ITG/HK—01-636114-01-—-X

SIS TRYCKREML STOCKHOLM

SIS
e
SIS -~ Standardiseringskommissionen i Sverige

Standarden utarbetad av

SIS STANDARDISERINGSGRUPP

Forsta giitighetsdag

SVENSK STANDARD S5 63 6114

Utgdva Sida

1987 -05- 20 1 1 {178}

SIS FASTSTALLER OCH UTGER SVENSK STANDARD SAMT SALJER NATIONELLA OCH INTERNATIONELLA STANDARDPUBLIKATIONER @

Databehandling - Programsprak ~
SIMULA®

Denna standard utgérs av en specifikation av program-
spriket SIMULA, som dr utarbetad inom SIMULA
Standards Group (SSG), se bilaga D.

SIMULA ir ett registrerat varumarke som igs av Simula A S..
OSLO. Norge. Ritt att anvinda bendmningen tillkommer
alla tillimpningar av programspraket SIMULA under for-
utsdttning av att Simula A.S. ndmns som varumérkesinne-
havare och att tillimpningen &r i Gverensstimmelse med
denna standard.

Underhill av SIMULA handhas av SIMULA Standards
Group, som godkinde specifikationen den 25 augusti 1986.

I standarden hinvisas till:

ISO 6461983, som ofdriandrad Sverforts till svensk
standard SS 63 61 29, Datarepresentation — Internationell
7-bits teckenkod for datautbyte,

ISO 15381984, Programming languages — ALGOL 60,
fér vilken ingen motsvarande svensk standard finns,

NCC 743—1984, Common Base Language av O—J Dahl,
B Myhrhaug och K Nygaard, Norsk Regnesentral 1984
(ISBN 82-539-0225--5).

Data processing - Programming
languages - SIMULA

This standard consists of specification of the programming
language SIMULA elaborated within the SIMULA Standards
Group (SSG), see Annex.D.

SIMULA is a registered trade mark owned by Simula A.S.,
OSLO. Norway. The right to use the name is due to all

implementations of the SIMULA programming language
provided that Simula A.S. is stated as the owner of the

trade mark. and that the implementation conforms to this
standard.

The maintenance of SIMULA is handled by the SIMULA
Standards Group, which approved the specification on
August 25, 1986.

In the standard reference is made to:

ISO 6461983, Information processing — ISO 7-bit coded
character set for information interchange, which is fully
adopted as Swedish standard SS 63 61 29,

ISO 15381984, Programming languages — ALGOL 60,
for which no corresponding Swedish standard exists,

NCC 7431984, Common Base Language by O—J Dahl,

B Myhrhaug and K Nygaard, Norwegian Computing
Center 1984 (ISBN 82—539-0225-25).

UDK 681.3,06:800,92

Beteckningen SS fér svensk standard inférdes 1978. Svensk standard med beteckning SEN, SIS eller SMS fér beteckningen S5 vid revidering,

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14
SlMl{LA Utgava 1 Sida 2a

TABLE OF CONTENTS

Chapter 0 GENERAL INTRODUCTION -
0.1 INTRODUCTION -
02SCOPEANDFIELDOFAPPLICATION b e e e e e e e e e e s et e e e e e B
03REFERENCES i i i i i it e et oo e o s e e e e e B
04 DEFINITIONS ¢ ... C h e s s e s s e e e e s e e O
0.41Programs & i i e e e e e e e e e e e e e e e e e e e 4

0.4.1.1 Potential program
04.1.2Validprogram L e e h e s e e s e e s e 4
0.4.1 3 Non—~valid program C e e e et e e e e e e e e e 4
0.4.1.4 Elaborationofaprogram
0.4158IMULA progralm . . . v ¢« ¢ v ¢ v « ¢ o o o & C e e e e s e e 4
042SIMULA Processors v v v v v v ¢ o o o o s o c e e e e e e e 4
0.4.2.1 Processor e e e e e e e e e e e .
0.4.3 SIMULA Implementations+« « + . .
0.4.3.1 Implementation C e e e e e e e e e Ve e s e e e e e 4
0.4.3.2 Implemented language « « + « ¢ . . . C e e e e e e e ve e 4
0.4.33EXtension . . v v v v v v 4 e e v e e e e e P
0.4.3.4 Implementation—defined e e e e e e e e e e e 8
0.4.3.5 Implementation—dependent« . A 3
0.5 CONFORMITY e e e e e e e e e s e e N
0.5.1 Requirements . . .+ « ¢ « + v ¢ o o e b e 00 a g
0.5.1.1 Conforming prograing . . . « + « o o« « « o o o s s s o ¢ o 5
0.5.1.2 Conforming processors . « « « ¢ + s ¢ » o s « o R T LR 5-
0.5.1.3Documentation . . .« « v ¢« v ¢ 4 ¢ 4 e b s s s e e 0w s e s e v :
0.5.1.4 Conforming implementations « « v ¢ v 0 0 0 o 0 0000 :
0.5.2 Quantitative restrictions e e e e s s e e s e e e e e s :
0.5.3 Extensions Ce e e e Ve e e e e e e s e b s o0 :
0.56.4Subsets)
06TESTS C e e e e C e e e e e e 6
0.7STATUS OF ANNEXES . . . ¢« v ¢« v ¢ o ¢ e o s o o o o s
Chapter 1 LEXICAL TOKENS e e e e e e e e e e e e e e e ;
1.1 Directivelines s e e e e e e e e e)
1.2 The characterset T 10
1.3 Special symbols« . 0 . o . C e e e e e SRIUCI . v ST
l41dentifiers ¢« v ¢ ¢ o 0 s e v e 0 e s e e e e e e e e s e at e e s e ST
1.5 Numbers s h e e e e e e e e e e s e 12
1.6Strings« ¢ e e s e e e e e a e e e e e e e v s e-12
1.7 Characterconstants . . « « « « o+ o« ¢ 5 o o o s e e e e e e e r e ¢ v ‘13
1.8 Comment convention 13
1.8.1 End comment ¢ . Ve e e e e e e e e e 13
1.8.2 Direct comment . . . « + « . & C v e e e e e 13
1.9 Token Separators . o« o+ o + « o o o o o o o v o s o 0 o 14
1.10 Program interchange and lexuca.l a.lt:erna.twes I T4
1.10.1 Alternate representation of some symbols v o o e e e e e e rm 20T
.., 1b
Chapter 2 TYPES, VALUES AND REFERENCES . . . « « « « R : 16
2.1 Arithmetic types 16
2.1.1 The type short integer « . « » R . R (-
2.1.2 The type long real 16

2.2 The type Boolean o

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 2b

23 Thetypecharacter . . v o v ¢ 4 v v 6 bt e e e e s e e e e e e e e e . 16
2.4 0Dbject reference . v . v i v e bt e h e e e e e e b e e e s e e e e . 16
241 Qualification00 e ... P [
2.4.25ubordinate tYPeS v . v b v vt e e e e e e e e e e e e e e e e 1T
20 Thetypetext . . & o v v v v v i e it et e e s e e e e e e s e e e ... 18
251 Textobjects v v oo . o S £
202 Textirames . & v ¢« v i e b e e e e e e e e e s e e e s e e s e e s . 18
26 Type conversion . . v 4 4 v 4 4 v e . e s e e e e e s s e s s e s e e e e e 18

Chapter 3 EXPRIESSIONS & & . & v it it ot et ot e e s ot s vt s s e eees 2
31 Variables s e e e e e e e e e e e e e e v e e e s e s e s e o 21
3.1.1 Simple variables R,)
3.12Text variables ¢« ¢ ¢ v o 0 h e e e e e e .
313 Arrayelements . . . 0 0 b v 0 b 0 b e e e e e e e ¢ e e e e u e v .. 23
3.1.4 Function designators . . . « ¢« ¢ ¢ ¢ ¢ ¢ 4 ¢ 4 0 e 4 v s e e e e s e s e . 23
3.1.6 Remoteidentifiers . & & ¢ ¢ o 4 v 0 v e e b e h e e e e e e s e e e e .. 24
3.2Booleanexpressions . . . 4 . s 4 0 4 0 e e e e e e a0 s v s e e e s e s 25
B3 Relations v . . . L i e e e e e e e e e e s e e e ste s e e s e e e e e e . 206
3.3.1 Arithmetic relations e n s e s b e s s e s e s s se s e e s s as 26
3.3.2 Characterrelations ‘e e e s e b e e e e e r e e e e s 26
333 Textvaluerelations . & & v v ¢ ¢ ¢ v v e b e e e e e e e e s e e e e e s 27
3340Dbjectrelations . . + v . 4 0 v vt e e e e e e e e e e e s e e .. 27
3.3.5 Object reference relations ., e e ke e e e e e B 1
336 Textreferencerelations . . . « ¢ ¢ ¢ v o v ¢ ¢ ¢ s o 4 4 a4 s s e s s e o 28
34 Thelogicaloperators . . o & ¢ ¢ ¢ ¢ o ¢ & 4 o o s 2 4 o 0 s a b s s e s .. 29
3.4.1 Precedence of Boolean operators e e e et i s e e e . 29
3.5 Arithmeticexpressions . . & + v v ¢ ¢ « ¢ ¢ o s o ¢ s 2 0 s a2 e s s 6 e e . 30
351 0peratorsand types s 0 b v e s e b e e e b e s e e s e e o 32
3.5.2 Precedence of arithmetic operators - &
3.5.3 Arithmetics of real quantities « ¢ ¢ ¢ ¢ o ¢ 4 v ¢ b b e b e e . B4
3.6 Character expressions e b e h e e e e e e e e e e b s . 34
ST Text expressions . . ¢« o ¢« ¢ o s 4 6 4 6 s a4 e b 6 s 0 4 s s e s 4 s 4 e e s 3B
371 Text concatenation . . . « « + & ¢ ¢ ¢ 4 o ¢ o o o o - 4
372 Text expressionevaluation . . « v ¢ v ¢ 4 ¢ ¢ o ¢ ¢ 2 ¢ 0 0o s e 562004 36
38 ODbject eXpressions .« . ¢ ¢ ¢ 4 ¢ 4 s 4 b b e 0 4 e e s s e 4 s s e v s e s e s« 37
381 0Qualification . . . & ¢« 4 ¢ 4 b b e s e e e s s s s e e e e e e s e e .. 87
3.8.20bject generator . . « .+ . . 0 0. . - 1
383 Localobjects . . v v . b 0 b e e e e r s e s e e e e e s s e e e e 3T
3.8.4 Instantaneous qualification . . « « + 4 4t 4 e 4 4 e b s e 4 s s e e e e 38
3.9 Designational expressions L e b e e e e e e e e e e e e 39

Chapter 4 STATEMENTS e 3 |
4.1 Assignment statements 4 0 b b e e s s b 0 s b e e 0 e e e e e 42
4.1.1 Arithmeticassignment . . ¢« ¢« ¢ ¢ ¢ ¢ 4 ¢ ¢ ¢ 4 0 e s 4 s e 0 s 0 e e e 43
4.1.2 Text value assignment ¢ ¢« v+ o s o o v o s s s e o o . s . 43
4.1.3 Text reference assignment . . . + ¢ ¢« ¢ ¢ ¢ o 4 0 0 b 4. e 0 4 . o . 44
4,14 Object reference assignment . . + « v ¢ o 4 ¢ s o v + o o 6 4 8 e v e 00+ 44
4,2 Conditional statement « & + 4+ ¢ 4 « ¢ ¢ v s e s 2 e s s e 4 s s e e 0. 45
43 While—statement . . . ¢« « ¢« 4 ¢+ v ¢ 4 o v ¢ o 0 s ¢t v e o e v 0o 0 s 000046 . 46
44 For—statement . . . « ¢ ¢ 4 4 ¢ 6 4 4 4 s e s e 6 v e s e e e e s e a0 e 46
441 Forlistelements+ . . . b e s e e e e e e e e e s e e e 47
442 The controlled variable . . . & « « ¢« ¢ ¢ 4 ¢ ¢ ¢ ¢ v ¢ ¢ s ¢ « s o s e 0o+« 48
4.4.3 The controlledstatement & ¢ ¢ ¢« v ¢ ¢« 4 ¢ ¢« ¢ v o ¢ s e 0o o2 ¢4 . 48
4.5 Goto—statement 4 v s e e b e e e e e . ¢ e o o 4 e e o« 48
4.6 Procedurestatement . . . ¢« & ¢« v ¢ ¢ ¢ 4 2 s s 0 s 0 a0 5 0 0 0 s e s e . 49
4.6.1 Actual-—-formal parameter correspondence . . 49
4.6.2 Value parameter replacement {callby value) 50
4.6.3 Default parameter replacement (call by reference) . . . « 80

L3 L] » »
»
L]

]
.
-
-
|
*
L]
]
L
-
-
L]
-
L !
L

o —— —— it W e — - — o — - —_

Databehandling — Programsprak — SVENSK STANDARD S$S 63 61 14

SIMULA Utgava 1 Sida 2¢
et ————————— e e —— ——r -

4.6.4 Name parameter replacement (callbyname) v v v v ... 51
4.6.5 Body execution L L L L L s e e e e e e e e e e e, e v o 02
4.6.6 Restrictions 0 e e e e e ., R 7
4.7 Object generatorstatement i e e e e e e e e e . o 03
4.7.1 Parameterreplacement 0 e e e e e e e e e e e e e e . 53
4.8 Comnection statement e . e e h e e e e 54
4.9 Compound statement s e e e e e e e e e e . . 0D
410 Blocks L e L e 56
4.10.1 Prefixed blocks L i s e s e e e e e e e e e e e e e e e e 57
4.11 Dummy statement L L L . s . e e e e e e e e e e e e e e o8
Chapter 5 DECLARATIONS v v v v v v . .. s e e e e e e e e e 59
0.1 Simple variable declaration &« e s o . .. 60
5.1.1 Value typevariables e e e e e e e e e e e e . 60
0.2 Array declaration L L . s e e e e e e e e e e e e A)
9.3 Switch declaration . . ., C e e e e e e e e s e e e e s . B2
0.4 Procedure declaration s e s e e e e e e e e e e e e e e 62
0.4.1 Values of function designators 64
9.4.2 Parameter specification s e e e e e e s 64
9.4.3 Parameter transmission modes 4tk e e e e e e R i1
0.0 Class declaration i . e e e e e e e e e e e 66
0.0.1 Subclasses . . . L L L L L e e e e e e e e e e e e e e e e e e . . 67
9.5.2 Concatenation e s e e e e e e e e e e ee P
6.5.3 Virtual quantities C e e e e e e 7;
5.5.4 Attribute protection L. L. . e e e e e C e e ';4
0.9.0 Parameter transmissionmodes s e e s s s ' k
0.5.6 Remote accessing C e e e e e e e e ;5
9.5.7 Fictitious outermost prefix C e e e e
5.6 Scope and visibility rules . . ., C e e e e e e c e e e e e e e e e .
5.6.1 Scope of identifier definitions s e e e e e e e s
9.6.2 Visibility of identifiers« . . . e e e e e e e - .
9.6.3 Dynamic aspects of scope and visibility rules e e s e e et 70
o.7 Initialization L e e e e e e e e e s e e e e e 7
5.8 Constant declarations « v v v v v 0 v b e e A I
Chapter 6 PROGRAM MODULES o e e e e C e e e e e : g;
6.1 External declarations e e e e e e e e e e .
6.2 The mainprogram e e e e e e e e e 29
6.3 External procedure declaration b e e e e e s e e e s e e a e a3
6.4 External class declaration b e e e e e e e e e e c e e e e e e o3
6.5 Module identification L . . e e e e e e e e e e e e e e e
Chapter 7 SEQUENCING, e e e s e s e e e e e C e e e gg
7.1 Block instances and states of execution v e e e e e e 26
7.2 Quasi—parallel systems e . e e e e e e e e e e e ¢ 0w 26
7.2.1 Semi—symmetric sequencing: detach —call o ¢ . 0 o e oo o6
7.2.2 Symmetric component sequencing: detach — resume4 o0 e o0os s o0 -
7.2.3 Dynamic enclosure and the operatingchain I T e
7.3 Quasi—parallel sequencing, ., I
731Detach . .., C e e e e e e e e e e e e e e SRR
732Call .. e e e e e Cee e
733Resume b b e e e e s e e e e e e e e I 89
73.40Dbject "end” 0 e e e e e e e e e e e C e e e e e e e " g
7.3.5 Goto—statement e e e h e e e e e e e e e e 20 e ‘ 90

74 Annotated example

Databehandling — Programsprak -

SVENSK STANDARD SS 63 61 14

SIMULA Utgéva 1 Sida 2d

Chapter 8 ATTRIBUTESOFTEXT ' boe e e e .. 93
8.1 "constant”, "start”, "length” and "main® e v e e e . .+« 95
8.2 Characteraccess v C e e v e e e e . . . 95
8.3 Text generation bor e e e e ¢ e e e e b e e s e e e . 96
B4Subtexts, b e e e e e e e e e e C e e e e e e e e 97
85 Numerictextvalues, b 6 e v e e s e e e . 98
8.6 "De—editing” procedures e e e e e . . 100
8.7 Editing procedures, e o v e e e ‘e e e e e e e e e e e 101
Chapter 9 THE CLASS "ENVIRONMENT" . ‘ t e b s b e s e e e e e 103
9.1 Basicoperations Ch e e e e e e e e e e v e e e e ' 104
9.2 Text utilities v e e e e v e e e e e e . . 105
9.3 Scheduling ¢ v e e e e e e b e e e e e e e e . + « 106
9.4 Mathematicalfunctions e v e e e e e e e e . 107
9.5 Extremum functions , , C et e e e e e e e e e D K1
9.6 Environmental enquiries C e e e e e e e e ‘e e e e . 108
9.7Errorcontrol 0 . s e e e e e e e e e v e e e e e e e v o0 e o o 109
9.8 Array quantities P e e e e e e e e e e e . O {4]¢
99 Random drawing, ' b e e s e e e e e e ey e . ' 110
9.9.1 Pseudo~random numberstrea.ms b e e b e h e e e e e e e e « e .« 110
9.9.2 Random drawing procedures ¢, e e e e e e . . 110
9.10 Calendar and timing utilities t e e e e e e e C e e e e e e e . 113
9.11 Miscellaneous utilities C e e e e e C e e e e e . e . 113
9.12 Standard system classes . + . v v ¢ v v et e e e e e e e e . - 113
Chapter 10 INPUT—-OUTPUT ¢ . ¢« ¢« v v e s v e s v v . R . 115
10,1 Theclassfile . . . ¢ v v v o 4 6 0 0 o b o e e o s e s o o a u . o 117
10.1.1 External file access control b e s s e e e e b e e e e e e e e . 117
10.1.2 Open and close b s 6 6 8 6 et e o e & s s e e O B ¢
10.2 Structure of filesubclasses ¢ . . P e e s e e s e e e e . 120
10.2.1 Procedure "checkpoint” b e e e e e e e e e voeo» 120
10.2.2 Direct filelocking . . . + v « v « « v+ v v « . . B V3 |
10.3Imagefiles . . .". e e e e e e e e s e e e e e oo 122
104 The class "Infile” . &« & v v & 4 o v o i b e i e e e e e e e e e e e e v oo 123
1041 0penandclose ., v v v v v v o s vt e h e e v s e s s e e« . 123
10.4.2 Inimage and inrecord . . ¢« . . ¢ v 0 e b 0 v e s . 124
1043Inchar . o v 0 v 0 o v i e e et e e e e e s e e e e s e e e e . . 125
1044 Lastitern . . . ¢« . v v o vt e e e e e e e e e e e e v 6 s s e e . o 125
10458Intext o 0 o 0 e e e e e e e e e e oo s o s o 125
10.4.6 Item—oriented mput b e e e e e e e e e e e e e e e e e v e 125
10.5 The class "outfile” « ¢« ¢ v ¢ v ¢ v ¢+ 127
10,5.1 Openandclose e e e e e e e e e . .o 127
10620utimage . « « 4 v v 0 v 0 v e e e e e e ¢ e s s e s e s e . 128
10.6.30utrecord 4 ¢ 4 0 v . e 0 e e b e e e s e e . 128
10.5.4 Breakoutimage 128
10.5.6 Checkpoint b e e e e e e e e e e e e S V.4t
10.,5.60utchar . . & . ¢ i b e L s e e e e e e e e e e e e e e e e e e . 129
106.70uttext b e e e e e e v s e e e e s e s s s e s . . 129
10.5.8 Item—orientedoutput, e s e e e e . « . 130
10.6 The class "directflle” « ¢ ¢ v ¢ ¢« v o bt e e e e e e b h e e e e 131
106.1Openandclogse P e e e e a e e e e e e e e . 132
10.6.2 Locate, lastloc,and maxloc D - .
106.3Inimage . . « « v ¢ ¢« ¢ ¢ v 4 0w s N v oo e e e e e 133
10.640utimage .+ . . & 4 ¢« v v 0 0 e b 0 e e e e e v s e & e s v s . . . 133
10.6.5 Deleteimage . . . v v ¢« ¢« « v o o 0 0 v . Ve e e s e a e e e e e 134
1066Inchar C e e e e bt et e e e e e s e e e . . 134

- L T e et R

R A e e ——— 8 o

- —_— X L L

Databehandling — Programsprak ~ SVENSK STANDARD S$S 63 61 14

SlMULA Utgé\fa 1 Sida 2e
e v e e 134
106.7Lockand Unlock i i i s e e e e e e e 124
10.6.8 Item—oriented inputfoutput C e e e e e e C e e e a5
10.7 The class "printfile” & v v v e e e e e e e s e a e e e e s e e e
10.71Openandclose b e e e e e e e e s
10.7.2LINE3 PEr P2BE + & v v v e e e e e e e e e e e e e e T ey
10.738pacing v« ¢« ¢ v i v e e e e e e e e e e e C e e e e e v e e e s ' a7
10.74Eject Gt e e s e e e e e e e 128
10.7.5 Qutimage andoutrecord+ . . G e e e e e e e e e o
108Bytefiles e . e e e e e e e e e e e voe v e 0w e 139
10.9 The class "inbytefile” 140
109.10penandclose Coe e e 110
109.2Inbyte C h e e 4 e e e e e e e . e s e e s e " 140
1093Intext * s+ e e 5 6 w & b+ 8 & s e« w w @ . v e v s @ - 141
10.10 The class "outbytefile®” v « o v v v v o o o & c e e a e s e C i
10,10.10penand close v v v v v b h e e e e e e e DT
10.10.2 Qutbyte 6t e e s e o e s s e s s e s e e e e e e e Y
10103 O0UWEERE « & v v v e e e e e e e e e e e e A Y
10.11 The class "directbytefile” c e v e e C e e e e h e s e n s 142
10.11.1Openandclose C e e s e e e e e e 142
10.11.2 Locateand lastloc R S . 143
10.11.3 Inbyte and outbyte e e e e e s s e s e e s e e e . . ey
10.11.4 Lock and unlock e e e e e e e e e e SN
, 145
Chapter 11 CLASS SIMSET R R
11.1 Class "linkage” e v e e e . b C e a e e e s e e e e 0w . 146
11.2Class"link” e e e e e e e e R T,
11.3 Class "head” e e e e s . e v 0
., 149
Cha.pterl?CI..ASS.SIMUI..A'I‘IOI\I*.‘........4.‘................‘..p.p.,..n-”151
121 Class "Process” W 0 v a s R 17
12.2Activa.tionstatement..................--n-""”'_ 163
123 Procedure ACTIVAT v v v v v e e n SRR |-
12.4 Sequencing procedures 166
12.5 The main (simulation) program s e s e e e e e e e e e . 156
12.6 The procedure "accum® 4 . .t e e e e e e e e e
. 167
Annex A: SIMULA Syntax R I I S I
AnnexB:Implementat‘ionAspects T I T R R R B '. o 171
Annex C: Index of Syntactic Meta—symbols . . o o . o v o 4 o s 00w oo s b0 I ((
Annex D: STATUTES of the SIMULA STANDARDS GROUP (SSG) « « « v o+ = * ¢

- e m e — = T

Databehandling -~ Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 3

0 GENERAL INTRODUCTION

0.1 INTRODUCTION

SIMULA is a general purpose programming language. It inherits the algorithmic properties of ALGOL
60 and introduces methods for structuring data. The main characteristic of SIMULA is the possibility
for convenient adaption towards specialized problem areas. Hence SIMULA can be used as a basis for
special application languages.

In this standard the name SIMULA is considered synonymous with SIMULA. 67. Although there exists
a predecessor, SIMULA 1, this latter language has achieved limited use. It is recommended that the
language defined in this standard be referred to as STANDARD SIMULA. |

SIMULA includes most of the ALGOL 60 language. Wherever ALGOL is referred to in this standard it
relates to the the STANDARD ALGOL 60 definition (ISO 1538).

0.2 SCOPE AND FIELD OF APPLICATION

This standard establishes the definition of SIMULA and specifies conformity rules to related products,
such as programs and processors. Its purpose is to facilitate interchange and promote portability of
SIMULA programs between data processing systems.

This standard specifies:
a) the syntax; semantics and representation of SIMULA,
b) characteristics of processors (see 4.2.1) and their accompanying documents, and of SIMULA

programs, required for conformity to this standard,
c) what is left to the discretion of the implementor, or to be specified for each implementation.

This standard does not specify:

a) results or issues that are explicitly left undefined or said to be undefined,
b) how non-valid programs are to be rejected and how this will be reported,
c) the relationship of the hypothetical computer, used to explain the actions which constitute

the elaboration of a program, to an actual data processing system.

0.3 REFERENCES
ISO 646-1983: Information processing - ISO 7-bit coded character set for information interchange.

ISO 1538-1984: Programming languages - ALGOL 60.

NCC 743-1984: "Common Base Language” by O.-J. Dahl, B. Myhrhaug and K. Nygaard Norwegian
Computing Center 1984, (ISBN 82-539-0225-5)

0.4 DEFINITIONS
For the purpose of this standard the following definitions apply.

Note: Soveral terms used in this standard are explained at the appropriqte place in chapters 1 to 12, For convenience
some of these have been included here as well, at times with a simplified definition. It is understood, however, that
no difference of meaning is considered to exist, and all definitions of a term are equivalent.

—

36114
Databehandling - Programsprak - ﬁ;::ﬁK STANDARD 556 Sida 4
SIMULA e

e ———— s ————

T —rn

A e e

0.4.1 Programs

0.4.1.1 Potential program:

A text, that is a sequence of characters or typographical marks, meant to be a sequence of tokens
constituting a SIMULA program.

0.4.1.2 Valid program:
A potential program that is a program according to the rules in this standard.

0.4.1.3 Non-valid program:

A potential program that is not a program but can be turned into one by deleting or inserting a number
of symbols.

0.4.1.4 Elaboration of a program:
A sequence of actions specified by the semantics to be carried out.

0.4.1.5 SIMULA program: , ‘ "
A valid program whose elaboration is defined by this standard for an indicated class of input data.

0.4.2 SIMULA Processors

0.4.2.1 Processor:

. . ts a
A translator, compiler or interpreter in combination with a data processing syst?m, thatt acf-zgorts
potential program, transeribed in a form that can be processed by that data processing system,

. ote s not
whether the potential program is valid or not, and if so requested is able to execute it, if it has
rejected it.

0.4.3 SIMULA Implementations

0.4.3.1 Implementation:

A well-documented processor is said to establish an implementation of SIMULA.

0.4.3.2 Implemented language:
The version of the language defined by the implementation.

0.4.3.3 Extension:
A rule in the ilrnplemented language that

a) is not given in this standard,
ve &
b) does not cause any ambiguity when added to this standard (but may serve to remo
restriction),
c) is within the scope of thig standard.

0.4.3.4 Imp]ementation-deﬁued:
What is to be specified for each implementation.

0.4.3.5 Implem entation-dependent:

What is left to the discretion of the implementor,

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA | Utgédva 1 Sida 5

0.5 CONFORMITY
0.5.1 Requirements
0.5.1.1 Conforming programs

Conformity to this standard requires for a program that

a) it shall be a SIMULA program
b) a set of input data shall be given for which it has a defined meaning.
0.5.1.2 Conforming processors

Conformity to this standard requires for a processor that

a) it shall accept valid programs as being valid,

b) it shall reject non-valid programs as being non-valid,

c) it shall not elaborate a SIMULA program differently from what is defined in this standard,
d) it shall be accompanied by documents complying with the requirements below.

0.6.1.3 Documentation

[t is required for the documents accompanying a conforming processor that these shall describe clearly
a) its purpose and the environment (hardware and software) in which it will work,

b) its intended properties, including
— the actions taken when results or issues occur, left undefined in this standard,
— conventions for issues said to be implementation-defined,

~ what is provided for issues declared to be implementation-dependent,

c) all differences between the implemented language and this standard,
d) its logical structure,

e) the way to put it into use.

0.5.1.4 Conforming implementations

A conforming implementation shall comply with the above requirements for a processor and its accom-
panying documents.

0.5.2 Quantitative restrictions

The requirements specified in 0.5.1 shall allow for quantitative restrictions to rules stated or implied as
having no such restriction in this standard, but only if they are fully described in the documents with
the implementation. These restrictions are to be considered implementation-defined in as far as they are

not dependent of any momentary resource restraint during execution of a program.

0.5.3 Extensions

An implementation that allows for extensions in the implemented language is considered to conform to
this standard, notwithstanding 0.5.1 if

a) it would be conforming when the extensions were omitted,

b) those extensions are clearly described with the implementation,

L n . —wr ——tymar

Databehandling — Programsprak -

—— e — —

e e o — e —— e T

c) while accepting programs that are non-valid according to the rules given in this standard,
it provides means for indicating which part, or parts, of a program would have led to its
rejection, had no extensions been allowed,

d) the implemented language is a super-language of SIMULA.
Extensions are allowed only if the following conditions are fulfilled:

a) The implementor provides a translator program, which takes any program accepted by that
implementation and translates it into a valid program. The resulting program may contain
a minimum of calls to non-SIMULA procedures in cases where this is absolutely necessary
due to a lack of facilities in the language.

b) Each implementation has a switch which must be set to make the compiler or interpreter
accept programs with extensions.

An implementation which allows extensions, shall give warning messages for the use of such
extensions.

Valid programs using extensions shall be described as " conforming to the SIMULA Standard but for the
following indicated parts”.

0.5.4 Subsets
This standard does not include subsets.

0.6 TESTS

Whether an implementation is a conforming implementation may possibly be detected by a suite of
test programs. If there is any uncertainty or doubt regarding acceptance of these programs then the

conclusion drawn from the actual behaviour of the processor will prevail over those derived from its
accompanying documents.

0.7 STATUS OF ANNEXES

In all parts of this standard, the annexes do not form an integral part of the standard but are included
Yo provide extra information and explanation.

SVENSK STANDARD SS 63 61 14
SIMULA Utgdva 1 Sida 6

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 - Sida 7

| - LEXICAL TOKENS
DEFINITIONAL CONVENTIONS

The meta language used in this standard to specify the syntax of the constructs is based on the Backus-
Naur Form. The meanings of the various meta symbols are listed in the table below. Further (semantic)
specifications of the constructs are given in prose and, in some cases, by equivalent program fragments.
In such program fragments some identifiers introduced by declarations are printed in upper case. The use
of upper case letters signifies that the identifier in question represents some quantity which is inaccessible
to a program. An example of this convention is the identifier EVENT_NOTICE of chapter 12. Any
other identifier that is defined elsewhere in the standard will denote the correspondmg entity by its
occurrence in such a program fragment.

Note: The use of program fragments as described above, as well as the description of standard facilities (see chapters
8-12) by algorithmic means should be taken as definitive only as far as their effects are concerned, An actual
implementation should seek to produce these effects in as efficient a manner as practicable. Furthermore, where
arithmetic of real type quantities is concerned, even the effects must be regarded as defined with only a finite degree
of accuracy (see 3.5.8).

Examples are sometimes given to illustrate the constructs. Following the principles laid down in 1.1 the
language keywords (see 1.3) are printed in a special manner in such examples.

Metalanguage Symbols
Metasymbol Meaning
= i3 defined to be
| alternatively
[x] 0 or 1 instance of X
0 or more instances of x
(x| y) grouping: either x ory
Xy2 the terminal symbol xyz
meta-identifier a non-terminal symbol
see below

A meta-identifier is a sequence of letters, digits and hyphens beginning with a letter. The identifier has
intentionally been chosen to convey a hint of its meaning to the reader. The exact meaning is, however,
defined by its (single) occurrence on the left hand side of a production. When used outside productions
these identifiers are generally written with spaces instead of hyphens, except in cases where possible

ambiguities might result.

A few productions contain the ellipsis (...) as a r:ght hand side. In such cases a prose explanation is
given immediately below the production.

A sequence of terminal and non-terminal symbols in a production implies concatenation of the text that
they ultimately represent. Within chapter 1 this concatenation is direct; no characters may intervene. In
the remainder of the standard the concatenation is in accordance with the rules set out in this chapter.

The characters required to form SIMULA programs are those explicitly classified as "basic” in the table
given in section 1.2. Additional characters of that table may be employed as described in that section.

L2

__,_,_,_,_._

—r,—— ——————— . —

e e —— A — e —

-
_ i ——— —

. o e A m e T A ————

——— ———— b e = =t —

—_— —_——— —— — — 3 ru FumRT—
- ——— e —— o —— - —_ -

——— — e = [—_—
- —— - - - -

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 8

A SIMULA source module consists of directive lines and program lines, Apart from 1.1 this sta.nda::d is
not concerned with directive lines. The lexical tokens used to construct program lines are classified into
special symbols, identifiers, unsigned numbers, simple strings and character constants.

No lexical token may consist of more than 72 characters.

letter *
=A|B{CIDI|EIF]|C H|I
JIK|L|M]|N O{P|Q|R
S|[TIU|VIW|[X[|Y]Z
2 blec]d|e|f]|g]|h]|i
ilk]1jm|n]|o Pplaqlr
Sltjulv]wi|x]|yl|z

The representation of any letter (
than in a simple string or a cha
the program.

upper or lower case, differences in font, etc.) occurring a.nywhere‘other
racter constant has no significance in that occurrence for the meaning of

digit
=0[1[2]3[4]5]|6]7|8]9

space
= SP

SP is the space (blank) character (ISO 646 code 2/0).

1.1 Directive lines

If the first character of a line is "%" (percent) the line as a whole is a directive line.

A c.lirecti.ve line serves to communicate information to the processor and consequently its meaning s
entirely :mPIementa.tjon-dependent, with the following single exception. If the second character is a
Space, the line has Do significance; it may be used for annotation purposes.

Note: The interpretation of a disective I ‘nes. The i tation
rective line tak es. The interpretatl
by the processor 2y caise el €8 precedence over the treatment of subsequent, lin

irecti ion of li i ines actually following
the directive in question, nes not present in the module, or deletion of some li

The language defined ip the following defines the

. resulting program text after all directive lines_ha.ve
been interpreted and thereafter deleted, § Prog

Databehandling — Programsprak —
SIMULA

1.2

The character set

SVENSK STANDARD SS 63 61 14
Utgava 1

Sida 9

The standard presupposes an 8-bit internal representation of characters. Thus the isocode facility allows
for inclusion of characters with "isorank” value greater than 127 in simple strings and character constants.
An implementation may restrict this possibility as well as the character set given below, as long as the

"basic” characters of the table are included.

The standard character set is defined by the table below. For each character its "isorank” (see 9.2),
name or printable representation and the classification of the character as a program text constituent

are given.

=] D U (DN = O

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

basic:
skip:
graphic:

national:
format:

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

BS
HT
LF
VT
FF
CR
SO
SI

DLE
DCl1
DC2
DC3
DC4
NAK
SYN
ETB

CAN
EM
SUB
ESC
FS
GS
RS
US

skip

illegal
illegal
illegal
illegal
illegal
illegal
illegal

format
format
format
format
format
format
illegal

illegal

illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal

illegal
illegal
1llegal
illegal
illegal
illegal
illegal
illegal

Table 1.1. Standard character set (International Reference Version)

Significant in all contexts.
Skipped in all contexts.

Significant inside comments, inside simple strings, and inside
character constants; illegal outside these constructs.

Reserved for national alphabet extension; treated as " graphic”.
Format effector, see 1.9.

32
33
34
30
36
37
38
39

40
41
42
43
44
45
46
47

48
49
o0
o1

52

63
54
55

56
o7
08
69
60
61
62
63

SP
!

"

i
$

%
&

| ~ 4 %~

“~1 OO O O S

w o0

DVl A

basic
basic
basic
graphic
graphic
graphic
basic
basic

basic
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
basic
basic
basic
bastc
basic

basic
basic
basic
basic
basic
basic
basic
graphic

64 @
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87

88
89
90
o1
92
93
94
95

YT N K 24 aHRPOY OZZORTI QEUBUQW R

national
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
national
national
national
national
basic

96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127

-

f<g w0y

I'h-.--—-"rhﬂ “t

DEL

national
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
basic
basic
basic
basic
basic

basic
basic
basic
national
national
national
national
skip

Databehandling - Programsprak — SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida *
—————— Vet S
1.3 Special symbols
Symbol Meaning

Arithmetic operators

Normally the syntax of the language assumes that all syntactical units are recognized as b
possible string of characters which fits the syntax of a symbol. However, in an array

+ = * [J] =
&

% pe
“R‘

A o
I

il

e
Soae”

= T "0 A
il
i
S,
l

Text concatenation operator, or
exponent mark in real numbers
EExponent mark in long real numbers
Assignment operators

Value relational operators

Reference relational operators
Character quote

String quote

Code quote, or comment

Statement separator, or declaration
or specification delimiter

Array bound separator, or label definition
or virtual delimiter

Parameter or expression grouping, or
array bounds delimiter

Remote indicator ("dot"), or
decimal mark in real numbers
Parameter or expression separator

Table 1.2. Special symbols, excluding keywords

eing the longest
declaration the

symbol ":” is always a bound separator, even if it is immediately followed by.a minus sign.

activate
after
and
array
at

before
begin
Boolean

character
class

comment

delay
do

else

end

€q

eqy
external

false
for

inner
inapect
integer
is

label
le
long
It

name ghort
ne step
new switch
none
not text
notext then
this
or to
otherwise true
prior until
procedure
protected value
virtual
™ when
reactivate while
real
ref

Table 1.3. SIMULA keywords

Databehandling ~ Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 - Sida 11
———— e

1.4 Identifiers

identifier
= letter { letter | digit | -}

No identifier can have the same spelling as any keyword. Apart from this, identifiers may be chosen
{reely. They have no inherent meaning, but serve for the identification of language quantities i.e. simple
variables, arrays, texts, labels, switches, procedures, classes and class attributes. Within a procedure
declaration identifiers also act as formal parameters, in which capacity they may represent a literal
value or any language quantity except a class. All constituent characters are significant in distinguishing
between identifiers.

1.5 Numbers

unsigned—number
= decimal—number [exponent—part |
| exponent—part

decimal—number
= unsigned-integer | decimal—fraction]
| decimal—fraction

decimal—fraction
= , unsigned—integer

exponent—part
= (& | &&) [+ | —~) unsigned—integer

unsigned—integer
= digit { digit | — digit }
| radix R radix—digit { radix—digit | — radix—digit }

radix
=2|4|8]16

radix—digit
= digit | A|B|C|D|E]|F

Decimal numbers have their conventional meaning, The exponent part is a scale factor expressed as an
integral power of 10,

Unsigned integers are normally expressed in decimal digits. Unsigned integers of radix 2, 4, 8, or 16
may be expressed as shown, The radix digits "A” through "F"” express radix 16 digits 10 through 15
(decimal). The radix determines the legality and the interpretation of a radix digit in an obvious manner.

An unsigned number which is an unsigned integer is of type integer. Otherwise, if an unsigned number
contains an exponent part with a double ampersand (" &4&:") it i3 of type long real, else it is of type real.

