NORSK REGNESENTRAL

NORWEGIAN COMPUTING CENTER
OSLO 3 - NORWAY

COMMON BASE LANGUAGE
by
Ole-Johan Dahl, Bjorn Myhrhaug
and

Kristen Nygaard

NORWEGIAN COMPUTING CENTER
Forskningsveien 1 B

Oslo 3, Norway.

Publication No. S-22

(Revised edition of
publication §-2)

October 1970

Authorized by SIMULA Standards
Group as the Common Base from
May 19th 1970.

COMMON BASE LANGUAGE
by
Ole-Johan Dahl, Bjgrn Myhrhaug
and

Kristen Nygaard

SIMULATM is trademark of Norwegian Computing Center

(:) Copyright 1968, 1970, Norwegian Computing Center

PREFACE TO THE 1968 EDITION

SIMULA 67 is a general purpose programming language
developed by the authors at the Norwegian Computing
Center. Compilers for this language are now imple-

mented on a number of different computers.

The Norwegian Comruting Center regards the SINMULA 67
language as its own property. The implementations
have taken place under contracts with the NCC for

professional assistance.

A main characteristic of SI'IULA is that it is easily
structured towards specialized problem areas, and hence

can be used as a basis for Special Application Languages.

This report is a reference document for the SIMULA 67
Comn:on Base. The Common Base comprises the language
features required in every SIMULA 67 compiler. The
"Introduction" highlights some features of the language.
The following sections are intended as a precise language
definition. Users manuals and textbooks will apnear

later.

During our development of STMULA 67 we have benefited
from ideas and suggestions from a number of colleagues.
First of all we snould like to wention C.A.R. Hoare
whose ideas on referencing have been used and extended,
S. Kubosch who has been an important source of useful
comments and criticism and Mrs. I. Siguenza whose help

in the typing of this report has been indispensable.

We should also like to express our gratitude to D. Belsnes,
P. Blunden, J. Buxton, J.V. Garwick, ¢. Hjartgy, @. Hope,

P. M. Kjeldaas, D. Knuth, J. Laski, A. Lunde, J. Newey,

T. Noodt, K. S. Skog, C. Strachey and N. Wirth, as well

as SIMULA I users who have given advice based upon their
experience. Finally, the authors feel that they benefited
very much from the SIMULA 67 Common Base Conference in Oslo,

June 1967, and would like to thank the participants.

Oslo, May 1968

Ole-Johan. Dahl Bj¢rn Myhrhaug Kristen Nygaard

PREFACE TO THE 1970 EDITION

This revised version contains the modifications and clarifi-
cations passed by the SIMULA Standards Group at their meeting

in May 1970. Several minor errors have also been corrected.

Compilers are now available on a wide range of computers,
including CD 3300, CD 3600, CD 6600, UNIVAC 1108 and
IBM 360/370.

The authors would like to thank the members of the SIMULA
Standards Group for their interest and help, and the typing
pool and printing shop of the Norwegian Computing Center

for their efficient work.

We would also like to extend our list of acknowledgements in
the original preface by K. Babcicky, G. M. Birtwistle, R. Kerr
and M. Woodger.

Oslo, October 1970

Ole-Johan Dahl Bjgrn Myhrhaug Kristen Nygaard

[

Introauction

General purpose programming languages

Hign level languages, like FORTRAN, ALGOL 60 and
COBOL were originally regarded as useful for two

purposes:

- to provide concepts and statements allowing a
precise formal description of computing processes
and also making communication between programmers

easier.

- to provide the non-specialist with a tool making
it possible for him to solve small and medium-sized

problems without specialist help.

High level languages have succeeded in these respects.
However, strong new support for these languages is
developing from a fresh group: those who are confronted
with the task of organizing and implementing very com-
plex, highly interactive programs, e.g. large simulation

programs .

These tasks put new requirements on a language:

- in order to decompose the problem into natural,
easily conceived components, each part should be
describable as an individual program. The language
should provide for this and also contain means for
describing the joint interactive execution of these

sub~programs.

- in order to relate and operate a collection of programs,

the language should have the necessary powerful list

processing and sequencing capabilities.

==

- in order to reduce the already excessive amount
of debugging troubkle associated with present day
methods, the language should give "reference
security". That is, the language and its compiler
should spot and not execute invalid use of data

through data referencing based on wrong assumptions.

Even if the organizatiocnal aspects of complex
programming are becoming more and more important,

the computational aspects must, of course, be taken
care of at least as well as in the current high-level

languages.

I+ is also evident that such a general language should
be oriented towards a very wide area of use. The
market carnnot for long accommodate the present

proliferation of languages.

Special application languages

Until rcw, the computer has been a powerful but
frightening tcol to most people. This should be changed
in the vears to come, and the compuater should be
regarded as an obvious part of the human environment.
More and more people should get their capabilities
increased through the availakility of the "know-how"

and data they need.

A condition for this development is that the demands
on the computer user are reduced, which implies that

communication between man and corputer is made easier.

Know—how is today to a large extent made operative

through "application packages" covering varicus fields
cf knowledge and methods. But these packages are in
general not sufficiently flexible and expandable, and

also often reguire specialist assistance for theilr use.

The future seems to be "application languages"
which are problem-oriented, perhaps in the extreme.
Such languages may provide the basic concepts and
methods associated with the field in question and
allow the user to formulate his specific problem

in accordance with his own earlier training.

At the same time, such languages should be flexible
in the sense that new knowledge acquired should be

easily incorporated, even by the individual user.

The need for application languages is apparently
in conflict with the desire for the non-proliferation
of languages and for general purpose programming

languages.

A solution is to design a general purpose programming
language to serve as a "substrate" for the application
languages by making it easy to orient towards special=-
ized fields, and to augment it by the introduction of
additional aggregated concepts useful as "building

blocks™ for programming.

By making the general purpose language highly
standardized and available on many types of computers,

the application languages also become easily transferable,
and at the same time the software development costs

for the computer manufacturers may be retarded from

the present rapid increase.

The basic characteristics of SIMULA 67

Algorithmic capability

SIMULA 67 contains most features of the general
algorithmic language ALGOL 60 as a subset. The

reason for choosing ALGOL 60 as starting point was
that its basic structure lent itself to extension.

It was felt that it would be impractical for the users
to base SIMULA 67 on yet another new algorithmic
language, and ALGOL 60 already had a user basis,

mainly in Europe.

Decomposition

In dealing with problems and systems containing a large
number of details, decomposition is of prime importance.
The human mind must concentrate; it is a requirement
for precise and coherent thinking that the number of
concepts involved is small. By decomposing a large
problem, one can obtain component problems of manageable
size to be dealt with one at a time, and each containing
a limited number of details. Suitable decomposition is
an absolute requirement if more than one person takes

part in the analysis and programming.

The fundamental mechanism for decomposition in ALGOL 60
is the block concept. As far as local quantities are
concerned, a block is completely independent of the rest
of the program. The locality principle ensures that any
reference to a local quantity is correctly interpreted

regardless of the environment of the block.

The block concept corresponds to the intuitive notion
of "sub-problem" or "sub-algorithm" which is a useful

unit of decomposition in orthodox application areas.

A block is a formal description, or "pattern", of an
aggregated data structure and associated algorithms
and actions. When a block is executed, a dynamic
"instance" of the block is generated. 1In a computer,
a block instance may take the form of a memory area
containing the necessary dynamic block information and
including space for holding the contents of variables
local to the block.

A block instance can be thought of as a textual copy
of its formal description, in which local variables
identify pieces of memory allocated to the block instance.
Any inner block of a block instance is still a "pattern",
in which occurrences of non-local identifiers, however,
identify items local to textually enclosing block
instances. Such "bindings" of identifiers non-local

to an inner block remain valid for any subsequent dynamic

instance of that inner block.

The notion of block instances leads to the possibility
of generating several instances of a given block which
may co-exXist and interact, such as, for example,
instances o0of a recursive procedure. This further leads
to the concept of a block as a "class" of "objects",
each being a dynamic instance of the block, and there-

fore conforming to the same pattern.

An extended block concept is introduced through a "class"
declaration and associated interaction mechanism such as
"object references" (pointers), "remote accessing”,

"quasi-parallel” operation, and block "concatenation”.

Whereas ALGOL 60 program execution consists of a
sequence of dynamically nested block instances, block
instances in SIMULA 67 may form arbitrary list
structures. The interaction mechanisms which are
introduced, serve to increase the power of the block

concept as a means for decomposition and classification.

Classes

A central new concept in SIMULA 67 is the "object".

An object is a self-contained program (block instance),
having its own local data and actions defined by a
"class declaration". The class declaration defines a
program (data and action) pattern, and objects conforming

to that pattern are said to "belong to the same class".

If no actions are specified in the class declaration,

a class of pure data structures is defined.

Example

class order (number); integer number;

begin integer number of units, arrival date;

real processing time;

end;

A new object belonging to the class "order” is generated

by an expression such as

"new order (103)"

and as many "orders” may be introduced as desired.

The neea for manipulating objects and relating
objects to each other makes it necessary to
introduce list processing facilities (as described
below) .

A class may be used as "prefix" to another class
declaration, thereby building the properties defined
by the prefix into the objects defined by the new

class declaration.

Examples:

order class batch order;

begin integer batch size;

real setup time;

order class single order;

begin real setup time, finishing time,weight; end;

single order class plate;

begin real length, width; end;

New objects belonging to the "sub-classes” - "batch order”
"single order” and "plate” all have the data defined

for "order”, plus the additional data defined in the
various class declarations. Objects belonging to

the class "plate” will, for example, comprise the
following pieces of information: "number”, "number of
units”, "arrival date”, "processing time”, "setup time”,

"finishing time”, "weight”, "length” and "width”.

If actions are defined in a class declaration, actions
conforming to this pattern may be executed by all
objects belonging to that class. The actions belonging
to one object may all be executed in sequence, as for

a procedure. But these actions may also be executed as
a series of separate subsequences, or "active phases".
Between two active phases of a given object, any number

of active phases of other objects may occur.

SIMULA 67 contains basic features necessary for organ-
izing the total program execution as a sequence of active
pPhases belonging to objects. These basic features may
be the foundation for aggregated sequencing principles,
of which the class SIMULATION is an example.

Application language capability

SIMULA 67 may be oriented towards a special application
area by defining a suitable class containing the
necessary problem-oriented concepts. This class can
then be used as prefix to the program by the user

interested in this problem area.

The unsophisticated user may restrict himself to using
the aggregated, problem-oriented and familiar concepts
as constituent "building blocks" in his programming.
He may not need to know the full SIMULA 67 language,
whereas the experienced programmer at the same time
has the general language available, and he may extend
the "application language" by new concepts defined by
himself.

As an example, in discrete event system simulation, the
concept of "simulated system time" is commonly used.
SIMULA 67 is turned into a simulation language by pro-
viding the class "SIMULATION" as a part of the language,

(in this case provided with the compilers).

In the class declaration

class SIMULATION;
beginiiiiiiiiitiieese.. end;

a "time axis" is defined, as well as two-way

lists (which may serve as queues), and also the
class "process" which gives an object the property
of having its active phases organized through the

"time axis".

A user wanting to write a simulation program starts

his program by

SIMULATION begin

in order to make all the simulation capabilities
available in his program. If he himself wants to
generate a special-purpose simulation language to

be used in job-shop analysis, he may write:

SIMULATION class JOBSHOP;
beginiiiiiiiiernnnnan ceses. end;

and between "begin" and "end" define the building

blocks he needs, such as

process class crane;

begin, T <} e

process class machine;

begin procedure datacollection;

end;

etc.

lo
The programmer now compiles this class, and whenever
he or his colleagues want to use SIMULA 67 for jobshop
simulation, they may write in their program

JOBSHOP begin ...ceveeveeneenans

thereby making available the concepts of both
"SIMULATION" and "JOBSHOP".

This facility requires that a mechanism for the
incorporation of separately compiled classes is

available in the compiler (see section 15).

List processing capability

When many objects belonging to various classes do
co-exist as parts of the same total program, it is
necessary to be able to assign names to individual
objects, and also to relate objects to each other,

e.g. through binary trees and various other types of
list structures. A system class, "SIMSET", introducing

circular two-way lists is a part of the language.

Hence basic new types, "references", are introduced.
References are "qualified", which implies that a

given reference only may refer to objects belonging to
the class mentioned in the qualification (or belonging

to subclasses of the qualifying class).

Example:

ref (order)next, previous;

..ll_

The operation of making a reference denote a specified

object is written ":-" and read "denotes".
Example:
next :- new order (101); previous :- next;

or (also valid since "plate” is a subclass of "order”)
next :- new plate(50);
Data belonging to other objects may be referred to

and used by "remote accessing", utilizing a special

"dot notation".
Example:
iﬁ next.number > previous.number then ;

comparing the "number” of the "order” named "next” with

the "number”of the "order” named "previous”.

The "dot notation" gives access to individual pieces
of information. "Group access" is achieved through
"connection statements".

Example:

inspect next when plate do begin end ;

In the statement between begin and end all pieces of
information contained in the "plate” referenced by

"next” may be referred to directly.

String handling

SIMULA 67 contains the new basic type "character".
The representation of characters is implementation

defined.

In order to provide the desired flexibility in string
handling, a compound type called "text" is introduced.
The "text" concept is closely associated with input/

output facilities.

Input/output

ALGOL 60 has been seriously affected by the lack of
standardized input/output and string handling. Clearly
a general purpose programming language should have
great flexibility in these areas. Consequently, input/
output are defined and made a standardized part of
SIMULA 67.

Standardization

For a general purpose programming language it is of
paramount importance that while the language is
uniquely defined and at the same time under strict

control, it may be extended in the future.

This is achieved by the SIMULA Standard Group, consisting

of representatives for firms and organizations having
responsibility for SIMULA 67 compilers. The statutes
lay down rigid rules to provide for both standardization

and future extensions.

The SIMULA definition which is required to be a part
of any SIMULA 67 system is named the "SIMULA 67

Common Base Definjition".

Language definition

The language definition given in the following sections
must be supplemented by the formal definition of ALGOL
60 L1i. The syntactic definitions given in this report

are to be understood in the following way.

1) Syntactic classes referred to, but not defined in
this report, refer to syntactic definitions given

in [1i.

2) Definitions in this report of syntactic classes
defined in [1] replace the corresponding

definitions given in [1].
3) Any construction of the form
<ALGOL some syntactic class>

stands for the list of alternative direct
productions of <some syntactic class> according

to the definition given in [1].

4) The comment conventions given in (1] is extended
in that the convention for "end-comment" is
replaced by:

{end <any sequence not containing ;, end, else,

’
when or otherwise>$ - ¢end %

- 14 -

2.1

2,2

- 15 -

Class declarations

Syntax

<declaration> ::= <ALGOL declaration>|
<class declaration> |
<external declaration>

<class identifier> ::= <identifier>

<prefix> ::= <empty>
<class identifier>
<virtual part> ::= <empty> |
virtual: <specification part>
<class body> ::= <statement> |
<split body>
<initial operations> ::= begin]
<blockhead>;

<initial operations><statement>;

<final operations> ::= end|

;7 <compound tail>
<split body> ::= <initial operations>
inner <final operations>
<class declaration> ::= <prefix><main part>
<main part> ::= class <class identifier>
<formal parameter part>;
<value part><specification part>

<virtual part><class body>

Semantics

A class declaration serves to define the class associated
with a class identifier. The class consists of "objects"

each of which is a dynamic instance of the class body.

An object is generated as the result of evaluating an
object generator, which is the analogy of the "call"

of a function designator, see section 4.3.2.2.

16

A class body always acts like a block. If it takes
the form of a statement which is not an unlabelled
block, the class body is identified with a block of
the form

begin; S end

when S is the textual body. A split body acts as a
block in which the symbol "inner" represents a dummy

statement.

