THE NU ALGOL
PROGRAMMING SYSTEM

FOR
UNIVAC 1107/1108
PROGRAMMERS GUIDE

AND REFERENCE MANUAL

COMPUTING CENTRE NTH

TRONDHEIM NORWAY

TAPIR

DECEMBER 1969

PREFACE

The system described herein was initiated with two objectives:

- to provide ALGOL-users with a reasonable efficient and

reliable programming tool.

- to serve as an adequate base for the implementation of
the SIMULA-67 language.

For practical reasons it became necessary to be compatible with
UNIVAC's old ALGOL system which thus served as the detailed
definition of the source language. However, in a few places the
compatibility has been sacrificed to achieve a more efficient
and reliable implementation. From a pragmatical point of view

these are regarded to be of no significance for most users.

This manual is a first edition and is made in a lose leaf form

to make later corrections and supplements easy.

II

ACKNOWLEDGEMENT

This system was designed and implemented as a joint effort of
the Norwegian Computing Centre, Oslo and the Computing Centre
at the Technical University of Norway, Trondheim. The design
of the storage allocation scheme for data and program is done
mainly by prof. 0.J. Dahl, Mr. S. Kubosch, Mr. B. Myrhaug and
Mr. K.S. Skog. The implementation of the runtime system is

by Mb. Kubosch. Mr. B. Myrhaug made the design of the I/0 sec-

tion which was implemented by Mr. R. Kerr and Mr. B. Meldrum.

The design and implementation of the dompiler is mainly by
Mr. 0. Meland, Mr. K. Rekdal and Mr. K.S. Skog.

Mr. Kubosch made the compiler interface to the EX-2 system.

Mr. B. Meldrum wrote the first draft of this manual. In addi-
tion on part time and/or in shorter periodes Mr. A.0. @stlie,
Mr. N. Bull, Mr. D. Belsness, Mr. H. Nordvik, Mr. A. @verby

and Mr. K. Sundnes has been involved with the project.

The final corrections and proffreading of the manual was done
by Mr. T. Noodt and Mr. K. Rekdal.

I wish to express my gratitude to all mentioned here and in
addition to their wives and children who undoubtedly has suf-
fered in periodes when teory and code did not really match.
Last but not least a particular thanks to Mrs. L. Aasheim and
Miss M. Sundet for their patient interpretation of many

cryptic manuscripts.

The project has been superviced by Knut Skog.

Preface

ITT
CONTENTS

Acknowledgement

Contents
1. INTRODUCTION

e s e e e

1.
. 2.
.3.
U4,
4.1,
H.2,

General

Scope and Format of this Manual

The NU ALGOL Compiler

Differences between ALGOL 60 and NU ALGOL
Extensions to ALGOL 60

Deletions from ALGOL 60

2. BASIC INFORMATION

2.
2.
2.
2.
2.
2.
2.

1.
2.
3.
4.
5.
5.1.
5.2.

Basic Symbols

Identifiers

Form of an ALGOL Program

Layout of an ALGOL Program on Cards
Special Identifiers

Reserved Identifiers

Standard Procedure Identifiers

3. DECLARATIONS

3.
3.
3.2.1.
3.2.2.
3.
3

3

3
.3.

3

w w w w w

1.
2,

2.3.

E ow N

R

Introduction

Declaration of Simple Variables
Declaration of a Simple String
Declaration of a Substring

Storage required by Simple Variables

Declaration of Subscripted Variables (array)

Rules for Array Declarations

Meaning of Array Declarations
Declaration of a String Array
Meaning of String Array Declarations

Other Declarations

4. EXPRESSIONS

I,
4.
i,
I,
4,

1.
2.

2.1.
2.2.
2.3.

Introduction
Arithmetic Expressions
Meaning

Types of Values

Arithmetic Operands

[l
H H

11T

. .

N
N H O O W 00 0 N O o 0 o F F F w NN NN H+H PP

13.
13.
14.
15.
15.
16.
16.
16.
16.
16.

17.

IV

4.2.4, Arithmetic Operators

4.2.5. Type of Arithmetic Expressions

4.3. Boolean Expression

4.3.1. Boolean Operators

4.3.2. Relational Operators ‘

4.4, Precedence of Arithmetic, Boolean and
Relational Operators

4.5. String Expressions .

4.5.1. String Operands

4.5.2. String Operators

4.5.3. Substrings

4.6 Designational Expressions

4.6.1. Labels

4.6.2. Switches

4.7. Conditicnal Expressions

STATEMENTS

5.1. Assignment Statements

5.2. GO TO Statements

5.3. Compound Statements

5.4. Conditional Statements

5.5. Repetition Statements - FOR Statements

5.6. Other Types of Statements

BLOCKS

6.1. Nested.Blocks

6.2. Local and Global Identifiers

6.3. Local and Global Labels

6.4, Use of Blocks

PROCEDURES AND TYPE PROCEDURES

7.1. Procedures

7.1.1. Purpose

7.1.2. The Procedure Declaration

7.1.3. Identifiers in the Procedure Body

7.1.4 Specifications

7.1.5 The Procedure Body

7.1.6. Classification of Formal Parameters

7.1.7. VALUE Specification

7.1.8. Comments in a Procedure Head

19.
21.
22.
23.
24,

25.
26.
26.
26.
27.
29.
30.
30.
31.

33.
33.
35.
35,
36.
38.
45.
46 .
46 .
47.
48.
49.
50.
50.
50.
50.
50.
51.
53.
53.
54,
55.

AN

-

7.1.9. The Procedure Statement
7.1.10. The Actual Parameter List
7.1.11. Execution of a Procedure Statement
7.1.12. Recursivity
7.2. Type Procedﬁres
7.2.1. Introduction
7.2.2. The Type Procedure Declaration
7.2.3. Use of a Type Procedure
7.3. External Procedures
7.3.1. Introduction
7.3.2. External Declaration
7.3.3, ALGOL External Procedures
" 7.3.4. FORTRAN Subprograms
7.3.5. Machine Language Procedures
7.3.5.1 The External SLEUTH Procedure
7.3.5.2 The External LIBRARY Procedure
7.3.5.3 String Parameters
7.3.5.4 Array Parameters
7.3.5.5 String Array Parameters
7.4, Standard Procedures
7.4.1. Available Procedures
7.4.2. Special Routine Descriptions
7.4.3. Transfer Functions
INPUT/OUTPUT
8.1. Introduction
8.2. Parameters to Input/Output Statements
8.3. Devices
8.3.1. Possible Devices
8.3.2. Actual Devices
8.3.3. Implied Devices
8.3.4. Device CARDS
8.3.5. Device PRINTER
8.3.6. Device TAPE
8.3.7. Device DRUM
8.3.8. Device CORE
8.4. Modifier List
8.4.1. Possible Modifiers
8.4.2. General description
8.4.3. Restrictions

55.
55.
57.
58.
58.
58.
59,
58.
60.
60.

 60.

61.
62.

63.
65.

69.
72.
73.
4.
77.
77.
85.
89.
80,
90.
g1.
83.
93.
93,
4.
4.
96,
97.
101.

- 104.

105.
106.
106.
106.

8.4.4.
8.4.5.
8.4.6.
8.5.

8.5.1.

8.5.2.
8.5.3.

8.5.4,

8.5.5.

8.5.6.
8.5.7.

8.6.

8.6.1.
8.6.2.
8.6.3.
8.6.4.
8.6.5.
8.6.6.
8.7.

8.7.1.
8.7.2.
8.7.3.
8.7.4.
8.8.

8.8.1.
8.8.2.
8.8.3.
8.8.4.

.8.8‘5.

Modifier KEY
Modifier EOF
Modifier EOI
Label List

Action with-

Action with

Action with

Action with

Action with

Action with
Action with

Format List

Implied or F
Inline Forma
Declared For
Format Phras
Format Phras
Repeat Phras
Input/Output
Inline List

Declared Lis

VI

READ when Device is implied
or CARDS
READ when Device -is TAPE
READ or WRITE when Device is
DRUM
READ or WRITE when Device is
CORE
WRITE when Device is implied,
PRINTER or CARDS
WRITE when Device is TAPE
POSITION - only allowed Device
is TAPE

ree Format

ts
mat

es with WRITE
es with READ
es

List

t

Rules for Lists

Sublists .

Input/Output
The READ Sta
The WRITE St
The POSITION
The REWIND a
The MARGIN $

OTHER INFORMATION

g.1.
8.2,
9.3.

Comments
Options
Chained Prog

Statements
tement
atement
Statement
nd REWINT Statements
tatement

rams and NU ALGOL

107.
109.

111.

111.

112.
112.

112.

113.

113.
113.

113.
115.

115.

119.
120.
120.
127.
134.

137. .

137.
138.
138.
139.
139.
139.

‘140,

140.
141,
141,

143.
luy,
146.

VIT

10. ERROR MESSAGES iug.
10.1. Compile-Time Error Messages 149,
10.2. Run-Time Error Messages \ 157.

Appendix BASIC SYMBOLS, their cardcodes and field data

Appendix
Appendix

Appendix

Appendix

representation in the inputphase of the com-

piler.

EXAMPLES OF PROGRAMS
JENSENS DEVICE

Differences between UNIVAC 1107 ALGOL and the
NU ALGOL system.

SYNTAX CHART

UNIVAC 1107/1108 NU ALGOL

INTRODUCTION ¥’

General

NU ALGOL is a language for communicating scientific and data
processing problems to the UNIVAC 1107/1108 computers. The

basis for this language‘is the "Revised Report on the Algorithmic
Language ALGOL 60" (P. Naur (ed.), Regnecentralen, Copenhagen
1962). This implementation of ALGOL 60 is very close to that

of the report. 1It's one significant omission is the omission

of all own variables. It's significant additions include three
new types STRING, COMPLEX and REAL2 as well as the allowing of
external procedures written in machine language or FORTRAN and

the definition of a versatile input/output system.

NU ALGOL is compatible with UNIVAC 1107/1108 ALGOL with the

few exceptions noted in appendix E - "Differences between NU
ALGOL and UNIVAC 1107/1108 ALGOL". The major differences bet-
ween the two are the actual method of compilation, the extended
input/output facilities, and a major improvement in both runtime

and compiletime security and speed.

Scope and Format of this Manual

Scopg

The layout of this manual has been designed to provide fast
reference to all features of the language so that those
familiar with ALGOL may look up points easily. At the same
time, many examples have been inserted to allow beginning
programmers to become familiar with the features of the

language.

No attempt has been made to illustrate all the constructions
possible, however, appendix [contains a complete syntax-
chart for NU ALGOL.

®) References

This introduction is based on material contained in the UNIVAC
1107 Programmer's Guide.

Format

Although the ALGOL report cited above uses underlining to
delineate basic symbols, this manual does not. All explana-
tions and examples give the basic symbols as they would be
found on printer output from the computer =~ that is in

upper case letters with no underlining.

In describing forms of constructions (syntax) the bracket
pair < and » are used to isolate the constructions under
definition. For a complete and unambigious definition of

syntax see appendix G.

The NU ALGOL Compiler

The NU ALGOL compiler is a program which accepts statements

expressed in ALGOL and produces programs for the UNIVAC 1107/

1108 computers.

An ALGOL program is a sequence of statements written in the ALGOL
language. These are translated by the compiler into the langu-
age of the computer: machine language. The ALGOL statements are

called the source code, and the translated statements are called

the object code. The compiler itself is a program written in
machine language and is called the UNIVAC NU ALGOL Compiler.
While translating the ALGOL statements, the compiler looks for

errors, and reports these back to the programmer.

The compiler operates in four passes. Upon successful compil-
ation, the object code can be read into the main storage and
executed. Activities that occur during compilation are some-

times referred to as compile-time activities; for instance,

compile-time diagnostics. The execution phase is referred to as

run-time.

Differences between ALGOL 60 and NU ALGOL

1.4.1 Extensions to ALGOL 60

"a) The addition of STRING and STRING ARRAY variables has
been made to enhance the value of ALGOL as a data

processing language.

-

U,

b)

c)

d)

e)

)

h)

The addition of the arithmetic types COMPLEX and REAL2
has been made to enhance the value of ALGOL to scienti-

fic users.
XOR has been-added to list of logical operators.

EXTERNAL PROCEDURE declarations have been implemented
to allow easier programming of large problems and the
building of program libraries.

Input and output routines have been defined along with

FORMAT and LIST declarations to be used by them.

A compact form for GO TO and FOR statements has been

provided.

Variables are zeroed upon entry to a block so that

initialization statements are not required.

The controlled variable of a FOR statement has a
defined value when the statement is terminated by
exhaustion of the FOR-1list.

Deletions from ALGOL 60

a)

b)
c)

d)

e)

£)

g)

The following limitations have been imposed.
Identifiers are unique only with respect to their
first 12 characters.

Identifiers may not contain blanks.
Numbers may not contain blanks.
Certain ALGOL words may only be used in a specific

context.

own variables are excluded.

—

Numeric labels are not allowed.

The comma is the only delimiter allowed in a procedure

call.

The result of an integer raised to an integer power is

always of type REAL.

All the rormal parameters of a procedure must be

specified.
In a Boolean expression all operands are not evaluated

when this is not necessary for determining the result.

2

BASIC INFORMATION

2.1 Basic Symbols

2.2

The following symbols have meaning in NU ALGOL:

The letters A -7
The digits | 0 -9
The logical constants TRUE FALSE

The ALGOL symbols
Arithmetic operators + - / x

Special characters = (), $

A space (blank) symbol

Some multiples of characters are given meaning as if they

constituted a single character:

// (integer divide)
ux (exponentiation)
&& base 10 scale factor for double precision constants

1= replacement (instead of =)

.. colon (same as :)

A set of reserved words such as:
BEGIN END IF THEN etc.
A complete list is given in 2.5,

For details on card code and character set, see appendix A.

Identifiers

Identifiers (apart from those mentioned in 2,5) have no
inherent meaning, but are names that the programmer chooses
to use to refer to various objects (operands, procedures,
labels etc.).

Rules for identifiers

a) An identifier is combination of characters taken from the
set of letters (A - Z) and the set of digits (0 - 9).

b) The first character of an identifier must be a letter.

c) Although any number of characters may be used to make an
identifier, only the first 12 uniquely specify the identi-

fier.

d) It is often easier to read the program if the identifier is a

mnemonic.
Examples:

i) A P060 2174 KAF1
ii) NONLINEARRESIDUE

NONLINEARRESULT
are considered identical because their first 12 characters

are the same.

Form of an ALGOL Program

ALGOL programs are made up of one or more blocks. The
concept of blocks is treated in section 6. In'brief, an ALGOL
program containing only one block has the following form:

BEGIN
<Declarations>$
<Statements>

END$

Declarations are described in Section 3.

Statements are fully treated in Section 5. Briefly the

following are true.

a) Statements are orders to perform one or more computations or
input/output operations.

b) Statements are separated from each other by the symbol $ or

the symbol ; (Either may be used).

c) Exit from a block must be through the final END or through

a jump to a label in an enclosing block.

2.4 Layout of an ALGOL Program on Cards

The source code to the compiler must come initially from punched
cards. The following rules should be followed.

a) Only columns 1 through 72 are read for information.

b) Columns 73 through 80 may be used for any purpose.

c) The compiler considers that there is space between column
72 of one card and column 1 of the next card except in

strings.
d) One, or more statements may be placed on one card.

e) The program text should be arranged to make the program

readable and easy to change.

2.5 Special Identifiers

2.5.1 Reserved Identifiers

The following sets of characters have special meanings

and may not be used as identifiers.

ALGOL GOTO SLEUTH
AND GTR STEP
ARRAY IF STRING
BEGIN IMPL SWITCH
BOOLEAN INTEGER THEN
COMMENT LABEL TO
COMPLEX LEQ TRUE
DO LIBRARY UNTIL
ELSE LIST VALUE
END LOCAL WHILE
EQIV LSS XOR
EQL NEQ
EXTERNAL NOT

" FALSE OFF
FOR OPTION
FORMAT OR
FORTRAN PROCEDURE
GEQ REAL
GO REAL2

2.5.2 Standard Procedure Identifiers

The following identifiers may be used without explicit

declarations for calling standard procedures.

ABS LINEAR
ALPHABETIC LN
ARCCOS MARGIN
ARCSIN MAX
ARCTAN MIN
CARDS MOD
CBROOT NEGEXP
CHAIN NORMAL
CLOCK NUMERIC
COMPL POISSON
CORE POSITION
cos PRINTER
COSH PSNORM
DISCRETE RANK
DRAW RANDINT
DRUM RE
DRUMPOS READ
DOUBLE REWIND
ENTIER REWINT
EOF SIGN
EOI SIN
ERLANG SINH
EXP SQRT
HISTD TAN
HISTO TANH

M TAPE
INT UNIFORM
KEY WRITE
LENGTH

These identifiers may however be redeclared for other use.

For details on standard procedures see section 7.4.

3. DECLARATIONS

3.1 Introduction

Déclarations are used to inform the compiler that identi-
fiers have certain attributes. A declaration for an identi-

fier is valid for one block, inner blocks inclusive.

Rules for identifiers

—— i ——— — — — — — — ———— t———

1. All identifiers used in a program, except standard

procedure identifiers, must be declared.

2. In a block (see section 6) an identifier may be declared

only once.

Variables are names which are said to possess values,

These values may in the mathematical sense be integers,

real numbers, or complex numbers. In addition there are

the possibility of the truth values TRUE or FALSE. All

these are different types of values, A variable of a certain
type can only possess certain values partially according to
the rules of mathematics and partially because of hardware

limitations.

In this manual the symbol <type> will be used to mean that
'this symbol can be replaced with one of the following ALGOL
types which then impose the limits shown.

<type> Value . Limits

INTEGER Integral values: [—34359738367,
+34359738367]

REAL Real values: (-3.37x1038, -1.48x10739),

0, (l.48x10739%, 3.37x1038)
Up to 8 significant digits
BOOLEAN Truth values: FALSE, TRUE

COMPLEX Complex values: Same limits as for REAL
since the real and ‘imaginary
parts are treated as two
separate real numbers.,

<type> Value Limits

REAL?2 Real values: Same limits as for type
REAL but up to 16 signi-
ficant digits.

STRING Alphanumeric charac- Any character in the UNIVAC
ters 1107/1108 character set.

All variables declared in a block are initially set when the
block is entered. For variables of type INTEGER, REAL, REAL2,
and COMPLEX the initial value is zero (0). For BOOLEAN
variables the initial value is FALSE. For STRING variables

the initial value is a sequence of blanks.

Declaration of Simplé Variables

A simple variable is a non-subscripted name for a value

of a given type.

The declaration of a simple variable defines the type of

value the identifier for that variable may assume.

Examples:
INTEGER A $
REAL B1,C2,D $

BOOLEAN RIGHT,ANSWER $

COMPLEX ROOTS $

REAL? BIGNUMBER,EVENBIGGER $
STRING LETTERS (25) $

Form
<type><list of identifiers>$
<type> is defined in 3.1.

List of identifiers means one identifier (see section 2.2)

or several identifiers separated by commas.

The declaration ends with the character $ or

-10-

3.2.1 Declaration of a §imple String.

—— iy — ——

The declaration 'of a simple string variable provides a
means of storing and referring to a collection of alpha-
numeric characters in Fielddata code by the use of a
single identifier. |

“Form

——

STRING <identifier> (<string part>)
Identifier is defined in 2.2,

String part is an integer expression (in the outer-

most block of a program, an integer constant), whose
value is the maximum number of characters to be kept
in the string.

In a substring declaration string part may also be a
list of integer expressions and string declarations
separated by commas. (See sec. 3.2.2 below)

Examples:

STRING S1 (25) $

STRING S2 (14), CHARAC (22), LTRS (4) $
In an inner block also:

STRING CHARS (N) $

3.2.2 Declaration of a Substring.

A substring is a part of main string and has the same
properties as a string.

A substring is declared by placing an identifier and a
string part in the string part of the main string.

The length of the main string is then the sum of the
lengths of its substrings plus any other lengths specified.
Note: The length of a string may not be specified by the

| ~call of a type procedure as this will be taken as a substring
declaration. If the type procedure and the main string are
declared in the same block, this ambignity will give the
error message "DOUBLE DECLARATION",

3.2,

-11-

Examples:

SouT
SIN1

SIN2

LTRS
NUMBS

CHRS

STRING SOUT (SIN1(20),SIN2(42))$

has a length of 62 characters.

is a substring of length 20 and is the same as
characters 1 through 20 of the main string SOUT.
is a substring of length 42 and is the same as
characters 21 through 62 of the main string SOUT.

STRING LTRS (10,NUMBS(12),4,CHRS(6))$

has a length of 32.

has a length of 12 and is the same as characters
11 through 22 of the string LTRS.

has a length of 6 and is the same as characters
27 through 32 of the string LTRS.

Storage required by Simple Variables.

The memory of the UNIVAC 1107/1108 computers is divided into
"words" each consisting of 36 bits.

Each identifier reserves a number of words depending on its

type.

TYPE NUMBER OF WORDS
INTEGER 1
REAL 1
BOOLEAN 1
COMPLEX 2 - one for real part
- one for imaginary part
REAL?2 2 - to allow the carrying of more
significant digits |
STRING The integer value given by

ENTIER ((Length + start pos. + 11)/6)

where start position goes from 0 to 5

and length is the number of characters
in the string. ’

3.3

-12-

Declaration of Subscripted Variables (array),4a

An array is a set of variables each of which can be accessed
by referring to an identifier with one or more subscripts.

Each member of the set has all the.properties of a simple

variable.

The declaration of an array defines the type of value each
member of the array may assume, the number of subscripts

required, and their limits.

Form

<type> ARRAY <array list»>$

a) Type is defined in 3.1...If type is omitted, the type

REAL is assumed,
b) Array list is a list of array segments, which have the form
<list of identifiers> (<bound pair list>)

A bound pair list consists of one bound pair or several

bound pairs separated by commas.
A bound pair has the form

<aritmetic expression >:<arithmetic expression >
Section 4 defines arithmetic expression.

Note: 1In the outermost block the aritmetic expression can

only be a constant

Examples:
INTEGER ARRAY AT (0:25) $
REAL ARRAY AR (1:3,1:3) §$
| COMPLEX ARRAY AC (-2:20),AD,AE(14:24) $
BOOLEAN ARRAY BA,BC,BD(0:5),BE(1:4) $
REAL2 ARRAY K1,K2,KL,KF(-1:10) $

In an inner block also:
INTEGER ARRAY Al (N:Nx4) $

3.3'1

-13_

Rules for Array Declarations.

a) Each bound pair defines the values the corresponding subscript
may take. In NU ALGOL, the number of subscripts is limited

to 10.

b) In a bound pairglthe first arithmetic expression is called
the lower bound. The second arithmetic expression is the
upper bound. The lower bound must élways be less than or

equal to the upper bound.

c¢) The arithmetic expressions must be of type INTEGER or of
a type which can be converted to INTEGER (REAL,REAL2).

Meaning - of Array Declarations. -

a) The meaning of an array declaration can best be explained

by examples. An array declaration with one subscript

position such as
REAL ARRAY A(0:10)$
declares 11 REAL subscripted variables:
A(0),A(1),A(2),A(3),A(H),A(5),A(6),A(7),A(8),A(9),A(10)
An array declaration with‘twb subscript‘éésitiéns such as
ARRAY XY(-2:1,1:3): |

declares 12 REAL subscripted variables:

XY(-2,1) XY(-2,2) XY(-2,3)
XY(-1,1) XY(-1,2) XY(-1,3)
XY(0,1) XY(0,2) XY(0,3)
XY(1,1) XY(1,2)

XY(1,3)

Note that the use of a subscripted variable consumes sub-
stantially more computer time and program space than the
use of a simple variable. ' ‘ o

b) If several identifiers are followed by only Qhe bound pair
list then these identifiers each refer fohan‘array with the
number of subscripts and the boUndé)giVenyin that bound
pair list. '

-1l4~-

Example: ,
| COMPLEX ARRAY CAD,CM,KF(u4:20) $

This declaration defines three arrays each of type COMPLEX,
with 17 members and with a lower bound of 4 and upper bound
of 20. ’

Note that all these arrays occupy different areas of
storage.

3.3.3 Declaration of a String Array.

Subscripted STRING variables may be declared using the STRING
ARRAY declaration. This gives the user a possibility of choosing
among different strings by means of appropriate subscripting.

Form

STRING ARRAY <identifier>(<string part>:<bound pair list>)$

An identifier is defined in 2.2.
The term string part is defined in 3.2.
The term bound pair list is defined in 3.3,

Avstring array declaration must obey the rules for both string
declarations and array declarations with the exception that
each identifier must be followed by

(<string part>:<bound pair list>)

even if all characteristics are the same for the string arrays
being declared.

Examples:
STRING ARRAY SAX(14:0:5,1:4)%
STRING ARRAY SAK(2,LAK(16):20:31)$
STRING ARRAY KAS(KAL(2),4,KAT(20):-2:4,1:2)
STRING ARRAY MEL(10:0:5),MELT(10:0:5)$

-15-

Meaning of String Array Declarations.

The meaning can best be shown in an example:

The declaration
STRING ARRAY L(2,M(5):0:3,1:2)%

defines 8 strings each of length 7:

L(0,1) L(0,2)
L(1,1) L(1,2)
L(2,1) L(2,2)
L(3,1) L(3,2)

and the 8 substrings of length 5

M(0,1) M(0,2)
M(1,1) M(1,2)
M(2,1) M(2,2)
M(3,1) M(3,2)

Other Declarations.

The following special declarations are decribed in the sections

shown.
Declaration © "~ Section
FORMAT 8.6.3
LIST : 8.7.2
EXTERNAL PROCEDURE . 7.3.2
PROCEDURE ; S 7.1.2
LABEL ~ 4.6.2
SWITCH B _ b.6.3

402'1

b.2.2

16

EXPRESSIONS.

Introduction.

An expression is a rule for computing a value, or a destination.
There are 4 kinds of expressions: arithmetic, boolean, string,
and designational. The constituents of these expressions, ex-
cept for certain delimeters, are operands and operators.

The operands my be constants, variables, or type procedure calls.
The operators may be arithmetic, relational, boolean, and

sequential.

Operators cause certain actions to be performed on the
operands. '
Certain operators may only be used in certain types of

expressions.,

Parentheses are used as in algebra to group certain operators
and operands and thus determine the sequence of the operations
to be performed. Parentheses have a special meaning in

conditional expressions.

Arithmetic Expressions.

‘Meaning.

An arithmetic expression is a rule for computing a numeric
value. A constant or a simple variable is the simplest form
of an arithmetic expression. In the more general arithmetic
expressions, which include conditions (if clauses), one out

of several simple arithmetic expressions is selected on the

~basis of the actual values of the Boolean expressions.

Types of Values.

An arithmetic expression may produce a value with one of the
following types (see section 3.2).

INTEGER
REAL
REAL?2
COMPLEX

-17-

4,2.3 Arithmetic Operands.

a) Arithmetic Constants

The type of a constant depends on the form in which it is
written. No blanks are allowed in a constant.

The following rules apply.

Type of Constant Rules for Formation Examples
INTEGER A string of 11 or fewer 70
‘ digits possibly preceded -204
by a '+' or '-! 0
(see also sec. 3.1) + 0.
- 25

REAL 1. A string of 8 or fewer 1.2

digits with a decimal 1

point within the string -0.111

or at either end and - 75.333333

possibly preceded by +40.0

a '"t!' or g '-! +1.

2. A power-of-~ten symbol +&7

(&) followed by an integer &-2

indicating the power, and &+6

possibly preceded by a -&-1

141t or L |

3. An integer or a real o 1&6

number of type (1) 1.0&6

followed by an exponent -17 .446&-3

of type (2) +6 .&17
REAL?2 1. A number of the same form 1.2000127211

as REAL types (1) or (3) -203456789.12

but having between 9 and 1.031462873&-22
16 significant digits.
2, A number of the same form 1.08&&2
as REAL types (2) or (3) 4&&0
but using the symbol '&&' +3.1629&&-Uu4
to mean power-of-ten 0.0&&0

-18-

Type of Constant Rules for Formation Examples
COMPLEX Two constants of the <+7.08-2,-2>

. form for REAL or INTEGER <1,0, 0.0>
separated by a comma andv -2, -1»>
enclosed within the sym- <2.0, -1»
bols '<' and '»' where the
first constant represents
the real part and the
second the imaginary part
of the complex constant.

