Preface

It was 1975, and Colin Broughton and | were a couple of college buddies and hot shot
programmers at the University of Saskatchewan (Canada).

Colin discovered this amazing thing called Algol68. His initial interest was in the
description: VW grammars were an intriguing invention. As he studied the Revised
Report on Algol68, though, he became fascinated by the language itself. How could it be
implemented? Could it be implemented at all?

A visit to Saskatoon by Barry Mailloux, the “first et al editor of the report” as he called
himself, caught my attention. While Colin became captivated by the challenges of
parsing and compiling Algol68, | was drawn to the complexities of executing the
resulting programs.

We were young, ambitious, and a bit foolish, and decided we would implement a
compiler and its run time system. Not just any compiler, a full language compiler. Flex
arrays. Parallelism. Garbage collection. Transput. And not only that, we would make it
a checkout compiler in the heritage of WATFIV, so it could be used for teaching.

Being young, ambitious, and (mostly) unattached, we pulled off the improbable. Two
years later we had a working version, and a year after that we commercialized it.
Ultimately, 15 sites around the world, most of them universities, leased FLACC.
Thousands of students learned their craft using Algol68 and FLACC. | still bump into a
few now, some 25 years later.

Part of this journey took us to the University of Alberta (Canada), where Barry was my
Master’s supervisor. Colin and | finished up the implementation, and | wrote my thesis
about how the run time system worked. It is that thesis that follows.

I have reproduced it exactly here. It was after the thesis was published that we changed
the name from FLASC to FLACC (student to checkout) for commercial purposes, and
also extended it in several ways, including producing object modules.

One note to the less-than-grizzled reader: in 1975, IBM was king and System/370
mainframes ruled. Unix and C had just escaped Bell Labs, and VAX was still on the
drawing boards. There were no PCs. All serious systems programming was done in 370
Assembler, and everyone knew that a pointer was three bytes. These notions seem quaint
now, but their pervasiveness at the time strongly influenced the FLACC design and
implementation.

I reproduce and republish this thesis in the hopes that it will provide some elucidation or
at least entertainment to students of Algol68 or of compilation techniques. General
permission is granted to copy in whole, or extract portions, provided it is without
modification and with attribution.

Chris Thomson
Pleasanton, California, May, 2011
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Abstract

A run—-time structure suitable for implementing a
checkout compiler for ALGOL 68 is described. First, a set
of design objectives are given; then the structures and
algorithms used at rumn time are described. Difficulties
with tracing are discussed. An outline is given of how
dumping might be dome. Fimnally, some pragmatic

considerations are presented.
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Chapter 1

Introduction

1.1 Design Goals

BRLGOL 68 is, in mamy vays, a suitable langquage for
teaching Computing Science. The.language has well-defined
syntax and semantics, and emrloys many of the concepts of
Computing Science. It is also a "growth" language, im that
a student <can continue to wuse it as he becomes more
sophisticated. This 1is not to say, however, that it is
complete: there is still a need for other langquages.
However, there is no doubt that a student-oriented compiler
system for ALGOL 68 is necessary to its acceptance as a tool

for instruction.

In this thesis, such a system 1is described. The
thesis concerns itself primarily with the design of the run-
time system, or object-machine interpreter. The primary
emphasis is cn error checking, traciang and dumping, and how
they are accomplished. The design described herein has been

implemented (as a separate project) on an IBM /370 as the



FLASC system (Full Language ALGOL 68 Student Compiler,

[4, 10]).

Many definitions have beer given for the term
*student compiler® {1s 3, 5, 6, 7], each differing
slightly. Oour design goals reflect what we mean by this

term:

1. Fast compilation
In a student “cafeteria" programming environment,
the emphasis 1is on compilation: programs are
compiled repeatedly until they appear to be
correct, then are thrown away. Fér this reason,
efficiency of execution is a strictly secondary

consideration.