For a given object the formal parameters, the
quantities specified in the virtual part, and the
quantities declared local to the class body are called
the "attributes" of the object. A declaration or
specification of an attribute is called an "attribute

definition".

Specification (in the specification part) is necessary
for each formal parameter. The parameters are treated
as variables local to the class body. They are

initialized according to the rules of parameter trans-
mission; (see section 8.2). Call by name is not-avail-
able for parameters of class declarations. The follow-

ing specifiers are accepted:

<type>, array, and <type> array.

Attributes defined in the virtual part are called
"virtual quantities". They do not occur in the formal
parameter list. The virtual quantities have some
properties which resemble formal parameters called by
name. However, for a given object the environment of
the corresponding "actual parameters" is the object
itself, rather than that of the generating call. See
section 2.2.3.

._17_

Identifier conflicts between formal parameters and
other attributes defined in a class declaration are

illegal.

The declaration of an array attribute may in a con-
stituent subscript bound expression make reference

to the formal parameters of the class declaration.

Example:

The following class declaration expresses the notiaon

of "n-point Gauss integration” as an aggregated concept.

class Gauss (n); integer n;

begin array W,X[1:nl;

real procedure integral(F,a,b); real procedure F;

real a,bh;

begin real sum, range; integer i;

range := (b-a) x0.5;

for i := 1 step 1 until n do

sum := sum + F(a+rangex (X[il+1))xW[il;
integral := range x sum;

end integral;
comment compute the values of the elements of

W and X as functions of n;

end Gauss;

The optimum weights W and abcissae X can be computed

as functions of n. By making the algorithm part of

the class body, the evaluation and assignment of these
values can be performed at the time of object generation.
Several "Gauss” objects with different values of n may
co-exist. Each object has a local procedure "integral”
for the evaluation of the corresponding n-point formula.

See also examples of section 6.1.2.2 and section 7.1.2.

Subclasses

A class declaration with the prefix "C" and the

class identifier "D" defines a subclass D of the

class C. An object belonging to the subclass consists
of a "prefix part", which is itself an object of the

class C, and a "main part" described by the main part

of the class declaration. The two parts are "concatenated"

to form one compound object. The class C may itself have

a prefix.

Let Cl’ C2, R Cn be classes such that Cl has no
prefix and Ck has the prefix Ck—l (k = 2, 3, ;).
Then Cl’ C2, e ee ey Ck_l is called the "prefix sequence"
of Ck (k = 2, 3, vv.ee, n). The subscript k of Ck

(k =1, 2, «..c., n) 1is called the "prefix level” of

the class. Ci is said to "include" Cj if i < j, and Ci
is called a "subclass" of C. if i > j (i, j =1, 2, -

n). The prefix level of a class D is said to be "inner"
to that of a class C if D is a subclass of C, and
"outer" to that of C if C is a subclass of D. The
figure 2.1 depicts a class hierarchy consisting of five
classes, A, B, C, D and E:

class A ...c.0.}

A class B veeeeens
Bclass C cveun.e ;
B class D ceeeesses

A class E 4.0 e;

A capital letter denotes a class. The corresponding
lower case letter represents the attributes of the

main part of an object belonging to that class. 1In

an implementation of the language, the object structures
shown in Fig. 2.2 may indicate the allocation in memory
of the values of those attributes which are simple

variables.

19

Fig. 2.1
a a a a a
—————— > = @ an - - o - - - oof j.----q
b b b e
c d

Fig. 2.2

—20_

The following restrictions must be observed in the use

of prefixes:

1) A class must not occur in its own prefix sequence.

2) A class can be used as prefix only at the block
level at which it is declared. A system class is
considered to be declared in the smallest block
enclosing its first textual occurrence. An
implementation may restrict the number of different
block levels at which such prefixes may be used.

See sections 11, 14 and 15.

Concatenation

Let Cn be a class with the prefix sequence Cl’ C2,
e s s e ’ Cn—l and let X be an object belonging to Cn'
7
Informally, the concatenation mechanism has the following

consequences.

1) X has a set of attributes which is the union of
those defined in Cl’ C2, ’ Cn. An attribute
defined in Cy (1<k<n) is said to be defined at
prefix level k.

2) X has an "operation rule" consisting of statements
from the bodies of these classes in a prescribed
order. A statement from Ck is said to belong to

prefix level k of X.

3) A statement at prefix level k of X has access to
all attributes of X defined at prefix levels equal
to or outer to k, but not directly to attributes
"hidden" by conflicting definitions at levels <k.
These "hidden"attributes may be accessed through

use of procedures or this).

- 2] -

4) A statement at prefix level k of X has no immediate
access to attributes of X defined at prefix levels
inner to k, except through virtual quantities.

(See section 2.2.3.)

5) 1In a split body at prefix level k, the symbol
"inner" represents those statements in the operation
rule of X which belong to prefix levels inner to
k, or a dummy statement if k = n. If none of Cl’

ceseenr Co 9 has a split body the statements in

operation rule of X are ordered according to

ascending prefix levels.

A compound object could be described formally by a
"concatenated" class declaration. The process of
concatenation is considered to take place prior to
program execution. In order to give a precise description

of that process, we need the following definition.

An occurrence of an identifier which is part of a given
block is said to be "uncommitted occurrence in that
block", except if it is the attribute identifier of a
remote identifier (see section 7.1), or is part of an
inner block in which it is given a local significance.
In this context a "block" may be a class declaration
not including its prefix and class identifier, or a
procedure declaration not including its procedure
identifier. (Notice that an uncommitted identifier
occurrence in a block may well have a local significance
in that block.)

The class declarations of a given class hierarchy are
processed in an order of ascending prefix levels. A
class declaration with a non-empty prefix is replaced
by a concatenated class declaration obtained by first

modifying the given one in two steps.

22

1. If the prefix refers to a concatenated class
declaration, in which identifier substitutions
have been carried out, then the same substitutions
are effected for uncommitted identifier occurrences

within the main part.

2. If now identifiers of attributes defined within the
main part have uncommitted occurrences within the
prefix class, then all uncommitted occurrences
within the main part of these identifiers are
systematically changed to avoid name conflicts.
Identifiers corresponding to virtual gquantities

defined in the prefix class are not changed.

The concatenated class declaration is defined in terms
of the given declaration, modified as above, and the

concatenated declaration of the prefix class.

1. Its formal parameter list consists of that of

the prefix class followed by that of the main part.

2. 1Its value part, specification part, and virtual
part are the unions (in an informal but obvious
sense) of those of the prefix class and those of
the main part. If the resulting virtual part
contains more than one occurrence of some identifier,
the virtual part of the given class declaration is

illegal.

3. Its class body is obtained from that of the main
part in the following way, assuming the body of
the prefix class is a split body. The begin of
the block head is replaced by a copy of the block
head of the prefix body, a copy of the initial
operations of the prefix body is inserted after
the block head of the main part and the end of the

_23...

compound tail of the main part is replaced Ly a copy
of the compound tail of the prefix body. If the
prefix class body is not a split body, it is
interpreted as if the symbols ";inner" were

inserted in front of the end of its compound tail.

If in the resulting class body two matching declara-
tions for a virtual quantity are given (see section
2.2.3), the one copied from the prefix class body

is deleted.

The declaration of a label is its occurrence as
the label of a statement.

Examples:

class point (x,y); real x,y;
begin ref (point) procedure plus (P); ref (pcint) P;
plus :- new point (x+P.x, y+P.y);

end point;

An object of the class point is a representation of a
point in a cartesian plane. Its attributes are x,y and
plus, where plus represents the operation of vector

addition.

point class polar;

begin real r,v;

ref (polar) procedure plus (P); ref (point) P;
plus :- new polar (x+P.x, y+P.y);
r:= sqrt (x+2+y+2);
vi= arctg (x,y);

end polar;

An object of the class polar is a "point” object with
the additional attributes r,v and a redefined plus
operation. The values of r and v are computed and
assigned at the time of object generation. ("arctg”

is a suitable non-local procedure.)

Virtual guantities

Virtual quantities serve a double purpose:
1) to give access at one prefix level of an object
to attributes declared at inner prefix levels,

and

2) to permit attribute redeclarations at one prefix

level valid at outer prefix levels.

The following specifiers are accepted in a virtual

part:

label, switch, procedure and <type> procedure.

A virtual guantity of an object is either "unmatched®

or is identified with a "matching" attribute, which is
an attribute whose identifier coincides with that of the
virtual quantity, declared at the prefix level of the
virtual quantity or at an inner one. The matching
attribute must be of the same kind as the virtual
quantity. At a given prefix level, the type of the
matching quantity must coincide with or be subordinate
to (see Section 3.2.5) that of the virtual specification
and that of any matching quantity declared at any outer

prefix level.

It is a consequence of the concatenation mechanism that
a virtual quantity of a given object can have at most
one matching attribute. If matching declarations have
been given at more than one prefix level of the class
hierarchy, then the one is valid which is given at the
innermost prefix level outer or equal to that of the
main part of the object. The match is valid at all
prefix levels of the object equal or inner to that of

the virtual specification.

Example:

The following class expresses a notion of "hashing”,
in which the "hash” algorithm itself is a "replaceable

part”. "error” is a suitable non-local procedure.

class hashing (n); integer n;

virtual: integer procedure hash;

begin integer procedure hash (T); value T; text T;

begin integer 1i;

L: if T.more then

begin i := i+rank (T.getchar);
go to L;
end;
hash (= 1 - (1 + n x n);
end hash;

text array table [0:n-1J); integer entries;

integer procedure lookup (T,0ld}; name old;

value T; Boolean old; text T;

begin integer i;
i:= hash(T);

L: if tablelil] == notext then
begin tablelii :- T; entries :=

entries+l; end

else if table [i] = T then

old := true
else if entries = n then
error("hash table
filled completely"”)

else begin i := i+1;

if i=n then i := 0;

go to L

end hashing;

26

hashing class ALGOL hash;
begin integer procsdure hash(T); value T;

text T;

begin integer i; character c;

L: if T.more then

begin ¢ := T.getchar;
if ¢ # '_" then
i := 1 + rank(c);
go to L;
end;
hash := 1i-(1i + n x nJ);
end hash;

end ALGOL hash;

Types and variables

Syntax

<type declaration> ::= <type><type list>

<array declaration> ::= array <array list>|
<type> array <array list>

<type> ::= <value type> |

<reference type>

<value type> ::= integer|
real |
Boolean|
character
<reference type> ::= <object reference> |
text
<object reference> ::= ref (<qualification>)

<qualification> ::= <class identifier>
Semantics

The syntax for type declaration represents a
deviation from ALGOL 60, in that own is not a part
of SIMULA 67.

A "value" is a piece of information interpreted at

run time to represent itself. Examples of values

are: an instance of a real number, an object, or a
piece of text. A "reference" is a piece of information
which identifies a value, called the "referenced" value.
The distinction between a reference and the referenced

value is determined by context.

The reference concept corresponds to the intuitive

notion of a "name" or a "pointer". It also reflects
the addressing capability of computers: in certain
simple cases a reference could be implemented as the

memory address of a stored value.

- 28 -

For computer efficiency the reference concept is not
introduced in its full generality. 1In particular,
there is no reference concept associated with any
value type.

A variable local to a block instance is a memory device
whose "contents" is either a value or a reference,
according to the type of the variable. A value type
variable has a value which is the contents of the
variable. A reference type variable is said to have

a value which is the one referenced by the contents of
the variable. The contents of a variable may be changed

by an appropriate assignment operation, see section 6.1.

Object references

Associated with an object there is a unique "object
reference" which identifies the object. And for any
class C there is an associated reference type ref (C).
A quantity of that type is said to be qualified by the
class C. 1Its value is either an object, or the special
value none which represents "no object". The qualifi-
cation restricts the range of values to objects of
classes included in the qualifying class. The range

of values includes the value none regardless of the

qualification.

Characters

A character value is an instance of an "internal
character". For any given implementation there is
a one-one mapping between a subset of internal
characters and external ("printable") characters.
The character sets (internal and external) are

implementation defined.

3.2.2.1 Collating sequence

The set of internal characters is ordered according
to an implementation defined collating sequence. The
collating sequence defines a one-one mapping between
internal characters and integers expressed by the

function procedures:

integer procedure rank(c); character c;

whose value is in the range [0,N-1J, where N is

the number of internal characters, and

character procedure char(n); integer n;

The parameter value must be in the range [0,N-1],

otherwise a run time errcr is caused.

Example:

Most character cudes are such that the digits (0-3) ar-z
character values which are consacutive and in ascending
order with respsct to the collating sequence. Under
this assumpticn, the zxpressions

"rank(c) - rank{(’'0’)"” and "char(rank('0"')+i)"

provide implementation independent cocnversion

between digits and their arithmefic values.

3.2.2.2 Character subsets

Two character subsets are defined by the standard

non-local procedures:

Boolean procedure digit(c); character c;

which is true if c is a digit, and

Boolean procedure letter (c¢); character c;

which is true if ¢ is a letter.

3.2.3 Text

A text value is an ordered sequence, possibly empty,
of internal characters. The number of characters is
called the "length" of the text. A non-emnpty text

value is either a "text object", or it is part of a

longer character sequence which is a text object.

A text reference identifies a text value. Certain
properties of a text reference are represented by
procedures accessible through remote accessing (the
dot notation). The text concept is further described

in section 10.

3.2.4 Initialization

Any declared variable is initialized at the time of
entry into the block to which the variable is local.

The initial contents depends on the type of the

variable.

real 0.0

integer 0

Boolean false

character implementation defined

okbject reference none

text notext (see section 10)
3.2.5 Subordinate types

An object reference is said to be "subordinate"
to a second object reference if the qualification
of the former is a subclass of the class which

qualifies the latter.

A proper procedure is said to be of "type universal".
Any type is subordinate to the universal type.
(Cf. sections 2.2.3, 8.2.2 and 6.2.3.)

Expressions

Syntax

<label> ::= <identifier>
<expression> ::= <value expression> |
<text value> |
<reference expression> |
<designational expression>
<value expression> ::= <arithmetic expression>,
<Boolean expression>
<character expression>
<reference expression> ::= <object expression>

<text expression>

Semantics

The syntax for label represents a restriction compared
with ALGCL 60.

A value expressiocn is a rule for obtaining a value.

A reference expression is a rule for obtaining a

reference and the associated referenced value.

A designational expression is a rule for obtaining

a reference to a program point.

Any value expression or reference expressior has

an associated type, which is textually defined. The
type of an arithmetic expression is that of its value.
The following deviations from ALGOL 60 are introduced;

see also section 8.2.3.

1) An expression of the form

<factor>t<primary>

is of type real.

- 32 -

2) A conditional arithmetic expression is of type
integer if both alternatives are of type integer,
otherwise its type is real. If necessary, a
conversion of the value of the selected alternative

is invoked.

Character expressions

Syntax

<simple character expression> ::= '<character designation>'|
<variable> |
<function designator> |
(<character expression>)
<character expression>
::= <simple character expression>|
<if clause><simple character expression>

else <character expression>
Semantics

A character expression is of type character. It

is a rule for obtaining a character value.

A character designation is either an external
character or another implementation defined represen-

tation of an internal character.

Object expressions

Syntax

simple object expression ::= nonel
<variable> |
<function designator> |
<object generator> |
<local object>|
<qualified object>|

(<object expression>)

4.3.2

4,3.2.1

33

<object expression> ::= <simple object expression>
<if clause><simple object expression>
else <object expression>
<object generator> ::= new <class identifier>
<actual parameter part>
<local object> ::= this <class identifier>
<qualified object> ::= <simple object expression>

qua <class identifier>

Semantics

An object expression is of type ref (<qualification>).
It is a rule for obtaining a reference to an object.
The value of the expression is the referenced object

or none.