Notes 1&6 or 1&&6 means 1x10° or 1000000.0
3.16298&-4 or 3.1629&-4 means 3.1629x10" 7 or 0.00031629.

b) Arithmetic variables

Arithmetic variables are those variables which
have been declared to have one of the types
INTEGER
REAL
REAL?2
COMPLEX
An arithmetic variable may be simple or subscripted

(that is, an element of an array).

——— . —————— " ——— T ——————

The declaration of a type procedure is described in
section 7.2.
In an arithmetic expression, procedures declared
to have the following types may be used:

INTEGER

REAL

REAL2

COMPLEX
All standard procedures (e.g. SIN, COS, ENTIER, LN,
etc.) which return a value of type INTEGER, REAL,
REAL2, or COMPLEX may also occur in arithmetic

expressions.

_{o-

) 4.2.4 Arithmetic Operators.

The following arithmetic operators are defined in NU ALGOL
and have the meanings indicated below:

Operator ' Meaning
+ If not preceded by an operand then monadic

plus - that is the following operand has its
sign unchanged.

If preceded by an operand and followed by an
operand then the algebraic sum of the two

operands is to be calculated.

- If not preceded by an operand then monadic
minus - that is the following operand has
its sign changed.

If preceded by an operand and followed by an
) operand then subtract the following operand

from the preceding one.

® The operand preceding the operator is to be

multiplied by the following operand.

/ The operand preceding the operator is to be
divided by the following operand.

HH The operand preceding the operator is to be
raised to the power of the operand following.
(Note that the preceding operand cannot be
negative if the operand following is not an

integer).

/7 The operand preceding the operator and the
operand following are both, if nessesary
converted to type INTEGER. The result of
this division is then the integral part of the
quotient.

. (A//B=SIGN(A/B)®ENTIER(ABS(A/B)))

Examgles
+ A

+

*®
/
A x#x B
A// B

> e > >
W W w W w

20

Result

Do not change sign of A.

Change the sign of B.

Add B to A.

Subtract B from A.

Multiply A by B.

Divide A by B.

Raise A to the power B.

Change A and B to type INTEGER if of type
REAL or REAL?2. Divide A by B. The result
is the integer part of A/B.

Note

If A or B are not of type INTEGER, a
compilation warning is given since the
ALGOL 60 report states that only INTEGER
operands may be used.

The precedence the arithmetic operators is:

l.
2.
3.

b 3.3 .
¥, /, //

+, -

This means that in a parenthesis-free expression, first

all exponentiations will be carried out (from left to

right), then all multiplications and divisions are

executed (also from left to right), and finally all

additions and

subtractions are done. Parentheses may of

course be ‘inserted in the usual manner to give any desired

grouping of subexpressions. (See also sec. 4.4)

S

-91-

Examples:
A% B xxP 1, B and P are operands for x x
2. A and B % % P are operands for ==
A+ B/C % D 1. B and C are operands for /

2. B/C and D are operands for x

3. A and B/CxD are operands for +

It is suggested that parentheses by used as much as
possible to group operations, so that the intended order
of operations is immediately visible to the reader of

a program.

Type of Arithmetic Expressions.

The value obtained by evaluating an arithmetic expression

has a specific type according to the following rules.

Operand Operand following is of type
preceding

is of

type: INTEGER | REAL REAL? COMPLEX
INTEGER INTEGER REAL REAL? COMPLEX"
REAL REAL REAL REAL2 COMPLEX
REAL?2 REAL?2 REAL2 REAL? COMPLEX
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

Operand Operand following is of type
preceding

is of

type INTEGER REAL REAL2 COMPLEX
INTEGER REAL REAL REAL? COMPLEX
REAL REAL REAL REAL? COMPLEX
REAL? REAL? REAL? REAL? COMPLEX
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

-272=

——— . . T ———— — — —————— ——— > — —— o T —————————

is always INTEGER, if the types of the operand are
INTEGER, REAL or REAL2,
' If either of the operands are of any other type, a compik-

time error will occur.

Example:
If the following declarations are used
INTEGER I$
REAL R$
REAL2 D$
COMPLEX C$
then
Expression has type
I =1 INTEGER
I/ R REAL
D + R REAL?2
C-D+1I COMPLEX
I 2ex I REAL
D// R INTEGER

4.3 Boolean Expressions

Boolean value, that is, TRUE or FALSE,

Boolean Constants ~ are written as the character sequences

TRUE or FALSE for the appropriate values.

Boolean Variables

Boolean variables are those variables whose identi-
fiers have been declared to have type BOOLEAN.

They may be simple or subscripted (that is, a member
of a BOOLEAN array).

-23-

The declaration of a type procedure is described in

section 7.2.

In a Boolean expression, procedures of type BOOLEAN

may occur.

The standard proceduresrwhichvreturn'a value of type
BOOLEAN (for example ALPHABETIC and NUMERIC) may be

used in Boolean expressions.

4,3.1 Boolean Operators.

a) The following Boolean operators are defined in NU ALGOL

to have the following meanings only if A and B are BOOLEAN

expressions.
Boolean Operators

| .])
Expression| Meaning Value of expression

A=TRUE | A=TRUE | A=FALSE | A=FALSE

B=TRUE | B=FALSE | B=TRUE B=FALSE
NOT A (unary) — \parsp | PALSE | TRUE | TRUE

negation

A OR B disjunction| TRUE TRUE TRUE FALSE
A AND B conjunction| TRUE FALSE FALSE FALSE
A IMPL B | implication|TRUE FALSE TRUE | TRUE
A EQIV B equivalence| TRUE FALSE FALSE TRUE
A XOR B exﬁigﬁlve FALSE | TRUE TRUE FALSE

- The remarks on the precedence of the arithmetic

operators apply also for Boolean:operators

(see sections Y4.2.4 and 4.u4),.

i
|

f
4¥,3.2 Relational Operators.

a) The follq&ing relational operators are defined in NU ALGOL
to have the following meaning. C and D are arithmetic

or string expressions.

Note If D or C are of type COMPLEX or STRING only EQL or
NEQ may be used.

Relational Operators

Expression Meaning) Vglue of Expression
for for for
C»>D C=0D C <D
C LSS D LeSS than FALSE FALSE TRUE
Less than |
C;FEQ D or EQual FALSE TRUE TRUE
C EQL D EQuals FALSE TRUE FALSE
Greater than
C GEQ D or EQual E ‘TRUE TRUE FALSE
C GTR D GreaTeR than TRUE FALSE FALSE
C NEQ D Not EQual TRUE FALSE TRUE

b) For strings, the comparison to determine equality or non-
equality will be made on a character by character basis,
starting with the leftmost character. If the strings are
of unequal length, the string of shorter length will be
considered to be filled with blanks to the length of the

longer.
Examples:
For the following declarations and statements
STRING S(7)$%
REAL X,Y$
INTEGER ARRAY IA(-5:2)%
BOOLEAN B$
S = 'ABCDEFG'$ X = 12 u$ Y = 15 0%
IA(-5) = 22% IA(0) = 21$ B = TRUE$

The expression

X GTR Y

S EQL 'ABCDEF!'

S NEQ 'ACDEFGA'
IA(-5) LSS IA(0)
TA(0) LEQ IA(-5)
NOT B

Y GEQ X

NOT B AND X GTR Y

=25=

has the yalué

S EQL 'ABCDEFG' OR S EQL 'XYZ'
IA(-5) LEQ 12 IMPL B

Y GTR 10.0 EQIV X
NOT B XOR X EQL Y

LSS 12.0

FALSE
FALSE

TRUE .

FALSE

-~ TRUE

FALSE
TRUE

FALSE .

TRUE
TRUE

FALSE.

FALSE

4.4 Precedence of Arithmetic, Boolean and Relational ‘Operators.

. XX
x / //
+ -

. Relational operators LSS, LEQ, EQL, GEQ, GTR, NEQ

. AND
. OR, XOR
. IMPL

1
2
3
4
5. NOT
6
7
8
9. EQIV

Operations are carried out in order of ascending rank

number.

Operations of equal rank are carriedAdﬁt ffom left to

Parentheses may be used to change the order of opera-
tions. The use of parentheses is suggested to ensure

the calculation wanted is the one that is pérfqrméd.

(See also section

Example:

BOOLEAN -
INTEGER

A=A EQIV B IMPL C OR D AND NOT Y+ZxWuxT GTR X $

b.2,4).

X, Y, Z, W, T $

right.

that

4.5

I+05l

2

-26-

Evaluation:

1. WxxT

2. Zu(WxxT)

3. Y+H(Zx(WuxT))

b, (Y+(Zx(WuxT))) GIR X

5. NOT (Y+(Zx(WxxT))) GTR X)

6. D AND (NOT((Y+(Zx(WxxT))) GTR X))
7. C OR (D AND (NOT((Y+(Zx(WxxT))) GTR X)))
8. B IMPL (result of 7)

9. A EQIV (result of 8)
10, A = (result of 9)

String Expressions.

A string expression is a rule for obtaining a string of

characters.

String Operands.

String Constants - are written as a string of characters not

containing a string quote (') ~and enclosed by string
quotes. '

Examples:

'NU ALGOL' |
"THIS IS A STRING CONSTANT'
'BAD % ? ! / + - WORDS'

String Variables

String variables are those variables whose identifiers have
been declared to have type STRING.

String variables may be simple or subscripted, that is, a
member of a STRING ARRAY.

String Operators.

For strings no operators giving a string result are defined.

4.5.3

b)

27

Arithmetic operators may be used between string operands
if the string involved contain only digits in the form of
INTEGER constants (including sign). |

If the string is not in the form of an integer constant
(either contains non-digits or too many digits) then a

run-time error message will be given.

If the string is in the form of an integer constant then

the value of this integer will be used as the Cperand.

Example:

STRING S(12) $ INTEGER X $

S = 'ANS IS 563u5' $

X = S(8,5)+20 $

COMMENT THE VALUE ASSIGNED TO X IS 56365 $

The equality of strings may be tested using the
relational operators EQL and NEQ. (See section 4.3.2).

Substrings.

To refer to a part of a string variable, a substring may be

used.

b)

Substrings may be declared in the declaration of the main
string (See section 3.2.2).

A substring of a main string may be referenced by giving
a start character number in the main string and the length

of the substring on the form

<string identifier>(<start character number>,<length

of substring>)

'C)

28

Example:
STRING K(50)$

K(20,6) is a substring referring to characters 20, 21, 22

23, 24, 25 in the main string K.

If no length is given, the substring is assumed to consist

of one character.

Example:

K(29) is a substring consisting of character number 29

in the main string K.

If no start position or length is given then the main string

is referred to

Example:

STRING K(50)$
K and K(1,50) are equivalent

A reference to a substring of a subscripted string

variable is written on the form

<string array identifier>(<start character number>,
<length of substring>:<subscript, or subscripts

separated by commas>).

Example:
STRING ARRAY SA(10:0:10,1:2)$ defines a string array
consisting of 22 strings each of 10 characters.
SA(5,2:1,2) is the substring made up of characters
5 and 6 of the element SA(1,2). ‘
SA(10:0,1) is the substring made of character 10 of
the array element SA(0,1).

The declaration of substrings of string array variables

is described in section 3.3.3

e

-29Z

4.6 Designational Expréssions.

ALGOL statements are executed one after another in the order
they appear in the program, unless a GO TO statement forces
the execution to begin at a different point in the program.

This point is given by the value of a designational expression.

A designational expression may be either

i) a label or
ii) a switch indentifier with an index or
iii) IF <Boolean expression> THEN <simple designational
expression>
EXPRESSION

ELSE <designational expression>

where Boolean expression is described in section &4.3.
Simple designational expression is either (i) or (ii) or

(iii) enclosed in parentheses.

i) A label refers to that point in the program where the
label is declared (see section 4.6.1).

ii) A switch idnetifier with an index (say i) refers to the
designational expression in the ith position of the list
of designational expressions in the switch declaration
(see section 4.6.2). If an actual switch index is less

t than 1 or greater than the number of designational expres-

sions in the list, then GOTO statement is not executed.

iii) In the case of the designational expression IF <Boolean
expression> THEN <simple designational expression> ELSE
<designational expression>, the simple designational ex-
pression is used if the Boolean expression evaluated to
the value TRUE, the designational expression is used if

the Boolean expression evaluated to the value FALSE.

-30-

4.6.1 Labels

Purpose

By the use of a GOTO statement, control may be transferred to
a specific program point. This program point must then be given

a name, called a label.

Label Declaration

Labels are declared by placing an identifier in front of a sat-
tement and. separating it from the statement by the colon symbol
().

Example: LABl : X = 5§

Because in NU ALGOL a label is an identifier (see section 2.2),

numeric labels are not allowed.

Only one label with the same identifier may be used within a
block.

Labels are local to the block in which they have been declared.

4.6.2 Switches.

A switch allows the programmer to select a certain label depend- .

ing on an index.

SWITCH<identifier>=<list of designational expressions>$

where identifier is as defined in section 2.2. List of designa-
tional expressions is a set of designational expressions sepa-

rated by commas. Designational expression is described below.

Examples:

SWITCH S1W2 = P1, IF A GTR 2 THEN L ELSE Z $

SWITCH S1W3 S1W2(1), S1W2(2) $

COMMENT NOTICE THAT A SWITCH IDENTIFIER WITH INDEX IS A
DESIGNATIONAL EXPRESSION $

-3]1-

J 4,7 Conditional Expressions

—— - —— — —

expression according to the value of a Boolean expression

by placing the operands in a conditional expression.

Form - The conditional expression has the form

IF <Boolean expression> THEN <simple expression>
ELSE <expression>> -
is described in section 4.3.

where Boolean expression

Simple expression is any of the expressions (aritmetic,
Boolean or string) described in section 4, or a conditional
expression enclosed in parentheses.

can be either a as described

Expression simple expression

above or a conditional expression.’

—— e — — ———— Ty o —— —————

a) The 'simple expression and the 'expression' used in an
That is both
must be of kind apithmetic, boolean, string, or

- » expression must be of the same kind.

designational,

b) If the 'simple expression' and the 'expression' are
both of kind arithmetic but are of different types,
then the value of the expression will have the type
given by the following table.

c) Conditional expressions used as operands must be
enclosed by parentheses.

Resulting type of expression

Simple expression Expression has type
has type INTEGER REAL REAL? COMPLEX
INTEGER INTEGER REAL REAL? COMPLEX
REAL REAL REAL REAL?2 COMPLEX
- REAL?2 REAL?2 REAL?2 REAL?2 COMPLEX
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

-32-

Examgles:
BOOLEAN B$
REAL X,Y$
REAL?2 D,E$
COMPLEX C$
STRING LETTERS(14)$
X = IF B THEN X ELSE D §

LETTERS = IF X GTR Y THEN LETTERS (1,4) ELSE LETTERS (H,8)§

B

C

Arithmetic expression of type REAL2

String expression

IF D LSS E THEN NOT B ELSE D LSS E$

Boolean expression

(IF B THEN (IF NOT B THEN X ELSE Y)
ELSE IF X GTR Y THEN D ELSE E)

—

Arithmetic expression of type REAL?2

+ 20%

5.1

-33-

STATEMENTS.

Assignment Statements.

Where the V. are variables (either simple or subscripted)
and E is an expression. The sign (=) or (:=) means "becomes"

or '"gets the value of".

If V is a subscripted variable, evaluate its subscript
expressions, thus determing the actual variable. If there
is more than one V in the statement, determine the actual

variables from left to right.

Evaluate the expression E and assign this value to the

variable or variables determined by the rule above.

b) Type_rule for multiple assignment statements

—— - ——— ——————e oo s Bhoe e e e o o - y FD v o ——— - ——— = —— = ——

All variables in the left part list (V,) - that is, all
variables to the left of the rightmost replacement sign (=)

must be of the same type.

Examples:
INTEGER ARRAY A(1:5)%
REAL X,Y$
REAL ARRAY Z(3:10)$
INTEGER I,J%

I =25% J =48 COMMENT SIMPLE ASSIGNMENT $
A(I) = I =1 + J$ COMMENT A(5) GETS THE VALUE 9,
I GETS THE VALUE 9%
X =Y = 1I$ COMMENT ONLY VARIABLES IN THE LEFT
PART LIST MUST BE OF SAME TYPE, HERE
X BECOMES 5.0, Y BECOMES 5.0%

—— ———— - — — o —— - —— — —— —— ——_— ——

If the type of the expression is different from that of the

3]4._

variable or variables .in the assignment statement, then auto-

matic type transfer occurs,if possible, according to the following

If the string expression has fewer characters

—_———— -

rules.
Transfer Functions

Type of Type of Expression

Variable | INTEGER REAL REAL2 COMPLEX STRING BOOLEAN

INTEGER Rounded to | Rounded to Not Changed to Not

INTEGER INTEGER Allowed INTEGER Allowed
if
possible

REAL Converted Truncated to Not Not Not

to REAL REAL Allowed Allowed Allowed

REAL?2 Converted |Zero filled Not Not Not

to REALZ2 | to REAL? Allowed Allowed Allowed

COMPLEX |Becomes Becomes Truncated Not Not
real part |real part to real part Allowed Allowed

of of of COMPLEX
COMPLEX COMPLEX ’

STRING Integer Not Not Not See Not
is left Allowed Allowed Allowed below Allowed
justified

_ in string

BJOOLEAN Not Not Not Not Not
Allowed Allowed Allowed ‘Allowed Allowed

d) String Assignment

than the string

variable, the remainder of the string variable is filled with

blanks.

If the string expression has more characters than the string

variable then these extra characters are not transferred to

the string

variable.

The assignment is a character by character transfer starting

from the leftmost character.

3‘5

Note the following example

STRING ST(15) $
ST = 'ABC' §$
ST(2,14) = ST(1l,14) $
COMMENT THE RESULT OF THIS ASSIGNMENT IS THAT THE ENTIRE
STRING ST IS 'AAAAAAAAAAAAAA'.S$

GO0 TO Statements,

The purpose of a GO TO Statement is to break the normal

sequence of execution of statements in a program.

The statement executed after a GO TO Statement is the state-
ment following the label given by the designational expression
in the GO TO Statement. (Labels and designational expressions

are described in section u,6).

Form

There are three possible ways of writing a GO TO statement.

All have the same meaning.

G0 TO<designational expression>$
GOTO <designational expression>$

GO <designational expression>$

Examples:

SWITCH KF = XY,ZW § BOOLEAN B $
GO TO XY $

SW: GOTO KF(1)$
GO IF B THEN ZW ELSE XY $

XY: GO TO IF NOT B THEN KF(2) ELSE SW $

Compound Statements.

Definition

A compound statement is a group of ALGOL statements enclosed
by the words BEGIN and END . ’

-36-

—— - ——

A compound statement may be wherever one ALGOL statement is
allowed. '

Use

Compound statements are very useful in conditional and
repetitive statements (see section 5.4 and 5.5) where only

one statement is allowed.

Examples:

BOOLEAN B$ REAL X,Y,Z $

IF B THEN

BEGIN X = 5,08 Y = 15,08 2 = 22.1%
END §$

FOR X = 20.0 STEP 1 UNTIL 50.0 DO
BEGIN Y = Y+ X $ 2 =X % 20,0 + Z $
END $

Conditional Statements.

- W o -

Conditional statements may be used to select the next state-
ment depending on the value of a Boolean expression.

There are two types of conditional statements - one with

alternative and one without. The forms are given below.

a) Conditional statement WITHOUT alternative

S T e o e ee e e e T S - - — o o= T - e T e - —- - —— -

IF<Boolean expression>THEN<unconditional statements»$

where Boolean expression is described in section 4.3.

An unconditional statement is either any statement other
than a conditional statementjincluding a compound state-
ment, or a conditional statement enclosed by BEGIN and END.

ExamEle:
IF A GTR B THEN A = A - B §$

-37-

b) Conditional statement WITH alternative

IF<Boolean expression>THEN<unconditional statement>
ELSE<statement>$ |

where Boolean expreésion is described in section 4.3,

- unconditional statement is any statement other than a
conditional statement, including a compound statement.
Notice that a $ or; must never appear before ELSE.

- statement is any statement including a conditional
statement or a compound statement. -

Example:
IF A GITR B THEN A = A - BELSEA = B - A'$

Actions

Boolean expression Action

evaluates to

ment after THEN

TRUE Execute unconditional state- .

FALSE Execute statement after

conditional statement

b) Conditional statement WITH alternative

Boolean expression Action

evaluates to

TRUE : Execute unconditional state-
ment after THEN

FALSE Execute statement after ELSE

-38-

Examples:

BEGIN
REAL X,Y$ BOOLEAN B $
SWITCH SK = LAB,LIN $
IF NOT B THEN X = Y = 20.1 $
COMMENT B IS FALSE, SO X AND Y ARE SET TO 20.1 $
LIN: IF X NEQ Y THEN B = FALSE
ELSE B = TRUE $
COMMENT X AND Y ARE EQUAL, SO B IS SET TO TRUE $
IF B THEN BEGIN IF X EQL 25.0 THEN Y = 24.9 END
| ELSE GO TO SK(2) $
COMMENT B IS TRUE BUT X IS NOT EQUAL TO 25.0, SO
THE NEXT STATEMENT IS EXECUTED $
B = FALSE $
LAB: IF Y GTR 20.1 THEN GO TO LIN $ |
COMMENT Y EQUALS 20.1, SO THE PROGRAM FINISHES $
END $

Repetition Statements - FOR Statements.

—— -y we -

The repetition statement allows a given statement to be
executed several times,.

Form

FOR V = <list of FOR list elements>DO<statement>$
where V must be a variable. This variable is called the
controlled variable

- FOR list element is described below.
- statement is one ALGOL statement of any kind, including
conditional or compound statements.

Rules for the controlled variable

T > D e = - ———— — —— = > = — . -

The controlled variable may only be of type INTEGER or RIAL.
If the controlled variable is a formal paramter, then the type
of the actual parameter must coincide with that of the formal.
When the controlled variable is subscripted, the subscript(s)
are evaluated once, before entering the loop.

39

FOR 1list elements

Form

The for list element is an arithmetic expression of
type INTEGER or REAL only.

If the controlled variable is of type INTEGER when an
expression is of type REAL, the value of the expression
will be rounded to INTEGER.

Action

P e o - —

Step - (The step numbers are used in the example, as

well as to illustrate the order).

1. Evaluate the expression.

2, Assign the value to the controlled variable, con-
verting to the type of the controlled variable if
necessary.

3. Execute the statement following DO,

4, If there are no more for list elements then execute
the next statement.

5. If there is another for list element,
repeat from step 1.

Example:
INTEGER A,B,C,TOTAL $
A = 10$ B = 5%
FOR C = A+ 5, A+ 20, B+ 1, BDO
TOTAL = TOTAL + C $
Action A has the value 10, B the value 5.

(coutd. on next page)

...L*,O_

Expression Value of C Value of TOTAL
Step
Number Value 0 0
1 1 15
2 15
3 15
4y Another for list element follows
5 2 30
2 30
3)
4 Another for list element follows
5 3 6
2 6
3 51
4 Another for list element follows
5 y 5
2 5
3 56
4 No more for list elements go to next statement

B) STEP UNTIL construction

Form

There are two forms for this for list element.

A STEP B UNTIL C

or

(A, B, C).

Notice that if the brackets are not present the latter

is a group of FOR list elements.

-41-

In both cases A, B and C are all arithmetic expressions.
They may only be of type INTEGER or REAL. If the con-
trolled variable is of type INTEGER while any of the

A, B or C are of type REAL, the value obtained is rounded
to INTEGER. B is called the step. C is called the limit.
A is called the initial value. ‘

1. Evaluate the expression A - call this value X.

2, Assign the value X to the controlled variable, con-
verting it to the type of the controlled variable if
necessary.

3. Evaluate the expressions B and C and convert to the
type of the controlled variable if necessary.

4. If the value of B is negative then go to step 6.

5, If the value of X is greater than the value of C then
go to step 10, otherwise go to step 7.

6. If the value of X is less than the value of C then
go to step 10,

7. Execute the statement after DO,

8. Calculate the sum of the value of X and the value of
B - call the result of this calculation X.

9, Start again at step 2.

10. If there are more FOR list elements start to perform
them - (note that the controlled variable has been
stepped) otherwise execute the statement after

the FOR statement.

Examples:

1, INTEGER I ¢ REAL J,K $
INTEGER ARRAY Z(1l:4) $
J=104 % K=2064% I=2%
FOR Z (I) = J + K STEP -~ J - I UNTIL - 4l
DO I =1 +A (2) $

-42-

Action
In this example
the initial value expression A is J + K

- the step B is J
the limit C 1is -41
the controlled variable is Z(2)

Step Value Value Value Value Value Value Value Value

of A of B of C X of Z(2) of I of J of X

Start 0 2 10.4 20.6

1 30.0 30

2 30

3 -12 -41 =41

4 Go to step 6

6 30»>~41 - do next step

7 | 32

8 18

8 back to step 2

2 18

3 -42 -41

4 Go to step 6

6 18>-41 -~ do next step

7 50

8 -24

9 Go to step 2

2 -24

3 ~ -60 ~41

4 Go to step 6

6 -24»-41 - do next step

7 26

8 -84

3 Go to step 2

2 -84

3 ~36 ~4]

4 Go to step 6

6 -84<-41 - Go to step 10
10

No more FOR list elements, go to next statement

-43=

In a more simple case set all members of an array to
a value

REAL D $

REAL ARRAY DA(-25 : 20) $

INTEGER I $

FOR I = (-25,1,20) DO DA(I) = D $

Perform a group of statements N times.
INTEGER I,N $ '
FOR I = (1,1,N) DO
BEGIN
READ (X) $ COMMENT WILL READ N CARDS $
Y = 50 ¥ X $
WRITE (Y) $ COMMENT WILL PRINT N LINES $
END $

Set specific members of an array to a certain value
INTEGER I $ REAL ARRAY X(1:200) $
REAL R $ |
FOR I = 1 STEP 1 UNTIL 5, 8, 9, 20 STEP 1g
UNTIL 60, 100, 200 DO
X(I) = R $
COMMENT X(1), X(2), X(3), X(4), X(5), X(8), X(9),
© X(20), X(30), X(40), X(50), X(60), X(100),
¥X(200) WILL BE GIVEN THE VALUE OF R $

b) WHILE construction

Form

<Arithmetic expression>WHILE<Boolean expressions

where arithmetic and Boolean expressions are as described

in section 4,

Evaluate the arithmetic expression.

. Assign the value of the arithmetic expression to the

controlled variable, converting if necessary.
Evaluate the Boolean expression,

If the Boolean expression has the value FALSE then
go to step 7.

S TR T

5. Execute the statement after DO.

6. Go to step 1.

7. If there are no more FOR list elements, execute the
statement after the FOR statement, otherwise take
the next FOR list element.

Examples:
1. INTEGER I, COUNT $
STRING S(350), SD(21)$
SD = 'OVERWRITE BLANK AREAS' $
FOR I = I + 1 WHILE S(I) EQL ' ' AND I LSS 22 DO
S(I) = SD(I) $ |

2. This FOR list element is useful when adding terms into

a series
REAL X, TOTAL $
X = 25.0 %

FOR X = 0.5 ® SQRT (X) WHILE X GTR 0.5 DO
TOTAL = TOTAL +X $

Value of Value Value of Value

Go to step 1
U445
445
FALSE

Value is FALSE, so go to step 7
No more FOR 1list elements, so do next statement

Step Arithmetic of Boolean of
Expression X Expression Total

Start 25.0 0.0
1 2.5

2 2.5

3 TRUE

4 Value is TRUE, so do next step

5 2,5

6 Go to step 1

1 .791

2 0.791

3 TRUE

4 Value is TRUE, so do next step

5 3.291

6

1

2

3

u

7

-45-

—— e — —— ——— — - = = . - —————— .

i) Upon exit from a FOR statement either because there are
no more FOR list elements or because of a GO TO state-
ment, the controlled variable has a specific value.
This value may be calculated by referring to the rules
for the type of FOR 1list element being used.

ii) A GOTO leading to a label withing the FOR statement is
illegal, A label may however be used for a jump within
the statement following DO.