2. Extensive run-time error checking
It is essential that checks be made for
uninitialized values, subscripts out of range,
scope violations, arithmetic overflows, and
similar errors. All of these checks must be made
at rum time, since it cannot be guaranteed that a

compile-time check will suffice in general,

3. Tracing and dumping
It is important that the user be able to trace the
flow of his program, as well as the values of key
variables. Symbolic dumps are also Of dgreat use

in discovering what has actually occurred in a



program rus.

Lucid error messages

Nothing is less informative than a "something went
wrcng somevhere” message. Care must be takem to
ensure that error messages both locate and
describe the error im a c¢lear, comprehensible

manper. It is often advisable to give typical

causes and solutions.

Indestructability

The system must be secure, in that the user must

be restricted to his work space.

Cost limitation

There must be provisions for imposing time and

output limits on student runs.

Memory residency

The use of overlays and utility datasets tends

both to increase cost and to degrade real-time

performance.

No object modules

The compiler/run-time system interface is much
simpler if object modules are not producegd. This
simplicity is reflected in lower cost of
compilation. Independent compilation is generally
unnecessary in a studeat facility, and is properly

the domain of production compilers. This does



notT, however, preciude this compiler fron
processing object modules from other compilers (of

course, this violates security).

Many cf the techniques described in this thesis are
very time- and space-consuming. Some can be done more
cheaply, but most camnnot be improved by more tham a factor
of about two, which would have 1little impact uéon the
running time of a typical ptogram. Program size 1is not

considered to be very important.

1.2 Aspects of the Language

At the outset of the project, the decision was made
to implement as ﬁearly as possible the full language ALGOL
68, as described in [11], hereafter referred to as "the
report®. There were several reasons for this: (a) it was
considered .desirable to have a full-language implementation

{as opposed to yet another subset); (b} the 1language

. described in the report has been carefully checked for

ambiguities, and these have been removed; {c) a final
authority exists for appeals about the meaning of obscure
constructs; and perhaps most importantly, (d) no effort had
to be expended in the design of the language to be
implemented; rather, design of the inmplementation could

begin immediately.

During the course of the implementation, some

problems were encountered in the language, almost all in the



area of tramsput. This is primarily because, unlike the
rest of the language, transput is not at all well described

(the method of desecription being a program), and is riddled

(0]

with errors. A few deviations were made to enhance th

]

human—engineering aspects of the system. One aspect of tk
handling of loops may be considered different from the

report®s definition. This is discussed later.

There are several aspects of the language which other
implementations have generally excluded, but which have been
implemented in FLASC: parallel processing, £flexible rows,
and unions. Parallel processing is usually omitted because
it precludes the use of a traditional Algol 60 stack.
Flexible rows are oftemn omitted because they also cannot be
done in a stack model. Unions are usually omitted becauge
they complicate the object code. Because the FLASC system
implements all of these, it requires some nonstandard data

structures to support then. These data structures are

outlined in Chapter Two.

0f course, the primary purpose of a checkout compiler
is to discover errors. Let us consider some of the types of
errors that can be made im an ALGOL 68 program. Most
obvious are syntax errors. These are not considered in this
thesis, which is concerned with run-time errors omly. Errors
can be made in the formation or use of modes: these can all
be detected at compile time. Tags can be used without being

declared. This can usually {but not always!}) be detected at



compile time. Attempts can be made to dereference names
which have never been assigned to, or which are nil. This
can be detected only at run time. Other errors which must be
checked for at run time iaclude: out-of-range subscricts,
arithmetic overflows, transput errors, scope violations,
memory overflows, nonterminating loops, runaway recursion,
deadlock of parallel procéesses, assertions that do not hold,
and arguments out of ramnge for standard operators and
procedures. Chapter Three describes these errors in more

detail, and outlines their hamndling in the FLASC systenm.

One cther impbrtant function of a checkout compiler
is to aid the user in tracing the flow of his program, and,
in the event of an error, dumping the values of variables.
There are many aspects of ALGOL 68 which make dﬁmping
difficult and tracing ineffective. Chapter Four deals with

these difficulties and some possible solutions to then.