Qualification

The qualification of an object expression is defined

by the following rules:

1) The expression none is qualified by a fictitious

class which is inner to all declared classes.

2) A variable or function designator is qualified
as stated in the declaration (or specification,
see below) of the variable or array or procedure

in question.

3) An object generator, local object, or
qualified object is qualified by the class of

the identifier following the symbol "new", "this",

or "qua" respectively.

4) A conditional object expression is qualified by

the innermost class which includes the qualifications

of both alternatives. If there is no such class,

the expression is illegal.

4.3.2.2

5)

6)

34

Any formal parameter of object reference type is
qualified according to its specification regard-
less of the qualification of the corresponding
actual parameter.

The qualification of a function designator whose
procedure identifier is that of a virtual gquantity,
depends on the access level (see section 7). The
qualification is that of the matching declaration,

if any, occurring at the innermost prefix level equal
or outer to the access level, or if no such match

exists, it is that of the virtual specification.

Object generators

An object generator invokes the generation and

execution of an object belonging to the identified

class. The object is a new instance of the corre-

sponding (concatenated) class body. The evaluation

of an object generator consists of the following

actions:

1)

2)

The object is generated and the actual parameters,
if any, of the okject generator are evaluated.

The parameter values and/or references are trans-
mitted. (For parameter transnission modes,

see section 8).

Control enters the object through its initial
begin, whereby it becomes operating in the "attached"
state (see section 9). The evaluation of the

object generator is completed:

case a: whenever the basic procedure "detach"
is executed "on behalf of" the generated

object (see section 9.1), or

case b: upon exit through the final end of the

object.

35.

The value of an object generator is the object
generated as the result of its evaluation. The
state of the object after the evaluation is either

"detached" (case a) or "terminated" (case b).

4.3.2.3 Local obijects

A local object "this C" is a meaningful expression
within

1) the class body of C or that of any subclass of C,
or

2) a connection block whose block qualification is

C or a subclass of C (see section 7.2).

The value of a local object in a given context is

the object which is, or is conneéted by, the smallest
textually enclosing block instance, in which the local
cbject is a meaningful expression. If there is no such
Llock the local object is illegal (in the given context).
For an instance of procedure or class body "textually

enclosing” means containing its declaration.

4.3.2.4 Instantaneous qualification

Let X represent any simple reference expression,
and let C and D be class identifiers such that D
is the qualification of X. The qualified object
"X qua C" is then a legal object expression,
provided that C is outer to or equal to D or is a
subclass of D. Otherwise, i.e. if C and D belong
to disjoint prefix sequences, the qualified object

is illegal.

36

If the value of X is none or is an object belonging
to a class outer to C, the evaluation of X qua C
constitutes a run time error. Otherwise, the value
of X qua C is that of X. The use of instantaneous
qualification enables one to restrict or extend the
range of attributes of a concatenated class object
accessible through inspection or remote accessing.

(See also section 7.)

Text expressions

sSyntax

<simple text expression> ::= notext|

<variable>

<function designator>

<text expression>
<text expression>::= <simple text expression>{

<if clause><simple text expression>
else <text expression>

<text value> ::= <text expression> |

<string>
Semantics

The constituents of a string are external characters
and/or other implementation defined representations of

internal characters.

A string 1is a text value, not a text reference. It
is not a text expression, but it may occur as the right
part of a text value assignment (cf. section 10.6), as
an operand of a text value relation (cf. section 5.2),
and as an actual parameter called by value (cf. section
8.2.1).

In an implementation the left and right string quotes

may be represented by one and the same external character.

In this document either symbol is represented by the

symbol ",

37

notext designates an empty text reference.

For further information on the text concept, see

section 10.

38

e i Nk S e

5.].

5.1.1

5.1.2

5.2

5.2.1

5.2.2

Relations

<relation> ::= <ALGOL relation>|
<character relation> |
<text value relation>|
<object relation>|

<reference relation>

Character relations

Syntax

<character relation> ::= <simple character expression>

<relational operator><simple character expression>

Semantics

Character values may be compared for equality and

inequality and ranked with respect to the

(implementation defined) collating sequence. A relation
X rel vy,

where x and y are character values, and rel is any

relational operator has the same truth value as

the relation

rank (x) rel ran<{y;.

Text value relations

Syntax

<text value relation> ::= <text value>

<relational operator><text value>
Semantics
Two text values are equal if they are both empty,

or if they are both instances of the same character

sequence. Otherwise they are unequal.

5.3

5.3.1

5.3.2

- 40 -

A text value T ranks lower than a text value U if
and only if they are unequal and one of the following
conditions is fulfilled:

1) T is empty.

2) U is equal to T followed by one or more characters.

3) The i'th character of T ranks lower than the i'th
character of U, and 1 (i > 1) is the smallest
integer such that the i'th character of T is

unequal to the i'th character of U.

Object relations

Syntax
<object relation> ::= <simple object expression>
is <class identifier>|
<simple object expression>
in <class identifier>
Semantics

The operators "is" and "in" may be used to test the

class membership of an object.

The relation "X is C" has the value true if X refers
to an object belonging to the class C, otherwise the

value is false.

The relation "X in C" has the value true if X refers
to an object belonging to a class C or a class inner

to C, otherwise the value is false.

5.4 Reference relations

5.4.1 Syntax

<reference comparator> ::= ==|=/=
<reference relation> ::= <object reference relation> |
<text reference relation>
<object reference relation> ::= <simple object expression>
<reference comparator><simple object expression>
<text reference relation> ::= <simple text expression>

<reference comparator><gimple text expression>
5.4.2 Semantics

The reference comparators "==" and "=/=" may be used
for the comparison of references (as distinct from
the corresponding referenced values). Two object
(text) references X and Y are said to be "identical"
if they refer to the same object (text object)

or if both are none (notext). In those cases the

relation "X==Y" has the value true. Otherwise the

value is false.

The relation "X=/=Y" is the negation of "X==y".

Let T and U be text references. Observe that the
relations "T=/=U" and "T=U" may both have the value
true. Then T and U refer to physically distinct

character sequences which are equal.

Reference comparators have the same priority level

as the relational operators.

42

6.1

6.1.1

Statements

<statement> ::= <ALGOL unconditional statement> |
<conditional statement> |
<for statement> |
<connection statement>
<unlabelled basic statement> ;:= <assignment statement> |
<go to statement> |
<dummy statement> |
<procedure statement> |
<activation statement> |

<object generator>

<conditional statement> ::= <ALGOL conditional statement>]

<if clause><connection statement>

For <connection statement> see section 7.2.

For <activation statement> see section 14.2.3.

Assignment statements

Syntax

<assignment statement> ::= <value assignment>]
<reference assignment>
<value left part> ::= <variable>|
<procedure identifier> |
<simple text expression>
<value right part> ::= <value expression>]
<text value>|
<value assignment>
<value assignment>::=
<value left part> := <value right part>
<reference left part> ::= <variable>|
<procedure identifier>
<reference right part> ::= <reference expression> |
<reference assignment>
<reference assignment> ::=
<reference left part> :- <reference right part>

Semantics

The operator ":=" (read: "becomes") indicates the
assignment of a value to the value type variable

or value type procedure identifier which is the left
part of the value assignment or the assignment of a
text value to the text object referenced by the left
part.

The operator ":-" (read: "denotes") indicates the
assignment of a reference to the reference type
variable or reference type procedure identifier which

is the left part of the reference assignment.

A procedure identifier in this context designates
a memory device local to the procedure instance.
This memory device is initialized upon procedure

entry according to section 3.2.4.

The value or reference assigned is a suitably trans-
formed representation of the one obtained by evalu-
ating the right part of the assignment. If the right
part is itself an assignment, the value or reference

obtained is a copy of that of its constituent left

part after that assignment operation has been completed.

Any expression which is, or is part of, the left
part of an assignment is evaluated prior to the

evaluation of the right part.

For a detailed description of the text value assign-
ment, see section 10.6. There is no value assign-
ment operation for objects.

6.1.2.1

- 45 -

The type of the value or reference obtained by evaluating
the right part, must coincide with the type of the
left part, with the exceptions mentioned in the following

sections.

If the left part of an assignment is a formal parameter,
and the type of the corresponding actual parameter does
not coincide with that of the formal specification,
then the assignment operation is carried out in two

steps.

1) An assignment is made to a fictitious variable of

the type specified for the formal parameter.,

2) An assignment statement is executed whose left part
is the actual parameter and whose right part is the
fictitious variable.

The value or reference obtained by evaluating the

assignment is, in this case, that of the fictitious

variable.

For text reference assignment see section 10.5.

Arithmetic value assignment

In accordance with ALGOL 60, any arithmetic value may
be assigned to a left part of type real or integer.

If necessary, an appropriate transfer function is invoked.
Example:
Consider the statement (not a legal one in ALGOL 60):

X =1 =Y :=F ;= 3,14

where X and Y are real variables, 1 is an integer

variable, and F is a formal parameter called by

6.1.2.2

....46_

name and specified real. If the actual parameter for

F is a real variable, then X, i, Y and F are given the
values 3,3,3.14 and 3.14 respectively. If the actual
parameter is an integer variable, the respective values
will be 3,3,3.14 and 3.

Object reference assignment

Let the left part of an object reference assignment

be qualified by the class Cl, and let the right part

be qualified by Cr. 1If the right part is itself a
reference assignment, Cr is defined as the qualification
of its constituent left part. Let V be the value
obtained by evaluating the right part. The legality

and effect of the reference assignment depend on

relationships between Cr, Cl and V.

Case 1. Cl is of the class Cr or outer to Cr:
The reference assignment is legal and the

assignment operation is carried out.

Case 2. Cl is inner to Cr:
The reference assignment is legal. The
assignment operation is carxried out if V
is none or is an object belonging to the

cdass Cl or innracters

class Cl or a class inner to Cl. If not,
the execution of the reference assignment

constitutes a run time error.

Case 3. Cl and Cr satisfy neither of the above
relations:

The reference assignment is illegal.

Similar rules apply to reference assignments implicit

in for clauses and the transmission of parameters.

6.

6.

2.

1

_47..

Example i:

Let "Gauss” be the class declared in the example of

the section 2.2.

ref {(Gauss) G5, G1l0;

G5 :- new Gauss(5); G110 :- new Gauss(10);

The values of G5 and Gl0 are now Gauss objects.

See also example 1 of section 7.1.2.

Example 2:

Let "point” and "polar” bhe the classes declared in

the example of section 2.2.2.

ref (point) P1l, P2; ref (polar) P3;
Pl :- new polar (3,4); P2 :- new point (5,6);

Now the statement "P3 :- P1” assigns to P3 a reference
to the "polar” object which is the value of Pl. The

statement "P3 :- P2" would cause a run time error.

For statements

Syntax

<controlled variable> ::= <simple variable>

<controlled statement> ::= <statement>

<for statement> ::= <for clause><controlled statement>
<label> : <for statement>

<for clause> ::= for <controlled variable>

<for right part> do

i

<for right part> ::= :=<value for list>|

:—<object for list>

<value for 1list> <value for list element>|
<value for list>,

<value for list element>

48

<object for list> ::= <object for list element>]
<object for 1list>,
<object for list element>
<value for list element> ::= <value expression>|
<arithmetic expression> step <arithmetic
expression> until <arithmetic expression>|
<value expression> while <Boolean expression>
<object for list element> ::= <object expression> |

<object expression> while <Boolean expression>

Semantics

A for clause causes the controlled statement to be
executed repeatedly zero or more times. Each execution
of ihe controlled statement is preceded by an assign-
ment to the controlled variable and a test to determine

whether this particular for list element is exhausted.

Assignments may change the value of the controlled

variable during execution of the controlled statement.

For list elements

The for list elements are considered in the order in
which they are written. When one for list element
is exhausted, control proceeds to the next, until
the last for list element in the list has been
exhausted. Execution then continues after the con-

trolled statement.

The effect of each type of for list element is

defined below using the following notation:

C: controlled variable
: value expression
: object expression
: arithmetic expression
: Boolean expression

3¢ controlled statement

49

The effect of the occurrence of expressions as for
list elements may be established by textual replace-
ment in the definitions.

a,B,0 are different identifiers whiich are not

used elsewhere in the program. ¢ identifijies a
non-local simple variable of the same type as

As.

S;

next for list element

0 := Ay;

g AZ'
C :=C + 0;
go to o

B: next for list element

a: C = V;
if 7 B then go to B8;
S;
go to a;

B: next for list element

C := 0;
S;

next for list element

a: C = O;
if < B then go to B;
S;
go to a;

B: next for list element

The controlled variable

The semantics of this section (6.2) is valid when
the controlled variable is a simple variable which
is not a formal parameter called by name, or a

procedure identifier.

The cases of formal parameter called by name, pro-
cedure identifier, subscripted variable and remote
identifier are presently under study by a Technical

Committee appointed by the SIMULA Standards Group,

To be valid, all for list elements in a for-
statement (defined by textual substitution,
section 6.2.3) must be semantically and syntact-

ically valid.
In particular each implied reference assignment
in ecases 4 and 5 of section 6.2.3 is subject to

the rules of section 6.1.2.2.

The value of the controlled variable upon exit

Upon exit from the for statement, the controlled
variable will have the value given to it by the last

(explicit or implicit) assignment operation.

6.

6.

6.

6.

2.6

3

3.1

3.2

51

Labels local to the controlled statement

The controlled statement always acts as if it were
a block. Hence, labels on or defined within the
controlled statement may not be accessed from with-

out the controlled statement.

Prefixed blocks

Syntax

<block> ::= <ALGOL block>|
<prefixed block>
<block prefix> ::=
<class identifier><actual parameter part>

<main block> ::= <unlabelled block>|

<unlabelled compound>
<unlabelled prefixed block> ::=

<block prefix><main block>
<prefixed block> ::= <unlabelled prefixed block> |

<label>:<prefixed block>

Semantics

An instance of a prefixed block is a compound object
whose prefix part is an object of the class identified
by the block prefix, and whose main part is an instance
of the main block. The formal parameters of the former
are initialized as indicated by the actual parameters
of the block prefix. The concatenation is defined

by rules similar to those of section 2.2.2.
The following restrictions must be Observed:
1) A class in which reference is made to the class

itself through use of "this", is an illegal
block prefix.

- 52 =~

2) The class identifier of a block prefix must refer
to a class local to the smallest block enclosing
the prefixed block. If that class identifier is that
of a system class, it refers to a fictitious decla-
ration of that system class occurring in the block

head of the smallest enclosing block.
An instance of a prefixed block is a detached object

(cf. section 9). A program is enclosed in a prefixed

block (c¢f. section 11) and is therefore detached.

Example:

Let "hashing” be the class declared in the example of

section 2.2.3. Then within the prefixed block,

hashing (64) begin integer procedure hash(T); value T;
text T; cvvivnvinnnn

a "lookup” procedure is available which makes use of

the "hash” procedure declared within the main block.

Remote accessing

An attribute of an object is identified completely

by the following items of information:
1) the object,

2) a class which is outer to or equal to that of

the object, and

3) an attribute identifier defined in that class

or in any class belonging to its prefix sequence.

Item 2 is textually defined for any attribute identifi-
cation. The prefix level of the class is called the

"access level" of the attribute identification.

Consider an attribute identification whose item 2 is
the class C. 1Its attribute identifier, item 3, is
subjected to the same identifier substitutions as those
which would be applied to an uncommitted occurrence of
that identifier within the main part of C, at the time
of concatenation. 1In that way, name c9nflicts between
attributes declared at different prefix levels of

an object are resolved by selecting the one defined

at the innermost prefix level not inner to the access

level of the attribute identification.

