Section 1 and the
triplets TO, Tl, T2 have to be either all three replaced by the
same one of the words

I
l
I
I
I
f
I
I
1
1
I
I
I
J
I

23

logica 1
bit
string
reference

or (subject to specification to the contrary) in accordance with
the following "triplet rules".

1. Given the qualities (integer, real or complex) of Tl and
T2, the corresponding quality of TO is given in the table

T2 I integer real complex 1_1 ____ _1 ____________________ _

integer I integer real complex
real t real real complex
complex I complex complex complex

2. TO bas the quality "long" either if both Tl and T2 have
that quality, or if one has the quality "long" and the
other is "integer".

Syntax:

<T-expression> ::= <T-expression-1> I
<conditional-T-expression>

<T-expression-1> ··- <T-expression-2>
<T-expression-2> ::= <T-expression-3>
<T-expression-3> ::= <T-expression-4>
<T-expression-4> ::= <T-expression-5>
<T-expression-5> ::= <T-expression-6>
<T-expression-6> ::= <T-expression-7>
<T-expression-7> ::= <T-expression-8>
<T-expression-8> ::= <T-variable> I

<T-function-designator> I <T-constant> I
(<T-expression>) I <T-block-expression>

<T-block-expression> ::= <block body><T-expression> ,fil!g

Semantics:

J There are 8 levels of precedence; an expression at one level
1 of precedence is a valid expression at each lover level of
I precedence.

I A block expression introduces a new level of nomenclature
I and specifies the execution of a sequence of stateaents,in the
I block body as described for blocks (cf.7.1). After execution of
I the block body, the final expression is evaluated and the value
I of that expression becomes the value of the entire block
I expression.

Variables, function designators and conditional expressions
are defined in subsequent paragraphs of section 6.

6. 1 varia!lle 2

6.1.1 Syntax

<simple-T-variable> ::= <T-variable-identifier> I

24 6. 1 Variables

<T-field-designator> I <T-array-designator>
<T-variable> ::= <simple-T-variable>
<string-variable>::= <substring-designator>
<T-field-designator> ::= <T-field-identifier>

(<reference-expression>)
<T-array-designator> ::= <T-array-identifier>

(<subscript-list>)
<subscript-list>::= <subscript> I

<subscript-list>, <subscript>
<subscript> : := <integer-expression>

6.1.2 Semantics

An array designator denotes the variable whose indices are
the current values of the expressions in the subscript list. The
value of each subscript must lie within the declared bounds for
that subscript position.

A field designator designates a field in the record referred
to by its reference expression. The type of the field designator
is defined by the declaration of that field identifier in the
record class designated by the reference expression of the field
designator (cf. 5.4).

6. 1. 3 Examples

X A (I)
FATHER (JACK)

6. 2. 1 syntax

,. (I +K ,I-J)
MOTBER(PATHER(JILL))

<T-function-designator> ::= <T-function-identifier> I
<T-function-identifier> (<act·ual-parameter-list>)

6.2.2 Semantics

A function designator defines a value which can be obtained
by a process performed in the following steps:

Step 1. A copy is made of the body of the function procedure
whose procedure identifier is given by the function
designator and of the actual parameters of the latter.

Steps 2, 3, 4. As specified in 7.3.2.

Step 5. The copy of the function procedure body, ■odified as
indicated in steps 2-4, is executed. Execution of the
expression which constitutes or is part of the modified
procedure body consists of evaluation ,of that
expression, and the resulting value is the value of the
function desiqna tor. The type of the .function
designator is the type in the corresponding function
procedure declaration.

6.2 Function Designators

6.2.3 Examples

MAX(X ** 2, Y ** 2)
YO0NGESTUNCLE(JILL)
HORNER{X, 10, 2.7)

6. 3. 1 Syntax

SUM{I, 100, H(I))
SOH(I, ft, SU"(J, N, A(I,J))}
SUP! (I, 10, X (I) * Y (I))

<T3-expression-5> : := + <T3-e.xpression-6> I
- <TJ-expression-6>

25

<T0-expression-5> ::= <Tl-expression-5> + <T2-expression-6>
<T1-expression-5> - <T2-expression-6>

<T0-expression-6> ::= <Tl-expression-6> * <T2-expression-7> 1
<Tl-expression-6> / <T2-expression-7>

<integer-expression-6> ::=
<integer-expression-6> gi! <integer-expression-7>
<integer-expression-6> r~! <integer-expression-7>

<T4-expression-7> ::=
<T5-expression-7> ** <integer-expression-8>

<T4-expression-8> ::= sh~ <TS-expression-8> I
!g.n.g <TS-expression-8> I~! <TS-expression-8>

<integer-expression-8> ::= <control-identifier>

6.3.2 Semantics

An arithmetic expression is a rule for computing a number.
According to its type it is called an integer expression, real
expression, long real expression, complex expression, or long
complex expression.

6.3.2.1 The operators+,-,*, and/ have the conventional
meanings of addition, subtraction, multiplication and division.

I For the operator•, the second "triplet rule" is aodified so
t that TO has the quality long unless both Tl and T2 are integer.

I For the operator/, the "triplet rules" apply except when
I both T1 and T2 are integer, then TO is long-real.

6.3.2.2 The operator"-" standing as the first symbol of an
expression at priority level 5 denotes the monadic operation of
sign inversion. The type of the result is the type of the
operand. The operator"•" standing as the first sy ■bol of such
an expression denotes the monadic operation of identity.

In the relevant syntactic rules of 6.3.1, every occurrence
of the symbol T3 must be systematically replaced by one of the
following words (or word pairs):

integer
real
long- rea 1
complex
long-complex

6.3.2.3 The operator £i! is defined (for B ~= 0) as

I
I
I
t

26 6.3 Arithmetic Expressions

(cf. 6. 3. 2. 6)

where the fuction procedures SGN and Dare declared as

integ~~ £rocdure SGH (integer value A);
ii A< 0 ihg~ -1 elsg 1;

6.3.2.4 The operator ~g~ (remainder) is defined as

6.3.2.5 The operator ** denotes
operand to the power of the second
syntactic rule of 6.3.1 the symbols
by any of the following combinations

Tli I
---- ____ 1
long-real I
long-real I
long-complex I

T5

integer
real
complex

exponentiation of the first
operand. In the relevant
T4 and TS are to be replaced
of words:

T4 has the quality "long" whether or not TS does.

6.3.2.6 The monadic operator ab~ yields the absolute value or
modulus of the operand. In the relevant syntactic rule of 6.3.1
the symbols T4 and TS have to be replaced by any of the following
combinations of vords:

T4

integer
real
real

I TS _____ 1 ______ _
I integer
I real
t complex

If TS has the quality "long", then so does T4.

6.3.2.7 Precision of arithmetic. If the result of an arithmetic
operation is of type .J::~~l. £.Ql!l!l~.!, ,logrn !:§.!!, or ~ s.oapl§x,
its value is defined by Systea/360 arithmetic and is the
mathematically understood result of the operation performed on
operands which may deviate fro■ actual operands.

In the relevant syntactic rules of 6.3.1 the sy ■bols T4 and
TS must te replaced by any of the following combinations of words
(or word pairs):

Operator long

T4 I TS
___________ 1 _____ _
long-real I real
long-real I integer
long-co■ plex I complex

6.J Arithmetic Expressions 27

Operator .21!.Q.£!

T4 I TS _____________ 1 ______ _
.real I long-real
complex I long-complex

_!ot~: It is illegal to apply l~UHI to an expression which is
already long; similarly for shor!_.

6.3.3 Examples

C +A (I) * B (I)
RXP(-X/(2 * SIG"A)) / SQRT(2 * SIGMA)

6.4.1 Syntax

In the following rules for <relation> the symbols T6 and T7
must either be identically replaced by any one of the following
words:

bit
string
reference

or by any of the words from:

complex
long-complex
real
long-real
integer

and the symbols T8 or T9 must be identically replaced by string
or must be replaced by any of real, long-real, integer.

I <logical-expression-1> ::=
J <logical-expression-1> .Q.I <logical-expression-2>
I <logical-expression-2> ::=
I <logical-expression-2> g.J!g <logical-expression-3>
I <logical-expression-3> ::=, <logical-expression-4>
I <logical-expression-Q> ::= <relation>
I <relation>::=
I <T6-expression-S><equality-operator><T7-expression-5> I
t <T8-expression-5><inequality-operator><T9-expression-5>
I <reference-expression-5> is <record-class-identifier>

<equality-operator>::== I~=
<inequality-operator>::=< I <= I >= I >

6.4.2 Semantics

A logical expression is a rule for co■puting a logical
value.

6.Q.2.1 The relational
for arithmetic arguments

operators represent algebraic ordering
and EBCDIC ordering for string

28 6.4 Loqical Expressions

1 arguments. If two strings of unequal length are compared, the
t shorter string is considered to be extended to the length of the
I longer (for the comparison only) by appending blanks to the
I right. The relational operators yield the logical value ll.Y~ if

the relation is satisfied for the values of the two operands;
fa!§~ otherwise. Tvo references are equal if and only if they
are both fil!ll or both refer to the sa11e record. The operator i.2
yields the logical value t,u~ if the reference expression
designates a record of the indicated record class; fals~
otherwise. The reference value !l.Yl.! fails to designate a record
of any record class.

6.4.2.2 The operators~ (not), ug, and QI:, operating on logical
values, are defined by the following equivalences:

~ l
X .!!Jt~ Y
X .Q.I y

if x th~l! ,!l2~ ~lll t!:Y.!
i! x then Y ~!2!! ,~12~
.i! x then 1-'~ .!1§~ Y

6. 4. 3 Examples

p .Q,I Q

X < Y .!!!!!! Y < Z
YOONGESTOFPSPRING
FATHER (JILL) is

(JACK) .,= null
PERSON

6. 5. 1 Syntax

<bit-expression-1> ::=
<bit-expression-1> Q!: <bit-expression-2>

<bit-expression-2> ::=
<bit-expression-2> ll!! <bit-expression-3>

<bi t-expression-3> : := ., <hi t-expressio·n-4 >
<bit-expression-7> ::=

<bit-expression-7> §h! <integer-expression-8> J
<bit-expression-7> §A{ <integer-expression-a>

6.5.2 Semantics

A bit expression is a rule for computing a bit sequence.

The operators g!!g, Q~. and~ produce a result of type lu:!§,
every bit being dependent on the corresponding bit(s) in the
operand(s) as follows:

X Y I ~x X ~D~ Y X .Q.I Y
I _______ _l __________________ _

o o I 1 o o
O 1 I 1 o 1
1 o I o o 1
1 t I o 1 1

The operators .2.hl and l?hl: denote the shifting operation to
the left and to the right respectively by the number of hit
positions indicated by the absolute value of the integer operand.

6.5 Bit Expressions 29

vacated bit positions to the right or left respectively are
assigned the bit value 0.

6.5.3 Examples

G ~.!!.Q H .Q!'. t J 8
G ~nd ~ (H .Q~ G) ~hr 8

6. 6. 1 syntax

<substring-designator>::= <string-variable>
(<integer-expression><bar><integer-constant>)

6.6.2 Semantics

A string expression is a rule for co■ putinq a string
(sequence of characters).

6.6.2.1 A substring designator denotes a sequence of characters
of the string designated by the string variable. The integer
expression preceding the bar selects the starting character of
the sequence. The value of the expression indicates the position
in the string variable. The value must be greater than or equal
to O and less than the declared length of the string variable.
The first character of the string has position O. Th~ integer
number following the bar indicates the length of the selected
sequence and is the length of the string expression. The sum of
the integer expression and the integer number ■ ust be less than
or equal to the declared length of the string variable.

6.6.3 Examples

S(titJ)
S(I+JI 1)
ST RB ET (J + 1) (I I 1)
NAME (FATHER {JACK)) (018)

6. 7. 1 Syntax

<reference-expression-8> ::= <record-designator>
<record-designator>::= <record-class-identifier> I
<record-class-identifier> (<expression-list>)
<expression-list>::= <empty> I <T-expression> f

<expression-list>, I
<expression-list>, <T-expression>

6.7.2 Semantics

A reference expression is a rule for co ■puting a reference
to a record.

The value of a record designator is the reference to a newly
created· record belonging to the designated record class. If the
record designator contains an expression list, then the length of

30 6.7 Reference Expressions

the list must equal the number of fields specified in the record
class declaration. Values of nonempty expressions in the
expression list are assigned to the corresponding fields of the
new record, and the types of the expressions must be assignment
compatible with the types of the record fields (cf. 7.2.2).

6.7.3 Examples

.PERSON ("JANE", O, f~.!2(}, JACK, JILL, lli!, YOUNGESTOPPSPRING
(JACK))

NODE (, .!!.Yll)

6.8.1 Syntax

<conditional-T-expression> ::=
<case-clause> (<T-expression-list>)

<conditional-TO-expression>::=
<if-clause> <Tl-expression> ~lse <T2-expression>

<T-expression-list> ::= <T-expression>
<TO-expression-list>::=

<Tl-expression-list>, <T2-expression>
<if-clause> : : = if <logical-expression> thsrn
<case-clause> : : = £!.§~ <integer-expressio.n> .2i

6.8.2 Semantics

The construction

<if-clause> <Tl-expression> els~ <T2-expression>

causes the selection and evaluation of an expression on the basis
of the current value of the logical expression contained in the
if clause. If this value is .t.r~, the expression following the
if clause is selected; if the value is 1~.1§~, the. expression
following ~!~ is selected. If Tl and T2 are tJpe stri.!,9, the

1 length of the resulting expression is the ■axiau■ of the lengths
f of the component string expressions; if necessary, blanks are
f appended on the right of the shorter string. The coastruction

<case-clause> (<T-expressioa-list>)

causes the selection of the expression whose ordinal nu ■ber in
the expression list is equal to the current Yalue of the integer
expression contained in the case clause. In order that the case
expression be defined, the current value of this expression must
be the ordinal number of some expression in the expression list.

t If T is type string, the length of the resulting string
I expression is the ■aximum of the lengths of the strings in the
I expression list. If necessary. the leagth of any shorter element
I is increased by appending blanks on the right.

6.8.J Examples

!! A>B 1~fil! A ~!.!!i! B
9§!1 I .QL ("SPADES","HEABTS","DIUIOMDS","CL0BS")

31

7 STATEMENTS

A statement denotes a unit of action. By the execution of a
statement is meant the performance of this unit of action, which
may consist of smaller units of action such as the evaluation of
expressions or the execution of other statements.

Syntax:

<program>::= <statement>. I
<proper-procedure-declaration>. I
<T-function-procedure-declaration>.

<statement>::= <simple-statement> I <iterative-statement>
<if-statement> I <case-statement>

<simple-statement>::= <block> I <T-assignment-statement>
<procedure-statement> I <goto-statement> I

I <standard-procedure-statement> I
I <assert-statement> I <empty>

Programs which are procedure declarations cannot be executed
directly, but the corresponding procedure bodies can for■ part of
the environment in which other ALGOL w programs are executed
(cf. 5. 3, 2. 4, 9. 6, 10. 3 and 11. 3)

7. 1 ~.!.Qf.!.2

7.1.1 Syntax

<block>::= <block-body> <statement> eng
<block-body>::= <block-head> I <block-body> <statement>; i

<block-body> <label-definition>
<block-head>::= beg.in I <block-head> <declaration>;
<label-definition>::= <identifier>:

7.1.2 Semantics

Every block introduces a new level of nomenclature. This is
realized by execution of the block in the following steps:

Step 1. If an identifier, say A, defined in the block head
or in a label definition of the block body is already
defined at the place fro■ which the block is entered, then
every occurrence of that identifier, A, within the block
except for occurrence in array bound expressions is
systematically replaced by another identifier, say A',
which is defined neither within the block nor at the place
from which the block is entered.