Chapter Five discusses some of the pragmatic

considerations of the FLASC systen.
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Chapter 2

Run—~-Time Structure

2.1 ZType of Object Hachine

The first and most important decision to be made in
the design of an object machine is its basic mnature; 1i.e.,
whether it 1is to be a stack, accumulator, or general

register machine. This decision pervades the rest of the

design.

In the FLASC system, a form of stack machine was
chosen. There are several reasons for +this choice. The
most important is that compilation is greatly simplified,
code genetation being essentially a traversal of the parse
tree. A11 the problems associated with register and
temporary storage location allocation are thus avoided.
Somewhat 1less important is that the treatment of values at
run time is completely uniform; operands are always found in
a standard order at the top of the work stack, anrd all
results are left there. The stack machine has one important

drawback, however: execution is very slow {especially on 2

1



/370). This is considered to be much less important- than
the speed of compilatibn. One ramification of using a stack
model is that support of garbage collection is quite
costly. -This is because the garbage collector must be aware
of what is stored in the work stack during all phases of
computations, since a heap generator may be used during a
calculation; this mpeans that the only pointer to the
generated _object is 1ipn the work stack. This is the only
'situation wvhere the work stack contents need be considered.
There are several methods of coping with this need: using
self-identifying data structures, keeping a separate stack
containing the modes of all the objects oa the work stack,
or keeping a separate stack containing all pointers insigde
objects on the work stack. The last method was cﬁosen in
FLASC, primarily because it is fastest. VNote, however, that
this method may preclude a compressing garbage collector, if
{as in FLASC), only sigaificant, rather than all, pointers
are kept. Significant pointers are discussed later, aftef

memory allocatior has been described.

2.2 Type of Object Code

Use of a stack model specifies a great deal about the
object code, but two more major decisions must be made:
whether +to generate standalone or threaded code [2], and
whether or not to generate object modules. Im FLASC, both
decisions were made with simplicity of compilation in mindﬁ

threaded code, mno object modules. This implies that the



code is generated directly into memory, and is not relocated
after compilation. Thus the entire language processor (LP,
by which both the compiler and run-time system are intended)
is resident at all times. This consumes a g¢great dezl of
space, but has the advantage that, since the LP is reusable,
no part of it need be reloaded between runs. More
importantly, the generated <c¢ode <can <c¢all directly those
parts of the run—time system (RTS) which are needed. There

is no need to "link edit" the generated code with the RTS.

Threaded code is a series of subroutine calls,
interspersed with inline comstants. On the /370, the calls
are BAL instructions, which provide a means of accessing the
inline constants. For example, the call to add two integers
already on the work stack would appear as:

BAL RET,XINTADD
DC AL2{line,colunn)

The second word (two halfwords) is the source-listing
coordinate: this is provided for the error processor, in the
event of overflow. Note that when XINTADD is emntered, RET
points at the coordinate. To exit, XINTADD branches +to
offset four frcm RET. This is the address of the next BAL
in the code sequence. Use of this schéme implies two
important attributes of the RTS: at least part of it must be’
addressable from the generated code (i.e., there must be at
least one base register pointing at the RTS), and the RTS
will be essentially a large collection of subroutimes, most

of them quite small. Of course, not all of the RTS can be
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directly addressable; even if all fifteen available
registers were used, this would limit its size to 60K bytes,
and not leave any work registers! Instead, a comprcmise wWas
reached: three registers are set aside for base registers,
and a special routine was written which calls other routines
not mnormally addressable. Small, often-used routines such
as integer addition are in the addressable portion, and
large, seldom-used - routines such as formatted input are in

the portion not directly addressable.

One very importaant attribute of this threaded-code
scheme 1is that (for generated code at least), the common
/370 problems of addressability are completely avoided. This
vastly simplifies code emission. Egqually important is the
fact that only offsets of entry points in the RTS need be
known by the code emitter. This means that a much smallér
number of relocations need be made when the LP is loaded,

further reducing the cost of its use.