Examples

2&1 2.0&+41 .2&2 20.0 2008:—~1 - represent same real value
2.345._6788:4:0 - long real value

- — —
—————

- el e T o m —
S e == A
= - —

Databehandling - Programsprak -
SIMULA

SVENSK STANDARD SS 63 61 1¢

Utgéva 1 Sida 1/
-_— e Mggvan
1.6 Strings
string

= simple—string { string—separator simple—string }

string—separator
= token—separator { token—separator }

simple~string]
= 7 { isocode | Bon—quote—character | " }

isocode
= 1 digit [dfgit] [d:'gft] !

non—quote—character

. »_ Such a character
A non-quote-character is any printing character (incl. space) except the string quote . Su
represents itself,

A simple string must be ¢

: . sequence
ontained within a single program line. Long strings are included as a seq
of simple strings separate

d by token separators,

In order to include 2 complete 8-

within a
bit coded character set, any character may be represented
string by an integer, its isocode, co

. ist of more
rresponding to its bit combination. An isocode cﬂan;m:hc:zﬁstmctiﬂn
than three digits, and it must be less than 256. If these conditions are not satisfie ;esented in simple
Is interpreted ag a character sequence, The string quote may, however, also be rep

uence of the
strings by two consecutiye quotes (see the last example below). Observe that, as a conseq
definitiona] conventions given earli

air of
er in this chapter, no spaces may Intervene between such a p
string quotes,
Examples The string: represents:
"Ab" "ede" Abcde
"AB” <end-of-line> "CDE" ABCDE TX
"121ABCDE3!" ABCDE enclosed by STX and E
12" "JABCDEp ram 121IABCDEI3!
" AR C""DE" AB" QC'DE
17 Charactep constants
Character-constant
= character-desfgnator '
character—-des:gnator
= ISocode

| f"ﬂ"‘%ote—-character

A charact_er cons
by character quo

Within the d

. implemen-
i 2 Processing s sle by values according to some
tation-defined o de. This € system, characters are represented by

. (and
ing character (an
text) val Code also defines the collating sequence used when comparing ¢

€xt) values by means of relationa] operators,

| urrounded
tant is ¢ithep single printing character or it is an isocode - In both cases s
bes (" - ISO 646 code 2/7).

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgéva 1 Sida 13

1.8 Comment convention

For the purpose of annotating the program proper comments may be included in a program. The
substitution of end for an end-comment, or a space for a direct cornment does not alter the meaning of
a program.

Note: As a consequence of 1.8.1 and 1.8.2 comments cannot be nested, It is understood that the comment structure
encountered first in a program when reading from left to right has precedencein being replaced over later structures

contained by the sequence.

1.8.1 End comment

The keyword end may be followed by any sequence of characters and separation of lines not containing
any of the special symbols end, else, when, otherwise, or ;. This sequence (excluding the delimiting
special symbol, but including the initial end) constitutes an end-comment.

1.8.2 Direct comment

The special symbol 1" (exclamation mark) followed by any sequence of characters or separation of lines
not containing ";" (semicolon), and delimited by semicolon, is treated as a comment if the exclamation
mark does not occur within a character constant or a simple string (in which cases it may either represent
itself or act as a code quote), or within a comment.

Note: The delimiting semicolon is considered part of a direct comment and thus takes part in the substitution,

Example
if B then begin ... end Ithen; else...

is not valid since the "I" is part of an end-comment. Thus ";” will act as a statement separator (and no
statement can start with else).

1.9 Token separators

format—effector
=BS|HT|LF|VT[FF|-CR

BS, HT, LF, VT, FF, and CR represent the characters thus named in table 1.1. A format effector in
general acts as a space. In addition, an implementation may define some additional action to be taken
(such as tabulation when listing the program); such action has no significance for the meaning of the

program.

token—separator

A token-separator is

— a direct comment, or
— a space (except in simple strings and character constants), or

~ a format effector (except as noted for spaces), or
— the separation of consecutive lines,

Zero or more token separators may occur between any two consecutive tokens, or before the first token
of a program text. At least one token separator must occur between any pair of consecutive tokens made
up of identifiers, keywords, simple strings or unsigned numbers, No token separators may occur within
tokens. | |

Ratabehandling -~ Programsprik - SVENSK STANDARD SS 63 61 14
SIMULA Utglva 1 Sida 14

R o i
— e e A e &

g eei: % Dame— .

———

———— i -

-
= Nl ™ e

=S oSl

=T

v .)
- = T L e e oW = e - - T
e e e e AR e e L L b e = k4 it r e b e e et P e W il e A —

110 Program interchange and lexical alternatives

&

¥
¢

[- ardor to cme pontability of SIMULA programs, 2 commen representation has been adopted for the
-

- In codse to cmphias’ze the use of the langunge keywords, these are printed in a special manner.,

- [d»cai0ors printed in upper cnse within this document represent quantities which are inaccessible

b tho pmsm Sush tdentifiors are used for definitional purposes, they may or may not have actual
couTlerparts in an implomentation of the language.

- Progran frgmernts may contain the ellipsis (...) instead of valid constructs, where it is either o;
visus from the content what the construct should be or the intended meaning cannot be express
in @ almple mannor within the language.

1.EG § Alermate representation of same symbols

o . re-
Th= peprresnintisn for loxizel tokens and separators given in 1.2 to 1.9 constitules 2 standard rep
acm3asing {37 theee takens and scparators. This standard representation is recommended for program

® *
i st A T b o
].J._q.i{:: L l"k..ré. ...:..-E.&E\ij {G?u

required
Foz Eiaterisnl renzans the following alternatives have been defined. All processors that have g:io ng o
ciasmeters in their charneter sot must provide both the standard and the alternate represen '

[LI R

thare 13 oo dialintisn made botween corresponding tokens or separators.

Tl eltemmnte ropressntations {or the tokens are

adondard token alternate representation
< It

<z le

= eq

2= ge

> gt

<’ ne

! comment

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 15

2 TYPES, VALUES AND REFERENCES

type
= value-type
| reference—type

value—type
= arithmetic—type
| Boolean

| character

arithmetic—type
= jnteger—type
| real-type

integer—type
= [short] integer

real-type
= [long] real

reference—type
= object—reference—type
| text

object-reference—~type
= ref (qualification)

qualification
= class—jdentifier

"The various types basically denote properties of values. A "value™ is a piece of information interpreted
at run time to represent itself. A "reference” is a piece of information which identifies a value, called
the "referenced” value. The distinction between a reference and its referenced value is determined by
context,

A value is primarily a number, a logical value, a program point, an object, a single character or an
ordered sequence of characters (a string).

The values of expressions and their constituents are defined in chapter 3.

Value types are characterized by being directly associated with a set of possible values (the * value range”
of the type). With the exception of type Boolean these associated values for each value type constitute
an ordered set.

The reference concept corresponds to the intuitive notion of a "name” or a "pointer”. It provides a
mechanism for referencing values. It also reflects the addressing possibilities of the machine. In certain
simple cases a reference could be implemented as the memory address of a stored value. There are two
reference types, object reference type and text reference.

Note: There is no reference concept associated with value types,

L A AW EE e ———

_— e e e e A A A e e e e e

—— o A ot e e .

st -

et e mEA— e ior e = em = —e A =

- [—————p——Ty P P S

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 16

2.1 Arithmetic types

AritI}metic types are used {or representing numerical values. The types are integer type and real type.
The integer type is either integer or short integer. The real type is either real or long real.

2.1.1 The type short integer

Th.e type short integer serves to represent integer values whose value range may be a subrange of that
of integer. Apart from this, short integer and integer are fully compatible in this language definition.

.‘:ln:tmplementa.tion may choose to implement short integer exactly as integer, i.e. ignoring the keyword
short,.

Note: All (integer) arithmetic operations upon integer type values are performed as integer operations.

2,1.2 The type long real

Type long real serves to represent real values capable of retaining a higher precision than that of the

I.YPE I‘E:Il. The relative value range of the respective types is implementation-defined. Apart {from this,
ong real and real are fully compatible in this language definition.

An implementation ma, ;
y choose to implement lon al ie i i ord lon
and the extra "&" in an exponent pa.rf. g real exactly as real, i.e. ignoring the keyw g

2.2 The type Boolean

Th :
¢ type Boolean represents logical values. The range of values consists of the values true and false.

2.3 The type character

The t ;
charaftii” ch;l;cter is .used‘ to represent single characters. Such a value is an instance of an "internal
' aly given implementation there is a one-to-one mapping between a subset of internal

characters and extern '
al (" printable” charact i e 3 ion-defined.
The external character get Y dEﬁned)in y cters. Fhe internal character set is implementation-de

Databehandling -- Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgdva 1 Sida 17
2.4 Object reference

Assgociated with a class object there is a unique " object reference™ which identifies the object, and for any
class C there is an associated object reference type ref (C). A quantity of that type is said to be qualified
by the class C. Its value is either an object, or the special value none which represents "no object”. The
qualification restricts the range of values to objects of classes included in the qualifying class. The range
of values includes the value none regardless of the qualification.

2.4.1 Qualification

The qualification of an object reference is a class identifier and is thus subject to the scope and visibility
rules of identifiers given in 5.6.

The qualification is associated with an instance of the block in which the class declaration referred to is
local. This implies that certain validity checks on the qualification cannot be performed on the basis of
the program text alone. Such tests must then be made during the execution of the program.

Consider the following example.

Example
class a; begin class b; ; end **¥ class a;

a class aa; begin ref (b) aaxb; end *+x class aa;
ref (a) al; ref (aa) a2;

al:— a2:— new aa;

if inint=1 then al:— new a;
inspect 22 do

inspect al do aaxb:—~ new b;

The reference assignment in the last line is valid only if the qualification of "aaxb” is the same as that of
"new b". This is the case only when the then-branch of the conditional statement is not taken, i.e. when
al and a2 refer to the same object. Thus a qualification check must be performed during execution.

2.4.2 Subordinate types

An object reference type is said to be "subordinate” to a second object reference type if the qualification
of the former is a subclass of the class which qualifies the latter.

A proper procedure is said to be of a universal type. Any type is subordinate to the universal type (cf.
4.6.1 and 5.5.3).

-
- — -
sy s

—

D SS 636114
Databehandling - Programsprak - SVENSK STANDAR

SIMULA Utgdva 1 Sida 18
m

- ¢ mm—— ——

—_— —aam im

——_——— e —— ———

. —e ——
———
- —
—_— e e .

it . sl
S

R P S S —

___‘__ ..,
e - - r—,
R e at o KT W L T i
-

e . ca e — - -

2.0 The type text

The type text serves to declare or specify a text variable quantity.

i ters
A text value is a string, i.e. an ordered sequence (possibly empty) of characters. The number of charac
is called the "length” of the text value.

' h
A text frame is 2 memory device which contains a nonempty text value. ﬁ: text franit‘e ha?1b a ﬁxtesn]t?’ngtA
and can only contain text values of this length, A text frame may be "alterable” or "cons .

i ts
constant frame always contajns the same text value. An alterable text frame may have its conten
modified. The maximum length of a text frame is implementation-defined.

A text reference identifies a text {fram
the identified frame. The s
empty text value,

e. The reference is said to possess a value, which is the (;oniepti lfef'
pecial text reference notext identifies "no frame”. The value of notext is

2.5.1 Text objects

A "text object” is conceptually an instance of the following class declaration (cf. 5.5):

class TEXTOBJ (SIZE, CONSTY);
integer SIZE; Boolean CONST;

begin character array MAIN(1:SIZE); end;

2.5.2 Text frames

Any non-empty s
More sp ecifically,

1)
2)

equence of consecutive elements of

the array attribute MAIN constitutes a text frame.
any text frame is completely jdent

ified by the following information:
a reference to the text object confaining the frame,

the start position of the frame,

being an ordinal number less than or equal to SIZE,
3) the length of the frame.

ext
er frame is called a "subframe” of that frame. The t

. All
ire array attribute MAIN is called the "main frame” of the text object. A
subframes of the main frame,

A main frame jg a subframe of no frame except itself,

The frames of 2 bext object are either all constant or all variable, as indicated by the attribute CONST.
The value of th;s attribute remajns fixed throu

s in
f ghout the lifetime of the text object. A constant ma
fame always corresponds to a string (see 1 6).

The attribyte SIZE, is always posit;
Note:)

Note:

2.6 Type conversjop

Values may in some Cases be converteqd from one type to another.

;H;pzh)di:o?;@ion between arithmetic type valyes follows the rules described elsewhere (s_ee 3.3.1i.bz§r_l1£
o1, ion, the procedure "entier”, used to convert values of real type to integer, is descr

ween text and arithme

e 4N
tic type values is described in 8.6 and 8.7 (text attributes " getint”
» " putreal”

" putfiy® " getfrac? y " putfrac”).

Databehandling - Programsprak — SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 19

Conversion between character and text values is described in 8.2 (text attributes "getchar”, " putchar”).

Conversion between character and integer values is described in 9.2 ("isorank”, "rank", "isochar”,
" char”).

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgiva 1 Sida 21
3 EXPRESSIONS
expression

= value—expression
| reference—expression
| designational—expression

value—expression
= arithmetic—expression
| Boolean—expression
| character—expression

reference—expression
= object—expression
| text—expression

The primary constituents of programs describing algorithmic processes are expressions. Constituents
of these expressions, except for certain delimiters, are constants, variables, function designators, labels,
class and attribute identifiers, switch designators and elementary operators. Since the syntactic definition

of both variables and function designators (see below) contain expressions, the definition of expressions
and their constituents is necessarily recursive.

A value expression is a rule for obtaining a value.

An object expression is a rule for obtaining an object reference.

A text expression is a rule for obtaining an identification of a text variable (and thereby a text reference).
A designational expression is a rule for obtaining a reference to a program point.

Any value expression or reference expression has an associated type, which is textually defined.

3.1 Variables

variable
= simple—variable—1
| subscripted—variable

simple—variable—1
= identifier—1

subscripted—variable
= array—identifier~1 (subscript—list)

array—identifier—1
= jdentifier—1

subscript-list
= subscript—expression { , subscript—expression }

subscript—expression
= arithmetic—expression

A variable local to a block instance is a memory device whose " contents” are either a value or a reference,
according to the type of the variable. The contents of a variable may be changed by an appropriate
assignment operation, see 4.1.

D SS 63611
Databehandling - Programsprak - 3:‘;;::5?(STANDAR Sida 22
SIMULA

——————— VMg

e e AT, A = o e ——
PR S -

i m _a ——

——— . "=

: jables
Variables are of two kinds, corresponding to the values being represented, namely value type var
and reference type variables.

: jable i3 said
A value type variable has a value which is the contents of the varlablei. A reference type variable is sa
to have a value which is the one referenced by the contents of the variable.

' bscripted
The value of an array identifier is the ordered set of values of the corresponding array of subscrip
variables.

Examples

delta
al7

Q(71 2)
x(sin(n*pi/2), q(3, n, 4))

3.1.1 Simple variables

A simple-variable-1 is

. ing values are
any variable which is not a subscripted variable. The corresponding
described in chapter 2.

. H rogram terms may
Note: Certain syntax classes (such as simple-variable-1) are marked with a "—1", The correspondingp
contain a remote identifier (see 5.5.8).

Value type variables have values of integer type,

An object
below,

real type, Boolean or character.

1 Ed

3.1.2 Text variables

: ituent components
A text variable is conceptually an instance of a composite structure with four constituen
(attributes):

ref (TEXTOBJ) OBJ;
integer START, LENGTH, POS;

Let X be a text variable. Then X.0BJ, X.START, X LENGTH and X POS denote the compon
respectively. These four comp

ain properties
onents are not directly accessible to the user. Imte.ad. cTe]gtese pro::Edures
of 2 ext variable are represented by procedures accessible through the dot notation.
are described in chapter 8,

ynditions:
The components of a text Variable always satisfy one of the following two sets of conditio

) OBJ =/= nope
START >== 1
LENGTH =1

START + LENGTH <= OBJ.SIZE + 1
1 <=POS <= LENGTH + 1

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA | Utgéva 1 Sida 23
2) OBJ == none
START =1
LENGTH =0
POS =1

The latter alternative defines the contents of a variable which references no frame. Note that this
alternative thereby defines the special text reference notext.

3.1.3 Array elements

Subscripted variables designate values which are components of multi-dimensional arrays. Each arith-
metic expression of the subscript list occupies one subscript position of the subscripted variable and is
called a subscript. The complete list of subscripts is enclosed by the subscript parentheses () . The
array component referred to by a subscripted variable is specified by the actual value of its subscripts.
A subscript expression value outside its associated bounds causes a run time error.

Each subscript position acts like a variable of type integer and the evaluation of the subscript is under-
stood to be equivalent to an assignment to this fictitious variable.

3.1.4 Function designators

functmn—des:gnatar
= procedure—identifier—1 | actual—-parameter——part]

procedure—identifier—1
= identifier—1

actual—parameter—part _
= (actual-parameter { ', actual—parameter })

actual—parameter

= expression
array—identifier—1
switch—identifier
procedure-jdentifier—1

A function designator defines a value which results through the application of a given set of rules defined
by a procedure declaration (see 5.4) to a fixed set of actual parameters. ‘The rules governing specification
of actual para.meters are given in 4.6.

Note: Not every procedure declaration defines rules fnr determining the value of a function designator (cf 5.4.1).

Examples
sin(a~b)
j(v+s, n)
r
as(s—5, Temperature; T, IPressure; P)
compile ("(:=)", IStack; q)

o
||I ' |
ST
RIEERT
Lol e
A .
SRR
-:I: 1I.|iI
ﬁlilll-r..-l:
q'|'|:' oo
A |-|1|'
:";i:?--l;"
A P I
U L
AR
' T
' | | 1
i!: -]:*::"

A R
AR RNl
et
: N
I'!! l: !.
SRR o
IR ili:
v ! 'I.'I
Tl Lot
: .||:t:
|'. IZ.:;iI'ZI
R b
N .
I'I!:T lil
oy b
Co e
S e
.1':: a
.||: ' I!

Pl -
i

!

i h
S
[I '
T E:iil
..:_ I! I

S

o
14 . |
' .I I
I |

Databehandling - Programsprak -
SIMULA

3.1.5 Remote identifiers

identifier—1
= |dentifier
| remote—identifier

remote~identifier

= simple—object—expression . attribute~identifler
text~primary . attribute—identifier

atiribute—~identifier
= identifier

Let X be a simple object expression qualified by the class C, and let A be an appropriate attribute

identifler. Then the remote identifier "X.A”, if valid, is an attribute identification whosa object is the
value X and whose qualification is C (cf. 5.5.6).

The remote identifier X.A is valid if the following conditions are satisfled;

1) The value X is different from none,

2) If the type of A is ref(D), then the quali
level equal or outer to that of C,

Note: Condition 1 corresponds o a check which causes an erro
intended to simplify the |

fying class D must not be declared at any prefix

r if the value of X is none. Condition 2 is an ad hoc rule
ahguage and its implementations,

A remote identifier of the form

text-prima.ry.attribute-identiﬂer

entified by evaluating the text primary, provided that the
ne of the procedure identifiers defined in chapter 8.

Note: Evenif the text primary references the value notext, the attribute access is legal (in contrast to object expressions).
Example

Let P1 _a.nd P2 be variables declared and initialized' as in the example in 4.1.4, Then the value of the
exXpression

Pl.plus (P2)

is a new "point” object which répresents the vector sum of Py and P2. The value of the expression

P1 qua polar.plus (P2)

18 2 new "polap” object representing the same vectop s\,

SVENSK STANDARD SS 63 61 14

Utgava 1 Sida 24
-_—_— uwgatr side4

Databehandling - Programsprak -
SIMULA

W

3.2

Boolean expressions

Boolean—expression
= simple-—Boolean—expression

SVENSK STANDARD SS 63 61 14

Utgdva 1

| if-clause simple—Boolean—expression else Boolean—expression

simple-- Boolean—expression
= Boolean—tertiary { or else Boolean—tertiary }

Boolean—tertiary
= equivalence { and then equivalence }

equivalence -
= implication { eqv implication }

implication
= Boolean—term {imp Boolean—term }

Boolean—term
= Boolean—factor { or Boolean—factor }

Boolean—factor
= Boolean—secondary { and Boolean—secondary }

Boolean—secondary
= [not] Boolean—primary

Boolean—primary
= logical-value
variable
function—designator
| relation
(Boolean—expression)

Sida 25

A Boolean expression is of type Boolean. It is a rule for computing a logical value. Except for the
operators and then and or else (see 3.4) the semantics are entirely analogous to those given for arithmetic
expressions. |

Variables and function designators entered as Boolean primaries must be of type Boolean.

Examples
X = =2
Y>v or z<q

a-+b> —5 and z—d>q**2

p and not q or xX<>y
t.more and then t.getchar

X === none or else x.a>0

if k<1 then s>w else h<=c

N

——— e

_“. ——— e T A — e

Bl s p—

[e r s e aTam o - A% N INT L e —

- - T T S " o ———_n

Databehandling - Programsprak ~

SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 26
3.3 Relations
relation
= arithmetic—relation
character—relation
texi—value~relation
object—relation

obj ect—reference~relation
text—reference—relation

value-re!ationa!—o;;erator
=<|<=]=|>=|>|<:>

reference—com parator

3.3.1 Arithmetic relations

arithm etic—relation

= simp!e-an'thmet:‘c-—expression value—-refational-aperator simp!e—an'thmetic—expl‘ess"on

onventional meaning (less than, less than
to, greater than, not equal to). Arithmetic relations assume
lon is satisfied for the expressions involved, otherwise

ic types conversion to the type with
ently overflow cannot oceyr during the evaluation.

cht&illﬁ by lis n the p » l“lpleme i I i (a'"d b} i"lp“catinn that Of d te);t
i l r ¢ ntat] .

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgéava 1 Sida 27
3.3.3 Text value relations

text—value—relation |
= simple—text—expression value—relational—-operator simple—text—expression

Two text values are equal if they are both empty, or if they are both instances of the same character
sequence, otherwise they are unequal.

A text value T ranks lower than a text value U if and only if they are unequal and one of the following
conditions is fulfilled:

1) T is empty.
2) U is equal to T followed by one or more characters.
3) When comparing T and U from left to right the first non-matching character in T ranks

lower than the corresponding character in U.

3.3.4 Object relations

object—relation
= simple—object—expression is class—identifier
| simple—object—expression in class—identifier

The operators is and in may be used to test the class membership of an object.

The relation "X is C" has the value true if X refers to an object belonging to the class C, otherwise the
value is false.

The relation *X in C" has the value true if X refers to an object belonging to a class C or a class inner
to C, otherwise the value is false,

3.3.5 Object reference relations

object—reference—relation
== simple—object—expression reference—~comparator simple—object~expression

The reference comparators "==" and "=/=" may be used for the comparison of references (as distinct
from the corresponding referenced values). Two object references X and Y are said to be "identical” if
they refer to the same object or if they both are none, In that event the relation "X==Y" has the value

true, otherwise the value is false,

The value of the relation "X=/=Y" is the negation of that of "X==Y".

SVENSK STANDARD SS 63 61 14

Sida 28

Databehandling - Programsprak -

Utgiva 1

Text reference relations

3.3.6

le—text—expression

text—reference—relation

imp

ference—comparator s

on re

simple—text—expressi

Let T and U be text variables. The relation " T==U" is equivalent to

U” and " T=U" may both have the value

same text value.)

'HT=__/

il ——— S S - —
S - e —— — —_— ————— e A——— e e .. o .- -
J— — e n o m f— e A e e - i e e ig—
————— .- — — ST e —
——————— — - - ————— e - — e o —
T R —— ——rr— —
—_— . J— - o m —_———— [
_— ———— e e e, = i ——n
—r———— —r———— P i - T

- The following relations are al] true (cf. 2.5)

(different occurrences, see 3.7)

= notext eqv T == notaxt

== notext

"ABC” =/="ABC"

T
nn
Example

begin text T; T:— "ABC" end

class C;

— T e e — — e e — - -
s z ToTaT - —_———— —_ —_——
| - —_— - - - — - - —
—_——————— ———— e e ——— -
O . —_ - - -
—————— - ———— e —— -
. — - [- f———

Databehandling - Programsprak —

SIMULA

3.4 The logical operators

SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 29

The meaning of the logical operators not, and, or, imp, and eqv is given by the following function table:

bl false false true true
b2 false true false true
not bl true true false falze
bl and b2 falze false false true
bl or b2 false true true true
bl imp b2 true true false true
bl eqv b2 true false false true

The operation "bl and then b2" denotes "conditional and”. If the value of bl is false the operation
vields the result false, otherwise it yields the result of evaluating b2,

The operation "bl or else b2” denotes "conditional or". If the value of bl is true the operator yields the

result true, otherwise it yields the result of evaluating b2.

Note: The value of "b1 end then b2" is given by textual substitution of the Boolean expression "(if bl then b2 else
false)". Similarly, the operation "bl or else b2" is defined by substitution of " (if b1 then true else b2)". These
definitions imply that the evaluation of the second operand is suppressed when the evaluation result is already
evident from the value of the first operand alone.

3.4.1 Precedence of Boolean aperators
The sequence of operations within one expression is generally from left to right, with the following

additional rules.

According to the syntax given in 8.2 the following rules of precedence hold:

first:
second:
third:
fourth:
fifth:
sixth:
seventh:
eighth:
ninth:

non-Boolean expressions

< == = > >

not

and

or

imp

eqv

and then
or else

== =/= i3 in

‘The use of parentheses is interpreted in the sense given in 3.5.2.

o ———

Databehandling — Programsprak -

SIMULA
———— e — o vTeAVAY Sl

Utgava 1

3.5 Arithmetic expressions

arithmetic—expression
= simple—arithmetic—expression
| if-clause simple—arithmetic—expression
else arithmetic—expression

simple—arithmetic—expression
=[+] -] term { (+]~) term}

term
= factor { (% | [| //) factor}

factor
= primary { %% primary }

primary
= unsigned-number
variable

function—designator
(arithmetic—~expression)

An arithmetic expression is 2 rul
pressions this value is obtajpe
values of the primaries of the

e for computing a numerical value, In the case of simple arithmetic ex-
d by executing the indicated arithmetic operations on the actual numerical
expression, as explained in detai] in 3.0.1 below. The value of a primary is
rs. For variables it is the current vajue (assigned last in the dynamic sense),

! it s the value arising from the computing rules defining the procedure whe_n
applied to the current values of the procedure parameters given in the expression, Finally, for arithmetic
expressions enclosed by pare '

of the values of primaries of the other three kinds,

In the more general arithmetic expressions, which include if-clauses, one out of several simple arithmetic
expressions is selected on the basis of the actual values of the Boolean expressions (see 3.2). This selection
Is made as follows: The Boolean expressions of the if-clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The value of the arithmetic expression is then the

¢ expression following this Boolean (the longest arithmetic expression found

od). If none of the Boolean expressions has the value true, then the value of
3 the value of the expression following the final else.

in this position is understo
the arithmetic expression i

SVENSK STANDARD SS 63 61 14

Sida 30

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA - Utgdva 1 Sida 31

In evaluating an arithmetic expression, all primaries within that expression are evaluated with the
following exceptions: . .

- primarie'g that occur within any expression governed by an if-clause but not selected by if.
—~ primaries that occur within a Boolean expression

1) after the operator or else when the evaluation of a preceding Boolean tertiary results in
trie, or

2)) after the operator and then when the evaluation of a preéeding Boolean equivalence results
in false,

- primaries that occur after a function designator, and the evaluation of the function term:na.tes
with a goto-statement. In this case the evaluation of the arithmetic expression is abandoned.

Primaries are always evaluated in strict lexical order.

Examples
Primaries: 7.394_6044&~8
sum
w(i+2, 8)
cos(y + 2%3.141.592_653..589_793_2384&0)
(a ~3/y + vus+8)

Factors: omega
sum ** cos(y + 243)
7.394& -8 #* w(i+2, 8) #* (a --3/y + vu %k 8)

Terms: u | .
omega * sum ** cos(y + 2*3)/7.394&—8 ** (a —~3/y + vu¥*8)

Simple arithmetic expression: u —yu + omega*sum#*cos(y-+2z+3)/ 7.3944—8 **(a-:3]y+vu**8)

Arithmetic expressions: wku —q(s-4-cu)**2
if >0 then a+3+q/ [a else 2%3+3%q
if a<0 then u+v else if axb>17 then u/v
else if k >=y then v/uelse 0
0.5748:12 x a(n¥(—1)//2,0)
(axarctan(y)+z) ** (7+Q)

if q'then -1 else n

—-rr—
—_—————
4 Lt b m———

/! ||Il| .
i
il il
ERRSHKIN
!I RN DSS 6361 1
H ‘l' i Databehandling - Programsprak — 3:’?:51K STANDAR Sida 32
S SIMULA g
N -
'| | | 3.5.1 Operators and types ' e of
| 1 l Apart from the Boolean expressions of if-clauses, the constituents of arithmetic expl_'mlo:m n;:u:sch they
i [_[“;i-.:g_ arithmetic types. The meaning of the basic operators and th? types of the“express:ns 0 \:n PP
g | 'ii ! lead are given by the following rules, where "i” and "j" are of integer type, "r" of re type,
! il’;i; any arithmetic type: -
!| :||!1 ‘| - The operators "4-", "~", and "%" have their conventional meaning,
Ll . _
ll ||!' i - The operator " /" denotes real division. Any operand of integer type is converted before the
fi i ‘ y operation. Division by zero constitutes an error.
f‘ ‘ nth J:' - The operator ”//" denotes integer division. It is valid only for integer type operands. The
i meaning of "i//i" is defined by;
HIgRRe
} | !i;fl i integer procedure DIV(j, j); integer i, j:
]i :,l i if j=0 then error("..” Idiv by zero;)
%’!f}ié!'ﬂi”? else begin integer m, n;
IS mi=0; m= abs(i)
N '[‘l for n:=n - abs(j) while n>=0 do m:= m 4 1;
i .['l'i i DIV:= if i<0 eqv j>0 then —m else m
] end DIV;
I
il

TNIERaH .
l i'lil = The operator "**" denotes exponentiation. The value and type of the operation depends upon
) e the types of the operands as follows:
lwflli Xpkr: - <type of r> procedure EXPR(x,) <arithmetic type> x; <real types r:
| i HJJ if x<0or (x=0 and r<=0,0) -
it then error(”..” JEXPR undefined;);
i i else EXPR:=if x>0 then exp(rln(x)) else 0.0
il

[| Inllsi "
ml [:iiiiiiifi Pk integer procedure EXPI(i, j); integer i, j;
i ir'“ i j<0 or i=0 and j=0 then error("...” 1EXPI undefined;)
i ﬁ:I‘lll‘ else begin integer k, result;
{I i result:= 1;
(il for ki=1 step 1 until j o resulti= resultsi:
i 1:!'1‘ * EXPl:= result
H i end EXP]
fliRseiR .
iR PR <type of 1> procedure EXPN(r, 1); <real type> r: integer i;
I i!l]l ‘ if i=0 and r=0.0 thep error(*...” IEXPN undefined;)
il else begin <type of r> result; integer n;
AL result:= 1.0,

1 for n:= abs(i) step ~1 untit 1 do result := regultsr;
SN il EXPN:= i i<0 then 1.0/result else result
Jw. end EXPN;

B It is understood that the finjte deviations of using the exponentiation

i operator may be different {

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 33

If the operands of an arithmetic operator are of different types, or both short integer, an appropriate
type conversion function is understood to be automatically invoked, except as explicitly noted above,
before the operation is evaluated as follows:

If one operand is of type long real the other is converted to long real, else if one operand
is of type real the other is converted to real, else short integer operands are converted to

integer. |
Note: The result of evaluating an arithmetic expression can never be of type short integer,
Conversion from short integer to integer is always exact. Conversion from an integer type to a real type

is exact within an implementation-defined range which includes zero. Conversion from real to long real
is exact within an implementation-defined range which includes zero.

The type of the operation (and by repeated application also the type of the arithmetic expression) is a
consequence of the type conversion rule as follows:

SI I R LR
SI I I R LR Sl short integer
I I I R LR It integer
R R R R LR R: real
LR LR LR LR LR LR: long real

The rule also determines the type of a conditional expression, i.e. an arithmetic expression of the form
"if B then SAE else AE". The expression is of type long real if either SAE or AE is long real, Otherwise,
if either SAE or AE is of type real, the type of the expression i3 real, else the type is integer.

Note: The type of a conditional expression is independentof the actual value of the Boolean expression, i.e. it is completely
determined by the program text.

3.5.2 Precedence of arithmetic operators

The sequence of operations within one expression is generally from left to right, with the following
additional rules:

In accordance with the syntax given in 3.3.1 the following rules of precedence hold:

first: kok
second: x []/
third: + -

The expression between a left parenthesis and the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Consequently the desired order of execution of operations
within an expression can always be arranged by appropriate positioning of parentheses,

Note: The order of evaluation of the primaries is not influenced by the use of parentheses.

— — = -
- e —————— e —— —

—
. e — ————

J;IEE
FHEE
I
N
Kk
‘|
b
liji !
1
1
it
|
r[i
E'l
1i‘§
'.i;{l-t
vEh
N
g
f|[:'1
[N
IR
Fh
oy e
IR HIE
|':|.It
ol

i —————.— o e -

361
Databehandling ~ Programsprik - SVENSK STANDARD SS 6
SIMULA

Utgdva 1 Sida .

3.5.3 Arithmetics of real quantities

Numbers and variables of real type must be interpreted in the sense of numerical analysis, 1.e, as en;lr?:
defined inherently with only a finite accuracy, Similarly, the possibility of the occurrence of a.t Id
deviation from the mathematically defined result in any arithmetic expression is exp}:cltly u{1ders 00
No exact arithmetic will be specified, however, and it is indeed understood that, different u:v:u;:alernel;:l
tations may evaluate arithmetic expressions differently. The control of the possible consequences o_f suf:d
differences must be carried out by the methods of numerical analysis. This contro] must _be considere

a part of the process to be described, and is therefore expressed in terms of the language itself.

3.6 Character expfessions

character—expression
= simple— character—expression

if-clause simp!e—character-expreasion
else. character— expression

simp!e-chamctehexpression

= character—constant
variable
functi'on-—des:‘gnator
(character~expression)

L

Databehandling — Programsprak — SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 35

3.7 Text expressions

text—expression
= simple—text—expression
| if-clause simple—text—expression else text—expression

simple—text—expression
= text—primary { & text—primary }

text—primary

- = notext

string

variable
function—designator
(text—expression)

A text expression is of type text. It is a rule for obtaining an identification of a text variable. Apart
from possible if-clauses, all constituents of a text expression must be of type text.

Each textual occurrence of a non-empty string corresponds to a unique constant main text frame. A
given occurrence always references that same frame, while different occurrences of the same non-empty

string always reference different text {frames.

The empty string ("") is textually equivalent to notext.

3.7.1 Text concatenation

The operator "&” permits text concatenation. The simple text expression "TP1 & TP2 & ... & TPn",
where TPi is a text primary (1<=i<=n), references a new alterable main frame whose contents are
formed by concatenating copies of the frames referenced by TP1, TP2, ... , TPn (in that order). The
expression is equivalent to CONCATENATE_n(TP1, TP2, ... , TPn) defined by

text procedure CONCATENATE_n(T1, T2, ... , Tn); text T1, T2, ... , Tn;
begin text temp;
CONCATENATE_n:— temp:— blanks(T1.length+T2.length+ ... +Tn.length);
temp.sub(1, Tl.length):= Tl;
temp.sub(1-+-T1.length, T2.length):= T2;

temp.sub(1+4T1.length+T2.length+ ... , Tn.length):= Tn;
end CONCATENATE . .n;

Note: It follows that the text primary constituents of a simple text expression are evalqated in strict lexical order._ The
evaluation of ‘I% may influence the result of evaluating Tj, if i<j (due to the specified "by reference” transmission
of parameters to the procedure CONCATENATE..n).

Observe further that it follows from the syntax (cf, 3.1.6) that "." is ex:a.luat.ed before "&", thus the two expressions
"T1 & T2.sub(1, 2) & T3.main” and "T1 & (T2.sub(1, 2)) & (T3.main)” are equivalent.

1
1
.
i
1
1
[
" -
o
LI
{
,
1
!
|3
I
|

.' E
t

Ig!
: THA
; :El[F|
SRTN IR NP
| .' 'FH J
SR DRt R
1 =:li-i;;.:,1
L
(R
I R I E O
N N Y M
5!-; ;!.i};:'{;
SN BN LT A
oy ¥ i:*;:;]'
o I ".s L
:i : :’ I|r'l.1| ,
II’ " Ii !'iil?-l j
INE FRES
FIRE SN I H L
N .I:.-'];!.;'g;
N u"r“ Ll
SRR EE
AN I
AR 'II‘:[--'.; i
: N S L B
AIRLINE R
bl
SR ,|l:i'-,1
i |::.:1!
] : '-iii:1=1[j' t
IR ¥
'-[I IEE }TIE;". P
N R
S AT R
| f]f;li U]
. :j!|'l |*Ir|r ,I
i Phoi ey 1y
JI"-"-’-;..ﬁ:
I8 E]Ei‘!::!;;ji
BRI RHERIHT
: 'ujlil'f;.?,!-.-!!
NN
:;1'1 A
! ! : LY
:1'J ag!.,;;j!'rl
FRRARTE
-Ifl.lil Li*“i
,'EI. | LII'I[
SN !:f!\%!'ﬂ;
S IR
ER R
“.[I;i .JJ|’|:
[L e
I r[!!Fr’i
1 :I :: .L!::-'
11‘-‘-"' IRTIEN
|- ! l'!5:|'i.~'|
i f'[! | :Ei.‘f|t-.-'l;
R
P |J!] |I||
Lo
N N T I T
N SYNEY
' i}i!f!lf,“li'i;
[N RS R
RN N
L e
‘!': Himi
B Hiﬂ;;;li:{!
il
MRS
Mt
Ilig!iilr!-éi,lfaiﬂ
ii-}g”:"ziéij“ifi
Rl
B i' .,:‘I
!tl “Jli!riﬁ'H
AE "‘!'!ili"'-:%[
o
IR
L
SEHE
i Rin: ||:
RRIE T MR
!u '!§|:.[: il
B
'|: I:Ji:!!':il. .
| !14 Tifii]
1 .||'|J|||,|:
|'II.J II'I' |:_
I'l;'|!;‘;f!;:;r
l .IH '1". i' .
R
HIRTHEER

Databehandling - Programsprak -
SIMULA

3.7.2

Text expression evaluation

The result of evaluating:

notext, or an empty string,

identifies an anonymous text variable whose contents are defined by
(2) of 3.1.2.

& non-empty string identifies an a
whose value is the interna) re

a main frame, The POS co

nonymous text variable which references a constant text frame
presentation of the external character sequence. This frame is always
mponent of the anonymous variable equals 1.

a text variable identifies the variable itself.

procedure in question,

2 text expression enclogsed by parentheses identifies all anonymous text variable which contains a
copy of (the contents of } th

the text variable identified when evaluating the same expression without
parentheses,

SVENSK STANDARD SS 63 61 1

Utgava 1 Sida -

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 37
3.8 Object expressions
object—expression

= simple—object—expression
| if-clause simple—object—expression else object—expression

simple—object—expression
= mnone
| variable
| function—designator
| object—generator
| Jocal-object

| qualified—object

| (object—expression)

object—generator
= new class—identifier | actual-parameter—part |

local—object
= this class—identifier

qualified-object
= simple—object—expression qua class—identifier

An object expression is of type ref(qualification). It is a rule for obtaining a reference to an object. The
value of the expression is the referenced object or none. Apart from a possible if-clause all constituents

must be of object reference type.

3.8.1 Qualification

The qualification of an object expression is defined by the following rules:

1) The expression none is qualified by a fictitious class which is inner to all declared classes,
2) A variable or function designator is qualified as stated in the declaration (or specification,

see below) of the variable or array or procedure in question.

3) An object generator, local object or qualified object is qualified by the class of the identifier
following the symbol new, this or qua respectively.

4) A conditional object expression is qualified by the innermost class which includes the qual-
ifications of both alternatives. If there is no such class, the expression is illegal.

5) Any formal parameter of object reference type is qualified according to its specification
regardless of the qualification of the corresponding actual parameter.

6) The qualification of a function designator whose procedure identifier is that of a virtual
quantity depends on the access level (see §.5.5). The qualification is that of the matching
declaration, if any, occurring at the innermost prefix level equal or outer to the access level,
or, if no such match exists, it is that of the virtual specification.