An uncommitted occurrence within a given object of the
identifier of an attribute of the object is itself a
complete attribute identification. 1In this case items
1 and 2 are implicitly defined, as respectively the
given object and the class associated with the prefix

level of the identifier occurrence.

If such an identifier occurrence is located in the body
of a procedure declaration (which is part of the object),

then, for any dynamic instance of the procedure, the

54

occurrence serves to identify an attribute of the given
object, regardless of the context in which the procedure
was invoked.

Remote accessing of attributes, i.e. access from
outside the object, is either through the mechanism
of "remote identifiers" ("dot notation") or through
"connection”". The former is an adaptation of a
technique proposed in [3], the latter corresponds to
the connection mechanism of SIMULA I [2].

A text reference is (itself) a compound structure in
the sense that it has attributes accessible through

the dot notation.

7.1 Remote identifiers

7.1.1 Syntax

<attribute identifier> ::= <identifier>
<remote identifier> ::=
<simple object expression>.<attribute identifier>|
<simple text expression>.<attribute identifier>
<identifier 1> ::= <identifier>|

<remote identifier>

<variable identifier 1> ::= <identifier 1>
<simple variable 1> ::= <variable identifier 1>
<array identifier 1> ::= <identifier 1>

<variable> ::= <gimple variable 1> |
<array identifier 1>[<subscript list>]
<procedure identifier 1> ::= <identifier 1>
<function designator>::=
<procedure identifier 1><actual parameter part>
<procedure statement> ::=
<procedure identifier 1l><actual parameter part>
<actual parameter> ::= <expression>|
<array identifier 1>|
<switch identifier> |

<procedure identifier 1>

7.

1.

Semantics

Let X be a simple object expression qualified by the
class C, and let A be an appropriate attribute
identifier. Then the remote identifier "X.A", if valid,
is an attribute identification whose item 1 is the

value X and whose item 2 is C.

The remote identifier X.,A is valid if the following

conditions are satisfied:

1) The value X is different from none.

2) The object referenced by X has no class attribute
declared at any prefix level equal or outer to

that of C.

Condition 1 corresponds to a run time check which causes

a run-time error if the value of X is none.

Condition 2 is an ad hoc rule intended to simplify

the language and its implementations.

A remote identifier of the form

<simple text expression>.<attribute identifier>
identifies an attribute of the text reference obtained
by evaluating the simple text expression, provided

that the attribute identifier is one of the procedure

identifiers listed in section 10.1.

Examgle 1:

Let G5 and G1l0 be variables declared and initialized
as in example 1 of section 6.1.2.2. Then an expression
of the form

G5.integral(.....) or GlO0.integral(.....)

56
is an approximation to a definite integral obtained

by applying respectively a 5 point or a 10 point

Gauss formula.

Example Z:

Let Pl and P2 be variables declared and initialized
as in example 2 of section 6.1.2.2. Then the value
of the expressiaon

Pl.plus (P2)

is a new "point” object which represents the vector

sum of Pl and P2. The value of the expression
Pl qua polar.plus (P2)

is a new "polar” object representing the same vector

SuUma.

Connection

Syntax

<gconnection block 1> ::= <statement>

<connection block 2> := <statement>

<when clause> ::

when <class identifier>do<connection block 1>

<otherwise clause> ::= <empty>|
otherwise<statement>
<connection part> ::= <when clause> |
<connection part><when clause>
<connection statement> ::=
inspect <object expression>
<connection part><otherwise clause> |
inspect <object expression> do
<connection block 2><otherwise clause> |

<label>:<connection statement>

7.2‘2

- 57 -

A connection block may itself be a connection statement,
which, in that case, is the largest possible connection
statement.

Semantics

The purpose of the connection mechanism is to provide
implicit definitions of the above items 1l and 2 for
certain attribute identifications within connection
blocks.

The execution of a connection statement may be described
as follows:

1) The object expression of the connection statement
is evaluated. Let its value be X.

2) If when-clauses are present they are considered one
after another. If X is an object belonging to a
class equal or inner to the one identified by a when-
clause, the connection block 1 of this when-clause
is executed, and subsequent when-clauses are skipped.

Otherwise the when-clause is skipped.

3) 1If a connection block 2 is present it is executed,
except if X is none in which case the connection
block is skipped.

4) The statement of an otherwise clause is executed
if X is none, or if X is an object not belonging
to a class included in the one identified by any

when-clause. Otherwise it is skipped.

A statement which is a connection block 1l or a
connection block 2 acts as a block, whether it takes
the form of a block or not. It further acts as if

enclosed in a second fictitious block, called a

58

"connection block". During the execution of a connection
block the object X is said to be "connected". A
connection block has an associated "block qualification",
which is the preceding class identifier for a connection
block 1 and the qualification of the preceding object

expression for a connection block 2.

Let the block gqualification of a given connection block
be C and let A be an attribute identifier defined at
any prefix level of C. Then any uncommitted occurrence
of A within the connection block is given the local
significance of being an attribute identification. 1Its
item 1 is the connected object, its item 2 is the block

qualification C,

It follows that a connection block acts as if its local
quantities are those attributes of the connected object
which are defined at prefix levels outer to and including
that of C. (Name conflicts between attributes defined
at different prefix levels of C are resolved by

selecting the one defined at the innermost prefix level.)

Example:
Let "Gauss” be the class declared in the example of

section 2.2. Then within the connection block 2 of

the connection statement

inspect new Gauss(5) do begin end

a procedure "integral” is available for numeric

integration by means of a 5 point Gauss formula.

8.1

8.2

59

Procedures and parameter transmission

Syntax

<procedure heading> ::= <procedure identifier>
<formal parameter part>;
<mode part><specification part>
<mode part> ::= <value part><name part>|
<name part><value part>
<name part> ::= name <identifier list>; |
<empty>
<specifier> ::= <type >|
array |
<type> array|
label |
switch |
procedure |
<type> procedure

<parameter delimiter> ::= ,
For actual parameter see section 7.1.1.
Semantics

With respect to procedures, SIMULA 67 deviates
from ALGOL 60 on the following points:

1) Specification is required for each formal parameter.
2) The ALGOL specifier "string" is replaced by "text".

3) A "name part" is introduced as an optional part
of a procedure heading to identify parameters
called by name. Call by name is not the default

parameter transmission mode.

4) Call by name is redefined in the case that the type
of actual parameter does not coincide with that of

the formal specification.

8.2.1

60

5) Exact type correspondence is required for array
parameters not called by value.

There are three modes of parameter transmission:

"call by value", "call by reference", and "call by
name" .,

The default transmission mode is call by value for
value type parameters and call by reference for all
other kinds of parameters.

The available transmission modes are shown in fig.
8.1 for the different kinds of parameters to pro-
cedures. The upper left subtable defines transmission

modes available for parameters of class declarations.

Transmission modes

Parameter by value by reference|l by name

value type D I 0
object reference I D 0
text 0 D 0
value type array 0 D 0
reference type array I D i 0
procedure I D o)
type procedure I D 0
label I D o
switch I D 0]
D: default mode O: optional mode I: illegal

fig. 8.1 Transmission modes

Call by value

A formal parameter called by value designates initially
a local copy of the value (or array) obtained by
evaluating the corresponding actual parameter. The
evaluation takes place at the time of procedure entry

or object generation.

8.2.2

61

The call by value of value type and value type
array parameters is as in ALGOL 60.

A text parameter called by value is a local variable
initialized in two steps, informally described by the
statements:

FP :- blanks (AP.length); FP := AP;
where FP is the formal parameter and AP is the value
of the actual parameter. Any text value is a legal

actual parameter in this case.

Value specification is redundant for a parameter of

value type.

There is no call by value option for object reference

parameters and reference type array parameters.

Call by reference

A formal parameter called by reference designates
initially a local copy of the reference obtained by
evaluating the corresponding actual parameter. The
evaluation takes place at the time of procedure entry

or object generation.

A reference type formal parameter is a local varijiable
initialized by a reference assignment

FP :— AP
where FP is the formal parameter and AP is the reference
obtained by evaluating the actual parameter. The
reference assignment is subject to the rules of section
6.1.2.2. Since in this case the formal parameter is a
reference type variable, its contents may be changed
by reference assignments within the procedure body,
or within or without (by remote accessing) a class
kody. A string is not a legal actual parameter for

a text parameter called by reference.

62.

Although array-, procedure-, label-, and switch
identifiers do not designate references to values,

there is a strong analogy between references in the
strict sense and references to entities such as arrays,
procadures (i.e. procedure declarations), program points
and switches. Therefore a call by reference mechanism

is defined in these cases.

An array-, prcocedure-, label-, or switch parameter
called by reference cannot be changed from within the
procedure or class body; it will thus refereace the same
entity throughout its scope. However, the contents of
an array called by reference may well be changed

througn appropriate assignmants to its elements.

For an array parameter called by reference, tane type
associated with the actual parameter must coincide with
that of the formal specification. For a prccedure
param=ter called by reierence, the type associated with
the actual parameter must coincide with or be subordinate

to that of the formal specification.

Call by name

Call by name is an optional transmission mode available
for parameters to procedures. It represents a textual

replacement as in ALGOL 60.

However, for an expression within a procedure body which

is

1) a formal parameter called by name,

2) a subscripted variable whose array identifier is

. a formal parameter called by name, or

3) a function designator whose procedure identifier

is a formal parameter called by name,

_63..
the following rules apply:

1) 1Its type is that prescribed by the corresponding

formal specification.

2) If the type of the actual parameter does not
coincide with that of the formal specification,
then an evaluation of the expression is followed
by an assignment of the value or reference obtained
to a fictitious variable of the latter type.

This assignment is subject to the rules of section
6.1.2. The value or reference obtained by the
evaluation is the contents of the fictitious

variable.

Section 6.1.2 defines the meaning of an assignment to
a variable which is a formal parameter called by name,
or is a subscripted variable whose array identifier is
a formal parameter called by name, if the type of the
actual parameter dces not coincide with that of the

formal specification.

Assignment to a procedure identifier which is a formal

parameter is illegal, regardless of its transmission mode.

Notice that each dynamic cccurrence of a formal parameter
called by name, regardless of its kind, may invoke
the execution of a non-trivial expression, e.g. if its

actual parameter is a remote identifier.

..64_.

9ll

65

Sequencing

Blocks and dynamic scopes

The constituent parts of a program execution are
dynamic instances of blocks. The different kinds
of blocks fall into three categories according to
the possible interrelationships and states of

execution of the block instances.

1) Prefixed blocks.
2) Sub-blocks, procedure bodies and connection blocks.
3) Class bodies.

A block instance is, at any given time, in one of three
states of execution: "attached", "detached" or
"terminated". The possible and initial states are

defined in fig. 9.1.:

Block category Possible states Initial state

D D
A A
A,D,T A
A: attached D: detached T: terminated

Fig. 9.1 Execution states

A program conforming to ALGOL 60 only contains blocks
of category 2, except the ocutermost one which is of
category 1 (see section 1ll). An execution of any such

program is a simple dynamically nested structure.

A block instance of category 2 is in the attached state
and is said to be "attached to" the smallest dynamically

enclosing block instance. E.g. an instance of a procedure

body is attached to the block instance containing the

corresponding procedure call.

66

The "program sequence control", PSC, refers at any
time to that program point within a block instance
which is currently being executed. For brevity we
shall say that the PSC is "positioned" at the program
point and is "contained" in the block instance. If A
is the block instance containing the PSC, then A, and
any block instance dynamically enclosing A, is said to

be "operating".

The entry into any block invokes the generation of an
instance of that block, whereupon the PSC enters the
block instance. If and when the PSC leaves a block
instance of category 1 or 2 through its end or by a

go to statement, that block instance is deleted.

An object (i.e., a block instance of category 3) is
initially attached to the block instance containing the
corresponding object generator. It may enter the
detached state by executing the statement "detach"

(see section 9.2.1). TIf and when the PSC leaves the
object through its end or by a go to statement, the

object becomes terminated.

A block instance is said to be "local to" the one which
contains its describing text. E.g. an object belonging
to a given class is local to the block instance

containing the class declaration.

A block instance A is said to "enclose" a second one B
if:

1) B is attached and is dynamically enclosed by A,

or

2) B is detached or terminated and is local to A or
to a block instance dynamically enclosed by A,

or

9.2

6’7

3) there is a detached object C local to A or to
a block instance dynamically enclosed by A,

such that C encloses B.

Whenever a block instance is deleted, any block instance
enclosed by it is also deleted. It is a consequence

of the language structure that an object, at the time of
its deletion, cannot be referenced by any computable
object reference expression. The dynamic scope of an
object is thus limited by that of its class declaration.
However, an implementation may further reduce the
effective life spans of objects by techniques such as

"garbage collection",

Notice that arrays and text objects cannot, in general,
be deleted together with the block instance in which
they are declared.

Quasi-parallel sequencing

A program execution can be described as a tree structure
whose branching nodes are instances of prefixed blocks.
A subtree whose "root" is a prefixed block instance is
called a "quasi-parallel system". The prefixed block
instance, including block instances dynamically enclosed
by it, is called the "main program" of the quasi-parallel

system.

A quasi-parallel system has an associated "system level",
which is the number of prefixed block instances enclosing
its main program. The program as a whole is a quasi-

parallel system at system level zero.

A quasi-parallel system consists of system "components"
which are the main program and any detached object,
including block instances dynamically enclosed by the

object, whose smallest enclosing instance of a prefixed

68

block is the main program. The components of a
quasi-parallel system are said to be "detached" at

the system level of the quasi-parallel system.

Any system component has an associated "local sequence
control"”, LSC. Associated with any quasi-parallel
system is an "outer sequence control", 0SC. The 0SC
at system level zero coincides with the PSC. The 0SC
of a system at level k (k > 1) coincides with the LSC
of that component at system level k-1 which encloses

the given system.

For any given quasi-parallel system, one and only one of
its components is said to be "active". The LSC of that
component coincides with the 0OSC of the quasi-parallel

system.

An instance of a prefixed block is initially active,
i.e. it contains the OSC of its own quasi-parallel
system. The OSC of a system may move from oﬁe component
to another as the result of statements described below.
The LSC of a component not containing the OSC remains
positioned at the program point at which the 0SC left
the object the last time.

At any given time, there exists a sequence of system

components XO,X

;, «ssse., X_such that:
1 n
1) Xk is active at system level k (k = 0,1,....,n).
2) Xk is enclosed by Xk—l (k =1,2,....,n).

3) There is no quasi-parallel system enclosed by Xn'

This sequence is called the "operating chain". System
components on the operating chain all contain the PSC and
are therefore said to be operating. The LSC of a system
component remains fixed as long as it is not a member

of the operating chain.

9.2.1

The detach statement

Let the

If X is

smallest operating block instance be X.

an attached object, a detach statement has the

following effects:

1) The
the
LSC

2) The

was

object becomes detached at the system level of
smallest enclosing prefixed block instance, its

positioned at the end of the statement.

PSC returns to the block instance to which X

attached and resumes operations after the

object generator which caused the generation of

XQ

If X is

A reference to X is the result of that expression.

a detached object which is component of a quasi-

parallel system S, a detach statement operates as follows:

1) 'The

OSC of 5 leaves X. As a consequence X is

removed from the operating chain. Its LSC

remains positioned at the end of the statement.

2) The

0SC of S enters the main program of S at the

current position of its LSC. As a consequence

the

main program of S and possibly systewm components

at system levels higher than that of $§ become

operating.

If X is

an instance of a prefixed block, a detach

statement has no effect.

If X is

any block instance other than an object or

a prefixed block instance, execution of a detach

statement constitutes an error.

The resume statement

"resume" is formally a procedure with one object
reference parameter qualified by a fictitious class

including all classes.