Other Types of Statements.

Input/Output Statements are described in section 8.

Procedure Statements or calls on procedures which do not have

a type are described in section 7.

Blocks as statements - are described in section 6.

The OPTION feature which may be used like a statement is

described in section 9.

-4p-

BLOCKS.

The ALGOL block effects a grouping of a set of variables and
the statements involving these variables., The block structure
of ALGOL reflects the dynamic storage of variables, and may be
used to economize on storage space. An ALGOL program is an

example of a block.

A block has the following form

BEGIN
<declarations>$ Block head
<statements> Block body
END $

Notice that the only difference between a block and a compound

statement is that a block has declarations.

Nested Blocks.

A block may appear in the body of another block. This inner
block is then said to be nested in the outer block.

Example:

OUTERBL: BEGIN
REAL A, B $
A=1.5% B=2.68
INNERBL1: BEGIN
INTEGER C, D $
C=A+B$ D=A--B}H%
END $
A
INNERBL2: BEGIN
REAL E, F §
E=A=x B3} F
END $
A

50.0 $

A/B $

A+ BS$

END $

47

Here the blocks with the labels INNERBL1 and INNERBL?2
are nested in the outer block with the label OUTERBL.
The blocks with the labels INNERBL1 and INNERBL?2 are

non-nested.

6.2 Local and Global Identifiers.

Consider the following example, where the blocks B2 and B3

are nested in block Bl.

a)

b)

c)

d)

e)

BEGIN)

BEGIN
B2
END $

BEGIN
B3
END $

END $ /

Identifiers that are declared in Bl but not in B2 or B3,
are local in Bl and global in B2 and B3.

Identifiers that are declared in B2 are undefined in Bl and

B3. They are local in B2.

Identifiers declared in B3 are undefined in Bl and B3.

They are local in B3.

If the same identifier is declared in both Bl and B2, then
the declaration in Bl is ignored within B2. If the identifier
is used in Bl or B3, the declaration given in Bl will be

used.

Upon entering a blocks, variables are initialized to 0 if
arithmetic, to FALSE if Boolean, and to blanks if string.

Examples:

1. In the previous example
Bl is the block with the label OUTERBL,
" B2 is the block with the label INNERBLI1,
B3 is the block with the label INNERBLZ2.

-48-

Identifiers A and B are local to block OUTERBL, and
global to blocks INNERBL1 and INNERBL2. '
Identifiers C and D are local to block INNERBL1 ahd
undefined in the- other two blocks.
Identifiers E and F are local to block INNERBL2 and
undefined in the other two blocks.

2. BEGIN

REAL A $

A = 50.0 $§ COMMENT HEREA IS LOCAL AND REAL $
BEGIN

INTEGER A $

A=5% COMMENT HEREA IS LOCAL AND INTEGER $
END $
BEGIN

A = 25.0 $ COMMENT HEREA IS GLOBAL AND REAL $
END $

END $

Local and Global Labels.

Labels are declared, as explained in section 4.6.2, by placing
an identifier and a : in front of the statement to which the

label applies. Labels can-thus be local or global depending

on where they are declared.

Only labels which are local or global may be used in a
designational expression in a certain block. That is, GO TO
statements may only lead to statements in the same block or
in an enclosing block, never to statements in a non-nested
block.

Note - in NU ALGOL, the outermost block may not have a label,

since jumps to this label have no meaning.

-4g-

4)6.4 Use of Blocks.

b)

N

In section 3 - Declarations - it is stated that the bounds
for arrays, and the length of a string may be arithmetic
expressions. Variables or type procedures may be used in
these expressions only if they are global to the block in
which the declaration appears.

Non-nested blocks on the same block level use the same

area of core for the storage of their local variables.

Examples:

BEGIN
INTEGER X,Y,Z,N $
READ (X,Y,Z,N) $
BEGIN
REAL ARRAY A(1:X,1:Y), B(1l:Y,1:Z) $
STRING ST(X+Y+Z-N) $
END $
BEGIN
INTEGER ARRAY K(N:X,N:Z) §$
COMMENT THIS ARRAY USES THE SAME CORE
AREA AS A AND B IN THE BLOCK ABOVE $
END $
END $

-50-

7 PROCEDURES AND TYPE PROCEDURES,

7.1 Procedures.

7.1.1 Purpose.

When a group of statements are used in several places in a
program, possibly with different values of the variables, then
this coding may be written once in a procedure declaration and
used whenever necessary through the means of procedure calls or

procedure statements.

7.1.2 The Procedure Declaration.

Form
¢
PROCEDURE identifier (formal parameter list) $
Procedure VALUE<identifier list>$
head
<specifications>$
Procedure
<statement>$
body

where identifier is as described in section 2.2.
- formal parameter is described below.

- specification is described below.

7.1.3 Identifiers in the Procedure Body.

The statement which is the procedure body may'be a block.
Identifiers declared in the block are local to the block.

(See section 6.2).

Global

Identifiers declared in the block containing the procedure
declaration or enclosing blocks are global to the procedure
body and may be used by the statement.

_/

7.1.4

-51-

Example:
BEGIN $
INTEGER . I $
PROCEDURE P $§ COMMENT PROCEDURE HEAD WITH
NO PARAMETERS OR SPECIFICATIONS $
BEGIN
INTEGER K $ COMMENT K IS LOCAL $
K =58§
I =1+ K¢$ COMMENT I IS GLOBAL $
END $
END $

The selection of the actual variables to be used in the state-
ment is done when execution of the procedure is involved.
However, it is necessary to have representative variables in

the procedure declaration to allow the construction of a correct
statement. These representative variables are called formal
parameters. The variables used by the procedure during

execution are called the actual parameters.

Specifications.

The specifications give the type and kind of the formal
parameters and may also indicate the modes of transmission

of the actual parameters.,

Form

The form of a specification is
<specifier><list of identifiers>$

where the list of identifiers has the usual meaning, except
that in this case the identifiers may only be formal
parameters.

The following table gives the possible specifiers.

52

Use the When a formal para- -
specifier meter is to be =
INTEGER
REAL
REAL?2 A simple variable of
COMPLEX the specified type
BOOLEAN

STRING

INTEGER ARRAY

REAL ARRAY or ARRAY
REAL2 ARRAY

COMPLEX ARRAY
BOOLEAN ARRAY

STRING ARRAY

An array of the
specified type

LABEL A label
SWITCH A switch
PROCEDURE A procedure

INTEGER PROCEDURE
REAL PROCEDURE
REAL2 PROCEDURE
BOOLEAN PROCEDURE
COMPLEX PROCEDURE

A type procedure of
the specified type

FORMAT A format
- LIST A list
VALUE Special meaning

see section 7.1.7.

Note:

specifications.

The VALUE Specification must come before all other

7.1.5

-53-

The Procedure Body.

The procedure body must be only one statement. This state-

ment may be a compound statement or a blcok.

A formal parameter used on the left hand side of an assignment

statement must have a variable for actual parameter.

~Example of procedure declaration:w:

PROCEDURE EXAMPLE (A,B,ANS,C)$

VALUE B $ COMMENT VALUE SPECIFICATION $
REAL ARRAY B $ COMMENT OTHER SPECIFICATIONS $
INTEGER A $
REAL ANS $
LABEL C $ | | | |

BEGIN COMMENT START OF PROCEDURE BODY $
REAL2 TEMP $ COMMENT LOCAL VARIABLE $

TEMP = B(A) + B(A+1l) $

ANS = TEMP/2.0&&Y4 $

IF ANS LSS 0.0 THEN GO TO C $
END $

Classification of Formal Parameters.

The formal parameters may be classified by the way they are
used in the procedure body.

Arguments - are those parameters (variables or type procedures)
which bring into the procedure values that will be used by the
procedure body.

Results - are those parameters which are assigned values in the

procedure body.

Exits - consist of those formal parameters which are labels
or switches. Exits may be used as a special way of returning

from a procedure.

Note: A parameter may be both an argument and a result.

-54-

7.1.7 VALUE Specification.

(The main implications of this specification can be seen in
section 7.,1,11 - Execution of a procedure statement).

However, the following kinds of formal parameters may not be
placed in a VALUE specification.
LABEL, SWITCH, FORMAT, PROCEDURE, LIST

The VALUE specification causes the value or values of the
formal parameter to be copied into a termporary area.
These values can then be manipulated or changed without
destroying the values of the actual parameter.

A main advantage of the VALUE specification is that if the actual

parameters are expressions they are evaluated only.once.

Example:
PROCEDURE COUNT (N,ANS) $
VALUE N §$ COMMENT N IS AN ARGUMENT WHICH SHOULD

NOT BE CHANGED $
INTEGER N, ANS $ COMMENT ANS IS THE RESULT $

BEGIN
INTEGER I,J $
FOR J = N/2 WHILE N NEQ 0 DO.
BEGIN

IF 2%J NEQ N THEN I = I + 1 $
N = N//2 $§ COMMENT NOTICE THAT THE FORMAL PARAMETER
IS CHANGED, BUT NOT THE ACTUAL $
END $
ANS = I $
END $

7.1.10

‘_55_

Comments in a Procedure Head.

COMMENTS may be placed anywhere in the procedure declaration
after the delimiter $ or ; (see section 9). Comments may also
be placed in the formal parameter list by using the following

delimiter instead of a comma,

)string of lettérs‘hot including‘: or $§ followed by :(

Examples:

1. PROCEDURE EXAMPLE (A,N,S) $
COMMENT N IS THE DIMENSION OF THE ARRAY A
S IS AN EXIT $

2. PROCEDURE EXAMPLE (A) IS AN ARRAY WITH DIMENSION : (N)
IF ERROR EXIT TO : (S) $ '
COMMENT THE FORMAL PARAMETERS ARE A,N,S $

The Procedure Statement.

A procedure statement "calls" a declared procedure and transmits
actual pafametefs cofresponding to the formals of the procedure.
A call to a procedure will effect the execution of the procedure
body. ' '

Form

<identifier>(<actual parameter list>) $
where identifier is the identifier of the wanted procedure.

- actual parameter list is a list of variables or expressions.

The Actual Parametér List.

The i'th element of the actual parameter list corresponds

to the i'th parameter in the formal parameter list.

-56-

- There must be the same number of actual parameters as
there are formal parameters for a certain procedure.

For type and. kind correspondence of actual and formal
parameters, the following rules apply:

Formal parameter l Actual parameter can be

Simple variable Simple or subscripted variable,cont

stant, or expression of the same
type as the formal parameter or
of a type that can be converted
to that of the formal parameter.
(See restriction below).

Array Array of the same type and with
the same number of subscripts as

the array used in the procedure

body.
Label Designational expression
Switch Switch
Procedure Procedure with a formal parameter

list compatible with the list of

actual parameters used in the call
of the formal procedure.

Type procedure Type procedure of the same type as
the formal procedure or of a type
compatible to that of the formal

procedure and with a formal para-
meter list compatible with the act-
ual parameter list used in the calll

of the formal procedure.

|

A formal parameter used on the left side of an assignment state-
ment or as the controlled variable in a FOR statement can

only have as actual parameter a simple or subscripted variable, not

Restriction

.57

an expression or a constant.

Notice that a formal parameter whose actual parameter is a
constant or an expression may be used for temporary storage if
the formal parameter is VALUE specified. 1In this case, once
something has been assigned to the formal parameter, the value
of the actual parameter is lost to further calculations in the

procedure.

Examples of procedure statements:

1. For the procedure declared in section 7.1.5.
REAL ARRAY ARY(1:25) $ INTEGER RESULT $
EXAMPLE (15,ARY,RESULT,L1) $
L1:

2. For the procedure declared in Section 7.1.7.
INTEGER K,SIZE $
K = 25 $ COUNT (K,SIZE) $

7.1.11 Execution of a Procedure Statement.

_J
The procedure statement causes the execution of the statement
in the procedure body just as if the procedure statement were
replaced by the statement in the procedure body with the following

modifications.

a) All formal parameters which have not been VALUE specified
(name parameters), are treated as if they were textually
replaced by the corresponding actual parameters in the

procedure body.

b) Formal parameters which have been VALUE specified are the
evaluated, and these values are assigned to the formal

parameters, which are then used in the procedure body.

Examples:

1. Without value specification

COMMENT PROCEDURE DECLARATION $
) PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT,AN3) $
REAL LENGTH,WIDTH,HEIGHT,ANS $
ANS = LENGTH % WIDTH % HEIGHT $
COMMENT PROCEDURE STATEMENT $
VOLUME (P+5.0,Q+3.1,Z+4.0, RESULT) ¢

7.1.12

-58-

The procedure statement is executed as if the following

statement had been written,

RESULT = (P+5.0) #® (Q+3.1) x (Z+4,0) $

2. With value specification

PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT,ANS) $
VALUE LENGTH,WIDTH,HEIGHT $

REAL LENGTH,WIDTH,HEIGHT,ANS $

ANS = LENGTH x WIDTH x HEIGHT $
COMMENT PROCEDURE STATEMENT $

VOLUME (P+5.0,Q+3.1,Z+4.0, RESULT) $

The procedure statement is executed as if the following

block had been written in its place.

BEGIN
REAL LENGTH,WIDTH,HEIGHT $
LENGTH = P+5.0 $
WIDTH = Q+3.1 $
HEIGHT = Z+4.0 $ _
RESULT = LENGTH % WIDTH = HEIGHT $

COMMENT NOTE THAT THE ACTUAL PARAMETER RESULT IS STILL
USED BECAUSE ANS WAS NOT IN THE VALUE SPECIFICATION $
END $

Recursivity.

A procedure may be called within its own procedure declaration.
This feature is known as the recursive use of a procedure and
is fully implemented in NU ALGOL.

Type Procedures,

Introduction.

Procedures will often calculate a single value.

Type procedures calculate a value and assign this value

to the identifier given as the name of the procedure.

All of the rules for procedures stated in section 7.1 apply

with a few added rules.

-59-

7.2.2 The Type Procedure Declaration.

<type> PROCEDURE<identifier>(<formal parameter list>) $
VALUE<identifier list> $
<gspecifications>$
<statements> $
where - <type> is described in section 3.2.
- identifier is described in section 2.2.
- formal parameter list, VALUE specifications are

described in sections 7.1.

The statement should contain an assignment statement which
assigns a value to the identifier used as the name of the

procedure.

7.2.3. Use of a Type Procedure.

A type procedure may be used as an operand in an expression

by using the following construction
<identifier>(<actual parameter list>)
(See also section 4 concerning operands in expressions).

In its declaration, the type procedure identifier may be used
in an expression. This use is recursive because the procedure

uses itself in the calculation. (See 7.1.11).

The standard procedures (library functions) are examples of type
procedures. However, the standard procedures do not have to be

declared.

Examples:

1. COMMENT TYPE PROCEDURE DECLARATION $

REAL PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT) $
VALUE LENGTH,WIDTH,HEIGHT $
REAL LENGTH,WIDTH,HEIGHT $
VOLUME = LENGTH = WIDTH x HEIGHT $
COMMENT USE OF A TYPE PROCEDURE $

P= 5.0.4 Q =3.0% Z = 4,0 %

- WRITE (VOLUME (P+5.0,Q+3.1,Z+4.0)) $

This statement is executed as if the following block had been
written:

60

BEGIN
REAL LENGTH,WIDTH,HEIGHT,VOLUME $
LENGTH = P+5.0 $
WIDTH = Q+3.1 $
HEIGHT = Z+4.0 §

VOLUME = LENGTH x WIDTH x HEIGHT $
WRITE (VOLUME) $
END $

External Procedures.

Introduction.

External procedures allow the user to build a library of proce-
dures which are useful to him and which can be easily accessed
by declaring the required procedure to be EXTERNAL PROCEDURE.

Definition.

External procedures are procedures whose bodies do not appear
in the main program. They are compiled separately and linked

to the main program at its execution.

External Beclaration.

Use
The external declaration informs the compiler of the existence
of external procedures, of their type (if any), and of the

proper manner to construct the necessary linkages.

Form

EXTERNAL <kind><type> PROCEDURE <identifier list> $
<type> is as defined in section 3.2,
If no type is given, then the external procedure is a pure
procedure as described in section 7.1.
<kind> can be empty , ALGOL, FORTRAN, SLEUTH, or LIBRARY.

<empty> or ALGOL means an external procedure in the ALGOL
' language. These are treated just like ordinary

procedures declared within the program.

FORTRAN means an external procedure written in the
FORTRAN language.

N

61

SLEUTH and means that the external procedure is written

LIBRARY in the machine language SLEUTH II.

The following descriptions require an adequate knowledge of the
EXEC II monitor system, FORTRAN and SLEUTH II.

7.3.3 ALGOL External Procedures.

Form

An ALGOL pfocedure declabatibn (see sectibn 3) may be compiled
separately if an E option (see seétion 9.2) 1is used on

the ALGOL processor card.

Several procedures may be compiled using the same ALGOL
processor card. A program containing externally compiled

procedures does not require an enclosing BEGIN-END pair.

An ALGOL procedure compiled in this way"will have only the
first six characters of the procedure name marked as an entry
point in the PCF.

Such a procedure may be referenced fﬁom another ALGOL program
as an external procedure if the appropriate declaration and

identifier is used.

Examples:
1. The externally compiled procedure.
VE ALG <name >

PROCEDURE RESIDUES (X,Y)$
VALUE X,Y; REAL X,Y;
BEGIN SRR
END$

The main program

v ~ ALE <main name>
BEGIN
EXTERNAL PROCEDURE RESIDUESS$
REAL A,B$
RESIDUES (A,B)$

END$

_62-

2, The externally compiled procedure,

VE ALG <name>
REAL PROCEDURE DET(A,N)$
VALUE A,N$
REAL ARRAY A$
INTEGER N$
BEGIN
COMMENT THIS PROCEDURE FINDS THE DETERMINANT OF A
REAL NxN MATRIX A, LEAVING A UNCHANGED AND ASSIGNING
THE VALUE TO DET$

L

DET=---$

END DET$

The main program

v ALG <main name»
BEGIN

- REAL ARRAY MATRIX (1:10,1:10)$
EXTERNAL REAL PROCEDURE DET#$

WRITE(DET(MATRIX,10))$

END OF MAIN PROGRAM$

7.3.4 FORTRAN Subprograms.

A FORTRAN SUBROUTINE or a FORTRAN FUNCTION may be made
available to an ALGOL program by the declaration

EXTERNAL FORTRAN <type> PROCEDURE<identifier list»

where type is described in section 3.2 and identifier

list in section 2.2.

Allowed_parameters

Actual parameters in calls on such FORTRAN subprograms
- may be either expressions, arrays or labels. Procedures,
string arrays, formats and lists may ggz be used. -Strings
may be used if the FORTRAN program handles them correctly.

-63-

The address of the string itself, not of the string descriptor,
is transmitted. Labels may be used only if they are local. to
the block where the calls occurs.

Differences between FORTRAN function and subroutine

The inclusion of <type> in the declaration implies that the
FORTRAN subprogram begins with <type> FUNCTION <name>. The
absence of <type> implies that the FORTRAN subprogram begins
with SUBROUTINE <name>.

Example:
FORTRAN subprogram
v FOR <namel>
FUNCTION DET (A,N)
DIMENSION A (N,N)
C DET FINDS THE DETERMINANT
C OF A REAL NxN MATRIX A,
C DESTROYING A (SINCE 'VALUE' IS
C NOT ALLOWED IN FORTRAN), AND
C ASSIGNING THE VALUE TO DET

DET=--~-
END

ALGOL mainprogram
v ALG <name?2>
BEGIN
ARRAY MATRIX (1:10,1:10)$
EXTERNAL FORTRAN REAL' PROCEDURE DETS$

.

WRITE (DET(MATRIX,10))$
END OF MAIN PROGRAM$

7.3.5 Machine Language Procedures

‘Use

For certain special applications (for example, bit manipulation),
machine lahguage procedures are necessary. These available the
use of the EXTERNAL SLEUTH or the EXTERNAL LIBRARY declarations.

-BL4-

Recursive and non-recursive

The following remarks apply only to non-recursive machine lang-
uage procedures. The required information for writing recursive
machine language procedures may be found in the ALGOL technical

documentation.

If <type> is used in the EXTERNAL procedure declaration, the
value of the procedure must be left in register A0 for single
word length types (BOOLEAN, INTEGER, REAL) and A0 and Al for
double word length types (COMPLEX, REAL2).

Only the volatile registers (B11,A0,A1,A2,A3,A4,A5,R1,R2,R3)

may be used without restoring.

The first six characters of the name in the identifier list of
the EXTERNAL PROCEDURE declaration must be the first six charac-
ters of the external entry point of the machine language pro-

cedure.

Simple strings and all arrays inCluding string arrays used as
parameters require special handling as explained in the next

sections.

SLEUTH LIBRARY
1. Method of para- By means of parameter Parameter addresses or
- meter transmis- descriptors in core values are deiivered
sion through the arithmetic
registers.
2. Security - Checking of the legal- Full checking is done

ity of the actual par- at compiletime.
ameter list must be
done at run-time in
the SLUTH procedure.

J

3. Speed of para-
meter transmis-

sion

L. Flexibility

5. Example
Declaration:

Call:

-65_

SLEUTH

Fairly slow because of
the need for indirect
addressing and run-time

checking.

Complete information
available at run-time
about the parameters.

EXTERNAL SLEUTH
PROCEDURE ES$

ES (A,B)$
A and B may be of
any type or kind.

7.3.5.1 The External SLEUTH Procedure

Declaration

LIBRARY

Fast because values of
correct type and kind
are delivered through

registers.

Less flexible because
allowable actual para-
meters are determined

at compile-time.

EXTERNAL LIBRARY
PROCEDURE EL(X,Y)$
REAL X,Y$$

EL(A,B)$
A and B must be REAL

EXTERNAL SLEUTH <type> PROCEDURE <identifier list> $

Examples:

EXTERNAL SLEUTH PROCEDURE BIT, PACK $
EXTERNAL SLEUTH COMPLEX PROCEDURE ARRAYSUMS$

The call to a procedure which has been declared as an EXTERNAL
SLEUTH PROCEDURE produces the following coding.

F5 FORM 30,6

F1 FORM 6,6,6,18
LMJ Bll,<procedure name>
F5 <not used> , <number of parameters>
F1 <type>,<kind>,<base register>,<relative data address>

—
————
———

_66..

Fl is the parameter descriptor. There is one for each para-

meter in the call.

<type> can have the following values and meanings
1 INTEGER

REAL

BOOLEAN

COMPLEX

REAL?2

STRING

~N o0 FowoN

<kind> can have the following values and meanings
1 Simple, constant, expression or subscripted.variable
5 ARRAY
9 LABEL

The absolute data address (ADA) or location of the parameter

is found from

<absolute data address>=<relative data address> + contents of

{base register}

The <base register>. field may be zero in which case nothing
should be added to the data address.

Note that for all simple expressions the <absolute data address>
contains the value of the parameter. For strings it contains

the <string descriptor>. For arrays it contains the first word
of the <array descriptor>. -

Formal parameters may not be used as actual parameters to the
call of a SLEUTH procedure.

The return point for a call with N paraméters is the contents

of register B11l + N + 1.

ExamEle:
Call: BIT (X,Y,Z,D,E,F)$

Return: J 7,Bll

-67-

Values of parameters should be obtained by the use of an in-

direct command.

Example:
Call:

To load value of B:

PACK(A,B,C)$

L A2,%2,Bl1l1
-If C is a label exit to C is J

%3,B11

See sec. 7.3.5.3, 7.3.5.4 and 7.3.5.5 for description of
STRING, ARRAY and STRING ARRAY parameters respectively.

Machine Language Program:

V AsM

¢namel>

+ THE FOLLOWING PROGRAM HAS NO PURPOSE
OTHER THAN TO ILLUSTRATE THE ABOVE NOTES

$(1)
EPSx

L,T1
TE,U

TG,U

L,T1"

TE,U

L,H2

THE NEXT ROUTINE

EQUIV

SET UP MNEMONICS

HAS THE CALL EPS(INT,STRING,EXIT LABEL)$

Al,1,B11.
Al,0101.
%3,B11.

AO,x1,B11.

AD,1024,
x3,B11.
Al,2,B11.

- A1,0701.

®x3,Bl1.

Al,%2,B11.

A5,1,Al.
4,B11.

PICK UP TYPE AND KIND

IF NOT SIMPLE

INTEGER GO TO ERROR EXIT
PICK UP VALUE OF INTEGER

IF THE INTEGER GEQ 1024
THEN GO TO ERROR EXIT

PICK UP TYPE/KIND FOR
SECOND PARAMETER

IF NOT SIMPLE STRING

THEN GO TO ERROR EXIT

PICK UP ADDRESS FROM STRING
DESCRIPTOR '

PICK UP SECOND WORD OF STRING
RETURN WITH AQ CONTAINING
THE ACCEPTABLE INTEGER

HAS THE CALL TIMER (ARRAY IDENTIFIER, ROW, COLUMN, ANSWER)
THIS ROUTINE MULTIPLIES THE FIRST THIRD
OF THE SPECIFIED ARRAY ELEMENT BY .3600

-68-

THE SECOND THIRD BY 60 AND ADDS THE
RESULTS TO THE THIRD THIRD

TIMERx% L A0,x1,B11. GIVES ADA
L A3,%3,B11. PICK UP COLUMN
MSI,H1 A3,1,A0. MULTIPLY BY D2
A A3,%x2,B11. ADD ON ROW
A,H1 A3,0,A0. ADD ON BA
L,H2 Al1,0,AO0. PICK UP FA
AU,H1 Al,0,Al. ADD LENGTH TO FA
W Al ,A3. IF ELEMENT NOT IN ARRAY
J MERRS$. GO TO SYSTEM ERROR EXIT
L,T1 AQ0,0,A3. PICK UP FIRST THIRD
MSI,U A0,60. MULTIPLY BY 60
A,T2 A0,0,A3. ADD ON SECOND THIRD
MSI,U A0,60. MULTIPLY BY 60
A,T3 A0,0,A3. ADD ON THIRD THIRD
S A0 ,x4,B11. STORE RESULT IN
J 5,B11. FOURTH PARAMETER AND RETURN
END.

Main program:

vV ALG <name?2>

BEGIN
EXTERNAL SLEUTH INTEGER PROCEDURE ESP$
EXTERNAL SLEUTH PROCEDURE TIMER$
INTEGER INT$
STRING SOUT(4,SIN(7))$
INTEGER ARRAY A1(1:50,0:10) ,RESULTS(-5:12)$
WRITE(ESP(INT,SIN,ERR))$ GO TO L1$
ERR: WRITE ('WRONG PARAMETER')$
Ll: TIMER(A1l,5,9,RESULTS(12))$

END$

69

7.3.5.2 The External LIBRARY Procedure

Declaration

In order to make possible the compile-time checking of the
parameters, the declaration of a LIBRARY procedure must con-
tain specifications. The specification list is terminated by
; or $. The LIBRARY procedure therefore has the appearance of
an ALGOL procedure with an empty body.

The form of the declaration is:

EXTERNAL LIBRARY<type>PROCEDURE<identifier>(<formal para-
meter list>)$
<value part>

<specification part>$

Example:

EXTERNAL LIBRARY INTEGER PROCEDURE COM(I,Bl,CA)$
VALUE I,B1$

o INTEGER I$

BOOLEAN B1$

COMPLEX ARRAY CA$$

Call

When a library procedure is called, parameter values or addresses
are loaded into consecutive arithmetic registers. If the formal
parameter is by vaiue, the value of the actual parameter is
loaded, otherwise the address of the parameter is loaded. The
first parameter goeé into A0, the second into Al and so on.

REAL? or COMPLEX parameters called by value, occupy two conse-
cutive registers. The number of parameters allowed in the call

is therefore limited by the number of arithmetic registers avai-
lable and can at most be 16.