3.8.2 Object generator
The value of an object generator is the object generated as the result of its evaluation. See 4.7.

3.8.3 Local objects
A local object "this C” is valid provided that the expression is used within

1) the class body of C or that of any subclass of C, or

|']’

i
R
AR

|:I
il
R
R
i1
RN
e
L
.
I;|
B
i
i
t

1
i
it
L
1
AN
i
U

Databehandl_ing - Programsprak -
SIMULA

Utgava 1 Sida .
-_— o Utgvear Sida

SVENSK STANDARD SS 63 61

2) @ connection block whose block qualification is C or a subclass of C (see 4.8).

The value of a local object in 2 given context is the object which is, or is connected by, the smallest

textually enclosing block instance in which the local object is valid. If there is no such block the local

object is illegal (in the given context). For an instance of a procedure or a class body, "textually
enclosing” means containing its declaration.

3.8.4 Instantaneous qualification

Let X represent any simple reference expression, and let C and D be class identifiers such that D is tl'{e
qualification of X, The qualified object "X qua 7 is then a legal object expression, provided that C is

outer to orequal to D oris g subclass of D, Otherwise, since Cand D belong to disjoint prefix sequences,
the expression is illegal.

If thei value of X:is none or is ap object belonging to a class outer to C, the evaluation of X qua C
constitutes a run-time error, Otherwise, the value of X qua C is that of X. Instantaneous qualification

restricts or extends the visibility of attributes of concatenated class object accessible through inspection
or remote accessing (cf, 3.1.5 and 4.8)

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgdva 1 Sida 39

3.9 Designational expressions

designational—expression
= simple—designational—expression
| if-clause simple—designational—expression
else designational—expression

simple—designational—expression
= label
| switch~designator
| (designational—expression)

switch—designator
= switch—identifier (subscript—expression)

switch—identifier
= identifier

jabel
= identifier

A designational expression is a rule for obtaining a reference to a program point. The principle of
the evaluation is entirely analogous to that of arithmetic expressions. In the general case the Boolean
expressions of the if-clauses select a simple designational expression. If this is a label the desired result
is already found. A switch designator refers to the corresponding switch declaration and by the actual
numerical value of its subscript expression selects one of the designational expressions listed in the switch
declaration by counting these from left to right. Since the expression thus selected may again be a switch
designator this evaluation is obviously a recursive process.

The evaluation of the subscript expression is analogous to that of subscripted variables. The value of 2

switch designator is defined only if the subscript expression assumes one of the values 1, 2, ... , n, where
n is the number of entries in the switch list. A value outside this range causes a run time error.

Note: It is 2 consequence of the syntax that class attributes which are labels or switches cannot be accessed by the dot
notation,

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgdva 1 Sida 41
4 STATEMENTS
statement

= {label: } unconditional-statement
| {label:} conditional-statement
| {label: } for—-statement

unconditional—statement
= assignment—statement
| while—statement
goto—statement
procedure—statement
object—generator
| connection—statement
| compound-statement
block
dummy-statement
activation—statement

The units of operation within the language are called statements. They are normally executed consec-
utively as written. The sequence of operations may for instance be broken by goto-statements, which
define their successor explicitly, or by sequencing procedure calls, which define their successor implicitly.
It may be shortened by conditional statements, which may cause certain statements to be skipped. It may
be lengthened by for-statements and while-statements which cause certain statements to be repeated.

In order to make it possible to define an explicit dynamic succession, statements may be provided with
labels,

Since sequences of statements may be grouped together into compound statements and blocks the defi-
nition of statement must necessarily be recursive. Also since declarations, described in chapter 5, enter
fundamentally into the syntactic structure, the syntactic deﬁmtlon of statements must suppose declara-

tions to be already defined.

5 FNEE
| VI
l |
| v I:.
a R I_..:'i
; I. : 5!Z..'.!|
SRR
[: I["' Ii:.:‘:'éli.
e L
|"“3‘:i- ! .
i1|':-:|1 !:':lil,., !
R
I-r :!.I; !IL"I:'
L e
' |Ei; ! Z!l_.';: i
BN BRI
| El!' : 'i]. S
A
l;- il?'- IRUER
SN N TR TR TR
IS RPN
L
IR
! o,
bk b
DU
[
AR
[1 |J|.:| .||::.|
fobpigo el
1It|:|."- '||! '.:.:':_I
i: Lr! }'E!-.;‘!I'
:: I:i] : li::__l]__;_‘;:;;
RUHTRIE
IR
S ST T
i i!{ | l"a";
AR RN
i i L
it e
SRR
ML R
ii' ||‘--,!..qi:||,!
1 JI Ii 1E=,'!":'I
Ll
BRI
Bt
ll :! :'1] !-:I‘;:-"iHll
I_|_|il-i ilI'IE_
| 5".’: 5-[-;::},-;:;
B NI
RR I B
RS “]\QI L
c '|1| E’I R
o
] I. !
ol '

—_ ——— ma——————

§
1 !'
, | i
b - _
bk
e | :;':'- '
\ | ol E
[[.
|': Lhoan,
: Il i: HE |iE
AR RIS L
SRy TR LA
AR R NE
ol ~'|:E N E
1 LA I
' I:i |,‘ ::i. Nl "
i Ll DA
' -']:'. B 1o
IR S O
o bl ey
SRR T HIT
oy it il
A B KL N IR
! o]l |:1.i,l_ o
! N H
i I, !:-’I|f il
Ili i"| o !
AN IR
IRTREEES
1 |- ,|1 :".;_."
v lr A Do
AT O
! g %
; i |

Databehandling -~ Programsprak ~ -
SIMULA

4.1 Assignment statements

assignment--statement
= value—assignment
| reference—assignment

value—assignment ‘
= value—left—part := value~right—part

value—left—part
= destination

| simple—text—expression

value~right—part
= value--expression
| text—expression
| value—assignment

destination
= variable
[procedure—identifier

reference—assignment

= reference—left—part reference~right--part

reference—left—part
= destination

reference~right—part

= reference—expression
| * reference-assignment

Assignment statements serve t

signment to a procedure identi
the function designator denote
values of all the subse
will result.

0 assign the value of an expression to one or several destinations. AS}
fier may only occur within the body of a procedure defining the Vﬂl“‘i lfe
d by that identifier. It assignment is made to a subscripted varfable: ’
ripts must lie within the appropriate subscript bounds, otherwise a run-time erro

The operator ":=" (reaq: "becomes”) indicates the ass}
value type proceduyre identifie

r which Is the Jeft part of ¢

gunment of a value to the value type variable or
value to the text frame referenced by

he value assignment or the assignment of a text
the left part,

indicates the assignment of a reference to the reference type variable
r which is the left part of the

reference assignment.

upon procedure entry following the rules given in 5.7, The type associated
e 1 given by the type

with a procedure identifi declarator which appears as the first symbol of the
declaration,

corresponding procedure

SVENSK STANDARD SS 63 ?1
Utgdva 1 Sida .

--___-_——-_—_—-_'—‘“—_H—--—_——-————_-—--—_——

Databehandling -~ Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 43

The value or reference assigned is a (suitably converted) representation of the one obtained by evaluating
the right part of the assignment, If the right part is itself an assignment, the value or reference obtained
is a. copy of its constituent left part after that assignment operation has been completed.

The process is in the general case understood to take place in three steps as follows:

a) Any expression which is, or is part of, the left part of an assignment is evalated prior to the.
evaluation of the right part. Within a particular left part, constituent expressions such as
subscript expressions are evaluated in sequence from left to right.

b) The expression of the ultimate right part is evaluated.

¢) The value or reference of this expression is assigned to its immediately preceding left part.
If the left part is itself part of an assignment, the resulting value or reference is assigned
to its immediately preceding left part. This process is repeated until the left part list is
exhausted. All assignments are performed with any left part expression having values as
evaluated in step a.

Note: It is not required that, in multiple assignments, all left parts are of the same type, as long as the appropriate type
conversion functions are defined,

If the destination is of type Boolean or character, the value right part must likewise be of type Boolean
or character, respectively. |

For the description of the text value assignment, see 4.1.2. There is no value assignment operation for
objects.

The type of the value or reference obtained by evaluating the right part must coincide with or be
subordinate to the type of the left part, with the exceptions mentioned in the following sections.

If a destination is a formal parameter called by name, and the type of the corresponding actual parameter
does not coincide with that of the formal specification, then the assignment operation is carried out in

two steps.
1) An assignment is made to a fictitious variable of the type specified for the formal parameter.
2) An assignment statement is executed whose left part is the actual parameter and whose

right part is the fictitious variable,

The value or reference obtained by evaluating the assignment is, in this case, that of the fictitious variable.

4.1.1 Arithmetic assignment

If the type of the arithmetic expression differs from that associated with the destinations, an appropriate
conversion function is understood to be automatically invoked. For transfer from real type to integer
type the conversion function is understood to yield a result which is the largest integral quantity not
exceeding E + 0.5 in the mathematical sense (i.e. without rounding error) where E is the value of the
expression. Conversion from integer to short integer is exact within the value range of short integer;
outside it constitutes a run-time error. Conversion from long real to real is performed with correct
rounding. If the value range of long real exceeds that of real a run-time error may resuit. Conversions
not mentioned above are performed according to the rules given in 3.5.1.

Note: The value of a real type expression is defined with only finite accuracy.

Note: Consider the statement "X:= ji= Yi= Fi= 3.14" where X and Y are real variables, i is an integer variable, and
F is a formal parameter called by name and specified real. If the actual parameter for F is a real variable, then
X, i, Y and F are given the values 3, 8, 3.14 and 3.14 respectively. If the actual parameter is an integer variable,
the respective values are 3, 3, 3,14 and 3.

4.1.2 Text value assignment

Let X be the text variable identified as the result of evaluating the left part (see 3.7) of a text value
assignment, and let Y denote the text variable identified by evaluating the corresponding right part. If
X references a constant text frame, or X.LENGTH < Y.LENGTH, then the assignment constitutes an
error. Otherwise, the value of Y is conceptually extended to the right by X.ILENGTH - Y.LENGTH

I
g i
[|!,%I
V1

F?\!

‘.

g B — T
— A ———

————————
—_——
- r———
S r——————— —
-—— -

—

o —————— —
- —_——
P —
I ——-—
S U S —

L e —

il
I
i
it N
HE.
i !iéi!_ |
Al
NN
Al
'Ei::i'[?
! i
I;'“ ":'ir:'r
i]
i
1 ' }
¥ r.,_& t
hi |
iy !
{1‘ T
il Ir '
IR L
Pt
g
i I :
| ;11 | R
N
A EN PR
1IH ;1.!;' i
HIN I
ShER

by fe

Databehandling - Programsprak -
SIMULA

Utgéva 1 Sida
-_— o Ugdver Sid

SVENSK STANDARD SS 63 61

blank characters,
by X.

Note: If X==

and the resulting text value is assigned as the new contents of the text frame referenced

notext, the assignment is legal if and only if Y==notext.

The effect on X of the assignment

"X=Y" js equivalent to that of "X := copy(Y)”, regardless of whether or not
X and Y overlap.

The position indicators of the left and the right parts are ignored and remain unchanged.

IfXand Y are non-overlapping texts of the same len

gth then, after the evaluation of the value assignment
"Xi=Y", the relation "X=Y" is true,

A text procedure identifier
text variable,

identifier,

occurring as a. value

left part within the procedure body is interpreted as a
The corresponding assignment stat

ement thus implies an assignment to the local procedure

X.0BJ
X.START
X.LENGTH
X.POS

:~Y.OBJ:

= Y.START;
= Y.LENGTH;
= Y.POS;

The reference assignment is legal

and the assignment operation is carried out.
G is innep to C,:

The reference assignment is legal.
V is none or is ap object belongin
not, the execution of the reference

Ci and C, satisfy neither of the ab

The assignment operation is carried out 1;
g to the class C; or a class inner to C;. |
assignment constitutes a run-time error.

ove relations:
The reference assignment is illegal.

Similar rules apply to reference assignments implicit in for-clauses and the transmission of parameters.

ref (point) pi, P2; ref (polar) p3;

Pl:i— new polar (3, 4); p2i~ new point (8, 6);
Now the statement " p3:~p1” assigns to

3 a referen "
The statement " P3:~p2" would cause a : ce to the

; Polar” object which is the value of pl.
run-time errop,

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 45

4.2 Conditional statement

conditional—-statement
= if—clause { label : } unconditional—statement | else statement |
| if—clause { label : } for—statement

if—clause
= if Boolean—expression then

Conditional statements cause certain statements to be executed or skipped depending on the running
values of specified Boolean expressions.

Three forms of the conditional statement exist. Let B be a Boolean expression, Su an unconditional
statement, Sfor a for-statement and S a statement. Then, in execution of a statement of the form
"if B then Su”, B is evaluated. If the result is true, Su is executed, If the result is false, Su is not
executed. If Su is labelled, and a goto-statement leads to the label, then B is not evaluated, and the

computation continues with execution of the labelled statement.

The two remaining forms are explained in terms of the above, as follows.

The conditional statement: is equivalent to the execution of:

if B then Sfor if B then begin Sfor end

if B then Su else S if B then begin Su; goto GAMMA end;
‘(‘SE‘AWA:

If Su, Sfor or S are labelled they are labelled in the equivalent construct.

Note: The effect of a goto-statement leading into a conditional statement follows directly from the above explanation of
the execution of a conditional statement.

Examples
if x>0 then n:=n-1

if false then abort: terminate_program
else if s<0 or p<q then

else if v>s then a = v—q

else if v<s—1 then goto abort

_—

TR MI',"
305 NI
L
[i}
i DARD SS 63
ik iilfi‘uji*iﬂllt‘? Databehandling - Programsprak — SVENSK STAN o
i t[]'h} SIMULA Utgdva 1
I
e
it iié?ii.Jg;,!} 4.3 While.statement
g1
SIT
i !||1 ||! while—statement
I ER
AU HA N IR

, || = while Boolean—expression do statement
i
|
l

A while-statement causes a statement to be executed zero or more times.

The evaluation of "while BE do S is equivalent to

i | ALPHA: if BE then begin S; goto ALPHA end
]

:1 e 4.4 For-statement
|

|
PRI
|*.,: NI
i
di i {ii.ﬁ ﬁiii:‘ for—statement
!i: ??ii b !iﬂﬁ | = for—-clause statement
SO '
HEHHIN I
[!?|Ff‘- }'f‘ni,!'lj‘;:f;ti.- for~clause
‘1_ |1 E?T:HEE;{’,{’;? = for simple—varjable for—-right—part do
B et
1 :‘lHl simple~variable
Jii ;gE?Eﬁiﬁiiiiif?I = identifler
IR
: =:i! a:{'?i,;.!lal;|
il *ii?‘!!?@!}!;iiii for~right-part
| ‘* W* = value—for—list—element { value—for~list~element }
TR TR I
i E:li.“!flii;;gf - I‘efef‘ence-—for-hst—-element{ reference—for—list—element }
G e
Wl .
) Il E: i HI'L-EHZ:E;ZE valua—-for—-hst-—-e!ement
} [i‘ E['ll = Value—expressiop [while Boo!ean—expression]
Hili) | text—expression
LIt SN IR .
il iy | arithmetic~expressiop
el];._; S . . .) . .
!HH%;]h '-;;ii;; step arithmetic~expression until arithmetic-expression
o R
R IR .
ni | Bl I [l‘“ reference—for— list—element
l';lt L = reference~expression [while BOOfea.n-expression]
P N PRI
i |:!,zéa'!;i ik _ ' o
1 e “The simple variable of the for-clause is cajled "the controlled variable”. The statement following is called
SRR 6 the controlled statement”,
RERL
i

clause cauges the controlled s
- of the controlled

tatement to be execute
whether this pa

d repeatedly zero or more times. Each execution
eded by an assignment

statement is prec to the controlled variable and a test to determine
eément i3 exhausteq,

rticular for Jist el

Assigmn:ents may change the value of the controlled variable during execution of the controlled statement.
| bon exit from the for-statement, the controlled: variable
S Or Implicit) assignment operation,

has the value given to it by the last (explicit

Databehandling — Programsprak = SVENSK STANDARD SS 63 61 14
SIMULA Utgéava 1 Sida 47

W

4.4.1 For list elements

The for list elements are considered in the order in which they are written. When one for list element
is exhausted, control proceeds to the next, until the last for list element in the list has been exhausted.
Execution then continues after the controlled statement.

The effect of each type of for list element is defined below using the following nota.ﬁon:

controlled variable
value expression
reference expression
arithmetic expression
Boolean expression
controlled statement

PWrPSQ

The effect of the occurrence of expressions as for list elements may be established by textual replacement
in the definitions. ALPHA and DELTA are considered local to the fictitious block (4.4.3). DELTA is of

the same type as A2.

1. V (value expression) C=V;
S;
... next for list element

2. Al step A2 until A3 C:= Al,;
DELTA:= A%;
while DELTA*(C~A8) <= 0 do begin

S;

DELTA:= A2;

C:= C + DELTA;
end while;

... next for list element

3. V while B ALPHA:
Ci=V;
if B then begin
S;
goto ALPHA,;
end;
... next for list element

4. R (reference expression) C:~R;
S
... next for list element

5. R while B ALPHA:
C:~R;
if B then begin
S
goto ALPHA;
end;
... next for list element

T, —— = —

- ——— -
—_——— - —

i i To be valid, all for list elements
i semantically and syntactically
HU '|| 4.4.1 i3 subject to the rules of

J

|
]
é
| SS 63 61
] Databehandling - Programsprak - SVENSK STANDARD
i sIMuLA

: Utgdva 1 Sida-
i il L
SRR

The controlled variable

e The controlled variable cannot be a formal parameter called by name, or a procedure jdentifier.

in a for-statement (defined by

textual substitution, see 4.4.1) must be
valid. In particular each implied

reference assignment in cases 4 and 5 of

4.1.4 and 4.1.3, and each text value assignment in cases 1 and 3 of 4.4.1
REEA is subject to the rules of 4,1.2,
i Ll

The controjled statement

. » e
The controlled statement always acts ag if it were a block, whether it takes this form or not. Henc '
| labels on or defined within the controled statement are invisible outside that statement.

4.5 - Goto-statement

goto~statem ent

: = { goto | go to) designationa!—expression

by defining its successor explicitlytb)dr
‘on (i.e. a program point). Thus the next statement to be execute
s program point. | |

: IR The Program poin refere

_ - e —— -
——a -= .
- - - - - - - Eininin il N
- - -
——r_ e n
- - - - == =

[y 80 to Town(if y<0 then N o
II goto if Ab<c then L17

—— ———

nced by the designationa] €xpression must be visible at the goto-statement (cf.
9.6.2). See also 7.3.5, .
il Examples
i)
| goto L8

: goto exit(n+1)

10 :I IBE N+1)

i fiI!;'r-i else q(if w<0 ghen o else n)

elir

4 Databehandling - Programsprak — SVENSK STANDARD SS 63 61 14

48 SIMULA Utgava 1 Sida 49
4.6 Procedure statement

procedure—statement
= procedure—identifier—1 [actual—parameter—part]

A procedure statement interrupts the normal seqilence of operations by invoking (calling for) the execu-
tion of a procedure body. Conceptually this may be described in the following terms.

If the procedure has parameters an additional block embracing the procedure body block (cf. 5.4) is
created. All formal parameters correspond to variables declared in this (fictitious) block with types as
given in the corresponding specifications. Thus formal parameters are non-local to the procedure body,
but local to this block. The evaluation of the procedure statement now proceeds as described in 4.6.5.

4.6.1 Actual-formal parameter correspondence

The correspondence between the actual parameters of the procedure statement and the formal parameters
of the procedure heading is established as follows. The actual parameter list of the procedure statement
must have the same number of entries as the formal parameter list of the procedure declaration heading.
The correspondence is obtained by taking the entries of these two lists in the same order.

The type correspondence of formal and actual parameters is governed by the following rules:

- exact type correspondence is required for parameters of type text, character or Boolean as well as
for all array parameters, irrespective of transmission mode

- an actual parameter corresponding to a formal parameter of arithmetic type which is not an array
or procedure ¢an have any arithmetic type. The conversion follows the assignment statement rules
for parameters called by value and by reference and 5.4.3 for parameters called by name

— a type procedure can correspond to a formal parameter specified as a proper procedure

- the type of an actual parameter corresponding to a formal parameter of object reference type must
coincide with or be subordinate to the formal type (see 2.4.2).

[i'li i
A -
I’“i TR
N A S !
' i!'1: '
AR PO
IR R
B TR
AN 1|
IR F
'|_|| :!.- .:‘I'.
Lli"l '1
|||Iil Ili;
A
Priedy A

| “it; b
!. .'-:Hr" :':*
-g'ii?’r:_ o
b
IR LR
1 1! e

" .

!

|I
I
i :
||_- '
|+l !
i '
il |
:?i:

|
1
1] Tt
bid
[t
il: !
S
Rk
|I[i

1;“‘ i !:=
{1yl i 5f-'|’
S b
AR AL
H Ul :-r vl .ll
'Iii_n{ il iI|I .
‘1['1 | EJ :|'?gii1'|r_i
[B
e
MR
IR TR N H R
. ;l!{fl fi{J!!!ii:';]"..[:'j
T
||Ii.;|i ,:::.. |II|1'
EEANL ::!{i!i‘i!'!i
T rr g
R A
bt
b ':'IH:”‘
. | i1l lrl'll'[|
- IR

- - P
T —mr— e ———— ———— - ——

[- iJ“, N
IR
R TP
Pl
i
<
|

i :i:f'

E al

'

Databehandling - Programsprak -
SIMULA

MJM

SVENSK STANDARD SS 63 61

4.6.2 Value parameter replacement (call by value)

A formal parameter called by value designates initiall

. a local copy of t ined b
evaluating the corresponding actual parameter., ’ Py of the value (or array) obtained by

All formal parameters quoted in the val .
not quoted in the name pa ue part of the procedure heading as well as value type parameters

It are assigned the values of the correspondi h
assignm : . R ponding actual parameters, these
as :?hougel?t:_nb:gl;t?ziid;{zgkm p;"f"fm‘-'d explicitly before entering the procedure body. The effect is

e . . -
were made to variables loca to mbracing the procedure body were created in which these assignments

Asa consequence, this fictitious block with types as given in the corresponding specifications.

variables called .
but local to the fictitions blocke(ckya;?_];; are to be considered as non-local to the body of the procedure,

Note:
Parameters transmitted by value are evaluated onee only, before entry of the procedure body.

A te:'xt- Parameter called by
FP is the formal paramet

value is a local variable initialized by the statement "FP :~copy(AP)” where
is defined in 4.1.3, ang

er, and AP is the variable ident; : .
copy” in 8.3), - ified by evaluating the actual parameter. (":

Value specification is redundant for a parameter of valye type
Thereisn i |
o call by value option for object reference type parameters and reference type array parameters.

4.6.3 Default .-
Parameter replacement {call b
Any formal parame ()

ter which i .
called by reference. h is not of value type and which is not quoted in the mode part is said to be

led by reference is initiall

uating the corresponding actual Parameter, Sy

Y assigned a local copy of the reference obtained by eval-
under call by value,

ch assignments are entirely analogous to those described

before entry of the procedure body.

Where FP is the forma] Parameter and AP ig t;ar'iable initialized by a reference assignment "FP:~AP”

The reference assignment e reference obtained by evaluating the actual parameter.

h i3 subjec
s 2 reference type variab). italco lgt.to the rules of 4,1.3 and 4.1.4. Since in this case the formal parameter
‘ ents may be changed by reference assignments within the procedure

label an '
strong analogy betwoen parac d switch identifiers do not designate references to values, there is

Sense and references to entities such as arrays, procedures
Therefore a call by reference mechanism is

t ' ‘
be subordinate to that of the forn:l::l :igsi;::;zftec‘ Wit the actual parameter it

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgiva 1 Sida 51

___________m___.______—__————_———-——_m-_—-—_m_-

4.6.4 Name parameter replacement (call by naine)
Call by name is an optional transmission mode available only for parameters to procedures.

Each occurrence of a formal parameter called by name within the procedure body invokes an evaluation
of the actual parameter. This evaluation takes place in the context of the procedure statement, l.e. no
identifier conflicts can occur (since the procedure body and its variables are invisible).

If the actual and formal parameters are of different arithmetic types, then the appropriate type conversion
must take place, irrespective of the context of use of the parameter.

For an expression within a procedure body which is

1) a formal parameter called by name,
2) a subscripted variable whose array identifier is a formal parameter called by name, or
3) a. function designator whose procedure identifier is a formal parameter called by name,

the following rules apply:
1) Its type is that prescribed by the corresponding formal specification.

2) If the type of the actual parameter does not coincide with that of the formal specification,
then an evaluation of the expression is followed by an assignment of the value or reference
obtained to a fictitious variable of the latter type. This assignment is subject to the rules
of 4.1. The value or reference obtained by the evaluation is the contents of the fictitious

variable.

Also, for a formal text parameter called by name, the following rule applies:

- If the actual parameter is constant (i.e. CONST is true), then all occurrences of the formal
parameter evaluate to the same text frame (see 3.7).

Section 4.1 defines the meaning of an assignment to a variable which is a formal parameter called by
name, or is a subscripted variable whose array identifier is a formal parameter called by name, if the
type of the actual parameter does not coincide with that of the formal specification.

Assignment to a procedure identifier which is a formal parameter is illegal, regardless of its transmission
mode. :

Note: Each dynamic occurrence of a formal parameter called by name, regardless of its kind, may invoke the gxecution of
a non-trivial expression, e.g. if its actual parameter is a remote identifier, since the actual parameter is evaluated

at each occurrence.

- [———

s — o
. R —— e ———— _ - = -

| 1
A Databehandling - Programsprak SVENSK STANDARD SS 636
L SIMULA

Utgava 1 Sida
—_— o ietvat o;

4.6.5 Body execution
Al The execution of a procedure
[e the procedure has parameters.
il

S e—

call proceeds in the following steps, where 1 and 2 are performed only if

;];.,.,1 ' 1) The formal parameter block instance is created.
HOISNIHE
I :l '

Pl 2} Actual parameters corresponding to call by value or call by reference are evaluated as qe‘&i“b:s
Bt above and the results are assigned to the corresponding variables of the formal block instance,
R ":'l following the rulesin 4.1. Acty

Ll

al parameters corresponding to call by name are treated as described
e in 4.6.4,

3)

‘The procedure body is instantiated and starts executing,

The execution of the final statement of the procedure body, unless this statement is itself a goto-
statement, concludes with the execution of an

mplicit goto-statement to the program point immediately
following the procedure statement.

i 4.6.6 Restrictions

corresponding formal parameter. The {

| and some additiona] restrictions.

]*] i A formal parameter which ocenrs 23 2 destination within the procedure body and which is called b);
'i;“i‘“:f{il name can.only correspond to an actual Parameter which is an identification of 2 variable (special cas
L of expression),

REARR

R P

L

MGy

array created during the call has the same subscript bounds

Note: The ruleg stated above are app); ing the
‘ plicable only wh valuated durng
eXecution of the procedus, bpndy. ¥ where formal arrays or procedure calls are actually e

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgdva 1 Sida 53

e ——
4.7 Object generator statement

An object generator invokes the generation and execution of an object belonging to the identified class.
The object is a new instance of the corresponding (concatenated) class body. The evaluation of an object
generator consists of the following actions:

1) The object is generated and the actual parameters, if any, of the object generator are
evaluated. The parameter values and/or references are transmitted,

2) Control enters the object through its initial begin whereby it becomes operating in the
"attached” state (see chapter 7). The evaluation of the object generator is completed:

case a: whenever the basic attribute procedure "detach” of the generated object is
executed (see 7.1), or

case b: upon exit through the final end of the object .

The state of the object after the evaluation is either "detached” (case a) or "terminated” (case b). Cf.
chapter 7.

4.7.1 Parameter replacement

In general the correspondence between actual and formal parameters is the same for classes as for
procedures.

The call by name option is not available for classes. Procedure, label and switch parameters cannot be
transferred to classes.

For further information on the parameter transmission modes, see 5.5.0.

— - ——— ——

—

—

= pr——

‘ -— -
PR e

A ——————————

- —— —_—r—

— A o re——

——— a - e — —

Rl el

e R Lo R, SO Syefpn efeienlio
- - ———y— - -
e —— ok -

_—— - e . ot ——
- e a rm
e T o — .

g

. P —

—_—
-

—
—_——

. . e— L -
Loy o o, e

-— : e — - cC R T LY
e e . e =
- - . e
J, -
ot D e S

Databehandiing - Programsprak -
SIMULA

Utgdva 1 Sk

SVENSK STANDARD SS 636

£.8 Connection statement

connection—statement
= inspect object—express

[otherwise—clause]
| inspect object—exp

{ otherwise~clause]

ion when—clause { when—clause }

ression do connection~block~2

when—clause

= when class—identifier do connection—block--1

otherwise~—clause

——

= otherwise statem ent

connection—-block—] -

e

= statement

connection—block—2
= statement

inspect A when Al do
* inspect B when B1 do S1
* when B2 do §2
* otherwise $3:
Th

e inner connection statement includes the lines t

The purpose of the ¢
certain attribute ide

hat are marked with an asterisk (*).
onnection lmechanism is to

hin connection blocks,

ction statement is evaluated. Let its value be X.

2) If when-clauses are Present they are considered from left to right. If X is an object belongllngf
to‘a. class equal o inner to the gpe identified by a when-clause, the connection-blﬂjCk' l;)e
bhis when-clayge i3 executed, anq subsequent when-clauses are skipped. Otherwise,
when-clauge }q skipped.

3) Ifa tonnection-block-2 i Present it is executed unless X is none in which case the connection
block is skipped.

4) Ehe statement of an othem‘ise-clause is executed if X is none, or if X is an objef:t not

tlonging to 3 ¢lagg nner to the ona identified by any when-clause, Otherwise it is skipped.
ﬁﬂt&timeﬁ? which {s 3 ¢onnection-biock.1 op 5 connection-block-2 acts as a block, whether it takes the
rm : a f:ck Or not. It furthep acts as if enclosed by a
block”, During the executio
block has

¢ second fictitious block, called 2 "'-t:e;:p1:|11¢'-:t:i;:<3]111
s OLa connection blogl the object X is saig to be " connected”. A connectio
onn, Whi(‘.h iS th

‘ : © breceding class identifier for a connection-
ding object €xXpression for g, connection-block-2.

*Ing an attribute identification. Its item 1
e attribut k qualificatjop C. 1t follows that o connection block acts as

are ?Eﬁne ab prefix Jevelg outer tq a1111 (excl_udmg bels and Switches)

at differept Prefix ley (N

14
3 b

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 55

M

Example

Let "Polar” be the class declared in the example of 5.5.2. Then within the connection-block-2 of the
connection statement

inspect new Polar(4, 5) do begin ... end

a, procedure "plus” is available for vector addition.

4.9 Compound statement

compound-—statement
= begin compound—tail

compound—tail
= statement { ;statement} end

This syntax may be illustrated as follows: Denoting arbitrary statements and labels, by the letters S and
L, respectively, the syntactic unit takes the form:

L:L:..begin S; S; ... S; S end

Note: Each of the statements S may be a complete compound statement or block.

Example

begin x:=0; - B
for y:=1step luntil ndox i=x + a(y);
if x>q then goto stop -
else if x>w-2 then goto s;
aw: st: wi=x+bob
 end

il
IREERER)
el
: i -l | '
IR
T
i
RN
i Ii;iili
i
!i"!l;
AN
111“1
e
?!!i]
H
|l
i
[|
ot
1tfi“
it
b
Hil
l;u
i

: |
I
e
1R
I1!
15? |
i
gt
"!%El'll‘
) b
i]i'.
1

, .:.
S
|l5|
i"i 1[1:
R
i
thit
SR
il
il
S
Lo
Sk
St
I
o
I

Jilk statement Tollowi

SS 63
VENSK STANDARD
Databehandling - Programsprik - S

SIMULA

Utgava 1
4.10 Blocks

block

= subblock
| prefixed—block

subblock _
= block—head ; compound-tajl

block~head

= begin declaratioq {;decfarati’on}

. jons, and labels, "
This syntax may be illustrated as follows: D»E:J:u:ai:ing.a.rbltt':a.x';.P sta.tem‘ents, declarations,
the letters S, D, ang L, respectively, the syntactic unit takes the form:

L: L: ... begin D; D; .. D; S; 8; ...

: utside it and
the entity represented by this identifiep inside the block has no existence o

s laped Withiu
representing labels) occurring within a block and not being dec

» L€, will represent
immediately outside it

leve
the same entity inside the block and in the
+ A label separateqd by a colo

ent
n from a statement, j.e, labelling that statem
est embracing block, 1o the
body
Y declared in this bloek head. In this context, a Pr"ced]l::ed by l;egl“
» 07 @ connection block must be considered as if it were e;lf;n the case of 2
block, this block being nested within the fictitious block of 4'6:th1n a procedurt
h parameters, A label that is not within any block of the program (nor wi tn the implied
i oF @ connection block) is implicitly declared in
ock embracing the program.

A labe) is said t

art of an
block as well as identifiers introduced as P
feated in the same manper

as labels, ¢ be
mus
may itself be a block the concepts local and non-local to a 1:l‘l:;ikn,,;,n«Ir:!rcatl
identifier whieh, is non-local to 3 block A may or may no
a statement.

1 U
e

Databehandling ~ Programsprak -~
SIMULA

Example

Q: begin integer i, k; real w;
for 1:=1 step —1 until m do
for k:=i+1 step 1 until m do begin
w:= A(i, k);
A(i, k)= A(k, i);

Alk,i)=w
end for i and k
end block Q

4.10.1 Prefixed blocks

prefixed—block
= block—prefix main—block

block—prefix

= class—identifier [actual—parameter—part]

main—block
= block
| compound—statement

SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 567

An instance of a prefixed block is a compound object whose prefix part is an object of the class identified
by the block prefix, and whose main part is an instance of the main block, The formal parameters of
the former are initialized as indicated by the actual parameters of the block prefix. The concatenation

is defined by rules similar to those of 5.5.2,

The following restrictions must be observed:

1) A class in which reference is made to the class itself through use of this is an illegal block
prefix.
2) The class identifier of a block prefix must refer to a class local to the smallest block enclosing

the prefixed block (for system-defined class identifiers, see (2) of 5.5.1).

A program is enclosed by a prefixed block (cf. chapter 10).

Example

Let "hashing” be the class declared in the example of 5.5.3. Then within the prefixed block

hashing(64) begin integer procedure hash(T); text T;

[3} 1

end

a "lookup” procedure is available which makes use of the "hash” procedure declared within the main

block.

SVENSK STANDARD S§S 63

Utgdva 1

~ Programsprik -

Databehandling

SIMULA

Si

Dummy statement

1.11

dummy—statement
= empty

It may serve to place a label.

A dummy statement executes no operation.,

Example

begin statements; John: end

- R - = i e - : - - - by P — ———
ey — = ——— o e e s ey e - dar b A gkl —pr L i i e 1 A o N A e o . .

- - - - _—-- - - - - . | —- N e . — - lE . -
_ — e W L e ke o' —_—— [IPEp —_— —_— s ™ ——— - ——— — —— —— —————— r———— — . e e e a r mme T B E————— e — — —— —_ — e e ———
- = emms————— SeEe———ssw—m e mee e == - m— - - il T Tt~ . _ LT _I.” — - _— . e e — — - - - —— — - ——— e . — m— - [—— —_ . - = e - e e = e e — = - - - . —. - -

e - —_ — - ——= = — - —_ - - - T IoT o oo.T el - p— = = = === e e A 4 s b S e e A — = — . - . -- - - ————— — S — - == = . - - so=m e s = -
= - - = —— — — —— —— - -— — —_— - — — — —- e T - T T T T Tl IT — oL oI I ms Tt - a—= e S— —_ - — e e s — w— - —_ - - — ——— - e

i al . e e e e — . A e . —— ———— EE—————— e e i m—e b e e —m - ——— e - - —_———— — — = - oo imomnmnm e e T - P S
—-- . - - —_— — T _ . - _——— —— ——— [ey maa—r— —_ — —_ = - - - - -- .= - . — oo e —— ———— — — —_—— T =
—_——— . - - -- - o o - T ” I . - — - e = D e e -—
o e —————— —— a—— S — — — LS =T -
. S ————— e — P r— - - - —_—— : ' T
— — ——n — ——— ——— — — e e p —— — ——— —
- ——— p— - e A m o m i ————— —_ —_— ey — - — —
- - — fliie) P [r——— . —_ i —— —— ——— ——— — e — " L= ——= _— -
. . aE ———— — — — [- ———— — e — = = _—- - . - — - . — e ——— e —— = —_—— - ———— — T —————— ———" a mm e a—
S e - mm —— [—— - - - - - - = y
— - ——= — — -— . o I L e e e sttty — - - P s S ————————
J— - el et A ————————— e — — —_ M S . i — . - -
e — . il p—— S — e ——— T
- - _— —_ ——— ———- mmr——— — - ———————— ————— ——— ——— - -
_ - c e = ae am — — —— ——r - b —— - —ir ——— ——————— T ————T — ——T —— B - =
——— — - Aw-rar— rTem - . E—— i — — . —— A R W — —— — = e - —
. I e e - — —— e — — a—.— —_—
-— —r — — L e — —— R e m—— -
— o —a _— r ————— ———— — — L -
T - - — e —— —_— = — -
- —— e r—_— e —— P —— e e
- —_——— — —_— ——. ——— - -
s i — —_— —_ —————— = & - —
- ——— _ —mau — - T o

it
4

Databehandling - Programsprak -

5 DECLARATIONS

declaration

= simple—variable—declaration
array—declaration
switch—declaration
procedure—declaration
class—declaration
external—declaration

For external declarations, see chapter 6.

Declarations serve to define certain properties of the quantities used in the program, and to associate
them with identifiers. A declaration of an identifier is valid within a certain region of the program called
its "scope”. Outside the scope the particular identifier may be used for other purposes.

Within its scope the identifier declaration may be either "visible” or "invisible”. If visible an occurrence
of the identifier references this declaration. A declaration is invisible (within its scope) either because
the associated identifier has been redefined or because its visibility has been explicitly restricted (see
5.5.4) or because connection or remote access is necessary to make it visible.

Dynamically this implies that at the time of entry into a block instance all identifiers declarefl for the
block assume the significance implied by the nature of the declarations given. If these jdentifiers are
defined outside they are, for the time being, given a new significance. Identifiers which are not declared

for the block, on the other hand, retain their old meaning.

Apart from labels (see 4.10), formal parameters of procedure and class declarations, possible identi-
fiers introduced implicitly by external declarations, and identifiers declared in the program prefix, each

identifier appearing in a program must be explicitly defined within the program.

No identifier may be declared either explicitly or implicitly more than once in any one block head.

More precise scope and visiblity rules are given in 3.6,

SVENSK STANDARD SS 63 61 14
SIMULA Utgdva 1 Sida 59

SR set (cf. 1.2).

3.1.1 and 3.1.2),

iy 5.1.1

Databehandling - Programsprak - SVENSK STANDARD SS 63 6
SIMULA

: Utgava 1 Sic
i

5.1 Simple variable declaration

PR A simple~variable~declaration
S = type type-list

| L type—list
'|[) = type—list—element {, type—list—element }
if.;! i

type—list—element
I = jdentifier
: | constant—element

Type declarations serve to declare certain identifiers to represent simple variables of a given type (see

For constant element, see 5.8,

Value type variables
e Real type variables nay assume positive and negative values including zero.

i Integer type variables may assume positive and negative integral values including zero.

Boolean variables may assume the values trye and falge,

Character variables may assume the implementation-defined character values of the internal character

14 Databehandling — Programsprak — SVENSK STANDARD SS 63 61 14

60 SIMULA Utgiva 1 Sida 61
9.2 Array declaration

array—declaration
= [type] array array—segment {,array—segment }

array—segment
= array—identifier {, array—identifier }
(bound—pair—list)

array—identifier
= Identifier

bound—pair-list
= bound—pair {, bound—pair }

bound-pair
= arithmetic—expression : arithmetic—expression

An array declaration declares one or several identifiers to represent multi-dimens'ional arrays of sub-
scripted variables and gives the dimensions of the arrays, the bounds of the subscripts, and the type of
the variables.