Let the actual parameter of a resume statement
reference a detached object Y, which is a component
of a quasi-parallel system S. It is a consequence
of the language conventions that Y can only be
referenced from within a block instance which is

or is enclosed by a component X of S. X is
currently operating. The resume statement has the

following effects:

1) The OSC of S leaves X. As a consequence X and
any operating components at higher system levels
are removed from the operating chain. The LSC
of each component remains at the end of the

resume statement.

2) The 0OSC of S enters Y at the current position
of its LSC. As a consequence Y, and possibly
a sequence of components at higher system levels,

become operating.
If the actual parameter of a resume statement does
not refer to a detached object, its execution

constitutes an error.

Object "end"

The effect of the PSC passing through the final end

of an object is the same as that of a detach statement,

except that the object becomes terminated, not

detached, and thus loses its LSC.

9.2.4

go to statements

A designational expression defines a block instance

and a program point local to this block instance.

A go to statement leading to a block instance is
valid if and only if this block instance is operating.
This restriction implies that a go to statement
leading out of a detached object must also lead out
of the smallest enclosing prefixed block. The
restriction further implies that a go to statement
leading to a connected label is valid if and only if
the connected object is also operating. The go to
statement will lead to the label in the operating
block instance.

Block instances left through a go to statement

become terminated.

- 72 -

73

10. The type "text"

Cf. sections 3.2.3, 4.4.2, 5.2 and 5.4.

10.1 Text attributes

The following procedures are attributes of any text
reference. They may be accessed by remote jidentifiers

of the form

<simple text expression>.<procedure identifier>

integer procedure length (cf. 10.2)
text procedure main (cf. 10.2)
integer procedure pos (cf£. 10.3)
procedure setpos (cf. 10.3)
Boolean procedure more (cf. 10.3)
character procedure getchar (cf. 10.3)
procedure putchar (cf. 10.3)
text procedure sub (cf. 10.7)
text procedure strip (cf. 10.7)
integer procedure getint (cf. 10.9)
real procedure getreal (cf. 10.9)
integer procedure getfrac (cf. 10.9)
procedure putint {(cf. 10.10)
procedure putfix (cf. 10.10)
procedure putreal {(cf. 10.10)
procedure putfrac (cf. 10.10)

In the following section "X" denotes a text reference

unless otherwise is specified.

10.2 "length" and “main"

integer procedure length;

The value of "X.length" is the number of characters
of the text value referenced by X (cf. section 3.2.3).

"notext.length” is equal to zero.

10.3

text procedure main;

"X.main" is a reference to the text object which
is, or contains, the text value referenced by X (cf.
section 3.2.3).

"notext.main" is identical to "notext".

The following relations are true for any text

reference X.

X.main.length > X.length

X.main.main == X.main

Character access

The characters of a text are accessible one at a

time. Any text reference contains a "position
indicator", which identifies the currently accessible
character, if any, of the referenced text object. The
position indicator of a given text reference X is an

integer in the range [1,X.length+l].

The position indicator of notext is equal to 1. A
text reference obtained by calling any system defined
text procedures(i.e. main, sub and strip) has its

position indicator equal to 1.

The position indicator of a given text reference may

be altered by the procedures "setpos", "getchar", and
"putchar" of the text reference. Also any of procedures
defined in sections 10.9 and 10.10 may alter the
position indicator of the text reference which contains

the procedure.

Position indicators are ignored and left unaltered by
text reference relations, text value relations and text

value assignments.

75
The following procedures are facilities available
for character accessing. They are oriented towards

sequential access.

integer procedure pos;

The value of "X.pos" is the current value of the

position indicator of the text reference X.

procedure setpos(i); integer ij;

The effect of "X.setpos(i)" is to assign the integer

i to the position indicator of X, if i is in the range
[1,X.length+l]. Otherwise the value X.length+l is
assigned.

Boolean procedure more;

The value of "X.more" is true if the position indicator
is in the range [1,X.length]. Otherwise the value is
false.

character procedure getchar;

The value of "X.getchar" is a copy of the currently
accessible character of X, provided that the current
value of X.more is true. Otherwise the evaluation
constitutes a run time error. In the former case the
position indicator of X is increased by one after the

copying operation.
Rrocedure putchar (c); character c;
The effect of "X.putchar(c)" is to replace the currently

accessible character of X by a copy of the character c

provided that the current value of X.more is true.

10.4

76

Otherwise the execution constitutes a run time
error. In the former case the position indicator
of X is increased by 1 after the replacement

operation.

Exam919=

procedure compress(T); text T;
begin text U; character c;

T.setpos(1l); U :- T;
for ¢ := ¢ while U.more do

begin ¢ := U.getchar;

if ¢ # '_' then T.putchar(c)
end;
for ¢ := c while T.more do T.putchar(’_ ')

end compress;

The procedure will rearrange the characters of

the text value referenced by its parameter. The
non-blank characters are collected in the leftmost
part of the text and the remainder, if any, is
filled with the blank characters. Since the
parameter is called by reference, its position
indicator is not altered. The character constant

' ' represents a blank character value.

Text generation

The following basic procedures are available for
text object generation. The procedures are non-

local.

text procedure blanks(n); integer n;

The reference value is a new text object of length
n, filled with blank characters. If n=0, the reference

value is notext. For n<0, a run-time error will occur.

10.5

10.6

77

text procedure copy (T); value T; text T;

The referenced value is a new text object, which is
a copy of the text value which is (or is referenced

by) the actual parameter.

Examgle:

The statement "T :- copy ("ABC")”, where T is a text

variable, is equivalent to the compound statement

begin T :- blanks(3); T := "ABC” end

Text reference assignment

Syntax, see section 6.1.

A text reference assignment causes a text reference
to be assigned as the new contents of the left part.
The text reference is a copy of the one which is obtained
by evaluating the right part (see section 6.2), and

includes a copy of its position indicator.

If X is a text variable and Y is a text reference, then
after the execution of the reference assignment "X :- Y",
the relations "X == Y" and "X.pos = Y.pos" both have

the value true.

Text value assignment

Syntax, see section 6.1.

Let the left part of a text value assignment be a text
of length L1, and let the right part be of length Lr.

If the right part is itself a text value assignment,

Lr is defined as the length of its constituent left part.

10.7

78

The effect of the text value assignment depends

on the relationship between L1 and Lr.

L1 = Lr : The character contents of the right
part text are copied to the left part
text.

L1 > Lr : The character contents of the right

part text are copied to the first Lr
characters of the left part text. The
remaining Ll1-Lr characters of the left

part text are filled with blanks.

L1l < Lz : The statement consiitutes a run time

error.
The effect of a text value assignment is implementation
defined if the left part and right part refer to

overlapping texts.

The position indicators of the left and the right

parts are ignored and remain unchanged.

If X and Y are non-overlapping texts of the same length
then after the execution of the value assignment

"X := Y¥", the relation "X = Y" is true.

Subtexts

Two procedures are available for referencing subtexts.

text procedure sub(i,n); integer i,n;

Let i and n be integers such that i > 1, n > 0, and
i + n < X.length+l. Then the expression "X.sub(i,n)"

refers to that part of the text value X whose first

10.8

10.8.1

79

character is character number i of X, and which
contains n consecutive characters. The position
indicator of the text reference is equal to 1, and
defines a local character numbering within the subtext.
The position indicator of X is ignored and not altered.
In the exceptional case n = 0, the reference obtained
is notext. If i and n do not satisfy the above

conditions, a run time error is caused.

If legal, the Boolean expressions

X.sub(i,n).sub(j,m) == X.sub(i+j~1,m),

and n # 0nX.main == X.sub(i,n).main

both have the value true.

text procedure strip;

The expression "X.strip" is equivalent to "X.sub(l,n)",
where n is the smallest integer such that the remaining

characters of X, if any, are blanks.

Let X and Y be text references. Then after the value

assignment "X := Y", if legal, the relation

X.strip = Y.strip

has the wvalue true.

Numeric text wvalues

Syntax

<EMPTY>
<DIGIT> ::= 0|1|2]3]|4]|5|6]|7]|8]9

<DIGITS> ::= <DIGIT>|<DIGITS><DIGIT>
<BLANKS> ::= <EMPTY>|<BLANKS><BLANK>

<SIGN> ::= <EMPTY>|+|-
<SIGN PART> ::= <BLANKS><SIGN><BLANKS>
<INTEGER ITEM >::= <SIGN PART><DIGITS>
<FRACTION >::= .<DIGITS>
<DECIMAL ITEM> ::= <INTEGER ITEM> |
<SIGN PART><FRACTION> |
<INTEGER ITEM><FRACTION>
<EXPONENT> ::= 10<INTEGER ITEM>
<REAL ITEM >::= <DECIMAL ITEM> |
<SIGN PART><EXPONENT> |
<DECIMAL ITEM><EXPONENT>
<GROUPS> ::= <DIGITS> |
<GROUPS><BLANKS><DIGITS>
<GROUPED ITEM> ::= <SIGN PART><GROUPS> |
<SIGN PART>.<GROUPS> |
<SIGN PART><GROUPS>.<GROUPS>
<NUMERIC ITEM> ::= <REAL ITEM> |
<GROUPED ITEM>

10.8.2 Semantics

The syntax applies tc sequences of characters, i.e.

to text values. <BLANK> stands for a blank character.

A numeric item is a character sequence which is a
production cf <NUMERIC ITEM>. "Editing" and
"de—-editing" procedures are available for the
conversion between arithmetic values and text

values which are numeric items, and vice versa.

10.9 "De-editing" procedures

A de-editing procedure of a given text reference X

operates in the following way:

1)

2)

3)

4)

5)

81

The longest numeric term, if any, of a given form
is located, which is contained in X and contains
the first character of X. (Notice that leading

blanks are accepted as part of any numeric item.)

If no such numeric item is found, a run time error

is caused.

Otherwise the numeric item is interpreted as a

number.

If that number is outside a relevant imple-

mentation defined range, a runtime error is caused.

Otherwise an arithmetic value is computed, which

is equal to or approximates that number.

The position indicator of X is made one greater
than the position of the last character of the

numeric item.

The following de-editing procedures are available.

integer procedure getint;

The procedure locates an INTEGER ITEM. The function

value is equal to the corresponding integer.

real procedure getreal;

The procedure locates a REAL ITEM. The function

value is equal to or approximates the corresponding

number. If the number is an integer within an imple-

mentation defined range, the conversion is exact.

integer procedure getfrac;

The procedure locates a GROUPED ITEM. In its
interpretation of the GROUPED ITEM the procedure

82

will ignore any BLANKS and a possible decimal point.

The function value is equal to the resulting integer.

10.10 Editing procedures

Editing procedures of a given text reference X

serve to convert arithmetic values to numeric items.
After an editing operation, the numeric item obtained,
if any, is right adjusted in the text X and preceded
by as many blanks as necessary to fill the text. The
final value of the position indicator of X is equal
X.length+1.

A positive number is edited without a sign, a negative
number is edited with a minus sign immediately pre-
ceding the most significant character. Leading non-
significant zeros are suppressed, except possibly

in an EXPONENT.

If X is identical to notext, a runtime error is
caused. Otherwise if the text value is too short

to contain the resulting numeric item, an "edit
overflow" is caused. Then an implementation defined
character sequence is edited into the text. 1In
addition, an appropriate warning will be given after
the completion of a program execution if an edit

overflow has occurred.

procedure putint(i); integer i;

The value of the parameter is converted to an INTEGER

ITEM which designates an integer equal to that value.

procedure putfix(r,n); real r; integer n;

The resulting numeric item is an INTEGER ITEM if n = 0
or a DECIMAL ITEM with a FRACTION of n digits if
n > 0. It designates a number equal to the value of r

- 83 -

or an approximation to the value of r, correctly rounded

to n decimal places. If n < 0, a run time error is caused.

procedure putreal(r,n); real r; integer n;

The resulting numeric item is a REAL ITEM containing
an EXPONENT with a fixed implementation defined number
of characters. The EXPONENT is preceded by a SIGN
PART if n = 0, or by an INTEGER ITEM with one digit

if n=1, or if n > 1, by a DECIMAL ITEM with an
INTEGER ITEM of 1 digit only, and a fraction of

n-1 digits. If n < 0 a run time error is caused.

In putfix and putreal, the numeric item designates
that number of the specified form which differs by
the smallest possible amount from the value of r or

from the approximation to the value of r.

procedure putfrac(i,n); integer i,n;

The resulting numeric item is a GROUPED ITEM with no
decimal point if n <= 0, and with a decimal point
followed by total of n digits if n > 0. Each digit
group consists of 3 digits, except possibly the first
one, and possibly the last one following a decimal
point. The numeric item is an exact representation
of the number i.10 °°

The editing and de-editing procedures are oriented

towards "fixed field" text manipulation.

- 84 -

Examgle;

text Tr, type, amount, price, payment;

integer pay, total;

Tr :~ blanks (80); type :~ Tr.sub (1,10);
amount := Tr.sub(20,5); price := Tr.sub (30,6);

payment := Tr.sub (60,10);

if type.strip = "order” then
begin pay := amount.getint X price.getfrac;
total := total + pay;

payment.putfrac (pay,?2)

0]
3
[mE

11.

Input-Jutput

The semantics of certain I/0 facilities will

rely on the intuitive notion of "Ziles" ("data
sets"), which are collections of data external

to the program and organized in a sequential or
addressable manner. We shall speak of a "sequential
file" or a "direct File" according to the method of

organization.

Examples of sequential files are:

- a batch of cards
- & series of printed lines
- input from a keyboard

- data on a tape

An example of a direct file is a collection of data
items on a A&rum, or a disc, with each item identified

by a unique index.
Y

Tae individual logical unit in a file will be called
an "image", Each "image" is an ordered sequence of

characters.

I/0 facilities are introduced through klock prefixing,
For the purpose of this presentation, this ccllection
of facilities will be described by a class called

"BASICIO". The class is not explicitly available in

any users pProgram.

The program acts as if it werec enclosed in the

following block:

BASICIO (n) begin
inspect SYSIN do
inspect SYSOUT do
<program>

end

where n is an integer constant representing the length
of a printed line as defined for the particular

implementation.

Within the definition of the I/0 semantics, identifiers
in CAPITAL LETTERS represent quantities which are not
accessible in a user program. A series of dots is used
to indicate that actual coding is either found elsewhere,

described informally, or implementation defined.

The overall organization of "BASICIO" is as follows:

class BASICIO (LINELENGTH); integer LINELENGTH;
begin ref (infile) SYSIN;

ref (infile) procedure sysin;
sysin :- SYSIN;

ref (printfile) SYSOUT;

ref (printfile) procedure sysout;
sysout :- SYSOUT;

Class FILE ...ceveccecssacensi

FILE class infilecvecues}

FILE class outfile ..veceeeeas;

FILE class directfileo}

outfile class printfile;

SYSIN :- new infile ("SYSIN");
SYSOUT :- new printfile ("SYSOUT");
SYSIN.open (blanks(80));
SYSOUT.open(blanks (LINELENGTH)) ;
inner;
SYSIN.close;
SYSOUT.close;

end BASICIO;

- 87 -

The integer "LINELENGTH" represents the
implementation defined number of characters

in a printed line.

"SYSIN" and "SYSOUT" represent a card-oriented
standard input unit and a printer-oriented
standard output unit. A program may refer to

the corresponding file objects through "sysin"
and "sysout" respectively. Most attributes of
these file objects are directly available as a
result of the implied connection blocks enclosing

the program.
The files "SYSIN" and "SYSOUT" will be opened and
closed within "BASICIO", i.e. outside the program

itself.

11.1 The class "FILE"

11.1.1 Definition

class FILE (NAME,.....); value NAME; text NAME;

virtual: procedure open, close;

begin text image;
Boolean OPEN;
procedure setpos(i); integer i;

image.setpos (i) ;

integer procedure pos;

pos := image.pos;

Boolean procedure more;

more := image.more;

integer procedure length;

length := image.length;

end FILE;

11.1.2

Semantics

Within a program, an object of a subclass of "FILE"
is used to represent a file. The following four types

are predefined:

"infile" representing a sequential file where input
operations (transfer of data from file to

program) are available.