Step 2. If the declarations of the block contain array
bound expressions, then these expressions are evaluated.

Step J. Execution of the stateaents contained in the block
body begins with the execution of the first statement
following the block head.

After execution of the last stateaent of the block (unless
it is a goto statement leading to a label within the block) a
block exit occurs, and the statement following the entire block

32 7.1 Blocks

is executed.

7.1.J Example

tJ := X; X := Y; Y := Z; Z := U

7. 2. 1 Syntax

In the following rules the sy ■bols TO and T1 must be
replaced by words vhich may be substituted for T as indicated in
Section 1, subject to the restriction that the type Tl must be
assignment compatible vitb the type TO as defined in 7.2.2.

<TO-assignment-statement> : := <TO-left-part><T1-eipression>
<TO-left-part><T1-assign■ent-stateaent>

<T-left-part> ::= <T-variable> :=

7.2.2 Semantics

The execution of a simple assignment statement

<TO-left-part><T1-eipression>

causes the assignment of the Yalue of the expression to the
I variable. If a shorter string is to be assigned to a longer one,
I the shorter string is first extended to the right vith blanks
J until the lengths are equal. In a multiple assign■ent statement

<TO-left-part> <T1-assign■ent-statement>

the assignments are performed fro■ right to· left. For each left
part variable, the type of the expression or assign■ent Yariable
im•ediately to the right must be assign■ent co■ patible vith the
type of that variable.

A type Tl is said to be assignment co■patible with a type TO
if either

(1) the tvo types are identical (except that if TO and Tl are
stri,!!_g, the length of the TO variable aust be greater than
or equal to the length of the T1 expression or assignment),
or

(2) TO is ~~§! or jong llgl, and T1 is intege£, I!!l or long
£~-2! or

(3) TO is .£.QHl~i or .!fil!g £.Qlllll, and T 1 is ~gn, £~!,
!.Q!Hl ~a 1, .£.Q:!!l?l!t! or !2!l9'. £2!!1?!!1!.

In the case of a reference, the reference to be assigned
must be null or refer to a record of one of the classes specified
by the record class identifiers associated with the reference
variable in its declaration.

7.2 Assignment Statements

7.2.3 Examples

Z :-= AGE (JACK) := 28
X : = Y + ab§ 'l

7. 3. 1 Syntax

C :-= I + X + C
p := X -.:: y

<procedure-statement>::= <procedure-identifier> I
<procedure-identifier> (<actual-parameter-I ist>)

<actual-parameter-list>::-= <actual-parameter> I
<actual-parameter-list>, <actual-parameter>

<actual-parameter>::= <T-expression> I <statement> I
<T-subarray-designator> I <procedure-identifier>
<T-function-identifier>

<T-subarray-designator> ::-= <T-array-identifier> I
<T-array-identifier>(<subarray-designator-list>)

<subarray-designator-list> ::= <subscript> I* t
<subarray-designator-list> ,<subscript> I
<subarray-designator-list>,*

7.3.2 Semantics

33

The execution of a procedure statement is equivalent to a
process performed in the following steps:

Step 1. A copy is made of the body of the proper procedure
whose procedure identifier is giYen by the procedure
statement, and of the actual parameters of the latter. The
procedure statement is .replaced by the copy of the
procedure body.

Step 2. If the procedure body is a block, then a
systematic change of identifiers i~ its copy is performed
as specified by step 1 of 7.1.2.

Step 3. The copies of the actual paraaeters are treated in
an un1efined order as follows: If the copy is an expression
different from a variable, then it is enclosed by a pair of
parentheses, or if it is a statement it is enclosed by the
symbols ~,ggi~ and ~nd. In each subarray designator, any
subscripts are evaluated and replaced by constants
designating the resulting Yalues.

Step 4. In the copy of the procedure body every occurrence
of an identifier identifying a formal parameter is replaced
by the copy of the corresponding actual parameter (cf.
7.3.2.1). In order for the process to be defined, these
replacements must lead to correct ALGOL W expressions and
statements.

Step 5. The copy of the procedure body, modified as
indicated in steps 2-q, is executed.

7.3.2.1 Actual-formal correspondence.
between the actual parameters and the
established as follows. The actual

The
formal

parameter

correspondence
parameters is

list of the

34 7.3 Procedure Statements

procedure statement (or of the function designator) must have the
same number of entries as the formal parameter list of the
procedure declaration heading. The correspondence is obtained by
taking the entries of these tvo lists in the same order.

7.3.2.2 The following
parameters which may be
parameter spec~fication.

table summarises the
substituted for each

for■s
kind

of actual
of formal

_____ l2£lll_!iR.!L_ ___ _L _

I
<T-type> I

I
<TO-type> !alu~ I

I
<Tl-type> £g§Y!1 I

I
<T1-type> !glY~ ~lt I

I
<T-type> E!Q~gy~~ J

t
t

E!Q£~dU£~ I
I
I

<T-type> g£!~1 I

<T-e:zpression>

<T1-e:zpression>

<TO-variable>

<T2-variable>

<T-function-identifier>
<T-expression>

<procedure-identifier>
<statement>

<T-subarray-designator>

The type Tl must be assignment compatible with the type TO. The
types Tl and T2 must be mutually assignment compatible.

7.3.2.3 subarray designators. A complete array may be passed to
a procedure by specifying the na ■e of the array if the number of
subscripts of the actual parameter equals the number of
~ubscripts of the corresponding formal parameter. If the actual
array parameter has more subscripts than th·e corresponding formal
parameter, enough subscripts must be specified by integer
expressions so that the number of ••s appearing in the subarray
designator equals the number of subscripts of the corresponding
formal parameter. The subscript positions of the formal array
designator are matched vith the positions with ••s in the
subarray designator in the order they appear.

7. 3. 3 Examples

INCREPIENT
COPY CA, B, P!, N)
INNEBPRODUCT(IP, N, A(I,*), B(*,J))

7. 4. 1 Syntax

<goto-statement> : : = gotQ <label-ide.nti.fier> I
gQ !Q <label-identifier>

7.4.2 Semantics

An identifier is a label identifier if it stands as a label.

7.4 Goto Statements 35

A goto statement
continued after the
The identification of
the following steps:

determines that execution of the text be
label definition of the label identifier.

that label definition is accomplished in

Step 1. If some
activated but not
identifier, then
Otherwise,

label definition within the ■ost recently
yet terminated block contains the label

this is the designated label definition.

Step 2. The execution of that block is considered as
terminated and Step 1 is taken as specified above.

Jot~: There is only
1 a be 1. (cf • 7. 1 • 2)

7.5 If Statements

7.5.1 Syntax

one definition of a

<if-statement>::= <if-clause><state■ent> I
<if-clause><simple-statement> ~l§~ <statement>

<if-clause>:= i!. <logical-expression> !HJ!

7.5.2 Semantics

valid

The execution of if statements causes certain statements to
be executed or skipped depending on the values of specified
logical expressions. An if statement of the form

<if-clause><statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is
evaluated.

Step 2. If the result of Step 1 is tru!!, then the
statement folloving the if clause is executed. Otherwise
step 2 causes no action to be taken at all.

An if statement of the for ■

<if-clause><simple-state■ent> tl§~ <statement>

is executed in the following steps:

Step 1. The
evaluated.

logical expression in the if clause is

Step 2. If the result of step 1 is true, then
statement following the if clause is executed.
the statement following~!§~ is executed.

7.5.3 Examples

the simple
Otherwise

16 7.6 Case Statements

7.6 Case Statements

7.6.1 Syntax

<case-statement>::= <case-clause> begi!! <statement-list> fil!Q
<statement-list>::= <statement> I

<statement-list>;<statement>
<case-clause>::= £s!.2~ <integer-expression> g{

7.6.2 Semantics

Execution of a case statement proceeds in the following steps:

Step 1. The expression of the case clause is eYaluated.

Step 2. The statement whose ordinal number in the statement
list is equal to tbe value obtained in Step 1 is executed.
In order that the case statement b• defined, the current
value of the expression in the case clause must be the
ordinal number of some statement of the statement list.

7.6.3 Examples

fg§!l J 21
i~gin H(I) := -H(I);

!?~9l!l H (I-1) := H (I-1) + H(I); I :: I-1 ~g;
b~.9.i.!! H (I-1) :: H (I-1) • B (I); I := I-1 £!lg;
beg!!! H(H(I-1)) := H(l); I := I-2 ~nd

7. 7. 1 syntax

<iterative-statement> := <for-clause><stateaent>
<wbile-clause><statement>

<for-clause> ::= 12!: <identifier>:= <initial-value>
st~ <increment>.!!!!!!! <limit> ggt
fo!: <identifier>:= <initial-value> .!!!!ti! <limit> do
12!: <identifier>:= <for-list> 12

<for-list> ::= <integer-expression> t
<for-list>, <integer-expression>

<initial-value>::= <integer-expression>
<increment>::= <integer-expression>
<limit>::= <integer-expression>
<while-clause>··- ~bil~ <logical-expression> 92

7.7.2 Semantics

The iterative state■ent serves to express that a statement
be executed repeatedly depending on certain conditions specified
by a for clause or a while clause. The statement following the
for clause or the while clause always acts as a block. whether it
has the form of a block or not. The value of the control
identifier (the identifier following fQ~) cannot be changed by
assignment within the controlled statement.

7.7 Iterative Statements

(a) An iterative statement of the form

!2!'. <identifier>:= R1 ste.I? E2 until E3 ill! <statement>

has the same effect. as the block

37

hggi~ <statement-0>; <statement-1>
• • • ; <statement-ff.> fil!.9

; <statement-I>;

where, in the Ith statement, every occurrence of the
control identifier is replaced by the value of the
expression (E1 + I*E2). The index N of the last statement
is determined by N ~ (B3-E1)/E2 < N+1. If N < 0, then it
is understood that the sequence is empty. The expressions
E1, E2, and E3 are evaluated exactly once, namely before
execution of <state ■ent-O>. Therefore they cannot depend
on the control identifier.

(b) An iterative statement of the form

foI <identifier>:= El until E3 do <statement>

is exactly equivalent to the iterative statement

I..Q.I <identifier> := E1 ste.e 1 .!!,!!,til E3 g_g <statement>

(c) An iterative statement of the form

1.2.I <identifier>:= El, E2, ••• , EN do <statement>

is exactly equivalent to the block

Qggi~ <statement-1>; <statement-2> ••• <state■ent-I>;
••• <statement-N> ~J!g

where, in the Ith statement,
control identifier is replaced
enclosed by a pair of parentheses.

(d) An iterative statement of the form

whil~ E gQ <statement>

is exactly equivalent to

every occurrence of the
by the expression EI,

where it is understood that L represents an identifier
which is not defined at the place fro■ which the while
statement is entered.

7.7.3 Examples

fo{ V := 0 §~1? 1 9~til M-1 SQ s := S + A(U,V)
~hil~ J > 0 3~g CITY(J) ~= S jQ J := J-1

38 7.7 Iterative Statements

fQ.£ I : = X , X + 1 , X + 3 , X + 7 QQ P (I)

7.8 Assert Statements

f 7.8.1 Syntax

<assert statement>::= ~§.§tl.t <logical expression>

7.8.2 Semantics

I The execution of an assert statement causes the logical
I expression to be evaluated. If the value is fils~, execution of
I the program is terminated.

Standard procedures are provided in ALGOL W for the purpose
of communication with the input/output systea. A standard
procedure differs from an explicitly declared procedure in that
the number and type of its actual para■eters need not be
identical in every statement which invokes the standard
procedure.

syntax:

<standard-procedure-statement>::=
READ (<input-paraaeter-list>) I
RBADON {<input-parameter-list>) I
REAOCARD (<input-parameter-list>)
WRITE (<transput-parameter-list>) t
iRITP.ON (<transput-para ■eter-list>) I
IOCOH'l'ROL(<transput-para■eter-list>)

I <infut-parameter-list> ::= <!-variable>· i
I <simple-state11en-t> I
I <input-parameter-list>, <T-~ariable)- •
I <input-parameter-list> , <s-i11ple-state11ent>
I <transput-para■eter-list> ::= <T-expression> t
I <simple-statement> I
f <transput-parameter-list> , <T-expression> I
I <transput-parameter-list>, <simple-statement>

7. 9.1 The Input/Output system

ALGOL W provides a single legible input stream and a single
leqible output stream. These streams are conceived as .sequences
of records, each record consisting of a character sequence of
fixed length. The input strea ■ has the logical properties of a
sequence of cards in a card reader; records consist of 80
characters. The output strea ■ has the logical properties of a
sequence of lines on a line printer; records consist of 132
characters, and the records are grouped into logical pages. Each
page consists of not less than one nor more than 60 lines.

Input
analysis.
which will
interpreted

records ■ay be transmitted as strings without
Alternatively, it is possible to invoke a procedure

scan the sequence of records for data items to be
as numbers, bit sequences, strings, or logical

such analysis is specified, data items may be values. If

7.9 Standard Procedures 39

reference denotations of the corresponding constants (cf.
Section 4). In addition, the following forms of arithmetic
expressions are acceptable data items, and the corresponding
types are those determined by the rules for expressions
(cf. 6. 3):

(1) <sign><T-constant>
where: Tis one of integer, real, long real, complex,

long complex;

(2) <TO-constant><sign><Tl-constant> I
<sign><TO-constant><sign><T1-constant>
where: TO is one of integer, real, long real, and

T1 is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for
data items initially begins with the first character of the input
stream; after the initial scan, it normally begins vith the
character following the one which terminated the most recent
previous scan. Leading blanks are ignored. The scan is
terminated by the first blank following the data item. In the
process, new records are fetched as necessary; character position
80 of one record is considered to be immediately followed by
character position 1 of the next record. There exist procedures
to cause the scanning process to begin vith the first character
of a record; if scanning would not otherwise start there, a new
record is fetched.

output items are asseabled into records by an editing
procedure. Items are automatically converted to character
sequences and placed in fields as described below. The first
field transmitted begins the output st.reaa; thereafter, each
field is normally placed immediately following the most recent
previously transmitted field. If, however, the field
corresponding to an item cannot be placed entirely within a
non-empty record, that item is ■ade the first field of the next
record. In addition, there exist procedures to cause the field
corresponding to an item to begin a new record. Bach page group
is automatically terminated after 60 records; procedures are
provided for causing earlier termination.

7.9.2 Read Statements

Both READ and READON designate free field input procedures.
Input records are scanned as described in 7.9.1. Values on input
records are read, matched vith the variables of the actual
parameter list in order of appearance, and assigned to the
corresponding variables. The type of each data itea must be
assignment compatible with the type of the corresponding
variable. For each READ stateaent, scanning for the first data
item is caused to begin with the first character of a record; for
a READON statement, scanning continues fro■ the previous point of
termination as determined by prior use of READ, READON, or
IOCONTROL (cf. 7.9.1).

READCARD designates a procedure transaitting 80 character
input records without analysis. For each Yariable of the actual
parameter list, the scanning process is set to begin at the first

40 7.9 Standard Procedures

character of a record (by fetching a new record if necessary),
all 80 characters of that record are assigned to the
corresponding string variable, and subsequent input scanning is
set to begin at the first character of the next sequential
record.