The subscript bounds for any array are given in the first subscript brackets following the ic}entiﬁer of this
array in the form of a bound pair list. Each bound pair gives the lower bound of 2 su!:scrlpt foll?wed by
" followed by the upper bound. The bound pair list gives the bounds of all subseripts taken in order
from left to right.

Note: An initial "~" in an upper bound may follow *:" directly (cf. 1.3).
The dimension is given as the number of entries in the bound pair list.

All arrays declared in one declaration are of the same quoted type. If no type declarator is given the
type real is understood.

The expressions are evaluated in the same way as subscript expressions. This evalu?,tion takes p!ace once
at each entrance into the block through the block head. The expressions cannot mc.lude any identifier
that is declared, either explicitly or implicitly, in the same block head as the array in question, unless
the identifier is declared by a constant element. An array has elements only when the values of _a.ll upper
bounds are not smaller than those of the corresponding lower bounds. If any lower bound value is greater
than the corresponding upper bound value, the array has no elements. An attempt to access an elem;x}t
of an empty array leads to a run-time error. The array may, however, be created at block entry and it

may be passed as a parameter.

The value of an array identifier is the ordered set of values of the corresponding array of subscripted
variables, |

Examples

integer array a(2:20) ! 19 elements;
real array q(—7:if c<0 then 2 else 1) ! 10 or 9 elements;
array a, b, ¢(7m, 2:m), s(—2:10) ! any valueofnorm legal;

!
Sk

o
‘ [ERI
‘: 1| i ':. '|1! ':14-:.'
A 1 I R RS
fro A NE ||;.
L1 1
':.I I- ['Ir'l-r
T L N &
FEE I R
" I 111!5]I*t’
P I i-'!;.-
AR i f"]"'ll
L A B
Lo i il
|£ : |.|!’| 1!: i,
T RN
S 1B
'-. TSI
':r: "‘ *“]||“' i
|11 i ! i %'.Fllil| IE
IS "l
1.|._ | E”rl to
il ! v, S
SHI B O
s A
|[Ill i I{l. r'II
l £ |'|=i]
i e
C |i T
| ' H | : | [
i'ilr il |'-'|“-4"
IS § RI|neas
[| | 1 l | LI
R A
o i |i’1!i§
[! L |-';I'
’!',‘I. :' I!“H.H'
. i
:I.il_ 1! [|'f Ilr'
'-llf 51' [fil i:;!iili
ST 1 M
b i
TR H.'.:'!
S | N] o
! i: i :rlil':I::.".
AR A
I.Ii!'-ii.' ‘E!ll".
‘ll';' i E:‘ *IH': '
A TR
.1” Fl1 PO LRI '
|-|: '.| !EIHI"l
L*Ii !I| II|'|' -
e
AN { o ?!;lﬂi :
SO 1 L
II| :II ;i!!'.;'lg ;
.f :I i;, if;é:!"
L | [:II
T U
ool 1'1 ! L
I 4 B T
it IEEA
B0 5| S O
£i| TR !i}!f-"ﬁf
T I I'F qln |-I1:' 'I:
.'j: i' 1l irll:i' H
R Nl
'i:!,! |]'!‘:H’ p
A ! ::ll:r'l Y
o ! 11 NEHENY
o . L ey
NI |I'J'lH""':i!f
RIETET (0] i i
P Ak s o
1PE L A
- . ' i SN
%11?_ i g!a!'!-j..'-'
ST T P
: AL I'i!'j
N " i'1 I
-If"| R 1Ijlll' ,!.
SR R
:i“:'! g l i)
v ': |: 1 F,-.EIIF |I
'; il I,5|‘::L-.
1 ,}! : FE A
s N
Rk S T
! .i I!III-i P 1
ity
I BRI
!It I]'|
! ii'.i-"}i i
TSN
‘ g
ii“i i
IR R
i S
|||.: | !.:
fo
I : ;| ::
[, ! o
o
i NE
il'I I:Ii_-.

SVENSK STANDARD SS 6:
Utgava 1

ere is associated an
left to right. The

on is the va)
d integer,

. ing the
ordinal number (1, 2, ...) obtained by ;:villllnizie |
value of the switch designator corresponding to a g

R : ist having this give
the subscript eXpressi ue of the designational expression in the switch lis

value as its associate

Exampleg

switch g ;= 81, 82, q(m), if V>3 then 53 else g4
witch q := pl, w

5.4 Procedure declaration

pro cedure-—dec!aratr'on

= | type] Procedure procedure—-beadfng !

procedure-headfng
= procedure-identiﬁer

formal—-parameter-#part i | mode-part

procedure—body

] Specification—part]
brocedure- body

= statement

Proced Ure~identifep
= identifier

those parts of the

6114 Databehandling - Programsprak -~ __ SVENSK STANDARD SS 63 61:14
ida 62 SIMULA Utgdva 1 Sida 63

——— .

In addition, a procedure with parameters in certain respects acts as if a fictitious block embraced the
procedure body. The formal parameters then correspond to variables declared local to this fictitious
block. Thus, if the identifier of a formal parameter is declared anew within the procedure body, it is
thereby given a local significance and actual parameters which correspond to it are invisible throughout
the scope of this inner local quantity. |

No identifier may appear more than once in any one formal parameter list, nor may a formal parameter
list contain the procedure identifier of the same procedure heading.

See also 4.6.

Examples

procedure transpose(a, n);
array a; integer n;
begin real w; integer i, k;
for i:=1 step 1 until n do
for k:=1+i step 1 until n do
begin w:=a(l, k);
a(i, k):=a(k, i);
a(k, i)i=w
end
end transpose;

integer procedure factorial(n); integer n;
factorial:=: if n=0 then 1 else n*factorial(n~1);

procedure absmax(a, n, m, ¥, i, k);
name i, k, y ; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m
is transferred to y, and the subscripts of this element to i and k;
begin integer p, q;
yi=0; ii=ki=1;
for p:= 1 step 1 until n do
for q:= 1 step 1 until m do
if abs(a(p, q))>y then begin y:= abs(a(p, q));
= p; ki=q
end
end absmax; :

procedure innerproduct(a, b, k, p, y); name p, ¥, a, b;
integer k, p; realy, a, b;
begin real s; integer pp;

g:= 0;

for pp:= 1 step 1 until k do

begin p:= pp; s:= s+a*b; end;

yi=8

end innerproduct;

text procedure mystrip(t); text t;
mystrip:— if t.sub(t.[engﬂ::, 1)="" then mystrip(t.sub(1, t.length—1)) else t;

Databehandling ~ Programsprak —
SIMULA

- - L)
ERT PRI e

—_— e ———

SVENSK STANDARD SS 63 6

Utgiva 1 Sic

Values of function designators

' i i i with the
For a procedure declaration to define the value of 2 function designator, the type associated

t symbol
procedure identifier must be declared through the appearance of a type declarator as the very firs y

T ‘ caths identifier
of the procedure declaration. This identifier is implicitly ass:g-ne.d an nitial value (se];a !':i?)- The
may, in addition, occur (one or more times) as a destination within the procedure body.

If a function design

ator is used as 5, procedu
a statement may b

re statement, then the resulting value is discarded, but such
© used, if desired, for the

purpose of invoking side effects.

5.4.2 Parameter specification

formal~parameter—. part

= (formal-parameter {, formaf-—parameter})

formal- parameter
= identifiep

specification—~part

= Specifier identifier— jjst {; specifier identifier i} }

Specifier

= type [array | Procedure
| label

switch

The Procedure heg
of the formal payam

14
64

Databehandling - Programsprak —

SIMULA Utgava 1 Sida 65
5.4.3 Parameter transmission modes
mode-part

= name-part [value—part |
| value—part [name—part |

name—part
= name identifier—list ;

value—part
= value identifier—list ;

identifier—list
= identifier { , identifier }

There are three modes of parameter transmission: "call by value”, "call by reference” and "call by
name”,

The default transmission mode is call by value for value type parameters and call by reference for all
other kinds of parameters.

The available transmission modes are shown in fig. 5.1 for the different kinds of parameters to procedures.

Parameter Transmission modes
by value by reference by name

value type D I O
object reference type I D O
text 0 D O
value type array O D O
reference type array | D O
procedure I D O
type procedure | D O
label I D O
switch | D O

D: default mode O: optional mode It illegal

Fig. 5.1 Transmission modes for procedures

SVENSK STANDARD SS 63 61 14

e p— —— | @ =i ofErg
noOLTRL. ey

SRR 13
cmr owon

e — ———

'|| ch
e
2k
[
g
\ |
i
(HINIEE
MR
il b
1
1

- —— e
- ———

JE———
e - =

- - o : [
- R — _
Tt DI/ . . - -
- - - - - .-

i
il
A
NS
:1i|iii?f
LS
I
IR
' i' i:'l [
i1 e
g
s
TR
i
b
1.

= -’
P A

LR Tl - ap—
e Nl
L T wray

————

ARD SS 631
Databehandli‘ng ~ Programsprak - SVENSK STAND
SIMULA - Utgdva 1

2.5 Class declaration

class~declaration
= [prefix main—part

prefix
= clasg— identifier

main—part
= class c!a.ss-identiﬁer

[formal~parameter part ; | value—part | specification~part]i
[protection~part v] [virtual—part s]

class-identiﬁer
= identifier

clasg— body

= statement

| split— body
Split~body

e)

= {labe} } inner

final ~Operationg
= end

| ; compound--4a;f

An object s Benerated a4
call} of function desi

181
da 86

Databehandling — Programsprak -
SIMULA Utgéva 1 Sida 67

W

For a given object the formal parameters, the quantities specified in the virtual part, and the quantities
declared local to the class body are called the "attributes” of the object. A declaration or specification

of an attribute is called an "attribute definition”.

Specification (in the specification part) is necessary for each formal parameter. The parameters are
treated as variables local to the class body., They are initialized according to the rules of parameter
transmission, (see 5.5.5 below). The following specifiers are accepted:

<type>, array, and <type> array.

Note: Call by name is not available for parameters of class declarations.

Attributes defined in the virtual part are called "virtual quantities”. They do not occur in the formal
parameter list. The virtual quantities have some properties which resemble formal parameters called
by name. However, for a given object the environment of the corresponding "actual parameters” is the
object itself, rather than that of the generating call. See §.5.3.

Identifier conflicts between formal parameters and other attributes defined in a class declaration are
illegal.

The declaration of an array attribute may in a constituent subscript bound expression make reference to
the formal parameters of the class declaration, but subscript bound expressions which refer to attributes
other than the formal parameters of the class declaration (or its prefixes, see 5.5.2) are illegal,

5.5.1 Subclasses

A class declaration with the prefix "C" and the class identifier "D" defines a subclass D of the class C.
An object belonging to the subclass consists of a "prefix part”, which is itself an object of the class C,
and a "main part” described by the main part of the class declaration. The two parts are " concatenated”

to form one compound object. The class C may itself have a prefix.
The following restrictions must be observed in the use of prefixes:

1) A class must not occur in its own prefix sequence (see below).

2) A class can be used as prefix only at the block level at which it is declared. A system class
used as a prefix is, together with all classes of its prefix chain, considered to be declared in
the smallest block enclosing its textual occurrence. Thus redeclarations may occur at inner
block levels of a program. An implementation may restrict the number of different block

levels at which such prefixes may be used (see chapters 6, 10, 11 and 12).

Let Cy, Cz, ... , C, be classes such that C; has no prefix and Cj has the prefix Cgy (k =2, 3, ... , n).
Then C,, Cs, ... , Gk, is called the "prefix sequence” of Cy (k = 2,38, .. ,n). The subscript k of C:k
(k=1,2,..,n) is called the "prefix level” of the class. C; is said to "include” Gz if i <= P a.nc! Ce is
called a "subclass” of C; if i > j (i, j = 1, 2, .. , B). The prefix level of a class D is said to be "inner”
to that of a class C if D is a subclass of C, and "outer” to that of C if C is a subclass of D.

SVENSK STANDARD SS 63 61 14

s e P T -l E— e

-

R R e e

]
|
AN
'!:iqi
It
I8

- - Tl - -
e ——— = —
x - L . - -
e -

- _ee——_ —_— e e T s e e e L T ————

|
o
L
.E|F . -|

il
I
S i
:';I || ’ 1
b
tp b
ST
I:l |
s .
:|!ffl ' :i
Wt
'2 t
I|
N

Databehandling ~ Programsprak —
SIMULA P SVENSK STANDARD SS 63 61

Utgava 1 Sida

Example

I}
..J | AclassE)
n B A capital letter de :
it part of an shject Eg;‘:i; ;;aii t'i'h:: c;:vrrespondm.g lower case letter represents the attributes of the main
|]| o shown in fig, 5.4 indicate the all: iaﬂs In an implementation of the language, the object structures
|[” variables, catlon In memory of the values of those attributes which are simple
b
ol
L
i
L A
i class A
|}I ~ includes: A,B,C,D,E
clags B ~ outer to: B,C,D,E
1. ~ includes: B,G,p ° E
. Bt — outer to: CD
E’ — inner to; A
ik

Ny : ¢
! D

L

Fig. 5.3

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgdva 1 Sida 69

5.5.2 Concatenation

Let C, be a class with the prefix sequence C;, Ca; ... , Cn—1, 2nd let X be an object belonging to Cy.
Informally, the concatenation mechanism has the following consequences.

1) X has a set of attributes which is the union of those defined in G;, Cs, ... , Cs. Anattribute
defined in C) (1 <= k <= n) is said to be defined at prefix level k.

2) X has an "operation rule” consisting of statements from the bodies of these classes in a
prescribed order. A statement from Cy is said to belong to prefix level k of X.

3) A statement at prefix level k of X has access to all attributes of X defined at prefix levels

equal to or outer to k, but not directly to attributes made invisible by conflicting definitions
at levels < k. (These invisible attributes may nevertheless be accessed, for example through
use of procedures or this.)

4) A statement at prefix level k of X has no immediate access to attributes of X defined at
prefix levels inner to k, except through virtual quantities. (See 5.5.3.)
5) In a split body at prefix level k, the symbol inner represents those statements in the oper-

ation rule of X which belong to prefix levels inner to k, or a dummy statement if k = n.
If none of Gy, ... , Cn; has a split body the statements in the operation rule of X are

ordered according to ascending prefix levels.

A compound object could be described formally by a "concatenated” class declaration. The process
of concatenation is considered to take place prior to program execution. In order to give a precise
description of that process, the following definition is needed.

:‘\n occurrence of an identifier which is part of a given block is said to be an "uncommitted occurrence
in that block”, unless it is the attribute identifier of a remote identifier (see 5.5.6), or is part of an inner
})lock in which it is given a local significance. In this context a "block” may be a class declaration not
including its prefix and class identifier, or a procedure declaration not including its procedure identifier.

Note: An uncommitted identifier occurrence in a block may well have a local significance in that block. -

The class declarations of a given class hierarchy are processed in an order of ascending preflx levels. A
class declaration with a non-empty prefix is replaced by a concatenated class declaration obtained by

first modifying the given one in two steps.

1) If the prefix refers to a concatenated class declaration,
have been carried out, then the same substitutions are effe

occurrences within the main part.

2 If now identifiers of attributes defined within the main part have uncqmm'i.tted ochr}‘enceﬂ
within the prefix class, then all uncommitted occurrences of these identifiers w1th1-n the
main part are systematically changed to avoid name conflicts. Identifiers corresponding to

virtual quantities defined in the prefix class are not changed.

in which identifier substitutions
cted for uncommitted identifier

e e gl e e e, A

A o w——

SIMULA

1)
2)

Example

Databehandling ~ Progrémsprék -

end point;

d in terms of the given declaration, modified as above, and
ass

Its formal parameter Jjst co

nsists of that of the prefix class followed by that of the main
part.

the main part in the following way, assuming the

The begin of the block head is replaced by a copy
of the block head of the prefix body, a copy of the initial operations of the prefix body 1
inserted after the block head of the main part and the end of the compound tail of the main

part is replaced by a copy of the compound tajl of the prefix body. If the prefix class body

is not a, split body, it is interpreted as if the symbols ”;inner” were inserted in front of the
end of itg compound tail,

body of the prefix class is 3 split body.

class point(x, ¥); realx, y;
begin ref (point) procedure plus(P); ref (point) P;

Plus:i— new point(x+Px, y+P.y)

in a cartesian plane. Jts attributes are x, ¥
ition,

begin real Ly V3

ref (polar) procedure plus(P);

Plus ;~ pew polar(x4-P.y, y+P.y);
L= sqr(x+2 - y*#2);
vi= arctan(x, y);

SVENSK STANDARD SS 63 61 14

The concatenated class declaration is define
the concatenateq declara.tiox; of the prefix ¢

BT ST

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 71

L ————— I T EEE—————————————
5.5.3 Virtual quantities

virtual—part
= virtual : virtual-spec ; { virtual-spec ; }

virtual—-spec
= specifier identifier~list
| procedure procedure—identifier procedure—specification

Virtual quantities serve a double purpose:

1) to give access at one prefix level of an object to attributes declared at inner prefix levels,
and | |
2) to permit attribute redeclarations at one prefix level valid at outer prefix levels.

The following specifiers are accepted in a virtual part:
label, switch, procedure and <type> procedure.

A virtual procedure may optionally be specified with respect to its type, and the type, kind, and trans-
mission mode of its parameters (if any). If the virtual procedure is so specified, the procedure identifier
of the virtual-spec has no significance, while the procedure specification determines the identifier to be
used elsewhere in the program, following the rules of 6.3.

ft virtual quantity of an object is either "unmatched” or is identified with a " matching® attribute, which
13 an attribute whose identifier coincides with that of the virtual quantity, declared at the prefix level of

the virtual quantity or at an inner one. The matching attribute must be of the same kind as the virtual
quantity, '

A virtual procedure quantity that contains a procedure specification, can only be matched by a proced}lre
of the same type, and with the same procedure heading as that of the procedure specification. Otherwise,
the type of the matching quantity (at a given prefix level) must coincide with or be subordinate to (see

[24?) that of the virtual specification and that of any matching quantity declared at any outer prefix
evel,

At any given prefix level PL inner or equal to that of a virtual specification, and in the absence of a
Procedure specification, the type of the virtual quantity is

i

if there is no match at prefix levels outer or equal to PL, then that given in the virtual specification,

if there is a match at a prefix level outer or equal to PL, then that of the match at the innermost
prefix level outer or equal to PL.

—

It is a consequence of the concatenation mechanism that a virtual quantity of a given object can have

at most one matching attribute. If matching declarations have been given at more than one prefix level
of the class hierarchy, then the one is valid which is given at the innermost prefix level outer or equal to

that of the majn part of the object. The match is valid at all prefix levels of the object equal or inner to
that of the virtual specification.

T ——— T WeRTEry T e e st L e e e -

gy g - -

IR
Ir |,‘-_,
| i'5|1-_,

|
1
1
Y
o) !
I . 1
I
MR
vl |; o
.-|_|I)
BLAL R
ST S
ST
P
I-.;!: . r.
T, |
NH 1
gl ¥
::?JI : Efl
b .
1 f
AR}
IR
il |
ol
L| . '’
i ’Ei
-.1 I‘: ' I-:
Ll
{. ; i
| o
Ol !.‘I
g .
|4: :
R I
o i
I .

Databehandling - Programsprak -
SIMULA

Example

The following class exp
part”,

class hashing (n); integer n;
virtual: integer procedure hash;
begin integer procedure hash(t); text t;
begin integer i
t.setpos(1);
while t.more do §:= | +- rank(t.getchar);
hash:= modfj, n);
end hash;

text array table (0:n—1); integer entries;
integer procedure lookup (t, old);
name old; Boolean old; text t;
begin integer i, istart; Boolean
L= istart:= hash(t);
while not entereg do
begin if table(i)==notext thep
begin table(i):~ copy(t);
entries:= entries + 1;
entered;= true;
old:=false
oud else if table(j) = 4
then o]d:= entered:= trye
else begin j:= j + 1:
if i=n then 1;=0;

if i=istart then error{” Table full.")
end

end;
lookup;= i;
end lookup;
end hashing;

entered;

hashing clagg ALGOL..hash;
begin integer Procedure hash(T);

begin integer i; character c;
T.setpos(1);

while T.more do begin
¢:= T.getchar:

if ¢ <> 77 then = § 4+ rank(c)
end; -

hash:= mod(i, n);
end hagh;
end ALGOL_haah;

text T

SVENSK STANDARD SS 63 61 1

Utgdva 1 Sida

. - . n le
resses a notion of "hashing”, in which the "hash” algorithm itself is a replaceab

—is)

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 73
9.0.4 Attribute protection
protection—part

= protection--specification { ; protection—specification }

protection—specification

= hidden identifier—list
protected identifier—list
hidden protected identifier—list
protected hidden identifier—Ilist

The protection specification makes it possible to restrict the visibility of class attribute identifiers.

A class attribute, X, which is specified protected in class C is only visible:

1) within the body of C or its subclasses

2) within blocks prefixed by C or any subclass of C.

In any other context the meaning of the identifier X is as if the attribute definition of X were absent.
Access to a protected attribute is, subject to the restriction above, legal by remote accessing.

A class attribute may be specified protected only at the prefix level of its deﬁzﬂtion. Noise th?.t a virtual
attribute may only be specified protected in the class heading in which the virtual specification occurs.

Attributes of the classes Simset and Simulation are protected.

A visible class attribute, X, specified hidden in class C is not visible within subclasses of C or blocks

brefixed by C or any subclass of C. In this context the meaning of the identifier X is as if the attribute
definition of X were absent.

Only a protected attribute may be specified bidden. However, this specification may occur at a prefix
level inner to the protected specification.

The effect of specifying an attribute hidden protected or protected hidden is identical to that of specifying
it s both protected and hidden.

Conflicting or illegal hidden and/or protected specifications constitute a compile-time error.

Note: Specifying a virtual quantity hidden effectively disables further matching at inner levels.

It in the prefix sequence there are several attributes with the same identifier as that l‘:'fdac;l hidden specification, and
these are previously protected, but not hidden, the innermost accessible attribute is hidden.

v 2. |l_ ! “l ” ‘I |‘
32 s Aot e] !

i i
i -.I'!.’ i
S NRIH
o .lg|"-;3 11
eyl | :[
SRR

o N
! i " |J
[
d ik
1
b
Ay
. [:. I'
| 2E
1 !|
1
1
B} l'|
?; 1%
:‘ A Il'
i{ Lk
[REd
|| e

I

g

I

fik

[l
i
3o

I I "

i sl

mmm A e —-

Databehandling ~ Programsprak — SVENSK STANDARD SS 63 61
SIMULA

Utgdva 1 Sida

Parameter transmission modes

There are two mod

; ¢ es of parameter transmission avajlable for classes:
reference”,

"call by value” and "call by

The default transmission mode is cal] by value for value type parameters and call by reference for all
other kinds of parameters.

The available transmission modes are shown in fig. 5.4 for parameters of class declarations.

Parameter Transmission modes

— by value by reference
value type |

object reference type I
text '

value type array O
reference type array I

O
whwlwilol

14
L

Databehandling - Programsprak -

S L AR A | P

9.0.6 Remote accessing
An attribute of an object is identified completely by the following items of information:

1) the object,
2) a class which is outer to or equal to that of the object, and
3) an attribute identifier defined in that class or in any class belonging to its prefix sequence.

Item 2 is textually defined for any attribute identification. The prefix level of the class is called the
"access level” of the attribute identification.

Consider an attribute idensification whose item 2 is the class C. Its attribute identifier, item 3, is subjected
to the same identifier substitutions as those which would be applied to an uncommitted occurrence of that
identifier within the main part of C, at the time of concatenation. In that way, name conflicts between
?.ttributes declared at different prefix levels of an object are resolved by selecting the one defined at the
iInnermost prefix level not inner to the access level of the attribute identification.

An uncommitted occurrence within a given object of the identifier of an attribute of the object is itself
a.‘comple:te attribute identification. In this case items 1 and 2 are implicitly defined as, respectively, the
given object and the class associated with the prefix level of the identifier occurrence.

H :'mch an identifier occurrence is located in the body of a procedure declaration (which is part of the
Ob.lect),‘then, for any dynamic instance of the procedure, the occurrence serves to identify an attribute
of the given object, regardless of the context in which the procedure was invoked.

,I,?.emote a'Lccessing of attributes, i.e. access from outside the object, is either through the mechanism of
remote identifiers” ("dot notation”) or through "connection”.

:;L :ext variable is (itself) a compound structure in the sense that it has attributes accessible through the
ot notation.

5.5.7 Fictitious outermost prefix

4;1;}’_ l;:lz;ss that has no (textually given) prefix is by definition prefixed by a fictitious class whose only
ridute is: _

Procedure detach; ... ; (see 7.3.1)

Thus every ¢lass object or instance of a prefixed block has this attribute.

1 Ot ———

| SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 75

ek e e

P e el w1 D

Databehandling - Programsprak -
SIMULA

Utgava 1 Sida.

SVENSK STANDARD SS 63 61

5.6 Scope and visibility rules

This section contains the scope and visibility rules governing the identifiers

An identiﬁer 18 introduced either im
MENT and BASICIO, or as text

introduced in the program.

plicitly (through a definition in one of the system classes ENVIRON-
attribute), or explicitly

1) By its occurrence ag g class attribute either in t

he formal parameter part or in the head of
the class body, This

i3 called an "attribute definition”,

class
2) By its occurrence as 2 class attribute in the virtual part, but not in the head of the
body. This is called an unmatched virtual definitjon” l
. . " forma
3) By its occurrence in g formal parameter part of a procedure. This is called a "fo
Parameter definition” . l
"loca
4) By being declared in the head of a subblock or prefixed block. This is called a
declaration”, ocal
. ca
5) By its occurrence g3 2 label. In this case an implicit declaration is 1nse.rted lclll g?ti:n“,
block, If this block is a class body, the label definition is called a " label attribute de
otherwise it is considered a special cage of one of 3 or 4 above,
-~ 6) By its occurrence in an external

.
declaration which is part of an external head of 2 modul
This is called a "head definition”

The "local blgck tlon is the textually closest embracing block (subblock, prefixed
udin

lock, or procedure or class body), ing| g the fictitious blocks surrounding the controlled statement
of a for—sta.tement, a procedure or ¢]agg decla

. . 1ts
RIS ration, a connection block ete, The identifier (and i
definition) is sajq to be local within this block,

A distinction is mage between the "scope” and the visibility” of an identifier definition and its associated
1dentiﬁ§r as follows,

The scope of an identifier definition js that Part of the program text in which it may have an

553-1 Scope of identifiep definitions
1 The scope of 2 attribute defipitinan : * ich
"€ definition j th ion in whic

the definition occurs, ® Whe same as that of the class declaratio

2) The 5c0pe of an un ' '
. Mmatched virgyg) declaration i eclaration
in which the defyn; tion oceyry ation is the same ag that of the class d

3)

The 3C0pe of a formg) Parameter definitiop js the procedure body.

Databehandling —~ Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 77

4) The scope of a local declaration is the textual extent of its local block, i.e. from the begin
of the block in question to the matching end.

5) The scope of a label or switch attribute definition is the protection part, the virtual part,
and the body of the class in which the definition occurs, extended by the protection part
and body of all its subclasses.

6) The scope of a head definition is the source module in which it occurs, If the head is followed
by a class or procedure declaration the scope is extended by the scope of that declaration.

7) The scope of a separately compiled declaration is the definition itself, extended with the
scopes of all external declarations that reference the definition in question.

8) The scopes of attributes of system classes extend over all source modules.

5.6.2 Visibility of identifiers

Id'enfsiﬁer definitions can only be visible within their scope. The visibility of a particular definition may
within its scope be restricted by

a) the occurrence of an identifier definition with the same identifier (a “redeﬁxfit.:ion“ of t]ize
identifier) within some construct enclosed by the local block of the former definition. Within
their common scope only the innermost of such redefinitions are visible.

b) the occurrence of a redefinition at some inner prefix level.

c) remote access, which may cause some identifier definitions to become invisible within the
inspection block or dot notation.

d) use of this or qua which may cause one or more redefinitions (of type b) to be temporarily
suspended.

e) a protection part of the class declaration to which the definition is local (see 5.5.4).

Redefinition of an identifier is not allowed at the head of its local block.

Note: This prohibits the occurrence of two definitions of the same identifier in the same block. A formal pri‘oce'csi_ure
Parameter identifier may, however, be redefined in the head of the body belonging to its procedure de:rt.am ron.
Such a redeclaration effectively restricts the visibility of the formal parameter to its associated value part, name

Parlt» and specification part. Thus the only effect of such a parameter is the possible side effects resulting from its
evaluation.

In the -deta,iled visibility rules given below the word " visible” means nvisible but for possible effects of
redefinitions or other restrictions as stated above”.

1) An attribute definition is visible within the protection part and the body of its class, and
within all classes or blocks prefixed by that class identifier.

Formal parameters of the class are, in addition, visible within the value part and the spec-
ification part of the class declaration. Attributes which are not formal parameters are in
addition visible within the virtual parts of its class and of all its subclasses.

Note: The visibility of an attribute definition may be restricted or extended as noted under ¢)~e) above.

2) An unmatched virtual definition has the same visibility as an attribute definition which is
not a formal parameter of the class.

3) A formal parameter definition is visible within the value part, name part, specification part,
and within the body of the procedure in which it occurs.
1) A local declaration is visible within its scope.
5) A label or switch attribute definition is visible within its scope.
6 e e e v e
) A head definition is visible within its scope.
7 ernal definitions of its exter-

A separately compiled definition is visible, together with all ext

nal head (if any), within the scope of an external declaration which refers to the definition.

———rrn s

T e B e e

= - —— e —.— .,

e L

e em—m— m = = - . [- e - g . — -
P - - - - .. o R - .
- = - . e L o -
- . . e - . - e ST T h
T R T o e T S T T L T L = . 5z] - R T IO T —

' b v
_— m ———
A T e

- e ow

e

Databehandling ~ Programspriic —
SIMULA) | gramsprak SVENSK STANDARD SS 6361 14

. : | Utgéva 1 Sida 78

Note: If an extern s s ,
al procedure declaration is given with a procedure binding, the declaration defines two identifiers,

occurring textually before and after is. Th isibili
f 2T 1. “lhe scope and visibility of the definition & » a1
ollows the rules stated above, while the identifier given in the efct.erna.l it:mnils Iii::rifiﬁz :Eeglhee?el:ocedure pinding

A Mt e xea
possible kind identifier of an external procedure declaration is invisible elsewhere.

Dynamic aspects of scope and visibility rules
Apart from the static rules ¢}

See also 2.4.1 and 3.8.1,

Databehandling - Programsprak — SVENSK STANDARD SS 63 6_1 14
SIMULA Utgava 1 Sida 79

5.7 Initialization

Any declared variable is initialized at the time of entry into the block to which the variable is local. The
initial contents depend on the type of the variable:

real-type 0.0

integer-type 0

Boolean false

character 1oy

object reference type none

text notext
0.8 Constant declarations

constant—element
= identifier = value—expression
| identifier = text—expression

An identifier which is declared by means of a constant element has a fixed value. Any attempt to assign
to or otherwise alter the value of such an identifier constitutes an error.

If the identifier is of arithmetic type then the value expression must also be of arithmetic type. Type
conversion may

: be invoked following the rules given for arithmetic assignment (see 4.1.1). Othew{ise,
strict type correspondence is required between the type of the declaration and the type of the expression.

The constant element is subject to the following exception from the normal rules governing the occurrence
of expressions in declarations.

Any occurrence within the

expression of an identifier must refer to another constant declaration, which
must occur textually befor

e the referencing constant element.

The <constant element>s of a block head are evaluated from left to right.

Databehandling -- Programsprak —

6 PROGRAM MODULES

SIMULA—-source—module
= | external—head]

{ program | procedure—declaration | class—declaration } [; |

Program modules constitute compilable programs, procedure declarations, and class declarations.

Example
external class b, ¢; ! external head of class e;
b class e(f); ref (c)f;
begin
external class d;
external procedure aproc;
ref (d) dref;
dref :~ new d;
aproc(dref);
end class e;

6.1 External declarations

éxternal-head

= external-declaration ; { external—declaration ; }

L

external-declaration

= extemal-—-pmcedure—-decla-.ration
| external~class—~declaration

An external declaration i3 a substitute for a complete introduction of the corresponding source module

;iferred to, including lts external head. In the case where multiple but identical external declarations
“Ur'as a consequence of this rule, this declaration will be incorporated only once.

Note: : ! |
ote AF Uncommitted occurrenceof 3 standard identifier within a source module refers to the declaration of that identifier
within the clasg ENVIRONMENT or

with th : BASICIO, implicitly enclosing the main program (see chapters and 10},
the exception of class identifiers (see 5.5.1).

If a class identifier is referen i '
ced before the body of a separately compiled procedure or class declaration, or in a
program black prefix, then this identifier must be declared in the external head.

6.2 The main program

pProgram
= statement

The s .
atement of the ma2in program is implicitly enclosed in a prefixed block as described in chapter 10.

SVENSK STANDARD S$S 63 61 14
SIMULA Utgava 1 Sld_a 81

3

s
[|;.J:'[!'| J*
AT
IR
R
)
I;
B
b
!
]
!
| n
|
I
|
|
i
|
!
| |
; |
| 1
- |
|
o
|
O
| !
C
o
o
o
S £
| f
| J
‘ i
.
. §
n i
I:I
i.

___ — e .
-

o —

!
!Ij'_
L TR
N
:_.i
i
b
.
Ji-.E
I ; :
SRTRI ¥
b
it
i
4
I|
ol
/|
|
y
‘|
[
'y
I
[
.
1

Databehandlin
SiMuLa

o SVENSK STANDARD SS 6.

g~ Programsprak ~

6.3
External pProcedure declaratjon

externa!-pmcedure d
e) —declaration
T xternal [kind] [type

procedureQ-speciﬁpation
= ig procedm"e-declaration

ratt L] .
'0n may indicate the source language in which the separatel

. itten (e
» The inte : 8. assembly, Fortrap), i PR
rpretation of king (if given)‘ s imp]egaenfz:iolz-?dipfﬁinﬁe en;pty-rf i lnguses

6.4 External class declaration

external—class—declaration
= external class external—list

An implementé.tion may restrict the number of block levels at which an external class declaration may
occur,

Note: As 2 conse

quence of 5.5.1 all classes belonging to the prefix chain of a separately compiled class must be declared
in the sam

e block as this class. However, this need not be done explicitly; an external declaration of a separately

compiled class implicitly declares all classes in its prefix chain (since these will be declared in the external head of
the class in question).

6.5 Module identification

external—list

= external-item {, external—item }

external—item

= identifier [= external—identification |

external—identification

—

= string

The identifier of an external item must be identical to the identifier of the corresponding separately
compiled class or SIMULA procedure.

A}l external item may introduce an external identification to identify the separately compiled module
With respect to the

environment, The interpretation of the external identification strin.g is imple:mel‘l-
tation-dependent, as is the identification of the module in question in case no external identification is
glven,

Databehandling — Programsprak — SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 85
7 SEQUENCING
7.1 Block instances and states of executioh

The constituent parts of a program execution are dynamic instances of blocks, i.e. subblocks, prefixed
blocks, connection blocks and class bodies.

A block instance is said to be "local to” the one which (directly) contains its describing text. For Ensta.nce
an object of a given class is local to the block instance which contains the class declaration. The instance
of the outermost block (see chapter 11) is local to no block instance.

At any time, the "program sequence control”, PSC, refers to that program point within a block instance
which is currently being executed. For brevity, it is said that the PSC is "positioned” at the program

point and is "contained” by the block instance.

The entry into any block invokes the generation of an instance of that block, whereupon the PSC enters
the block instance at its first executable statement. If and when the PSC reaches the final end of a non-
class block instance (i.e. an instance of a prefixed block, a subblock, a procedure body or a c?nnection
block) the PSC returns to the program point immediately following the statement or expression which
caused the generation of the block instance. For sequencing of class objects see 7.2 and 7.3.

A block instance is at any time in one of four states of execution: "attached”, "detached”, "resumed” or
"terminated”.

A non-class block instance is always in the attached state. The instance is said to be "attached to” the
block instance which caused its generation. Thus, an instance of a procedure body is attached to the
block instance containing the corresponding procedure statement or function designator. A non-class,
non-procedure block instance is attached to the block instance to which it is local. The outermost block
instance (see chapter 11) is attached to no block instance. If and when the PSC leaves a non-class block
instance through its final end, or through a goto-statement, the block instance ceases to exist.

A class object is initially in the attached state and said to be attached to the block :inst.ance cox:taimng
the corresponding object generator. It may enter the detached state through the executlon-of a "detach
statement” (see 7.3.1). The object may reenter the attached state through the execution of a call
statement (see 7.3.2), whereby it becomes attached to the block instance containing the call statement.
A detached object may enter the resumed state through the execution of a resume statement (see 7..?:.3).
If and when the PSC leaves the object ii;ough its final end or through a goto statement, the object
enters the terminated state. No block instance is attached to a terminated class object.

The execution of a program which makes no use of detach, call or resume statements is a simple nested
Structure of attached block instances.

Whenever a block instance ceases to exist, all block instances local or attached to it also cease to exist,
he dynamic scope of an object is thus limited by that of its class declaration.

The dynamic scope of an array declaration may extend beyond that of the bl-ock instance containing the
declaration, since the call by reference parameter transmission mode is applicable to arrays.

I Y

_ S BEE -
-—— -

el s e ==

T - = _r - .

— — e L = e ——, oy, —rZ o o
e r— h et -

. = - — e T EE——— - —r
..-_ b ey —fi— ——— - B

—— -

- -._.-\..n. _*.-.-. —_—r——

— —————— e Ty i,
L T

Databehandling - Programsprak -
SIMULA

7.2 Quasi-parallel systems

A quasi-paralle] system is identified by any

instance of a subblock or a, prefixed block, containing a local
class declaration. The block instance which

identifies a system is called the "system head".

n
The outermost block instance (see chapter 11) identifies 2 system referred to as the " outermost system”.

A quasi-parallel system consists of ” components”

. In each system one of the components is referred to
23 the "main component” of the system. The oth

[] “
€r components are called "object components”.

d structure of block instances one of which, called the " component head”, idei;tlgz
of a system coincides with the system head. The he

At any time exactly one of th
component has an associated "reacti
will continue if and when the compo

system is said to be "operative”. A non-operative

vation point” which identifies the program point where execution
nent is activated.

' - n
@ program execution may contain "independent object ?omponfllllt‘-’is
em. The head of any such component is a detached object whic

ce of a procedure body, i.e. which is not local to a system head. By
S are always non-operative,

tach, call and resume statements, defined in 7.3. All

ree . . tly or implicitly specified object. The following two
Sections serve as an informal outline of the effects of these statements,

7.2.1 Semi-symmetric seq uent:ing: detach - -caH

Il; this section the concept of quasi-parallel system

are considered, making no distinction between com

is irrelevant. Consequently, only object components
are independent,

ponents which belong to a system and those which

']T:‘hedcomhpongnt Il?a.)i) be reactivateqd through the execufion
€ad, whereby the SC i 0 its reactivat]
ccomes attached to the block i i the oy s, LA

reenters the attached state and
8tatus as a component,

all statement, The component thereby loses its

SVENSK STANDARD SS 63 61

| Utgava 1 Sida

e Tl T i o P S ———— -

T e e aaEma - o ..

Databehandling -~ Programsprak -

The previously operative component of the system becomes non-operatiive and .its reactivation _point ia
positioned immediately after the resume statement. If this component is an object component its head
enters the detached state.

The main component of the system regains operative status through the execution of a detach statemer}t‘.
with respect to the resumed head of the currently operative object component, whereby the PSC is
moved to the reactivation point of the main component. The previously operative component becomes

non-operative, its reactivation point positioned immediately after the detach statement. The head of
this component enters the detached state.