"outfile" representing a sequential file where output
cperations (transfer of data from program to

file) are available.

"directfile" representing a direct file with facilities

for both input and output.

"printfile" (a subclass of outfile) representing a
sequential file with certain facilities

oriented towards line printers.

An implementation may restrict, in any way, the use of
these classes for prefixing or block prefixing. System
defined subclasses may, however, be provided in an

implementation.

Each FILE object has a text attribute "NAME". It is
assumed that this text value identifies an external file
which, through an implementation defined mechanism,
remains associated with the FILE object. The effect

of several file objects representing the same (external)

file is implementation defined.

The variable "image" is used to reference a text value
which acts as a "buffer", in the sense that it contains
the external file image currently being preocessed. An
implementation may require that "image", at the time of
an input or output of an image, refers to a whole text

object.

— 89_

The procedures "setpos", "pos", "more" and

"length" are introduced for reasons of convenience.

A file is either "open" or "closed", as indicated
by the variable "OPEN". Input or output of
images may only take place on an cpen file. A
file is initially closed (except SYSIN and SYSOUT

as seen from the program).

The procedures "copen" and "close" perfcrm the
opening and closing operations on a file. Since
the procedures are virtual quantities, they may

be redefined completely (i.e. at all access levels)
for objects belonging to special purpose sﬁbclasses

of infile, outfile, etc.

These procedures will be implementation defined,

but they must conform to the following pattern.

procedure open (T,....); text T; ...,
begin if OPEN then ERROR;

OPEN := true;

image :—- T;

end open;

procedure close (....);

begin
OPEN := false;
image :— notext

end close;

The procedures may have additional parameters

and additional effects.

11.2 The class "infile"

11.2.1 Definition

FILE class infile; wvirtual: Boclean procedure endfile;

procedure inimage;

begin procedure open ...;

kbegin;
ENDFILE := false;

imaje := notext;
setpos (length+l)
end oren;
procedure close;
begin;
ENDFILE := true
end;
3ooclean ENDFILE;

Boolean procedure endfile; endfile := ENDFILE;

procedure inimage;
begin
if ENDFILE then ERROR;
e s e e}
setpos (1)

end;

character procedure inchar;

begin if 7 more then
begin inimage; if ENDFILE “hen ERROR
end;
inchar := image.getchar
end inchar;
Boolean procedure lastitem;
begin
L: if ENDFILE then lastitem
begin
M: if 5 more then

begin inimage;

= true else

go _to Lj;
end;
if inchar = '_' then go to M else
setpos (pos-1) ;
end;

end lastitem;

11.2.2.

.._91_

integer procedure inint;

begin text T;
if lastitem then ERROR;
T :- image.sub(pos,length-pos+l);
inint := T.getint;

setpos (pos+T.pos=1)
end inint;

real procedure inreal; -

integer procedure infrac; ceeseae}

text procedure intext(w); integer w;

begin text T; integer m;
T :— blanks (w);

for m := 1 step 1 until w do

T.putchar (inchar) ;
intext :- T;
end intext;
sees.3 ENDFILE := true;

end infile;
Semantics

An object of the class "infile" is used to

represent a sequentially organized input file.

The procedure "inimage" performs the transfer

of an external file image into the text "image".
A run time error occurs if the text is notex:

Oor is too short to contair the external image.

If it is longer than the external image, the
latter is left adjusted and the remainder of

the text is blank filled. The position indicator
is set to one.

If an "end of file" is encountered, an implemen-
tation defined text value is assigned to the text
"image" and the varisble "ENDFILE" is given the
value true. A call on "inimage" when ENDFILE has

the value true is a run time error.

The procedure "open" will give ENDFILE the
value false and set "imace" to blanks. Otherwise

it conforms to the pattern of section 11.1.2.

The procedure "endfile" gives access to the value
of the wvariable ENDFILE.

The remaining procedures prcvide mechanisms for
"item oriented" input, which treat the file as a
"continuous" stream of characters with a "position
indicator" (pos) which is relative to the first

character cf the current image.

The procedure "inchar" gives access to and scans past

the next character.

If the remainder of the file contains one or more
non-blank characters, "lastitem" has the value false,
and the position indicator of the file is set to the

first non-blank character.

The procedures "inreal" and "infrac" are defined in
terms of the corresponding de-editing procedures of
"image". Otherwise the definition of either procedure
is analogous to that of "inint". These three procedures
will scan past and convert a numeric item containing the
first ncen-blank characier and contained in one image,
excepting an arbitrary nuuber of leading blanks.

The expression "intext{n)}" where n is a non-negative
integer is a reference to a new text of length n con-
taining the next n characters of the file. "pos" is

moved to the following character.

The procedures "inchar" and "intext" may both give
access to the contents of the image which corresponds

to an "end of file".

11.3

11.3.1

93

Example:

The following piece of program will input a matrix by
columns. It is assumed that consecutive elements are
separéted by blanks or contained in different images.
The last element of each column should be followed

immediately by an asterisk.

begin array all:n,1:m] integer i,j;

procedure Error;:;
for j :=1 step 1 until m do

begin for i := 1 step 1 until n-1 do
begin ali,jl := inreal;

if (if sysin.more then inchar # ' ' else

false)

then error

end;

aln,jl := inreal;

if inchar # '#' then error;

next: end;..ees;

end

The class "outfile"

Definition

FILE class outfile; virtual: procedure outimage;

begin procedure open;

begin; setpos(l); end;
procedure close ,....;
begin ...;
if pos # 1 then outimage;
end close;
procedure outimage;
begin if - OPEN then ERROR;
cesan}
image := notext;
setpos (1)
ggg outimage;
procedure outchar(c); character c;
begin if- more then outimage;
image.putchar (c)

end outchar;

- 94 -

text procedure FIELD(w); integer w;
begin if w <0Vw >length then ERROR;

if pos + w - 1 >length then outimage;

FIELD :- image.sub(pos,w);
setpos (pos+w)
end FIELD;
procedure outint(i,w); integer i,w;
FIELD(w) .putint(i);
procedure outfix(r,n,w); real r; integer n,w;
FIELD(w) .putfix(r,n);
procedure outreal (r,n,w); real r; integer n,w;
FIELD(w) .putreal(r,n) :

procedure outfrac(i,n,w); integer i,n,w;
FIELD(w) .putfrac(i,n);

procedure outtext(T); value T; text T;
FIELD(T.length) := T;

end outfile;

Semantics

An object of the class "outfile" is used to represent

a sequentially organized output file.

The transfer of an image from the text "image" to the
file is performed by the procedure "outimage®. The
procedure will react in an implementation defined way
if the image length is not appropriate for the external
file. The text is cleared to blanks and the position

indicator is set to 1, after the transfer.

The procedure "close" will call "outimage" once if the
position indicator is different from 1. Otherwise it

conforms to the pattern of section 11.1.2.

The procedure "outchar" treats the file as a "continuous"®

stream of characters.

- 95 -

The remaining procedures provide facilities for "item-
oriented" output. Each item is edited into a subtext

of "imaye", whose first character is the one identified
by the position indicator >f "image", and of a specified
width. The position indicator is advanced by a corre-
sponding amcunt. If an item would extend beyond the last
character of "image", the procedure "outimage" is called

implicitly prior to the editing operation.

The procedures "outint", "outfix", "outreal"” and "outfrac"
are defined in terms of the corresponding editing
procedures of "image". They have an additional

integer parameter which specifies the width of

the subtext into which the item will be edited.

For the procedure "outtext™, the item width is

equal to the length of the text parameter. Notice
that this parameter is called by value, which means
that a text value is an acceptable actual parameter

of "outtext".

11.4 The class "directfile"

Note: The definition of "directfile" is presently

under study by a Technical Committee appointed
by the SIMULA Standards Group.

11.4.1 Definition

FILE class directfile; virtual: Boolean procedure endfile;

procedure locate,inimage,outimage;

begin integer LOC;

integer procedure location; location := LOC;
procedure locate(i); integer ij;
begin if "] OPEN then ERROR;

.o-.-;

LOC := i
end locate;
procedure open;
begin
ceeeeen}
setpos (1) ;
locate(l);
end open;
procedure close;
Boolean procedure endfile;
procedure inimage;

begin;
locate (LOC+1);

setpos (1)
end inimage;
procedure outimage;
begin;
locate (LOC+1);
image := notext;
setpos (1)

end outimage;

97

character procedure inchar;
Boolean procedure lastitem;
integer procedure inint;

real procedure inreale..;

integer procedure infrac;

text procedure intext ...cieeee..;

procedure outcharccvveeeeee;
text procedure FIELD ..cavveseess;

procedure outintiiieiinenaa;
procedure outfix .eciiieiicnannes;

procedure outrealcisveceses;
procedure outfrac ..eeiciseeenas;

procedure outtext ..veierceineene;

end directfile;

11.4.2 Semantics

An object of the class "directfile" is used to
represent an external file in which the individual

images are addressable by ordinal numbers.

The variable "LOC" normally contains the ordinal
number of an external image. The procedure
"location" gives access to the current value of
LOC. The procedure "locate" may be used to assign
a given value to the variable. The assignment may
be accompanied by implementation defined checks
and possibly by instructions to an external memory

device associated with the given file.

The procedure "open" will locate the first image
of the file. Otherwise it conforms to the rules
of section 11.1.2.

The procedure "endfile" may have the value true only
if the current value of LOC does not identify an
image of the external file. The procedure is

implementation defined.

11.5

11.5.1

- 08 -

The procedure "inimage" will transfer into the

text "image" a copy of the external image currently
identified by the variable LOC, if there is one.
Then the value of LOC is increased by one through

a "locate" statement. If the file does not contain
an image with an ordinal number equal to the value
of LOC, the effect of the procedure "inimage" is
implementation defined. The procedure is otherwise

analogous to that of section 11.2.

The procedure "outimage" will transfer a copy of

the text value "image" to the external file, thereby
adding to the file an external image whose ordinal
number is equal to the current value of LOC. A run
time error occurs if the file cannot be made to contain
the image. If the file contains another image with the
same ordinal number, that image is deleted. The wvalue
of LOC is then increased by one through a "locate"
statement. The procedure "outimage" is otherwise

analogous to that of section 11.3.

The remaining procedures are analogous to the

corresponding procedures of section 11.2 and 11.3.

The class "printfile"

Definition

outfile class printfile;
begin integer LINES PER PAGE, SPACING, LINE;

integer procedure line; line := LINE;
procedure lines per page (n); integer n;
LINES PER PAGE := n;

procedure spacing(n); integer n;
SPACING := n;

..99.

procedure eject(n); intejer n;
begin if -} OPEN then ERROR;
if n > LINES PER PAGE then n := 1;

LINE := n;
end eject;
procedure open ... ;
begin ; setpos(l); eject(l)end

procedure close ... ;

begin ... ;
if pos # 1 then outimage;
SPACING := 1;
eject (LINES PER PAGE) ;
LINES PER PAGE := ... ;
LINE := 0

end;

procedure outimage;
begin if 7} OPEN V image == notext then ERROR;
if LINE > LINES PER PAGE then eject (1);

comment output the image on the line
denoted by LINE;
LINE := LINE + SPACING;
image : = notext;
setpos (1) ;
end;
LINES PER PAGE := ... ;
SPACING := 1;

end printfile;

11.5.2 Semantics

An object of the class "printfile" is used to
represent a printer-oriented output file. The
class is a subclass of "outfile". A file image

represents a line on the printed page.

The variable "LINES PER PAGE" indicates the

maximum number of physical lines that will be

- 100 -

printed on each page, including intervening
blank lines. An implementation defined value
is assigned to the variable at the time of
object generation, and when the printfile is
closed. The procedure "lines per page" may be
used to change the value. If the parameter to
"lines per page" is zero, "LINES PER PAGE" is
reset to the same implementation defined

value as at the time of object generation.

The effect is implementation defined if the

parameter is less than zero.

The variable "SPACING" represents the value by
which the variable "LINE" will be incremented
after the next printing operation. The variable

is set equal to 1 at the time of object generation

and when the printfile is closed. Its value may be
changed by the procedure "spacing". A call on the

procedure "spacing" with a parameter less than
zero or greater than "LINES PER PAGE" constitutes
an error. The effect of a parameter to "spacing"
which is equal to zero may be defined by an imple-
mentation either to mean successive printing oper-

ations on the same phvsical line, or to be an error.

The variable "LINE" indicates the ordinal number
of the next line to be printed, provided that no

implicit or explicit "eject" statement occurs.
Its value is accessible through the procedure
"line". ©Note that the value of "LINE" may be
greater than "LINES PER PAGE". The value of

"LINE" is zero when the file is not open.

The procedure "eject is used to position to a

certain line identified by the parameter, n.

- 101 -

The following cases can be distinguished:

n <0: ERROR
n >LINES PER PAGE: Equivalent to eject (1)

n <LINE: Position to line number n on the next page
n >LINE: Position to line number n on the current
page. '

The tests above are performed in the given sequence.

The procedure "outimage" operates according to the
rules of section 11.3. 1In addition, it will update
the variable "LINE".

The procedure "open" and "close" conform to the rules
of section 11.1. 1In addition, "open" will position to
the top of a page, and "close" will output the

current value of "image" if "pos" is differént from

one and reset "LINE", "SPACING" and "LINES PER PAGE".

- 102 -

12.

12.1

- 103 -

Random drawing

Pseudo-random number streams

All random drawing procedures of SIMULA 67 are
based on the technique of obtaining "basic drawings"
from the uniform distribution in the interval

<0,1>,

A basic drawing will replace the value of a
specified integer variable, say U, by a new value
according to an implementation defined algorithm.
As an example, the following algorithm may be
suitable for binary computers:

2p+l) . ,n

U, = remainder ((Ui X 5 27)

i+l
where Ui is the i'th value of U, n is an integer
related to the size of a computer word and p is
a positive integer. It can be proved that, if Uo
is a positive odd integer, the same is true for
all Ui and the sequence UO, Ul' U2, .o... is cyclic
with period 2n—2' (The last two bits of U remain
constant, while the other n-2 take on all possible

combinations) .

The real numbers u, = Ui x 27" are fractions in

the range <0,1>, The sequence Upr Ugr eeeen is
called a "stream" of pseudo-random numbers, and

U (i =1,2,) is the result of the i'th

basic drawing in the stream U. A stream is com-
pletely determined by the initial value UO of

the corresponding integer variable. Nevertheless,
it is a "good approximation" to a sequence of truly

random drawings.

12.2

- 104 -

Random drawing procedures

The following procedures all perform a random drawing
of some kind. Unless it is explicitly stated otherwise,
the drawing is effected by means of one single basic
drawing, i.e. the procedure has the side effect of
advancing the specified stream by one step. The
necessary type conversions are effected for the actual
parameters, with the exception of the last one. The
latter must always be an integer variable specifying

a pseudo-random number stream.

1. Boolean procedure draw (a,U); name U; real a;

The value is true with the probability a, false with
the probability 1 - a. It is always true if a > 1 and

always false if a < 0.

2. integer procedure randint (a,b,U); name U;

integer a,b,U;

The value is one of the integers a, a+l, eesee,; b-1,
b with equal probability. If b < a, the call

constitutes an error.

3. real procedure uniform (a,b,U); name U; real a,b;

integer U;
The value is uniformly distributed in the

interval la,b>. If b < a, the call constitutes

an error.

4. real procedure normal (a,b,U); name U;

real a,b; integer U;

The value is normally distributed with mean a
and standard deviation b. An approximation

formula may be used for the normal distribution

function.