7.9.3 Write Statements

WRITE and WRITEON designate output procedures with automatic
format conversion. Values of expressions in the transput
parameter list (there must be at least one) are converted to
character fields which are assembled into output records in order
of appearance (cf. 7.9.1). For each WRITE statement, the field
corresponding to the first value is caused to begin an output
record; for a WRITEON st~tement, asse■bly continues from the
previous point of termination.

I The values of a set of predeclared edi_tiqg Diiab}:es control
I the field widths and the formats of nu■erical quantities printed
I by the standard Algol W output routines. These Yariables are
I initialized to appropiate default settings; their values can be
I inspected and modified in the course of the execution of an Algol
I w program. Their attributes are given by the following table:

.Iden! if j,~~ 1.Y.E~ !.!!it.ial !.!!.!:~U~!.atign
,!,alu~

I -w integer 14 width of integer fields·

I B FORMAT string (1) "F" format of real, long real, -
I complex, and long complex fields

I R w integer 14 width of real and long real -I fields; width of complex and
I long complex fields (2*R_i + 2)

I R D integer 0 places following the decimal -I point in real, long real,
I complex, and long complex fields

I s w integer 2 width of the fields of blanks -
I appended to the end o.f each
I field (excluding string fields).

I Values of r_w and R_W control the output field widths used for
I numerical quantities, in conjunction with the values of s_w they
I determine the layout of each line of numerical output. Integer
1 quantities are converted according to a standard format, but
1 three different formats for the legible representations of real,
I long real, complex, and long complex values (strictly, rounded
I approximations to these values) are available. For a particular
I output value, the actual format is determined by interrogation of
I the variable R_FOR"AT, which must specify one of the following:

I (1) §.£al~£! format (R_ FORMAT = "S"), in which the legible
I representation takes the form of a normalized mantissa
I followed by an explicit scale factor;

{2) ~1!1n~g format (R_ FORMAT= "A"), in which the

7.9 Standard Procedures 41

representation includes an integral part, a fractional part
with a specified number of digits, but no scale factor;

I (3)
I

,!~,ge-.EOi.!!1 format (R_FORPIAT = "P"), in which the
representation is chosen to use a specified number of
significant digits, with the decimal point suitably
positioned and with a scale factor only if necessary.

I
I

f Scaled and aligned representations are sometimes said ~o use
I "scientific" and "fixed-point" notation respectively. If scaled
I or free-point format is specified, tbe number of significant
J digits printed is given by R_W - 7. If (but only if) aligned
f format is specified, the number of digits following the decimal
I point is controlled by the value of R_D, and the magnitude of the
I numerical quantity determines the number of significant digits
I printed.

t The field in which an output item is placed depends upon the
I type of the item, as follows:

I integer right justified in a field of I_W characters
I and followed by s_w blanks
I real right justified in a field of R_W characters
I and followed by S V blanks
I long real right justified in a field of R_ I characters
I and followed by s_w blanks
f complex right justifed in a field of (2•R_W+2)
t characters and followed by s_w blanks
I long complex right justified in a field of (2*R_W+2)
I characters and followed by s_w blanks
I logical right justified in a field of 6 characters
I and followed by s_w blanks
I string field length is exactly the length of the string
I bits right justified in a field of 14 characters
I and followed by s_w blanks

I Parameters corresponding to the syntactic class
1 <simple-statement>; are executed as they are encountered in the
I corresponding output lists; they cause no Yalues to be
I transmitted but can (and normally should) serYe to change the
I values of the editing Yariables or the state of the iaput/output
f system. Furthermore, the values of the five predeclared editing
f variables I_W, R_W, B_D, B_POB"AT and S_I are autoaatically saved
I at the beginning of execution of WBITE or WRITEOR stateaents and
1 restored at the end. Thus changes to the values of these
I variables within an output state ■ent are localized and can affect
1 only the editing of the remaining elements of that list, but
t assignments outside of such a list can affect all subsequent
t editing.

7.9.4 Control Statements

IOCONTROL designates a procedure ~hich affects the state of
the input/output system. Argument values vith defined effect are
listed below; other Yalues currently have no effect but are
explicitly made available for local use or future expansion.

42

Value

7.9 Standard Procedures

Action (cf. 7. 9.1)

1 Subsequent input scanning begins with the first
character of a record.

2 subsequent output assembly begins with the first
field of a record.

3 Subsequent output assembly begins with the first
field of a record which, in turn, begins a nev
output page.

I
1

4 Subsequent output has no provision for automatic
page skips.

1
I
I

5

7.9.5 Examples

Subsequent output contains carriage
characters providing automatic page
{Initial Option).

READ (X, A(1))
READCARD (S, LINE(10180))
WRITE. ("AVERAGE=", SUH/N)
iRITEON (X {1,J))
IOCONTROL (2)

Execution of the program,

I !2!!9i!!
f £I.Q£edy~ SCALED (i.n!~gll valu~ N);
I ~~9i!! R_FORM AT := "S "; R_W := N +7
I .fil!.Q;
I J2.[Q£edu1:~ ALIGNED (int~ value N, D} ;
I !H!.9i!! B_POBP1AT := "A"; R_W:= N+D+1;' R_D:= D
I fil!.Q;
I £IOCeg~I~ FREE_POINT(int~fil lll.Y~ N};
I b~_gi!! R_FORMAT := "F"; R_W : = N +7
I ~.nil;
I £.[~~Q!!!:~ NEW_LINE; IOCONTROL(2);

FREE_POINT(S) ;I_W :=2; s_w := 1;

I !9~ I:= -1, O, 32 QQ
I ~!! WRITE(S_W := O, I,":", NBW_LIBE,I/3);

control
skips.

I VRITEON("I ",ALIGNED(3,2),I/l,"*",SCALED(12),I/3,"*"}
I .fil!g
I _!!_!!g.

will produce the following output lines:

1 -1:
I -0.333331 -o. 33 * -3.33333333333'-01 *
I O:
I OI 0.00 • 0 •
I 32:
I 10.667! 10. 67 • 1.06666666667'+01 •

7.9 Standard Procedures 43

I Note that the setting of s_w when the corresponding quantity
I is transmitted determines the number of trailing blanks; also,
f edited values are always rounded.

I Any values assigned to r_w, R_i or s_w in excess of 132 are
I treated as 132. In the eyent that values of I_W, R_V, R_D, S_D
I or R_FORMAT are erroneous or inconsistent vith the aagnitude or
I precision of the number to be transmitted, then alternative
I values are used. These values ensure that an approximation to
I the number is always transmitted and that not more digits than
I are warranted by the precision of the nu ■ ber are transmitted.

44

8 STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

The ALGOL w environment includes declarations and initialization
of certain procedures and variables which supplement the language
facilities previously described. such declarations and
initialization are considered to be included in a block which
encloses each ALGOL W program (with the terminating period
eliminated). The corresponding identifiers are said to be
predeclared.

Certain functions Por conversion of values from one type to
another are provided. These functions are predeclared; the
corresponding implicit declaration headings are listed below:

i!!1~g~r ~[QCedy~~ TRUNCATE (real iAlye X);
£.Q.!!~D! the integer i such that

Jil <= IXI < Iii + 1 and i•X > = O
in!~ger R££~g.YJ,:g ENTIER (,Xill 1a1u~ X);

£Q~n! the integer i such that
i <= X < i ♦ 1 ;

i!!t_g.9_g£ ,er9cedy~ ROUND (£~al ,!aly~ X) ;
£2!!~! the value of the integer eipression

1f X < 0 then TRUNCATE(X-0.5) el~
TRUNCATE(X+0.5} ;

in!_gg~ £:[.2£~dyr~ EXPONENT (I~l !il.!!~ I);
£Q!!!!~nt O if X = 0, otherwise the largest
integer i such that

i <= (log (IX I) /log 16) + 1
This function obtains the exponent used in the S/360
representation of the real number;

I~! .Ql'.Q£ed,!!U! BOUNDTOBEAL (long !~9¼ ~alue X);
£Q,!ment the properly rounded value of I;

!:~~! fiQCed~ REALPART (£.Q.!R.]Ju Yalge 'Z);
£Qmm_gnt the real component of Z;

12!!9 ~ill proc~gure LONGREALPART (long compl~ ll!!l~ Z};
!:~~.! liQ£ed~ Il'IAGPABT {co11R.1Ju _!alll Z) ;

£Q!!~! the imaginary component of Z ;
lfil!g ~~l Rrocegure LONGI~lGPART (!Q.Bg _go■pl!A valg~ Z};
£Q!2l_g~ 2ro£_ggyr§ I"AG (I~li valy~ X);

£2!.!_g~! the co ■plex number O + Xi ;
l2~g CQIIRil~ procedur~ LOHGUUG (12.ng .[li! .!ili~ I) ;
lgg.i~l J2llgedy~ ODD (i.!!!~il v4lue N) ;

£Q!ll.!!! the logical value
N~!!2=1;

bi!§ J?.{.2£~dun BITSTBIIIG (integer valU§ N) ;
£2.!,~D! tvo•s complement representation of N;

integ!!I prgcedyre NUftBBR (12.its .!.!JJm X);
_ggm,mfil!! integer vith tvo•s complement representation I;

iB!~ger ~~ed.!l.{e DECODE (lltl.!!9(1) Yalu~ S);
£2!.!!.fil!! numeric code for the character S
(cf. Appendix 1) ;

stJ;i.!!9 (1) Rrocedure CODE (in~[1aly~ R);
£Q!!!.fil!! character with nu■eric code
(cf. Appendix 1) given by

gbs (N ~! 256) ;

8.1 Standard Transfer Functions 45

In the following comments, the significance of characters in the
prototype formats is as follows:

D decimal digit in a mantissa or integer
E decimal digit in an exponent
A hexadecimal digit in a mantissa or integer
B hexadecimal digit in an exponent
+ sign (blank for positive mantissa or integer)
U blank

Each exponent is unbiased. Decimal exponents represent powers of
10; hexadecimal exponents represent powers of 16. Each mantissa
(except~ Represents a normalized fraction less than one.
Leading zeroes are not suppressed.

§1£iYg(12) £~Q£gdyI~ BASE10 (~eal Yalu~ X);
£Q!J!ll! string encoding of X with format

il.:!:EE!D DDDDDD ;
§lli!!g (12) .E~2££dU~ BAS.E16 (J;~a,! J!U:.Yg X);

QQ!!fill! string encoding of X with format
tlil_!BB!AAAAAA ;

§lliilg(20) £~£~g.!!r~ LONGBASE10 (12.!!.g .Illl val~ X);
£2!!~Il! string encoding of I with format

U!EE.:!:DDDDDDDDDDDDDDD;
§!£i!!.9(20) .E¼2£ed_yn LONGBASE16 (,!Q~g nal valu~ X);

£2!.!~! string encoding of X with format
ilu_!BB!AAAAAAAAAAAAAA;

~!ti11g(12) ,E~g£~du~~ INTBASR10 (integ~x ~~lY~ N);
£2!!~n! string encoding of N with format

tl,!DDDDDDDDDD;
§lling(12} .E.t.2£edll~ INTBASR16 (in.tgg~ !jlgg R);

£Q!J!~! unsigned, two•s complement string encoding
of N with format

iliHHIAAAAAAAA ;

8.2 ~!gndard Function of JB~lisis

The following functions of analysis are provided in the
system environment. In some cases, they are partial functions;
action for arguments outside of the allowed domain is described
in 8.5. These functions are predeclared; the corresponding
implicit declaration headings are listed below:

Iggl .2£QCedyie SQRT (™.! J!glue X);
£2J!!!gn! the positive square root of x,

domain: I>= 0;
].QJ!g i;:~al .EtOc~gJgg LONGSQRT (!QBg .{!!gl valy~ X) ;

£2•ment the positive square root of X,
domain : X): 0;

_cg~l ,E.{.Q£edui:g EXP <u~al lllH X) ;
£2~1!! e •• X ,

domain: X < 174.67;
jgyg .tll.! ..E.{,Q£edure LONGEXP (JJm.g ~ y~lu~ I);

£2!!.!.fill! e **I,
domain: X < 17ij.67;

.egg! .EI,:Q£egure LR (~ey Xill~ X);
£Q!!!!gfil logarithm of I to the base e,

domain: X > 0;

46

d:.Q!!9

i;:g~l

lo_!!g

!:~i!.1

l.Qllg

:[~~].

12!!g

;i;~l

]..Q.Bg

8.2 Standard Functions of Analysis

real .12rocedure LONGLN (lo!l.9 real value X:);
comment logarithm of X to the base e, domain: X > O ;
filOcedure LOG (real value X);
£,Q~J!!ill!. logarithm of X to the base 10, domain: X > O ;
.rgy .12IQ£ed~g LONGLOG (!2ng .r~al !lill~ X);
£.Q!!!!.fil!! logarithm of X to the base 10, domain : X > O ;
.12rocedure SIN (real value X);
£2.!!H!filll sine of X (radians) ,

domain: -823550 < X < 823550;
~A! BC0£8d..!:!il LONGSIN (!~g ~~al va!U~ X);
£.QJ!..!!.!!!!! sine of I (radians),

domain: -3.537 1 +15 <I< 3.537'+15;
l?.I2£~9Y~~ cos (A~§! ~gly~ I);
£,QJ!~.!!1 cosine of X (radians)

domain: -823550 < X < 823550:
~al J2I.Q£~~ LONGCOS (lfil!g ili!l liJ.Y~ X) ;
£.Q.!J!fil!! cosine of I (radians),

domain: -3.537'+15 < X <3.537•+15;
.12rogegu[~ ARCTAN (~~~l xal~~ X);
£Qllfill1 arctangent (radians) of X,

range: -PI/2 < LONGARCTAH(X) < PI/2;
I~A! £tOCedy~ LONGARCTAN (1.Q!!g real valu!;! X);
£QJ!J!ent arctangent (radians) of X,

range: -PI/2 < ARCTAN(X) < PI/2;

8.3 Ti~ Functio~

The ALGOL w environment includes a clock which measures
elapsed time since the beginning of program execution. The
resolution of that clock is at least 1/60 second and at most
1/38400 second. A predeclared function is proYided for reading
the clock

in_t~g~ J2I:QCedgJ;:e TIME (in!~g~ .!al~ N);
comment Argument !~§Y!! Ynits

-1

0
1
2

-time of day
seconds/60

- elapsed execution time -
minutes/100
seconds/60
seconds/38400

The result for any other argument is not defined;

The following variables are to be considered declared and
initialized by assignment in the conceptual block enclosing The
entire ALGOL W program. The values indicated for real and long
real quantities are to be understood as decimal approximations to
the actual machine-format values provided.

!P.!~g~I I_W;
£2~!!.fil!! initialized to 14, controls output field size

for integers (cf. 7.9.1);

8.4 Predeclared Variables

i.!Ugg~I R_W;
£2!!.!!!fil!1 initialised to 14, controls output field size

for real, long real, complex and
long complex quantities (cf. 7.9.1);

.i.!!ll.9!U R _ D ;
£2llg!!! initialised to O, specifies the nuaber of

fraction digits in aligned formats (cf.7.q.1);
§.!;;ri_!!g(l) B_FORMAT;

£Q!ll~n1 initialised to "F", controls output format
for real, long real, complex and long complex
quantities (cf. 7.9.1);

integer s_w; .