Observe the symmetric relationship between 2 resumer and its resumee, in contrast to that between a2
caller and its callee. |

7.2.3 Dynamic enclosure and the operating chain
A block instance X is said to be "dynamically enclosed” by a block instance Y if and only if there exists
a sequence of block instances
X=20,Z1) ey Zn = Y (n>=0)
such that for i= 1, 2, ... , n:

= Li is attached to Z;, or
- Z;<1 i3 2 resumed object whose associated system head is attached to Z;.

Note that 2 terminated or detached object is dynamically enclosed by no block instance except itself.

The sequence of block instances dynamically enclosing the block instance currently containing the PSC

s called the "operating chain”. A block instance on the operating chain is said to be "operating”. The
outermost block instance is always operating.

A component is said to be operating if the component head is operating.

A system is said to be operating if one of its components is operating. At any time, at most one of

the components of g, system can be operating. Note that the head of an operating system may be
non-operating, s

a‘]n Olzerating component is always operative, If the operative component of a system is non-operating,
Wl:?inh he system s also non-operating. In such a system, the operative component is that component
¢4 Was operating at the time when the system became non-operating, and the one which will be

oberating if and when the system again becomes operating.

Const :
;nstder % Don-operative component C whose reactivation point is contained by the block instance X.
en the following is true:

- X is dynamically enclosed by the head of C.

- X d&'namically encloses no block instance other than itself.

ch:i::cﬁecnc;?{ block instances dynamically enclosed by the head of C is referred to as the "reactivation

componenty, | component heads on this chain, except the head of C, identify operative (non-operating)
operating 8. If and when C becomes operating, all block instances on its reactivation chain also become

See detailed éxamme in 7.4, " |

SVENSK STANDARD SS 63 61 14
SIMULA Utgiva 1 S_ida 87

T e - - eh e -

—— . — = —

o L P —— r——

mm - A ma T
: e e —r
. ww T -

- ympa—

. . o]
- - e e — _—r
t - = .

STANDARD SS 63
Databehandiing — Programsprak - SVENSK
SIMULA

Utgava 1

7.3 Quasi-paraliel sequencing

A quasi-parale] system is created through the
a local class declaration,

the main compo

entry into a subblock or a prefixed block, which contains

. Initially,
whereby the generated instance becomes the head of the new system. In |
Dent is the operative and only component of the system.

7.3.1 Detach

Consider_a. call of the detach attribyte of a block instance X.

IfX is an instance of g Prefixed block the de

is a class
tach statement has no effect. Assume that X is
object, The following cases arige:

1) X is an attacheq object. If X is 1

The PSC returns to

the block instance ¢
immed‘iately after th

o which X was attached and execution continues
€ associated object g

enerator or call statement (see 7.3.2).

jated
UeW component becomes a member of the 32;0;; the
alguage definition that, prior to the' execu ent, of
the head of the operative compo

+ Xis then (the heaq of) an o

tisa consequence of the Jap
etach statement ig:

| the
perative system component. Let Srl;iing-
guage definition that X must be ope

associated system |
The effect of the d

ached state and becomes non-

rthe detach Statement, Asac
which is dyna.mically encloseq

The PSQs Moved to the curre
m

ain CoOmponent becq
on the re

* . itioned
Operative, its reactivation point pf:s:t::il;m
onsequence, that part Of‘the."per;'tfﬂgof X,
by X becomes the (non-opera.ting) reactivation chai

n$ reactivation p

Mmes operative ang ope

19
oint of the main component of S, whereby th
activation chaip of the majn compo

; es
rating. As a consequence, all block instanc

nent also become operating.
Xisa terminated object. The detach statement then constitutes an error.

as9
¢ type parameter qualified by a fictitious cl

_ et Y denotg the object referenceq by a cal statement

IfYis terminateq attached o fesumed, op Y

: us
ng the call statement, whereby Y loges its Sfa:ed
f3equence the sysgem, to which Y belongs (if any) loses the associa

+ AS a consequence, all block jnstances

11 14
da 88

Databehandling — Programsprak —
SIMULA Utgéva 1

SVENSK STANDARD SS 63 61 14

Sida 89

-—-—_—._——_—_.————-—-—-————-——-——_-___-_"-—-_____-#_

7.3.3 Resume

"resume” is formally a procedure with one object reference type parameter qualified by a fictitious c}ass
including all classes. Let Y denote the object referenced by a resume statement.

If Y is not local to a system head, i.e. if Y is local to a class object or an instance of a procedure body,
the resume statement constitutes an error.

If Y is terminated or attached, or Y===none, the resume statement constitutes an error.

'Y is a resumed object, the resume statement has no effect (it is a consequence of the language definition
that Y must then be operating.)

Assume Y is a detached object being (the head of) a non-operative system componenj;. Let S be the
associated system and let X denote (the head of) the current operative component 01: S. It is a consequence
of the language definition that X must be operating, and that X is either the main component of $ or
local to the head of S. The effect of the resume statement is:

-~ X becomes non-operative, its reactivation point positioned immediately a.ftfer the resume state-
ment. As a consequence, that part of the operating chain which.is dynamically 'enclosed by X
becomes the (non-operating) reactivation chain of X. If X is an object component its head enters
the detached state,

- The PSC is moved to the reactivation point of Y, whereby Y enters the resm?ed _stateh a:fld bfe;omlse:
operative and operating. As a consequence, all block instances on the reactivation chain of ¥ a
become operating.

7.3.4 Object "end”

The effect of the PSC passing through the final end of a class object is the same as that of a detach v:'e:l:il:;
respect to that object, except that the object becomes terminated, not dPtached. As a consequen
attains no reactivation point and loses its status as a component head (if it has such status).

7.3.5 Goto-statement
A designational expression defines a program point within a block instance.

Let P denote the program point identified by evaluating the designs}tion_a.l expression of 2 got?-lﬂt'&temﬂﬂt:
and let X be the block instance containing P. Consider the execution of the goto-statement:

1) Let Y denote the block instance currently containing the PSC.

2) If X equals Y the PSC is moved to P. |

3) Otherwise, if Y is the outermost block instance the goto-statemnent constitutes an error.
1) Otherwise, the effect is that of the PSC passing through the final end of Y (see 7.3.4) after

which the process is immediately repeated from 1).

See also 4.5,

T s, e == -

————— e b e

|
N
| i I
I i il
o i
INURES
! ':f I
1Y -t
10 |
£l
 NREE
[
IR,
| SIS N
i I:'|E

1
I ;
1 II
|
R
s

B L et e prh A e a =, e

- ow e e mra A W N sk -

=T LR cmam s e e —b—— T Tl el — = _ = oy

Databahandlin'g ~Programsprak ~

SiMuLA

SVENSK STANDARD 88 6:

Utgava 1

74

© 00 NG OB

25

26 end S1;

Fig. 7.9

Annotated example

begin comment Si.

ref(C1) X1,
clags C1;
begil;) 11)rocedure P1; detach;
end CJ; |
ref(C2) X2;
class C2;
begin procedure P2;
begin detach;
! see fig. 7.7
end P2; |
begin comment systery go.
ref(C3) X3; |
begin detach:

call(X?2)

(P1) <~~ pso

RLE Databehandling ~ Programsprak — SVENSK STANDARD SS 63 61 14

idad0 SIMULA Utgdva 1 Sida 91

Before and after the detach in line 16:

Fig. 7.3 ~——— —_—
181! <«—— (X2) «<—— 182} <—— (X3) <~-~ PSC

o mam mw T T e . o . b e e mmea -

!
(X1) <~~ (P1) <—— RP of X1

i e A L R e -

Fig. 74 ——- —_—
PS1! €=~ (X2) <—— 182! <—~ PSC

! !
: (X3) <—— RP of X3

: (X1) <—— (P1) <—— RP of X1

:-' Fig. 7.4 also shows the situation before the resume in line 20. After this resume:

Fig. 76 ——— ——
PS811 <~ (X2) <—— 1 S21 <—~ RP of main component of S2

: (X3) <~— PSC

(X1) <=~ (P1) <==— RP of X1

Before ang after the detach in line 10:

Fig. 76 ——_ e
181 <—= (X2) <=- 1821 <—— RP of main component of S2

b B Y

! :

! (X3) <~— (P2) <—— PSC

(X1) <=~ (P1) <~= RP of X1

Fig. 7.7 .
81! <—-- PsC

e -

!
(!Xl) <~-{P1) <—— RP of X1

! A
(X2) <=-1 52 ! <—— RP of main component of S2

IR e ey

!
(X3) <— (P2) <~~ RP of X2

T e ——— . ——

maD = e — -

- - rowme A o e amAam -

: vV NDARD SS 63 6
SIMULA SVENSK STA .

\ Utgava 1 Sic

and does not have a reactivation point of its own,
ine 25. After this call, the sitvation in fig. 7618
d by a "resume(X2)" the following situation arises:
Fig. 7.8 ——._

IS1! <=

!
(;XI) <—==(P1) <=~ RP of X]

! ———
(X2) <~=1821 e

RP of main component of S1

RP of main component of S2

1
(X8) <=~ (P2) <-- Psc

If n " i
o "0;:13 2 resume(X1)" is executed at line 11,

the PSC i n " . 7.8, leaving
of X2" at the former PSG, [f instoad C is moved to the "RP of X1” in fig. 7

a "detach” is executed, fig. 7.8 leads back to fig. 7.7.

14
92

Sk e — o —— A& .. -

— P —ar—a ~ ———

R o by R ame T e — e — i =

- A -

Databehandling - Programsprak ~
SIMULA Utgava 1

8 ATTRIBUTES OF TEXT

A text object is conceptually an instance of

class TEXTOBJ (SIZE, CONST); integer SIZE; Boolean CONST;
begin character array MAIN(1:SIZE); end;

SVENSK STANDARD SS 63 61 14

Sida 93

— — -M

Any text value processed by the program is contained within a text frame, i.e. 2 non-empty segment of

the MAIN attribute of some TEXTOBJ instance, or it is empty (i.e. notext). See 2.5.

A text variable is conceptually an instance of a composite structure

ref (TEXTOBJ) OBJ; integer START, LENGTH, POS;

It references (and has as its value the contents of) some text frame defined by the three first components.

POS identifies the current character. See 3.1.2.

See also 3.3.3 and 3.3.6 (text relations), 3.7 (text expressions), 4.1.2 and 4.1.3 (text assignments).

This chapter defines all procedure attributes of any text variable. They may be accessed by remote

identifiers of the form

text—primary . procedure—identifier

The attributes are

Poolean procedure constant;
fnteger procedure start:
Integer procedure length
fext procedure main;
Integer procedure pos;
Procedure setpos(i); integer i;
boolean procedure more;
character procedure getchar;
Procedure putchar{c); character c;
text procedure sub(i, n); integer i, n;
fext Procedure strip;
integer procedure getint
!0118 real procedure getreal;
Integer procedure getfrac;
Procedure putint(i); integer i:
g;‘ocedure putfix(r, n); <real-type> r; integer n:
Ocedure putreal(r, n); <real~type> r; integer n;
Procedure putfrac(i, n); integer i, n;

In the *
following "X" denotes a text variable unless otherwise specified.

iiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiii
llllllllllllllllllllllllll
iiiiiiiiiiiiiiiiiiiiiiiiiii
llllllllllllllllllllllllll
iiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
lllllllllllllllllllllllllllll
L]
1 + + ¢ ® & & & & & 4 & ¥ ¥ ¥ ¥ s & s = w 4 = ¥ = = = 5 2 =
lllllllllllllllllllllllll
iiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiii

|
i DARD SS 636
| Databehandling ~ Programsprak ~ SVENSK STAN Sic
sIMuLA - Utgdva 1
| . 8.1 ”constant”, ?start”, *length” and ” main”
il i}t’ CONSTANT Boolean procedure constant;
i Constant:= OBJ == nope op else OBJ.CONST;
TR
R
L g ' _i START integer procedure start; start:= START;
B | ik
e LENGTH tateger procedure length; lengthi= LENGTH:
llj MAIN text procedure main;
o if OBJ =/= none then
e begin text T
RS T.OBJ:- OBJ;
18 { T.START:= 1;
| EH I T.LENGTH:= OBJ.SIZE;
|k T.POS:= 1,
B main:— T
: 1 : I lj:' end main
| 14 "X.main” ig o reference to the Main frame which contains the frame referenced by X
B I ;E The follow Dg relations are brue for any text variable X:
SNARIN: X.main.length s X.length
a : s ' j:; i ma.in.main == Jmain
: .
o B In addition
} | ! notext.mam == notext
H kI . ABC main = ' apc (but " ABC" main =/= »Apcr)
i | ; Examples |
Nt |
: | E Boolean'procedure over]a,pping(x, Y); text X, Y
AN overlapping i ain == y main and thep
! : (X.start <= Y.start
A then X start + Xlength » Y.start
TN e Yistart 4. Vlength X start);
- t " . 1 .
i) OVﬂr!appmg(}{, Y)" I8 true it 2nd only if X anq Y reference text, frames which overlap each other
XUX, Y): ¢
; : aubtext ' X.mam —— Y‘ (ain) ext X: Y
| and they start > Y.sta
; 30d then X stn + Xlength <= Y.start 4 Y.length;
| Subtext(x, Y)r

. . 61 14
Databehandling - Programsprak - SVENSK STANDARD SS 63 e
SIMULA | Utgava 1 Sida

8.2 Character access

o b N — . o —

L] i L L - - “
The characters of a text are accessible one at a time. Any text variable contains a " position indicator

POS, which identifies the currently accessible character, if any, of the referenced text frame. The position
indicator of a given text variable X is an integer in the range (1, X.length+1).

The position indicator of a given text variable may be altered by the procedures "setpos”, " getchar™, and

"putchar” of the text variable. Also any of the procedures defined in 8.6 and 8.7 may alter the position
indicator of the text variable of which the procedure is an attribute,

Pesition indicators are |

gnored and left unaltered by text reference relations, text value relations and
text value assignments,

The following procedures are facilities available

for character accessing. They are oriented towards
sequential access,
Note: The implicit modification of POS is lost immediately if setpos”, "getchar” or "putchar” is successully applied to
a text expression which is not a variable (see 3.7.2).

POS i_nteger procedure pos; pos = POS;
SETPOS procedure setpos(i); integer i;

POS:=ifi <lori> LENGTH + 1 then LENGTH + 1 else i;
MORE Boolean procedure more; more := POS <= LENGTH;
GETCHAR character procedure getchar;

HPOS > LENGTH then error("..." ! Pos out of range;)

else begin

getchari= OBJ.MAIN(START + POS - 1); POS:= POS + 1

end getchar;

PUTCHAR

Procedure putchar(c); character c;
¥ OBJ == nore or else OBJ.CONST or else POS>LENGTH
then error(",,n)

else begin

OBI.MAIN(START + POS —). .. =
ond ot):=c; POS:=POS + |

Databehandling ~Programsprak -

SVENSK STANDARD SS 63
SuLA Utgava 1
8.3 Text generation

The following standard procedures are available for text frame generation:

BLANKS

text procedure bla.nks(n); integer n;

if L < 0 then error{"..." 1 Parm. to blanks < 0;)
elseif n > g

then begin text T;

T.OBJ:~ new TEXTOBIJ(n, false);
T.START:= 1;
T.LENGTH:= n;
T.POS:= {;
T:= notext: | blank—fill, see 4.1.2;
blanks:— T

end blanks:

ini ly blank
0, references a new alterable main frame of length n, containing only
(0)” references notext.

text procedure copy(T); text T;
f T =/= notext
then begin text U:

"copy(T)", with T =/= notext
identica) 4 that of T,

1-14
= 86

-Databehandling -~ Programsprak -

8.4 Subtexts

Two procedures are available for referencing subtexts (subframes).

SUB text procedure sub(i, n); integer i, n;
ifi<=0orn<Oori+n>LENGTH +1
then error(”..." ! Sub out of frame;)
elseifn >0
then begin text T;

T.OBJ:—- OBJ;
T.START:= START +i1—-1;
T.LENGTH:= n;
T.POS:= 1;
subi- T
end;

If legal, " X.sub(i, n)" references that subframe of X whose first character is character number i of X, z?:nd
which contains n consecutive characters. The POS attribute of the expression defines a local numbering
of the characters within the subframe. If n = 0, the expression references notext. If legal, the following

Boolean expressions are true for any text variable X:
X.sub(i, n).sub(j, m) == X.sub(i+j—1, m)
N <> 0 imp X.main == X.sub(i, n).main

X.main.sub(X.start, X.length) ==

STRIP text procedure strip; ... ;

The expression "X strip” is equivalent to "X.sub(1, n)", where n indicates the position of the last non-
blank character in X. If X does not contain any non-blank character, notext is returned.

Let X a:nd Y be text variables. Then after the value assignment "X:=Y", if legal, the relation " X.strip
= Y.strip” has the value true, while "X = Y” is true only if X.length = Y.length.

SVENSK STANDARD SS 63 61 14

SIMULA Utgéva 1 Sida 97
o

PR T S —
L - —————

Databehandling - Programsprak -
SIMULA

SVENSK STANDARD SS 63 61 1

[*}
| | . Utgava 1 . Sida

8.5 Numeric text values

The names of the syntactic
syntax {or data and not for program text.

The syntax applies to sequences of characters,

NUMERIC-ITEM
= REAL-ITEM | GROUPED-ITEM

REAL-ITEM

= DECIMAL-ITEM [EXPONENT]
| SIGN-PART EXPONENT

GROUPED-ITEM

INTEGER-ITEM
= SIGN-PART' DIGITS

FRACTION |
= DECIMAL-MARK DIGITS

SIGN~PART
= BLANKS [SIGN| BLANKs

EXPONENT
= LOWTEN-

GROUPS

1.6, to text values.

CHARACTER IN TEGER-] TEM

units in this section are in upper case to indicate that these rules concern

Databehandling - Programsprak SVENSK STANDARD S5 63 61 14

SIMULA Utgdva 1 SO
- B o A s e T :

BLANK and TAB are the two characters space and horisontal tabulation, respoetively,

The default representations of LOWTEN CHARACTER and DECIMAL MARK oare ™ &~ and T 7, o
spectively, These values may, however, be changed by appropriate procedure calls, sco 9.2.

A numeric item is a character sequence which may be derived from NUMERIC ITEM. "Bdaing” and

i LR] - 3 - i 2
de-editing” procedures are available for the conversion between arithmetic volues and text valies which
are numeric items, and vice versa.

The editing and de-editing procedures are oriented towards "fived ficld® text manipulation.

Note: Elf:lla:ls:redit‘ing and the de-editing procedures are understood to cperate on text values represerted in Wy ot el
se

T - -y . 1

et e e - o ————————— s —

i
. i '
' .E !
I
B BRI
RE i:
T ol
1 i,
Ilji i
! e
- i
Ca b
Y
| -
F N I
1 ; I
]
NI
! ok
IR
SR
1]
. i
:
N

T T T e —————

- ca o mm s omm oem mem e e W mrA ST - -

Databehandlin
SIMULA SVENSK STANDARD §§

| The Procedure locates ap INTEGER 1

9~ Programsprik -
Utgdva 1

" De-editing» Procedures

A de-editing Procedure of a given text

1)

variable X operates in the following way:

. » if any, of a given form. which i tained by X and w.
cont 0y, s contained by
ontains the first character of X is located,. (Note th:;t leading blanks and tabs are accep

is interpreted as a number,
If that number is outside 2 relevant

Otherwise an arj i
y arithmetj i
number. ¢ value is

implementation-defined range, a run-time error occ

computed, which is equal to or approximates to

The following de.edis
€ lollowing de-edltmg procedures are available,

GETINT i
Integer procedure getint; .., :

TEM. The f H . . -nte e[,
GETREAL unction value is equal to the corresponding integ

long rea] procedure getreal; ... -
:I‘he Procedure

REA .
'Dg number, Ap INTEGER I%]:I:’I{‘{EM' The function value is equal to or approximates to the correspoll

rted to long peg), | cceding a certain implementation-defined range may lose precisi

16114 Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14

Sida 100 SIMULA Utgava 1 Sida 101
—————— ' s S e P e e =y
8.7 Editing procedures
: Editing procedures of 2 given text variable X serve to convert arithmetic values to numeric items. After
4 ; an editing operation, the numeric item obtained, if any, is right-adjusted in the text frame reference'd.by
o fﬁ X and preceded by as many blanks as necessary to fill the text frame. The final value of the position

indicator of X is X.length+1. Note that this increment is lost immediately if X does not correspond to
a variable, (see 3.7).

| A positive number is edited without a sign. A negative number is edited with a minus sign immediately

preceding the most significant character. Leading non-significant zeros are suppressed, except possibly
in an EXPONENT.

If X references a constant text frame or notext, an error results. Otherwise, if the text frame i3 too short
? to contain the resulting numeric item, the text frame into which the number was to be edited is ﬁll?d
with asterisks. If the parameters to "putfix” and "putreal” are such that some of the printed digits will
of | be without significance, zeros are substituted for these digits (2nd no error condition i raised).

In "putfix” and "putreal”, the numeric item designates that number of the specified form which digers
by the smallest possible amount from the value of *r" or from the approximation to the value of "r”.

PUTINT procedure putint(i); integeri; ... ;

The value of the parameter is converted to an INTEGER ITEM which designates an integer equal to
that value.

PUTFIX procedure putfix(r, n); <real—type> r; integer n; ... ;

The resulting numeric item is an INTEGER ITEM if n=0 or a DECIMAL ITEM.With a FRACTION
of n digits if n>0, It designates a number equal to the value of r or an approximation to the value of ,
correctly rounded to n decimal places. If n<0, a run-time error is caused.

PUTREAL procedure putreal(r, n); <real—type> r; infegernj ... ;

The resulting numeric item is 2 REAL I'TEM containing an EXPONENT with a fixed implementation-
defined number of characters, The EXPONENT is preceded by 2 SIGN PART if =0, or by an INTEGER
ITEM with ope digit if n=1, or if n>1, by a DECIMAL ITEM with an INTEGER ITEM of 1 digit only,
and a fraction of n-1 digits. If n<0 a runtime error is caused.

PUTFRAC procedure putfrac(i, n); integer i, n; .. ;

The resulting numeric item is a GROUPED ITEM with no DECIMAL MARK if n<=0, and with 2
DECIMAL MARK followed by total of n digits if n>0. Each digit group consists of 3 digits, except

possibly the first one, and possibly the last one following a DECIMAL MARK. The numeric item is an
€Xact representation of the number i % 10+#(~n).

Datahehandling ~ Programsprak -
SIMULA :

Examples

procedure compact(T); text T;
begin text U; character c;

T.setpos(l); U:— T

while U.more do begin
ci=U.getchar; if ¢ <>’ * then T.putchar(c)

end;

while T.more do T.putchar(’ ")

end compact;

The procedure rearranges the

SVENSK STANDARD SS 636

Utgava 1 _ Side

. -blank
characters of the text frame referenced by its parameter. Tl;: Eﬁ: d with
characters are collected in the leftmost part of the text frame and the r:em.a.lnder,. if any’ltere d
blank characters, Since the parameter is called by reference, its position indicator is not a "

e —————
A —— . — . -
‘ e It -

— oy
m wE e ——— -

] .
A
R E
| L
'I,l .
te i
FHAENI T
ey
f%_ g g
il
1R ii :
.:]I'-l' fi I
i LT .
LB
alk g.t j
‘.||.1:]]
Al -t.i' {
TRIRE! 1
: { .)
I
S

R
i

.* st
N

. : I!:llil!
f |5I1-;!“

! ' .5]’
; "r
J:' 0 f,'|l..
. ot
i oL
i].
i :’;‘1
!r ::_ 'y
HIE
ot
'] T
: "i“ l.
11

K
b

| :I[Iiin

|
' I
i

begin

text tr, type. amount,
integer pay, total:
tri— blanks(80);

type:— tr.sub(1, 5);

amount:— tr.sub(20, 5);

pricei~ tr.sub(3, 6);

Payment:~ tr.sub(40, 10)

LT T ¥
if type = “qrder‘" then b
Payi= amount.getint % pPrice,

totali= total 4+ pay:

end
end

If tr at wxx holds the text
~ "order
it will aftep editing contajp

"order

Payment.putfrac(pay, 2)

1200 155.75

1200 155.75

price, Payment;

] skt

getfrac;

18 690,00 .

SS 6361 14
SVENSK STANDARD

ida 103
Databehandiing ~ Programsprak - Utgava 1 Sida
SIMULA -- ' |

M

0 THEP CLASS "ENVIRONMENT?”

and classes which
. Il constants, procedures :
ironmental class is to encapsulate 2 i text generation,
he purpcirgfe T;i ﬁi&;ﬁ:f:gdula It contains procedures for mathematical functions, g

are access -

random drawing, etc.

The general structure of ENVIRONMENT is

class ENVIRONMENT: ‘
begin character CURRENTLOWTEN, CURRENTDECIMALMARK;

! Basic operations |

..... . . 9'1
Procedures mod, I‘em, abs, sign, entier, addepsilon, subepsilon.
Co . 92
Textutilities . ., , ., .,
Procedures copy, blanks, char, isochar, rank, isorank, digit, letter, lowten,
decimalmark, upcase, lowcase,
.......... 9.3
SChEdllling L 2 T T, A A 2 T T S
Procedures call (7.3.2), resume (7.3.3).
....... 8.4
Mathematica) functions ., , ., IREEIREPE C e e e e ‘o
Procedures sqrt, sin, cos, tan, cotan, arcsin, arccos,
arctan, arctan?, sinh, cosh, tanh, In, log10, exp.
+ « +. 95
Extremum fmetions, I
Procedures max, min.
Enavironmentg] enquiries e e e T 9.6
Procedure sourceline, imulaid
onstants maxrank, maxint, minint, maxreal, minreal, maxlongreal, minlongreal, simulaid.
Etror contro] or, T e 9.7
Procedyre error,
Arra'y qua-ntit.leﬂ R T T L T L AL N L L 9'8
Procedureg upperbound, lowerbound.,

Ralldom dra'wlng A . Py ooy .y, L N T L L T AL L B 9'9
Procedyreg draw, randint, uniform, normal, negexp, Polsson, Erlang, discrete, linear, histd.
Calendar apq timing utilities Co e e e e e v vy 910

Procedupes datetime cputime, clocktime.
Mlscellaneous utilities e .
Procedure histo.

L] L] - L] L] - L] 9‘11

L] L] L] » * »] [] *]] L] L] * [L] L L] *] * L] L4 -] L] - g|l2
simulation (ch, 12). ;

s 8ee chapter 10,

- a e - -
noa e Yy il

_—n - & - ==

o~ S e e b —ma
n e - s rrm————

.. - n o oam o - R
[P -
A
- ————
= e bk o ——
T
- maa - -

—tr

ror——

i —ri 3 -
T ra e ————— - - a .

-
o — ——
. . . - EEP—
- . B L .

K Databehandling - Programsprak ~ SVENSK STANDARD S5636
' SIMULA

Utgava 1 Sida

1l 9.1 Basic operations

A MOD integer procedure mod(i, j}; integer i, j;

Eh begin integer res;

i res i=i — (i//i)xj;

8 mod := if res = 0 then 0

o else if sign(res) <> sign(j) then res-]
SN else res

BT end mod;

The result is the mathematical moduylo value of the parameters.

i REM integer procedure rem(i, j); integer i
rem =i — (i//j)j;

The result is the remainder of an integer division.

ABS

3

<type of e> procedure abs(e); <arithmetic—type> e
|

o 2bs := if e >= thep e else —e;

1

N The result ig the absolute valye of the parameter.,

g i SIGN integer procedure sign(e); <arithmetic—type> e;

Sl i=i &3>0 then |
iy else if e < 0 then ~1 else O;

The result is epo i the parameter jg “8ro, one if the parameter is positive, and minus one otherwise.

integer procedure entier(r); <real—type> Iy
begin integer ;.

H
= ! implied conversion of " to integer ;
entier:= ifj > p | implied conversion of ?j" to real ;
| then j— 3 else |
| end entjer;
B The result jg the

R integer floop of a :
s Parameter, Thys, real type item,

he
. the value always being less than or equal to §
entier(1.8) returng the value 1, while entier(~1.8) returns ~2.

ADDEPSILON

<type of &> procedure addepsilon(e); <real-type> ¢;

addepsilon ;= ¢ + .. 3 1 gee below:

SUBEPSILON

<type of e> Procedure 3ubepsilon(e); <real-type> e;

subepsilon s €= ..} !see below;

a value does not exist, hO\:eVB;:
addepsilon”, and "minreal” an
rn the value of the parameter.

maxlongrea|” o »

14
104

Databehandling - Programsprak -

- e

SIMULA Utgava 1 Sida 105
9.2 Text utilities
COPY See 8.3.
BLANKS See 8.3.
CHAR cha::cter procedure char(i); integer i;
ar = ... ;

The result is the character obtained by converting the parameter according to the implementation-defined
coding of characters. The parameter must be in the range 0..maxrank.

ISOCHAR character procedure isochar(i); integer i;

isochar := ...

The result is the character obtained

by converting the parameter according to an 8-bit character set
compatible with the ISO 646 7-bit

character set. The parameter must be in the range 0..255.

RANK integer procedure rank(c); character c;
= e)
The result is the integer obtained by converting the parameter according to the implementation-defined
character code,
ISORANK

integer procedure isoi-a.nk(c); character c;
isorank := .,, ;

The rt*gult is the integer obtained by converting the parameter according to an 8-bit character set
“ompatible with the ISO 646 7.

bit character set.
DIGIT

Boolean procedure digit(c); character c:

Boolean procedure letter(c); character c:
letter := ..,

The r ' ;
esult is true if the Parameter is a letter of the English alphabet ("a’ ... 'z', 'A’ ... 2').
LOWTE
N character procedure lowten(c); character c;
if ..!cis illegal as lowten:

then error("..." ! Lowten error)
else begin

lowten:= CURRENTLOWTEN; CURRENTLOWTEN:= ¢
end lowten;

current lowten character to that of the parameter. The previous val i
gal Parameters gre: P P oS

L. H nn IRT
cha . ')» period ("."), comma (","), control characters, DEL and al]
127‘)'&“3% not included in the ISO 646 character set (i.e. with an "isorank" greater than

SVENSK STANDARD SS 63 61 14

- - - —_
L it s e S e e e . i o i e e e e TV ¢ b g " D sl e e 4 e
- = - W e o L — e - o am e

L
é iJ ! |
e |
8 Databehandling - pro
A simuLa 9 - Frogramsprak - SVENSK STANDARD SS 63 6
1 Utgava 1 Sida
il
it DECIMAL
il MARK character procedure decimalmark(c); character c;
U ifc <> ' ' ’
i then error(”...” ! Decimalmark error ;)
i else begin
L decimalmark:= CURRENTDECIMALMARK:
i | CURRENTDECIMALMARK:= ¢ !
iR ol | ' end decimalmark;
1 sa Changes the va ; :
e il : 8.7). The pr ev‘ioﬂz g.ltlheei decimal point character used by the text (de)editing procedures (cf. 8.6 and
Al 8 returned. The only legal parameter values are period and comma.
I UPCASE
AR t
R bag o cedure upcase(t); text t;
i 0 g0 t.setpos(1); upcase:~t; ... end:
1RREE Converts the letters ;
X : : alphabet are con:mrtmdthe text parameter to their upper case representation. Only letters of the English
s verted, 'The result is a reference to the parameter. |
i - Lowecask
i yoxt procedure lowcase(t); text t;
: ilf.}'* ; C gl t.setpos(1); lowcase:- t; ... end;
18R onverts the letters in ¢
l? l i alphabet are convert:d 131?1::}:-'; Pa;-ra,mgter to their lower case representation. Only letters of the English
E:‘j esult is a reference to the parameter
il
CUp CALL
”. Hl' | See.7.3.2
i RE
I! !r SUME See 7.3.3
i
S In addition ¢}
R ¢ procedure " .
L etach” (7.3.1) is an attribute of any class.
I l
N

14
106

Databehandling - Programsprak — SVENSK STANDARD SS 63‘61 14
SIMULA | Utgava 1 Sida 107

—————— e e

0.4 Mathematical functions

These procedures return long real results whenever a parameter is of this type. Otherwise a real type
result is returned (cf. 3.3.1).

All procedures return real ty
act definitions {

procedures retu

pe approximations to the associated mathematical functions. Their ex-
concerning precision, allowed parameter values etc.) are implementation-defined. The
rn best possible approximations to the exact mathematical results.

The trigonometric functions deal with angles expressed in radians.

SQRT <real-type> procedure sqrt(r); <real-type> r;

SIN <real-type> procedure sin(r); <real-type> r;

COS <real-type> procedure cos(r); <real-type> r;

TAN <real-type> procedure tan(r); <real-type> r;
COTAN <real-type> procedure cotan(r); <real-type> r;
ARCSIN <real-type> procedure arcsin(r); <real-type> r
ARCCOS <real-type> procedure arccos(r); <real-type> r;
ARCTAN <réal-type> procedure arctan(r); <real-type> r;
The regylt s in

th ; .
" © range (0, pi/2) for flon-negative parameters and in the range (-pi/2, 0) for negative
ARCTAN?

<real-type> procedure arctan2(y, x)

The regy)t Is §
0 the rangef-nt
Values alWays result i ge(P, pl)

Begative, If boty, ¥ and

i <real~type> y, x;

" e & 0 vl 18 positive a.l.:;d plif x is
H <real-type> procedure sinh(r); <real-type> r;
COsy
<real-type> procedupe cosh(r); <real-type> r:
TANY |
| <real-type> procedure tanh(r); <real-type> ry
N
) <real-types Procedure In(r); <real-type>
G10
N <real-types Procedure log10(r); <real-type> r;

<real.
eal-types Procedure exp(r); <real-type> p;

o i A o Tk i

rat s e ————_— P

— et

AR e ey i e ———

A e e e T e e I I ey T i e B e e e e, Bl B

Databehandling - Programsprak -~

SVENSK STANDARD SS 6361 14
SIMULA

e e am e m
- i

— A e e ————— A e

—————

LT T

— — 1 T L e

——— :
Tt r——— : e
. - . e — .
e o o e

WS T T ey v ——_— -

_____'_,__-—-—.-—.._--.—-_--—_-_---__
R el i .= -

Utgéva 1 Sida 108
\ e — —

9.5 Extremum functions

MAX

<type> procedure max(il, i2); <type> il; <type> i2;

MIN <type> procedure min(il, i2); <type> il <type> i2;

. eter types
The value is the greater (” max”) or lesser ("min") of the two parameter values. Liiilrf::ilf 3'3‘5
are text, character, real type and integer type. The type of the result conforms to

9.6 Invironmental enquiries

SOURCELINE integer procedure sourceline;

‘The value indicates the line on w

. : 3 ber is
hich the procedure call occurs. The interpretation of this num
implementation-deﬁned.

MAXLONGREAL long real maxlongreal = ... ;

MINLONGREAL, long real minlongreal = .., ;

MAXREAL real maxreal = ..,

MINREAL real minrea) = .., :

MAXRANK integer maxrank = .. 3 1 the largest legal argument to char;
MAXINT integer maxint — vl

MININT

integer minint:=— ‘ool

N s n Ons‘[‘,ﬂ.ﬂtﬂ
implementation characteristics, The "max...” ("min...") ¢
have the largest (smallest) valyes poss

text simulaid = w3 1 See below :

The value of "simulajd® i3 an

val imp!ernentation-deﬁned string of the following general format:
<slm:d>m<siteid>!!!<OS:>1II<CPU>H!<user>!!!<job>!!!<a.cc>!ll<prog>

<s§mfd>: Identification of the SIMULA system (name, version etc) a
<siteid>; ldentification of the installation (e.g. organization name)

<0S>: Opera.t'ing System identificat;

<CPU>: i

manufacturer, name, number, etc.)
<!15er>: User identiﬁca.t'ion

<job>: Job identification (session number)

<ACCD>: Account identiﬁcation

<prog>:

entification of the eXecuting task or program

N

Databehandling ~ Programsprak - SVENSK STANDARD SS 63 61 14
SIMULA Utgdva 1 Sida 109

m

0.7 Error control
ERROR | procedure error(t); text t; ..i};
begin ... display text "t” and stop program... i
end error; .
"error”]

stops the execution of the program as if a runtime error has occurred and presents the contents
of the text parameter on the diagnostic channel (normally the controlling terminal).

0.8 Array quantities

LOWERBOUND integer procedure lowerbound(a, i);
<type> array a; integer i

UPPERBOUND

integer procedure upperbound(a, i);
<type> array a; integer i

T
'ihe procedure "lowerbound® ("upperbound”) returns the lower (upper) bound of the dimension of the
§Iven array corresponding to th

index less th ¢ given index. The first dimension has index one, the next two, etc. An
ertor AN one or greater than the number of dimensions of the given array constitutes a run time

- —— - A mE o E ome

. —— r—m - s om e

e B AR R ——— —— = —

- ———

—_— —————————— —— -
c—— e e, e e
- e ——Y — 2. o

e P e e ———

————

A o LT ke e

e e e o ——l C—— w —— ———

e mo e r e meaaa
e e e e et i h em = mma mm s

— e o e

———

bt e

———— ==
FLEPIREE T o S [S T e

-
————————— e e

LY T AP E Y

- - —— =
——rn. Y - -m

=z el -

- - L D e tmanr s = me o TR g CmEr T

- - R o
e LT L e s — A A

e e e — 1 e e P o

S mm e ia e i e—

- - D e teram e om g mmE e e -
T A T e e e m———— =, &, - L

Databehandling - Programsprak -

SIMULA SVENSK STANDARD S5 636114
H——ﬁida—ﬂg
9.9 Random drawing

All random drawing procedures of SI
, MULA are based on the t i ining "bast ings"
from the uniform distribution in the interva) <0, 1>. ¢ technique of obtaining "basic drawings

8.9.1 Pseudo-random number streams

A basic drawing replaces the value o
implementa.tion-deﬁned algorithm.

As an example,

fa specified integer variable, say U, by a new value according to an

the following algorithm may be suitable for binary computers:

U(i+1) = remainder ((U(1) * O%#(2%p+-1)) // 2%%n)

:l;:l: ;{J(Ji)t;f’et?xftie th V’:;-Lue of U, n is an integer related to the size of a computer word an.d
true for all U(}) &nﬁezil can be proved that, if U(0) is a positive odd integer, the same is
last two bits of Ur © 8equence U(Uzr U(1), U(2), ... is cyclic with period 2%*n-2. (The
Thus there ges ®nain constant, while the other n—2 take on all possible combinations).

Ié two sequences - one in the range (1:2%*n—3) and the other in (3:2+¢n—1).

Itisa property of this aleor:
_ gorithm that any
- ¢an be computed using modular arithmet;

The . .
real numbers u(i) = U(i) = 2**(—-11) are fractions in the range <0, 1>. The sequence

u(1), u(2), ... is called a n . ‘
the result of the i'th baiic 5&::;;111 of pseudo-random numbers, and u(i) (i =1, 2, ...) i

by the init} ing in the stream U. A stream is completely determined
a.pproximl ;?l ?lue U(0) of the cor responding integer variable. Nevertheless, it is a "good
atlon” to a sequence of truly random drawings.

successor to a stream number U(i), e.g. U(i+m),
¢ in log2(m) steps.

%9.2 . '
Random drawing procedures

i Ing procedyr

“'umfonn", "negexp”, nzﬁ:llefiﬂi@ @ random drawing of some kind. "Normal”, "draw", "randint’,

single basie drawing, i.e, the :0’ dhnea"'” and "histd” always perform the opera.ti’on by means of oné
- Procedure has the side effect of advancing the specified stream by one step.

the actual Parameters, with the exception of the last one.