Generally the type and kind of the formal and actual parameter
must be the same. However, if the formal is a simple value pa-
‘:) rameter; the actual parameter need only be convertible to the

formal type. A label must be local to the block where the call

occurs.

.70

The table below shows possible combinations of formal and

actual parameters and the corresponding content of the arith-

metic register.

Blank fields indicate illegal combinations

which will give compile-time errors.

Actual|simple or £ 1 string array
formal orma subscr. lx- formal formal local
value ngmel constant |, riable pression|and non-{and non-| label
FormaIlYsimple SimpLe formal formal
value |value of |value of |value of |value of palue of
simple |parameter |parameter [constant |parame- gxpres-
ter ion
simple jaddress address
not by of of
value |parameter parameter
The
value string
string descrip-
: tor, Sec.
Z1.3.5.3
address
string of the
not by string
value descrip-
tor. Sec.
17.3.5.3
address
of the
array array
descrip-
tor.Sec.
7.3.5.4
pro-
label gram
address

Return from a LIBRARY procedure is always to 0,Bll.

71

ExamElei
V ALG MAIN

BEGIN
COMMENT THIS EXAMPLE SHOWS HOW TO PACK THREE INTEGER NUMBERS
INTO ONE 1107/1108 COMPUTER WORD IN ORDER TO SAVE CORE SPACE,
AND THEN UNPACKING THEM AGAIN FOR COMPUTATION. FOR SUCH
PACKING THE NUMBERS MUST HAVE ABSOLUTE VALUES LESS THAN 2047.
'LARGER NUMBERS WILL BE TRUNCATED;

INTEGER I,J,K,M,N;

INTEGER ARRAY NUMBERS (1:10000);

EXTERNAL LIBRARY PROCEDURE PACK (N,I,J,K);
VALUE I,J,K;
INTEGER N,I,J,K; ,
COMMENT THE PROCEDURE PACKS I,J,K INTO N; ;

EXTERNAL LIBRARY PROCEDURE UNPACK (N,I,J,K);
INTEGER N,I,J,K;
COMMENT THE PROCEDURE UNPACKS N INTO I,J,K;;
COMMENT READ 30000 NUMBERS FROM CARDS;

FOR M = (1,1,10000) DO
BEGIN
READ(I,J,K); PACK(NUMBERS(M),I,J,K);
COMMENT THE CALL ON PACK WILL GENERATE THE FOLLOWING

SEQUENCE:
L AQ,<address of array element?
L Al,I,B2
L A2 ,J,B2
L A3,K,B2
LMJ B11,PACK 3
END;

COMMENT DO SOME CALCULATIONS;
FOR M=(1,1,5000) DO
BEGIN '
UNPACK (NUMBERS (M) , T ,J ,K) 3
COMMENT THE CALL ON UNPACK WILL GENERATE:
L A0,(address of array element)
L,U Al,I,B2
L,U A2,J,B2

7.3.5.3

-72-

L,U A3,K,B2
LMJ B11 ,UNPACK 5
N=I14+J x K;
UNPACK(NUMBERS(10000-M),I,J,K);
N=NxK// I+ Jd;
WRITE(N);
END;
END MAIN PROGRAM;

V ASM PUNP
EQUIV.

PACKx.
S,T1 Al,0,A0. I GOES INTO T1
S,T2 A2,0,A0, J GOES INTO T2
S,T3 A3,0,A0. K GOES INTO T3

J 0,Bll. 'RETURN TO MAIN PROGRAM
UNPACKx.
L,TlL A4,0,A0. GET NUMBER IN T1
S A4,0,Al. STORE INTO I
L,T2 AY4,0,AO0.
S AlL,0,A2.
L,T3 Al4,0,A0.
S Al,0,A3.
0,B1l, RETURN TO MAIN PROGRAM
END.

String Parameters

The absolute data address 1is the location of the string
descriptor . The string descriptor can be described as follows

ry FORM 12,6,18
Fu <length?»,<start>,<address>
where <length> is the number of characters in the string.
<start> is the start position of the string in the first
word used S1=0, S2=1, S3=2, Su=3, S5=4, S6=5
It will be different from zero only for substrings.
<address> is the. location of the first word used for the

string.

s

s

-73~-

7.3.5.4 Array Parameters

The absolute data address (ADA)
is the start address of the array descriptor.

The array descriptor has the folldwing format,

Address H1 H?2 R

ADA BA FA

ADA+1 D2 D3 Dope vector elements -
ADA+2 Dy D5 as many as required
ADA+3 D6 D7 maximum of 9 since the
ADA+Y D8 D9 maximum number of dimen-
ADA*+5 D10 | sions is 10.

BA - Base Address is the value to be added to the calcu-
lated subscript to give the exact location of the

element.

FA -~ First Address is the absolute address of the check
word which stands just before the first element in

the array.

D_ - are the "dope vector elements" which are only present
if the array has more than one dimension.,
Their use is explained by the following algorithm.

For an array with n dimensions the element with subscripts
15 S 83...Sn has the following address

<absolute address of array element (S;,S,,...5)>=

n
(..((Snan+Sn_l)an +Sn_2)xD)xD2+S +BA

-1 n-2°""" 1

For COMPLEX or REAL2 arrays the algorithm has the form
<absolute address of double array element (S;,S,,..,5)>=
(2% [(..((S ®D_+S__)®D__,+S_ _,)#D v+)uD,*+5+BA

n-2
Example:
The array element A(I,J,K) has the address
(KxD3+J)xD2+I+BA.

7.3.5.5

-74h-

Checkword

The checkword at location FA has the following format.

F3 FORM 18,18
F3 <length of array in machine words>,

<not used>

String Array Parameters,

The absolute data address (ADA)
is the start address of the string array descriptor,

The string array descriptor has the following format.
Address

ADA <Relative string descriptor>
ADA+1)
ADA+2
ADA+3 Same as words ADA through ADA+5
ADA+Y4 } for ordinary arrays

ADA+5
ADA+6

The relative string descriptor has the following form

Flu FORM 12,6,18
Fy <length>,<start>,<relative position>
where <length> - is the number of characters in the
string.
<start> is the start position of the string

in the first word it occupies.
S1=0 S2=1 S3=2 S4=3 Sb=4 "S6=5
(not 0 only for subarray elements)
<relative is the amount to be added to the
position> address given in the string des-
criptor to get the address of the

first word containing the string.

The address of an element is calculated in the same way

as for ordinary arrays.

N

75

An element 1in a string array is a string descriptor

Fh FORM 12,6,18
F4 - <length»,<start>,<address of string>
where <length> and <start> have the same meaning as above.

In the case of a main string they will have the same values
as well.
address of string is the location of the first
word used for the main string.

To find the address of the first word used for a substring,

it is necessary to add the address of string to the

relative position .

Example:

STRING ARRAY S1(7,52(5,33(4)),2:1:2,1:5)%
EXTERNAL SLEUTH PROCEDURE XYZ$

XYZ(sS1,52,S3)$

Storage diagrams

ADA for S1 18 0 0
BA FA
D2

ADA for S2 9 1 1
BA TA
D2

ADA for S3 4 0 2
BA FA
D2

SA

SA+3

FA

-76-

10 SA

18 0 SA

18 0 SA+3
18 0 SA+6
18 0 SA+9
18 0 SA+12
18 0 SA+15
18 0 SA+18
18 0 SA+21
18 0 SA+24
18 0 SA+27

= Start address

S1(1,1:1,1)

S1(2,1:1,1)

S1(3,1:1,1)

S1(4,1:1,1)

S1(5,1:1,1)

S1(6,1:1,1)

S1(1,1:2,1

S1(7,1:1,1)]81(8,1:1,1)| 81(9,1:1,1)| S1(10 S1(11 S1(12
S2(1,1:1,1)| s2(2,1:1,1)| S2(3 S2(4 S2(5
S1(13 S1(1u S1(15 S1(16 S1(17 S1(18
S2(6 S2(7 S2(8 S2(9
S3(1 S3(2 S3(3 S3 (4
S1(2

Standard Procedures,

=-77-

Available Procedures.,.

The following procedures are available for use without

declaration. Also some identifiers with special meaning are

listed.

These names are not reserved identifiers and may be redefined

in any block,

X is used to mean the value of the first parameter,

Y the second.

Number Types Result Type
Name of of or of
Parameters Parameters Use Result
ABS 1 INTEGER The absolute value of INTEGER
REAL the parameter REAL
REAL?2 REAL?
COMPLEX REAL
ALPHABETIC 1 STRING TRUE if the string BOOLEAN
consists only of spaces
or alphabetics (A-Z),
FALSE otherwise.
ARCCOS 1. INTEGER
REAL arccos (X) REAL
REAL?2 arccos (X) REAL?
ARCSIN 1 INTEGER
REAL arcsin (X) REAL
REAL?2 arcsin (X) REAL?
ARCTAN 1 INTEGER
REAL arctan (X) REAL
REAL? arctan (X) REAL?2
CARDS 0 - To specify to the input

routine that the device
is the card reader or
to the output routine
that the device is the

the card punch

-78-

Number Type Result Type
Name of of of of
Parameters Parameters Use Result
CBROOT 1 INTEGER
REAL cube root of X REAL
REAL? cube root of X REAL?
COMPLEX cube root of X COMPLEX
CHAIN 1 INTEGER calls in 1link X in MAP -
CLOCK 0 - Present time of day in INTEGER
seconds since midnight.
For example at 13:30
the result is 48600
COMPL 2 1. INTEGER A complex number with COMPLEX
REAL the real part equal
REAL?2 to X and the imaginary
2. INTEGER part equal to Y.
REAL Example:
REAL?2 COMPL(1,2) gives the
complex number
<1.0,2.0>
CoSs 1 INTEGER cos (X) REAL
REAL
REAL?2 cos (X) REAL?2
COMPLEX cos (X) COMPLEX
COSH 1 INTEGER cosh (X) REAL
REAL
REAL? cosh (X) REAL?2
COMPLEX cosh (X) COMPLEX
DISCRETE 2 1. REAL Drawing from a discrete
ARRAY (cumulative) '
2. INTEGER distribution function
(For full description
see sec. 7.4.2)
DRAW 2 1. REAL TRUE with the BOOLEAN
2. INTEGER probability X,
FALSE with the
probability 1-X (sec. 7.4.2)

79

Number Type Result - Type
Name of of : of of
Parameters Parameters Use Result
DRUM 0 or 1 INTEGER Gives input/output -

routine dccass to rela-
tive address X of random
drum. If X not specified
then the next relative
address available 1s used.

DRUMPOS 0 - Gives next relative drum INTEGER
address ‘ A
DOUBLE 1 INTEGER Value of type REAL2 " REAL2?
REAL
ENTIER 1 REAL Largest integer I such INTEGER
REAL?2 that I < X
Example:
ENTIER(-0,99) is -1
EOF 0 orl INTEGER Used by WRITE and
REAL POSITION (See sec. 8.4.5)
STRING Only the first 6 charac-
ters of the string are
used.
EOTI 0 - ' Used by WRITE and -
POSITION (See sec. 8.4.6)
ERLANG 3 1. REAL A drawing from the
2. REAL Erlang distribution . REAL

3. INTEGER with mean 1/X and stand-
ard devitation 1/X/¥°
(For full description
see sec. 7.4.2)

EXP 1 INTEGER

REAL exp (X) REAL
REAL?2 exp (X) REAL?2

COMPLEX exp (X) COMPLEX

80

Number Types Result Type
Name of of or of
Parameters Parameters Use Result
HISTD 2 1. REAL A drawing from a histo- INTEGER
ARRAY gram
2. INTEGER (For full description
see sec. 7.4.2)
HISTO 4 1. REAL or To update a histogram -
INTEGER according to observa-
ARRAY tion (third parameter)
2. REAL or with the weight the
INTEGER fourth parameter (For
ARRAY full description see
. REAL sec. . 7.4.2)
4. REAL
IM 1 COMPLEX Imaginary part of the REAL
complex number X
INT 1 REAL Value of type INTEGER INTEGER
REAL?2
STRING
KEY 0 or 1 INTEGER Used by WRITE and -
POSITION (See sec. 8.4.4)
Only the first 6 charac-
ters of the string are
used.
LENGTH 1 STRING Number of characters in INTEGER

the string including
blanks.

Example:
STRING S(u2)$

LENGTH (S) has the value

42

-81~

REAL
REAL?2

Number Types Result Type
Name of of or of
Parameters Parameters Use Result
LINEAR 3 1. REAL A drawing from a REAL
ARRAY (cumulative) distri-
2. REAL bution using linear
ARRAY interpolation in a non-
3. INTEGER equidistant table, (for
full description see
sec. 7.4.2).
LN . INTEGER 1n (X) REAL
REAL
REAL?2 1n (X) REAL?
COMPLEX 1n (X) COMPLEX
MARGIN 3 or 4 1. INTEGER To change -the -
' 2. INTEGER vertical dimensions
3. INTEGER on a printer page
4. STRING (see sec. 8.8.5).
MAX List of INTEGER Algebraic largest ele- REAL
expressions REAL ment of list REAL
(any number) Example:
' Value of MAX(FOR I=
(1,1,99) DO I) is 99.0
MIN List of INTEGER Algebraic smallest REAL
expressions REAL element of list REAL
(any number) Example:
Value of MIN
(1.2,3.3,-8.6,-99.2,-
4,0) is -99.2
MOD 2 1. INTEGER If REAL or REAL2 then INTEGER
' REAL round x and y to nearest
REAL?2 integer, then the expres-
sion X-ENTIER(X/Y)xY is
computed.
2. INTEGER Example:

Value of MOD(-48,5) Is 2

-82~-

Number Types Result Type

Name of , of or of
Parameters Parameters Use Result

NEGEXP 2 1. REAL A drawiﬁg from the - REAL

2. INTEGER negative exponential
distribution with mean
1/X (for full descrip-
tion see sec. 7.4.2).

NORMAL 3 1. REAL A drawing from the nor- REAL
2. REAL mal distribution with
3. INTEGER mean X and standard

deviation Y. (See
sec. 7.4.2).

NUMERIC 1 STRING TRUE if string has the BOOLEAN
form of an integer,

FALSE otherwise.

POISSON 2 1. REAL A drawing from INTEGER
2, INTEGER the Poisson distribution
(See sec. 7.4.2).

POSITION special - To position a tape -
list (See section 8.8.3).

PRINTER 0 - To assign the printer -
as device to the WRITE

procedure

PSNORM 4 REAL An approximate drawing REAL
REAL from the normal distri-

. INTEGER bution with mean X and

. INTEGER standard deviation Y

(See sec. 7.4.2)

F o w N+

83

Number Types Result Type
Name - of of or of
Parameters Parameters Use Result
RANK 1 STRING The field data equi- INTEGER
valent of the first non-
blank character of the
string.
Example:
STRING S(12)$
S=! D'$
RANK(S) will have the
value 9 (D=ll8).
RANDINT 3 1. INTEGER A drawing of one of the INTEGER
2. INTEGER integers between X and
3. INTEGER Y with equal probability
' '(See description in sec.
7.4.2). -
RE 1 COMPLEX The real part of the REAL
complex number X.
READ Special - To bring input from a -
list specified device
REWIND 1 TAPE To rewind a tape -
REWINT 1 TAPE To rewind a tape and lock -
SIGN 1 INTEGER INTEGER
REAL Value of Value of
REAL? X SIGN (X)
X>0 1
X=0 0
X<0 -1
Example:

Value of SIGN(128) is 1

-84 -

Types

Number Result Type
Name of of or of
Parameters Parameters Use Result
SIN 1 INTEGER
REAL sin (X) REAL
REAL2 sin (X) REAL?
COMPLEX sin (X) COMPLEX
SINH 1 INTEGER
REAL sinh (X) REAL
REAL?2 sinh (X) REAL?2
COMPLEX sinh (X) COMPLEX
SQRT 1 INTEGER
REAL X REAL
REAL?2 /X REAL?
COMPLEX X COMPLEX
TAN 1 INTEGER
REAL tan (X) REAL
REAL? tan (X) REAL?2
COMPLEX tan (X) COMPLEX
TANH 1 INTEGER
REAL tanh (X) REAL
REAL?2 tanh (X) REAL?2
COMPLEX tanh (X) COMPLEX
TAPE 1 INTEGER To specify which tape
STRING or sequential drum file
an input or output
routine should use.
UNIFORM 3 REAL The value is uniformly REAL
REAL distributed in the
INTEGER interval [X,Y>. (Sec.7.4.2).
WRITE Special - To send output -
list to a specified device

85

Special Routine Descriptions.,

Included in the run-time system of this ALGOL are many of the
Random Drawing and some of the Data Analysis routines of
SIMULA (0.J. Dahl, K. Nygaard: Simula. NCC. Sept.1967, ch. 7-8).

The follcwing descriptions explain their uses and methods.

a) Pseudo-random Number Streams

All random drawing procedures of SIMULA use the same technique

of obtaining basic drawings from the uniform distribution in

~the interval <0,1>.

A basic drawing will replace the value of a specified integer
variable say, U, by a new value according to the following
algorithm,

- . 2p+l n
U;4q = remainder ((Ui x 5Py /2™y,

where Ui is the i'th value of U.

It can be proved that, if Ug is a positive odd integer, the
same is true for all Ui’ agd the sequence UD’ Ul’ U2, --- 1is
cyclic with the period 2"7%. (The last two bits of U remain
constant, while the other n-2 take on all possible combina-

tions). In UNIVAC 1107 /1108 we have n = 35. p is chosen

~equal to 6.
The real numbers u; = Ui x 27% ape fractions in the range <0,1>.
The sequence Upy Upy === is called a stream of pseudo-random

numbers, and uy (i = 1,2, ==-) is the result of the i'th basic
drawing in the stream U. A stream is completely determined
by the initial value U, of the corresponding integer variable.
Nevertheless it is a "good approximation" to a sequence of

truly random drawings.

By reversing the sign of the initial value U0 of a stream
variable the antithetic drawings 1 - u;, 1 - u,, --- are
obtained. In certain situations it can be proved that means
obtained from samples based on antihetic drawings have a
smaller variance than those obtained from uncorrelated streams.
This can be used to reduce the sample size required to obtain
reliable estimates.

86

The following procedures all perform a random drawing of some
kind. Unless otherwise is explicitly stated the drawing is
effected by means of one single basic drawing, i.e. the
procedure has the side effect of advancing the specified
stream by one step. The necessary type conversions are
effected for the actual parameters, with the exception of

the last one. The latter must always be an integer variable

specifying a pseudo-random number stream. All parameters

except the last one and arrays are called by value.

1. Boolean procedure draw (a, U); real a; integer Uj;

The value is true with the probability a, false with the
probability 1 - a. It is always true if a > 1, always

false if a < 0.

2. integer procedure randint (a, b, U); integer a, b, U;
b

The value is one of the integers a, a + 1, ---,

b with equal probability. It is assumed that b >

v
u

3. real procedure uniform (a, b, U); real a, b; integer U;

The value is uniformly distributed in the interval [a, b>.
It is assumed that b > a.

4. real procedure normal (a, b, U); real a, b; integer U;

The value is normally distributed with mean a and standard
deviation b. An approximation formula is used for the

normal distribution function:

See M. Abramowitz & I.A. Stegun (ed):

Handbook of Mathematical Functions, National Bureau of
Standard Applied Mathematics Series no. 55, p. 952 and
C. Hastings formula (26,2.23) on p. 933.

5. real procedure psnorm (a, b, c, U); real a, b; integer c, U;

The value is formed as the sum of c¢ basic drawings, suit-
ably transformed so as to approximate a drawing from the
normal distribution. The following formula is used:

-87-

c
a+b ((x ui) - c/2)/12/c
i=1

This procedure is faster, but less accurate than the
preceding one. <c is assumed <12.

real procedure negexp (a, U); real aj; integer Uj;

The value is a drawing from the negative exponential dis-
tribution with mean 1/a, defined by -1n(u)/a, where u is

a basic drawing. This is the same as a random "waiting
time" in a Poisson distributed arrival pattern with expected

number of arrivals per time unit equal to a.

integer procedure Poisson (a, U); real a; integer Uj;

The value is a drawing from the Poisson distribution with
parameter a. It is obtained by n+l basic drawings, us,
where n is the function value. n is defined as the smallest

non-negative integer for which

The validity of the formula follows from the equivalent

condition

—1n(ui)/a > 1,

1Hn~MmJ

i=0
where the left hand side is seen to be a sum of "waiting
times" drawn from the corresponding negative exponential

distribution.

When the parameter -a is greater than 20.0, the value is
approximated by integer (normal (a,sqrt(a),u)) or, when

this is negative, by zero.

real procedure Erlang (a, b, U); value a, b; real a, b;

integer U;

.The value is a drawing from the Erlang distribution with

mean l/a and standard deviation l/QaVG;). It is defined
by b basic drawings U, if b is an integer value,

10.

ll.

-88~

1n(ui),

nm~myg

1=1 asb
and by c+l basic drawings u; otherwise, where c is equal

to entier (b),

¢ 1n (u.)
- 3 i _ (b-c) 1n (uc+l)
i=1 a+b a-b

Both a and b must be greater than zero.

integer procedure discrete (A, U); array A; integer U;

The one-dimensional array A, augmented by the element 1 to
the right, is interpreted as a step function of the sub-
script, defining a discrete (cumulative) distribution

function. The array is assumed to be of type real.

The function value is an integer in the range [lsb, usb+l],
where 1lsb and usb are the lower and upper subscript bounds
of the array. It is defined as the smallest i such that

A(i)> u, where u is a basic drawing and A (usb+l) = 1.

real procedure linear (A, B, U); array A, B; integer U,

The value is a drawing from a (cumulative) distribution
function F, which is obtained by linear interpolation in
a non-equidistant table defined by A and B, such that

A (i) = F(B(i)).

It is assumed that A and B are one-dimensional real arrays
of the same length, that the first and last elements of A
are equal to 0 and 1 respectively and that A (i) > A (J)
and B (i) > B (j) for i > j.

integer procedure histd (A, U); array A; integer U;

The value is an integer in the range [1sb, usb], where
1sb and usb are the lower and upper subscript bound of the
one-dimensional array A. The latter is interpreted as a

histogram defining the relative frequencies of the values.

-89~

This procedure is more. time-~consuming than the procedure
discrete, where the cumulative distribution function is
given, but it is more useful if the frequency histogram

is updated at run-time.

12. procedure histo (A, B, c, d); array A, B; real c, d;

will update a histogram defined by the one-dimensional
arrays A and B according to the observation c¢ with the
weight d. A (i) is increased by d, where i is the smal-
lest integer such that ¢ < B (i). It is assumed that the
length of A is one greater than that of B. The last ele-
ment of A corresponds to those observations which are
greater than all elements of B. The procedure will accept
parameters of any combination of real and integer types.

Tranfer Functions,

Transfer functions are those functions used to "transfer" a
value of one type to another type. These functions are
evoked automatically by the compiler whenever necessary.

In some cases, they may be called explicitly. Note that
transfer functions are not evoked aﬁtomatically when the for-

mal and actual types for array identifiers are not the same.

Type of variablé Transferred to type Function used
INTEGER REAL Implicit

REAL?2 Implicit

STRING Implicit

COMPLEX ~ COMPL(X,0) or Implicit
REAL INTEGER INT(X) or implicit

REAL?2 Implicit

COMPLEX COMPL(X,0) or Implicit
REAL?2 INTEGER INT(X) or implicit

REAL Implicit

COMPLEX COMPL(X,0) or Implicit
COMPLEX REAL RE(X)

IM(X)

STRING INTEGER INT(X) or implicit

8

8.1

-90-

INPUT/OQUTPUT

Introduction

Form

All input/output statements are of the form

<I/0 procedure>(<device>,<format>,<modifierlist>,
<input/output list>,<label list>)$

This chapter is organized in such a way that the parameters

<device>,<modifier list>,<label list>,<format> and <input/

output 1list> are described in separate sections.

Each of the procedures is then described in terms of the

parameters it requires.

Example:

BEGIN FORMAT FORM1 (A,3R10.2)$

REAL X,Y,Z$
ARRAY ARRY (1:200)$

WRITE (TAPE('A'),EOF('ABC'),LABL1,ARRY)$
READ (CARDS,FORM1,LABL2,LABL2,X,Y,Z)$

READ (CARDS,X,Y,TAPE(12) ,ARRY)#$

COMMENT MORE THAN ONE DEVICE ALLOWEDS$

The available input/output procedures are:

Procedure Section
READ 8.9
WRITE 8.8
POSITION 8.10
REWIND

REWINT 8.11

Classed as tape

operations

8.

2

-91-

Parameters to Input/Output Statements

- - - -y - - ——

The procedures allow a variable number of parameters. In
the simplest case only the input/output list needs to appear.
The other parameters are then automatically supplied by the

compiler. See sec. 8.8.

Examgle:

FORMAT F(10I12,A1)$

INTEGER ARRAY A(-6:3)3%

WRITE (A)$

WRITE (PRINTER,F,A)$ COMMENT THESE TWO ARE THE SAME$
WRITE (CARDS,A)$

WRITE (CARDS,F,A)$ COMMENT THESE TWO ARE THE SAMES$

- . = e W e e o - -

The order of parameters is very important. In general, all
statements should have their parameters in the order given

by the form of sec. 8.1.
If this order is not observed, the following rules hold.

a) Labels may come anywhere and need not to be together.
However, their order is important. (See section 8.5,
label list)..

b) If device is not before the input/output list, then the
device is assumed to be implied device. (See section

8.3.3, implied device).

c¢) The insertion of more device calls in an I/0 statement

changes the device.

Example:

ARRAY A(0:500)%

WRITE (A,TAPE('B'),A)$

COMMENT WILL WRITE ARRAY A ON THE PRINTER AND ON
THE MAGNETIC TAPE ASSIGNED AS B $

d)

e)

£)

g)

-g2-

Modifiers may be placed where desired. That is, KEY
will usually come before the output list and EOF

after it, but notice the following example.
Example:

ARRAY A(0:500),B(0:300)$
WRITE(TAPE('B') ,KEY('A') ,A)$
WRITE(TAPE('B') ,EOF('A') ,KEY('B'),B,E0I)$

COMMENT THE TAPE WILL HAVE

KEY RECORD WITH IDENTIFICATION 'A'
THE VALUES OF THE ARRAY A

EOF RECORD WITH IDENTIFICATION 'A'
KEY RECORD WITH IDENTIFICATION 'B'
THE VALUES OF THE ARRAY B

AN EOI MARKERS$

o o Fow N

Formats must come before the input/output list to
which they apply. If a list comes before a format
parameter has been specified, then the format is

taken to be implied or free format.

ExamEle:

INTEGER I,J,K$

REAL X,Y,Z$

FORMAT F(3D10.6,A1)$

I=123$ J=456$ K=789%

WRITE (I,J,K,F,I,J,K)$

COMMENT WILL PRODUCE THE FOLLOWING PRINT LINES$
123 456 | 789

123.00000 456.00000 789.00000

Formats must come after the device to which they

apply.

Input/output lists have their position determined by

the fact that they must chform to the above rules.

8.3 Devices

93

8.3.1 Possible Devices

The possible devices are

Device Section
(implied) 8.3.3
CARDS 8.3.4
PRINTER 8.3.5
TAPE 8.3.6
DRUM 8.3.7
CORE 8.3.8

8.3.2 Actual Devices

Actual device Actual device Actual device
Device with READ with WRITE with POSITION,
REWIND, REWINT
(implied) |Card reader Line printer Not allowed
CARDS Card reader Card punch Not allowed
PRINTER Not allowed Line printer Not allowed
TAPE Tape unit or Tape unit or Tape unit or
drum file drum file drum file
specified specified specified
DRUM Random access Random access Not allowed
drum file drum file
CORE The string which | The string which Not allowed
is parameter is parameter
Examples:
" INTEGER I$

READ (CARDS,I)$

READ(I)$

COMMENT ARE

THE SAMES$

8.3.3

~9l4~

Implied Devices

Use

For reading cards or printing.

The device parameter is left out.