47

£Q~~~1 initialised to 2, specifies the number of
blanks appended to the end of an output numeric field
(cf. 7.9.1);

int~g~r ~AXINTEGER;
comment initialized to 2147483647, the maximum
--positive integer allowed by the i ■pleaentation;

l'.!t~! EPISILON;
comment initialized to 9.536743 1 -07,
--the-largest positive real number e p.rovided by the

implementation such that
1+e=1;

. 10.!!.9 real LONGEPSILON;
co!!ign! initialized to 2.22044604925031 1 -16L,

the largest positive long real number e provided by
the implementation such that

1 + e = 1 ;
!~.!!g reg! MAIREAL;

£2.!!.!!g~t initialized to 7.23700557733226'+75L,
the largest positive long real number provided by
the implementation;

l~Mrn reg! PI;
£Q.!!J!fil!1 initialized to 3.14159265358979L;

8.5 ExceE!ional Conditions

The facilities described below are provided in ALGOL W to
allow detection and control of certain exceptional conditions
arising in the evaluation of arithmetic expressions and standard
functions.

Implicit declarations:

~£Q£g EXCEPTION (log.i£.s! ICPNOTED;
i!!!gg~£ lCPLIPIIT, XCPACTIOH;
!ggi£al XCPPIARK; St£iM(64) XCPPISG);

~ef~~g~(EXCEPTION)
ENDFILE,
OVPL, ONFL, DIVZERO, INTOVFL, INTDIVZBRO,
SQRTERR, EXPERR, LNLOGERR, SINCOSERB;

Associated with each exceptional condition which can be
processed is a predeclared reference variable to which references
to records of the class EXCEPTION can be assigned. Fields of
such records control the processing of exceptions. The
association between conditions and reference variables is as
follows:

48 8.5 Exceptional Conditions

Reference variable

ENDFILE

OVFL

UNFL

DIVZERO

.INTOVPL

INTDIVZERO

SQRTRRR

EXPERR

LMLOGERR

SINCOSERR

Conditions

end of file detected on input

real, long real,.co11plex, long
complex (exponent) overflow

real, long real, co■plex, long
complex (exponent) underflow

real, long real, complex, long
complex division by zero

integer overflow

integer division by zero

negative argu■ent for SQRT, LONGSQRT

argument of !XP, LONGEXP out of
domain (cf. 8.2)

argument of LR, LOG, LONGLN,
LONGLOG out of domain (cf. 8.2)

argument of SIN, COS, LONGSIN,
LOHGCOS out of domain (cf.~.2)

When one of the conditions listed above is detected, the
corresponding reference variable is interrogated, and one of the
alternatives described below is chosen.

If the value of the reference variable interrogated is null,
the condition is ignored and execution of the ALGOL V program
continues. In such situations, a value of ·o is returned as the
value of a standard function or input operation. Por other
conditions the result is that provided by the underlying hardware
(cf. IB" System/360 Principles of Operation, IBft Systems
Library, Form A22-6821). In determining such a result, it is to
be noted that in those cases in which the detection of
exceptional conditions can be inhibited at the hardware level,
namely integer overflow and exponent underflow, detection is so
inhibited when the corresponding reference is null.

If the value of the reference variable interrogated is not
null, the fields of the record designated by that reference are
interrogated, and the processing action is that described by the
algorithm given belov in the form of an extended ALGOL W
procedure. Identifiers in lower case represent quantities vhicb
transcend the ALGOL w language; they are explained subsequently

~~Q£~g,Y£~ PROCESSEICEPTION
(il!fil:~!!£~ (EXCEPTION) .!~il! CONDIT.ION) ;

!2~gin
XCPNOTED(CONDITION) := ~;
XCPLIKIT(CONDITION) := XCPLI~IT(CONDITION) - 1;
if {XCPLIPIIT (CONDITION) < 0) Q~ ICPfUBK (COllDITIOH) _the!!

WRITE("••· ERBOR HEAR COORDINATE nnnn - ",

8.5 Exceptional Conditions

XCPMSG(CONDITION));
i! XCPLIMIT(CONDITION) < 0 1!!~ endexecution tl§!t
i! specialcondition the.J!
resultant:= default glsg
resultant:= i! XCPACTION(CONDITION) = 1

1hfil! adjustment els~
i! XCPACTION(CONDITION) = 2
11!~.!! OL el§~
default

49

fil!Q PROCESSEICEPTION

This procedure is invoked with the value of the reference
variable appropriate to the condition as actual parameter. The
significance of the special identifiers used is as follows:

nnnn

endexecution

approximate coordinate number of the source
code which was being executed vhen the
exceptional condition vas detected

procedure to terminate execution of
ALGOL w program

the

specialcondition logical value which is true if, and only if,
the condition being processed is one of those
listed below

default

resultant

adjustment.

result of the operation or function· provided
by the ALGOL W system prior to invocation of
the exception processing procedure; this is
defined by the hardware for aritb ■etic
operations and is the value O for standard
functions and for input operations. (cf.
IBM system/360 Principles of Operation, IBM
systems Library, Pora 122-6821)

value to be returned as the result of the
arithmetic evaluation, standard function
invocation, or input operation

adjusted result of the operation according to
the following table

Specialcondition

exponent overflow,
division by zero

exponent underflow

Adjustment

i! default< O ~h§~
-MAXREAL !lse ftlXB!AL

OL

argument X out of domain for:

SQRT, LONGSQRT
EXP, LONGBlP
LN, LONGLN
LOG, LONGLOG
SIN, LONGSIN
COS, L0NGCOS

SQRT{gbs X), LOBGSQRT(ab~ X)
fUXREAL
-ft AIR EAL
-fUXRElL
OL
OL

1
I
I
I

50 8.5 Exceptional Conditions

endfile on input; according to type:

numerical
logical
string
hits

" "
to

The reference variable UNFL is initialized by the system to
.!!.Y.l!• All other reference variables listed above are initialized
to references to a special record. Interrogation of this record
by the procedure described above causes the ALGOL W program to be
terminated with a message indicating the type of exception. Any
other attempt to access any field of this record will result in a
reference error.

Condition I XCP!CTION XCPACTION=1 ICPACTION=2
________ 1 '# 1_QL_l_ ________________ _

I
ENDFILEl I 0 0

OVFL

UNPL

DIVZEBO

J
I exponent 128 !MAXREAL
I too small
I
I exponent 128 0
I too large

' I dividend ,!MAXREA.L
I

0

0

0

0

Reference=NULL

0

exponent 128
too small

0

dividend

INTOVFL I true result
I! 2••32

true result true result true result
! 2••32 ! 2**32 ! 2••32

I
INTDIVZEROJ dividend dividend dividend dividend

0 SQRTERR

EXPERR

I
I O
I
I O
I

SQRT(~ X) 0

l!IAXREAL 0 0

LNLOGERR I 0 -P!AXREAL 0 0
I

SINCOSERR 1 0 0 0 0

twben an endfile condition occurs on attempting to read a
string, a string of blanks is supplied; for a logical value,
,fal,2~ is returned.

Table of Results for Exceptional conditions

8.5.1 Example

OVFL := EXCEPTION(FALSE, 10, 1, TRUE, "OVEBPLOW PIXED UP");

The field values and their effects are:

XCPNOTED
XCPLIIIIT
XCPACTIOM
XCPftARK
XCPMSG

FALSE becomes TRUE if an overflow occurs.
10 allows up to ten overflows before ter■ination.
1 replace the result with _!ftlXRElL.
TBOE print XCPIISG each ti ■e an overflow occurs.
"OVERFLOW PIXED UP"

51

ALGOL W

PROGRAMMER'S GUIDE

52

9. THE ALGOL W COKPILER

The compiler for the ALGOL w language is re-entrantly coded
in PL360; when used it is augumented with an interface which
provides co■munication with the host operating systea. currently
two interfaces exist which provide, in effect, two compilers
meeting different objectives. Differences between the two
compilers lie in the disposition of the compiled program and in
the program testing and library facilities which are available
when the compiled program is loaded and executed.

The XALGOL W compiler is intended for use in program
development and provides facilities for the co■pilation and (when
compilation is successful) execution of one or more ALGOL W
programs. A standard library is provided which cannot be
augmented by the user. It does however suppo~t extensive
optional afds to the debugging and analysis of programs; in
particular, it is possible to obtain a sum■ary of statement
execution frequencies, a post-mortem du■p of variable storage
after a run-time error and a selective trace of executed
statements and their effects. There is no provision for saving
compiled programs; each run inYolves recompilation of the source
program.

The ALGOL w compiler is intended for translating
"production" programs, i.e., relatively large programs which are
likely to be run several times before they require modification.
In addition to a standard library, independently compiled
procedures (coded in PORTRAN, PLJ60, ASSEMBLER as well as ALGOL
W) may be called from libraries administered by the operating
system, by means of the ALGOL W external reference facilities
(cf.5.3.2.4). Most of the debugging and program analysis aids

are n2! available.

Invocation of the compilers is describ•ed in sections 10 and
11.

Subsequent reference to "the compiler", unqualified by
either of the names XALGOL i or ALGOL V implies reference to the
compiler proper, unaugmented by either interface.

The language accepted by the compiler is that described in
sections 2-8 of this manual subject to limitations implied in the
following paragraphs of section 9.1.

9.1.1 Symbol Representation

Only capital letters are available. Basic symbols which
consist of underlined letter sequences in the Language Definition
are denoted by the same letter sequences without further
distinction. As a consequence, they cannot be used as
identifiers. such letter sequences are called reserved words.
Embedded blanks are not allowed in reserved words, identifiers
and numbers. Adjacent reserYed words, identifiers and numbers
must be separated by at least one blank; otherwise, blanks may be
used freely. The basic symbols, other than those· appearing in

9.1 The Language

identifiers or numbers, are:

+ - *I** C) = ~= < <= > >=, . , , : • t " I :: :=

DO IF IS OF OR
ABS AND DIV END POR RB" SHL SHH
BITS CASE ELSE GOTO GO TO LONG RULL REAL STEP THEN TBUB
ALGOL ABBAY BEGIN FALSE SHORT UNTIL VALUE WHILE
ASSERT RECORD RESULT STRING
COMftENT CO"PLEI FORTRAN INTEGER LOGICAL
PROCEDURE REFERENCE

9.1.2 Standard Identifiers

53

The following identifiers are predeclared, but may be
redeclared due to block structure. The reference alongside each
identifier is to the subsection im which the predeclared meaning
is defined.

ARCTAN 8. 2 LN 8.2 READCARD 7.9.2
BA.SE10 a. 1 LNLOGERR 8.5 READOM 7.9.2
BASE16 8. 1 LOG 8.2 ROUND 8.1
BITSTRING 8. 1 LOllG ARCTAN 8.2 ROUitDTORBlL 8. 1
CODE 8. 1 LORGBASP.:10 8. 1 R_D 8.4
cos 8. 2 LONGBASE16 8. 1 R_POBMlT 8.4
DECODE 8. 1 LONGCOS 8.2 B_W 8.4
DIVZEBO 8. 5 LONG EPSILON 8.4 SIii 8.2
ENDPILE 8.5 LONGEXP 8.2 SiffCOSEBR 8. 5
ENTIER 8. 1 LONGUIAG 8.1 SQRT 8.2
EPSILON 8.4 LONGIIUGPART 8.1 s_w 8. 4
EXCEPTION 8. 5 LONGLN 8.2 SQRTER8 8.5
EXP 8. 2 LONG LOG 8.2 TifU~ 8. J
EIPEBR 8. 5 LONGBEALPABT 8. 1 TRACE 9.4.3
EXPONENT 8. 1 LOMGSIJ 8.2 TRUNCATE 8. 1
IMAG 8. 1 LONGSQBT 8. 2 UNFL 8.5
UUGPART 8.1 PIA XI NTEG ER 8.4 WRITE 7.9.J
INTBASE10 8. 1 PIAXBEAL 8.4 WBITEOI 7.9.3
INTBASB16 8. 1 BUP!BER 8.1 ICPACTIOM 8. 5
INTDIVZEBO 8. 5 ODD 8.1 ICPLIPHT 8. 5
INTFIELDSIZE a. 4 OVPL 8. 5 XCPPIARK 8.5
INTOVFL 8.5 PI 8.4 XCPPISG 8. 5
IOCONTROL 7. 9. 1' REAL PART 8.1 XCPNOTBD 8.5
I_W 8.4 READ 7.9.2

9. 1. 3 Restrictions
The implementation imposes the following restrictions:

1) Identifiers consist of at most 256 characters.
2) Not more than 15 record classes can be declared.
3) Approximately 256 constants are allowed in a procedure or

the outermost block.
4) Not more than 255 procedures or blocks containing

declarations are allowed.
5) The data area excluding array elements for each procedure

or block with declarations is limited to 4096 bytes.
6) The total amount of space occupied by the constants and

machine code in any procedure or block containing

54 9.1 The Language

declarations may not exceed 8192 bytes.
7) The total number of blocks, procedure declarations and

for statements may not exceed 511.
8) No block may be included in more than 29 other blocks.
9) Blocks with declarations, blocks associated with

procedures and actual parameter lists may not be nested
within one another to a depth of ■ore than eight
(counting the initial BEGIN).

10) References to not more than 63 procedures are allowed
within a single procedure.

9.2 l!!]Ut Forma_!

The compiler accepts input records of 80 characters. The
first 72 characters are processed as part of an ALGOL W program;
characters 73 through 80 are listed but are not processed
otherwise. Character 72 of one record is considered to be
immediately followed by character 1 of the next record. Strings
and comments should be arranged so that the character'@' does
not appear in character position 1.

The compiler accepts directives inserted anywhere in the
sequence of input records; these directives affect subsequent
records. A directive record is marked bJ the character '@' in
character position 1 followed by the directive st~rting in
character position 2. The admissable directives and their
functions are:

@LIST List source records. (Initial option).

@NOLIST Do not list source records.

@TITLE,<string> Continue aoy subsequent listing on a nev
page. The co■■a and string are optional; if
present, the string (of up to 30) characters
stripped of the enclosing quotes is used as a
title in the centre of the heading line of
the new page and subsequent pages.

@SYNTAX

@STACK

@NOCHECK

-@DEBOG, n (m)

Check the prograa for syntax errors but do
not execute.

Dump the current contents of
stack if a pass 2 error
(cf.Appendix II) with the

syntactic element listed last.

the parsing
should occur
aost recent

Omit checks on subscript ranges and reference
compatibility and the initialisation of
variables to "undefined".

ActiYate the debugging facilities.(cf.9.q).

If the execution of a program terminates abnormally, a

9.4 Debugging System 55

message indicating the cause and location of the failure is
always produced (cf. Appendix 2). The XALGOL w compiler
optionally provides further facilities which are designed to aid
in the debugging and analysis of programs. These facilities are
described below; details of the debugging output and its
interpretation are deferred to section 9.5.

9.4.1 Debugging Facilities

(1) f.Q§ ! = t!, O ~!~.! Il.!!!.E
A dump of active storage is produced if and when any error
causing abnormal termination of execution is detected. For
each segment (i.e., each procedure or block with
declarations), beginning with the one most recently
activated, the identifiers and values of all local variables
are printed. !n indication of the point of actiYation of
that segment is also given. The du■ p displays no ■ore than 8
elements of each array. Unless the "iMOCHRCK" directive is
included, local variable storage is initialized to a special
bit pattern, which is interpreted as "undefined" and printed
as "?" by the dump and trace routines. Tests for the use of
such values are !!2! made as the program is executed, however,
and, for most data types, the bit pattern is also a valid
representation of a permissible (but relatively unusual) data
value.

(2) ~tatemen! ~2.!m!2
After the execution of the program, a listing is produced
showing the number of times each statement in the program has
been executed. The syntactic structure of the source program
is used to display the source text in an edited format which
emphasizes the control structure.