14

SVENSK STANDARD $S $3 81 14 113

Databagandllng - Programsprak - o > 8 1 13
SIMUL

-_— Uy smem

DRAW Boolean procedure draw (a, U);
name U; long real a; integer U;

The value is true with the probability a, false with the probability 1

—a Jtisalways tree ifa Doz | 3=
always false if 2 <= 0,

RANDINT integer procedure randint (a, b, u);

name U; integer a, b, U:

The value is one of the integers a, a+1, .,

+ y b=1, b with equal probability. If b < a, the cal]
an exror,

Constititng
UNIFORM long real procedure uniform (2, b, U);
name U; long real a, b; integer U;

The value i uniformly distributeq

in the interval 3 <= U<b b <a, the calf censtitutes an errce,

— e ———

NORMAL long real procedure normat (a, b, U);

name U; long real 3, b; integer U;
Eﬁ ;alue 18 normally distributed with inean a and standard deviation b. Ap Approximation formuts

¥ Ve used for the normal distribution function,

NEGEXP real procedure negexp (a, U);

ame U; long rea) a; integer U:
The vajye
e uulz 1: ad Wing from th‘e negative exponential distribution with mean 1/a, defined by ~In u)/a,
Patter gy " Wing, I']l‘hm is the same as a random waiting time" iy a Poissop distributed arrival -
Oty flumber of arrivalg Per time unjt equal to a, I{ 3 js ROn-positive, 3 rantime erpop
POISSON

ne implementatto -d
- D-defined vy
er(normal(a. sqrt(a), U) + 0.5) or, whep thlll: 'i:ot:egatlv

e M o baTe Rt L st e a bl el
-4 - s -
- P

s ol b P -

- - . —— e e . e e - - - -
e Pk R L ki s e WACE mm dh R - e e Bl e A rariw il
— R . - =
. - A

A -

. -7 . = = - ——
—m o= i sy k= - -
. . - - e = =T 0T
== == s

-

. _——

L — o —

e w . eoem T

L= Py

s [N
” - ——r -

e RN T .

- R .

JEFENT WRRF AR
T

f i =
e -

__ —_ -

. i e e R L= - S e ol LT il il - STo TS e e T = B

- - N s = - - -
. o o R iyt Y —— P ————— =
N - N . . PR
- - = - me e aimr .-

s et e e e e ammen
¥ N

- R ey W - wem

b T

gfl:nal.? ::andling ~ Programsprak — SVENSK STANDARD SS 63 61
' Utgava 1 Sida 11
ERLA
NG long real procedure Erlang (a, b, U);
name U; long real a, b; integer U;
The value is a drawing ¢ :
It s defined by € trom the Erlang distribution with mean 1/a and standard deviation 1/(atsqrt(b)).

b basic drawipgs u(i), if b is an integer value,

~ (Infu(1)) + In(u(2)) + ... + In{u(b))) / (axb)
and by ¢+1 basic drawings u(i)

~ (In(y(

otherwise, where ¢ js equal to entier(b),

1)+ ... + ln(ﬁ(c)) + (b—c)*In(u(c+1))) / (axb)
Both a and b must be greater than Zero,

The
last formuly, represents an approximation,

DISCRETE '

integer procedure discrete (A, U),
name U; <real—types array A; integer U;
The one-dimensiong] array

) A a | ,
of the subscript, defining » g “emented by the element 1 to the right, s interpreted as a step function

discrete (cumulat; '
| ative) distribution funct;
The functjop value satisfies e

lowerb ‘
ound(A, 1) <= discrete(A, U) <= upperbound(A, 1)-+1

It is defined aq th
_ € smallegt i . |
= 1. - ' such that A(l) < U, where u is a basic drawing and A(upperbound(A, 1)+1)
LINEAR |
long real
name U; Procedure linear (A, B U);

The valye s a draw;

olatinm Ing from g, (¢ ' . ‘
Polation in a nop.eqyia: (umulative) distribution function F, which is obtained by linear inter-

type arrays of the same length, that the first ead

onditj : tay
itlons are pot Satisfied, the effect h?glili}g'zgg;)iozjejﬁag?dmd B(i) > B(j) for i>}. If

y 1> I‘a.ndom
. Dumber, y,
determipe the loweg u

Compute D
4) i D = ¢

t value of i,
AL) ~A(i-1)
linear = B(i-—l)

fD <> g lineap =

for which A(i~1) <= 4 <— A(i)

B(i~1) + (B(s) ~B(i

L =1))%(u~A(i-1))/D
:::f:l[‘] Procedure higtq (A U); I
) < - ,
The valya 18 an o -)
t

Isb and usb are the lower and upper subscript

mterpreted as g histogram defining the relative

Databehandling - Programsprak -

——r—— A — e —

9,10 Calendar and timing utilities
DATETIME text procedure datetime; datetime:— Copy(”...");

The value is 2 text frame containing current date and time in the form
YYYY~MM~DD HH:MM:SS.sss...

The number of decimals in the field for seconds is implementation-defined.
CPUTIME long real procedure cputime;

The value is the number of processor seconds spent by the calling program.
CLOCKTIME long real procedure clocktime;

The value is the number of seconds since midnight.

.11
HISTO

Miscellaneous utilities

procedure histo(A, B, ¢, d);
real array A, B; real ¢, d;

'ih:n I:tgedure statement "histo(A, B, ¢, d)" updates a histogram defined by the one-dimensional arrays
smallest i;;:"“'“s to the observation ¢ with the weight d. A(lba-+i) is increased by d, where i is the
If the len hEer Slfch that ¢ <= B(lbb+i) and Iba and Ibb are the lower bounds of A and B respectively.

gth of A is not one greater than that of B the effect is implementation-defined. The last element

of A .
£ cOrresponds to those observations which are greater than all elements of B.

block leve] of aystem classes are "simset”, "simulation” and the I /O classes. They are available at any

Class "gimaat® . N

X Simset” contains facilities for list (set) manipulation, see chapter 11.
lmaet ¢ Nl . . T

lass "simulation” contains facilities for discrete event simulation, see chapter 12.

the 1/ asses ("file” and its subclasses) are defined in class BASICIO, see chapter 10.

SVENSK STANDARD SS 63 61 14

10 INPUT-OUTPUT

iti i "fles” (” "), 1.e. collections
The semantics of SIMULA 1/O facilities rely on the intuitive notion of "files ("datasets”), i.e. collectio

: uential
of data external to the program, organized for sequential or ra.nd:n_l a.ccesl:-:. 'En 1;11‘1;l ;zniuzgfl; i; ry to
access files are called "sequential files” and random access files "direct files”.

i i latter
distinguish between the file concept of the language and the underlying files of the environment the la
are called "external files”,

Actually a file may in practice be any kind of external device with communication capabilities, such as
% terminal, a sensory device, etc.

Examples of sequential files are:

~ aseries of printed lines

- input from a keyboard
~ dataon a tape,

An example of g direct file is 2 collection of data items on 2 disk, with each item identified by a unique
integer, |

The standard] [0 facilities are contained by a class called "BASICIO" . They are available to the program
through block prefixing as described below.

Note: The yse of upper case letters indicates that this identifier is inaccessible to the user program (cf. 1.10).

it were embedded as follows:

BASICIO (inlength, outlength)
inspect SYSIN do
inspect SYSOUT do

begin <external—head> <program> end
end prefixed block

The user's majn Program acts as if

begin ! prefixed block;

?tﬂﬂy PFUEmm‘ ®Xecution the unique instance of this prefixed block constitutes the system head of the
Wiermost uasi-paralle] system (see 7.2),
The valyeg of inle

_ ngth and outlen ‘ ion-
cicel) aseqrts ength are implementation

‘ defined; they normally depend upon the actual
ted with SYSIN apg SYSOUT (the stan

dard input and output files),

and output features of ap interactive terminal, in which

. In other cases, for example batch runs, SYSIN may

represent line printer oriented output. Typical values
d then be 80 ang 132, resp.

ey R
e e B R ——————_—— L ——————

A I Databehandling ~ Programsprak -

- ; SVENSK STANDARD 5 63 61
S SIMULA Utgava 1 Sida 11
S Wil

. ? j refers to an instance of ope of the classes "in(byte)file”, "out(byte)file
and “dlfﬂCt(bﬁe)ﬁle“ or of a subclass of one of these,

The overal) Organization of "BASICIO” ;5 as follows:

| ENVIRONMENT elass BASIGIO (INPUT_LINELENGTH OUTPUT_LINELENGTH);
| ; integer IN PUT_LINELEN GTH, OUTPUT_LIN ELENGTH;
1N begin ref (infile) SYSIN; yef (printfile) SYSOUT:
| kit ref (inflle) procedure sysin; sysin :— SYSIN;
il vef (printfile) Procedure sysout; sysoyt :— SYSOUT:
L Procedure terminate rogram;
i %1: begin ... ; goto STOP end terminate program;
i it et e 10.1;
Lo e clmgmaelle . [T 10.3;
bl file class bytefe R I A Gt e e e e e .+ 1085
1 imagefile clagg infile | | Ce e, o Cee e e e e 104
: im&geﬁleclasaoutﬁle.......::.:::: e 105
imagefile clagg Gl L L 106
Outfile class printfije e e L, e C e e e e e e 10.7;
byteﬁleclassinbyteﬁle 109
bytefile class outhyteg)e Ce e o ..o 10.10;
i telle class directbytol | | e e

SYSIN i~ new inﬁl?(”.ﬁ.].”();) ! Implementation-—deﬁned;
— Bew printfile(?, » s 1 file names;
SYSIN.open(blanks(INPUT.LINELENGTH));

-open(b] O :
funer (blanks(UTPUT._LINELENGTH)),

- UT 'thin
» 1.2, outside the prm ??:;llf?nd (if not done explicitly prior to program termination) closed Wi

lable at any block level of 3 program (but see (2) of

1C% IR any way the oo of these classes for class or block prefixing.
es of class file,

P o m—
= mrrm - F e re—r——— -
. . - R

— e ——
—— e

MaY represent an external file. The effect of several
ale external fle is implementation-deﬁned.

- —

Datahehandlin
g - Progra -
gramsprak SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 117

SIMULA

class file(FILENAME AME AME
‘ s val ' .
begin Boolean OPENZ e FILER o P |
{
Be:;Iprocedme filename; filename :— copy(FlLENAME);
ean procedure isopen; isopen = OPEN;

o, . 10115

B
“?;;?Nmm setaccess(mode); text mode; . . oo+ oc c 7T .o
end file; == notext then error(".." };

"File” i
is the common prefix class for all input [output classes.

A file is eithe
r H 4 & -
open or inaccessible as indicated by the variable "OPEN". The procedure nigopen” refurns

the current
value of "OPEN". A file is initially inaccessible (e.g. closed).

pen” identify an external

Each file obi
e object has a text attribute FILENAME. This text value must at 70
d with the file object. If

file which, th .
the Paran;e te?ug]h an implementation-defined mechanism, becomes associate
value is notext, a run-time error oCCurs.

The n
procedure " filename” retrieves the value of FILENAME.

10.1.
1 External file access control |
ternal file. The values

Certain attri
of these attil:igﬁies (not specified in the file outline) control the access to the eX
es are set when the file object is opened or closed, from a seb of defaul

modifi '
ed by successive calls to the procedure ngetaccess” .

The st .
standard attribute modes are SHARED, APPEND, CREATE, READWRITE, BYTESIZE,

REWIND and PURGE. |
SHARED:
b: If the value is "shared”, the external file may be shared by other programs. The
APPE value " noshared” implies that the file must be exclusively assigned tO this prograin.
ND: If the value is "append”, output to the fle is added to the existing contents of
tial file that, after " close” the

4" implies for 2 sequen

the output produced w
)iles. For direct files nappend” Pro
i hat SHARED

les, the value nappend” implies ¥

the file. The value "noappen
external file will contain only
mode is not relevant for in(byte
before " lastloc". For out(bs’te)ﬁ

CREA has the value "noshared”.
TE: If the value is "create”, the external file associated with FILENAME must not
® returns false); & 0€W gle is created bY the
st at "open” -

exist at "open” (if it does, "open .
environment. If the value is npocreate”, the assoClat™
The value " anycreate” implies thab i the file does exist @

opened, otherwise & NEW file is created.

REA
DWRITE: If the value is " readonly” output
is "writeonly”, input operations cannot be P?l'f‘?l'med' e ve
‘ ‘3 T direct files.

enables both input and output-

BY _ .
TESIZE: The value of this mode i3 2 positive intege ‘ ‘
or byteftles. An lmplemen!:atlo

in bits. This mode ig relevant only f 3.
the possible values in any way. 1 not seb explicit]

”open” the file is

me resetting of

RE : |
WIND: The value "rewind” indicates that 8O "
). The value nporewind” J

nclose” (e.g. rewind of 2 magnetic taPe

reset.

A e ————— o

Tt —
— .

b
e -
- o e e — Ly . ..t o m
" e - -

T LT o e e vy, e T e i wrelieb e

.L..
[~

A P .-
- e e et i " A Tl T =T -

L L T -

— T e e ——— —— - — | _———r T

i R e e T s S S Fage s i

-t

o o ————t— il = —— T —

- e aem — aLT L A T Al

:
|
[T
,:
1
I
f
'i-
A
; 1 .
R
'
- i
A
1
i
I'I
[
i
s
|
i
|

Databehandling -~ Pro 3
gramsprak ~
SIMULA PreK

' Utgdva 1 Sida 11

SVENSK STANDARD SS 63 61

PURGE: .
| The value "purge” implies that the external file may be deleted by the environment

:Jchen 1t 13 closed (in the sense that it becomes inaccessible to further program
cess). The value "nopurge” implies no such deletion.

Addits
ditional values and modes may be defined by an implementation.

The pa,['amGt n
er "mode" " .
namely "shareq” nnosh;:egnroﬁEdure get:.ccess“ contains one of the standard values as given above,
"writeonly”, I‘Eajdwrite“ " ;; PP e?,d s “Doappend”, "create”, "nocreate”, "anycreate”, "readonly”,
" Dytesize:X” (where X is a positive integer), "rewind”, "norewind”, "purge"

and "nopurge”, 1t js
. recommended that i :
character % as the first character of theat;i }:Eplementatwn-deﬁned parameter values have the percent

The parameter "bytesine-r :
yeesize:0" (zero) specifies the (implementation-defined) default byte size for byteflles,

Only one mode may be specified in each *

being Insignificant, Unre setaccess” call, the case of the individual letters of the parameter

cognized modgs are ignored and "setaccess” then returns the value false. The
¢ 18 interpreted either at " " "close®. A mode

open” ar at next "open” or next "close". A m

T Pen” or "close” has no effect until the next "close” or "open” respectively.

¢ default values of the access mod

ignored for this fije kind) and " €S are given in table 10.1, where "NA” means "not applicable” (i,

Ineans that the value is implementation-defined.

Mode: ; - Files of kind

SHARED I n;l Out- Direct- Takes effect at

APPEND NA&I‘G noshared noshared open

CREATE NA ~ Doappend noappend open

READWRITE NA anycreate nocreate open

EE"&ESIZE:X . fA readwrite open

IND *

PURGE | norewind norewind NA z;)::: close

flopurge niopurge nopurge close,

'I’é.ble 10.1. Defaylt values of file access modes

Databehandling ~ Programsprak — - SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 119
-—____________—__m__—_____—.__ﬂ__—__-ﬂ-_ﬂ———-m

10.1.2 Open and close .
Most subclasses of "file” defined in BASICIO contain these procedures.

Procedure "open” establishes the association with an external file (as identified by FILENAME), checlfs
the access modes and causes corresponding opening actions on the external file. If the external file is

closed, it is opened. |

as specified by the access modes. In addition,

Procedure " close” causes closing actions on the external file, _
If possible, the external file is

the association between the file object and the external file is dissolved.
closed. |

The details of these procedures are subclass- and implementation-defined. All versions conform, however,
to the following patterns.

OPEN Boolcan procedure open ... ;

if not OPEN '
and ... | FILENAME association is established;

and ... 1 access modes compatible with external file;
and ... ! external file is opened;
then begin

»
Rl .‘

! implementation—defined and access mode specified ?.cti?n.s .
on external file, followed by subclass—dependent actions;

open = OPEN := true;
end open;

CLOSE Boolean procedure close;

if OPEN . |
and then ! external file is open an

then begi .
en : w8 ! implementa.tion—-deﬁned and access mode spec;ﬁedt;c::?m
| on external file, followed by subclass—dependent actions;
OPEN:= falge;
close:= true;
end close;

d can be closed;

a short comment will serve to remind the

These patterns will not be repeated in detail for each subclass;
teader of these general actions of the procedures.

e i S S

- ——— e e —— - —— _ —

e —la

"= - T - o el etk il N R W ||

. —,— e e i = =

Databehandling - Programsprik -

SVENSK STANDARD SS 63 61 14
SIMULA Utgava 1 Sida 120
-10.2 Structure of file subclasses

There are two predefined subclasses of class file:

"imagefile” — image (record) oriented files
"bytefile” — character (stream) oriented files

These subclasses each have three subclasses defining the direction of data transfer and the file organiza-

tion: input-oriented sequential files (i.e, in(byte)files), output-oriented sequential files (i.e. out{byte)files)
and bidirectional direct fileg (i.e. direct(byte)gles).

imagefile subclass bytefile subclass
sequential input infile inbytefile
sequential output outfile outbytefile
direct file directfile directbytefile

Table 10.2. Subclasses of class "file®,

In addition, 2 standarg subclass for line printer oriented output, outfile class printfile, is defined.

10.2,1 Procedure "checkpoint”

. int”.
Al files producing output (sequential output or direct files) contain a Boolean procedure " checkpoin

ing on
The procedure Causes the environment to attempt to secure the output produced so far. Depending
the nature of the associated external

Lo diate
device, this causes completion of output transfer (i.e. mtemzation
]Juﬂ'er_contents are transferred). If this is not possible or meaningful, " checkpoint” is 2 dummy op

——— —_—

R —
" —_— — -

SVENSK STANDARD SS 63 6114

Databehandling - Programsprak -
Sida 121

SIMULA
Utgava 1

10.2.2 Direct file locking

Ellrect files contain the following variable and pro cedures for control of si
e (cf. access mode SHARED). _

multaneous access to the external

Boolean LOCKED;

LOC
KED Boolean procedure locked; locked:= LOCKED;

LO .
CK integer procedure lock(timelimit, locl, loc2);
real timelimit; integer locl, loc2;
begin
lock 1= —1;
if timelimit>0.0 then begin |
if LOCKED then unlock;
... 1 try to lock indicated part of file, see below;
if tsuccess; then begin LOCKED := true;

end
end lock;

UN |
LOCK Boolean procedure unlock;
begin
unlock := checkpoint;
if LOCKED then begin Irelease file; LOCKED := false end

end unlock;

T | 1 3
he variable "LOCKED" indicates whether the file is currently locked by the executing program. The

r
Procedure "locked” returns the current value.
| or part of the file. The effect of a

ve access to a .
lock is immediately released

P n "
“I?ci;dur]e lock” enables the program to get exclusi
call while the file is locked (" LOCKED" is true) is that the previous

ri !
(brior to the new locking attempt).
ting time for the re-

imum wai

Th e _
souicpar?rﬂej; °r _tlmehmlt“ is the (clock) time in seconds that is the maxXii=e | .
- e £ timelimit” is less than or equal to zero, the procedure returns immediately without performing

Y actions upon the file. ;
dinal numbers

ed, by giving the or

The parame ' ‘
ters "loc1” and "loc2" identify the part of the file to be lock sy s
' ess to a part of the fle which includes
ven exclusive acc P bole file. Othe wise,

of t ‘
thev;:qi};zn:lal images (bytes). The program is gi s locking the W
ed region. s implies lockil .
g If the two parameters are both zero, this IMP Jependent; :+ may even snclude

the size of th
€ a-l't. ¥ - me
the entire file, part of the file that 1s actually locked, is imple
-1 indicates that n timelimit”

::afg:{z ‘;alue of zero indicates a successful nlock® operati
inte ° 'ed (,m: was zero or negative). A negative value

rpretation is implementation-defined.
nlock™ call. The Boolean proce-

t of an preceding '
lue i3 1?1’la,t returned by the » checkpoint” call.

T
d;l:eeolol]e&n P,mcedur& #unlock” eliminates the effec
checkpoint” is called initially, The returned va

T At

Y

mm—me g e
- ———— .
r— e —

R ey
il vl o W PR

- A B,

-

"m0 e _mm— L e L =
N mr— a

W . . TSP . . rm— -
- ——

Databehandling - Programsprik -

| SVENSK STANDARD $$ 63 61
SIMULA , Utﬂéva 1 Sida 12
10.3 Imagefiles
The (file) class "imagefile® defines the Ccommon attributes for all image-oriented files.
file clasg imagefile;
begin text image;
procedure setpos(i); integer i image.setpos(i);
integer Procedure pos; posi= image.pos;

Boolean Procedure more;

integer procedure length;
end imagefile;

more:= image.more;
length:= image.length;

The individyal logical

unit of an externa) fil
external image

is an ordered sequence
The varjable » image”

. it contains
15 used to reference a text frame which acts as a buffer, in the sense that it c
the externa) image currently being processed,

. enience.
The procedures "3etpos”, "pog” M moren and "length” are introduced for reasons of conv

. eﬂ‘.
¢ associated with an imagefile is called an "external imag
of characters.

jal output
¢s of imagefile are "infije” (sequential input file), " outfile” (seqli'e:lz:sl outgle.
fle) al (bidirectional direct file). In addition, "printfile”, a standard subclass o |
13 available, It repr in

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgéva 1 - Sida 123
e e —

10.4 The class ?infile”
imagefile class infile;
begin Boolean ENDFILE:

Boolean procedure endfile; endfile:= ENDFILE;

Boolean procedure open(fileimage); text fileimage; . o+« o v o000 e e 10.4.1;

Boolean procedure close; . + « « « ¢ ¢ o v e e 0o e e v e e e ' igi;,
procedure inimage; . . « + o ¢ o 0 0 o o oo C e e e s e e e e e 10.4.2:
Boolean procedure inrecord; 4 0 s e e 0 e e e e e e C e e e 10.4.3:
character procedure inchar; R . 10.4.4:
Boolean procedure lastitem; R 10.4.5:
text procedure intext(w); integerw; . . o . o . o0 e e e 000 e e C e n e 10'4'6:
integer procedure inint; e e e h e e e e e . ‘ 10:4:6:
long real procedure inreal; C e e e e e e s e e e e 10,4,6:
integer procedure infrac; . . « + v + v o v o Vs e e h e e e AP 3
ENDFILE:= true;
end infile;

An object of the class "infile” is used to represent an image-oriented sequential input file.

r the external file is exhausted (i.e.

The variable ENDFILE is true whenever the file object is closed o ue of ENDFILE.

"end of file” has been encountered). The procedure "endfile” gives access to the va

10.4.1 Open and close .
OPEN Boolean procedure open(fileimage); text fileimage;
if ... then begin ... ! see 10.1.2;
ENDFILE:= false;
image:~ fileimage;
image:= notext;
setpos(length+1);
open:= OPEN:= true
end open;

1t i . rameter
If successful, "open” returns true and sets ENDFILE false. In addition, "image” references the pa

"fileimage” which is space-filled.

CLOSE Boolean procedure close;
if ... then begin ... ! see 10.1._2;
image:— notext;
OPEN:= false;
close:= ENDFILE:= true

end close;

i and "image” references
If successful, "close” returns true. In addition, OPEN s false, ENDFILE: is true

notext,

SreaTHm L Tatm mmwwr, oo T

— e T
e —

M Ee e ————— . mma .

e e L wr—ma e . TR AR . ity

P .. . —_— e cmpea

P

x vm oA

\ . PR
o T -
L TR NCE
=

 —m i am

S f L SR - et
T T T

-

. e mma e es
S E— = e . - e e = - .

\'\; |

—— A T e g — g

e
— -

-——

Databehandling - Programsprak —

Sida 124

SVENSK STANDARD SS 63 61 14
SIMuLA Utgdva 1
10.4.2 Inimage and inrecord
INIMAGE

Procedure inimage;

if ot OPEN or ENDFILE then error("...")
else begin

- ; 1 attempt to transfer external image to "image”;
if ... ! "image” too short; then error("...")

else if ... ! there was no more {o read;
then begin

ENDFILE:= true;
image:= "1251" end
else ... ; ! pad "image” with space(s);
setpos(1)
end inimage;

The procedure ” inimage”
occurs if "image” ig note
image, the latter is left-

8 adjusted within
Position indicator ig set

to one.

INRECORD Boolean procedure inrecord;

if not OPEN or EN DFILE then error(”...")
else begin

» ;3 1 transfer externa] image to "image” (no space—filling);
if ... ! no more to read;

then begin
ENDFILE;:= true;
setpos(1);

image, putcharf '1251) end Note — POS = 2 now
else begin

Setpos(... Inumber of characters transferred + 1;);

inrecord:= not ...! whole external image received?;
end if

end inrecorq;

. . ‘ -time error
performs the transfer of an external file image into -“ lmage"-tﬁa;u?he external
Xt or too short to contain the external image. If it is '1011391' sth spaces. The
mage” and the remainder of the text is filled with sp

| . _ number

A, "inimage” with the following exceptions. Whenever thi -
essible in the image is less thap length”, the rest of "image" is leﬁi-l;n value of
ged is from pos 1 upto (but not including) the resulting

" .
ENDFILE g ghio 8 ?ﬁ:,“’f"“’de' EM (1251)

ent "in-
the remaining characters may be input tl}rolls‘h si::iil;lpl eted,
- . M ¥ - ima' e
lse is reume q ents. Otherwise, if the mput of the external imag

: he variable
is generated as a single character external lmas;-;f allg:value true
¢ error call on "inimage" or "inrecord” when ENDFILE already has

SK STANDARD SS 63 61 14
Databehandling - Programsprak — SVEN

SIMULA Utgava 1 Sida 125
e
104.3 Inchar
INCHAR character procedure inchar;
begin

if not more then inimage;
inchar;= image.getchar
end inchar;

The procedure "inchar” gives access to and scans past the next character.

Note: The result may be the "EOF-character” EM (ISO 646 code 1/9).

10.4.4 Lastitem
LASTITEM

Boolean procedure lastitem: =
begin character c;

ci:“‘

while not ENDFILE and then (c='"' or else c="19!")
do ¢ := inchar;
lastitem := ENDFILE;

if ¢ <> ' then setpos(pos—1)
end lastitem:

2/0
The purpose of the procedure " lastitem” is to skip past all SP and HT characters (ISO 646 codes 2/
and 0/9 respectively),

The process of scanning may involve the transfer of seveml- successwg external
'mages. If the file contains no further non-space, non-tab characters the value true is returned.

.10‘4'5 Intext
INTEXT text procedure intext(w); integer w;
begin text t:
intext :— t :— blanks(w);

while t.more do t.putchar(inchar)
end intext;

. - . H e
The expression "intext(w)" where "w” is a positive integer is a reference to a new alterable main fram
of length v containing

. 1 ter.

Th _ a copy of the next w characters of the file. POS is set to the following Chal;r;Zw)

s *Xbression "intext(0)" references notext, In contrast to the item-oriented‘procedures (see :
'ntext” operates op g continuous stream of characters, reading several images if necessary.

Note: The tesult may be 3 reference to an "EOF-image” (cf. 10.4.2).

10-4;6

N Item-oriented input
NT integer procedure inint;
if lastitem then error(”..." ! Inint: End of file ;)
else begin text t;
b~ image.sub(pos, length—pos-+1);
inint;= t.getint;

setpos(pos+t.pos— 1)
end inint;

—— — w— -

e — Ty i

-
i, p— . —— = —m; T

e g

rrA—mwR W E—eae - Erm. T W

rr . mm . mar AR e LA 4 b o B L T o= T maeslm e

e I T e e e -

- R - S I LS. .
I
y . - .- - -

Lu T - I ——— =t = e =

PR

e ———

A g -

Databehandling - Programsprak ~
SIMULA SVENSK STANDARD SS 63 61 14

_ Utgava 1 Sida 126

INREAL long real procedure inreal;

if lastitem then error("...” | Inreal: End of file;)
else begin text t;

t:— image.sub(pos, length—pos+1);
inreali= t.getreal;

setpos(pos+t.pos—1)
end inreal;

INFRAC integer procedure infrac;

if lastitem then error("..." ! Infrac: End of file:
else begin text t;)
t:~ image.sub(pos, length—pos+1);
Infrac:= t.getfrac;

setpos(pos-+t.pos—1)
end infrac;

The procedures " inint”,
cedures of "image”,

then scan past and ¢

L .
inreal” and "infrac” are defined in terms of the corresponding de-editing pro-

These three procedures :
start " n . b’ and
onvert a numeric item, | 'ng at the current "pos”, skip spaces and tab’s,

Databehandling - Programsprak —

SIMULA
—

10,5

The class "outfile”

file class outfile;
begin

Boolean procedure open{fileimage); text fileimage;
Boolean procedure close;
procedure outimage;
procedure outrecord;
procedure breakoutimage; . .
Boolean procedure checkpoint; . . . « . . .+ . &
procedure outchar(c); character c;
procedure outtext(t); text t;

............

text procedure FIELD(w); integerw; « « -
procedure outint(i, w); integeri,w; « . . .
procedure outfix(r, n, w); <real—type> r; integernm, wj « . « « » + + *
procedure outreal(r, n, w); <real—type> r; integern, w; .

procedure outfrac(i, n, w); integer i, n, w;

end outfile;

SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 127

e e e e e e s s 1005
' R {18 &
..... e e s .. 108,24
e v e e R (3% &
C e e e e e e . . o 1054
...... . . L. . 10,20
...............10.5.6;
. e e e e e e s 08T
' ' e e e e e e e 1058
. ' s e e e s« 10568
L e e e s 1058
..... e e e e o 1005

. 10.5.8;

a # % 8 & » ¥

An object of the class "outfile” is used to represent an image-oriented sequential output file.

Note: See 10.7 for a special property of procedures "open”, "close”, "outimage” and "outrecord”.

10.5.1 Open and close
OPEN Boolean procedure open(fileimage); text fileimage;
if ... then begin ... ! see 10.1.2;
image:— fileimage;
setpos(1);
open:= OPEN:= true;
end open;
CLOSE

The Procedure " ¢loge” calls "outimage” if the position indicator is not equal t

Boolean procedure close; |
if ... then begin ... ! see 10.1.2;
if pos <> 1 then outimage;

image:— notext;
« } | perform closing act
OPEN:= false;
close:= true;
end close;

ions on external fle;

01#

—a

-, ——— e * " = m = =

Rt
e e
: ~
PR ™ ¥ S '-

. o I

_ A R vh-v-r‘-'#:""'."_ e 0T T

- - . LT T A A

EE . == - —— e ————
_ -

I . '

B e e "l bl e

- - -
a '-..n—..-...-..-..-_—_q-!-—q.—_
e Bk Wi by el i
t .
Lo ' R :
’ —_— e e A me s e 4 e e
. - L .
- . ——— -
—— e e——

— gy =

—_—— = . -

- —r—r—

R R it Tl -

. e -
- - o . - : T

! e —. LI JT
. —t— — — i

L
- .
—_ i m A
N
L - - - - B - e T —r
- - . e e .. _ - = ——
ST S T - —-—

- - T e e e - == - - ! ’ LR
. "_.-.-...----"'"' - . TTTTr e
P s —— e
L R i S —

e e e — - '__.._.-.-\.-.-:-
- am o £ =7 L Tma T s mmm v m—

- —
T, L g S sralub sl

. B T :
e el WA e s - -
[P . - .

63611
Databehandli’ng - Programsprak ~ SVENSK STANDARD SS
SIMULA

Utgava 3 Sida 1

10.5.2 Outimage

OUTIMAGE procedure outimage;

if not OPEN then error(”..." 1 file closed;)
else begin

s« 3 | transfer "image” to external image;
image:= notext;
setpos(1)

end outimage;

The transfer of ap image from the text »

- e‘ﬂ‘.
image” to the file is performed by the procedure "outimag
The procedure reacts in an

) : r the
implementation—deﬁned way If the "image” length is not app;oprliz*;':l file,
external file. Whether or pot trailing blanks from the "image” are actually recorded on t f;.e}; indicator
is implementation—dependent. After the bransfer, "image” is cleared to blanks and the posttio
is set to 1.

10.5.3 Outrecord

OUTRECORD Procedure outrecord;

if not OPEN then error(”...” | file closed;)
else begin
«« 3 ! transfer image.sub(1, pos—1);

! Note: no blanking of "image”;
setpos(1)

end outrecord;

The Procedure ”outrecord”
contents are not blanked aft

10.5.4 Breakoutimage
BREAKOUTIMAGE eakoutimage;

N then error(”..” | fie closed;)
else begin

« i 1 outpyt image.sub(1, pos—1);
Image;= Dotext;
setpos(1)

end brea.kqutimage;

reakoutima.ge“ out

ut of an externa)
les this

ed
Puts the part of "image” that precedes POS. The output is perform

" ' On
. IMage, in the genge that implicit line terminators are Supp ress::at of
OPeration ig pot bossible, in which cage the transfer is identical to

' K STANDARD SS 63 61 14
Databehandling — Programsprak - 3:;§ : s1 36117

SIMULA

10.5.5 Checkpoint
The procedure ” checkpoint” is described in 10.2.1.

10.5.6 Outchar
OUTCHAR procedure outchar(c); character c;
begin -
if not more then outimage;
image.putchar(c)
end outchar;

. s i n Tf"more" is false, " outimage”
The procedure * outchar” stores a character in the POS position of "image”. If"m ,

is called first.

10.5.7 Outtext

OUTTEXT procedure outtext(t); text t;

beﬁos:—l and then t.length>length—pos+1 then outimage;
t.setpos(1);
while t.more do outchar(t.getchar);

end outtext;

he file.

arameter to ¢
Procedure "outtext” always transfers the complete contents of the text p

litt ! '

T ———

R w——— o o e AR

— s ——— ey

e el

]
e Gl P, g e W T, - T

I L
il
N
]E { [, .:'
19N H I
i ;ilxj-'
tH AR
S D
1] s
]t
SR ERTEY
L
N O
T
il
ool
Mot |
Mol
u

- .
———— am DL -
p o ————— — i — ==
- .-

CF T, -

. UAL L
.

. . - ———
T L L

——— T —wr —r- = —mia— R AT T
—

- - T g

‘ _ _ - . AR, T e e m——— ol

_ LTy e

4 o ——— . et e b et P

- a -

T R

Databehandling - Programsprak
SIMULA

- OUTFIX

10,5.8 Item-oriented output

text procedure FIELD(w); integer w;

if w>length then error("...” ! Item too long;)

else begin
if pos+w—1 > length then outimage;
FIELD:~ image.sub{pos, w);
setpos(pos+w)

end FIELD;

OUTINT procedure outint(i, w); integer i, w:

if w = 0 then FIELD(...).putint(i} ! see below:
elseifw< 0 ()P 0 |

then begin text f:

f;~ FIELD(-w);

f:= notext:

Lsub(1, ...).putint(i) end
else FIELD(w).putint(i);

Pl‘ttcedure outfix(r, n, w); <real~type> r; integer n, w;
« i 1 as body of outint, with "putfix” substituted for " putint”:

OUTREAL
procedure outreal(r, n, W); <real—-type> r; integer n, w;

« 3 1 as body of outint, with "putreal” substituted for "putint”;

OuTF
RAC Procedure outfrac(j, n, w); integer i, n, w;

~ i 1 a3 body of outint, with "putfrac” substituted for " putint”;

The procedures "outint”, " outfix",

bew n . 2
editing procedures of "image”, They outreal” and "outfrac” are defined in terms of the corresponding

2 "feld” (subtext of "image") provide facilities for " item-oriented” output. Each item is edited int0

correspondingly. If the l‘ema.inI:ioemaf"g' start':’ng at the current accessible character. POS is advanced
implicitly prior to the editing [Ol "Image” is too short to contain the item, "outimage” I8 called

A rutime enror g 1 a ﬂ;ze::::n; :‘he field is spa:ce-ﬂlled before the editing operation.
Parametep "yn determines b Ot be contained within the full length of "image”.
follows, oth the length of this field and the adjustment of the item within if, 23
: : 2 ‘The field length is w, the item is right-adjusted.
"o The fleld length 1 abs(w), the item is left-adjusted,

The field length is the

leading or trajling spa,c:fﬂ number of characters needed to contain the item (i 20

SVENSK STANDARD SS 63 61 14

Utgava 1 Sida 130

Databehandling — Programsprak — SVENSK STANDARD S5 63'61 14
Utgava 1 Sida 131

SIMULA

10.6 The class "directfile”

imagefile class directfile;
begin integer LOC, MAXLOGC; Boolean ENDFILE, LOCKED;
integer procedure location; location:= LOGC;
Boolean procedure endfile; endfile:= ENDFILE;
Boolean procedure locked; locked:= LOCKED;,

Boolean procedure open(fileimage); text fileimage; . - - - e P iggii
Boolean procedure close; . + « + o o+ O IR ' 10.6.2:
integer procedure lastloc; O 10.6.2;
integer procedure maxloc; 1062,
procedure locate(i); integeri; . o . .+ » o o e s ottt Tt ., 10.6.3;
procedure inimage; .« « » o ¢ 0 boeo0os e 00T . o 064

procedure outimage; . . . « o+ - o o o s e e e s e . oo 065
Boolean procedure deleteimage; . - + « ¢ ¢ ¢ ¢ 0 " R | .. . 10.6.63

character procedure inchar; . . » « ¢« ¢ ¢ e 000 0" e ., . 10,6.7;
integer procedure lock(t, i, j); realt; integer T T 1 XX ¢
Boolean procedure unlock; , . 10.2.1;
Boolean procedure checkpoint; .« « « ¢ = R L R e o, . . 1044
Boolean procedure lastitem; . o « o o e 0 R . . s 10495
text procedure intext; . « . o o - ¢ R . . 1046
intoger procedure MMty . .+« o e e sttt L 1046
long real procedure inreal; . . o+ o+ e 070" T Ce e R 10.4.6:
intoger procedure Infrac; . « « » ¢« o ettt T, 1066
procedure outchar(c); characterc; . o o+ ¢ *° cee L. 108
procedure outtext(t); textt; . « « o o v 0" I e e 10.6.8;
text procedure FIELD(w); integerw; .+ « » » * = * ° "~ ettt 10.5.8;
procedure outint(i, w); integeri, wj . o o« ¢ttt L., . 1068
procedure outfix(r, n, w); <real-—-type>T; integer my Wi - ¢ ¢ * ' 1058

procedure outreal(r, n, w); <real—type> I integermy Wi - 0T 0, 1088
procedure outfrac(i, n, w); integer i, ;y Wi+ -+ * 0 T ' |
ENDFILE:= true;

end directfile;

rect file in which the individual

I I e A T R s

il - = a-

. . * di
An object of the class " directfile” is used to represent ab image-oriented

images 2 i . ; 18
ges are addressable by ordinal numbers value of LOC is set 1

o | : ed, the
The variable LOC contains the current ordinal sumber. When the file Is °l{fs

* of LO *, :
Yo zero. The procedure "location” gives access to the cur;ent value ' tor than I
closed or when an smage with location EF £ 1
clos

i " ment. The procedure
ig set after each "inimage state

The variable ENDFILE is true when the flle is
lastloc” has been input (through “inimage“). It

“en " »
dfile” returns the current value. G, On some systems this value

. LO ;

The variable MAXLOG indicates the highest, permitted v2 e o{which allow the file t0 pe dypamically
corresponds £o the size of a preallocated file while, on other SyStEIS :
extended, this variable is assigned the value " maxint” —1. -

- - - "

mm e fm . o — . -

e —— o —

-—r

- ol -

. —_

S W =
s T

- - .- e e ma

S Ll lr Al o m T

P -
PR T S S

. _-.-1-—: LA PREE Y e

- - e Mt p ey — — =
et - — e——— -

- - - om -
. . . _ R e ——
e a el i o b e .