Action with READ

Same as for device CARDS.

Action with WRITE

Same as for device PRINTER.

Restrictions

i) Cannot be used with TAPE operations.
ii) On input only 80 columns may be read from a card.

iii) On output only 132 columns may be printed.

Example:
INTEGER A,B,C,D$

FORMAT F1(A,3(I12,X10))$
READ (F1,A,B,C)$
COMMENT WILL READ CARDS$

Device CARDS

Use

For reading or punching cards.

Form

CARDS

Action with READ

L e L s e

The card reader is assigned as the device for the procedure

READ to use for input.

Note: If a format is specified, no new card is read until an A
phrase (activate) is met im a format or a format extends
beyond column 80 of the current card. The very first data

card, however, will be read automatically in the absence

-9 5-.

of an A-phrase.

Reading card images over again is possible by using a format

without an activate phfase.

Example:

BEGIN
COMMENT READ THE SAME CARD IN THREE DIFFERENT WAYS$
ARRAY A,B,C(1:5)%
FORMAT F1(A,515),
F2(J1,5I1),
F3(J1,5I2)%
COMMENT NOTE THAT J-PHRASE MUST BE USED TO START
AT COLUMN ONE$
READ (F1,A,F2,B,F3,C)$
END$ '

Data Card
1234567891011121314151617

Action:

At the end the arrays will have the following values:

A(1) 12345.0 B(1) 1.0 C(1) 12.0
A(2) 67891.0 B(2) 2.0 c(2) 34.0
A(3) 1112.0 B(3) 3.0 C(3) 56.0
A(4) 13141.0 CB(4) 4.0 c(u) 78.0
A(5) 51617.0 B(5) 5.0 c(5) 91.0

Action with WRITE

—— - e Wh - g . o

The card punch is assigned as the device for the procedure
WRITE to use for output.

Example:

FORMAT F(Il2,A1)$

INTEGER I$

I1=-8523$%

WRITE (CARDS,F,I)$

COMMENT WILL PUNCH ONE CARD WITH -8523 IN COLUMNS 8
THROUGH 124

96

Restrictions

e L

i) Cannot be used with the tape operations.
ii) On both input and output there is a maximum length of

80 columns.

Device PRINTER

PRINTER

Action with WRITE

—— i ———— o — —— — ——

The line printer is assigned as the device for the procedure

WRITE to use for output.

Note: If a format is specified, no line is printed until an
activate (A) phrase is processed. The A-phrase may be
delayed until a later WRITE-statement.

Example:
INTEGER I,J$
WRITE (PRINTER, <<I15,A1,I6>>,I,J)$
COMMENT J IS NOT PRINTED$
WRITE (PRINTER,<<I10,A1>>,I)$
COMMENT PRINTS J AND I ON THE SAME LINE$

Restrictions

-t e - - - —— -

1) A run-time error is caused if PRINTER is used with READ
or the tape operations.
ii) One line has 132 columns.

Example:
ARRAY A(-5:6)$
INTEGER X,Y$
FORMAT F1(12(I11,X1),A1)$
WRITE (PRINTER,F1,FOR I=(-5,1,5) DO A(I))$

N

8.3.6

-97-=

Device TAPE

Use

For doing operations with magnetic tapes or sequential drum
files.

Form

TAPE (<parameter>) where <parameter> can be

1) non-negative integer constant or expression which is the
index in the range 0 to 20 to the Y$TTAB table given
below.

ii) string in which the first character is the logical unit

designation for an assigned magnetic tape.

ExamEles:

ARRAY A(0:500)$ INTEGER I$

1=0%

WRITE (TAPE('A'),A)$

WRITE (TAPE (0),A)$

WRITE (TAPE (I),A)$

COMMENT PROVIDE ALL THE SAME ACTIONS$

The parameter is an index to an installation defined Y$TTAB
table.

Note: It is possible for the user to supply his own Y$TTAB
table - perhaps redefining some of the drum areas.
However this should only be done with the help of the
systems programmer for his installation.

The following is the implemented Y$TTAB table.
Note that the drumfiles occupy the same area as the PCF, and

processor scratch.

-98-

Y$TTAB
Parameter]
Integer String Meaning
0 'A! Use magnetic tape assigned as A
1 'B! assigned as B
2 e assigned as C
3 D! ' assigned as D
oy YEL ‘ assigned as E
5 P! o N assigned as T
Tape
simulating ; Drum layout
files
6 4 Whole
7 Not 1st half
8 : 2nd half
9 Allowed lst quarter
10 2nd quarter
11 3rd quarter
12 bLth quarter
13 1lst eighth
14 2nd eighth
15 3rd eighth
16 4th eighth
17 ‘ 5th eighth
18 6th eighth
19 7th eighth
20 : N | 8th eighth

Assign the specified magﬁetic tape unit or sequential
drum file to be used by READ or WRITE for input or output.

Example:
REAL2 ARRAY D(0:400)$% INTEGER I$
READ (TAPE(20),FOR I=(1,1,320) DO D(I))$
WRITE(TAPE('A'),FOR I=(l,l,300) DO D(I))$

99

Action with REWINT

If the parameter refers to a magnetic tape then this
tape is rewound and released so that it can no longer

be used.

If the parameter refers to a sequential drum file,
then the current position of this file is reset to the

starting position.

Example:

INTEGER I$

FOR I=(0,1,20) DO REWINT (TAPE(I))$

COMMENT WILL REWIND AND RELEASE MAGNETIC TAPES 'A!
THROUGH F AND RESET TO THE START DRUM FILES 6
THROUGH 20$

Action with REWIND

For magnetic tapes, the tape is rewound but not

released so that it may be used again,

The action for sequential drum files is the same
as for -REWINT. '

Example:
BOOLEAN DRUMORTAPE$
DRUMORTAPE=TRUES$ ’
REWIND (TAPE(IF DRUMORTAPE THEN 0 ELSE 6))$
COMMENT WILL REWIND TAPE ASSIGNED AS A$

Actlon with PQSITION

- e e . - L . S ——

The specified magnetlc tape or sequential drum file is
assigned to the procedure POSITION. It will then be
searched according to certain parameters. This operation
is covered in section 8.10.

Example:
POSTITION (TAPE('D'),EOF)$"

-100-

Restrictions

——— - — -

i) The sequential drum files can only be accessed in a
serial manner. If random access is required, device
DRUM must be used.

ii) Device TAPE does not allow READ or WRITE to use a format.
To write formatted output one can use WRITE (CORE(S),...)
and then output the resulting string.

iii) The input list (see section 8.7) used with device TAPE
must have its number of elements less than or equal to
the number of elements in the output list which produced

the record being read.
If the number is greater a run-time error occurs.

If the input list is smaller than the output list then

the remainder of the record is lost.

iv) If the integer expression used as parameter to TAPE has
a value greater than 20 or less than 0, a runtime error

occurs.

v) The expression used as parameter to TAPE must not be a
type procedure.

vi) The format of records for device TAPE are compatible
with both UNIVAC ALGOL and FORTRAN.

Examples:
ARRAY A,B (1:500)%
INTEGER I$
FORMAT F(10R12.4,A1)$
READ (TAPE(6),A)$ COMMENT TRANSFERS 500 WORDS FROM
THE DRUM FILE KNOWN AS TAPE(6) TO THE ARRAY A$
WRITE (TAPE('E'),FOR I=(1,1,250) DO B(I))$
WRITE (TAPE('E'),FOR I=(251,1,500) DO B(I))$
REWIND (TAPE('E'))$
READ (TAPE('E'),FOR I=(1,1,200) DO A(I))$
READ (TAPE('E'),FOR I=(251,1,500) DO A(I))$
COMMENT A(201) TO A(250) WILL NOT BE CHANGED WHILE THE
VALUES B(201) TO B(250) TO B(250) ON TAPE WILL BE LOST$

N

.3.7

-101-

Device DRUM

Use

To use the random access drum file.

Form

DRUM (<aritmetic expression>) or DRUM

i) The arithmetic expression indicates the relative address
of that part of the drum which has been set aside for

random access.

Example:
REAL X,Y,Z$
INTEGER I$
I=50%
WRITE (DRUM(I),X,Y,Z)$
COMMENT WILL WRITE THE VALUES OF THE VARIABLES X,

Y,Z IN RELATIVE ADDRESSES
50,51 AND 52 OF THE DRUMS$

ii) If no parameter is given then the parameter refers to

next relative address of the random drum file.

Example:
COMMENT THIS STATEMENT COMES IMMEDIATELY AFTER THE

ONES ABOVE$
READ (DRUM,X,Y,Z)$
COMMENT VALUES ARE TRANSFERRED TO X,Y,Z FROM

RELATIVE ADDRESSES 53, 54 AND 55%

iii) The drum address may be set to a specified position
prior to a READ/WRITE-statement by the statement:

DRUM(<arithmetic expression>)$

This procedure obtains the next relative drum address.

Examgle:
WRITE (DRUM(100),X,Y,Z);

I=DRUMPOS;
COMMENT I NOW HAS THE VALUE 103;

-102-

Action with WRITE

The values of the variables of the output list are transferred
to consecutive positions in the random drum file area starting
at the relative address specified by the parameter given to
the procedure DRUM. If no parameter is given then the start

is the next relative address.

Action_with READ

—— - —— - o —— —

The values of the consecutive positions in the random drum
file starting with the relative address specified by the
parameter to DRUM are transferred to the input list variables.
If no parameter is given then the start is the next relative

address.

Restrictions

i) DRUM may not be used with the tape operations.
ii) To determine the relative address after a WRITE using

DRUM it is necessary to know the following lengths.

Variable Tvpe _ Length in words

INTEGER
REAL
BOOLEAN
REAL?2
COMPLEX 2
STRING ENTIER((k+5)/6)+1
of k characters
SUBSTRINGS ENTIER ((p+k+5)/6)+1
of length k which

start at charac-

N

ter p in a word
(0<psghs)

iii) DRUM and TAPE (6 through 20) share an area on drum.
The user should ensure that they do not overwrite

each other. They both overwrite the PCF area.

\,
N

-103-

Examples:

ii)

iii)

BEGIN

INTEGER I$

REAL R$

BOOLEAN B$

REAL2 D$

COMPLEX C$

STRING S(15)%

WRITE (DRUM(1),I,R,B,D,C,S)$

COMMENT THE NEXT RELATIVE DRUM ADDRESS IS 12§
END$

Parameters in a list are automatically placed in

consecutive locations on the drum.

Example:
WRITE (DRUM(O0),A,B,C,--—~-)
and
WRITE (DRUM(O),A,DRUM(I),B,DRUM(Q),C, —————)

do exactly the same operation - BUT the first case

is much faster.
Because of the mechanism used for writing drum -

writing backwards on drum is extremely inefficient.

Example:
WRITE (DRUM(ZS),Z,DRUM(ZM),Y,DRUM(23),X -----)$
COMMENT - IS VERY SLOW$

Arrays are normally transferred without being
decomposed into their elements. For this reason,

statements which decompose an array are very inefficient

in comparison.

-104-

Example;

ARRAY A(1;500)$% TINTEGER I$

WRITE (DRUM,A)$ COMMENT IS VERY FAST$

WRITE (DRUM,FOR I=1,1,500 DO A(I))$

FOR I=1,1,500 DO WRITE(DRUM,A(I))$

COMMENT THE LAST TWO STATEMENTS ARE VERY SLOW$

8.3.8 Device CORE

Use

To allow editing to and from a string without using

an external device,

Form

CORE (<string expression>)

Action with WRITE

The output list is edited according to the given or
implied format into the string supplied as the parameter
to CORE.

Example:

BEGIN
STRING S(24)$
FORMAT F(6I4,A)$
INTEGER ARRAY A(1:6)$
INTEGER I$;
FOR I=(1,1,6) DO A(I)=I$
WRITE(CORE(S),F,A)$
COMMENT WILL CAUSE S TO BE FILLED AS IF THE
FOLLOWING ASSIGNMENT HAD TAKEN PLACE
s=' 1 2 3 4 5 6'$

END$

Action with READ

e T e -

The string is edited according to the given or implied

format and the values assigned to the input list.

-105-

Example:

BEGIN
STRING S(14)$ INTEGER I$ REAL R$
FORMAT F(A,D12.2,I2)$
S=' 1234.5678421'$
READ (F,CORE(S),R,I)$
COMMENT R NOW HAS THE VALUE 1234.56784 AND I
HAS THE VALUE 21%

END$

Restrictions

i) CORE cannot be used with the tape operations.

ii) On input (READ) only 80 characters may be edited.
iii) On output (WRITE) only 132 characters may be edited.
iv) The entire string is used by CORE,

Example:

STRING S(30)$

S(27,3)="ABC!

WRITE (CORE(S),1,2)$

COMMENT THE 'ABC' HAS BEEN CLEARED TO BLANKS$

v) Note that nothing is transferred to or from the
string until the activate (A) phrase is reached in

the format specified,

vi) If no format is specified the rules for free

format (See Section 5.3) are applied.

Modifier List

=2

The modifier 1list contains directions as to the type of

markers to be used with device TAPE.

-106-

8.4.1 Possible Modifiers

Modifier Section

EQF
EQF (<parameters>)
-EQOF 8.4.5
-EOF (<parameters)
KEY
KEY (<parameter>)
-KEY 8.4.4
-KEY (<parameters)
EOI
-EOI

<integer expression> 8.10

8.4.2 General description

The modifier list contains a directive to output a
certain marker which later can be searched for using
action POSITION.

Action with POSITION

- . . . S mn S W S - — —

The modifier list contains the marker to be searched

for.

g.4.3 Restrictions

The modifier list cannot be used with the operations
READ, REWIND or REWINT.

B.4.4

O

-107-

Modifiers can only be used with device TAPE.

Certain tape units cannot be positioned backward.

TYPE OF TAPE UNIT ' CAN BE POSITIONED BACKWARDS
IT A YES
IIT A YES
ITITI C NO
Iv C NO
VI C NO
VIIT C YES

Violating this rule causes a run-time error.

Modifier KEY

Use

To specify that a KEY record with a certain identification

is to be output or searched for.

Form

KEY (<parameter>) or KEY
-KEY (<parameter>) or -KEY

The parameter can either be an arithmetic expression or a
string expression. When the parameter is a string, only the
first six characters are used. If the string is shorter, it

is space filled up to six characters.

The minus (-) sign specifies the backwards direction when
used with POSITION. It has no meaning for WRITE.

Note that KEY means the same as KEY (0)
-KEY means the same as -KEY (0)

ExamEle:
WRITE (TAPE(0),KEY('ABCDEF'))$
WRITE (TAPE(0),KEY('ABCDEFGHK'))$
COMMENT WILL PROCEDURE TWO IDENTICAL KEY RECORDS$

-108-

ExamEle:
POSITION (TAPE('A'),KEY)$
POSITION (TAPE('A'),KEY(0))$
COMMENT HAVE THE SAME MEANINGS$

Action with WRITE

-—— . mm - - - = — = . -

A KEY record with its identification given by the parameter

is output on the tape or sequential drum file.

Example:
INTEGER I,J,K,L,M$
WRITE(TAPE('F'),I,J,K,L,M,KEY(I))$
COMMENT THE KEY RECORD COMES AFTER THE RECORD$
REWIND (TAPE('F'))$
READ (TAPE('F'),I,J,K,L,M)$
COMMENT WILL READ THE VALUES INTO I,J,K,L,M IGNORING
THE KEY RECORDS$

Action with READ

Key records are ignored.

Action with POSITION

- emt W T - S = W - A D T e = ——

For more information see section 8.10.

- If no minus sign (-) then the action is to search forward
until a KEY record with the given identification is |
found. |

If there is a minus sign (-) then the action is to search
backward (only on certain tape units and not on sequential
drum files) until the KEY with the specified identification

is found.

KEY records are ignored when positioning to EOF or EOI.

-109-

ExamEle:

BOOLEAN B$
B = TRUE$
POSITION (TAPE(15),KEY (IF B THEN 10 ELSE 15),

' KEYNOTFOUND) $
COMMENT WILL SEARCH FORWARD FOR THE KEY RECORD WITH
IDENTIFICATION 10. IF THIS RECORD 1S NOT FOUND, THEN
THE PROGRAM WILL JUMP TO THE STATEMENT WITH THE LABEL
KEYNOTFOUND$

For more information on labels in a POSITION see section 8.

Example:

ARRAY A(0:500)%

WRITE (TAPE('E'),EOF('END'),A)$

COMMENT WILL WRITE THE EOF RECORD WITH IDENTIFICATION
"END', AND THEN THE ARRAY A$ | |

Modifier EOF

Use

To specify that an EOF (end of file) record with a certain

identification is to be output or searched for.

form

EOF (<parameter>) or EOF
-EOF (<parameter>) or -EOF

The parameter can either be an arithmetic expression or a
string. When the parameter is a string, only the first six
characters are used. If the string is shorter, it is space

filled up to six characters.

The minus sign (-) specifies that the search is to be per-
formed in a backwards direction when use with POSITION. It
has no meaning for WRITE.

Note that EOF means the same as EOF (0)
-EOF means the same as -EOF (0).

-110-

Action with WRITE

An EOF record with its identification given by the parameter
is output on the tape or sequential drum file. A minus sign

has no meaning.

Example:
ARRAY A(0:500)%
WRITE (TAPE('E'),A,EOF('END'))$
COMMENT WILL WRITE OUT THE RECORD CONTAINING THE
VALUES OF A AND THEN THE EOF RECORD WITH
IDENTIFICATION WORD 'END'$

Action with READ

If the READ operation encounters an EOF record, it will
exit via a label in its label list if such a list exists.

See section 8.5.
The modifier EOF must not be placed in a READ list.

Action with POSITION

If there is no minus sign (-), then the action is to search
forward until an EOF record with the given identification

is found.

If there is a minus sign (-), then the action is to search
backward (only on certain units) until the EOF record with

the specified identification is found.

Note: When positioning backwards, the positioning goes to
the front of the EOF record so that the next READ
action will encounter the EOF record.

Example:
ARRAY A(0:12)$
POSITION (TAPE(4),-EOF)$
READ (TAPE(4) ,EOFLB,A)$
COMMENT WILL JUMP TO THE STATEMENT WITH THE LABEL
EOFBL SINCE AN EOF RECORD WAS READ INSTEAD OF A
RECORD WITH THE VALUES FOR A$

EOF records are ignored when positioning to EOI.

-111-

Modifier EOI

Use

To specify that an EOI (end of information) record is to

be output or searched for.

EOI or -EOI
where the minus sign (-) indicates that search is to be per-
formed in a backwards direction, when used with POSITION. It

has no meanirg for WRITE.

Action with WRITE

—— e o ——— - — — —— ——— — —

An EOI record is output.

ExamEle:

COMPLEX ARRAY C(-4:200)$

WRITE (TAPE(5),C,E0I)$

COMMENT WILL WRITE ARRAY C TO TAPE AND THEN PLACE
AN EOI MARKERS$

Action with READ

- ———— — - ————— —

If the READ operation encounters an EOI marker, it will exit
via a specific label in its label 1list, if such a list exists.

See section 8.5.

Action with POSITION

The file is positioned in the indicated direction, past the
first EOI record found.

Label List

Use

The label list allows the user to specify where he would like
his program to go to if certain conditions occur during the
input or output operation. If the operationrends normally,
exit is made to the next statement, otherwise it is a run-time

error.
Form

A label list consists of from zero to three labels together or

scattered througout the parameter list to the input/output

8.

8.

.5.

5.

S.

2

3

-112-

procedure. Their order is important. An input list may have

three labels, an output list only one.

Action with READ when Device is Implied or CARDS

Number Action when Action when ﬁg;lggcxgsniiglig:
of EOF card another control ing input or format
labels read card read errors
0 Terminate program Terminate program Terminate program
1 Jump to this label |Jump to this label Terminate program
2 Jump to first label|Jump to second label |Terminate program
3 {Jump to first label Jump to second label [Jump to third label

Action with READ when Device 1s TAPE

Number Action when
of EOF record
labels read

Action when
EOI record
read

Action when
an error
occurs

Terminate prog

ram

Terminate program

Terminate program

abel

Jump to this label

Terminate progran

Jump to first

label

Jump to second label

Terminate program

0
1 Jump to this 1
2
3

Jump to first

label

Jump to second label

Jump to third label

Action with READ or WRITE when Device is DRUM

Number READ WRITE
of When address {When a drum When address | When a drum
labels.beyond random [read error beyond random| write error
drum limits occurs drum limits occurs
0 Terminate Terminate Terminate Terminate
program program program program
1 Jump to this |Terminate Jump . to this| Jump to this
label program label label
Jump to
second label|Terminate
2. first label |program Only one label
ignored
Jump to
second label|Jump to .
3 | first label |third label || ALtowed with WRITE
ignored

N

-113-

Action with READ or WRITE when Device 1is CORE

The only errors that can occur when using CORE, are format
errors in reading. If no third label is given, the program is

terminated. Otherwise exit is made to the third label ignoring
other labels.

Action with WRITE when Device is implied, PRINTER or CARDS

All errors other than editing errors terminate the program.
Editing errors cause a warning message, but the program

continues.

Action with WRITE when Device is TAPE

Number - Action on end of tape .
Action on
of or end of sequential
: tape error
labels : drum file
0 Terminate program ' Terminate program
1 Jump to this label Jump to this label

Action with POSITION - only allowed Device is TAPE

See table on next page.

Example:

BEGIN
COMMENT STOP READING DATA CARDS WHEN EOF CARD READS$
INTEGER ARRAY A(0:1000)$ INTEGER I$
LO: READ (CARDS,A(I),L1,L2,L3)$
I=I+1$ GO TO LO$
L3: WRITE ('ERROR IN CARD',I)$ GO TO LO$%
L2: WRITE ('EOF CARD MISSING')$ GO TO STOP$
Ll: WRITE ('ALL CARDS READ')$

STOP: END$

Action with POSITION

POSITION KEY or arithmetic expression EOF EOTI
parameter
Tape End of type End of type, End of tape,
gontents EOF EOI type error EO1 type error tape error
Number ofl__ S I
labels .)) ,) .
0 Terminate Terminate Terminate Terminate Terminate Terminate program
program program program program program
Jump to Jump to Terminate Jump to Terminate a . o
1 label label program label program ferminate program
Jump to Jump to Terminate Jump to second|Terminate _
2 first label second label | program - label, ignore |program Terminate program
first label
Jump to Jump to Jump to Jump to second|dJump to Jump to third label
3 first label |.second label | third label label, ignore |third label ignore first and
first label second

—nTT-

-115-

Format List-

Use

The format list is a means of specifying how values should
be edited. o

Form

The format list may have any number of formats. Each format
should come before the input or output list to which it

applies.

Each format may have one of the three following forms.

Name Section
Implied or free format 8.6.1
Declared format 8.6.2
Inline format 8.6.3

Restrictions

The devices TAPE and DRUM do not allow format lists. A run-
time error is caused if an attempt is made to use a format

with these devices.

Implied or Free Format

a) Form

No format is specified before an input/output list.

b) Action with READ

80 character images are input at a time, usually from
punched cards, and for all devices, which allow formatted
input, 80 characters are brought into a "read buffer" -

which is an area in core from which editing can be done.

Values are separated by one or more blanks or end of card.
Within a string end of card is ignored.

The characters encountered are scanned and converted

into a value according to their form. The type of value

-116-

is determined by the rules for constants as described

in section 4.1.

Exceptions:

In real constants comma (,) or the letter E may be

substituted for & as the power of ten symbol.

Complex constants should appear as two reals. (<,> must

not be used).

Example:
Constaht Would be edited as
type
123 : INTEGER
TRUE BOOLEAN
1.24,-3 REAL
1.2483212145 ' REAL?2
'"THIS IS A STRING' STRING
1.245 3.217 COMPLEX

If the type of the value thus edited does not match ther
type of the list element to which it is to be assigned,
a transfer function (if available) is invoked. If the
types match, the values is assigned directly to the list

element.

At the end of the image or when an asterisk (x) outside

of string quotes is met, the next image is input.

The action ends when all elements in the input list
“have had values assigned to them. Any further informa-
tion in the read buffer is lost since the next READ

starts with a new image.

-117-

Examples:
BEGIN
ARRAY X,Y(1:5,1:2)%
REAL A,B$
COMPLEX C$
INTEGER W$

READ(A,B,C,W,X,Y$

END$

Data cards:

-7.2 .029 1.0 3.5 362236

1 2 3 4 5 6 = NOTE THAT ARRAYS ARE READ BY COLUMN
2.4 3.5 8.6 9.2 5.562,-4 4,398,-3

1.862,-1 12,842 18.623 1.5 1.6 1.7 1.8 1.9

Values after read i1s performed

Variable Has the value Explanation

A -7.2

B .099

C 1.0+1ix3.,5

W 362236

X(1,1) 1.0 Shift to next card since
X(2,1) 2.0 not all list elements filled
X(3,1) 3.0 A transfer function is
X(u4,1) 4,0 used here

X(5,1) 5.0 All characters after an
X(1,2) 6.0 ¥ are ignored

X(2,2) 2.4

X(3,2) 3.5 Arrays are decomposed by
X(4,2) 8.6 column

X(5,2) 9.2

Y(1,1) .0005562

Y(2,1) .004398

Y(3,1) .1862

Y(4,1) 12.842

Y(5,1) 18.623

continued next page

-118-

Yalues after read is performed
Variable Has the value Explanation
Y(1,2) .
Y(2,2) .
Y(3,2) .
Y(4,2) .
Y(5,2) .9 v
The value 2.0 is not
assigned to any variable
but is lost
Example:
BEGIN

STRING S(24)$
. INTEGER I,J,K,L,M,N$.
-2.1 3,5 8 L

s=11
'READ (CORE(S),I,J,K,L M N)$

END$

6 1§

Values after fead is performed

Variable

Value

Z = R

1
2
ol
8
M
6

¢) Action with WRITE

. g oy W T @ W e vs T

The action of WRITE is to evaluate the expressions in

the order they appear in the oﬁtput list and then edit

the values according to the fOllOWlng rules.
(The format phrases used are descrlbed in sectlon 8.6.3).

-119-

Type Format phrase used

INTEGER I12

BOOLEAN X1,B11

REAL _ R12.5

REAL2 R12.5

COMPLEX 2R12.5

STRING of ' Sw,Xm - where m is the number
length w of blanks required to

fill out a multiple of

12 columns.

Examgle:
INTEGER I$ BOOLEAN N$ REAL R$
REAL2 D$ COMPLEX C$ STRING S(26)%
FORMAT F(S6,X6,I12,X1,B11,R12.5,R12.5,2R12.5,526,

X10,A1)$
STRING CONSTANT(6)$
I = 123% B = TRUE$ R = 1.321&-2%
D = 1234.6789012%
C = <11.24-12.4>%
S = 'IS THE WAY THE RESULTS ARE'$
CONSTANT = 'START'$
WRITE ('START',I,B,R,D,C,S)$
WRITE (F,CONSTANT,I,B,R,D,C,S)$
COMMENT WILL PRODUCE SIMILAR PRINTOUTS$
END$

Inline Format

Form

A list of format phrases enclosed between the delimiters

<< >> may be a parameter in the format list.

ExamEle:
WRITE (<<3I3,Al1>>,I,J,K)$

-120-

Declared Format

A specific sequence of phrases is declared and an identi-
fier attached which can be used in the format list.
b) EForm

Format <identifier>(<list of format phrases>),
<identifier>(Yseeeadd

Example:

FORMAT F1(X10,D7.2,X5,R17.8,A1.1),
F2(A,B6,S10,I5,X2,Nu)$

Format Phrases with WRITE

a) Use

Format phrases are used with WRITE to specify the output
form of each parameter as well as the exact position for

the placement of the value of the parameter.

b) Form of_a_format_phrase

—— e —— - - ma - — - - — - T - —

Qw.d
or Q(El’Ez)

where Q represents one of the letters given below.

El must be a positiv arithmetic expression with the same
meaning as the positiv integer constant w. The meaning
and restrictions are given in the table below.