2.3 Memory Allocation

Memory allocation in FLASC is fairly simple. All
memory is allocated in blocks which start with a standard
“title". A1l blocks are allocated in the heap area. First--
fit allocation is used, employing a roving pointer [9, pp.
437, 597]. First-fit is used because little (if anything)
is known about the effectiveness (or lack thereof) of any

other algorithm in an ALGOL 68 environment. It was chosen

. —
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for its speed and simplicity. Standard titles are used to

simplify garbage ccllection.

Note that there is no Algol 60-type stack im this
scheme. On the contrary, because of the needs of parallel
processing, a cactus-stack arrangement is used. To make the
stack model work, local stack frames (LSFs) are used, each
of which contains the work stack area neceded by the code

-generated for +the range concerned. LSFs are described

later.

Each block has two portions: a title and a data

area. The title contains four parts: flags, including the

g LM L]
i P | =-> next block |
b i
i f => mode i
i 1 |
L3 “T k|
l | nest level I
L L £
F L
{ |
§ i
i data i
i }
i §
& ]
A Block

garbage collector marks amd free/allocated bit; a YnextH
pointer used to chain blocks and also determine their sizes;
a mode pointer which points at a tree used by the garbage
collector to determine the form of the data area; and a nest
level which is used in the scope check. Garbage collection

and scope checking are described in later sections.
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Local and heap cells differ primarily in the manner
by which they are freed. Local objects are collected into
stack frames, and freed explicitly when the range is exited,
whereas heap objects are allocated imndividually, and freed
when the garkage collector discovers they are no 1longer in
use. Under this scheme, it is normal to call the memory

allocator only once per range, to allocate its LSF.

2.4 Storage Structures

ALGOL 68, due to its complexity, requires many data
structures at run time. In an effort to minimize complexity
in the FLASC RTS, two goals were adopted: a minimum number
of structures should be used, and the use df them should be
uniform. Under this scheme, all refs, for-example, look the
same, regardless of what they refer to. This methodology
simplifies all the algorithms which process the structures,

especially the garbage collector.

Def Bits

It 1is essential that a student LP check for the use
of uninitialized variables. The FLASC system uses a special
bit, the def bit, to determine the defined/undefined status
0of each cell. Because more than one name may refer to any
one cell, def bits must be associated with wvalues, not
names, even though +they are checked only when names are

being dereferenced. Most, but not all, values have def
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- bits. Anything possessed by a tag has one. The only time

an object does not have a def bit is when it is a stracture
or row ({in which case the subobjects have them), or when it
is known to be defined. The latter most commonly occurs in
strings, which are assigned as units and thus normally nust

be well-defined. More on def bits later.

Def bits are checked whenever an object is moved onto
the work stack. Host <commonly this will be while
dereferencing a name or pushing an object possessed by a tag

onto the stack. Under : no circumstances is an undefined
value allowed om the work stack (skip is considered to be

defined).

Refs

As mentioned above, refs have a standard form.. They

counsist of a title pointer, which points to the title of the

¥ Ll R I

i | => title {
i A i

g t R ]

] YTM | -> value {
b 1 |
[ 1 i

§ DM § -> def bit §
i 1 §

A Name (ref)

storage block containing the value: a value pointer: and a
def bit pointer. If the value is a bool, them the VM field
is used as a mask to tell which bit within the byte is

used. Similarly, the DM field is a mask for the def bit.
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- The VM field could have been eliminated by storing bools one
to a byte, thus achieving complete uniformity ir addressing,
but it was decided (and later regretted) that rows of ©bools
should be packed, since these rows are typically huge,
making the 8:1 space improvement desirable. Under the

scheme used, bools are always treated as special cases.

Rows are represented by two data structures. One, of
constant size (determined by the number of dimensiohs), is
the descriptor, which is normally stored in the LSF. 1A flag
field indicates whether there is really a bunch (sometimes
there is no bunch}. A bunch is the dynamic part of a row;
bunches are described below. The descriptor also contains a
bunch title pointer, for use by the garbage collector, a
bunch value pointer, which points at the first element in
the bunch, and a def vector pointer {(which may be 2ero). Def

bits of row elements are collected into a wvector and stored

in the bunch.