14
Databehandling - Programsprak - SVENSK STANDARD SS 63 61
SIMULA

Utadva 1 Sida 132

10.6.1 Open and close

OPEN Boolean procedure open(fileimage); text fileimage;

if ... then begin ... 1 see 10.1.2;
MAXLOC:=... ; ! See below:

image;:— fileimage;

setpos(1);

locate(1);

openi= OPEN:= true;
end open;

CLOSE Boolean procedure close;

if ... then begin ... | see 10.1.2;
image;— notext;:
if LOCKED then unlock;
LOC:= MAXILOC:= :

OPEN:= false;
close:= ENDFILE:= true;
end close;

. T
The procedure " open? locates the first image of the file. The length of "image” must, at all " inimage f
and " outimage” statements, be identica} to the length of "image” at the "open” call. The value aS:SIE,;ﬂel
to MAXLOC at "open” is eithera, maximum length determined from the external file, or it is "maxint” —
if no such length exists,

10.6.2

Locate, lastloc, and maxloc
LOCATE

Procedure locatef(i); integer i

if i<] or i> C then error(”...” ! Parameter out of range;)
else begin

LOC:= i;

end locate;

LASTLOC integer procedure lastloc;

if not OPEN then rror(”...” 1 file closed:)
else lastloc:= e

MAXLOC

integer procedure maxloc;
if not OPEN then error("...” 1 file cloged:)
else maxlocr= MAXLOC;

2y be used to assign 5 given value to the variable LOC, This assignment may be
accompanied by 'mplementation-defineg check i external
s and tructions to an
memory device a3Sociated with the fije (possibly oSy chronous) instru
to "locate® less

SVENSK STANDARD SS 6

Databehandlin
g - Progr 2o o
SIMULA. gramsprak

Utgdva 1

10.6.3 Inimage
INIMAGE procedure inimage;
if not OPEN then error
else begin
locate(LOC);
setpos(1);
ENDFILE:= LOC > lastlo¢;
if ENDFILE then image:=" 125!" else

begin
if ... 1 external written image at LOC exists ;

. 1 transfer to "image” ..

else begin
while more do image.putcha.r(' tor')

| Note: now pos = length+13

end not written;
LOC:i=LOC+1; ! Location fo
end;
end inimage;

(".." ! file closed;)

then

r *knext# image;

The . s

ident?ﬂr:; eg; IEI: inimage” transfers into the text nimage” 2 copy of the extern

the value of LOcvarla.ble LOGC, If the file does not contain an 1mage with an or:d

than "lastloc” , the effect of the procedure ninimage” is as follows. If the location

Otherwise, if , then ENDFILE is set to true and the

is greater 'tllm;he image is a non-written image but there exists at least one written 1ma

indicator i current LOC, then ‘o Mimage” is flled with NUL (0r) characters and
' s set to "length”-+1 (i.e. "more” becomes falge). Finally the val i

one.

10.6.4 Outimage

ou
TIMAGE procedure outimage; |
if not OPEN then error(" .. ! file closed;)
else if LOC > C then error(” " | file overflow;);
else begin)
locate(LOC);
... ; ! output "image" t0 excternal image ab LOG

LOC:= LOC + 1;
image := notext;
setpos(1)

end outimage;

T

stgii;) rocecure " outimage” transfers & COPY

file coitm- the file an external image whose ordinal pumb
ains another image with the same ordinal number, §

18 then incremented by one.

36114
Sida 133

a] image as currently
inal number equal to
indicated is greater
end of file text ("1261") 1s assigned to "image” -

] jmage whose LOC
the position

d by

THT DT s e o - _

. —_— . — - — -

——— e o T A A A — i ——— 4= wE.= . e
—

-r e A A

1
Databehandling - Programsprak - SVENSK STANDARD 5SS 63 61
SIMULA

Utgéva 1 Sida 131
Mﬁ—-—_—_

10.6.5 Deleteimage

DELETEIMAGCE Boolean procedure deleteimage;

if OPEN and then ... ! image LOC was written;
then begin

locate(LOC);
«+ 3 1 attempt to delete image;

if ... ! delete operation successful;
then begin

deleteimage := true:
LOC:= LOC + 1;
end successful
end deleteimage;

| ivel
The Boolean procedure " deleteimage” makes the image identified by the current value of LO%EH:;;‘; E-;
un-written. Irrespective of any physical differences on the external medium between never-wri eans that
and deleted ones, there is no difference from the program’s point of view. Note that this me

n
"deleteimage” may decrement the value returned by "lastloc” (in case LOC was equal to "lastloc”).

* value
Note: Out;_:n{t.ting a NUL-filled image at location "lastloc” in the file does not necessarily decrement the "lastloc '
explicit writing (outimage) of such images should be avoided.

10.6.6 Inchar

INCHAR character procedure inchar;

begin -
while not more do inimage;

inchar;= image.getchar
end inchar;

Note: Inchar skips all unwritten images,

10.6.7 Lock and Unlock
The procedures "lock® | . . : The last two parameters
of "lock” indicate the o (see 10.2.2) provide locking mechanisms.

¢ of locations to be locked (inclusive)

10.6.8 Item-oriented input /output

T!le remaining procedures ("lastitem” to "intext” and "outchar” to "outtext”) are defined in accordancé
with the corresponding proc

.rt ithms
. edures of "infile” ang "outfile” respectively, i.e. their definitional algori
are exact copies of thoge given in these two classes, ’ ’

SVENSK STANDARD s$ 636114

Databehandling ~ Programsprak ~
SiM
ULA Utgava 1 Sida 135
10.7 The class " printfile”
The class " printfile” defines a class for line printer oriented output.
outfile class printfile; |
lii:glﬂ integer LINE, LINES_.PER-PAGE, SPACING, PAGE;
teger procedure line; line = LINE;
integer procedure page; page = PAGE;
goolean procedure open(fileimage); text Gleimage; » - ¢ - T .. 10715
_ﬁﬂlﬂanprocedureclose;............................10.7.1;
integer procedure linesperpage(n); integerm; « « » ¢ -ttt T T N 10.7.2;
procedure spacing(n); integernm; . . o+ o+ sttt T DR 10.7.3;
procedure eject(n); integern; . o o v v sttt e e 10T
e e 1075
. 10.7.5

procedure outimage; . « + o+ o = oot ” '
procedure outrecord; . o o ¢ ¢ o ¢ ¢ v
SPACING:= 1; U .
LINES_PER..PAGE:= ... §

end printfile; i

2, line printer oriented outpub fle. The class is 2

An obj . _
bject of the class "printfile” is used to represent
a line on & printed page.

subclass of "outfile”. A file image normally represents

ch are redeclared
on (qua). Thus these "outfile

Iti)
Is 2 property of this class that noutfile” attributes, whi
d as including the following ini

accessi
(" 0;5:3:1&“1;0 thf user’s program through explicit qualificati
, "close”, "outimage” , "outrecord”) may be envisage

tial code:

procedure X...;

inspect this outfile
when printfile do X...
otherwise ...} |

utput procedures 2r¢

close and the item-oriented 0

Note: .
ﬁgsi&';ently, possible implicit calls of outimage from outchar,
erstood to invoke " printfile.outimage”. '

T 1 . . .
he variable LINE indicates the ordinal number of the line on
t or explicit " gject”

th
throner, ot page), provided that no implici
gh the procedure "line". Note that the vatue of LINE may be greater b

(see 10.7.5).

:1]:& variable PAGE indicates the ordinal
ans of procedure " page”. |

e —r— = o M _
- - = o

number of the current page.. Its valu

e = —— e bl gy T T
— sl Py . v — - i - — -

— —————— -
i m—
e s e -, —

P

e — e - R -
e amn A L —— EE—— En -

Databehandling ~ Programsprak -
SIMULA

10.7.1 Open and close

OPEN Boolean procedure open(fileimage); text fileimage;

if ... then begin .., ! see 10.1.2;
image:~ fileimage;
PAGE:= 0;
LINE:= 1:
setpos(1);
eject(1);
openi= OPEN := true;
end open;

CLOSE Boolean procedure close;

if ... then begin ... ! gee 10.1.2;
if pos <> 1 then outimage;
ej ect(LINES_PER_PAGE);
LINE:= 0;
SPACING:= 1;
LINES. PER_PAGCE:= ... ;
image:— notext:

OPEN:= false;
close:= true;
end close;

The procedures "open” and "close” conform to the rules of 10.1.2. In addition, "close” outputs the
current value of "image” if POS is not equal to 1 and sets LINE to zero.

10.7.2 Lines pep page
LINESPERPAGE integer procedure linesperpage(n); integer n;
begin linesperpage:= LINES_PER..PAGE:
LINES_PER_PAGE:=
in>0then n
else if n < 0 then maxint
else ... ; ! defanlt value;
end lineaperpa,ge;
g;?ee::-l‘l‘l‘;«g;euiiggngR_PAGE Indicates the maximum pumber of physical lines that may b‘-’:j ptr;ﬂte(:
' Mg intervening blank It . i ion- lue is assigne
variable at the time of object genergtio nd Diatlle o lomea, T vani

' 3
" and when the printfile is closed. The value of the variable m2Y
linesperpage”; in addition the variable is given a new value.

SVENSK STANDARD SS 63 61

“‘“—“_——

SVENSK STANDARD SS 63 6114
Sida 137

Databehandling - Programsprak —

10.7.3 Spacing

SPACING procedure spacing(n); integer n;
if 0<=n and n<=LINES..PER_PAGE then SPACING:=n
else error("..” 1 Parameter out of range;);

The variable SPACING represents the value by which the variable LINE is incremented affer the next

printing operation. Its value may be changed by the procedure "spacing”. A call on the procedure
"spacing” with a parameter less than zero or greater than LINES_PER._PAGE constitutes an error.

The effect of a a parameter to "spacing” which is equal to zero may be deﬁm?_.d as fox:cing.successw:
printing operations on the same physical line. Note, however, that on some physical Ir}ed.la. this may no
be possible, in which case spacing(0) has the same effect as spacing(1) (i.e. no overprinting).

10.7.4 Eject

EJECT procedure eject(n); integer n;

if not OPEN then error(”..." ! file closed;))

else if n <=0 then error(".." | Parameter out of range;

else begin
if n > LINES._.PER_PAGE then ni= 1;

if n <= LINE then

bega

.. 3 | change to new page on external file; | 1

PAGE:= PAGE + 1

I AR TwIoE L o e oma - SO .. T -

- —_— b

-y WemSEeD | WL ke ol e
= g o W i, Ayt - s .

end; , .
... : 1 move to line "n" on current (external) page;
LINE:=n

end eject; . B

identified by the parameter, I. The variable

The procedure "eject” iti in line
re "eject” is used to position to a certal implies 2 new page:

"PAGE” is incremented by one each time an explicit or implicit " eject”

The following cases can be distinguished: o |

n <= 0 + Brror - (1) ’
n > P PAGE . Equivalent to ejec - §
n <= E{EE}S - ER-PA . Position to line number B on :ﬁ: ng:eE:ide ti
n > LINE . Position to line pumber n o1 ;

The tests above are performed in the given sequence.

J I B R
1 A N
: I :
ARN J'I
vy [.
T .rl_j
" ¥ . : i 1]
SO :'I_.* !
:I:r:!: :li |
.y
e g
|II 1 i 3
I ..
L I
SR N
IEEN R
B B)
'.'!' 1]
:r;:' . -
HEE _Jlii:
Cot I i
t 1I .!:' h
| N i'! “
. || | E
R N ik
[R 1
S
1 : i H!l
SN E '
T E I I
.Il' :: ,I[II h
Ilf'. .I :;‘ II 1'_:g
A
rIi " I ;p
! ||.Ii'| :
FEES
|- ,;
il | ' :
R
[
| 1] : .
IR
SRR
AR
Iyt
b I:: |
ot
qoiy
.I | Ir,;-_
: ::I rEIEIl
1]
| » ‘J':r::'
: I [i i:.':
IR EN
h - -'; jlir“i:;:::-
I TS
i l :':
ol
o | ' .. ! :!Zgél:-F.i:'
- ;..I'i-"':'-li".
' 3 j“-i’.;i;f_
| JJ
RiEia
I 1 'i .jl}i I'.
o CHT
B 1 S
S
-.! ‘ :i
1 ._1
o
£

—— i L rrE i cmmwmn . v,

Databehandling -~ Pro

gramsprik -

SVENSK STANDARD SS 63 61 14

SIMULA Utgdva 1 Sida 138

10.7.5
OUTIMAGE

OUTRECORD

'I‘he_ Procedures "outimage” ang »
addition, they update the variable LINE (and p

Note: In addition, the pProcedure
update LINE or PAGE,

Outimage and outrecord

procedure outimage;

if not OPEN then error(™..." 1 file closed;)

else begin |
M LINE > LINES_PER_PAGE then eject(1);

« 3 ! output the image on the line indicated by LINE;
LINE:= LINE + SPACING;

image;= notext;
setpos(1)
end outimage;

procedure outrecord;

if not OPEN then error(”..." 1 file closed;)
else begin |

outrecord” operate according to the rules of 10.5.2 and 10.5.3. In
ossibly PAGE).

"breakoutimage” js inherited from the class prefix "outfile”, This procedure does not

Databehandling - Programsprak — SVENSK STANDARD 58 Gzi: 1 112
d

SIMULA Utgdva 1

10.8 Bytefiles

The class bytefile is the common prefix class for all byte-oriented ﬁles.

file class bytefile;
begin short integer BYTESIZE;

short integer procedure bytesize; bytesize = BYTESIZE; ;

end bytefile;

var:able BYTESIZE defines the range of

Bytefiles bytes. The
read and write files as continuous streams of bybes. (0 o4xBYTESIZE~1). The BYTESIZE

the byte values transferred. Byte values are integers in the range
value of the file object is accessible through the procedure "by tesize” .

Note: The procedure "bytesize” returns zero before first "open” of the bytefile.

There are three standard subclasses of "bytefile”:
rations are available.

"inbytefile” representing a sequential file for which input opeé
, s Ang ilable.
"outbytefile” representing a sequential file for which output operations are avalia

"directbytefile” representing a direct file with facilities for both inpu

¢ and outpubs

10.9 The class “inbyteﬂle“ : I .
bytefile class inbytefile; .
begin Boolean ENDFILE;
Boolean procedure endfile; endfile:= ENDFILE; | 100,03 3
. 2 ! wwiely :::;.
Boolean procedure open; . . . ¢ - - O e IO'Q'IE ;
Boolean procedure close; ,' :ggg*

short integer procedure inbyte; . « « -« ¢ ¢ ° L ..t
text procedure intext(t); textt; .+ . ¢ ¢ T '
end inbytefile;

a byte-onented sequentl

b tes to read The procedure #endfile” refurns
¥ \

An object of the class "inbytefile” is used to represent

The variable "ENDFILE" is true if there are no more
the value of ENDFILE.

—_— e - e A s S

- i = e ———— —

Databehandling — Programsprak -

10.9.1 Open and close

OPEN Boolean procedure open;
if ... then begin ... ! see 10.1.2;
ENDFILE:= falge;
BYTESIZE:= ... ! value of access mode BYTESIZE:
open:= OPEN:= true;
end open;

CLOSE Boolean procedure close:
if ... then begin ... ! see 10.1.2;

OPEN:= false;
close:= ENDFILE := true;
end close;

10.9.2 Inbyte

INBYTE short integer procedure inbyte;

if ENDFILE then error(”... 1 End of file ;)
else if ... ! no more bytes to read;
then ENDFILE:= true ! inbyte returns zero:

else inbyte:= ...} next byte of size BYTESIZE;

The procedure "inbyte” returns the short integer value corresponding to the input byte. If there are 1o
more bytes to read, a zero resylt js returned. If prior to an "inbyte” call ENDFILE is true, 2 run-time
Sror occurs. ‘The result is always in the range 0 <= inbyte < 24+BYTESIZE.

10.9.3 Intext

INTEXT text procedure intext(t); text t:

begin
t.setpos(1);

while t.more and not ENDFILE do t.putchar(char(inbyte));
if ENDFILE then t.setpos(t.pos—1);
intext:— t.sub(1, t.pos—1)

end intext:

The procedure "intext®

fills the frame of the parameter "t with successive input bytes.

SVENSK STANDARD SS 63 6114

SIMULA Utgiva 1 Sida 140
————— e —

Databehandling - Programsprak —
SIMULA

SVENSK STANDARD SS 6361 14

Utgdva 1 Sida 141
10.10 The class "outbytefile”
bytefile class outbytefile;
begin
gooleanpmcedm Open; s % ® ®% ®= 8 ®w 3 & B s = w % & B g w8 B * ¢ 10.10.1;
oolean procedure close; .« + 4 o . s e N 10.10.1;
10.10.2;

procedure outbyte(x); short integer X;
procedure outtext(t); textt; . . o . o e s e e st T
Boolean procedure checkpoint; . . . - . ¢ oo

end outbytefile;

''''''

»

L]

L J

-y

b

» i
Lo
o

An .
object of the class "outbytefile” is used to represent 3 sequential output file of bytes.

10.10.1 Open and close

Oop
EN Boolean procedure open;

if ... then begin ... ! see 10.1.2;
BYTESIZE:= ... ! value of access mode BYTESIZE;

™ BUb

open:= OPEN:=true;
end open;

C
LOSE Boolean procedure close;
if ... then begin ... 1 see 10.1.2;
OPEN:= false;
close:= true;
end close;

10.10.2 Outbyte

ouT
BYTE short integer X;

procedure outbyte(x);

t not OPEN then error("..." ! file closed;
else if x < O or else x >== 2¥*
then error("..." ! Outbyte,
else ... ; ! output of X;

value. If the parameter value

he parameter .time error

The proced

’ ure “out'byt'eﬂ out t b d' to t

13 puts a byte correspon Ing

001?13:3 tl;?n Zero or exceeds the maximum permitted value, as defined by BYTESIZE, & rit
. If the file is not open, a run-time error occurs.

10.10.3 Outtext

OUTT
EXT procedure outtext(t); text t;

begin

t.setpos(1);

while t.more do ou
end outtext;

tbyte(ra.nk(t.getcha.r))

ngn ag bytes:

The "
Procedure "outtext” outputs all characters in the parameter

—
i .
[——
L TR —
? . ma —saigle

) At e = w .

| Databehandling - Programsprak - SVENSK STANDARD S$S 63.61 14

el sIMULA Utgava 1 Sida 142

ey

: 10.11 The class "directbytefile”

| ¥ The class "directbytefile” defines 2 byte-oriented direct file.

SR |

el bytefile class directbytefile;

1 %h begin integer LOC, MAXLOGC; Boolean LOCKED:

] H Boolean procedure endfile; endfile := OPEN and then LOC>lastloc;

; N integer procedure location; location := LOCG;

Y integer procedure maxloc; maxloc = MAXLOC;

. : J] Boolean procedure locked; locked := LOCKED;

Bl | :
e Boolean procedure open; 10.11.1;
=‘_ u 1 Boolean procedure close; e b et et e e e e e e e e e . 10.11.1:
AEN integer procedure lastloc; R ot e e e e e e e e e e e e e 10.11.23
P procedure locate(i); integer i; C e 10.11.3:
] short integer procedure inbyte; . . . , ., 77 10.11.3;
| E i procedure outbyte(x); shortintegerx: ., C e e e e e e e e 10.11.3:
il Boolean procedure checkpoint;, . , . e e e C e e e e e e e 10.2-;: |
S IR Integer procedure lock(t, i, j); realt; imtegeri,j 102.3
! 18 | Boolean procedure unlock; ., , G e e e e C e e e e e e e 10.2.2:

5: ' 5' procedure intext(t); textt; . .., C e e e e e e e 10.9.3:

i procedure outtext(t);” textt; . .., . ., 10.10.3;
;' - end directbytefile;
g
. |
: ;} o An object of the class "directbytefile” is used to represent an external file in which the individual bytes
3 B are addressable by ordinal numbers, The variable LOC is defined to represent such ordinal numbers.
. : il When the file ig closed, the value of LOC is ZEero,

I The variable MAXLOC indicates the maximum possible location on the external file. I this is not
R meaningful MAXLOG has the value of "maxint” -1, The procedure "maxloc” gives access to the current

il OC value, |

A
. i
e The procedure ”endfil¢” returns true whenever LOC indicates an address greater than "lastloc”.

il | ;I:Sel brocedures "intext” and " outtext” conform to the pattern for "inbytefile” and "outbytefile”, respec-

I ' i - vely,

A iy
Al

i | ; . | 10.11.1 Open and close

IZI :i rb | | OPEN | Boolean procedure open;

o 'i if ... then begin ... | gee 10.1.2;

- ;I 'k | LOC:= 1;

- '! X MAXLOC:= i 1 fixed size, or maxint—1;
i | BYTESIZE:= ...; | value of access mode BYTESIZE;
o oPen:= OPEN:= trye;
end open;

CLOSE Boolean procedure close;

if ... then begin .., | gee 10.1.2;
MAXLOG:= : *
OPEN:= false;
close;= true;

end close;

Databehandling - Programsprak — SVENSK STANDARD SS 636114

SIMULA Utgava 1 Sida 143

10.11.2 Locate and lastloc

LOCATE procedure locate(i); integer 1j
ifi <1lori>MAXLOC
then error("..." 1 Parameter out of range;)
else LOC := {;

—r——— it S . = -

LASTLOC integer procedure lastloc;
if not OPEN then error("..." ! file closed;)

o
E
o
7
=
o
&
Il

dure "location”
The current last written location is returned by the procedure “lastlzc"' ags?:.npf;:veﬂ value to the
returns the current value of LOC. The procedure "locate” may be used to

: O constitutes 2
vatiable, A parameter value to "locate” which is less than one o greater than
run-time error,

10.11.3 Inbyte and outbyte

HNBYTE short integer procedure inbyte;
if not OPEN then error("..." ! file closed;)
else if LOC <= lastloc
then begi |
inbyté:n: ... | next byte of size BYTESIZE;..
LOC:= LOC+1 |
end inbyte; |

OUTBYTE procedure outbyte(x); short integer X
it not OPEN then error("..." 1 file closed;)
else if x < O or else X >= 2**BYTESIZEI e 1); ;-
then error("..." | Outbyte, illegal byte valie s)

olse if LOC > MAXLOC then error(™ " | file overflow;

clse begin
... 1 output of X; |
LOC := LOC + 1
end outbyte;
. nipbyte” from an
s he reﬁll]t Of in 3
The Procedure "inbyte” reads one byte, returning its integer value. T I
inwritten LOC is zero (cf. 10.9.2). o value (¢l 10.10.2).
| 1 me | T
The procedure "outbyte” outputs a byte according to the given pare
eters
0114 Lock and unlock panisms. The last two param '

Th:’ brocedures "lock” and "unlock” (see 10.2.2) prov:ride ltt;clgl:l
of "lock™ indicate the minimum range of (byte) locations

Dat ing -
abehandling — Programsprak — SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 145

SIMULA

11 CLASS SIMSET
The class "simset” contains facilities for the manipulation of circular two-way lists, called "sets”.
class simset;
begin
ca.laulinkage; """ "'""l!ltiti%tilltlltl-l'itli 11-1;
lfnkagecmslink; .« s % # s b & v s o = 3 ¢« s ®» w % & B s w & + 8+ ¢ 3 a 4 @ 11-2;
llnk&geclmhead; "‘iliibiiliii tttttt tqaltnqrc 11-3;
end simset;

The reference variables and procedures necessary for set handling are introduced in standard classes
ir relevant data and other properties

ggzlared within the class "simset”. Using these classes as prefixes, the
made parts of the object themselves.

Ezth sets and objects which may acquire set membership
nsequently they are made subclasses of the »linkage" class.
lass "head"” of " linkage". Objects which may be

If another subclass of "linkage”.

':‘el:e sets are represented by objects belonging to 2 subc
members belong to subclasses of »link" which is itse

111 Class "linkage”

class linkage;
begin ref (linkage) SUC, PRED;

ref (link) procedure suc;
suc:— if SUC in link then SUC else none;

L = e oo F vz makmagmes . -
i

iy, e T e T TR, ST S ST iy
3 A -

ref (link) procedure pred;
pred:~ if PRED in link then PRED else noneé;

ref (linkage) procedure prevy prev:= PRED;

end “nka,ge;
t heads and seb members.
n the set, PRED is a refere

nguc” and "pred” . These proce-
.e. of class n]ink" or a subclass

T . ‘
he class "linkage" is the common denominator for se
nce to the predecessor

SUC is a reference to the successor of this linkage object i

'il: ¢ value of SUC and PRED may be obtained through the procedures
of f:el?niiﬂve the value none if the designated object i3 not a seb member,

The attributes SU ' the U3

) C and PRED may only be modified through thé -.
"link" and "head". This protects the user agaiust certain kinds of programming error &
od from its first member-

Th
e procedure "prev” enables a user to access a set be

Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgéva 1 Sida 146
m

11.2 Class "link”

linkage class link;
begin

procedure out;

if SUC=/=none then begin
SUC.PRED:~ PRED;
PRED.SUC:- SUC;

SUC:— PRED:— none
end out;

procedure follow(ptr); ref (linkage) ptr;
begin out: .
if ptr=/=none and then ptr.SUC=/=none then begin
PRED:— ptr:
SUC:~ ptr.SUC;
SUC.PRED:~ ptr.SUC:~ this linkage end
end follow;

procedure precede(ptr); ref (linkage) ptr;
begin out;
if ptr=/=none and then ptr.SUC=/=none then begin
SUC:— ptr;
PRED:~ ptr.PRED;

PRED.SUC:— ptr.PRED:~ this linkage
end if

end precede;

procedure into(S); ref (head) S; precede(S);
end link;

3 H » | " ! be
Objects belonging to subclasses of the class "link” may acquire set membership. An object may only
a member of one set at a given instant.

. " imle?
In addition to the procedures "suc” and "pred”, there are four procedures associated with each link
object: "out”, "follow”, "precede” and "into".

. ‘ dure
The procedure "out” removes the object from the set (if any) of which it is a member. The proce
call has no effect if the object has no set membership.

- - . . *) o
pn v gz - B M Eam . i - vl AL e - iy Ly P Tl - -
. T T A - L S = ! e ; I oL . e A il _ . ol - o o
T Tk st B e L Sl e . D =i o} Tk S S pon IEym e B DS e e ity S 1 -
. . S . e - T ST . _ e Lk - Xy) R
[.- - N . L. . . - N il = - o e . .

The procedures "follow” and "precede” remove the object from the set (if any) of which it is 2 m;ﬂ’?:
| and insert it in a set at a given position. The set and the position are indicated by 2 par?,meter- ‘:H from
: inner to "linkage”. The procedure call has the same effect as "out” (except for possible side eﬁ'ect a ge
o evaluation of the parameter) if the parameter is none or if it has no set membership :nd is fgnkage"
head, Otherwise the object is inserted immediately after ("follow”) or before (" precede”) the

object designated by the parameter.

Th ot : it a8
¢ procedure "into” removes the object from the set (if any) of which it is a member andﬁ m:ear:iout" |
the last member of the set designated by the parameter. The procedure call has the same eliec

: . eter).
if the parameter has the value none (except for possible side effects from evaluation of the parail)

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA | ~ Utgéva 1 Sida 147

11.3 Class "head”

linkage class head;
begin

ref (link) procedure first; first:— suc;

ref (link) procedure last; last:~ pred; |
Boolean procedure empty; empty:= SUC == this linkage;

integer procedure cardinal;
begin integer i;
ref (link) ptr;
ptr:— first;
while ptr =/= none do begin
ir= i+1;
ptr:— ptr.suc
end while;
cardinal:i= i
end cardinal;

procedure clear; while first =/= none do first.out;

SUC:— PRED:~ this linkage
end head;

nhead” i3 used to represent a set. nhead” objects may not

An object of the class "head”, or a subclass of
defined for each set.

acquire set membership. Thus, a unique "head” i3

The procedure " first” may be used to obtain a reference to the first member of
"last” may be used to obtain a reference to the last member.
true only if the set has no members,

the set, while the procedure

The Boolean procedure "empty” gives the value

The integer procedure "cardinal® gives the pumber of members in 2 set.

The procedure "clear” removes 2]l members from the set. t
The references SUC and PRED initially point 0 the "head” itself, which thereby represents an empiy
set,

L mr—

Databshandling ~ Programsprik ~ SVENSK STANDARD SS 63 61 14

SIMULA Utgdva 1 Sida 149

12 CLASS SIMULATION

The system class "simulation” may be considered an »application package” oriented towards simulation
problems. It bas the class "simset” as prefix, and set-handling facilities are thus immediately available.

:I'he Esntepts defined in "simulation® are explained with respect to a prefixed block, whose prefix part
is an 1mt?nce ¢f the body of "simulation” or of a subclass, The prefixed block instance acts as the head
of a quasi-paralle] system which may represent a "discrete event” simulation model.

simset class simulation;

begin ref (hcad) SQS;

lnk clase EVENT_NOTICE (EVTIME, PROC); long real EVTIME; ref (process) PROG:

begin
ref (EVENT-NOTICE) procedure suc;
auei— i SUC b8 EVENT_NOTICE then SUC else none;

ref (EVENT_NOTICE) procedure pred; predi— PRED;

procedure RANK._IN_SQS (afore); Boolean afore;
begin ref (EVENT_NOTIGE) evt;
evii— SQS.]Jast;
while evt. EVTIME > EVTIME do evb i avt.pred;
if afore then
while cvt. EVIIME = EVTIME do evt :— evt.pred;
{ollow(evt)
end RANK_IN_SQS;
end EVENT_NOTICE;

ref (MAIN..PROGRAM) main;

ref (EVENT..NOTIGE) procedure FIRSTEV; FIRSTEV:- SQS. first;
current:— FIRSTEV.PROG;

ref (process) procedure current;
long real procedure time; time:= FIRSTEV.EVTH\'{E;

12.1;
12.3;
12.4;
12.4;
12.4;
...... 12.4;

..... 12.5;
12.6;

"""""""

link class process; .+ « « « » * ¢ PP
procedure ACTIVAT we « v = o v e v v n 0 00020
procedure hold(T); longreal Ty « o« o v v v v m o " 0
procedure passivate; » « « « v s s s sttt
procedure wait(S); ref (head)S; oo e vttt
procedure cancel(X); ref (process) Xi « e s ettt T
process class MAIN..PROGRAM; . « « +
procedure accum(a, b, ¢, d); name a, b, ¢; 1088 real 2, b, ¢, d;

""""""
||||||

llll

iiiiiiiii

"""""

SQS:~ new head;
main:— new MAIN.PROGRAM; .
main. EVENT:— new EVENT..NOTICE(O, main);)
main, EVENT.into(SQS) ¥
end simulation; -'
j

Databehandling - Prngram sprak -

SVENSK STANDARD SS 63 61 14
SIMULA U

{
i4
;
o
Y
;

T S

s TR -t - -— -

— = T T

- TR LI AR i

U o by e mar——r -

tgava 1 Sida 150
——_— e There —

When use“d as a prefix to a block or a class, "simulation” introduces simulation-oriented features through
the class "process” and associated procedures,

The variable SQS refers to a set which is called the "sequencing set”, and serves to represent the system

:Lme a.xi_’s. Th: members of the sequencing set are event notices ranked according to increasing value of
e attribute "EVTIME". An event notice refers through its attribute PROC to a "process” object and

represents an event which is the next active phase of that object, scheduled to take place at system time

EVTIME. There may be at most one event notice referencing any given process object.

T;::e ivent notice at the lower end of the sequencing set refers to the currently active process object. The
: :lzc tcgn be referenced through the procedure "current”. The value of EVTIME for this event notice
18 Identifled as the current value of system time. It may be accessed through the procedure "time”.

Note: Since . _
e ?tli!;::c:uhe::ﬁaw?mm and procedures introduced by "simulation” make implicit use of the sequencing procedures
+ €all and resume) explicit sequencing by these procedures should be done with care.

The sequencing set (SQS) is descri
: ribed here, for purposes of illustrati i ‘ i tations
however, a more efficient representation is ;'ecommrfnded. 1o 2 & simset ist. In actual implemen '

Databehandling - Programsprak - SVENSK STANDARD SS 6:’: 61 14
Utgsva 1 Sida 151

SIMULA

12.1 Class ” process”
link class process;
begin ref (EVENT_NOTICE) EVENT;
Boolean TERMINATED;
Boolean procedure idle; idle:= EVENT==none;

Boolean procedure terminated; terminated:= TERMINATED;

long real procedure evtime;
if idle then error("..." ! No Evtime for idle process)

else evtime:= EVENT.EVTIME;

ref (process) procedure nextev;
nextev:— if idle or else EVENT.suc == none then none

else EVENT.suc.PROG;
detach;
inner;
TERMINATED:= true;
passivate;

error("..." | Terminated process;)

epresented in the sequenc

An object of a class prefixed by ™process”
dify its " process state”. ‘The possible process states are:

of "link” and, in addition, the capability to ber
by certain sequencing statements which may mo

active, suspended ive and terminated. - -
y Suspended, passive ivation point positioned

d its react
ached a0 bject remaips detached

mes det
ately beco o The process o

When 2 process object is generated it immedi s
fined opera.tl{}n rul

in front of the first statement of its user-de |
throughout i i .
ghout its dynamic scope represented in the sequenc-

s tact is ot currently
The procedure "idle” has the value true if the process object 18 NO

. value of the procedure
ing set. It is said to be in the passive or terminated state dependmfi:I;,tt:,euser-deﬂne 4 prefix level.
"terminated”. An idle process object is pass

ive if its reactivation point I body, it proceeds to the
If and when the PSC passes through the final end of the user-defoc pars Oftﬁi&eproci’dure nterminated”
: cl .
final operations at the prefix level of the norminated” is not atrictly e-?;ted process object as termi-
basic concept defined in chapter 7, an implementation may treat a term! 1 id to b
nated in the strict sense). A proc d of the sequencing e
ice at the lower €n ime indicated
. t the system time in
latter case it is active. A suspended process is 8C be accesse
by the attribute EVTIME of its event notice. This time value may _ .4 by the next event
"evtime”. The procedure "nextev” re
notice in the sequencing set.

as3 "process", & ivalent to the corresponding
becomes true. (Although the process state
. 1s said to be
ess object currently represented in the sequencing set I8 sai
"suspe " ' ented by the evel :
pended?, unless it is repres Y heduled to become active & d through the Procedure
torences the process object, if any, represent

1
I 1
3
f
g
T
i

A — -

- e = .
it e]

- L ahm
- —_—— =T am

e el e —— o il = b

Da:tabehandling - Programsprak -
SIMULA

Utgava 1

12,2 Activation statement

activation—statement
= activation—clause | scheduling—clause |

activation—clause
= activator object—expression

activator
= activate | reactivate

scheduling—clause
= timing—clause
| {before | after) object—expression

timing—clause
= simple~timing-clause [prior]

simple—timing—clause
= {at | delay) arithmetic~expression

An activation statement is only valid within an object of a class included in "simulation”, or within a
prefixed block whose prefix part is such an object.

The effect of an activation statement is defined as being that of a call on the sequencing procedure
ACTIVAT local to "simulation”,

procedure ACTIVAT (REAC, X, CODE, T, Y, PRIO);
ref (process) X, Y: Boolean REAC, PRIO; text CODE; long real T;

The actual parameter list is determined from the form of the activation statement, by the following rules.

1) The actual parameter corresponding to REAC is true if the activator is reactivate, false
otherwise,

2)

The actual parameter corresponding to X is the object expression of the activation clause.

3) The actual parameter corresponding to T' is the arithmetic expression of the simple timing
clause if present, otherwise it is Zero,

R The actual parameter corresponding to PRIO is true if prior is in the timing clause, false
if it is not used or there is no timing clause.

5) :I‘he actual parameter corresponding to Y is the object expression of the scheduling clause
if present, otherwise it is none, -

6) The actual

ol Parameter corresponding to CODE is defined from the scheduling clause a3
ollows:

Scheduling clause Actual text parameter

- absent - "direct”
at arithmetic expression "at”
delay arithmetic expression " delay”
before object expression "before”

after object expression "after”

SVENSK STANDARD SS 63 61 14
Sida 152

61 14
Databehandling ~ Programsprak - SVENSK STANDARD SS 63

SIMULA Utgava 1 Sida 163
swtA

12.3 Procedure ACTIVAT

procedure ACTIVAT(REAC, X, CODE, T, Y, PRIO);
ref (process) X, Y;
Boolean REAC, PRIO; text CODE; long real T;
inspect X do if not TERMINATED then
begin ref (process) z; ref (EVENT_NOTICE) EV;
if REAC then EV:— EVENT
else if EVENT =/== none then goto exit;
z:— current;
if CODE = "direct” then '
direct: begin EVENT:~ new EVENT_NOTICE(time,X);
EVENT.precede(FIRSTEV) -
end direct
else if CODE = "delay” then
begin T:= T + time;
goto at__
end delay -
else if CODE = "at” then
ab... begin if T < time then T:= time;
if T = time and PRIO then goto direct;
EVENT:— new EVENT_NOTICE(T, X);
EVENT.RANK_IN_SQS(PRIO)
end at
else if Y == none or else Y. EVENT == none
then EVENT:~ none
else begin
if X ==Y then goto exit; fore/after X
comment reactivate X before/atter Ay _
EVENT: new EVENT_NOTICE(Y.EVENT.EVTIME, X);

if CODE = "before” then EVENT.precede(Y.EVENT)
else EVENT.follow(Y.EVENT)

end before or after;
if EV =/= none - ,
then begin EV.out; if SQS.empty then error("...") end;
if 7 =/= current then resume(current);
exit:
end ACTIVAT;

e I R e il

T et

— L r

Databehandling -- Programsprak -

The procedure ACTIVAT represents an activation statement, as described in 12.2. The effects of a call
on the procedure are described in terms of the corresponding activation statement. The purpose of an
activation statement is to schedule an active phase of a process object.

Let X be the value of the object expression of the activation clause. If the activator is activate 1ihe
statement has no effect (beyond that of evaluating its constituent expressions) unless the X is a passive
process object, If the activator is reactivate and X is a suspended or active process object, the corre-
sponding event notice is deleted (after the subsequent scheduling operation) and, in the latter case, the
current active phase is terminated. The statement otherwise operates as an activate statement.

The scheduling takes place by generating an event notice for X and inserting it into the sequencing set.
The type of scheduling is determined by the scheduling clause.

An empty scheduling clause indicates direct activation, whereby an active phase of X is initiated 'imme-
diately, The event notice is inserted in front of the one currently at the lower end of the sequencing set

and X becomes active. The system time remains unchanged. The formerly active process object becomes
suspended.

A timing clause may be used to specify the system time of the scheduled active phase. The clause "delay
T, where T is an arithmetic expression, is equivalent to "at time + ‘T™. The event notice is inserted
into the sequencing set using the specified system time as the ranking criterion. It is normally inﬂe"tfd
after any event notice with the same system time. The symbol "prior” may, however, be used to specify
insertion in front of any event notice with the same system time.

Let Y be 2 reference to an active or suspended process object. Then the clause "before Y” or "after Y"
may be used to insert the event notice in a position-defined relation to (before or after) the event notice

of Y. The generated event notice is given the same system time as that of Y. If Y is not an active or
suspended process object, no scheduling takes place.

Example
The statements

activate X

activate X before current
activate X delay 0 prior
activate X at time prior

are equivalent, They all specify direct activation.

The statement
reactivate current delay T

is equivalent to "hold(T)".

SVENSK STANDARD SS 63 61 14

SIMULA Utgdva 1 Sida 154
——— e Vrgaval Slaados

Databehandling — Programsprak -

SIMULA

SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 165

124 Sequencing procedures

HOLD

PASSIVATE

WAIT

CANCEL

The sequencing procedures serve to organize the quasi-p
model. Explicit use of the basic sequencing facilities
thorough consideration of its effects. |

procedure hold(T); long real T;

inspect FIRSTEV do begin -
if T > 0 then EVTIME:= EVTIME + T}
if suc =/= none and then suc. EVTIME <= EVTIME

then begin out; RANK_IN_SQS(false);
resume(current)
end if
end hold;

procedure passivate;

begin
inspect current do begin EVENT.out; EVENT:— none end;

if SQS.empty then error("...") else resume{current)
end passivate;

procedure wait(S); ref (head) S;
begin current.into(S); passivate end wait;

procedure cancel(X); ref (process) X;
if X === current then passivate
else inspect X do
if EVENT =/= none
then begin EVENT.out; EVENT:— none

end cancel;

essobjectsina simulation

raliel operation of proc
’ ; ould be made only after

(call, detach, resume) sh

an or equal to Zero, halts the active

The statement " " ‘ | yumber greater th :
hold(T)", where T is a long real 1 grea o ive phase ab the system time

El{ase of the currently active process object, al
time 4 T". The statement thus represents an inact!
the reactivation point is positioned within the "hold”

'_l‘he statement "passivate” stops the active p
its event notice. The process object becomes {
outside the process object. The statement thus represents an Ina

reactivation point of the process object is posit

The procedure "wait”" includes the currently active proce
procedure "passivate”.