E2 must be a positiv arithmetic expression with the same
meaning as the positiv integer constant d. The meaning

is given i the table below.

c) Available format phrases, meaning and restrictions

The print buffer is a string of 132 characters for devices
implied, PRINTER and CORE and 80 for CARDS into which the
values given as parameters are edited according to the

corresponding format phrase.

FORMAT PHRASES FOR WRITE
d £2 Allowed
Phrase Action . worEl] or : Position types or
Meaning Min Max [Meaning Min Max |in field parameter:
Activate Device implied or PRINTER
Aw.d Print 1 line Skip w 0 63 Skip d 31 Non-editing
or ' lines 1ines does not
A(E1;E2) before after require a
printing brinting parameter
Device CARDS
Punch 1 card ignored i griored
Device CORE !
.
Transfer as many characters from ignored : -
the print buffer into the string & tgnored I
as the length of the st ng or
print buffer allows
Boolean | Devices implied, PRINTER,CARDS,CORE
Bw Place as many characters as Field 1 132 NOT Left BOOLEAN
or possible of the strings TRUE or width 8n ALLOWED justified
B(E1) FALSE depending on the value of (number for
the parameter. Fill the rest of of charac- CARDS
the field with blanks if necessary. | ters used
in the
print
buffer)
Decimal Devices implied, PRINTER,CARDS,CORE
Dw.d Places the digits of a decimal Field 2 63 Provide 31 Right INTEGER
or number with d digits after the d digits justified| REAL
D(El1,E2) decimal point - leading zeroes alter REAL?2
suppressed, minus sign if negative. decimal COMPLEX
point

FORMAT PHRASES FOR WRITE

— I
.. . Allowed
Phrase Action w or El d or E2 Eiségzig types of
Meaning Min Max Meaning |Min Max paramete
Eject Devices implied, PRINTER
Ew Eject to logical line w-1. If the Logical 1 72 NOT Non-edit-
or present position is past line w-1, line ALLOWED ing does
E(E1l) ejection is to line w-1 on the next | number on not requ-
page. (Usually used to start at top | page ire a
of a page) parameter
Devices CARDS, CORE
Ignored \
}_l
Free Devices implied, PRINTER,CARDS,CORE NS
: 1
Fw Read or write a field of w charac- Field 1 2047 INTEGER
or ters in free format. See sec. 8.6.1.] width REAL
F(E1l) BOOLEAN
' COMPLEX
REAL2
STRING
Integer Device implied, PRINTER,CARDS,CORE
Iw.d Place the digits of an integer Field 1 63 Base 0 |10 |Right INTEGER
or numper with minus sign if negative. |width for justifiedREAL
'T(E1,E2) The value is given to the base d. integer COMPLEX
Where d=0 and d=10 have the same (e.g. REAL?
meaning. pctal BOOLEAN
se 8) (TRUE 1)
(FALSE 0)

FORMAT PHRASES FOR WRITE

N~

: A Allowed
Phrase Action w or E1 a or E2 Egsézzig types of
Meaning Min Max Meaning Min Max parameter
Absolute
position Devices implied, PRINTER,CARDS,CORE
to column 132
The next phrase will start from Column 1 80 NOT Non-editing
Jw column w. number for ALLOWED
or CARDS
J(E1)
Middle Devices implied, PRINTER,CARDS,CORE
string
The characters of the parameter are| Field 1 132 NOT Centre- STRING
Mw Placed into the middle of the field] width ALLOWED justified
or If the field width w is greater thaj 80
M(E1) the string length L then the string for o
is preceded by (w-L)/2 blanks. CARDS ~
If w is less than L then the right- I
most L-w characters of the parameter
are 1lost.
Left g
justified | Devices implied, PRINTER,CARDS,CORE
Integer Same as I phrase exept that result Same as 1 63 Same as 10 |Left Same as
Nw.d is left justified. I phrase I phrasg justified|{I phrase
or ~
N(E1,E2)
Real Devices implied, PRINTER,CARDS,CORE
Rw.d Edits the parameter into the form Field 7 63 Number 31 [Right INTEGER
or X XXX - o X, XX width of justified|REAL
R(E1,E2) d significant digits (greater signi- REAL?2
Note: w > d+6 than d+6) f}cgnt ! COMPLEX
: digits i
——d

FORMAT PHRASES FOR WRITE

_ S Allowed
Phrase Action w or El : I = ?OS%ElES types of
Meaning Min Max Meaning Min Max| " © parameterp
String Devices implied, PRINTER,CARDS ,CORE
Sw The characters of the parameter are Field 1 132 NOT Left STRING
or bPlaced into the field starting from width ALLOWED justifie
S(EL) the left. If the string length L 80
exceeds the field width w then only for
the leftmost w characters are ; CARDS
transferred, if w exceeds L then
the rest of the field is blank.
Real zero L
gives Devices implied, PRINTER,CARDS ,CORE 2
blanks 1
If value of the parameter is Field 1 63 Ignored
Uw.d exactly zero then treat as Xw, width
or
U(E1l,E2) otherwise treat as Dw.d Field 1 63 Provide | 0 |31 |[Right INTEGER
: width d justified| REAL
digits REAL?
after COMPLEX
the
decimal
point
Integer
zero gives (Devices implied, PRINTER,CARDS,CORE
blanks
If value of the parameter is Field
exactly zero then width 1 63 Ignored
treat as Xw
Vw : INTEGER
or otherwise treat as Iw Field REAL
V(EL) width . 1 63 Ignored Right REAL?
justified| COMPLEX
BOOLEAN
I

\

FORMAT PHRASES FOR WRITE

, £l d £9 Allowed
Phrase Action .. Wor L or - Position | types of
Meaning Min Max [Meaning Min Max |in field parameters
Place Devices implied, PRINTER,CARDS,CORE
blanks 2 2 2
Xw Place w blanks into the print Number of 1 132 NOT Non-editing
or buffer blanks 80
X(E1) 4 _ for ALLOWED
CARDS
String . e g
Constant Devices implied, PRINTER,CARDS,CORE
String of |Place the characters in the number Non-editing
characters|{of columns required.
enclosed Maximum length 132 for all devices
in ! ! but CARDS, which may have 80.

=S¢~

-126-

- d) Actions when restrictions are broken

The following actions occur when any of the restrictions

stated above are broken.

“1, The print buffer -at the error point is output
on the appropriate device.
2, The message

EDITING ERROR AT LINE XXXX. CHECK YOUR FORMAT
- 1s output on the PRINTER.

3. The corresponding parameter (if any) is bypassed.

4, Editing continues with the next parameter.
 The next field starts in -
the last column used by the phrase before the
error occurred.

Common errors:

1. Parameter is of a type not allowed by the format

phrase.

2. Field“width'iS‘O,'tOO'smallIto accept value, or
too large.

—— - — ——— = — - ——— = o E et e - — . T Sme wve

For devices implied, PRINTER or CORE ,if an editing phrase
will cause editing beyond column 132 then the print buffer

is output and editing begins again in column 1,

For device CARDS the limit is column 80.

f) Example showing differences between D, R and U phrases

BEGIN
REAL X,Y,Z$ |
FORMAT F(D12,% ,R12.%,UL2.%,A1)$

X=Y=7=3,141598+1%
WRITE (F,X,Y,Z)$ "
X=Y=7=0. 0%

. WRITE (F,X,Y,Z2)$
END$

-127-

Print lines

h)

31.4159 3.1416,+1 31.4159
0 ‘ 0

BEGIN
INTEGER I,J,K$
FORMAT F(I10,N10,V10,A1)$
I=J=K=-31415%
WRITE (F,I,J,K)$
I=0=K=0%
WRITE (F,I,J,K)$
END$

Print l1ines

-3141531415 31415
00 '

e e B e o T e e e o o St = = - —— = - ——— — —_ — o N —— ————

BEGIN
STRING S(29)%
FORMAT F(S40,Al,M40,A1)$
S='THIS STRING HAS 29 CHARACTERS'S
WRITE (F,S,S)$ |
END$

Print lines

THIS STRING HAS 29 CHARACTERS
THIS STRING HAS 29 CHARACTERS

8.6.5 TFormat pPhrases with READ

a) Use

Format phrases are used to inform the READ statement exactly
where the characters making up the parameter can be found.
There is also the special format F which allows Free Format
to be used for a specified number of characters in the

read buffer.

b)

c)

-128-

The read buffer is a string of 80 characters in length

into which the contents of the card (for devices implied
or CARDS) or of the string (device CORE) are placed for
editing. |

or
Q(E1,E2)

where Q represents a formatting character (see below).

El must be an arithmetic expression with the same meaning

as the integer constant w. The meaning and restrictions

are given in section c,
E2 must be an arithmetic expression with the same meaning as
the integer constant d, The meaning and restrictions are

given below.

The following table gives the possible format phrases
and the restrictions attached to them,

FORMAT PHRASES FOR READ

‘ Allowed
w or El - dor E2 Position | types of

Phrase Action . : : i i E t
Meaning Min Max |[Meaning Min Max |in field parametsrs

Activate

Devices implied, CARDS

A

Transfer the contents of 1 card
into the read buffer. Place the
start for editing at the first
character of the read buffer.

Device CORE

Transfer the contents of the string
into the read buffer. If the
string is greater than 80 charac-
ters transfer only the first 80
characters. If the string is less
than 80 characters - say L charac-
ters, then the last 80 - L charac-
ters in the read buffer are
unchanged. Place the start for
editing at the start of the read
buffer,

Ignored

Ignored

Ignored

Ignored

Non-editing

Non-editing

-6CT-

Boolean

Devices implied, CARDS,CORE

Bw
or
B(E1l)

If the field contains anywhere in
it the string TRUE or the character
T or the integer constant 1 set the
parameter to TRUE,

For the string FALSE, character F
or integer 0

set the parameter to

FALSE

Anything else in the field will
cause an error.

Field
width

(number
of
columns
reserved
for the

parameter)

NOT
ALLOWED

BOOLEAN

FTORMAT

PHRASES FOR READ

E(E1)

w or E1 d or E2 Allowed
Phrase Action types of
Meaning Min Max Meaning Min Max parameters
Decimal Devices implied, CARDS, CORE
Dw.d .Calculate a number from the digits Field 1 63 If the 0 31 INTEGER
or in the field. Make it negative . width number has REAL
D(E1,E2) if preceded by a minus sign. no decimall REAL2
, point then COMPLEX
The digits may have the form of an place a
INTEGER, REAL or REAL?2 constant as decimal
‘described in section 4.1. point be-
fore the
A comma (,) or the letter E may be digit
used instead of & as the power of which is d
ten symbol. places to
, the left o
of the Pt
rightmost 1
digit in
the field
else ignore
Eject Ignored by all devices
Ew
or

FORMAT PHRASES FOR READ

£1 4 E£2 Allowecd
. . wor or Position | types cZ
Phrase Action Meaning Min Max [Meaning Min Max |in field paramextsrs
Free Devices implied, CARDS, CORE
‘ INTEGER
Fw Read the next w columns in the Number of 1 80 NOT REAL
or manner described in section 8.6.1. columns ALLOWED BOOLEAN
F(E1) . to be COMPLEX
(Implied or free format) read in REAL?2
this way STRING
Integer Devices implied, CARDS, CORE
w 1. Calculate a number from the. Field 1 63 IGNORED INTEGER
or digits in the field. width REAL
I(E1) Make it negative if a minus sign REAL?2
precedes, COMPLEX
2. Give the value a type according
to the form of the number read |
(see section 4.1 for form of -
numbers). ot
3. Gonvert the number to integer. !
4. Convert the result to the type
of the parameter.
Position |poyices implied, CARDS, CORE
to Zolumn 1P 2 2
The next field to be edited starts Column 1 80 NOT Non-~editing
Jw in column w. : number of ALLOWED phrase
or (Useful for reread). start of
J(E1) next field

FORMAT PHRASES FOR READ

- Allowed
Phrase Action wor El or E2 types of
Meaning Min Max Meaning Min Max parameters
Middle
String
Mw Exactly the same as S.
or
S(EL)
Integer
Nw Exactly the same as T.
or
N(E1l)
Real ;
f—=
Rw.d Exactly the same as D. NS
or !
R(E1,E2)
String Devices implied, CARDS, CORE
Sw Transfer as many characters as Field 1 2047 NOT STRING
or possible from the read buffer to width ALLOWED
S(EL) the string given as parameter.
Start with the leftmost character (Number of
in the field into the leftmost columns
character in the string. If the reserved
field is shorter than the string for the
fill the rest of the string with string)
blanks. If the string is shorter
than the field then the rest of the
characters in the field are lost.
Note - a string quote is not taken
as a string delimiter, but trans-
ferred like any other character.

FORMAT PHRASES FOR READ
4 £2 Allowed
> w or El or Position | types oZf
Phrase - fetion Meaning Min Max [Meaning Min Max |in field paramex<T:
No change
if blanks | Devices implied, CARDS, CORE
real
1. If the field reserved is ‘Field 1 63 Ignored| INTEGER
Uw.d completely blank treat as width : ' ' REAL
or Xw. REAL?2
U(E1,E2) | 2. Otherwise treat as Dw.d, Field 1 63 Same as COMPLEX
width ’ for D
No change
1f blanks | Devices implied, CARDS, CORE
integer ‘ ‘ ‘
1. If the field reserved is Field 1 63 Ignored INTEGER
Vw completely blank treat as width REAL
or Xw. . REAL2
V(El) 2. Otherwise treat as Iw. Field 1 63 Ignored| COMPLEX
width :
Blanks Devices implied, CARDS, CORE
Xw
or Skip the next field of w columns. Field 1 80 NOT Non-editing
X(E1) width ALLOWED
String
constant
String of Completely ignored Non-editing
charafters 3
enclosed
by ! 1
|
'_.l
w
w
1

~134-

d) Action when restrictions are broken

- ———— ———— o — e W o ey - - . ey - W W e e e -

The follwing actions occur when any of the restric-

tions given above are broken.

1. If an error label is present (the third label of the
label 1list), a jump is made to that label.

2. If no error label is present, the read buffer is
printed on the printer and a marker is printed show-
ing the exact position where the error occured and

the line number of the program being executed.

Common errors:

1. Parameter is of a type not allowed by the format

phrase.
2. Restrictions on w or d have been broken.

3. The characters in the field specified are illegal
or do not have the correct form. (For example spaces

are not allowed in a numeric constant).

8.3.6 Repeat Phrases

-~ e e e . v Pt g e B o - —

Use

Instead of writing out the same format phrase or group
of phrases several times, it is possible to specify the
number of times the phrase or phrases should be referred

to by using a repeat phrase.

nQw.d

n(Qw.d,Qw.d,eev... .Qw.d)

:E: (Qw.d) ,
:E:(nQw.d,:E: (Qw.d),:E: (nQw.d))
ete. '

-135-

where "n is a positive integer constant
Q is any format phrase (editing or non-editing)
E must be an arithmetic or boolean expression
w and d have the meanings given in section 8.6.4.
and 8.6.5.
Rules

i) The expression E is evaluated when the repeat phrase
is activated. That is when the format phrase is

required, before the parameter is evaluated.

ii) If E > 0 the format phrase (S) are repeated that
many times. If E = TRUE the phrases are taken once.

iii) If E =€ 0 or E = FALSE the format phrase(s) which

this repeat controls, will be skipped.

iv If E has an integer value greater than 2047, an

error will occur.

Examples:

BEGIN
COMMENT PRINT AN ARRAY WITH ONE COLUMN PER LINES$
INTEGER N,M$
ARRAY X(1:N,1:M)$
FORMAT F6(:M:(:N:(R16.8),A1))%
WRITE (F6,X)$
END$

Use
It is possible to repeat certain groups of format phrases

an indefinite number of times depending only on the number

of elements in the input/output list.

Form

The groups of phrases to be repeated are enclosed in

parentheses without a repeat expression preceding. The

-136-

delimiters << >> of an inline format and the outermost

brackets of a declared format also denote indefinite

repeat.

i)

Indefinite repeat groups should in most cases have
an activate (A) phrase in them since all format
phrases beyond the group are ignored. If they do not,

a warning message is given.

ii) Errors can occur when two cards are read instead of
one because the input 1list is longer than the number
of phrases in the format.

iii) Attempts to cause an indefinite repeat of a format
containing only non-editing phrases will cause the
format to be cancelled.

Examples:

BEGIN
COMPLEX ARRAY COMPARRAY (1:50,1:50)$
INTEGER SIZE,I$
FORMAT FREAD(A,I12,(A,10R8.2))
FWRITE('COMPARRAY OF SIZE',I12
A1.2,(10(R9.2,X2),A1))$
READ (CARDS,FREAD,SIZE,FOR I=(1,1,SIZE)
~ DO FOR J=(1,1,SIZE) DO COMPARRAY A(I,J))$
COMMENT WILL READ IN THE PART OF THE ARRAY REQUIREDS$
WRITE (PRINTER,FWRITE,FOR I=(1,1,SIZE)
DO FOR J=(1,1,SIZE) DO COMPARRAY(I,J))$
COMMENT WILL PRINT OUT HEADING AND THEN THE PART
OF THE ARRAY REQUIRED$ ‘
END$

-137-

BEGIN
INTEGER I$
COMPLEX C$
FORMAT FREAD(A,I12,R12.6)%
READ (CARDS,FREAD,I,C)$
COMMENT WILL READ TWO CARDS SINCE COMPLEX VALUES
REQUIRE TWO PHRASES$

END$

Input/Output List

Use

The input list is an ordered set of variables into which
values can be transferred. The output list is an ordered
set of expressions which can be evaluated and their values

transferred to the required output device.

Form

The list may have two forms
Declared list

Inline list

Inline List

Use

To give the input or output statement a list of expressions

to or from which values may be transferred.

Any ordered group of expressions which are parameters to an

input or output procedure is an inline list.

ExamEles:

FORMAT F(A,3R12.2)%

REAL X,Y,Z,A,B,C$

WRITE (X,Y,Z)$

READ (CARDS,F,EOFLB,A,B,C)$

EOFLB: COMMENT THE EXPRESSIONS X,Y,Z,A,B,C, IF A GTR B THEN

A-B ELSE B-A, ARE ALL MEMBERS OF INLINE LISTS$

~138-

Declared List

Use

When several input or output calls require the same
expressions in the same order a declared list may be

used.

LIST <identifier>(<list elements>)$
It must obey the rules for declarations.

Several lists may use one declaration.

Examples:

LIST L1(FOR I=(1,1,5) DO A(I),X,Y),
L2(IF B THEN X ELSE Y,Z)$

Rules for Lisfs

-——

i) An array identifier may be used without subscripts in

a list.

The meaning of this is that every element in the array

is to be used in the 1list.

ii) For multi-dimensional arrays, the left most subscript

varies most frequently.

ExamEle:
ARRAY X(1:2,1:3,1:4)$
WRITE (CARDS,X)$

COMMENT WILL PUNCH OUT THE ELEMENTS IN THE FOLLOWING

X(1,1,1), X(2,1,1), X(1,2,1), X(2,2,1),
X(1,3,1), X(2,3,1), X(1,1,2), X(2,1,2),
X(1,2,2), X(2,2,2), X(1,3,2), X(2,3,2),
X(1,1,3), X(2,1,3), X(1,2,3), X(2,2,3),
X(1,3,3), X(2,3,3), X(1,1,4), X(2,1,4),
X(1,2,4), X(2,2,4), X(1,3,4), X(2,3,4)

~ORDER

-139-

The expression is evaluated at the time the list element

is referenced.

c) Format in lists

A format identifier or inline format may be placed in a
declared list.

d) List with MAX and MIN

e -y - - - = —

The parameters to MAX and MIN may be given in a declared
list.

Sublists

Use

Lists or list elements may be grouped so that they can be

repeated in a specific order.

Sublists are formed by enclosing the list elements with

brackets.

BxamEle:
LIST L1(FOR I=(1,1,2) DO (A(I),B(I)))$
Note:

List elements are expressions and therefore cannot be enclosed
within BEGIN END. Sublists must be used whenever such a con-

struction is required.

Input/Output Statements

The READ Statement

Use

To specify that values are to be input according to the
~given parameters.

-140-

Form

READ(<device>,<format 1list>,<input list>,<label list>)$

Devices allowed

Up to 3 labels may be used. See Sec. 8.5.

The WRITE Statement

Use

To specify that values are to be output according to the given

parameters.

Form

WRITE (<device>,<format list>,<modifier list>,<output list>,
<label list>)$ ‘ '

Devices allowed

The allowed devices are implied, PRINTER, CARDS, CORE, TAPE,
DRUM. '

ExamEle:

WRITE(TAPE('A') ,ERRLB,EOF('XYZ'),X,Y,Z)$
WRITE(CORE(S),<<3R12.2,A>>,X,Y,Z)$

Labels

Only 1 label is allowed. See sec. 8.5.

The POSITION Statement

Use

To position a specified magnetic tape unit or sequential

drum file to a position specified by a modifier.

POSITION(TAPE(<parameter>),<modifier list>,<integer expfession>,
<label 1list>)$

8.8.4

~141-

Devices allowed

Only TAPE is allowed as a device.

Labels

Up to 3 labels may be used. See sec. 8.4, 8.5.

The integer expression specifies the number of records to be
positioned. If it is positive, the positioning is done in
the forward direction, if negative in a backwards direction.
If the device is a sequential drum file, only positioning

forward i1s allowed.

The REWIND and REWINT Statements

Use

REWIND positions a magnetic tape or sequential drum file to
its starting position.
REWINT rewinds a magnetic tape and locks it so that it can

no longer be used, .or rewinds a sequential drum file to its

start position.

Form

REWIND(TAPE(<parameter>))$
REWINT(TAPE(<parameter>))s$

Device allowed

Only device TAPE is allowed with these operations.

Any other devices will cause undetectable errors.

The MARGIN Statement

Use

To change the margin settings on the printer. Depending on
the size of paper used at an installation, there will be a
certain number of lines per print page.

Procedure MARGIN allows the user to specify which is to be

the first line and which is to be the last line on page.

-142-

It can also be used when special print forms such as labels

or envelopes are being printed.

Form

MARGIN (<length>,<top line number>,

- Where

<bottom line number>,

<string if desired>)$

<length> is an integer expression specifying the

number of lines the installation allows per page.

<top line number> is an integer expression specifying
the logical line number where the first line is to

be printed.

<bottom line number> is an integer expression spéci*
fying the logical number where the last line is
to be printed.

<string> is a string which is typed on the console

when margins are actually changed on the printer.

Example:

BEGIN
BOOLEAN B$
MARGIN (IF B THEN 72 ELSE 66,5,
IF B THEN 69 ELSE 63)$
END$

9 OTHER

-143-

INFORMATION

9.1 Comments.

Use

The use of explanatory messages is encouraged to aid read-

ability of the program and to help in finding errors in the

source text.

lethods.

a) After EEGIN or any $ or ; the following construction may
be placed.

COMMENT any characters not including ; or $ followed
by 3 or §

b) After END comments can be placed.

However, the characters ; or $ or the words END or ELSE
cause the ending of the comment.

c) In a procedure declaration comments may be placed in the
formal parameter list by substituting for the comma the
construction:

)<letter string>:(
(See section 7).
Example:

COMMENT THIS PROGRAM SHOWS COMMENTS$
EEGIN COMMENT CAN COME AFTER EEGIN$
INTEGER I$
COMMENT CAN COME AFTER DECLARATIONGS$
PROCEDURE SHOW (K) WORDS CAN E PLACED HERE: (L)$
REAL K,L$
K=L$ COMMENT CAN COME AFTER A STATEMENT$
IF I GTR 50 THEN
EEGIN
SHOW (I,50-I)$
END YOU CAN ALSO PUT COMMENTS HERE

~144-

ELSE L
SHOW (I,50-I)%
END OF THIS PROGRAM SHOWING COMMENTSS$

Note:

A comment may come before the first EGIN of a program.

Options

It is possible to control certain actions of the ALGOL compiler
and run-time system by placing a specific option letters after
the masterspace on the ALGOL processor card or the XQT card.
(See EXEC II manual page 3-1).

At compiletime these same options may also be turned on by using.

a "statement" of the form
OPTION 'string of option letters'$

‘'They may be turned off by using
OPTION 'string of option letters' OFF$

These "statements" are accepted wherever declarations or state-

ments are allowed.

Note:

OPTION may come before the first EEGIN.

Available options_on_the ALG-card.

——n . - — - Thn D p e S G D M R T W R e €W P W G e S S

A Accept the compiled program even if errors are found.

No warning messages are given.

E All external procedures when they are compiled require

this option.

F The compiled SLEUTH II code is listed and punched into
cards, which are accepted by the SLEUTH II assembler.

G The listing for this compilation will start at the top

of a new page.

-145-

The SLEUTH II code produced by the compiler will be listed.
The instructions resulting from each line of ALGOL text

will appear just before the line is printed.

The source text listing is suppressed. No warnings are
given, but error messages are printed together with the
source lines to which they apply.

This option has the same effect as R.

This option removes the instructions which check wheter
the subscript being used is within the bounds declared

for the array. ,

It is suggested that this option should not be used during
debugging. Production programs can benefit greatly from

the saving in time when the check is removed.
Punch the updated symbolic text in compressed form.

At the end of the listing, times are given for the four
passes of the compiler and the total time taken for the
compilation. The number of words used on drum for the
intermediate output from the passes of the compiler is
also printed.

Suppress warning messages.

Correction cards used to update a symbolic version are

listed before the normal source text listing.

If errors are detected in the compilation, the entire

run 1is aborted.

No run-time diagnostic information is prepared. When this
option is used, a PMD card may not be used. The program
will not keep track of the line numbers being executed so
that run-time error message will not be complete. The use
of this option saves time and core-space in production

programs, but should not be used when debugging.

-~146-

(See also EXEC II manual sec. 5.8)\

A

N

X

Accept the program for execution even though errors have
been found during compilation or allocation. If compile-
time errors have occured, execution will proceed up to the
point of the first error and then the program is terminated

with the message:
SOURCE LANGUAGE ERROR AT LINE XXX
This option must be used when using external FORTRAN, pro-

cedures containing double precision or complex arithmetic.

Otherwise the program will terminate with the message'
ILLEGAL OPERATION AT LINE XXX

where the line number refers to the last ALGOL 1line

executed.
Suppress listing of allocation tables.’

Abort the rest of the run if errors occur.

9.3 Chained Programs and NU ALGOL

l'

The EXEC II manual Section VI.2. describes how large
programs may be broken into sections or links.

NU ALGOL programs may also take advantage of this feéfure
through the use of the statement

CHAIN (<integer expression>)
where the value of the <integer expreséion> is the number of

the next link to be executed.

Sequential drum files may be used across links because Y$TTAE,

their control table, is kept in blank common.

Device DRUM may be used across links. The current drum posi-
tion, obtained by the procedure DRUMPOS, is not destroyed.

-147-

4. No data from the ALGOL programs is saved across links because
no data is kept in blank common.

5, Users of external FORTRAN or SLEUTH programs which have blank
common, must ensure that their data areas do not interfere
with Y$TTAB.

~1u8-

10 ERROR MESSAGES

- — ——

The compiler tries to catch and properly diagnose all errors

in the text given to it. Sometimes the éyntax is so incorrect
that it confuses the compilér to the point where spurious messages
are printed or certain internal errors may occur. When such internal
errors occur it is suggested that all other errors diagnosed be

corrected. In most cases, the internal error will then disappear.

Where possible the exact syntax causing the error is marked with
an asterisk. The following list suggests the possible problem
and if possible gives a reference to where the required rules
are explained. The user's help in suggesting other possible
problems detected and diagnosed under specific error messages

will be appreciated.

There are three levels of errors.

a) Warnings - are given when a construction may cause an error
if not used correctly, or the construétion is inefficient
They are not counted in the total given in the line

XX ERROR(S) WERE FOUND
They can be suppressed by using the V option or as a side-
effect of the A or N options.

b) Errors - These are the usual diagnostics given when the
compiler cannot translate the given source code into meaning-
ful object code.