{3) Store Trace

(4)

The effect of executing each statement •is displayed the first
n times that the statement is encountered. The value of n
can be selected by t.be programmer and ■odified under program
control as described below. Output for each traced flow unit
(normally, an elementary statement or clause) includes the
following information:

(a) The source coordinate.
(b) The current frequency count for the flow unit.
(c) The source text.
(d) An indication of all assignments to variables, calls

of procedures, and accesses to para■eters.
(e) The values of anonyaous expressions (labeled by"*")

directly governing the flow of control.

Preguency counts are used to control the autoaatic suspension
(with the printing of "···"> and reinitiation (with an
appropriate message) of the trace output.

l~.£.!!LSto,I~ Trg£~
This trace is similar to the store trace, but the
identifications and values of all variables used in the
evaluation of expressions are also included in the trace
output.

56 9.4 Debugging System

9.4.2 The DEBUG Directive

The desired debugging options are selected
compilation directive "@DEBUG, ■ (n)". The parameter m
single digit, with OS m ~ 4. The facilities selected
value of mare indicated by the following table:

Ill

post-mortem dump I
flow summary I
store trace t
fetch/store trace I

0 1 2 3 4

X :X .X X

X X X
][

][

by the
must be a
for each

The parameter n must be an unsigned integer; it is relevant only
when one of the trace options has been specified and then
determines the number of times each flow unit is to be traced.

The following default options and abbreviations ha•e been
established for the DEBUG directive:

(1) "@DEBUG, ■" implies n=2
(2) "@DEBUG" implies a=4,n=2
(3) The default option for the IALGOL W compiler is iDEBUG,1
(4) The ALGOL W compiler ignores DEBUG directives precluding any

change to the default "iDBEUG,O".

9.4.3 The TRACE Routine

The standard procedure
explicit control of the trace
implicit declaration heading:

TRACE is
output;

also provided to allow
it has the following

~J;:Q~QY£~ TRACE< in1~g~n: Y!Jly,g tt > ;
fQJ!!!.fill! if N ~ 0, the trace 'li■it is
Otherwise, that limit is reset to the value
the "@DEBUG" compilation directive;

set to
implied

N.
by

Calls of TRACE have no effect unless one of the trace options is
selected when the program is compiled; if all tracing is, to be
controlled explicitly, the compilation directive "iDEBUG,4(0)"
should be used.

Space required for the execution of a progra• is
by option O; time, by option O or 1. Options 3 and
approximately 2n lines of output for every traced flov
should be used with discretion. In practice, option
produce significantly many more lines of printing than

The compiler listing consists of:

1) A source program listing produced at co■pile time.

minimized
4 produce
unit and

4 does not
option 3.

2) Error messages produced at both compile time and run time.
(In the case of the XALGOL W compiler, error messages can
also occur at the time the compiled program is loaded into
core prior to execution).

q_5 Compiler Output 57

3) Optional diagnostic and program analysis information produced
by the debugging system at run time.

9.5.1 The Source Program Listing

The source program listing comprises four columns of output.
These contain, from left to right, a four digit coordinate
number, a two character block nesting level indicator, an image
of the text on each source record and finally an image of the
source record sequence number (if these are provided). These
columns of output are separated by blank fields of widths one,
six and eight characters.

(a) The Coordinate Number

A coordinate count is maintained by the compiler while scanning
the source text. The count starts at zero and is incremented by
one for each a semi-colon (except one ending a coa■ent} or BEGIN
passed. The coordinate number displayed at the beginning of each
line is the value of this count after co■pletion of the scanning
of the preceding lines.

{b) The Block Nesting Level Indicator

The block nesting level count, L, ■aintained by the co•piler
starts at zero and is incremented by one for each BEGIN, and is
decremented by one for each END, scanned. After the fir·st BEGIN
(last END) symbol on each source record, L REM 10 is evaluated
and the resulting decimal digit is displayed as the first
(second) character of the block nesting level indicator on the
same line as the source record iaage. If no BEGIN or END symbol
appears in a source record, then the corresponding indicator
character is•-•

(c) The Source Record Image

Characters 1-72 of each source record are displayed exactly as
read. Compiler directives, i.e., records with the character'@'
in position one of the record, are not listed. (Mote that iiLIST,
@NOLIST and @TITLE affect the output of the source program
listing cf.9.3.).

(d) The Source Record Sequence Number

Character positions 73-80 of each source record are displayed
exactly as read. These positions are available for sequence
numbers or other indicators but are frequently left blank, in
which event, inadvertent typing of program beyond character
position 72 (cf.9.2) of a record is clearly signalled on the
source listing due to the eight blank separation between the
source record and sequence number fields. Apart from listing
characters 73-80, the compiler ignores the ■•

The source listing terminates with the aessages

EXECUTION OPTIONS: DEBUG, a TUIE=t PAGBS=p
ddd.dd SECONDS IN COftPILlTION, (a,b) BYTES OP CODE GENERATED

DIRECTORY SIZES (x,y,z)

58 9.5 Compiler output

mis one of the integers Oimi4 (cf.9.4.2); the units of time are
seconds and a,b,x,y,z are five decimal digit integers with the
following significance:

a is the total amount of space occupied by the compiled
machine code,
b is the amount of space occupied by co■pressed source text
used by the debugging system,
x,y and z are the sizes of various symbol tables needed by
the debugging system; the line containing these values does
not appear if the debug parameter 11<2.

Any errors detected during compilation, result in aessages
which are printed following the source program listing. Loader
messages (XALGOL V only), if any, follow next (cf.Appendix II).

9. 5. 2 Debugging System Output

It is convenient to describe the debugging system output in
terms of increasing values of min the DEBUG, ■ directive.

1) Error Messages

In the event of a run time error, one of the messages described
in Appendix II is printed. If the debug para ■eter 11=0, only this
information is printed.

2) Post-Mortem Dump

If the debug parameter m=1, the error ■essage is followed by a
post-mortem du■ p. The post-mortem co■mences vith the message

=> TRACE OF ACTIVE SEGftBNTS

A segment is either the body of ·a procedure or a block
containing declarations. Segments associated with procedures are
distinguished by the name of the procedure. Blocks are
ambiguously referenced by the name "<BLOCK>" except the outermost
which bas the name "(MAIN)"-

For each active segment, starting with that in which the
error was detected and working backwards to the segaent which
invoked it and then the segment vbich invoked that, etc., the
following information is printed:

a) The name of the segment, in the format:

=> SEGMENT NAME: name

If this message is followed by "(DEPTH n)", where n is an
integer greater than or equal to two, it signifies the
tracing of a recursive procedure seg■ent at depth n. If n=t
the depth is not explicitly specified.

b) Except in the case of the segment (~AIN), a message
indicating the point of invocation. This ■essage is in one
of the forms:

9.5 Compiler Output

name WAS ACTIVATED FRO~ invoker, NEAR COORDINATE xxxx
name WAS REENTERED FROM invoker, NEAR COORDINATE xxxx,

TO ACCESS A PARA"ETER

59

The second message arises in circumstances like the
following. Consider a program skeleton

BEGIN
PROCEDURE A(REAL P)

BEGIN ••• ; R := P ; •••
END;

PROCEDURE X;
BEGIN

REAL B;
••• ; A (B * SQBT(-1}) ; •••

END; . . -..
END.

When I is invoked it eventually calls A passing B*SQRT(-1) as
an unevaluated parameter, but when A encounters the formal
parameter P, the substitution of the actual parameter
B*SQRT(-1) entails reentering X because the actual parameter
B*SQRT(-1) is local to X. When the SQBT procedure fails on
the negative argument, the second of the above messages will
occur in the dump, where •name• would be I and •invoker•
would be A. subsequently in the dump a message of tbe first
type would be output where •name• is X and 'inYoker• is
(MAIN).

In the event that the message output is of the first type it
is preceded by:

_c) The names and values of local variables in the segment.
These are printed in the format,

name= Yalue

usually four to a line. Unless iBOCHBCK vas specified during
compilation, values of variables which have not been
initialised appear as "?". Values of parameters for which
local copies have been created are identified by a name vhicb
is the corresponding formal parameter name with a prime
appended. Strings are printed with initial and terminal
quotes but internal quotes are not doubled. Reference values
are printed in the format,

name= recordclassname.integer

where the integer is the ordinal number of the record in
order of creation. At most eight elements of an array are
listed (the seven smallest values of the first subscript with
other subscripts taking their ■ini ■u■ value and the element
where all subscripts take their maxi■um value). Control
variable values which are followed by an asterisk indicate
that the value is the last value prior to exit from the for
statement. If an asterisked entry appears in the dump the
dump terminates with

60 9.5 Compiler Output

* LAST VALUE OP CONTROL IDENTIFIER PRIOB TO NORMAL EXIT

3) statement Counts.

If the debug parameter •=2, then between the error message and
the post-mortem dump a listing is produced of t:he program text
suitably edited to display the control structure o.f the program
clearly. Coordinate numbers are shown on this listing as on the
source program listing. The execution count information is
represented between the colu ■ 11 of coordinate numbers and the
program text.

Apart from irrelevant details of layout, figure 1 shows the
run time output of a small program with m=2

=> EXECUTION FLOW SUMPIABY

0000
0001
0002
0002

1.--1
I
I

2.--1

BEGIN
INTEGER SUM, COOHT, IU!B;
WHILE TRUE DO

BEGIN SUPI := O; COOBT := O;
ERROR--

0005 RBADON(RU!B);

0006
0007
0007
0009
0010
0011
0012
0012
()012
0012
0013
0013
0013

ERROR ---
I
I

3. --1
I
I
I

I
0.--1

I
1. --1

I

' ENO

WRITEOM (NUPIB) ;
WHILE NOPIB ,= -1 DO

BEGIN SOPI := SUPI + 10!8;
COUMT :=COUNT+ 1;
READON(NU"B); WRITEON(NUftB)
!ND;

IF COUNT= 0 THEN
WBITE("EMPTY GROUP")

ELSE
WRITE(" AVERAGE", SUft/COUNT) ;

IOCOITROL (2)
END

=> TRACE OF ACTIVE SEGllENTS

=> SEGfllEN'r NA,.E: (P.IAIN)

VALUES OP LOCAL VARIAaLES:
SOM= 0 COUNT= 0 NOftB = -1

EXECUTION TERKINATED

Figure 1.

The statement count listing follows the message

=> EXECUTION PLOW SUftP.IARY

If a run time error has occurred, horizontal lines deli■ it the
approximate location of the error. Each line of source text is
preceded by the symbol "I" and the algorith ■ for interpreting the
flow summary is:

q_5 Compiler Output 61

(a) Select any statement and locate the "I" to the left of
the corresponding source text.

(b) If the "I" is labeled by a count, terminate with that

(c)

(d)

count.
Otherwise, read up
directly aboYe or to
those to the right.
Repeat from step (b).

to find the first "I" which is
the left of the original; ignore all

The resulting count will be one too high if the algorithm above
passes the point of a terminating error or a procedure call
leading to that error.

4) The Store/Fetch Trace.

If m=J or 4, in addition to obtaining statement counts and
(following an error) an error message and post-mortem dump,during
the execution of the program, values of variables are output
whenever they are fetched for use (m=4, only) or whenever a new
value is assigned.

As each statement {or clause) is executed under the tracing
facility the following are printed,

a) the coordinate nu ■ber,
b) the number of times it has been executed,
c) the text of the statement (or clause),
d) the trace information, notably the names

variables, and possibly expressions,
statement.

and values of
vi thin the

Items a),b) and c) are printed on one line in the format
used in the statement count listing; printing associated with d)
ls on the succeeding line, indented one position to the right of
the text on the preceding line.

Examples.
0017 1.--1

0018 1.--1

R2 := ANSWER
ANSWER= RIODE.1; B2 := BRODE.1

IP N<7 THEN
N = 5; *=TRUE

As in the case of the post-mortem dump, naming conventions
and notation are introduced to name values and specify the
occurrence of events which are not explicitly named in the source
program. Wherever possible, the conventions that are used in the
post- ■ortem dump are employed. The following message formats are
used in the trace information

name= value

name := value

name• : = value

(m-=4 only), •name• is the name of a
variable used in the stateaent.

'na ■e• is the
which a new value
statement.

na■e of a variable to
is assigned by the

•name•
parameter

is the
with the

na■e of a
VALUE OR

formal
RESULT

62 9.5 compiler Output

attribute. A new value is assigned to
the 1 local copy• of this parameter.

recordclassname.integer is used to denote a reference value. The
integer is the ordinal number (in the
sequence in which records of this class
are created) of the record which is the
value.

*=value

-> name

=> TRACING name

+ BESU!U:NG name

<PARAftETER ASSIGBMENT>

name(••) = value

• is used as the name of the (anonymous)
expressions in if, while or case
clauses.

indicates a call to the procedure with
identifier •naae•.

indicates that a new segment is being
traced.

indicates that the trace of a segment is
continuing after return from another
segment.

indicates the perforaance of operations
which bind a formal para■eter to an
actual parameter.

indicates
function
•name•.

the value returned by a
procedure with identifier

<<PARAftETEB IN name AT coordinate: trace>>
if an actual parameter of the procedure
•naae•, called at •coordinate• is an
expression or statement then •trace• is
a trace of the paraaeter evaluation. In
that parameters may be procedures which
can invoke procedures this message often
is nested within itself.

formalname :- actualnaae indicates foraal-actual parameter

t

assign ■ents.

is used as a name for anonymous
expressions, e.g., as •actualnaae• in
the preceding message type vhen the
actual parameter is an expression.

indicates that tracing
suspended either because
statement has already been
times (cf.lDEBUG, ■ (n) in
because of the action of
procedure (cf.9.4.3).

has been
the next
traced n

CJ. 4. 2) or
the TRACE

9.5 Compiler output 63

Return of control to the beginning of an iterated statement
is indicated by repeating part of the program text, such as,

FOR control identifier
WHILE condition

but within parentheses to indicate continuation of a previously
activated statement. This text is followed by the trace of the
values involved.

Whenever a new record is read by a BEAD or READOH statement,
the complete card image is printed as a string in the message

INPUT RECORD: string

Strings are printed with an initial and a final quote but
internal quotes are not doubled.

Procedures, which are defined externally to the ALGOL W
programs which invoke the■, can use either ALGOL W or FORTRAN
linkage and parameter conventions. The foraer are obtained
automatically when an ALGOL i procedure declaration is coapiled.
The corresponding machine code is subject to change and will not
be documented here. POBTRAN linkages are identical to the
standard IB" s-type linkages, which are described lo detail
elsewhere (See, for example, ftTS Volume 3, pages 15-24 or PORTRAN
IV (G and H) Progra1111er•s Guide, IBPI SRL Fora GC28-6817, Appendix
C). They are produced by the IBM FORTRAN compilers and also used
by many PL360 and assembly language prograas.

9.6.1 ALGOL w Procedures

ALGOL W procedure declarations vhidh stand as programs
(cf.7.0) must satisfy the following restrictions:

(1) No unbound (global) identifiers, except those considered to
be declared in the standard environment, are allowed.

(2) Declarations of record
quantities) are subject
normally be avoided.

classes (and
to special

thus
rules!"

of reference
They should

Independently compiled
environment (i.e., to
points; these are formed
the ALGOL W procedure
"001 11

•

procedures are known in the system
the loader) by the names of their entry
by extending (with ntn •s) or truncating
identifier to 5 characters and appending

9.6.2 FORTRAN Subroutines

A FORTRAN subroutine or subprogram can be used as an ALGOL w
procedure. The type correspondence between ALGOL W and FORTRAN
is given by the following table:

64 9.6 Externally Defined Procedures

ALGOL W

in!~,9e1:
~Al
1.2ll5l £~.!
£~!?le~
,!Q]!g £Q.!I?!~!
logi£A!
2 tri!!g (n)
!lite
1:!!!!!.tsU!.£!!