- 105 -

(See M. Abramowitz & I. A. Stegqgun (ed):

Handbook of Mathematical Functions, National
Bureau of Standard Applied Mathematics Series
No. 55, p. 952 and C. Hastings formula (26.2.23)
on p. 933.)

real procedure negexp (a,U); name U; real a;

integer U;

The value is a drawing from the negative
exponential distribution with mean 1/a, defined
by =-1ln(u)/a, where u is a basic drawing. This
is the same as a random "waiting time" in a
Poisson distributed arrival pattern with
expected number of arrivals per time unit

equal to a.

integer procedure Poisson (a,U); name U; real a;

integer U;

The value is a drawing from the Poisson
distribution with parameter a. It is obtained
by n+l basic drawings, u, where n is the
function value. n is defined as the smallest

non—-negative integer for which

The validity of the formula follows from the

equivalent condition

n

% -ln(u,)/a > 1
. i
i=0

- 106 -

where the left hand side is seen to be a sum of
"waiting times" drawn from the corresponding

negative exponential distribution.

When the parameter a is greater than some imple-
mentation defined value, for instance 20.0, the
value may be approximated by entier (normal (a,sqrt

(a) ,U)+0.5) or, when this is negative, by zero.

real procedure Erlang (a,b,U); name U; integer U;

real a,b;

The value is a drawing from the Erlang distribution
with mean 1/a and standard deviation 1/(a/b). It
is defined by b basic drawings u. if b is an

integer value,

b

)
i=1 ab

In(u,)

and by c+1 basic drawings us otherwise, where c is

equal to entier (b),

€ ln(u,) (b-c) 1n (u

“(E) - (e

ab ab

)
c+l’)

i=1

both a and b must be greater than zero.

The last formula represents an approximation.

integer procedure discrete (A,U); name U;

real array A; integer U;

The one-dimensional array A, augmented by the
element 1 to the right, is interpreted as a
step function of the subscript, defining a
discrete (cumulative) distribution function.

The array is assumed to be of type real.

- 107 -

The function value is an integer in the range
[1sb, usb+1li, where 1lsb and usb are the lower
and upper subscript bounds of the array. It
is defined as the smallest i such that A[il® u,

where u is a basic drawing and A [usb+l] = 1.

real procedure linear (A,B,U); name U;

real array A,B; integer U;

The value is a drawing from a (cumulative)
distribution function F, which is obtained bv
linear interpolation in a non-equidistant table
defined by A and B, such that A[i]l = F(B[i]).

It is assumed that A and B are one-dimensional
real arrays of the same length, that the first
and last elements of A are equal to 0 and 1
respectively and that Alij > A[jl and B [ij>

B [jl for i > j. 1If any of these conditions
are not satisfied, the effect is implementation

defined.
The steps in the function evaluation are:
l. draw a uniform <0,1> random number, u.

2. determine the lowest value of i, for which
A[i-1] < u < A[i]

3. compute D= Afli] - A{i-1]

4. if D= 0: linear
if D# 0: linear

Bli-1j

B[i-1] +

(Bl[ij = B[i-1])
D

(u-Afi-1])

- 108 -

10. integer procedure histd (A,U); name U; real array A;

integer U;

The value is an integer in the range [lsb,usb],
where 1lsb and usb are the lower and upper subscript
bounds of the one-dimensional array A. The latter
is interpreted as a histogram defining the relative

frequencies of the values.

13.

- 109 =~

Utility procedures

The following procedure is defined:

procedure histo (A,B,c,d); real array A,B; real c,d;

It will update a histogram defined by the one-
dimensional arrays A and B according to the

observation ¢ withr the weight d. Ajilba+i| is increased
by d, where i is the smallest integer such that

c < Bilbb+ijiand lba and lbb are the lower bounds of

A and B respectively. If the length of 2 is not

one greater than that of B the effect is implementation
defined. The last element of A corresponds to those

observations which are greater than all elements of B.

- 110 -

14.

- 111 -

System classes

Two additional system-defined classes are available:
class SIMSET;;

and

SIMSET class SIMULATION;;

The class SIMSET introduces list processing
facilities corresponding to the "set" concept
of SIMULA I [2]. The class SIMULATION further
defines facilities analogous to the "process"

concept and sequencing facilities of SIMULA I.

The two classes are available for prefixing or
block prefixing at any block level of a program.
Such a prefix or block prefix will act as if an
appropriate declaration of the system class were
part of the block head of the smallest block
enclosing the first textual occurrence of the
class. An implementation may restrict the number
of block levels at which such prefixes or block

prefixes may occur in any one program.

In the following definitions, identifiers in
capital letters, except "SIMSET" and "SIMULATION",
represent quantities not accessible to the user.
A series of dots is used to indicate that the

actual coding is found in another section.

- 112 -

14.1 The class "SIMSET"

The class "SIMSET" contains facilities for the
manipulation of circular two-way lists, called

"gsets".

14.1.1 General structure

14.1.1.1 Definition

class SIMSET;

begin class linkage;;

linkage class head ;;
linkage class 1link;;

end SIMSET;

14.1.1.2 Semantics

The reference variables and procedures necessary for

set handling are introduced in standard classes declared
within the class "SIMSET". Using these classes as
prefixes, their relevant data and other properties are

made parts of the objects themselves.

Both sets and objects which may acquire set membership
have references to a successor and a predecessor.
Consequently they are made subclasses of the "linkage"

class.

The sets are represented by objects belonging to a
subclass "head" of "linkage". Objects which may be set
members belong to subclasses of "link" which is itself

another subclass of "linkage".

- 113 -

14,1.2 The class "linkage"

14.1.2.1 Definition

class linkage;

begin ref (linkage) SUC, PRED;

ref (link) procedure suc;
suc :- if SUC in link then SUC

else none;

ref (link) procedure pred;
pred :- if PRED in link then PRED
else none;

end linkage;

14.1.2.2 Semantics

The class "linkage" is the common denominator for

"set heads" and "set members".

"SUC" is a reference to the successor of this
linkage object in the set, "PRED" is a reference

to the predecessor.

The value of "SUC" and "PRED" may be obtained
through the procedures "suc" and "pred". These
procedures will give the value "none" if the
designated object is not a "set" member, i.e. of

class "link" or a subclass of "link".

The attributes "SUC" and "PRED" may only be modi-
fied through the use of procedures defined within
"link" and "head". This protects the user against

certain kinds of programming errors.

- 114 -

14.1.3 The class "link"

14.1.3.1 Definition

linkage class link;

begin procedure out;

if sUC =/= none then

begin SUC.PRED :- PRED;
PRED.SUC :- SUC;
SUC :~ PRED :-~ none
ggg out;

Hh

procedure follow(X); ref (linkage)X;

begih out;
if X =/= none then
begin if X.SUC =/= none then

begin PRED :~ X;
SUC :- X.SUC;
SUC.PRED :- X.S5U0C :-

this linkage
end

end

end follow;

procedure precede(X); ref (linkage)X;
begin out;
if X =/= none then
begin if X.SUC =/= none then
begin SUC :- X;
PRED :- X.PRED;
PRED.SUC :- X.PRED :-

this linkage
end
end

end precede;

- 115 -
procedure into(S); ref (head)s;
precede (S);

end link;

14.1.3.2 Semantics

Objects belonging to subclasses of the class "link"
may acquire set membership. An object may only

be a member of one set at a given instant.

In addition to the procedures "suc" and "pred",
there are four procedures associated with each
"link" object: '"out", "follow", "precede" and

"into".

The procedure "out" will remove the object from
the set (f any) of which it is a member. The
procedure call will have no effect if the object

has no set membership.

The procedures "follow" and "precede" will remove

the object from the set (if any) of which it is a
member and insert it in a set at a given position.
The set and the position are indicated by a para-
meter which is inner to "linkage". The procedure
call will have the same effect as "out" (except

for possible side effects from evaluation of the
parameter) if the parameter is "none" or if it has

no set membership and is not a set head. Otherwise
the object will be inserted immediately after ("follow")
or before ("precede") the "linkage" object designated
by the parameter.

- 116 -

The procedure "into" will remove the object from the

set (if any) of which it is a member and insert it as

the last member of the set designated by thebparameter.
The procedure call will have the same effect as "out"

if the parameter has the value "none" (except for possible

side effects from evaluation of the actual parameter).

14.1.4 The class "head"

14.1.4.1 Definition

linkage class head;

begin ref (link) procedure first; first :- suc;

ref (link) procedure last; last :- pred;

Boolean procedure empty;

empty := SUC == this linkage;

integer procedure cardinal;

begin integer I; ref (linkage)X;

X :—- this linkage;

for X :- X.suc while X =/= none do
I := I+1;

cardinal := I

end cardinal;

procedure clear;
begin ref (link)X;
for X :- first while X =/= none do X.ou
end clear;
SUC :- PRED :- this linkage

end head;

- 117 -

14.1.4.2 Semantics

An object of the class "head", or a subclass of
"head" is used to represent a set. "head" objects
may not acquire set membership. Thus, a unique

"head" is defined for each set.

The procedure "first" may be used to obtain a
reference to the first member of the set, while
the procedure "last" may be used to obtain a

reference to the last member.

The Boolean procedure "empty" will give the value

true only if the set has no members.

The integer procedure "cardinal" may be used to

count the number of members in a set.

The procedure "clear" may be used to remove all

members from the set.
The references "SUC" and "PRED" will initially
point to the "head" itself, which thereby

represents an empty set.

14.2 The class "SIMULATION"

The system class "SIMULATION" may be considered

an "application package" oriented towards simulation
problems. It has the class "SIMSET" as prefix, and
set-handling facilities are thus immediately

available.

The definition of "SIMULATION" which follows is
only one of many possible schemes of organization
of the class. An implementation may choose any
other scheme which is equivalent from the point of

view of any user's program.

- 118 -

In the following sections the concepts defined in
SIMULATION are explained with respect to a prefixed
block, whose prefix part is an instance of the body of
SIMULATION or of a subclass. The prefixed block will
act as the main program of a quasi-parallel system which

may represent a "discrete-event"” simulation model.

14.2.1 General structure

14.2.1.1 Definition

SIMSET class SIMULATION;
begin link class EVENT NOTICE (EVTIME,PROC) ;
real EVTIME; ref (process)PROC;
begin ref (EVENT NOTICE) procedure suc;
suc :~ if SUC is EVENT NOTICE then SUC

else none;

ref (EVENT NOTICE) procedure pred;
pred :- PRED;

procedure RANK(BEFORE); Boolean BEFORE;
begin ref (EVENT NOTICE)P;

P :- SQS.last;
for P :- P while P.EVTIME > EVTIME do
P :- P.pred;
if BEFORE then begin
for P :- P while P.EVTIME = EVTIME do
P :- P.pred end;
follow (P)
end RANK;

end EVENT NOTICE;

link class process;

begin ref (EVENT NOTICE)EVENT; end process;

ref (head) SQS;

- 119 -

ref (EVENT NOTICE) procedure FIRSTEV;
FIRSTEV :- SQS.first;

ref (process) procedure current;

current :- FIRSTEV.PROC;
real procedure time; time := FIRSTEV.EVTIME;
procedure hold;

-e

procedure passivate
procedure wait;
procedure cancel

procedure ACTIVATE;
procedure accum;
process class MAIN PROGRAM;

ref (MAIN PROGRAM) main;

SQS :- new head;
main :- new MAIN PROGRAM;
main.EVENT :- new EVENT NOTICE (0,main) ;
main.EVENT.into (SQS)
end SIMULATION;

14.2.1.2 Semantics

When used as a prefix to a block or a class,
"SIMULATION" introduces simulation-oriented
features through the class "process" and

associated procedures.

The variable "SQS" refers to a "set" which is
called the "sequencing set", and serves to represent
the system time axis. The members of the

sequencing set are event notices ranked according

14.2.2

14.2.2.1

- 120 -

to increasing values of the attribute "EVTIME". An
event notice refers through its attribute "PROC" to a
"process" object, and represents an event which is

the next active phase of that object, scheduled to

take place at system time EVTIME. There may be at most

one event notice referencing any given process object.

The event notice at the "lower" end of the sequencing set
refers to the currently active process object. The
object can be referenced through the procedure "current".
The value of EVTIME for this event notice is identified
as the current value of system time. It may be accessed

through the procedure "time".

The class "process"

Definition

link class process;
begin ref (EVENT NOTICE)EVENT;
Boolean TERMINATED;

Boolean procedure idle; idle := EVENT == none;

Boolean procedure terminated;

terminated := TERMINATED;

real procedure evtime;
if idle ther: ERROR
else evtime := EVENT.EVTIME;

ref (process) procedure nextev;

nextev :- if idle then none else

if EVENT.suc == none then none

else EVENT.suc.PROC;

14.2.2.2

- 121 -

detach;
inner;

TERMINATED := true;

passivate;
ERROR

end process;

Semantics

An object of a class prefixed by "process" will

be called a process object. A process object

has the properties of "link" and, in addition, the
capability to be represented in the sequencing

set and to be manipulated by certain sequencing
statements which may modify its "process state".

The possible process states are: active, suspended,

passive and terminated.

When a process object is generated it immediately
becomes detached, its LSC positioned in front of
the first statement of its user-defined operation
rule. The process object remains detached through-

out its dynamic scope.

The procedure "idle" has the value true if the
process object is not currently represented in the
sequencing set. It is said to be in the passive

or terminated state depending on the value of the
procedure "terminated". An idle process object is
passive if its LSC is at a user defined prefix level.
When the LSC passes through the final end of the
user—-defined part of the body, it proceeds to the

final operations at the prefix level of the class

"process", and the value of the procedure "terminated"
becomes true. (Although the process state

"terminated" is not strictly equivalent to the corre-
sponding basic concept defined in section 9, an imple-

mentation may treat a terminated process object as

- 122 -

terminated in the strict sense). A process object
currently represented in the sequencing set is said to
be "suspended", except if it is represented by the event
notice at the lower end of the sequencing set. In the
latter case it is active. A suspended process is
scheduled to become active at the system time indicated
by the attribute EVTIME of its event notice. This time
value may be accessed through the procedure "evtime".
The procedure "nextev" will reference the process object,
if any, represented by the next event notice in the

sequencing set.

14.2.3 Activation statements

14.2.3.1 Syntax

<activator> ::= activate|

reactivate

<activation clause> ::= <activator><object expression>
<simple timing clause> ::=
at <arithmetic expression>|
delay <arithmetic expression>
<timing clause> ::= <simple timing clause>|
<simple timing clause> prior
<scheduling clause> ::= <empty>|
<timing clause> |
before <object expression>
after <object expression>
<activation statement> ::= <activation clause>

<scheduling clause>
14.2.3.2 Semantics
An activation statement is only valid within an object

of a class included in SIMULATION, or within a prefixed

block whose prefix part is such an object.

- 123 -

The effect of an activation statement is defined
as being that of call on the sequencing procedure

a
"ACTIVATE" local to SIMULATION.

procedure ACTIVATE (REAC,X,CODE,T,Y,PRIOR);
value CODE; ref {process)X,Y; Boolean REAC,PRIOR;

text CODE; real '!;

The actual parameter list is determined from the
form of the activation statement, by the following

rules.

1. The actual parameter corresponding to "REAC"

is true if the activator is reactivate, false

otherwise.

2. The actual parameter corresponding to "X" is
the object expression of the activation

clause.

3. The actual parameter corresponding to "T" is
the arithmetic expression of the simple timing

clause if present, ctherwise it is zero.

4. The actual parameter corresponding to "PRIOR"

is true if prior is in the timing clause false

if it is not used or there is no timing clause.