The program produced by the compilation may be loaded and
executed by using an A option on the XQT card but when a
statement containing an error is executed, a jump will be
made to a run-time error routine which terminates the program.

c) Compilation killers - For certain internal compiler errors or

table overflows and such unresolvable problems as IMPROPER
BLOCK STRUCTURE, compilation is immediately stopped. Not all
errors are detected. In these cases an XQT card even with an A

option will do nothing because no program has been produced.

10.1.

.

~149-

Compile-Time Error Messages

Error .
number Message Possible problem

1. Illegal number The number does not conform to
the syntax of sec.

2. Illegal character Some special characters cannot be
usea outside strings or comments.
(See section 2.1). '

3. Correction card error Line number on correction cards are
not in ascending order.(See EXEC II-
5-10A)

4. Improper use of Reserved identifiers (see section

reserved identifier 2.2.) may only be used with their
special meaning.

5. Too long string String constants may not have more
than 132 characters.

A string quote may be missing or an
extra one has been punched.

6. Missing delimiter Missing operator such as + or - or
missing $ on previous statement.

7. Wwong delimiter The compiler is expecting some other
delimiter. Also VALUE must come
before all specificaticns.

8. Improper operand, or Usually two operators have been

operand is missing placed together.
For example Ax-B is not allowed.
A#(-B) must be used.

9. Missing operand Improper construction of an IF
statement. (See section 5.4).

10. Illegal construction Often caused by a mismatched number
of left and right parentheses or
any other non-standard construction.

11. . -Missing specification No specification given for a para-

of <name of variable> meter to a procedure. (See section
6.1.)
12. Pass 1 stack overflow An internal compiler error usually

caused by other errors or a too

large program.

-150-

Error Message Possible problem
number

15. Double pecification A parameter to a procedure has been
of <name of variable> specified twice. (See section 7.1)

16. Illegal value LABEL , LIST , FORMAT , SWITCH
specification of and PROCEDURE cannot be given a
<name of variable > value specification.

17. Missing formal A specification has been given for a
parameter variable which is not a parameter to

the procedure. Often it should be a
declaration of a local variable and
come inside the BEGIN of the proce-
dure.

18. xWarningx Improper All BEGIN's have been matched with
termination - remain- END's but still some cards remain.
ing cards ignored

19. xWarningx Missing end The block structure may not be quite
- extra end interested correct or the final END has

been forgotten.

20. Too many nested Only 34 nested BEGIN-END pairs or
BEGIN-END pairs 9 block levels are permitted.

21. Improper block Some HEGIN's or END's missing,
structure possibly caused by other errors.

22. Too many efrors- Have you read the programmer's
compilation sup- guide?
pressed

23. Double declaration of Two identifiers in which the fipgt
<name of variable> at twelve or less characters are the
line <line of second same, have been declared in the
declaration> same block.

24, Missing declaration of An identifier has been misspelled or
<name of variable> the user has forgotten to declare

it.

25, Redeclaration stack There are too many identifiers with

overflow

similar spellings in nested blocks.

-151-

Error .
umber Message Possible problem

26. Interphase 1 rror An internal compiler error.

Check for other serious errors.

27. Internal error The user has totally confused the

compiler. Correct all other errors
and try again.

29. Accumulator stack There are too many intermediate
overflow (simplify results in an arithmetic expression
this expression) for the computer to handle.

30. Mixed types in left In multiple assignments all
part list. variables must have the same type.

31. Il1legal (after <nagme Possibly a delimiter is missing or
of variable> at line a simple variable is being used
<line of declaration> with a subscript.

32. Wrong number of sub- The number of subscripts used must
scripts to array always match the number of dimen-

sions given for an array in the
declaration.

33. Improper type in Only certain transfer functions
expression exist between different variable

types. This expression requires
one which does not exist. (See
section 7.4.).

34. Wrong parameter Formal and actual parameter kinds
kind to procedure must match. For example the actual
<procedure name> parameter may not be an array iden-
at line <line of tifier when the formal one is a
declaration> simple variable. (Line 0 refers to

a standard procedure.)
35. Wrong parameter The type of an actual parameter must

type to procedure

<procedure name> at

line <line of

declaration>

match that of its formal parameter
unless a transfer function exists.
Note that no transfer functions are
allowed for arrays. (Line 0 refers

to a standard procedure.)

Error
number

-152-

Message

Possible problem

36.

37.

38.

w
«w

Lo,
Ll'lo

42.

43‘

L“u'

4s.

46.

Illegal assignment

Constant table over-
flow

Wrong number of para-

meters to procedure

<procedure name> at line

<line of declaration>

Improper type in bound
pair list of array

<array. name>

xWarningx Do you want

to compare constants?

Improper type before
THEN

Improper relation be-
tween complex or

string expressions

Undefined transfer

function

Operand stack over-
flow

Improper type of con-
trolled variable <name
of variable> at line

<line of declaration>

xWarningx Zero step

A transfer function which does not

exist has been called for.

The program contains a constant
expression which is too compli-
cated, or the total number of con-

stants in the program is too large

The number of parameters is a pro-=
cedure call does not match the
declaration. (Line 0 refers to

a standard procedure.)

Only INTEGER, REAL and REAL2 are
allowed types for substrict bounds

in array declarations.

Possible puncing error

Only boolean expressions are
allowed before the delimiter THEN.

Strings and complex numbers can
only be compared for equality or
non-equality. '

An implicit non-existent conver-
sion has been called for. (See

section 7.4.).

Internal compiler error. Check
carefully for other errors. The

program is too complicated.

The controlled variable in a FOR
loop may only be of type INTEGER
or REAL.

The controlled variable will not

be changed in a FOR statement when
the step is zero. '

-153-

Error .
number Message Possible problem

47, Improper type in FOR Only INTEGER and REAL types are
list element allowed in a FOR list.

48. Wrong type of sub- ‘Only INTEGER, REAL and REAL2 are
script for array .
<array name> legal types for subscripts.

49. Operator stack over- Internal compiler error. Check care-
flow fully for other errors. The program

is too large and complicated.

50. FOR stack overfliow Only 24 nested FOR statements are
allowed or a FOR-list may contain
about 40 elements.

51. xWarningx Reference. Jumps to labels in FOR-statements

into FOR-statement by . .

label <label name> at &Ye hazardous since the locp
line <line of control may not be initialized
declaration> correctly.

52. xWarningx Test for Variables of types REAL, REAL2 and
equality between non- COMPLEX are only approximations to
integers may be a value and hence may not be
meaningless exactly equal.

53. Too many different Approximately 600 different identi-
identifiers fiers may be used.

54, Pass?2 stack overflow Internal compiler error. Check for
other errors which may have caused
the compiler confusion. The program
may have too many declarations.

55. Unrecoverable error Internal compiler error. Check for

in ALGOL drum file other errors which may have con-
fused the compiler - or for a
machine failure.

56. Overflow in ALGOL The intermediate outputs.
drum files-program from the compiler are larger that
~too large the scratch area on drum.

57. Improper format Some rule for formats has been
construction broken (See section 8.6).

58. Zero replicator Although replicator expressions may

have the value zero, the constant

replicator zero has no meaning.

Error

-154-

Possible problem

number Message

59. Missing right or The number of right and left paren-
extra left parenthesis theses used in a format do not match

60. Missing left or extra The number of right and left paren-
right parenthesis theses used in a format do not match

61. Improper field The field width part of a format
specification phrase (w) is not formed properly.

(See section 8.6).

62. xWarningx Missing Indefinite repeat formats usually
activate within in- require an A-phrase to perform
definite repeat properly.

63. xWarningx Specified The field width part of a format
field is longer than phrase (w) has little meaning if
one line it exceeds 132 columns.

6L4. Format stack overflow Only 10 sets of nested brackets are

allowed in a format.

65. #Warningx Timeconsu- It is allowable to use non-integer
ming conversion to expressions for subscripts, but it
integer subscript in
array <array name> is very slow.

66. Illegal format Only certain characters are meaning-
character ful within a format. (See section

8.6.).

67. This feature is not The construction cannot yet be
implemented compiled.

68. Unrecoverable error in Trouble with reading symbolic ver-

. . sion of program from the card
source input files reader, tape or PCF area on drum.
Usually a hardware error.

69. Interphase 2 error Internal compiler error - check for

other possible errors.

70. Pass 1 stack under- Internal compiler error - check for

flow other possible errors.

71. Operandstack underflow Internai compiler error - check for

other possible errors.

\

Error

-155~

number Message Possible problems

72. Improper use of formal A formal parameter not specified as
parameter <parameter a procedure is being used like a
name> at line <line procedure.
of specification> Example:

PROCEDURE P(X);
REAL X;
BEGIN X3; END;

73. Conversion to integer REAL and REAL? constants-
causes overflow may have a largest absolute value of

about 1038 but integer constants
have a largest absolute value of
only about 1011.

Th. Improper parameter The parameters to a string may only
to string <string be INTEGER, REAL or REAL2 expres-
name> sions.

75. Too many parameters to Strings require either no parameters
string <string name> or only a starting character posi-’

tion and the length. (See section
L.y).

76. Operator stack under- Internal compiler error - check for
flow other possible errors which could

have confused the compiler.
717. #Warningx Inconsistent A formal array has been used with
use of dimensions to different numbers of subscripts.
array <array name>
78" Parameter out of range Certain standard procedures require
in procedure proce- parameters to have value in a cer-
dure <procedure name> tain range.
79. Missing BEGIN All programs except externally com-
piled procedures must start with
BEGIN. It is not allowed to place
a label before the first BEGIN.

80. ®Warningx Operand for Integer divide (//) is only allowed

// is not integer

for integers. Conversion will be
attempted. This warning is given to
the rules for ALGOL 60.

-156~-

Error
number Message Possible problem
81l. Division by zero Division by zero has been attempted
in a constant expression being ava-
luated by the compiler.
82. Too many string There may be at most 200 string con-
constants stants in a program except for the
ones used in formats.
83. Too many labels A program may contain 200 label
declarations.
8L, Too many external A program may reference 50 external
references procedures including standard proce-
dures and system subroutines.
85. Too many proce- A procedure may have up to 63 para-
dure parameters meters..For LIBRARY procedures.the
number is determined as shown 1n sec.
7.3.5.2.
86. Prototype table The program contains to many and too
overflow large blocks or procedures.
87. Too many external Only 10 external procedures may be
procedures compiled within the same element.
88. Too many array and The program has too many arrays or -

string declarations

string with different bounds.

v

-157-

10.2 Run-Time Error Messages

Because the evaluation of many expressions is left to the run-

time routines, certain errors can occur. These are caught by the

run-time system and the appropriate messages given, together with

the line number of the element where the error occured.

Number Message

Possible probliem

c. Internal error

1. Improper type con-
version

2. This feature is not
implemented

3. Incorrect number of
parameters

4. An attempt has been
made to store into a
constant

5. An attempt has been
made to store into an
expression

6. Number too large

7. Attempted division

by zero

Trouble in an ALGOL run-time routine

Consult your systems support people.

A transfer function which is not

allowed has been requested.

The run-time routines of the com-
piler cannot process this con-

struction.

The number of parameters in the
procedure call does not match the
number given in the procedure

declaration.

A formal parameter appearing to the
left of an assignment has a constant
as 1its actual parameter. There may

be a missing value specification or
the parameters in the procedure call

may not be in the correct order.

A formal parameter appearing to the
left of an assignment has an
expression as its actual patameter.
Perhaps the parameters in the pro-
cedure call are not in the same
order as those in the procedure de-
claration, or a value specification
is missing.

A REAL, REAL2 or the real or imagi-

-nary parts of a COMPLEX number hav-

ing absolute value larger than about

1038 has been produced.

The divisor in an integer or real

division is zero.

Number

-158-

Message

Possible problem

8'

10.

11.

12.

13.

14,

15.

16.

17.

Store error

Illegal opération

Result undefined for

conversion

MERR$ termination

Memory capacity

exeeeded

Improper type of

parameter

Improper kind of

parameter

Argument out of range

-Subscript out of

range

Too many dimensions

Incorrect code generated by compiler
due to errors in the source code,
program destroyed by FORTRAN or ma-
chine language procedures, Or sub--
script out of range when using R-
option.

Missing external procedure or in-
correct return from a FORTRAN or

machine language procedure.

The result produced by a transfer

function is not a meaningful value.

Execution of the run has been ter-
minated by the system error exit
routine. (Often maximum time or

pages.)

Usually caused by array bounds which
are too big, or by the dynamic
creation of too many or too large

procedures.

The type of an actual parameter must
match that of its formal parameter
unless a transfer function exists.
Note - no transfer functions are

allowed for arrays.

Formal and actual paramefer kinds
must match. For example the actual
parameter may not be an array iden-
tifier when the formal one is a

simple variable.

A parameter to a standard procedure
is not within the limits accepted

by that procedure.

The subscript computed for an array
element does not fall within the
bounds specified in the array

declaration.
Only 10 dimensions are allowed in

an array.

-159-

Number Message Possible Cause
18. Read error Problem with using the READ statement,
usually because of an undefined trans-
fer function or a constant not in the
correct format.
19. Improper array bound The evaluation of the expressions in
in declaration an array bound has prodused a lower
bound that is greater than the upper
bound.
20. Blocklevel is too Only 9 nested block levels are
high - no more X allowed.
registers
21. A control card was If not done for a réason, this mes-
read by the read 'sage usually implies that the amount
statement of input data is known in correctly.
Sometimes when reading cards, it is
caused by reading two or more cards
instead of one because of an incor-
rect FORMAT or LIST, or because free
format READ always starts on a new
card.
22. Improper parameter Improper parameter in size or sign.
23. Attempt to read/ The parameter to device DRUM is
write beyond random +too large or is negative.
drum limits
24, Input/output error Error with device DRUM or TAPE. Often
caused when the length of an input
list is not the same as that of the
corresponding output list.
25. Source language Executions done with A-option can
error only procede as far as the first
error.
26. Improper type of The controlled variable of a FOR

controlled variable

statement is a formal parameter and

-160-

Number Message Possible Cause
the corresponding actual parameter
is not of the same type.

27. Write error Improper parameters given to the
WRITE statement.

28. Zero or negative The expression given as the length
string length in of the string has a value less than
declaration 1.

29. Checksum error The checksum on a tape record is not
correct. Possible tape error or in-
compatible tape format.

30. Tape error Beyond end of information if sequen-
tial drum file, or actual tape error
and no error label avaiable.

31. Too many labels WRITE may only have 1 label. READ
and POSITION may have 3 labels.

32. Position error Improper parameters given to the
POSITION statement or trouble in
positioning a file.

33. List longer than The input list given to READ with

record device TAPE is longer than the
record on tape.
3k, Formats are not Devices TAPE and DRUM may not read
allowed with TAPE or write formatted data.
or DRUM
36. Only ten nested In a format there can only be 10

sets of parentheses

allowed.

nested sets of parentheses.

Number

Message

Possible Cause

37.

38.

39.

Neither labels
nor lists allowed
in lists.

Input or format
error in READ

Editing error in
WRITE. Check your
format

The list elements for a declared
list can only be expressions, array

identifiers or formats.

The form of an item being read and
the format used are not compatible.
The input image is printed with an
asterisk showing where the error

occurred.

The value to be edited is too large
for, or in some other way incompati-
ble with the format. The output buf-
fer is printed showing how far the

editing has progressed. The editing

will continue with the next value.

APPENDIX A.

BASIC SYMBOLS

Out of the 6u-character set of the UNIVAC 1107/1108 computers,
556 characters are recognized by the NU ALGOL compiler as being
meaningsful within an ALGOL program. (See sec. 2.1). The re-

maining 9 characters have no interent meaning and are allowed

only within strings. They may thus be installation defined.

To the compiler the meaning of a character is determined by the
value of its internal representation ("field data" value). The
table below lists the characters by their internal representa-
tion together with a common graphic reﬁresentation. The corre-
sponding punched-card codes are not shown because they may be
installation defined. For the installation defined characters

no graphic is shown.

Table I. NU ALGOL characters

Internal |Graphic Internal |Graphic Internal | Graphic
value symbol value symbol value symbol
(octal) (octal) (octal)
00 25 P 52
01l C 26 Q 53
02 | 27 'R 54
03 30 S 55
oy 31 T 56 s
05 . SPACE 32 U 57
06 A 33 \ 60 0
07 B 34 W 61 1
10 C 35 X 62 2
11 D 36 Y 63 3
12 ‘E 37 Z 6U 4
13 F 40) 65 5
14 G 41 - 66 6
15 " H 42 + 67 7
16 I 43 < 70 8
17 J by = 71 9
20 K 45 > 72 !
21 L 46 & 73 3
22 M 47 $ T4 /
23 N 50 - 2 75 .
24 0 51 (76
77

The basic symbols of the NU ALGOL hardware language are repre-
sented by means of the above characters. The following table
shows these symbols along with the corresponding symbols of

the ALGOL 60 reference language.

-2-

Table II. NU ALGOL Basic Symbols

o=
ALGOL 60 NU ALGOL ALGOL 60 NU ALGOL
true TRUE H ; or $
false FALSE = = or :=
+ + step STEP
- - until UNTIL
X * while WHILE
/ / comment COMMENT
* // ((
+ 3%))
< LSS C (or L
< LEQ 1) or 1
= EQL ¢ !
> GEQ ’ '
> GTR begin BEGIN
$ NEQ end END
= EQIV own
) IMPL boolean BOOLEAN
Vv OR integer INTEGER
XOR real REAL
A AND REAL?2
= NOT COMPLEX
go to GO TO STRING
or GOTO or GO array ARRAY
if IF switch SWITCH
then THEN FORMAT
else ELSE LIST
for FOR LOCAL
do , DO EXTERNAL
OPTION ALGOL
OFF FORTRAN
o > LIBRARY
. . SLEUTH
10 & or && procedure PROCEDURE
or .. label LABEL
value VALUE

APPENDIX B.

EXAMPLES OF PROGRAMS

This appendix contains some simple examples illustrating the use of NU ALGOL
Each has been run on the 1108 and some sample input and results are shown.

BEGIN :
COMMENT EXAMPLE 1
CALCULATION OF VALUE OF ARITHMETIC FXPRESSICH
WITit READ IN VAPIABGLES ¢
REAL ArBrC %
INTEGER TOILL 9
READ (CARDS»A»B»C) %
TOILL = A+B**xC/A %
WRITE (PRINTEK+A'B»CrTOILL) &

DATA
H el 1.222
RESULTS:

5.00000+00 6420000400 1.2220¢+00 7

BEGIN
COMMENT EXAMPLE 2
CALCULATION OF SGUAREROOT» By OF A RFEAL NUMRER,
Ar WITH 6 DIGITS ACCHRACY RY NEWTOM=RAPHSON ITERATION %
REAL ArBeOLDEB 3
READ (CARDLSrA) 3
OLDB = 1.0 %
FOR B = 0.5%(A/0LDB+OLDR) wHILE ARS(R=0OLNR) GTR 1-ox*k(=()%R DO
OoLbb = B %
WRITE (PRINTER(A(B) %
END PROGRAM %

DATA
577777
RESULTS:

507778""00 204037""00

BEGIN
COMMENT EXAMPLE 3
VALUE OF A POLYNOMIAL Y=B(0)+B(1)*Xeeeeeee +B(M)kX*%N ¢
REAL XeY &
INTEGER KN %
READ (CARDS*N) %
COMMENT UEGKEE OF POLYNOMIAL READ FROM CARDS. INNER BLOCK PERFORMS
READING OF COEFFICIENTS AND CALCULATIONS ANN PRIMTING OF
RESULTS $
BEGIN
REAL ARRAY B(O:N) %
READ (CARDS!B) %
READ (CARDS»X) %
Y = B(N) %
FOR K=N=1 STEP =1 UNTIL 0 DO Y = Y*X+B(K) %
WRITE (PRINTER.*VALUE OF A POLYNOMIAL OF DEGREF'»"N='+N»
YCOEFFICIENTS"'Br ' X=Tt e X0 'Y=, Y) &
END CALCULATION $
END PKOGRAM %

DATA

u
1.223 3.5 7.52 =4,02 "3305
555

RESULTS:

VALUE OF A POLYNOMIAL OF DEGREE
H=
y

COEFFICIENTS

1.22300400 3.5000++00 - 745200,+00 =4.,0200,+00 =3,2500,+01
X= |
5.5500++00
Y=
=3.22200+04

BEGIN
COMMENT EXAMPLE 4
PROGRAM WITH A REAL PROCEDURE: BIG» WHICH FYNDS THE LARGEST
OF THE N LOWER-INDEXED ELEMENTS (STARTING WITH INDEX=1) OF A
ONE-DIMENSIONAL ARRAY» A» WITH POSITIVE ELEMENTS $
REAL PROCEDURE BIG(N»A) $
VALUE N % | '
INTEGER N $
REAL ARRAY A $
SEGIN
INTEGER B $
REAL C/D $
B=163%
D= A(1) $
L: C =D - A(B+1) $
IF C LSS 0 THEN D = A(B+1) %
B = B+l
IF B LSS N THEN GO TO L %
BIG = D $
END BIG $
REAL ARRAY F(1:50) 3
REAL H!K 9
READ (CARDS!F) % | |
COMMENT CALL OF BIG TO FIND THE LARGEST OF THE 20 LrWER
ELEMENTS OF F $ H = BIG(20¢F) %
WRITE (PRINTER/H) $
COMMENT LARGEST ELEMENT IN F $
K = BIG(S0/F) &
COMMENT USE OF BIG IN MCRE COMPLEX EXPRESSIONM $
H = H + BIG(10+F)/K*BIG(15¢F) $
WRITE (PRINTER»HeK) %
END PROGRAM %

DATA

1022 3455 1 2242 045 7.2 8412 21,4 4.1 22.5 n.422
5562 0612345 588 3455 7,53 4 5 2 3 1 77 5 22.1
S5el 243 362 4e2 9485 8,99 566 66 U4 11 2 44,7
55612 44,1 2489 7.521 8456 S5.42 U488 64783 5,423
71234 9,753 8,741 5 6

RESULTS:

5.52000+01
7.13300+01 7.70000401

Example 5. Newton’s Method of Successive Approximations

AREA A

Given: An area A defined by a circular arc of radius r and its chord.
Required: Find the value of angle x subtended by the arc.

Solution: The relationship between A and x is:

A=L (x — sin x)
2

Like many practical problems, this one has no analytic solution. However, methods have been
developed to find approximate solutions to such problems. The method to be used here is called
Newton’s Method. If the solution x to

f(x)=0

is to be found, then a sequence of values approximating the solution x is given by
Xpi1 = Xp - f(x)/£(xp).

For this problem
f(xy) = (1/2)r%(x,, - sin xg) - A

and

f'(x,) = (1/2)r2(1 - cos xp)-

Therefore, using elementary algebra, the approximation scheme is

Xp — sin x, — 2A/12

Xn+l = Xp —

1 — cos x,;
This equation is solved repeatedly, each time with the previous value of x, 1 substituted
for x, to compute a new value for x;; 1. The secoud term of the equation is the difference

between successive approximations.

When this difference becomes less than some specified value, the sequence of approximati ons
is said to have converged to a solution. The iteration procedure is then terminated and the
problem is considered solved.

Practical considerations place a limitation on the number of iterations permitted. If the
sequence of approximations does not converge within a prescribed number of iterations, the
procedure is terminated and the approximate solution is rejected.

The conditions used in this example are:

Area = 1.5
Radius = 5.0

The first approximation is xy =1.0. The iteration procedure is then performed for a maximum of
nine iterations. If the successive approximations differ by less than 0.00001, then the sequence
of approximations is considered convergent. The iteration procedure is then terminated and the

sequence of approximations and differences is printed out in the form of a table. Otherwise,

the program is terminated with no output.

The following identifiers in the program represent the corresponding physical quantities:
AREA Area enclosed by chord and arc (A)

RADIUS Radius of circle (r)

ANGLE Approximation to the angle x
CHANGE Difference between successive approximations
SMALL Criterion for convergence

G For convenience, the quantity 2A/r?

The program is as follows:

BEGIN
COMMENT EXAMPLE 5
SAMPLE PROGRAM USING UNIVAC 1108 ALGOL %
REAL AREA» RADIUS, SMALL» G $
INTEGER I+ K 3 _
REAL ARRAY ANGLE(1:10)s» CHANGE(1:9) $
FORMAT F10(X9¢ ' ITERATION® » X5+ *ANGLE* »X9# *CHANGE "0/ 141)
F11(X13+11+D15,6¢D1445,A1)
F12(X9s *THE ITERATION PROCEDURE HAS CONVERGED'/sAl) $
COMMENT SET UP VALUES TO BE USED IN PROBLEM $
AREA = 1.5 %
RADIUS = 5.0 $
SMALL = 1.08-5 $
G = (2.0%AREA)/(RADIUS**2) ¢
COMMENT BEGIN ITERATION LOOP == MAXIMUM OF 9 ITERATIONS $

ANGLE(1) = 1.0 $
FOR I = 1 STEP 1 UNTIL 9 DO
BEGIN

COMMENT COMPUTE CHANGE IN APPROXIMATE SOLUTIOM %
CHAMNGE(I) = (ANGLE(I)=STM(ANGLE(I))=G)/(1.,0-COS(ANGLE(I))) %
COMMEMT TEST FOR CONVERGENCE OF APPROXIMATE ScLUTION %
IF ABS(CHANGE(I)) LSS SMALL THEN GO TO L110 %
COMMENT APPROXIMATION HAS NOT CONVERGED = COMPUTE NEXT
APPROXIMATION % :
ANGLE(I+1) = ANGLE(I) = CHANGE(I)
END %
COMMENT END OF LOOP - ITERATION PROCEDURE HAS NOT CONVERGED %
GO TO FIN 3%
COMMENT THE ITERATION PROCEDURE HAS CONVERGED $
L1103 WRITE (PRINTER(F1l0) %
WRITE (PRINTER(F11l» FOR kK=1 STEP 1 UNTIL I DO
(K¢ ANGLE(K) »CHANGE (K))) 3
WRITE (F1l2) %
FINS
END OF PROGRAM %

Note that a completely blank card gives a blank line in print.

The sample gave the following result:

ITERATION ANGLE CHANGE
1 1.000000 .08381
2 «916186 «00742
3 «908770 «.00006
4 908714 .00000

THE ITERATION PROCEDURE HAS CONVERGED

This is in excellent agreement with the theory.

APPENDIX C.

JENSENS DEVICE

The purpose of this section is to acquaint the reader with two interesting programming tech-
niques, namely Jensen’s Device and Indirect Recursivity. A thorough treatment of the recursive
concept may be found in ‘‘The Use of Recursive Procedures in ALGOL 60°’, H. Rutishauser
The Anual Review in Automatic Programming, Pergamon Press, London, 1963.

Jensen’s Device comprises the use of two parameters in a procedure call, in which one is a
function of the other. Neither may be a value parameter.

The following example is a method of evaluating an approximation to the definite integral of a
function by means of Simpson’s Rule over one interval. The algorithm may be written:

REAL PROCEDUKE SIMPS (X+ARITHe A» B) %

VALUE A/B 3% REAL Xe¢ ARITH» A8 %

BEGIN REAL FAr FMr FB 9 A
X=A % FASARITH 9% X=B % FB=ARITH %
X=B=A)/2 % FM=ARITH %
SIMPS=(B=A) * (FA+4*FM+FB) /6

END SIMPSON INTEGRATION $

In a call of SIMPS, ARITH may be any arithmetic expression. Jensen’s Device refers to the
case when ARITH is a function of X. For example, the call:

I=SIMPS(Z)EXP(Z*Z) s 0.0+ 1.0)

would cause ARITH to be replaced by EXP(Z*Z) in the running program. This call evaluates
an approximation to the integral

1

_f e‘"’-2 dz

0
In evaluating an approximation to the double integral

1

1
f f eX¥ dy dx
00

indirect recursivity may be used by making the parameter corresponding to ARITH a call to
SIMPS itself, thus

ISSIMPSIX»SINMPS(YPEXP(X*Y)r Qa0 1.0)» 0,00 1.0)

More material may be found in: E.W. Dijkstra, A Primer of ALGOL 60 Programming, Bound
Variables, Academic Press, London, 1962, pp. 57-59.

APPENDIX D.