IBM FORTRAN IV

I IHTEGER*4
I REAL•4
I REAL*8
I C0f!PLEX*8
I COMPLEI•16
I LOGICAL*1
I (LOG.ICAL*n)
I LOGICAL*4
l

String functions are not implemented. The permitted formal
parameter specifications follow with their interpretations:

(1) <T-type>
The corresponding actual para■eter is exa■ined. If that
parameter is a variable, the address of that variable is
computed (once only) and trans■itted. Otherwise, the
expression which is the actual para■eter is eYaluated, the
value is assigned to an anonymous local variable, and the
address of that variable is transmitted.

(2) <T-type> nlu!!, <T-type> ,~sult, <T type> ll!.!l~ 1:esult
ls in ALGOL W procedures, a local variable unique to the call
is created, and the address of that variable is transmitted.

(3) <T-type> Yr!I
The address of the actual array ele■ent vitb unit indices in
each subscript position is coaputed and trans■itted, even if
that element lies outside the declared bounds of the ALGOL W
array. Arrays with only one di■ension and arrays vith unit
lover subscript bounds will have ele ■ents with indices which
are identical in ALGOL W and PORTRAN routines. Array
cross-sections should not normally be used as actual
parameters of FORTRAN subprogra ■s.

If FORTRAI input/output or FORTRAN error handling facilities are
to be used, the subroutine package IBCOB, or a suitable
substitute, is required.

9.6.3 External References

An external reference (cf. 5.3.2.4) standing as a procedure
body is used to establish the connection between an ALGOL i
progra ■ and an independently prepared procedure. The sym.bols
g!gol and f.QI"!I~! in that reference indicate the use of ALGOL W
and s-type linkage conventions respectiYely; the associated
string is extended (vith blanks) or truncated to 8 characters and
taken as the entry point name of the external procedure. For a
FORTRAN external procedure the entry point naae is si■ply the
naae of the FORTRAN subroutine or function. Por an ALGOL w
external procedure the entry point naae is deriYed from the
procedure na ■e as described in 9.6.1.

9.6 Externally Defined Procedures 65

9.6.4 Example

The first program (outline) is an ALGOL W procedure which is
invoked as an external procedure in the second program.

INTEGER PROCEDURE EXTPUH (REAL VALUE X);
BEGIN •••
END.

BEGIN
INTEGER I; REAL A,B;
INTEGER PROCEDURE INTPUN(REAL VALUE Y);

ALGOL "EXTFU001";
- •• ; I := ·1NTFON (A • B) ; •••

END.

66

10 ALGOL WIN MTS

The two versions of the compiler referred to in section 9
are located in files *XALGOLi and *ALGOLW.

1 0. 1 ~Y.!.!~.II

The needs of most users will be ■et by one of the "recipes"
given below. More detailed information about these and other
processing options and facilities is contained in sections 10.2
and 10. 3.

MTS will compile and execute ALGOL V programs if the input
is arranged as follows:

(1) For batch processing, construct a card deck (or a file of
card-image records) which includes the following sequence:

$RUN *XALGOLW
$ALGOL T=t P=p
<program>
$DATA
<data>
SERDFILE

---6
I repeat
I O or ■ore ti■es

---.J

All output will be directed to the line printer.

(2) Prom a terminal, issue a command of the following for■:

$RUH *XALGOLW SCABDS=sourcef 1=listingf

The file sourcef must contain a sequence of source programs
and data; it should be arranged as follows:

$ALGOL T=t P=p
<program>
SDATA
<data>

---5
I repeat
I O or ■ore times ___ .,

Note that lines containing more than 80 characters will be
truncated (with a warning message) and that only the first 72
characters of a line will be exa■ined for ALGOL V source
text. The file listingf (normally, a temporary file) will
receive the compilation listing. 111 compilatio.n diagnostics
and all output from the execution of user programs vill be
directed to the terminal.

In both cases, the para■eters on the corresponding niALGOL"
control line will limit the resources allowed for the ~£.Y!i2A
(not compilation) of an ALGOL W progra■ tot seconds of (problem
state) CPU time (default: 10 seconds) and p pages of printed
output (default: 10 pages). In batch, the corresponding global
limits take precedence if, and only if, they are exceeded first.
Note that the diagnostics produced when ALGOL W forces program
termination usually are ■ore helpful than the corresponding ftTS
messages.

10.2 MTS *XALG0LW Specifications 67

*XALG0LW contains a monitor which supervises the compilation
and immediate execution of a sequence of ALGOL W programs. No
object files are created; programs are compiled directly into
main memory and then executed. *XALGOLW is invoked by a co•mand
of the following for ■:

$RUN *XALGOLW [SCARDS=sourcef] [SPRINT=outputf] [SEBCOPl=errorf)
[1=listingf)

The logical devices are used as follows:

(1) SCABDS supplies source progra ■s and data. Each progra■ to be
compiled and executed aust be delimited by control lines; the
required format is described below. Library files, data
files, and the like can be inserted into the source stream by
use of the facilities provided by !TS for explicit or
implicit file concatenation.

(2) SPRINT receives all output resulting from execution of the
compiled program(s). If logical device 1 is not specified,
SPRINT also receives the compilation listing(s).

(3) SERCOM receives any diagnostic messages generated by the
compilation step(s).

(4) If logical device 1 is specified, it receives the compilation
listing(s); otherwise, this output is directed to SPBIIT.

In all
logical
absence
SPRINT,
SINK,

output files, the first character of each line is a
carriage control code supplied by the syste ■• In the

of explicit specifications, the logical devices SCARDS,
and SERC0~ are associated with the pseudofiles •soUBCE*,
and •~SINK* respectively.

The file sourcef must contain a sequence of ALGOL a programs
and data. Any line beginning with the string "!ALGOL" or the
string "!DATA" is considered to be a control line, and control
lines must be used to delimit each progra■ according to the
following scheme:

$ALGOL [params)
<program>
SDATA
<data>

---a
I repeat
I O or ■ore ti■es

---~
The "$DATA" control line can be omitted if there is no input
data. Note that lines of sourcef containing ■ore than 80
characters are truncated (with a warning message) and that only
the first 72 characters of a line are examined for ALGOL W source
text. The "$ALGOL" control line can be used to specify optional
keyword parameters. A SIZE parameter controls the amount of
working storage available for co■pilation and execution of the
progra■• TI"E and PAGES paraaeters establish li■ its on the
problem state CPO ti ■e to be used and the nuaber of pages to be
printed during the execution (not compilation) of the program.
Any "TS limits take precedence over these if (and only if) they

68 10.2 NTS *XALGOLW Specifications

are exceeded first. Note that execution time rationing is not
exact; execution time can overrun the specified limit by an
unpredictable amount not exceeding 0.5 second. Details of
parameter specification are given by the following table.

Format:

[SIZE=m(KIP]] [{TiftEIT}=t[!tlS]) [{PAGESIPGSIP}=p]
where m, t, and pare unsigned integers.

Inter pre ta tion:

Parameter
Abbreviations
Units
Scale Factors (Values)

SIZE

bytes
K (1024)
P (4096)

TiftE
T
seconds
S (1)
rt (60)

PAGBS
P, PGS
pages

All parameters are optional; the default values are equivalent to
the specification

SIZE=48K TiftB=10S PAGES=10

*ALGOLW contains a routine which calls the co■piler to
process a single source progra •· A standard MTS object: · file is
created. When the object program is subsequently executed, the
standard ALGOL W library is made available automatically; other
libraries can be provided explicitly. *ILGOLI is invoked by a
command of the following for ■:

$RUN *ALGOLW (SCARDS=sourcef] [SPBINT=listingf] [SEBCOll=errorf J
SPUNCH=objectf [PAR=para■]

The logical devices are used as follows:

{1) SCARDS supplies the source program. The associated file
should contain exactly one ALGOL W source program (without
data or delimiting control lines). Note that only the first
72 characters of any line are inspected for source text.

(2) SPRINT receives the compilation listings.

(3) Diagnostic ■essages produced by the compiler are directed to
SERCOrl

(~ SPUMCH receives the object records containing the text of the
co ■ filed program.

In the files associated with SPRINT and SERCOM, the first
character of each line is a logical carriage control code. In
the absence of explicit specifications, the logical devices
SCARDS, SPRINT, and SERCOft are associated •ith the pseudofiles
SOURCE, *SINK*, and *MSIIK* respectively. The file associated
with SPUKCH vill receive card image records. Object files
obtained by compilation of ALGOL W ■ain programs include a record
specifying implicit concatenation (i.e., a line beginning

10.3 MTS *ALGOLW Specifications 69

"$CONTINUE WITH"). The concatenated file is sequential and
cannot be processed correctly by most progra11s which operate upon
line files. Thus ca re is necessary in specifying operations
(such as copying) upon ALGOL w object files; normally, the
modifier "@~IC" should be used. If errors are detected in the
source program, the object file will be empty or incoaplete.

The optional para ■eter specifies the
storage, in bytes, available for compilation.

SIZE= ■[KIP]

amount of working
It has the form

where mis an unsigned integer. Kand Pare scale factors with
values of 10211 and q096 respectively. omission of the parameter
is equivalent to the specification

PAR=SIZE=56K

Execution of an ALGOL W object progra ■ contained in a file
objectf is specified by a command of the following for■:

$RON objectf [SCARDS=inputf] [SPRI NT=outputf) [PAB=paraas]

Implicit concatenation aust be enabled when the file is loaded.
Explicit concatenation of object files can be used to include the
object code for preco■piled procedures. Alternatively, such code
can be selectively loaded fro■ a public or priYate libr·ary (see
the descriptions of *GENLIB, LOAD, etc.). In any case, the
effective input to the "TS loader aust contain the object code
for exactly one ALGOL W ■ain program, i.e., the object code
obtained by compiling a statement (cf.7. And 9.6). The logical
devices are used as follows:

{ 1) SCA RDS is the standard input stream. Lines longer than 80
characters will be truncated (with a warning ■essage on
SEBCOfll). Implicit and explicit concatenation of input files
can be used.

(2) SPRINT is the standard output stream. Unless the parameter
NOCC is specified (see belov), the first character of each
line is a logical carriage control code supplied by the
system and the maximum line length is 133. If NOCC is
specified, the control character is omitted and the maximum
line length is 132.

In the absence of explicit specifications, the logical devices
SCARDS and SPRINT are associated with the pseudofiles *SOURCE*
and •SINK* respectively.

Optional parameters can be supplied to control program
execution. A SIZE parameter determines the amount of working
storage available; TINE and PAGES parameters place bounds upon
the resources available to the executing program. Details are
given by the following table:

70 10.3 MTS *ALGOLW Specifications

Format:

[SIZE=m[KIP]] [{TUIEIT}=t[!IS)] [{PlGESf PGSI P}=p] [CCINOCC]
where•• t, and pare unsigned integers.

Interpretation:

Parameter
Abbreviations
Units
scale Factors (Values)

SIZE

bytes
K (1024)
P (4096)

TU!E
T
seconds
S (1)
" (60)

PAGES
P, PGS
pages

The TI~E parameter establishes a limit upon the problem state CPU
time used. This limit can be overrun by an unpredictable amount
not exceeding O. S second. Any '"s li■its take precedence over
the TiftE and PAGES limits if (and only if) they are exceeded
first. The NOCC para■eter suppresses the carriage control codes
normally supplied with each line output by the program. This
suppression is independent of the attributes of the output. file
or pseudofile; if those attributes specify logical carriage
control, the first character of the actual output line vill be
used as the control code. In this vay, explicit carriage control
can be programmed. When NOCC is specified, each group of 60
output lines is considered to be a page for the purpose of page
limit monitoring. All parameters are optional. The execution
time and printed output are not monitored unless li.aits are
explicitly specified; the default parameter specification is
equivalent to

PAR=SIZE=36.K CC

on occasion one or other of the messages

**SYSTEM ERROR. JOB ABORTED
PROGRAK INTERRUPT. PSi = hhhhhhhh hhhhbhhh

may appear; h indicates a hexadecimal digit. If the source of
the trouble is not obvious, take the listing and card deck, if
available, to a consultant.

If the time or page limits specified in a batch aode SIGNON
command are exceeded an error ■essage is printed indicating which
of the limits has been exceeded then the job is terminated.

71

11. ALGOL WIN OS

The two versions of the compiler referred to in section 9
are invoked respectively by the catalogued procedure XALGOLW or
one of the catalogued procedures ALGVC, ALGWCL and ALGWCLG.

The needs of most users will be met by the •recipe" given
below. More detailed information about this and other processing
options and facilities is contained in sections 11.2 and 11.3.

For batch processing, construct a card deck (or a file of card
image records for submission to the batch strea ■) which includes
the following sequence:

// EXEC
//X.SYSill DD
IALGOL : t, p
<progra•>
IEOP
<data>
I*

IALGOLW
•

---o
I
1

---.J

repeat
0 or more times

All output will be directed to the line printer. Note that only
the first 72 characters of an input record will be examined for
ALGOL W source text. The job should be run in a regio·n of at
least 120K bytes.

The parameters on the "IALGOL" control record will limit the
resources allowed for the §llg,tioJ! (not co■pilation) of the
corresponding ALGOL V program tot seconds of CPU tiae (default:
10 seconds) and p pages of printed output (default: 10 pages).
Jny limits upon these quantities vhich are specified in the OS
JOB or EXEC statement take precedence if, and only if, they are
exceeded first. Mote that the diagnostics produced when ALGOL w
forces program termination usually are more helpful than the
corresponding OS messages.

11.2 g~ ll.L!ZQ1! .§B!!s;ifigti.Qll

The catalogued procedure XALGOLW, invokes a aonitor which
supervises the compilation and immediate execution of a sequence
of ALGOL W programs. No object files are created; programs are
compiled directly into main memory and then executed.

The maximum size of ALGOL W programs which can successfully
be compiled and executed is determined by the amount of main
storage available. The ■ini ■u■ requirement for compilation is
100K bytes, and capacity increases quickly vitb additional
storage. 120K bytes will be adequate for aost programs not
exceeding 300 to 400 source records; larger programs will usually
require a larger region, as will those using large amounts of
storage during execution.

Data definition (DD) statements vith the names SYSIN and
SYSPRIRT must be provided; the corresponding data sets are used
as follows:

12 11.2 OS XALGOLW Specifications

(1) The SYSIN stream supplies card-image records containing the
source programs and data. Each program to be compiled and
executed must be delimited by control records; the required
format is described below. Library files, data files, and
the like can be inserted into the source stream by use of the
facilities provided by OS for the concatenation of data sets.

(2) The SYSPRINT stream receives the compilation listing (s) • any
diagnostic messages generated by the compilation step(s), and
all output resulting from execution of the compiled
program (s) • The associated data set vi 11 contain line-image
records, in which the first character of each logical record
is an ANSI carriage control character automatically supplied
by the system.