5. The actual parameter corresponding to "Y" is
the object expression of the scheduling

clause if present, otherwise it is none.

t. The actual parameter corresponding to "CODE"
is defined from the scheduling clause as

follows:

scheduling clause actual parameter
empty "direct"”

at arithmetic expression "at"

delay arithmetic expression "delay™®
before object expression "before"
pberore E

after object expression "after”

14.2.4 Sequencing procedures

14.2.4.1 Definitions

procedure hold(T); real T;
inspect FIRSTEV do
begin if T > 0 then EVTIME := EVTIME + T;

’_l

if suc =/= none then

begin if suc. EVTIME < EVTIME then

|

begin out; RANK (false);
resume (current)
end

end

end hold;

procedure passivate;
begin inspect current do

begin EVENT.out; EVENT :- none end:
= ’ A MRy

te
.

SQ5.empty then ERRCR

else resume (current)

end passivate;

procedure wait(S); ref (head)$;
begin current.into(S); passivate end waitl;

procedure cancel(X); ref (prccess)X;

if X == current then passivate else

inspect X do if EVENT =/= none then

begin EVENT.out; EVENT :- none end cancel;

- 125 -

procedure ACTIVATE (REAC,X,CODE,T,Y,PRIOR); value CODE;
ref (process)X,Y; Boolean REAC, PRIOR; text CODE;
real T;
inspect X do if — TERMINATED then
begin ref (process)Z; ref (EVENT NOTICE)EV;
if REAC then EV :- EVENT

else if EVENT =/= none then go to exit;

Z :— current;
if CODE = "direct" then
direct: begin EVENT :- new EVENT NOTICE (time,X);
EVENT.precede(FIRSTEV)
end direct
else if CODE = "delay" then
begin T := T + time; go to at end delay

else if CODE = "at" then
at: begin if T < time then T := time;

if T = time A PRIOR then go to direct;
EVENT :- new EVENT NOTICE(T,X);
EVENT.RANK (PRIOR)

end at

else if (if Y == none then true else Y.EVENT == none)
then EVENT :- none else
begin if X == Y then go to exit;

comment reactivate X before/after X;

EVENT :- new EVENT NOTICE (Y.EVENT.EVTIME,X) ;

if CODE = "before" then EVENT.precede(Y.EVENT)
else EVENT.follow(Y.EVENT)

end before or after;

if EV =/= none then

begin EV.out; if SQS.empty then ERROR end;

if 2 =/= current then resume (current);
exit: end ACTIVATE;

- 126 -
14.2.4.2 Semantics

The sequencing procedures serve to organize the quasi-
parallel operation of process objects in a simulation
model. Explicit use of the basic sequencing facilities
(detach,resume) should be avoided within SIMULATION blocks.

The statement "hold(T)", where T is a real number greater
than or equal to zero, will halt the active phase of

the currently active process object, and schedule its next
active phase at the system time "time + T". The statement
thus represents an inactive period of duration T. During
the inactive period the LSC stays within the "hold"

statement. The process object becomes suspended.

The statement "passivate" will stop the active phase

of the currently active process object and delete its
event notice. The process object becomes passive. 1Its
next active phase must be scheduled from outside the
process object. The statement thus represents an inactive
period of indefinite duration. The LSC of the process

object remains within the "passivate" statement.

The procedure "wait" will include the currently active
process object in a referenced set, and then call the

procedure "passivate".

The statement "cancel(X)", where X is a reference to a
process object, will delete the corresponding event notice,
if any. If the process object is currently active or
suspended, it becomes passive. Otherwise the statement
has no effect. The statement "cancel(current)" is

eqﬁivalent to "passivate".

The procedure "ACTIVATE" represents an activation state-
ment, as described in section 14.2.3. The effects of a

call on the procedure are described in terms of the

- 127 -

corresponding activation statement. The purpose of an
activation statement is to schedule an active phase of

a process object.

Let X be the value of the object expression of the
activatiorn clause. If the activator is activate
the statement will have no effect (beyond that of
evaluating its constituent expressions) unless the
X is a passive process object. If the activator is

reactivate and X is a suspended or active process object,

the corresponding event notice is deleted (after the
subsequent scheduling operation) and, in the latter
case, the current active phase is terminated. The

statement otherwise operates as an activate statement.

The scheduling takes place by generating an event notice
for X and inserting it in the sequencing set. The type

of scheduling is determined by the scheduling clause.

An empty scheduling clause indicates direct activation,
whereby an active phase of X is initiated immediately.

The event notice is inserted in front of the one currently
at the lower end of the sequencing set and X becomes
active. The system time remains unchanged. The formerly

active process object becomes suspended.

A timing clause may be used to specify the system time

of the scheduled active phase. The clause "delay T",
where T is an arithmetic expression, is equivalent to

"at time + T". The event notice is inserted into the
sequencing set using the specified system time as ranking
criterion. It is normally inserted after any event notice
with the same system time; the symbol "prior" may,
however, be used to specify insertion in front of any

event notice with the same system time.

14.2.5

14.2.5.1

14.2.5.2

- 128 -

Let Y be a reference to an active or suspended process
object. Then the clause "before Y" or "after Y" may

be used to insert the event notice in a position defined
relation to (before or after) the event notice of Y. The
generated event notice is given the same system time as
that of Y. If Y is not an active or suspended process

object, no scheduling will take place.

Examgle:

The statements

activate X

activate X before current

activate X delay O prior

activate X at time Erior

are equivalent. They all specify direct activation.

The statement

reactivate current delay T

is equivalent to "hold(T)".

The main program

Definition

process class MAIN PROGRAM;
begin L: detach; go to L end MAIN PROGRAM;

Semantics

It is desirable that the main program of a simulation
model, i.e. the SIMULATION block instance, should respond
to the sequencing procedures of section 14.2.4 as if it
were itself a process object. This is accomplished by
having a process object of the class "MAIN PROGRAM" as

a permanent component of the quasi-parallel system.

1l4.2.6

14.2.6.1

14.2.6.2

- 129 -

The process object will represent the main program
with respect to the sequencing procedures. Whenever
it becomes operative, the PSC (and 0SC) will
immediately enter the main program as a result of

the "detach" statement (cf. section 9.2.1). The
procedure "current" will reference this process object

whenever the main program is active.

A simulation model is initialized by generating the
MAIN PROGRAM object and scheduling an active phase
for it at system time zero. Then the PSC proceeds

to the first user-defined statement of the SIMULATION
block.

Utility procedures

Definition

procedure accum (a,b,c,d); name a,b,c;
real a,b,c,d;
begin a := a + ¢ x (time - b);
b := time; ¢ := ¢ + 4

end accum;

Semantics

A statement of the form "accum (A,B,C,D)" may be
used to accumulate the "system time integral" of
the variable C, interpreted as a step function of
system time. The integral is accumulated in the
variable A. The variable B contains the system
time at which the variables were last updated.
The value of D is the current increment of the

step function.

- 130 -

- 131 -

15, Separate compilation

If an implementation permits user-defined procedure
and class declarations to be separately compiled,
then a program should have means of making reference

to such declarations as external to the program.

The following additional declarations are

recommended as an optional part of the Common Base.

15.1 Syntax

i

<external item> : <external identifier>|

<identifier> = <external identifier>

<external item>,

<external list> :

<external list>,<external item>
<external declaration> ::=
exXternal procedure <external list>|
external <type> procedure <external list>|

external class <external list>

15.2 Semantics

An external identifier is an identification with
respect to an "operating system" of a separately

compiled declaration.

An external item introduces a local identifier
for such a declaration. The local identifier may
Or may not be identical to the corresponding

eXternal identifier.

An external declaration represents a copy of each

of the separately compiled procedures or class
declarations identified by its external list.

Each copy is modified by replacing occurrences of the
original procedure or class identifier by occurrences

of the given local identifier.

- 132 -

- 133 =~

commoln Base restrictions

The following languaye restrictions are part of

the SIMULA 67 Cormon Base.

1) System defined procedures may not be trans-—

titted as parameters.

2) Ornly <type> Parameters may be called by name.

3) An arithmetic assignment statement must conform
to the rules of ALGOL 60.

4) A class should be cefined textually before all

its subclasses.

5) In the hardware representation of the language,
there should be at least one space between a

colon and a minus 5ign in an array declaration.

Restriction 1 may be relevant in order to obtain
maximum efficiency in implementations of system
defined procedures. Restrictions 2 and 3 may
simplify the extension of exXisting ALGOL 60
implementations Restriction 4 is relevant in

order to make ene-pass compilation possible.

- 134 -

17.

17.1

17.1.1

17.1.2

17.2

- 135 -

Recommended extensions

The extensions given in this section are recommended
for inclusion in SIMULA Common Base implementations
by the SIMULA Standards Group.

While statement

Szntax

<statement> ::= <Common Base statement>|<while statement>
<conditional statement>
::= <Common Base conditional statement> |
<if clause><while statement>
<while statement>
::= while <Boolean expression> do <statement> |

<label>:<while statement>
Semantics

A while statement causes a statement to be executed zero

Or more times.

The Boolean expression is evaluated. When true, the
statement following do is executed and control returns
to the beginning of the while statement for a new test

of the Boolean expression.

When the expression is false, control passes to after

the while statement.

The following procedure is recommended to be local to

the class "linkage":

ref (linkage) procedure prev;
prev :— PRED;

- 136 -

The procedure enables a user to access a set head from
its first member.

18.

- 137 -

Features being investigated

The SIMULA Standards Group appoint a Technical
Committee to study features needing clarification

or which may possibly be new recommended extensions.

The following features are currently being
investigated:

- For statements in which the controlled variable is
a variable called by name, procedure identifier,
subscripted variable or remote identifier.

- class directfile

- reference parameters

- the procedure "call"

- syntax of blocks and statements

- syntax of conditional expressions

- hardware representation standards

A closer description of these features is given in
[4] and [5].

- 138 -

19.

- 139 -

References

P. Naur (Ed.): Revised Report on the
Algorithmic Language ALGOL 60. CACM., vol. 6, No.
1963, pp 1-17.

O0-Jd. Dahl, K. Nygaard: "SIMULA - A Language
for Programming and Description of Discrete
Event Systems. Introduction and User's Manual."

Norwegian Computing Center, Oslo.

C.A.R. Hoare: "Record Handling." Lectures
delivered at the NATO Summer School, villard-de-
Lans, September 1966 (Academic Press.)

Proposals circulated to Standards Group Members

before the Annual Meeting in May 1970.

"Minutes from Annual Meeting of SIMULA Standards
Group May 1970"
Publication No. S-18, July 1970, Norwegian

Computing Center, Oslo.

- 140 -

20.

- 141 -

Alphabetic index of syntactical units

For each syntactical unit, the section of
definition is given. AR indicates that the
definition is found in the "revised" ALGOL
report [1]. The numbers of the sections in
this document where the syntactical unit is
referenced, are indicated in parentheses. A
reference in the same section as the definition
is not indicated. The metalanguage brackets

< and > have been removed from the syntactic

units.

activate (14.2.3.1)

activation clause 14.2.3.1
activation statement 14.2.3.1 (6)
activator 14.2.3.1

actual parameter 7.1.1

actual parameter part AR(4.3.1, 6.3.1, 7.1.1)
after (14.2.3.1)

ALGOL block AR(6.3.1)

ALGOL declaration AR(2.1)

ALGOL for clause AR(6.2.1)

ALGOL relation AR(5)

ALGOL statement AR (6)

ALGOL type AR(3.1)

ALGOL unconditional statement AR(6)
arithmetic expression AR(4.1, 14.2.3.1)
array (3.1, 8.1)

array identifier 1 7.1.1

array list AR(3.1)

assignment statement 6.1.1

at (14.2.3.1)

attribute identifier 7.1.1

before (14.2.3.1)

block 6.3.1

block head AR(2.1)

block prefix 6.3.1

- 142 -

Boolean expression AR(4.1, 4.2.1, 4.3.1, 4.4.1,
character (3.1)

charaacter constant 4.2.1

character designation (4.2.1)

character expression 4.2.1 (4.1)

character relation 5.1.1 (5)

class (2.1, 15.1)

class body 2.1

class declaration 2.1

class identifier 2.1 (3.1, 4.3.1, 5.3.1, 6.3.1,

compound tail AR(2.1)

connection block 1 7.2.1
connection block 2 7.2.1
connection part 7.2.1

connection statement 7.2.1 (6)
declaration 2.1

delay (14.2.3.1)

designational expression AR(4.1)
do (7.2.1)

else (4.2.1, 4.3.1, 4.4.1)

empty (2.1, 7.2.1, 8.1, 14.2.3.1)
expression 4.1 (7.1.1)

external (15.1)

external declaration 15.1
external identifier (15.1)
external item 15.1

external list 15.1

for (6.2.1)

for clause 6.2.1

formal parameter part AR(2.1, 8.1)

6.2.1)

function designator 7.1.1 (4.2.1, 4.3.1, 4.4.1)

identifier AR(2.1, 7.1.1, 15.1)
identifier list AR(8.1)
identifier 1 7.1.1

if (4.2.1, 4.3.1, 4.4.1)

in (5.3.1)

initial operations 2.1

7.2.1)

- 143 -

inner (2.1)

inspect (7.2.1)

is (5.3.1)

label (8.1)

label 4.1.1 (6.3.1)

local object 4.3.1

main block 6.3.1

main part 2.1

mode part 8.1

name (8.1)

name part 8.1

new (4.3.1)

none (4.3.1)

notext (4.4.1)

object expression 4.3.1 (4.1, 6.2.1,
object for list 6.2.1

object for list element 6.2.1
object generator 4.3.1

object reference 3.1

object reference relation 5.4.1
object relation 5.3.1 (5)
otherwise (7.2.1)

otherwise clause 7.2.1

prefix 2.1

prefixed block 6.3.1

prior (14.2.3.1)

procedure (8.1)

procedure heading 8.1
procedure identifier AR(6.1.1, 8.1)
procedure identifier 1 7.1.1
procedure statement 7.1.1
qua 4.3.1

qualification 3.1

qualified object 4.3.1
reactivate (14.2.3.1)

7.2.1,

14.2.3.1)

- 144 -

ref (3.1)
reference assignment 6.1.1

reference comparator 5.4.1

reference expression 4.1 (6.1.1)

reference left part 6.1.1
reference relation 5.4.1 (5)
reference right part 6.1.1
reference type 3.1

relation 5

relational operator AR(5.1.1,
remote identifjier 7.1.1

scheduling clause 14.2.3.1

simple character expression 4.2.1 (5.1.1)

simple object expression 4.3.1 (4.3.1 (5.3.1, 5.4.1,

simple text expression 4.4.1 (5.4.1,

simple timing clause 14.2.3.1
simple variable 1 7.1.1
specification part AR(2.1, 8.1)
specifier 8.1

split body 2.1

statement 6 (2.1, 7.2.1)
string AR(4.4.1)

subscript list AR(7.1.1)
switch (8.1)

switch identifier AR(7.1.1)
text (3.1)

text expression 4.4.1 (4.1)
text reference relation 5.4.1
text value 4.4.1 (6.1.1)

text value relation 5.2.1 (5)
then (4.2.1, 4.3.1, 4.4.1)
this (4.3.1)

timing clause 14.2.3.1

type 3.1 (8.1, 15.1)

type declaration 3.1

type list AR(3.1)

6.1.1,

7.1.1)

7.1.1)

- 145 -

unlabelled block AR(6.3.1)
unlabelled compound AR(6.3.1)
unlabelled prefiged block 6.3.1
value assignment 6.1.1

value expression 4.1 (6.1.1)

value left part 6.1.1

value part AR(2.1, 8.1)

value right part 6.1.1

value type 3.1

variable 7.1.1 (4.2.1, 4.3.1, 4.4.1, 6.1.1, 6.2.1)
variable identifier 1 7.1.1

virtual (2.1)

virtual part 2.1

when 7.2.1

when clause 7.2.1

while (6.2.1)