DIFFERENCES BETWEEN NU ALGOL AND UNIVAC 1107/1108 ALGOL

1. Improvements

Note: The points below are not necessarily listed in order

of importance.

1.1. User Convenience

a) Automatic resolution of type conflicts between actual

and formal parameters.
b) Format phrases allowed in I/0 statements.
c¢) Dynamic definition of format phrase parameters.
d) Local declaration not necessary.

e) New format phrases for: absolute positioning to
column, centerjustified string, leftjustified integer

and zero suppression.

f) Editing to and from a string in core (not using exter-

nal devices).

g) Compilation of several external procedures in same

element.

1.2. Diagnostics.

a) Improved check of legality of format phrases.

b) Improved error detection and recovery giving more pre-
cise message, eliminating superfluous and misleading

diagnostics.

¢) Undefined labels are detected on first reference not at

the end of the program.

d) Warnings -are given for inefficient use of language and

legal but possibly dangerous constructions.

e) Full control at compile time of non formal and non

external procedure parameter call, both number of para-

.3,

f)

meters and type-kind-correspondance.

Control of number of subscripts for arrays at compile time.

Run-time Efficiency

a)
b)

c)

d)

e)

f)

g)

h)

i)

k)

1)

Full utilization of all accumulators if necessary.
Inline arithmetic for all types.

Faster subscript mechanism including control of sub-

script range.

Improved procedure call mechanism with parameter con-

trol at compiletime.

Improved handling of formal parameters, short-circuit-
ing the general mechanism for simpel name parameters

when the type is correct.
All constant arithmetic performed at compiletime.
Improved addressing of non-local variables.

Improved addressing of formal name arrays providing effi-

cient handling of vectors, matrices etc. in subroutines.
Double buffering of tape I/0.

Pseudo-evaluation of boolean expressions minimizing
number of necessary tests in boolean expressions, espe-

cially useful in conditional statements.
Faster mechanism for calling FORTRAN subroutines.

Efficient handling of external machinecode procedures
(EXTERNAL LIBRARY procedures) with full compiletime
parameter check, and conversion capabilities for the

parameters.

2. Changes and restrictions

2.1. External procedures

a) External procedures compiled using the UNIVAC 1107/
1108 ALGOL compiler cannot be run together with ALGOL
programs compiled using the NU ALGOL compiler (and vice

versa).

b) External procedures compiled using the NU ALGOL compi-
ler must have an E-option on the compiler control card
(ALG card).

c) The declaration EXTERNAL NON-RECURSIVE PROCEDURE is not
allowed.

d) The declarations for external procedures coded in SLEUTH
IT are EXTERNAL SLEUTH PROCEDURE or EXTERNAL LIBRARY
PROCEDURE depending on the type of parameter transmission.

e) When using external FORTRAN procedures which have DOUBLE
PRECISION or COMPLEX arithmetic, F-option must be used
on the XQT card to avoid the run time error: 'ILLEGAL
OPERATION'.

2.2. Declarations

a) The declaration OWN is not allowed.
b) The declaration OTHERWISE is not allowed.

c) Reserved ALGOL words cannot be used as variable names.
Two new reserved words have been introduced: OPTION
and OFF.)

d) A procedure may have at most 63 parameters.
2.3. Formats

a) In input or output statements, the format identifier must

come before the list to which it applies.

b) The format phrase T is not allowed..

2.4.

2.5.

Standard Procedures

The following changes have been made in the names of

some of the standard procedures.

OLD NEW "MEANING
COMPLEX COMPL Produce a complex number using

the first parameter:as the real
part, and the second as the

imaginary part.

IMAGINARY IM Obtain the imaginary part of
the complex number given as
parameter.

INTEGER INT Convert to type INTEGER.

REAL RE Obtain the real part of the com-

plex number given as parameter.

The argument of a standard procedure is regarded as

being by value.

FOR Statements

1. The controlled variable may only be of type REAL or

INTEGER.

If the controlled variable is a subscriptéd variable,
the subscript will keep the value that it had at the
beginning of the FOR statement even if the statements

controlled by the FOR change this value.

Example:

I = 3%

FOR A(I) = (1,1,100) DO I =1 + 1%
When the FOR statement is finiéhed

A(3) will have the value 101
I will have the value 103

~

2.6 IF Statements

a)

b)

An IF statement after THEN must be enclosed with BEGIN
END

An IF expression used in an arithmetic expression must be

enclosed in parentheses.

Note: This is to eliminate the ambiguity of the
"dangling else" and is clearly stated in the
ALGOL 60 report. '

Miscellaneous

a)

b)

c)

d)

e)

£)

g)

h)

All programs with the exception of external procedures must
be enclosed with BEGIN END$

In a multiple assignment statement all of the variables to

which the assignment is being made must be of same type.

The value specification must be placed in front of the type

specifications.

Use of the device DRUM is somewhat different. See sec.
8.3.7.

In input and output, tapes 21 énd 27 are no longer implemented.
Continuous reading and re-reading may be done as shown in

sec. 8.3.4.

The statement REWINT(TAPE())$ must be used instead of
REWIND(TAPE() ,INTERLOCK) $

When errors or EOF-conditions are detected during I/0 and
no labels are provided, the program is terminated with an

appropriate message.

Positioning to a KEY is halted if an EOF is encountered.
Sec. 8.5.7.

APPENDIX E.

SYNTAX CHART.

Table of Contents.

Introduction 2.
Program 3.
Declarations 4.
-type 5.
array 6.
string 7.
string array 8.
switch ' 9.
external procedure ' 10.
procedure ' 11.
local ' 13.
list 14,
format 15.
Statements 16.
block 17.
compound 18.
assignment 19.
go to 20.
conditional - 21.
for 22.
dummy S 23.
procedure ’ 24,
Expressions 25.
variable v 26.
function designator : : 27.
arithmetic expression : 28.
Boolean expression 30.:
designational expression , 31.
Basic Elements . '
identifier, letter, digit 32.
number f 33.
string, local value 35.
delimeter 36.
Input/Output
input statement ’ 37.
output statement 38.
position statement ‘ ' 4o.

rewind statement v , u1.

INTRODUCTION

This appendix summarizes the syntax of NU ALGOL in chart form.

The use of the chart portion of the manual is very simple and almost self-explanatory. At the top of each page is
a square box which contains the name of the concept defined on that page, for example,

type declarationJ]

The definition consists of a series of boxes connected by lines indicating the flow of symbols which define the
concept. Two kinds of boxes are distinguished: those with round corners (or circles) and those with square corners.

The round cornered boxes contain symbols that stand for themselves. Square cornered boxes contain names of
concepts which are defined elsewhere in the chart and may be found by a quick reference to the index,

In some places a metalinguistic "or' symbol has been used (for reasons of space) and should be understood as
follows:

+ | —

is equivalent to

In some sections a pair of letters may mark two spots in a definition. Underneath that section will appear that letter
pair followed by a name. This means that that name will be used in lieu of the string of symbols between the letter
pair in other parts of the chart. '

This chart uses only one of the two possible representations for some symbols in Algol, The following equivalences
should be noted:

Symbol used in this chart Alternate representation

(C
)]

GO TO GO or GOTO
$ H

In addition, comments may be inserted in the program by means of the following equivalences:

$ COMMENT <{any sequence not containing a $) $ equivalent to $
BEGIN COMMENT {any sequence not containing a $) $ " " BEGIN
END (any sequence not containing END or ELSE or $) " " END

This chart makes no mention of the use of spaces within Algol. A space has no meaning in the language (outside
of strings) except that it must not appear within numbers, identifiers, or basic symbols, and must be used to
separate contigous symbols composed of letters or digits. Spaces may be used freely to facilitate reading,

T

Explanation:

declaration

statement

BEGIN

A program is a complete set of declarations and-statements which define an algorithm for solving a problem,
The logic of this algorithm (its correctness) is the business of the programmer. The compiler only checks
that the syntax (form) is correct.

Notice that the $ is used to separate declarations and statements and is not inherently a part of a declaration
or statement. Nevertheless, it will be shown in most examples for clarity.

In an externally compiled procedure (E-option on the ALG card),

.the outermost BEGIN-END pair is not required.

declaration

Explanation:

type declaration

array declaration

string declaration

string array declaration

switch declaration

external procedure declaration

procedure declaration

local declaration

list declaration

format declaration

There are 10 types of declarations each of which is defined in detail on the following pages.

type declaration e .

INTEGER

identifier

Y |

TT | type

Explanation: A type declaration declares the mode of arithmetic the following identifiers will assume in the block. Types

REAL2 and COMPLEX associate 2 words with the identifier, the others one. Upon entrance to a block,
identifiers are given the value zero, - : :

Examples: INTEGER 14, PAK, LOOPCNT §
.. BOOLEAN ANYLEFT, LASTOUT $
COMPLEX C, CINVS §
REAL2 DP §
REAL QIN, QOUT, MAXITEM $

array declaration

type -\

!

BB

ARRAY

bound pair list

cC

bound pair

LC arithmetic L 8] arithmetic ucC
identifier (expression expression
UU] upper bound LL] lower bound

Explanation: An array declaration associates an identifier with a 1-dimensional or larger matrix of values. The arithmetic expressions
define the lower and upper limits of each dimension. The type plays the same role as for simple variables. If omitted,
type REAL is assumed. .

Examples: COMPLEX ARRAY CCON4 (0:N), CP1(1:N+1) §

BOOLEAN ARRAY BAND, BOR, BXOR(-4:4) $

REAL ARRAY

B(I-1:1+1), XINITIAL, YINITIAL(-N:N, -N:N, 1:2) $
INTEGER ARRAY K1:5),J,K, L{ENTIER(X): P112) $
ARRAY XYZ4(1:Nx2) $

string declaration

SS:

LL:

STRING

substring declaration

identifier (- arithmetic expression

substring declaration

O

substring declaration

length part

(-

Explanation: A string declaration associates an identifier with a variable whose value is a string of characters. The length of the string

is its number of characters. A group of characters of a string may be named as a substring. The length of a string must
be less than 4096.

Examples: STRING ST1(36), NAME(INITIALS(2), LAST(16)) $

STRING PI(N+2), QUOTE(1) $
STRING NEXTOUT (80) $.
STRING ALPHA(BETA(2, GAMMA(4), 2), DELTA(EPSILON(8)), 20) $

string array declaration =

[]

'_:pémmc)_.&GRRAY

identifier

length part

bound pair list

Explanation: . A string array is a matrix whose elements are strings. Appended to the length part of the declaration are
the bound pairs for each dimension, just as for an ordinary array.

Examples: STRING ARRAY SA (80:0:100), CARD(LABEL(8), OP(6), 2, OPERAND(64):1:N) $
STRING ARRAY LASTFILE (CLENGTH:1:507) $

switch declaration

Explanation:

Examples:

SWITCH identifier

designational expression

-

A switch declaration associates an identifier with an ordered list of designational expressions., A switeh is

used for transfer to a label depending on the valuc of some variable.

SWITCH JUMP = L1,START , FEIL4,SLUTT $
SWITCH BRANCH = IF BETA EQL 0 THEN L1 ELSE JUMP(J), START $

external procedure declaration B

FORTRAN type

PROCEDURE identifier

EXTERNAL

SLEUTH

/—. type
PROCEDURE procedure heading

Explanation: This declaration specifies a list of identifiers which are to be the names of
procedures not found in the program. These procedures may be written in assambly
language (SLEUTH, LIBRARY), ALGOL or FORTRAN. The type of external procedures
is specified if they are functional procedures.

Examples: EXTERNAL FORTRAN REAL PROCEDURE CBRT$
EXTERNAL FORTRAN PROCEDURE NTRAN,INVS$
EXTERNAL PROCEDURE ROOTFINDER,KEYIN,KEYOUT$
EXTERNAL SLEUTH PROCEDURE TYPEIN,TYPEOUT$
EXTERNAL LIBRARY INTEGER PROCEDURE PACK(A,B,C)$
VALUE A,B$
INTEGER A,B,C$ $

..O'[_

identifier

procedure declaration]
type
PROCEDURE
HH{ procedure heading
TT| procedure body
SS specification part
VV| wvalue part
FF| formal parameter part

identifier

$ VALUE —_———
\Y
identifier)
(letter
-
type
ARRAY
type
PROCEDURE
STRING
identifier $ H statement T

STRING ARRAY

SWITCH

LABEL

LIST

FORMAT

-TT-

Explanation:

Examples:

A procedure declaration defines an algorithm to be associated with a procedure identifier. The principal
constituent of a procedure declaration is a statement which is executed when the procedureis "called"

(see procedure statement and function designator). The procedure heading specifies that certain identifiers

appearinﬁ whithin the procedure body are formal parameters., A parameter may also be specified as
"VALUE" in which case the procedure statement, when called, has access only to the value of the corre-
sponding actual parameter, and not to the actual parameter itself.

PROCEDURE ZEROSET (A,N) $

VALUE N $ INTEGER N $ ARRAY A $

BEGIN COMMENT THIS PROCEDURE ZEROES AN ARRAY ASSUMED DECLARED ARRAY A(1:N) $
INTEGER I $

FOR I=1STEP 1 UNTIL N DO A(I) = 0 END ZEROSET $

INTEGER PROCEDURE FACTURIAL (NUMBER) $
VALUE NUMBER $ INTEGER NUMBER $
FACTORIAL = IF NUMBER LSS 2 THEN 1 ELSE NUMBER x FACTORIAL (NUMBER-1) $

BOOLEAN PROCEDURE BOOL $
BOOL = NOT (FINISHED AND OFF OR FIRST AND LAST) §

Z'[

(’

local declaration

[]

LOCAL

Explanation:

type

PROCEDURE

LABEL

SWITCH

identifier

LIST

FORMAT

The local declaration in NU ALGOL is treated as a. dummy

declaration and has been retained only for compatibility with the

with the old UNIVAC ALGOL.

_g‘[-

list declaration =

arithmetic expression

Boolean expression

array identifier

identifier (string array identifier)

for clause p~———3»1 list element

(list element)

-hT-

LL] - list element

Explanation: A list defines an ordered sequence of expressions and array identifiers. A list may only be used as a parameter
to a procedure, and, ultimately, only by a procedure written in non-Algol language.

Examples: LIST OUT (A+1,N+1,FOR I = (1, 1, NMAX)DO(Q(I), QRES(I))) $
LIST L1(A, B, C), L2(IF MOD(Q, 2)EQL 0 THEN B ELSE Q) $

f‘\

format declaration

identifier

' string
o unsigned
B|E|F|J{M|S|X inieger
(arithmetic
unsigned expression
integer
A|D|IIN|R|U|V unsigned unsigned)
Iz integer integer T
arithmetic arithmetic arithmetic
expression expression ? expression
boolean
expression (phrase list——’@
L _/

Q@ O

phrase list

statement

block

compound statement

assignment statement

go to statement

conditional statement

for statement

dummy statement

procedure statement

Explanation: Statements define the sequence of operations to be performed by the program.
of statements are each defined in the following pages.

The 8 types

9'[.

block

1!

label

Explanation:

Example:

BEGIN declaration

statement

A block automatically introduces a new level of nomenclature by a set of declarations.

END

This means that any

identifier declared in the block will have the meaning assigned by the declaration, and any entity represented

by such an identifier outside the block is completely unaccessible inside the block.

The identifiers declared

within a block are said to be local (to that block) while all other identifiers are non-local or global (to that

block).

L:BEGIN INTEGER ARRAY A(1:10) $
A(l)=18

FOR J - (2,1,10) DO A(J) - A(J-1)+J $
FOR J = (1,1,10) DO WRITE (J,A(J)) $

END $

_L'[..

1’

compound statement

Explanation:

Example:

BEGIN

statement

label

A compound statement serves to group a set of statements by enclosing them with a BEGIN-END pair,
This is then treated as a single statement.

BEGIN T- 0 $FORI-=1STEP 1 UNTIL M DO
T= B(J,) x (LK) + T $

IF T GTR 820 OR OVFLOW THEN GO TO SPILL $§
END §

END

assignment statement

variable

arithmetic expression

label

Explanation:

Examples:

procedure identifier

Boolean expression

An assignment statement serves to assign the value of the expression on the right-hand side to the variable
and procedure identifiers on the left hand side. A procedure identifier is only permitted on the left-hand
side in case the statement appears in the body of that functional procedure. If any of the left part variables
are subscripted variables, they are evaluated before the expression is evaluated. Transfers of type are
automatically evoked when necessary.

A(I) = B(I) = &35 § -

AANDB = A AND B OR EPS1 GEQEPS2 §

P - SQRT{Bxx2 - 4xAxC) $

T = S - MYOXxEPSOx(2xPIxF)xx2$

S(V,K-2) = COS(ANGLE) + 0. 5 x(IF S1 THEN Kxx3 ELSE Kxx5) $
NAME(], 6:P + 1) = 'IFTHEN’ § .

..6'[_

go to statement

Exr.nation:

_Examples:

GO TO

H label

A go to statement causes transfer of control to the statement with the label determined by the desig-

national expression.

GO TO PART4 $

‘GO TO OPS (I-2) $

GO TO IF ALPHA GTR 0 THEN Q17 ELSE JUMP(-ALPHA) $
GO TO TRACK (IF MOD(P, 2) EQL 1 THEN I ELSE A(l)) $

designational expression

OZ

-~

conditional statement

compound statement

block

assignment statement

label

&)

Boolean expression THEN go to statement * ELSE statement

dummy statement

for statement

Ul

procedure statement

unconditional statement

Explanation:

Examples:

The if statement causes the execution of one of a pair of statements depending on the value of a Boolean expression.
If this expression is TRUE then the statement after the THEN is executed and the statement after the ELSE is
skipped. If FALSE, then the statement after the ELSE is executed, if it exists.

IF C1 GTR 10 THEN A(0, 0) - KMAX(I) ELSE GO TO LOOP §$
IF BOOL(J) IMPL BOOL (J+1) THEN STEP(J) - 'VALID' ELSE STEP(J) - 'INVALID' $
IF 1 GEQ 0 THEN BEGIN FOR K = -1 STEP 1 UNTIL I DO B(K) - -COS(A-I) $
SUM - ADDUP(B) END ELSE
BEGIN IF 1 EQL -1 THEN GO TO ERROR ELSE GO TO NEXT END $

"[Z

for statement

arithmetic
expression

é

variable

arithmetic arithmetic
expression , expression

for clause

arithmetic
expression

arithmetic
expression

for list

Boolean

WHILE expression

ZZ

arithmetic
_— UNTIL expression

o

statement

_/

-4

Explanation:

The FOR statement controls the execution of the statement following the DO a number of times while
the variable to the left of the = is assigned the values determined by the for list. The (,,) construction
is equivalent to the STEP-UNTIL construction.

FORI:1STEP 1 UNTIL N DO FOR J = 1 STEP 1 UNTIL M DO A(LJ) = 0 &
FORS - S+ 1 WHILE P(S) NEQ A’ AND S LEQ 80 DO BEGIN

N=Nx10 + P(S) $ IF OVFLOW THEN GO TO SIZERR END §$
FOR S = (1, 2xS-S, 2xx10), -1,-2,-4 DO IF LOGAND(S, VAR) THEN GO TO YES $

dummy statement

Explanation:
Examples:

label

A dummy statement does nothing. It may serve to place a label,
FOR1I=(1,1,N) DO FOR J = (1,1, N) DO BEGIN

IF 1 EQL J THEN GO TO ENDLOOP $§

... $ ENDLOOP: END $

S=08% '
FOR S = S +1 WHILE P(S) NEQ 'A’' DO $

-£Z~-

procedure statement =

expression

array identifier

string array identifier

AA:

label

identifier (

switch identifier

procedure identifier

format identifier

actual parameter

list identifier

Explanation:

Examples:

for clause

list element

A procedure statement is a call on a declared procedure.

MARGIN (62,56,4) $
P(A,B,C,LJ,K) $.
ROOTFINDER (N, O, ERGDET, KOEF, -4&&0, &&-5, 5. 0&&-1, 1000) $

The actual parameters of the call replace the formal
or dummy parameters throughout the body of the declared procedure. If the corresponding formal parameter
has been "VALUE' specified then only the value of the actual parameter is used by the procedure.

-he-

expression

arithmetic expression

P Boolean expression |

designational expression

Explanation: There are 3 types of expressions, classified according to their values. An arithmetic expression
has a numerical value or a string value, a Boolean expression either TRUE or FALSE, and a
designational expression has a label as a value.

SZ

variable

variable identifier

array identifier

string identifier

arithmetic expression

arithmetic expression

string array identifier

1L

subscript list

substring part

arithmetic expression

substring part

Explanation: A variable is a designation given to a single value.

a type declaration.

Examples: DELTA
BOOLV(7)
CARD
CARD(4)
CARID(I, 6)
A(P(4), NxSIN(ANG), 3)
CUROUT(J,K)
CUROUT(1:J,K)
CUROUT{1, 6: J,K)

subscript list

A variable identifier is a variabie-nammed in

gz

(ﬁ\

function designator

.

identifier

Explanation:

Examples:

A function designator defines a single numeric or logical value by applying the rules of the procedure declaration

to the actual parameters.

actual parameter)

Only a procedure which has a type associated with it can be a function

designator.

Besides those functional procedures declared in the program, several standard ones are available for use withou

being declared.

CLOCK
ARCTAN(1. 0)
BACKSLASH(A1, A2)

_LZ...

arithmetic expression tis

simple arithmetic expression
P P

+
. IS
’ Boolean expression THEN
II: if clause
SS: simple arithmetic expression

string

unsigned number

variable

function designator

arithmetic
(expression

XX

-83_

P

Explanation:
Examples:

An arithmetic expression is a rule for computing a numerical value,

A(4) + 2 x SQRT(Dxx3) - DELTA
IF A LSS &-5 THEN 0 ELSE A/&5
Q(MOD(N, 2) + 1) x (IF FIRST THEN 10 ELSE RATIO) // 3

BZ

Boolean expression =

simple Boolean expression

NOT

if clause

logical value

variable

function designator

simple arithmetic relational simple arithmetic

expression - operator > expression

(Boolean expression)

EQIV

‘GR l AND | XOR I IMPL

SS:

simple Boolean expression

Explanation: A Boolean expression is a rule for computing a logical value.

Examples; FIRST AND NOT SPECIAL
A LSS DELTA OR ITERATIONS GTR MAXN
IF BETA THEN TRUE ELSE IF STEP(I) IMPL STEP(I+1) THEN QVALUE(P,I) ELSE QVALUE(P, I-1)

OS

designational expression tim

simple designational expression

label

identifier { arithmetic expression

if clause

ow

(designational expression)

SS:] simple designational expression

Explanation: A designational expression is a rule for computing the label of a statement. A switch identifier followed by
an arithmetic expression in parenthesis refers to the label in the corresponding position in the switch
declaration.

Examples: L10
IF BETA THEN SLUTT ELSE NEXT (K//2)

-Te-

. identifier

?

I

variable identifier =

array identifier bi=

string identifier ti=

string array identifier

letter

letter

ﬁ————@BlCID'EIFIG'HIIIJ |KILlM|NIO|P|Q|R|SITIU|V|W|X|.YIZj

digit

switch identifier o=

procedure identifier

digit

list identifier H

format identifier 1]

label |::= identifier

Gl B e 7 []o) —

Explanation:

Examples:

An identifier is a name chosen to represent a variable, array, etc. Only the first 12 characters
of an identifier uniquely define it.

P47
DELTA
SQRTROOOF 2
E1C4PDQ

-ZS_

number |::=

unsigned
integer

unsigned
integer

ordinary
number

ordinary
number

[1o

digit

uUu:

unsigned integer

integer

OO0:

ordinary number

PP:

unsigned number

_88.—

Explanation:

Examples:

A number is written in its usual decimal notation with the conventions of & for power of ten

and corner brackets for complex numbers. Numbers are of 4 types: REAL, INTEGER, REAL2
and COMPLEX. REALZ2 isdifferentiated from REAL by use of && for power of ten, or by having
between 9 and 16 digits in the mantissa, COMPLEX numbers are distinguished by the corner
brackets, where the first number is the real part and the second the imaginary.

1

-1009

-.4031
3.1459
-18.0&4
-(1,0>

20&-5

+1800., &&0
&-6

+¢-.06, &-2)

-hE-

string H

M

logical value

g S— -0

¢ any character except ’)

Explanation: A string constant is any string of characters which are used as parameters to procedures
or with string variables.

Examples: ‘'DOGGENBURG STR. 22’
'NEQ'
'BJARNE WIST'
'227 KALPHA®
' REAL ARRAY '

Explanation: A logical value is a Boolean constant.

~
\

98

delimiter ii=

I -

LSS | LEQ| EQL I GEQ I GTRI NEQ\ g

A
“ |/ |//|@ ;

)
EQIVi IMPL | XOR | OR I AND | NOT }—&
/7
N\ s
GOTOI IF l THENI FORI ELSE | DO' OPTION I OFF D
-)3 . . N e — .
. | & |&&] : |$ | - I(I) STEP | UNTIL WHILElCOMMLl\’J, & —

B
(I) I : IBEGIN I END | << ‘ >>) @
VALUE I LABEL :C
AA: arithmetic operator PP: | separator
RR: relational operator . DD: | declarator
LL: Boolean operator BB: | bracket
SS: sequential operator CC: | specificator

98

input statement B

format
’ identifier _—
arithmetic

expression)

TAPE l DRUM

phrase
<< list
S J :
designational
—_——— expression - -
list identifier
designational designational]
_—— expression expression ’)

list element

Explanation: The READ statement reads data from the specified input device into the

variables indicated by the list elements. The designational expressions
are used as exit points in case end-file or end-information conditions

are met on that device. '

Examples: READ (CARDS ,LEOF ,LEOI ,A,B,C,S,EPSILON) $
READ (DRUM(INDEX), FOR I=(1,1,KMAX) DO FOR J=(1,1,LMAX) DO ERG(I,J)) $
READ(DATE) $

LS

output

statement =

PRINTER

Boolean expression

arithmetic
TAPE | DRUM expression
arithmetic expression
M

designational

expression

at end of parameter list

format
identifier

at end of parameter list

list identifier

list element

)

MM:

modifier

88

Explanation:

Examples:

The WRITE statement outputs the values defined by the lists to the speci-
fied device. Modifiers (KEY,EOF,EOI) produce special marks on tape, a
format controls editing on paper and punched cards, the designational
expression is used as a return print if the output device functions abnor-
mally.

WRITE (PRINTER, F10, FOR I=(l, 1, N) DO A(I,J)) $
WRITE ('CHECKPOINT CHARLIE', A) $ '

WRITE (TAPE(0),KEY(I),ABORTLAB,DUMPLIST) $

WRITE (TAPE(OUTPUT),EOF('LAST'),E0I) $

68

position procedure statement ti=

arithmetic expression

| arithmetic
POSITION @ expression |) B

designational

modifier

- 4@‘ expression. - - - =

designational designational)
expression expression

Explanation: The procedure POSITION is used to position a tape forward or backward a number of records
or to search for a KEY, EOF, or EOI marker, The designational expressions are used as exits
in cases of search failure.

Examples: POSITION (TAPE(0), -2) $
POSITION (TAPE(INPUT), KEY('PRICES’), ABORT) §$
POSITION (TAPE(OUTPUT), EOI) $

-0t~

rewind statement B

O

arithmetic
expression))

Explanation: The REWIND statement will rewind the specified tapes. The REWINT will
. cause the units tn» be rewound with interlock (read/write protect).

Examples: REWIND (TAPE (INPUT), TAPE(OUTPUT)) $
SRAMPES REWINT (TAPE(I) ,TAPEEA) ,TAPE(J)) $

_'[-h..

	Preface
	Acknowedgement
	Contents
	1 Introduction
	2 Basic Information
	3 Declarations
	4 Expressions
	5 Statements
	6 Blocks
	7 Procedures and Type Procedures
	8 Input/Output
	9 Other Information
	10 Error Messages
	Appendices
	A Basic Symbols
	B Examples of Programs
	C Jensens Device
	D Differences Between NU ALGOL and Univac 1107/1108 ALGOL
	E Syntax Chart