The statement " cancel(X)”, where X is 2 reference to 2 P

notice, if any, If the process object is cu .,
statement has no effect. The statement “ca.ncel(current)

.on T, During the inactive period

statement. mes suspended.

hase of the currently active process object and deletes

i t active phase must be scheduled from
P o i p f indefinite duration. The

s5 object in 2 referenced set,

j ding event
ess object, deletes the corresponding
o J, 'it,becomes passive. Otherwise, the

ive or suspended '
rrently acuv g ent to “passwate" .

is equival

i e S ——— 5

e merleame RTE_ e e - R e . -

—_——

- o -

- Eep b P —- A
R -

-— L

Aty —RA o

- m e e mem. - —

- —'_..‘_'.-'.'.u_..__ .-:}*;*;H,;:._.wﬂﬁ._..—.—ﬂﬂ:_ﬁ.m%*;;_;ﬁw L I X,
- - - . _——— —_ ° - -

T N R P T T T AL ———— S L

AT e L

.

- P .
L e e e e r—— e it R = = g e

Lo

P il ol

Databehandling — Programsprak -

e . e e e -

12,5 The main (simulation) program
process class MAIN_PROGRAM;
begin
while true do detach
end MAIN_PROGRAM;

It is desirable that the main component of a simulation model, i.e. the "simulation” block instance, should
respond to the sequencing procedures of 12.4 as if it were itself 2 process object. This is accomplished by

having a process object of the class MAIN_PROGRAM 2s 2 permanent component of the quasi-parallel
system.

:.[‘he process obj eci.: represents the main component with respect to the sequencing procedures. Whenever
it becomes operative, the PSC immediately enters the main component as a result of the "detach” state-

fnent; '(cf. 7.3.1). The procedure "current” references this process object whenever the main component
is active.

A simulation model is initialized by generating the MAIN..PROGRAM object and scheduling an active

ph‘ase for it at system time zero. Then the PSC proceeds to the first user-defined statement of the
"simulation” block.

12.6 The procedure "accum”
ACCUM procedure accum (a, b, ¢, d); pamea, b, ¢; long real 2, b, ¢, d;
begin
= a + ¢ % (time—b); bi= time; c:=c¢ + d
end accum;

?ﬁ sta.te‘mgnt: of j:he form "accum (A, B, C, D)" may be used to accumulate the "system time integra:l" of
¢ variable C, interpreted as a step function of system time. The integral is accumulated in the variable

A. The vari?ble B contains the system time at which the variables were last updated, The value of D is
the current increment of the step function.

SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 156
——

S$S 636114
Databehandling — Programsprak - SVENSK STANDARD

Sida 157
SIMULA Utgava 1

Annex A SIMULA Syntax
Chapter 1: Lexical tokens

letter

=A|B|C|D E|F|G]|H]|I
JIK|IL|M|N]JO}JP|QI|R
SITjUIVIWIX|YI|Z _
a|blc|d]|]el|lf]g]|h]|nl
i1kl 1 i{ml}njo|Pp|lalr
S t | u ' wlXxX]|Yi 2

digit
=0fj1}2|3}4]5]6]7]8]8

space

= SP

identifier

= letter { letter | digit | -}

unsigned—number (. part
= decimal—number [exponent—part] | exponeni—p2

decimal-number . _
= unsigned—integer [decimaf—-fraction] | decimal—{fraction
decimal—fraction
= . unsigned—integer

exponent—part _
= (& | &&) [+ | ~] unsigned—integer

unsigned—integer

g digit | _ radix—digit) | i
= digit { digit | _ digit } | radix R radix~digit { radix= i | _

radix
=2]|4|8]16

— [

ek T,

radix—digit |
= digit | A|B|C|DI|E|F _

= simple~string { string—separator simple~strtig j

string—separator i
= token—separator { token—separator }

simple—string oy
= " { isocode | non—quote—character

isocode g
= | digit [digit] [digit] ! -

non—quote—~character '}3 uote "«
= q... any printing character (incl. space) excep b the Striog @

character—constant

= ' character—designator '

- e L T

e —— — — e T
- .

Databehandling ~ Programsprak —
SIMULA

—_— o Uwhvar Sidal58

character—designator

= Isocode | non—quote—character | ™

format—effector

=BS | HT | LF | VT | FF | CR

token—separator

= ... adirect comment | ... a space (exc
| ... aformat effector (except as noted

Chapter 2: Types and values

type
= value—type | reference~type

value—type

= arithmetic—type | Boolean | character

arithmetic~type
= integer—type | real—type

integer—type
= [short] integer

real—-type
= [long] real

reference—type
= object—reference~type | text

object—reference— type
= ref (qualification)

qualification
= class—identifler

Chapter 3: Expressions

expression

s—

value—expression

reference—expression

= object—expression | text—expression

variable

i

simp!e-—variab!e—l
= identifier—1

subscripted—variable

= value—expression | reference—expression | designational—

= simple~variable—] | subscripted—variable

= array—identifier~1 (subscript—Jist)

SVENSK STANDARD $S63 61 14

Utgava 1

ept in simple strings and character constants)
for spaces) | ... the separation of consecutive lines

expression

arithmetic—expression | Boolean—expression | character—expression

Sida 158

Databehandling - Programsprak — SVENSK STANDARD SS 63 61 14

Sida 159
SIMULA Utgdva 1 a

array—identifier—1
= identifier—1

subscript—list ‘)
= subscript—expression [, subscript—expression |

subscript—expression
= arithmetic—expression

function—designator
= procedure—identifier—1 [actual—parameter—part |

procedure—identifier—1
= identifier—1

actual—parameter—part
= (actual-parameter { , actual—parameter })

actual—parameter . i dantifion—]
= expression | array~-identifier—1 | switch—identifier | procedure—ident!
identifier—1
= identifier | remote—identifier

remote—identifier

attribute—identifier
= SEmpje‘Object"&‘fpression , attribut

o—jdentifier | text—primary .

attribute—identifier
= identifier

Boolean—expression
= simple—Boolean—expression .
| if~clause simple—Boolean—expression €

Jse Boolean—expression

simple—Boolean—expression ity } | |]LI:'
= Boolean—tertiary { or clse Boolean—tertiary

Boolean—tertiary . .
= equivalence { and then equivalence } |

equivalence .
= implication { eqv implication }

implication
= Boolean—term { imp Boo!ean—#erm}

- T —— ———— TR T —re—

Boolean—term _;
= Boolean—factor { or Boolean—factor }

Boolean—factor

= Boolean~secondary { and Boo!ean-—secondar}’}
Boolean—secondary

= [not] Boolean—primary

Boolean—primary

—expression)
| bl | relation | (Boolean—exP
= logical—value | variable

| function-desigﬂator

ERERE R WER.

A
i
"[11_
::Lt !
14
1)
AEN
0y
HiG
¥ ".-i
i
:'riIE;
e
R
o
L .;_rii.
A
dio1]
o
ifl .'L
.
1'|) |
L
'ﬂ ' 1|
IR
L
(RN
ii. |

e N .

R

el T T e

Databehandling - Programsprik - SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 162
e

relation

= arithmetic-relation | character—relation | text—value—relation ‘
| object~relation | object—reference—relation | text—reference—relation

value—relational-operator
=< | <=]=]>]>] <

reference~comparator

= m= I =/=

arithmetic—relation

= simple~arithmetic—expression value—relational—-operator simple—arithmetic— expression

character—relation

= simple—character—expression value~relational—operator simple— character—expression

text—value—relation

= simple—~text—expression value—relational—operator simple—text—expression

object—relation

= simple—object—expression is class—identifier | simple—object—expression in class—identifier

object—reference—relation

= simple—object—~expression reference—comparator simple—object—expression

text—reference—re!atian

= simple—text—expression reference~comparator simple—text— expression

arithmetic—~expression
= simp!e-—-arithmetic-—expression
if=clause simple—arithmetic— expression else arithmetic—expression

simple—arithmetjc— expression
= [+ | -] term {{(+]-) term }

term
= factor { (x| /| /]) factor}

factor
= primary { #x primary }

primary
= unsigned—number | variable | function—designator | (

—

arithmetic—expression)
character—expression

= sfmp!e—cbaracter-expressfon

| i~clause simple~ character—expression else character—expression

simple~character— expression

= character~constant | variable | function—designator | (character—expression)

text—expression
= simple-text—expression | i~

—

clause simple— text—expression else text—expression
simple— text—~expression
= text—primary { text—primary }

—_ ——— ——— e . a .

6114
Databehandling — Programsprak - SVENSK STANDARD SS 63

| Sida 161
SIMULA . Utgéva 1

text—-primary ' .
= notext | string | variable | function—designator | (text—expression)

object—expression . ' - .
J= Sfmjie—object_expression | if—clause simple—object—expression else object—expression
simple—object—expression - t
= none | variable | function—designator | object—generator
| local—object | qualified—object | (object—expression)

object—generator
= new class—identifier | actual—parameter—part]

local—object
= this class—identifier

—— C A = . e

qualified—object .
= simple—object—expression qua class—identifier

designational—expression _
= simple—designational—expression ‘ . aron ol expression
| if~clause simple—designational—expression else designational—exp
simple--designational—expression ‘ ‘ ;
= label | switch—designator | (designational—expression)

switch—designator ‘ .
= switch—identifler (subscript—expressiol)

switch—identifier
= Identifier

Iabel
= identifier

Chapter 4: Statements

statement
= { label: } unconditional—statement

| { label: } conditional—statement
| { label: } for—statement

e e ———— Ok
-l me - .

e e, _.___

unconditional—statement - :
= assignment—statement | w}ax!e-statemten | e
| procedure—statement | object—generator S eat | acti
| compound—statement | block | dummy-—3

goto—statement
ctjon—statement
vation—statem ent

S Saanow

assignment—statement N
= value—assignment | reference—assighi

value—assignment _ 0
= value—left—part = value—right—part

value-left—part .
= destination | simple—text—expressio

Databehandling —- Programsprak -~ SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 162
e e e

value—right—part
= value—expression | text—expression | value—assignment

destination
= variable | procedure—identifier

reference—assignment
= reference—left—part :— reference—right—part

reference~left—part
= destination

reference~right—part
= reference—expression | reference—assignment

conditional—statement

= if~clause { label : } unconditional~statement [else statement |
| if—clause { label : } for—statement

if—clause
= if Boolean—expression then

while—statement
= while Boolean—expression do statement

for—statement
= for-clause statement

for—clause
= for simple—variable for—right— part do

simple-variable
= identifier

!

for—right—part

= value—for—list—element { , value—for—list—element }
+= reference—for-list~element { , reference—for—list—element }

b
e
L]

value—for—list—element

= value—expression | while Boolean—expression |
| text—expression

| arithmetic—expression step arithmetic—expression until arithmetic—expression

L ST
- e i
——

reference—for—Jigt— element

= reference—expression [while Boolean— expression |

. - - .. - Faw
e e YR E iy o L m s

goto—~statement
= { goto | goto) designational-expression

brocedure—statement
= procedure~identifier— I [actual-parameter—part |

connection—statement

= inspect object—expression when—clause { when—clause

| inspect } [othenvfsel-clause]
pec

object—expression do connection—bjlock—2 [otherwise~clause] .

e — e e —— 2 e e & - .

Databehandling — Programsprak — SVENSK STANDARD SS 63'61 14
Utgdva 1 Sida 163

SIMULA

when-—clause
= when class—identifier do connection—block—1

otherwise—clause
= otherwise statement

connection—block-1
= statement

connection—block—2
= statement

compound—statement
= begin compound-tail

compound-tail
= statement { ; statement} end

block
= subblock | prefixed—block

subblock
= block—~head ; compound—itail

block—head ,
= begin declaration {; declaration }

prefixed—Dblock . :
= block—prefix main—block

block—prefix
= class—identifier [actuai—parameter-Part]

main-block | |
= block | compound—statement |

e e

2 o ——.

dummy—statement |
= empty 1

e e

Chapter 5: Declarations

declaration . s h—declaration -
- . g — tlon swjtc s . . P
= simple—variable—declaration | 31"'3;:; m‘:?:f!ia exterln_a[.-declamtlon x

| procedure—declaration | class—dec | :

simple—variable—declaration
= type type—list

type~list |)
= type—list—element {, type—list— elemen

type~list—element
= identifier | constant—element

array-declaration) "
= | type] array array—segment {,array segme }

——
ke el — - ..

e it I

DARD SS 63 61 14
Databehandling - Programsprak - SVENSK STAN
SIMULA

Utgava 1 Sida 164

array—segment

= array—identifier {, array—identifier } (bound-—pair~list)

array—identifier
= identifier

bound—pair—Jist
= bound-pair {, bound—pair }

bound-pajr

= arithmetic—expression - arithmetic—expression

switch—declaration

= switch switch—identifier = switch—Jlist

switch—Jlist

= designational-expression { , designational— expression }

procedure—declaration
= [type] procedure procedure—heading ; procedure—body
procedure~heading o
= procedure—identifier [forma!-—pammeter-part i [mode—part] specification—pa J
procedure~body

= statement

procedure—jidentifier
= identifier

formal—- parameter—part
= (formal-parameter {, formal-parameter })

formal~parameter

= identifier
specification~part |

= Specifier identifier—Jist ; { specifier identifier~list i }
specifier

= type [array | Procedure | | Iabel | switch

mode-part
— fame—part [value—part| | value~part [name—-part |
| name--part

] = Dame identifier—Jist ;

value~part
= value identifier—Jigt :

identifier~Jjst
= identifier { identifier }

_ -
- — - i
O A . L

clasg— declaration
= [prefix] majp— part

Y P

_ R
-

Databehandling — Programsprak —
SIMULA

prefix
class—identifier

main—part

= class class—identifier | formal—parameter—
[protection—part ;| [virtual—part i} class-

class—identifier
= jdentifier

class—body
= statement | split—body

split—body

part ;
body

= initial—operations inner—part final—-operations

initial—operations

= (begin | block—head;) {statement;}

inner--part
= { label: } inner

final—operations
= end | ; compound—tail

virtual—part

= virtual : virtual-spec; { virtual—spec }

virtual-spec

= specifier identifier—list | procedure

protection—part
= protection—specification {;

protection—specification
—~ hidden identifier—list | pro

| hidden protected identifier—

constant—element .

= identifier = value—expression

Chapter 6; Program modules

SIMULA—source—module

= [external-head] { program

protection—-speciﬁcat

tected sdentifier—list
Jist | protected hidd

| identifier =

| procedure

procedure-—identiﬁer procedu

—.declaration |

SVENSK STANDARD SS 6361 14

Utgava 1 Sida 165

[value—part] specification—part } ;

re—specification
jon }

en identifier— list

_ text—expression

class—declaration y)

external—head .
X { external—declaration s }

= external—declaration ;

external—declaration
= external—procedure—dec

program
= statement

laration | externa

- class—declaration

[e b L

e S VT

111t Databehandling - Programsprak - SVENSK STANDARD SS 63 61 14
Wi siMULA Utgava 1 Sida 166
: - Uwewl Sidales
external—procedure—declaration

= external [kind] [type] procedure external—list

_ | external kind procedure external—item procedure—specification

gl {5,; kind

,{I EnE = jdentifier

it

| Ii .1. { H procedure—-speciﬁ:cation

gil = i8 procedure—declaration

] external—class—declaration

L] = external class external-Jist

T B external—list

i E = external—item {, external—item }
A1 '

external—item
= identifier [= external—identification |

external—identification
= string

Chapter 12: Class Simulation

activation—statement
= activation—clause [sc:hedulfng—-dause]

activation—clause

= activator object—expression

activator
= activate | reactivate

scheduling—~clause
= timing—clause | { before | after) object—expression

timing—clause
= simple~timing—clause [prior]
simple~timing—clauge

= (at | delay) arithmetic—expression

Databehandling — Programsprak - SVENSK STANDARD SS 63 61 14

SIMULA Utgava 1 Sida 167

Anmnex B Implementation Aspects

According to section 0.5.1.3 of the Standard, an implementation of the Janguage must document all
implementation-dependent and implementation-defined issues. This annex summarizes all characteristics
of the language which in some manner depend upon the particular jmplementation. It may thus be used

as a checklist to be filled out for any given implementation.

This annex should also be useful when preparing programs intended to be independent of any particular
SIMULA implementation.

B.1 Language extensions

Extensions are allowed only if the following conditions are fulfilled:
ch takes any program accepted by that

The resulting program may contaia 2
here this is absolutely necessary due to

a) The implementor provides a translator program, whi

implementation and translates it into a valid program.
minimum of calls to non-SIMULA procedures in cases W

a, lack of facilities in the language.

b) Each implementation has a switch which must be set to
extensions.

make the compiler accept programs with

An implementation which allows extensions,
extensions.

c) All such extensions should be repo
reports to the SSG members for comments, Respo

originator through the SSG.

rted to the SIMULA Standards Group, which will send such
nses from SSG members will be sent to the

File access modes and access mode values additional to those deﬁpgd in 10.1.1 may be defined by an

implementation.

An implementation may provide additional subclasses of class file.

B.2 Allowed implementation restrictions | .
It is recognized that all language processing systems have some restrictign,: d;leot;,ze).g., limited capacity
of the underlying hardware. Such restrictions are not mentioned here (but ¢f. 0.0.2). |

value range of the isocode construct, and the character set

L. An implementation may restrict the '
defined in table 1.1, as long as the #hasic" characters of the table are included. |
2 An implementation may restrict the number of different block levels at which a system cl2ss may
be used as a prefix. |
i refixing or
3. An implementation may restrict, in any way, the use of "file” and its subclasses for p g

block prefixing. |
p g unsupported by an implementation in the sense that it

9, The type short integer is allowed to be 15 jemored)
to integer (i.e. the keyword short 1S 161 ' .
must then be mapped on ger (:on in the sense that it muss

i tat .
5. The type long real is allowed to be unsupported by an implement2 e special symbol Pk is
then be mapped onto real (i.e. the keyword long is] '

treated as "&"). their possible standard

odes and _
6. An implementation may restrict the uie of :51;5 f;iﬁ:j;‘;isg Elues P unrecognized, and return
values. In that case, the procedure "setacc _ .
false. : | class declaration
7. An implementation may restrict the number of block levels at which an externa

may occur. + access mode STESIZE in 20y Way.

8. An implementation may restrict the possible values of th

shall give warning messages for the use of such

———
- -

| Databehandling - Programsprak - SVENSK STANDARD.8S 63 61 14
i SIMULA

| ” Utgava 1 . Sida 168
HHil _ﬂ____

- I R LN S

m e © et i
LS

Vot o

LTI WP B T R PRI P
T = amam am

P T P

L L.

- e Ln K e T

:
!
I'
F

1

L]

¥

/

1
LA |
1]
IrI
L.
!

1

|

]

i

; |
o
\

T e —g——— o ———r

R e e ——— A Sa

B.3 Implementation-dependent characteristics

1. Whether or not the procedure " terminate..program” will close open e:-gl:érna.l files (except those
associated with sysin and sysout), is implementation-dependent.

2, The effect of a parameter to printfile.spacing with value zero, may be device and implementation-
dependent, if the standard effect of "overprint” cannot be achieved.

3. The interpretation of directive lines (apart from the " %-space”-convention) is implementation-
dependent.

4, The interpretation of "kind" and of the external identification string in an external procedure

declaration is implementa.tion-dependEnt, as is the identification of 2 separately compiled module
if no external identification 13 given.

o. It is implementation-dependent whether trailing blanks of image are actually transferred to the
external file on outfile.outimage. |

6. The size of the part of the

file that is actually locked after a call to procedﬁra .“,Iock’?-i; implemen-
tation-dependent, o :

B.4 Implementation-defined characteristics

1. The internal character set is implementation-defined. An implementation is required to document

}:lsleo tra.n.;'la.tion between the internal character set and the standard character set (as _deﬁned by
646), |

Note: The collating sequence of character (and text) values is decided by the internal character set. Thus the vatues of
character and text relations are implementation-defined. |

2, The values of "inlength” ang "outlength” (see ch. 10) are implementation-defined.

3. The a.ctua.] external files connected to SYSIN and SYSOUT are implementﬂa;tionfdeﬁned.
4, The relative valye ranges of real and long real are implementation-defined. : .

5.

The ranges in which conversions of an inte

X ger type to a real type, or from real to long real, are
exact, are implementation-defined. a .

The range of a numeric item' in a de-
7. If the REAL ITEM located by text Procedure "getreal” is an integer within an implementation-

defined range, the conversion ig exact. . }
8. The EXPONENT

editing procedure is implementation-defined.

defined Tummboes & :;agztgri{neric item resulting from "putreal” has a ﬁxed, imPlemgntatjon'

9. The maximum length of 5 text frame is implementa.tidn—deﬁned |

10. The function vaiues of ”I'char“ and "rank” are implementation-defined.

1. The exact definitjopns of the standard mathematical funetiong are implemengation-definéd.

12, The association between a ﬁ]e ngect and an external file is 1mp|ementa.tlon¢d€§ﬂe,d' -

18. " The effect of several fje objects representing the same (external) file is ittli-llnlémé'ﬂtdﬁb.nid?ﬂne&, 5

14, The detajls of procedures "open” ;s.nd”close" are impleméntation-deﬁnedo e , Tl

15. The Interpretation of a, functiohl. value of "lock” Jesg than -1 js impléme:ﬁ-t?:ﬁ;‘;‘déﬂmd’ : o

16. i?lil;in;zlge of outfile reacts in ay implementatioﬁ-deﬁned.way if the leng't’hlrld}ftilfi‘ ,igt_‘ef?l_#l :i-mm' -
Patible with the format of the external file, CL L L b

17.. Locate of directfile may j

nvoke impl ton- f v “natructions £o.an - .
external memory device, © Ilpiementation-defined chiecks and possli.'bl.}_rrall.tlls!im?ﬁwn? o

18. LINES_pE . - - SR .
tation. deﬁn?_d,PAGE of printfile: the valye at’ object generation and a.ffelr close lshkl?P_I‘in’;I{e?‘,'

[]
L L} -‘

J—— ——

Databahandhﬁg Proormprék -
SII‘JULA ‘

¢ 9. .
20.

" 21.5_

922,

| ,23.

9 " 94,
vt)

SVENSK STANDAHD sS 6361 14
Utgdva 1 Sida 169

' .
. ,

The "basic random drawing” algorithm is 1mplementatzon-deﬁned

fulfilled, 18
The effect of the conditions demanded for the parameters to “hnea.r” not belng ,
inip!ementa.tzﬁn—deﬁned |

d
The .number'w'af decimals in the feld for seconds of the fu:nctlon
déﬁne& ..

The effect of the parameters to
J1,is implement'ation—deﬁned.

tlon-deﬁned
Y'I’E IZE for bytefiles 13 implementa |
The de{ault B S y ults for different implementations.

atetime” is jmplementation-

= {B+
»histo” not fulfilling the condltion length of A = length o

1

t res
" Evaluatiqn of'aﬂthmgtlc expressions may gwe differen
' . . .] :. ."'.‘. * .

'I
” Qo ‘ . ‘
' 1
O -
- ! .
1 " .
L - *
Y “ K L
1
"
]
* “-‘
o
W r .
k
N
"y . .
. -
!. .
L) [)
- ..
[
¥
* i
.)
4
"
oA, " "
- - . ' " .
H
¥
c h“
I' '
'3
I‘? * ’ ""HL: o i
& ’ i' |
L] v
] e . '
= - ‘ " ! 1l .
]
]
. . . .
‘. a
Y
(i v 7 * »
4 . ")
.
L]
" * . A
o -"'I" .
| A
% LI
* LN
W ' \ﬂ"‘
)
¥ L}
W [i
[.
A . L
e)
») ; it . .
r .
’ 'l'.n" f YR 3‘
q - o
L -;‘h E)
"
-
[
L 1 '. .
T #]
.t .. =
1" |
"
' -
% ';; .
G
I l.
F
- | 14 &
1] I
¥ L ' -
4 "I]] s . .
) P oae A3
T ' i = LY
: » .. . SR ,
. 7) . , ,
] It:' '_ L] * '
, " * ‘ ‘1: Ilr -1?
- »
i, i -fl‘.."‘ 5 ‘*-? . 1 y
F] 1‘=;# ;.'-,‘ P
’ N “ f‘ i"\' Ir. i il';. !
LY L] ™ | ~— -'K. .J‘r o I '1‘)
IR S . - -
* e 4 ! Lt . W R
-1 -] R TR ,f ;q:

L

L. e — e s __

- v - . . - . e
ik o aitmin et
e MR P -—

Databehandling - Programsprak —
SIMULA

SVENSK STANDARD SS 63 61 14

external-declaration

______________Lﬁg_i__——————"a'ﬁﬂ

Annex C Index of Syntactic Meta-symbols

Symbol Defined in: Referenced in: B
activation-clause 12.2 12.2
activation-statement 12.2 4.
actual-parameter 3.14 3.14
“actual-parameter-part 3.14 3.14, 3.8, 4.6, 4.10.1
arithmetic-expression 3.5 3., 3.1, 3.5, 44, 5.2, 12.2
arithmetic-relation 3.3.1 3.3
arithmetic-type 2. 2.
array-declaration 5.2 5.

array-identifier 5.2 5.2
array-identifier-1 3.1 3.1,314
array-segment 5.2 5.2
assignment-statement 4.1 4,
attribute-identifier 3.1.5 3.1.5

block 4,10 4., 4.10.1
block-head 4.10 4,10, 5.5
block-prefix 4.10.1 4.10.1
Boolean-expression 3.2 3.,3.2, 4.2, 4.3, 44
Boolean-factor 3.2 3.2
Boolean-primary 3.2 3.2
Boolean-secondary 3.2 3.2

Boolean-term 3.2 3.2
Boolean-tertiary 3.2 3.2

bound-pair 5.2 5.2
bound-pair-list 5.2 5.2
character-constant 1.7 3.6
character-designator 1.7 1.7
character-expression 3.6 3,36
character-relation 332 3.3

class-body 5.5 2-56
class-declaration 5.5 0w O°
c]ass-ident'iﬁero 5.5 i., 3.3-41 3-8: 4.81 4.10.1; 5.5
compound-statement 4.9 '

compound-tail 4.9 4.9, 4‘10.’ 6.5
conditional-statement 4.2 4.
connection-block-1 4.8 4.8
connection-block-2 4.8 4.8
connection-statement 4.8 4., 4.2
constant-element 5.8 5.1
decimal-fraction 1.5 1.5
decimal-number 1.5 i?o

declaration 5. 3‘ 3.0, 4.5, 5.3
designational-expression 3.9 4"1 '
i y 14,1516
dummy-statement 4,11 4'2

equivalence 3.2 ‘3'5

exponent-part 1.5 3.1.4

expression 3. 6'1.
external-class-declaration 6.4 5' 6.1

6.1 o

1
! | |
} | Databehandling ~ Programsprak - SVENSK STANDARD SS 63 61 14
w -
i Symbol Defined in: Referenced in:
] f external-head 6.1 6.
(I external-identification 6.5 6.5
H external-item 6.5 6.3, 6.5
it external-list 6.5 6.3, 6.4
[{' | external-procedure-declaration 6.3 6.1
i factor 3.5 3.5
1;“ L final-operations 5.5 5.5
A for-clause 4.4 1.4
il formal-parameter 5.4.2 5.4.2
! ; | formal-parameter-part 5.4.2 5.4, 5.5
”;l' * format-effektor 1.9 1.9
BN for-right-part 4.4 4.4
REE for-statement 4.4 4., 4.2
iEE function-designator 3.1.4 32,35, 36, 3.7,3.8
f: goto-statement 4.5 4,
A identifier 1.4 3.1.5, 3.9, 4.4, 5.1, 5.2, 5.4,
nis 04.2, 5.4.3, 5.5, 5.8, 6.3, 6.5
; identifier-1 3.1.5 3.1,3.1.4
Ai 1dentifier-list 5.4.3 04.2,54.3, 5.5.3, 5.5.4
; if-clause 4.2 32,35, 3.6, 3.7,3.8, 3.9, 4.2
g implication 3.2 3.2
| initial-operations 5.5 5.5
| inner-part 5.5 5.5
| integer-type 2. 2.
: isocode 1.6 1.6, 1.7
i kind 6.3 6.3
i label 3.9 3.9, 4., 4.2, 4.9, 4.10, 4.10.1, 5.5
; letter 1. 1.4
-; local-object 3.8 3.8
main-block 4.10.1 4,10.1
| main-part 5.5 5.5
[l mode-part 5.4.3 5.4
. name-part 5.4.3 5.4.3
i non-quote-character 1.6 1.6, 1.7
[\l object-expression 3.8 3., 3.8, 4.8, 12.2
| object-generator 3.8 3.8, 4.
| object-referenc&type 2. 2,
object-reference-relation 3.3.5 3.3
object-relation 3.3.4 3.3
otherwise-clanse 4.8 4.8
prefix 5.6 5.5
Prfeﬁxed-block 4.10.1 4.10
Primary 3.5 3.5
procedure-body 5. 5.4
procedure-declaration 5.4 5., 6., 6.3

SVENSK STANDARD SS 63 61 14 ’

Databehandling — Programsprak —
Sida 173

U ._I___

[S
- e —
- - - -

— - o e me— -

- o e
_- —r— wm
T . - p—— -, -

—
——e —
—_—
- e, skee——
——— i ———
— —

— e, A i e —
- .
S —— —, — - it
———— o -

ey — - et N e
———— —

switch-list

smora 0 e
Symbol Defined in: Referenced in:
procedure-heading 5.4 5.4, 6.3
procedure-identifier 5.4 4.1, 54,5.5.3
procedure-identifier-1 3.14 3.1.4,4.6
procedure-specification 6.3 5.5.3,6.3
procedure-statement 4.6 4.
program 6.2 6.
protection-part 554 5.5
protection-specification 5.5.4 5.5.4
qualification 2. 2.
qualified-object 3.8 3.8
radix 1.5 1.5
real-type 2. 2.
reference-assignment 4,1 4.1
reference-comparator 3.3 3.3.5,3.3.6
reference-expression 3. 3., 4.1, 44
reference-for-list-element 4.4 44
reference-left-part 4.1 4.1
reference-relation 3.2.1 3.2.1
reference-right-part 4.1 41
reference-type 2. 2.
relation 3.3 3.2
remote-identifier 3.1.5 3.15
scheduling-clause 12.2 12.2
simple-arithmetic-expression 3.5 3.3.1,3.5
SImple-Boolean-eXpress‘ion 3.2 3.2
mmpl&character—exprasmn 3.6 g g 21,36
simple-designational-expression 3.9
simple-obj ect-expressml: 3.8 :13 :; 5, 3.3.4, 3.3.9 3.8
simple-string 1.6
simple-text-expression 3.7 3.3.3,33.6, 3.7, 41
simple-timing-clause 12.2 12.2
simple-variable 4.4 4.4
simple-variable-1 3.1 3.1
simple-variable-declaration 5.1 5.
SIMULA-source-module 6. 19
space 1.
specification-part 5.4.2 5.4, 5.5, 5,53
specifier 5.4.2 g ; 2 .
shatemen, "y B 144, 45,45, 50 55 S i 9
string 1.6 wv o 37,58 615
string-separator 1.6 1.6
subblock 4.10 4.10
subscripted-variable 3.1 3.1 29
subscript-expression 3.1 3.1, o

subscript-list 3.1 3.1

switch-declaration gg g'g

switch-designator

switch-identifier 3.9 3.14,39, 53
5.3 53

2Tx -

-
e
—m

Ty e St ds F

R ar ket oz ST LT

‘_ o .
= e Bl
A gt Ariadil e g
e 2l T g R

-

- M

ER¥

s

T at s

el

R T

e

P e e e Cmemm . m

i
|
i ts | Databehandling ~ Programsprak SVENSK STANDARD SS 63 61 14
“1 : i SIMULA Utgava 1 Stda 174
| i | Symbol Defined in: Referenced in:
i term 3.5 3.5
| text-expression 3.7 3.,87,4.1, 4.4
text-primary 3.7 3.1.5, 3.7
text-reference-relation 3.3.6 3.3
text-value-relation 3.3.3 3.3
timing-clause 12,2 12,2
token-separator 1.9 1.6
type 2. 5.1,5.2, 5.4, 5.4.2, 6.3
type-list 5.1 5.1
type-list-element 5.1 8.1
unconditional-statement 4, 4,, 4.2
unsigned-integer 1.5 1.5
unsigned-number 1.5 3.5
value-assignment 4.1 4.1 |
value-expression 3. 3.,4.1,4.4, 5.8
value-for-list-element 4.4 4.4
value-left-part 4.1 4.1
value-part 5.4.3 5.4.3, 5.5
value-relational-operator 3.3 3.3.1,3.3.2, 3.3.3
value-right-part 4.1 4,1
value-type 2. 2,
variable 3.1 3.2, 3.5, 3.6, 3.7, 3.8, 4.1
virtual-part 5.5.3 5.5
virtual-spec 5.5.3 5.5.3
when-clause 4.8 4.8
while-statement 4.3 4,
g]
"
1
1)
3!

Databehandlin
g - Program -
g sprak SVENSK STANDARD SS 63 6114
Sida 175

SIMULA
—_— Utgéva 1

Amnex D
X STATUTES of the SIMULA. STANDA.RDS GROUP (SSG)

Article 1. Objectives

The SIMULA
Standards Group (SSG) is an organization which at all times ghall:

tation of the SIMULA language definition al:;d be a centre

1.1
be the final arbiter in the interpre
. for custody of this formal definition.
' gﬁ%ﬁim the SIMULA language by minimizing its changes and preventing occurrence of
La translators violating the language definition.
%I‘Ellde a forum for discussion and exchange of information relating to the use of the SIM-
language and its support.
Arti(:]e 2. Membemhip
21
The SSG offers three categoties of membership. These are called full, associate and ex-
rs have voting rights. In addition, full

gam‘ginary membership. Full and associate membe
embers have veto. Regardless of its number of memberships, 1o ins

than two votes.
nsible for the mainten

2-2 - -
Full membership is open to organizations and firms respo |
support of the whole of 2 SIMULA system, 1.e. 30 independent implementation.

titution can have more

ance and

and firms who are responsible for

Associate membership is open to organizations
tenance and support of parts of 2 gIMULA system adapted from another system,

sub-implementation.

e a

Any organization or firm mee r set of criteria may apply
and be voted a member of the SSG in the appropriate category: The c'lef:lswﬂ
full or associate membership is appropriate Is left to & majority of existing members.
enter (NCC)y Oslo, Norway 13 €X officio a full member ?f 1311&
SpG) Chairmal and the Association

ting one or othe

28 The Norwegian Computing C
SSG. In addition, the SIMULA Development Group (SPG
of SIMULA Users (ASU) Chairman are also full members of the SSG
n recognition of their contri-

ership to individuals int

24 The‘ SSG can offer extraordinary memb
. bution to the SSG work.
Once granted an SSG membership lasts until:
- it is resigned by a particular member
- it is revoked by the SSG because the conditions ;nder which it was granted ceas® to exist

or the member acts against the

- it is revoked because, after 12 months
mentation does not meet the current IMULA gtandard.

2.0 .
There is no fee for S5G membership.

T e T Bl - ——
e —

SVENSK STANDARD SS 63 61 14

3.2 The SS
hilth l* od dltloftzh;];!e I‘::ES Ionn:ti :;;er:;r ca!end:{.r year for an Annual Meeting. This meeting will, in
b SIMULA Janguage defiais of an a.dmmlst.ratwe character, handle proposals related tb the
'| . 1 Annual Meeting ghall a.lslom? a;s described in the Formal Rules of the SSG operation. The
it €lect one of the full member's representatives as SSG Chairman,

a
")
=
>
S
[a ¥
o’
o
>
B
&,
O
E:
<
O
ey
[
o g
®
8
@
B
or
Iy
7]

Decisions . -,
least 3 we:}?:;i'ly be taken regarding matters on the agenda presented to the membets at
elore the meeting, unless al) members agree otherwise. o

3.3 To constit | |
R least onel;ﬁ:eaﬁ?aiomifa:} :Eembem of the SSG shall be notified of the Meeting and at
| by mail. ¢ member representatives shall be present or give their votes
3.4 -

Decisions by § .« . ‘
vote. Changesst(: :1::: gfsaéiesby & majority "O_te among the representatives taking part in the
tatutes or a decision to dissolve the SSG, require 4/5 majority,

o as well as the conse
i nt of the NCC. Full members h i
a SIMULA language definition, but not to the Staium;ﬁ@?ve the right to veto changea.fq the .

i
Ny 3.5 g‘he SSG meetings are o
e

' g - — 5 - L . - - =
ST TR T e N e T T R T T o e g

R

TR T s o b e P - -
P

—_ - A rmm——— - — -

- - .
T

P —

.
—
BT W e — o, el . — o _oa e+ " .

e e A ek e W e =

———— W — o ——
—_—— e —— - - -

Databehandling — Programsprak ~ SVENSK STANDARD SS 63 61 14
Utgava 1 Sida 177

SIMULA . |

Formal rules of the SSG operation

1. The main task.of the SSG is the maintenance of the SIMULA lan
Standard) which consists of:

guage definition (SIMULA

a) a clarification of obscure parts of the definition.

b) removal of possible conflicts in the definition.

¢) alteration of the definition in line with the approved changes in the language.

2. The following types of language changes can be directly considered by the SSG:

a) obvious oversights that have occurred i
ing/printing.

n the text of the language definition during edit-

b) removal of language restrictions that are proved obsolete for language consistency and

implementation.

¢) trivial extensions fo the existing concepts thal are felt relevant for continued use of the

language in 2 changing environment.

All other changes must first be handled by the Sjmula Development Group and passed over

in the form of a formal recommendation.

3. All proposals for language changes conforming to the
writing in a concise manner and submitted to the 8SG s

submit such a proposal.
4. It is the responsibility of the $SG Chai

and schedule its processing at one of ¢
may point out any inadequacies in a pro

above rules must be formulated in
ecretariat. Any SIMULA user may

rman to notify receipt of each proposal, to register it
he SSG meetings. Alternatively the SSG Chairman

posal to its submitter.

In either case the proposal will be announced at the next SSG meeting which may approve

or revoke the Chairman’s decision related to this proposal.
nly be submitted to SSG members

on speciflc request.

Complete material related
be an updating text to the SIMULA Standard. It will

when the proposal is to be
5, In its final form every proposal will : _
ter, date of submission and its motivation. Alternative

further indicate the original submit

forms of the proposal and reasons for their rejection are valuable parts of the document.
An example of 2 suitable form is attached to these rules.

1aeness are of utmost importance.

scular SSG member to bring the

to a particular proposal will 0
processed at the next meeting or

The logical consistency of the text, its clarity and conc
To this aim the SSG or its Chairman may allocate one part

N proposal into the required shape if this is deemed necessarys -
6. It is theg responsibility of the SSG Chairman to notify the submitter of a proposal about
- also his/her

the result of its processing by the SSG if this is not otherwise obvious. It 19
responsibility to minimize the time spent on each proposal.
7. The final text of the proposals will be available from the gSQG gecretarial as a sqp‘;)lement
' " to the SIMULA Standard until they are incorporated into this at its next revision. To
~ simplify this process, at its approval a proposal reflecting both
the SIMULA Standard version it applies 0 and

will be assigned 2 number
its chronological order.

: ' Databehandling — Programsprak - SVENSK STANDARD SS 636114
1B J SIMULA Utgéva 1 Sida 178

% T A T, m- — ’

i { Reg. No.: Accepted as Standard SIMULA Change No.:

| Title
Submitter
Date
Affected section(s)
|
| Proposal:
i
i|
|
B
|
i
.E
e
8
20
3 | Motivation:
B8t
;i
4 \S
oy
1 -
i I
I,' }, 1
g
E SSG decision on the above proposal:
2

— iy ar — a

-

e ——— e

ot e et

A e —

— anal s e e a Y e na — . et B

P

L i it PR

Ifema S

P T I SR P

C Trmre v -

B m P s w mmemer WP