These data sets have the following OS attributes:

DD Name
Format (R ECPPI)

SYSIN
PB

SY SPRINT
PBl

Record Length (LRBCL) 80 133

A corresponding DD statement or data
physical block size (BLKSIZE) and nu■ber
block size ■ ust be an integral multiple
length. If these attributes are not
record length and block size are assumed
buffers are provided. QSAft is used
operations referencing these strea■s.

set label can supply the
of buffers (BUlNO). The
of the logical record
otherwise specified, the
to be identical, and two

for all input/output

The stream SYSIH must contain a sequence of ALGOL I programs
and data. Any record beginning with the string "IILGOL" or the
string "IEOP" is considered to be a control record, and control
records must be used to delimit each program according to the
following scheme:

IALGOL (paraas] ---a
<program> I repeat
IEOP IO or ■ore times
<data> ---.J

The 111EOF" record can be omitted if there is no input data. Note
that only the first 72 characters of a record are examined for
ALGOL V source text. The "~ALGOL" control record can be used to
specify optional parameters. These establish limits on the
problem state CPO time to be used and the number of pages to be
printed during the execution (not compilation) of the program.
Any OS job or step limits take precedence if (and only if) they
are exceeded first. Details of parameter specification are given
by the following table.

Format:

[{m I[a]: s}][, p]
where m, s, and pare unsigned integers.

Interpretation:

Parameter
Limit
Units

11.2 OS XALGOLW Specifications

m
time
minutes

s
time
seconds

p
pages
pages

73

Parameters must be coded between columns 8 and 72, inclusive, of
the corresponding control record. All parameters are optional;
the default values are equivalent to the specification

0:10,10

11. 2. 1 Examples

(1) The cataloged procedure IALGOLW contains the following JCL
statements (Newcastle):

//X EXEC
//STBPLIB DD
IISYSPBINT DD

PG!t=X ALGOLW
DSl=SYS2.lLGOtW,DISP=SHB
SYSOOT=A

The input stream must contain a definition of SYSIN.

(2) The following job step specifies the processing of a source
program in a priYate disk file, IXX99.SOORCE on the volume
URE020, plus some input data on cards. output is to be
directed to a nev data set, Xll99.RESULTS on th·e volume
UNE030.

1/G EXEC
//STEPLIB DD
//SYSPRINT OD
II
//
//SYSIN DD
II
I/ DD
<data>
I*

PGPl=XALGOLW
DSB=SYS2.ALGOLV,DISP=SBB
DSN=XXX99.RESULTS,OMIT=2314,
VOL=SBR=OMB030,DISP=(IEW,KEBP),
DCB=BLKSIZ!= 1330, SPACE= (133-0, (100, 25))
DSN=XII99.SOUBCB,OHIT=2314,
VOL=SER=UME020,DISP=(OLD,K!BP)
•

In this example, the source file must include the necessary
"i" control records. Its blocking factor is obtained from
the data set label. In the output data set, the blocking
factor is 10, and 1000 lines of output are anticipated.

The cataloged procedures ALGWC, ALGWCL, and lLGWCLG, call
the ALGOL W compiler to process a single source prograa. A data
set containing standard OS object modules is produced. When the
object modules are subsequently edited and executed, the standard
ALGOL W library is aade available auto■atically; other libraries
can be explicitly provided.

The maximum size of ALGOL W prograas which can successfully
be compiled is determined by the a ■ount of ■ain storage
available. The 11ini11u ■ storage requirement is 100It bytes, and

74 11.3 OS ALGOLW Specifications

capacity increases quickly with additional storage. 120K bytes
will be adequate for most programs not exceeding 400 to 500
source records; larger programs will usually require a larger
region.

Data definition statements for the input
the output streams SYSPRINT and SYSLIM
corresponding data sets are used as follows:

stream SYSIH
are required.

and
The

(1) The SYSIN stream supplies the source program. The associated
data set should contain exactly one ALGOL W source program
(without data or "I" control records). Hate that only the
first 72 characters of any record are inspected for source
text.

(2) The SYSPRINT stream receives the co■pilation listing and any
diagnostic messages produced by the compiler. The first
character of each logical record is an AHSI carriage control
code.

(3) The SYSLIN streaa receives the object records containing the
text of the co■ piled program.

The data sets have the following attributes:

DD Name
Format (RECPJIII)
Record Length (LRECL)

SYSUi
FB
80

SYSPRIRT
PB.A
133

SJSLill
'PB
80

A corresponding DD state■ent or data set label can supply the
physical block size (B.LKSIZE), which must be an integral multiple
of the record length, and the nuaber of buffers (BUFIO). In the
~bsence of explicit specifications, the assu■ ed Talues are the
record length and 2, respectively. Note that the linkage editor
will accept only a limited range of blocking factors, and the
attributes of the SYSLIN data set should be chosen according to
installation standards.

The SYSLIB stream vill receive card image records. Object
files attained by compilation of lLGOL w main prograas include
the following linkage editor control state■eats:

INCLUDE SYSLIB(ALGOLX)
ENTRY ALGOLX

If errors are detected in the source program, or if the nasYNTAX"
compilation directive (cf.9.3) is used, the object file will be
empty or incomplete, and the return code supplied will be 16.
Otherwise, the return code will be O.

The object modules produced must be processed by the linkage
editor before they can be loaded and executed. l complete
discussion of all the releTant facilities provided bf the linkage
editor and OS library management utilities is well beyond the
scope of this manual. such a discussion can be found in the IBlllf
Systems Reference Library publication, ~ink4g§ Uit2.[AU Lgade~,
Form GC28-6538. The following points should be observed:

11.3 OS ALGOLW Specifications 75

(1) A DD statement defining SYSLIB must be provided; the
corresponding data set must be partitioned and must include
the standard ALGOL W library modules among its ■embers.

(2) Normally, the object modules corresponding to the ALGOL W
main program will be contained in the SYSLIM data set, which
will be passed from the preceding compilation step(s).

(3) Object code for precoapiled procedures can be contained in
the SYSLIN data set, in the SYSLIB data set, or in auxiliary
data sets specified by LIBRARY or INCLUDE stateaents in the
SYSLUI stream.

(4) In any case, the effective input to the linkage editor must
contain the object code for exactly one ALGOL W main program,
i.e., the object code obtained by compiling a statement (cf.
7 and 9.6).

l complete ALGOL W program can be loaded and executed after
it has been converted to a load module by the linkage editor. DD
stateaents with names SYSIN and SYSPRIBT ■ust be provided; the
corresponding data sets are used as follows:

(1) SYSIN is the standard input streaa and should contain
card-image records. Concatenation of data sets is permitted.
If there is no input stream, the definition DU""Y should be
used.

(2) SYSPBINT is the standard outpot stream. The length of all
logical records is 133. Unless the paraaeter "YCC is
specified (see below), the first character o.f each logica 1
record is an appropriate ANSI carriage control code, which is
automatically provided by the systea. If MYCC is specified,
the first character of each output record constructed by the
ALGOL V program itself is assumed to be the ANSI carriage
control code, and a blank is appended as the last character
of the record.

These data sets have the following OS attributes:

DD Name
Format (RECFM)
Record Length (LRECL)

SYSIN
PB
80

SYSPRIIIT
:PBA
133

A corresponding DD stateaent or data set label can supply the
physical block size (BLKSIZE) and nu■ber of buffers (BUFNO). If
these attributes are not otherwise specified, the record length
and block size are assumed to be identical, and tvo buffers are
provided. QSA!t is used for all input/output operations
referencing these streams.

DD state■ents for any data sets referenced in (non-ALGOL W)
precompiled procedures are also required.

Optional para ■eters can be supplied as PABB information in
the OS EXEC stateaent which inTokes a co■piled ALGOL i program.
These parameters establish limits upon the CPU tiae to be used
and the number of pages to be printed during execution of the

76 11.3 OS ALGOLi Specifications

program. Any limits upon these quantities which are specified
(implicitly or explicitly) in the OS job control language take
precedence if, and only if, they are exceeded first. Details are
given by the following table:

Format:

[{ml[m]:s}][,[p][,IIYCC]]
where m, s, and pare unsigned integers.

Interpretation:

Parameter
Liait
Units

• time
minutes

s
time
seconds

p
pages
pages

The rncc parameter suppresses the carriage control codes normally
supplied with each line output by the program (see above). The
default limits are equivalent to the specification

PAR rt=• 1: 00 ,60'

i.e., 60 seconds of CPU ti ■e and 60 pages of printed output.
Note that all parameters are positional; co■■as are required even
if operands are omitted.

11. l. 1 Examples

(1) The cataloged procedure ALGWCLG contains the following JCL
statements (Newcastle):

1/C EXEC
IISTEPLIB DD
1/SYSPBINT DD
IISYSLIN DD
II
II
II
I/L EXEC
II
IISYSPRIN'f DD
IISYSUT1 DD
II
II
//S!SLIB DD
/ ISYSLP10D DD
II
1/SYSLIN DD
II
/IG EXEC
II
/ISISPBINT DD

PGft=lLGOLi,BEGION=150K
DSN=SYS2. ALGOLW, DISP=SH R
SYSOU'l'=A
DSN=&TEftP2,UIIT=2314,
VOL=SER=UNE999,
SPACE= (400, (&SIZE, 15)) ,DISP= (HEW, PASS),
DCB: BLKS IZ !=400
PGM=IEWL,PAR~=•LIST,l'IAP',
COND=(4,LT,C),BBGIOR=100K
SYSOU'f=l
DSB=&TEP1P1,0NIT=2314,
SPACB=(1024, (&SIZE,~),
VOL=SER=UNE999,DCB=BLKSIZE=1024
DSN=SYS2.lLGWLIB,DISP=SHR
OSN=&&G(ftAIN),UNIT=2314,
SPACE= (CYL, (2, 1, 1)) ,DISP=(,PASS)
DSN=•.c. SYSLIM,
DISP= (OLD, DELETE)
PGl'l=•.L. SYSLftOD,
COND=((4,LT,C),(4,LT,t))
SYSOUT=A

The input stream can contain definitions of SYSIB for the
co■ piler (C,SYSIN), linkage editor (L.SYSIII), and ALGOL ii
program (G.SYSIN). The cataloged procedures lLGWC and ALGWCL
are similar but include job control state■ents for just the
first one or two job steps respectively.

11.3 OS ALGOLW Specifications 77

(2) The following example uses the cataloged procedures ALGWC and
A~GiCLG to compile and execute an ALGOL V program. One of
the procedures, written in ALGOL w, is to be compiled
separately. Additional precompiled procedures, originally
written in FORTRAN and located in the data set SYS2.LOAD.SSP,
are also referenced by the main program and are made
available to the linkage editor by concatenation to the
standard library.

//STEP1 EXEC ALGWC
//C.SYSIN DD *
<Algol W procedure (source code)>
I*
//STEP2 EXEC
//C.SYSLIB DD
//C.SYSIN DD
<Algol W main
I*
//L.SYSLIB DD
II DD
//G.SYSIN DD
<data>
I*

ALGWCLG
DISP= (PIOD, PASS)
*

program>

DSN=SYS2.ALGWLIB,DISP=SHB
DSH=SYS2.LOAD.SSP,OISP=SHR
•

On occassion one or other of the messages

••• ABNORftlL JOB END••• SYSTEPI CODE=XXX
COftPtETION CODE - SYST!"=XXX

may appear. If XIX is 222, 322 or 722 the job vas terminated
respectively by the operator, by the systea on exceeding the time
iimit or by the system on exceeding the line liaits. (These
messages imply exceeding ti ■e and line limits in JCL, (not
~ALGOL) records.

78

APPENDIX I - CHARACTER ENCODINGS

The following table presents the correspondence between
printable string characters and their (EBCDIC) integer encodings.
This encoding establishes the ordering relation on characters and
thus on strings. Those characters in parentheses are not
normally available on the line printer. Integer codes not listed
below do not correspond to any established character. (cf.
CODE, DECODE in section 8.1).

64
74
75
76
11
78
79
80
90
91
92
93
94
95
96
97

107
108
109
110
111
122
123
124
125
126
127

space
(c)

<
(
♦

I
&

{ !)
¢

•
) .
t

I

>
? . .
I
@

'
= ..

129
130
131
132
133
134
135
136
137
145
146
147
148
149
150
151
152
153
162
163
164
165
166
167
168
169

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(1)
(11)
(D)
(o)
(p)
(q)
(r)
(s)
(t)
(u)
(v)
(v)
(X)
(:1)
(Z)

193 l
194 B
195 C
196 D
197 !
198 P
199 G
200 H
201 I
209 J
210 K
211 L
212 rt
213 N
214 O
215 P
216 Q
217 B
226 S
227 T
228 U
229 Y
230 W
231 I
232 Y
233 Z

240 0
241 1
242 2
243 3
2114 IJ
245 5
246 6
247 7
248 8
249 9

79

APPENDIX II - ALGOL W EBROR MESSAGES

Only error messages generated
here. Occassionally contravention
requirements lead to the generation
(cf.10.4 and 11.4).

by the co11piler are listed
of operating system
of syste■ error messages

The compiler is divided into three passes: pass 1 reads the
program, lists it, and saves it in ae■ory in a co■pressed
(tokenized) form; pass 2 parses the progra■, examining each
statement to see if it is correctly formed; pass l generates the
360 machine code for the program. Each pass is capable of
detecting a different set of errors. (There is also a fourth,
loader, pass that on rare occasions may generate ■essages.)
Errors ■ay also occur vhile a compiled program is executing;
these are called run-time errors.

All error messages from passes 1, 2 and 3 are of the form:

ERROR zxxx HEAR COORDINATE yyyy - message

where zxxx is the error number, z is 1, 2 or 3 according to the
pass which generates the aessage and JYJf corresponds to one of
the coordinate numbers in the first coluan on the program
listing. If there are several statements on a line, only the
coordinate of the first one appears on the program listi·og.

1001 INCORRECTLY FOB"ED DECLARATION

a) STRING(x) or BITS{x), where xis not a nuaber.

b) ST Rt HG {O) or STRING (>256).

C) BITS (not 32).

1002 INCORRECT CONSTANT

a) ftore than 256 digits.

b) a bad exponent.

1003 MISSING "END"

A final"·" or a control card encountered
matching each BEGIN. (Check the bloc.It
second column of the program listing.)

1004 UN"ATCHED "END" (DELETED)

before an END
nu ■bers in the

An EHD encountered after what appeared to be the final END.
ihen possible, the innermost END is deleted. (Check the
block numbers in the second column of the prograa listing.)

1005 MISSING")"

80 II.1 Pass One Error ~essages

STRING{x or BITS(x with no closing")".

1006 ILLEGAL CHARACTER

An erroneously punched or overpunched character.
Overpunched characters ■ay print as blanks; the card should
be inspected in this case.

1007 WARNING: MISSING PINAL"•"

A control card encountered without a preceding

1008 INVALID STRING LENGTH

n n . -

A string constant of length >256, or a completely empty
string; a quote ■ ay have been omitted.

1009 INVALID BITS LENGTH

a) "#" not followed by hex digits.

b) "I" followed by more than 8 hex digits.

1010 MISSING"("

REPEREHCE not followed by"(".

1011 ERROR TABLE OVERPLOW

!llore than 50 error messages fro■ pass 1. subsequeat errors
are not listed.

1012 CO~PILER TABLE OVERFLOW

The program is too big to fit in aemory during co■ pilation.
There is no more room in one of the tables constructed by
the compiler. on re-coapiling with ■ore ■eaory, the tables
will be bigger.

1013 ID LEHGTH > 256

overlength identifier.

1014 UNEXPECTED n " .
An apparently final"-" not followed by a control card, such
as in a constant vith an inadYertant space: • 123

1015 TOO MANY BECOBD CLASSES

Only 15 are allowed.