The remainder of +the fields are used for slicing.
Each dimensicn has a three-word descriptor, consisting of
the upper and lower bound, and the stride. The stride is a
multiplication factor used in indexing, and is the product
of the “sizes" of the previous dimensions. It thus
indicates the spacing of the elements of a given dimension.

The item spacing is normally the size of each element in
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dim#1 stride

dim#2 upb

Ly 1 1
{ F | =-> bunch title |
%: 4 1
| | -> bunch valuesj
- + {
i | => def wvector |
— -+ 4
| def spacing I
[ |
| L]
{ item spacing |
— 4
| def offset |
o 4
i item offset |
— : |
i dim#1 upb |
— e 4
i dim#1 lwb |
" 4
k 1
i i
[ |
L K
! i
i d
- q
{ I
i {
{ !
[® g

A Row Descriptor

bits, but may increase during multiple selections. The def
bit spacing 1is normally one, but may also increase during

multiple selections. The item and def bit offsets are

normally zero, but usually increase during slicing.

As mentioned above, a bunch is the dynamic part of a
row. As such, its size can be determined only at rumn time.
Thus, bunches are mnot:- put in LSFs, but are allocated at
generation time in the heap area. Each bunch starts with a
standard title. An element-count field tells the garbage
collector how many items are im the bunch. The transient-

name-count field is used for error checking during flexing
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-
F | =-> next block
;
| -> mode
2
i nest
A

element count

trans name count

data vector

def vector

T T T TTT T TTST

bt e o wihn TS oo o G oo Ol e e S s 2 o

A Bunch

operations. The actual row elements are stored sequentially
in the data vector, and their def bits (if any) are stored
in the same order in the def vector. If the elements ate
stowed, or kmnown to bs defined, then there will be no def
vector. If the row is flat, there will still be one element
(even though the element count will be zero), which is used

durimg bounds checking.

Structures

Structures are very simple. They are concatenations
of their constituent fields, possibly in order of their
alignment requirements, followed by def bits for the fields,
in any order. If a field is in turn a structure, the field
is +treated as a separate structure; i.e., substructures are

not broken apart to increase storage utilization. This



method 1leads

they are parts of other structures.

Miscellaneous Objects

A complex number is a structure of two

to uniform treatment of structures,

17

even when

fields, the

Following these are the two

structure,

real and the imaginary parts.
def bits. Thus a complex is just like any other-
although the RTS treats it in the same wanner as amn int or

real im most cases.

A union consists of two fields.

the mode of the current value,

value.

of the possible values.

A procedure value has two fields.

code

of the routine.

i format is stored as a tree,

as outlined in the report. A format

The first poimnts at the format tree

the nest level.

A semaphore is a structure of

as suggested in the report. The

heap to avoid scope restrictions.

A chamnnel is simply an int at

The first points at

and the second contains the

The second field is large enough to hold the longest

The first is a

pointer and the second contains the nest level (scope)

in much the same manner
value has two fields.

and the second contains

one field, a ref int,

int is allocated on the

run time, although the
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user 1is not able to make use of this fact. 2 file is a

structure with a single field, a pointer to an internal

block. The def bit for the field indicates the open/close
status of the file. The internal file block 3is wmuch the

same as that described im the report.

Tasks and Ranges

As previously mentioned, each range 3in the user
program has a local stack frame (LSF) associated with it
(provided it «contains declarations other than 1bop control
variables). LSFs coansist of four main parts. The overhead
portion is a standard title followed by a flags field, a
pointer back to the task display (TD, described below), a
pointer to the last (chronologically) LSF, a pointer to the
last (recursively) LSF, and save areas for the work agd
title stack pointer registers. The user data area is next.
It consists of all the local storage declared by the user,
together with any def bits required (this area is just a

structure). At the end are the work and title stacks.