1016 WARNING: "ELSE" PRECEDED BY (DELETED) ";"

The sequence ";ELSE" has been replaced by "ELSE"

1017 TOO ~ANY BLOCKS

II.1 Pass One Error "essages 81

Either a block is enclosed in more than 29 other blocks or
the total number of blocks, procedure declarations and for
statements exceeds 500.

All pass 2 error messages are suppleaented by:

(POUND NEAB "•••")

where"····" indicates a pair of symbols. In general, the first
symbol is the input sy ■bol or phrase after vhich the error was
detected; the second is the next sy■bol to be scanned.

the
at
for

2001

If any pass one or pass two error ■essages occur (other than
warnings 1007, 1016, 2013 and 2031), then co■pilation stops
the end of pass two. Se•eral error messages ■ay be generated
what is essentially a single mistake.

MORE THAN ONE DECLlBATIOI OP "XXIX" IB TRIS BLOCK

The variable XXIX bas been declared ■ore than once in the
same block.

2002 "IXXX" IS UNDBPINBD

The variable or label IIXX has not been declar·ea in the
current block or in one containing it.

2003 currently there is no error vith this nu■ber

2004 currently there is no error vith this number.

ioos ftISftATCHED PARAftETEB

An actual parameter in a procedure statement is not of a
type compatible with the for ■al paraaeter in the procedure
declaration.

2006 INCORRECT HUKBBR OF ACTUAL PlRAftBTEBS

Th€ nu ■ber of actual parameters in a procedure call does
not equal the nuaber of formal parameters in the procedure
declaration.

2007 INCORRECT DI~ENSION

2008

a) The number of dimensions of an actual parameter does
not equal the number of dimensions declared for the
corresponding formal para ■eter.

b) The wrong number of subscripts have been used in an
array element reference.

DATA AR!A EXCEEDED

The data space for each PROCEDURE or block with
declarations is liaited to 4096 bJtes. Read the

82 II.2 Pass Tvo Error ftessages

suggestions for 3001.

2009 INCORRECT NUftBER OF FIELDS

In creating a record, too many or too few initial values
have been specified.

2010 INCOMPATIBLE STRING LENGTHS

a) In STBIIIG1 := STBIIG2 , STRING2 is longer than STRIHG1.

b) In STRING] (x I y) , y is larger thaa the declared size of
STBIIIGJ.

c) A long string bas been passed to a shorter formal
string parameter.

2011 INCOMPATIBLE REFERENCES

A reference variable refers to a record class to which it
is not bound.

2012 BLOCKS NESTED TOO D!!PLY

Non-trivial blocks (i.e., blocks with declarations, or the
blocks associated with a PBOC!DUBI) or actual paraaeter
lists are nested ■ore than eight deep. The •rror is
detected early in the ninth block.

2013 WARMING:";" SHOULD IOT FOLLOW EIPBESSIOI

In BEGIB ••• <expression>; END the se■i-coloa is incorrect
but ignored.

2014 BEPEREHCE MUST REPER TO RECORD CLASS·

In REFERENCE (xyz} ••• , xyz is not a record class.

2015 EXPRESSION ftISSING IN PROCEDURE BODY

A function PROCEDURE must have its final value specified by
an expression standing alone i■■ediately before the END.

2016 IftPROP.BR COfllBIIIATION OP TYPES

f!ixing inco■ patible types as alternatives of a conditional
or case expression.

2017 RESULT PARANETEB NUST BE A YABIABLE

In a procedure declaration, a for ■al para ■eter is declared
••• RESULT xyz, but a call to that procedure has passed an
expression vhich is not a variable.

2018 PROPER PIOCEDURE !IDS VITB Al EIPR!SSIOI

A procedure which returns no value nonetheless ends with an
expression. (This will happen if a final assignment

II.2 Pass Two Error "essages

statement is using=, instead of:=).

2019 "XXXX" CANNOT FOLLOW "YYYY" HERE

83

The input up to the symbol denoted YYYY is part of a valid
ALGOL w program, but no valid ALGOL w proqra■ can continue
with the symbol XXXX.

2020 ABBAY USED INCORRECTLY

l simple variable must be used here.

2021 TOO ~ANY CONSTANTS IN PROCEDURE

Only 256 different constants (approxi ■atel7) are allowed.

2022 INCORRECT STRING LENGTH

In S(XIJ) , y is zero, or greater than 256.

2023 CO"PILER TABLE OVERFLOW

The program is too big to fit into ■e ■ory during
compilation -- there is no more room for the parse trees
that represent the program. Re-co■pile with ■ore memory or
compile so■e procedures separately.

2024 TOO 8ANY PROCEDURES

only 255 different procedures or blocks with declarations
are allowed by the co■piler.

2025 CONSTANT OUT OF BIRGE

a) The absolute value of an integer is greater than
(2**31)-1 (9+ digits).

b) The absolute value of the adjusted exponent in a real
number is greater than 75. The exponent written is
first adjusted to include the number of digits written
in front of the decimal point.

2026 INDEX OP ABRAY OR STRING ~UST BB INTEGEB

a) In S(xly) , xis not an expression of integer type.

b) An array subscript is not an expression of integer
type.

2027 INCORRECT OPERAND TYPB(S) FOR 1111

IIIX is a unary operator.

a) LONG is applied to soaething which is already LONG, or
to STRING, BITS. LOGICAL. or BEPEBENCB.

b) SHORT is applied to so■ething which is neither LONG
REAL nor LONG CO"PLEI.

84 II.2 Pass Tvo Error ~essages

c) , (not) is applied to something which is neither
LOGICAL nor BITS.

d) Prefix+ or - is applied to something which is LOGICAL,
STRING, BITS, or REFERENCE.

e) ABS is applied to something which is LOGICAL, STRING,
BITS, or REPEBEICE.

f) In record•ariable(x) , xis not a BEPERENCB.

g) In FOB I:=x ••• , xis not an integer expression.

h) In •arious other contexts, an INTEGER or LOGICAL
operand is required.

2028 INCORRECT OPERAND TYPE(S) FOR IXIX

XIXX is a binary operator. Even when the error is in the
first operand, the error is detected after R21h operands
are inspected.

a) AND or OR is applied to expressions vbich are not both
BITS or both LOGICAL.

b) A relational operator (like>) is applied to something
which is CO"PLBI, LOGICAL, or REFERENCE.

c) SHL or SHR is applied to something vbich is not BITS,
or is followed by either an expression not enclosed in
parentheses or a value vhicb is not of integer type.

d) In XIS recordclass, z is not of type REFERENCE.

e) In x**Y, y is not of type INTBG~R-

f) In a FOR state■ent, the Ul'?IL expression is not o-f type
INTEGER.

g) In various other contexts, an INTEGER type operand is
required.

2029 currently there is no error vitb this nu ■ber.

2030 AS SIG tH1EN'l' I11COftP1TIBILITJ

An attempt to assign an expression of one type to a
variable of a different type (or pass an actual parameter
to a for■al para■eter of a different type). The only
automatic conversions allowed are IITIGBR to BBlL, INTEGER
to LONG REAL, REAL to/fro■ LONG REAL, IN'l'EGBR/RJUL/LO.NG
REAL to COftPLEX/LONG COftPL!I, COftPLEI to/-fro■ LONG COftPLEX.
(REAL cannot be assigned to INTEGER without using TRUNCATE,
ENTIER, or ROUND.)

2031 WARRING: NAftE PARANETER SPECIFIED

In PROCEDURE declarations, it is aore often the case that

II.2 Pass Two Error Messages

formal parameters have VALUE specified.
name specification is necessary.

85

Check that the

2032 SI~PLE VARIABLE ID 0SED INCORRECTLY

2033

The identifier in a substring designator is not type
STBIRG.

--- FURTHER "ESSAGES SUPPRESSED

Plore than 64 errors detected, compilation continues with
further messages suppress.ed.

2999 DEBUG TABLE OVERFLOW

If ~DEBUG,x is specified vith x equal to 2, 3, or 4, then a
table is created with a fixed maximu■ of 448 entries, vhere
one entry is used for each GROUP of statements that all
occur together with no labels, branches or conditional
expressions. All the statements in such a group are
guaranteed to be executed the same nu ■ber of ti■es. Also,
this message occurs if the co■pressed for■ of the program
occupies ■ore than 65536 bytes of ■e■ory (the compressed
form is used to generate the listing vith the statement
counts attached).

All pass 3 errors are disastrous, so compilation terminates
immediately. After any pass J error, a table of triples,
(coordinate nuaber, byte offset, byte length), is listed,
indicating hov much code vas generated for each stateaent in the
current program segment. The last entry of this table and the
~ast two byte lengths are occassionally not meaningful.

3001 PROGRAM SEGMENT OVERFLOW

This error message occurs because of a design constraint of
the compiler: the total amount of machine code and
constants for any PROCEDURE or other block with
declarations must be less than 8192 bytes (a seg■ent of
code). All of the constants for a block are allocated in
front of the first statement. Therefore, if the byte
offset of the first state■ent is very large, constants are
taking up too ■ uch space. This so■etiaes happens in
progra ■s with many string constants (ten 80-character
string constants take op 800 bytes). It is necessary to
reduce the nu■ber of statements and/or constants in the
block; this can be achieved by introducing nev procedures
or by inserting at least one declaration into so■e internal
block (s), thereby forcing part of the block that vas too
big into ■ore than one seg■eot of code.

3002 COftPILER STACK OVERPLOW

l push-down stack,
code, has overflowed.
was ia■inent. The

used by the co■ piler while generating
A program segment overflow probably

reaedies suggested in the case of the

86 II.3 Pass Three Error Messages

message PROGRAM SEGMENT OVERFLOW (3001) apply.

3003 CO"PILER LOGIC ERROR

Internal consistency checks perforaed by the co ■piler have
failed. Take the program listing and (if one exists)
matching ca.rd deck, ~!~&!!I il it .i§, to a co.nsultant.

3004 PROGRAM AREA OVERPLOW

There is insufficient space in ■e■ory to contain the
compiled program. Re-compile with ■ore ■e■ory.

3005 DATA S!G~ENT OYERPLOW

The data for each
declarations is li ■ited
suggestions for 3001.

3006 COORDIMATB TABLE OVERFLOW

PROCIDORE or B!GII
to 4096 bytes.

block
Bead

with
the

The table being constructed to supply the coordinate nn■ber
in run-ti■e error messages has overflowed. Re-coapile vith
■ore 11e■ory.

3007 TOO RAMY PROCEDOBB CALLS

References to only 63 procedures are allowed within any
single procedure.

Loader error messages are all of the for■:

*** LOADING EBROB-■essage

Like pass 3 messages, these a re disast.roas and terminate
processing.

IISUFPICIENT STORAGE

Insufficient space t.o load the progra■• Re-run vith ■ore
■e ■ory.

NO EXECUTABLE STlTENENTS

lo main program vas loaded, only external procedures.

TOO "ANY PROCEDURES

Only 96 program segments are allowed by the loader.

UNDEFINED GLOBAL NAN! - XXX

An external procedure aas declared, but not loaded.

II.5 Bun Time Error Messages 87

All run error.messages are of the form:

RON EBROR NEAR COORDINATE JJJY IR procedure na ■e - message

After a run error, a post-mortem dump of all of the program
variables is produced, unless it is explicitly suppressed
vitb a aDBBUG,O card. To keep the dump reasonably small,
at most eight values are dumped from an array. If the same
identifier is declared in ■any blocks (note that the index
variable in a FOB loop is considered to be declared in a
block around just the FOR state ■ent), then that identifier
will be listed ■any ti ■es. Variables which ha•e neYer been
assigned any meaningful value are printed as"?".

ACTUAL-PORftlL MISNATCH IB PROCBDUB! CALL, PABAM!T!R txx

The actual parameter passed is not assignment co■patible
with the for■al para■eter.

ARRAY SUBSCRIPTING

An array subscript is not within the declared bounds.

ARRAY TOO LARGE

The first n-1 di■ensions of an array declaration define too
■any elements. The product of the first n-1 di■ension
lengths (upper bound - lover bound• 1) ■ultiplied by the
size of a single ele■ent ■ust be strictly less than 32768.
The element sizes are:

logical
integer, real,

reference
bits,

long real, co■plex
long co■plex
string

ASSERTION X FAILED

1

4
8
16
length of a single string

An assertion is not true, xis a running count of llov many
prior assertions were true.

ASSIGNMENT TO NAME PARAMETER

Attempt to assign to an actual parameter vhich is not a
variable, but is instead an expression, a constant, or a
control identifier.

CASF. SELECTION INDEXING

An index in a case statement or case expression is less
than 1 or greater than the number of ~ases.

DA~A AREA OVERFLOW

88 II.5 Run Time Error ftessages

No more storage is left for variables. This can happen if
a procedure gets in a loop calling itself recursively~ or
if there really is not enough ■emory.

DIVISION BY ZBBO

Nay also be caused by o••(-n).

EXP ERROR

The argument to EXP aust be less than 174.67.

IICOftPATIBLE FIELD DESIGNATOR

An atte■pt to access a field of a record using a reference
which does not designate a record of the corresponding
class. (It ■ight be null or undefined).

INCOBBECT NU!BER OP PABA"BTEBS

The nu ■ber of actual paraaeters in a procedure call is
different fro■ the nu■ ber of foraal para■eters declared in
the called procedure.

INTEGEB OVERFLOW

An integer operation produced a nuaber with an absolute
value greater than (2**11)-1.

LENGTH OP STRifiG INPUT

The string read is longer than the declared length of the
recei•ing string variable. Possibly a quote has been
omitted in the data or two adjacent strings in the data
have no separating blank causing ·the double quote to be
interpreted as a single quote inside the first string.
(Note that quotes in colu■ns 80 and 1 of succeeding cards
are adjacent).

LB/LOG EBROB

A negative or zero argument.

LOGICAL IMPOT

The quantity read vas not TRU! or PALS!.

NULL OR UHDERPIIBD BEPERBNCB

An atte■pt to access a record field using a reference which
is null or undefined.

NUPIERICAL INPUT

The next data ite■ either is not a correctly foraed nu■ber
or is not assignment co■patible with the variable in a
READON or BEAD stateaent.

II.5 Run Time Error ~essages 89

OVERFLOW

A real operation produced a number vitb an absolute value
greater than 7.2'+75. This may occur when dividing by a
very small number, such as in 1'+50/1 1 -50.

PAGE ESTI~ATE EXCEEDED

The page estimate on the control card (cf. 10 or 11) is
exceeded. lote that any tracing (~DEBtJG,3 or 4) output is
included in this page liait.

PROGRAM CHECK tnn

The compiler or the code it generated is in error. If this
happens, take the listing and (if one exists) matching card
deck, e11~!l1 .I§ it!§, to a consultant.

REIDER EOP

No more data cards. l control card (cf. 10 or 11) vas read
instead. This is one vay to terainate programs, but not a
recommended one.

RECORD STORAGE ABBA OVEBPLOV

No more storage exists for records.

REFERENCE INPUT

References cannot be read.

SIR/COS ERROR

See the domain restrictions in Section 8.2

SQBT ERBOR

A negative argument.

STRING INPUT

The next data item is not a correctly foraed string.

SUBSTRING INDEXING

The substring selected extends off one end of the string.

TIRE ESTIMATE EXCEEDED

The control card time esti ■ate is exceeded (cf. 10 or 11).

UNDERFLOW

A real operation produced a nuaber with an absolute value
less than 5.4'-79, but not exactly zero. This ■ay occur
when dividing by a very large number, such as in
1 1 -50/1 '+SO.