ILSFs are chained chronologically (via the 1last LSF
field) for the benefit o¢f range exit, return, and goto,
which always process LSFs in reverse chronoclogical order.
These routines often make use of the mode field in the title
te distinguish LSFs. A separate <chain (the pushed LSF
field) is used for recursion. All LSPFs on the push chain

are of the same type (i.e., belong to the same routinej.
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-> next block

o]
wd

-> mode

nest

=
[N

-> task disp

-> last LSF

-> pushed LSF

current WSP

current TSP

-__.J-—_‘-.._.1-—.{...—.,-—._4._..,-_,-(

user data

work stack

title stack

o PR A e o W miif a1
-:—.—on—d&._.—..—-.lb_.u-—dl-—ndbmxﬂn-—dbavmhs—-h—.dl-....dln.._d

A Local Stack Frame
This chain is used to keep the task display accurate.

The work—-stack area is used for the storage of all
temporary and intermediate results. Its size is bounded and
is determined at compile time by simple-minded "simulation"
of the code generated. The amount of work space needed is
bounded because elaboration of any construct which requires
an unbounded amount of work space (e.g., recursionj) causes a
block entry, and therefore allocates a new work-stack area,
the size of which can be calculated later (but whidh will

also be bounded). The +title stack dis provided for the
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benefit of +the garbage collector. Each time an object
containing a title pointer is pushed onto the work stack,
this title ©pointer is alsoc pushed onto the title stack.

Thus title pointers are considered to be "significant"®
pointers (in the sense of Section 2.1), while value and def
pointers are not. These stacks grow from the bottom of the
diagram; that is, toward 1loWw mnemorye. This facilitates
access to values inside the stacks, since the /370 does not

handle negative displacements very well.

Due to the block-structured nature of the language,
values stored in outer ranges must be accessible. This
requires scme sort of task display (TD). Parallel
processing reguires nmultiple TDs. Im FLASC, each task or
process has a TD, which points to all the LSFs which are
active in that task. All TDs have the same shape: creati;n
of a new task merely involves replicating the old TD, then
chaining afprropriately. This emnsures that all sibling
processes  start out with identical access to values. The
initial TD is the ‘'"root" of all blocks im memory; the

garbage collector starts here in determining what blocks are

active.

A TD consists of two main parts: am overhead region
and an LSF vector. The overhesad region consists of a
standard title; a flags field; pointers to the parent, next
sibling, and eldest child TDs; a counter of the number of

children alive; a pointeér to any semaphore upon which the
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A Task Display

task may be waiting; the coordinates of the point of
suspension (if amny); and a register save area. The LSF
vector has one entry for each type of LSF in the program.
Fach range which has an LSF has its own slot in the TD. The
offset of any pérticular LSF is computed at compile time,
and is used as am inline constant for primitives which

access global values.

Mode Templiates

Whenever it 1is necessary to know the mode of sonme

object (such as a block headed by a title), a pointer to a
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mode template is used. Mode templates are trees, each node
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A Mode Template Node

of which is a word in the <cannonical mode spelling.
Structures and LSFs have nodes with field descriptors,
causing multi-way branches in the trees. Other mode words,

such as ref, result in unary nodes.

The T and IOT fields indicate the type of node; the F
field is for flags. The mode-number and routine- and field-
name fields are used for dumping. The TD-0offset, and work-

énd title—-stack (WS and TS) base-offset fields are wused by
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block entrye. In the implementation, several of the fields
are overlapped to save space, since a typical prograsm will

have many templates.

Mode templates are used by most utilities dealing
with arbitrary objects. These include the garbage
collector, dereference routine, most error checks, including
defined, scope and bounds checks, generators, copy routimes,
transéut, etc. In general, when a mode is not simple (e.g.,

real, ref int}), a mode template pointer is given to describe

it

2.5 Algorithnms

Most of the algorithms which massage the data
structures outlined above are gquite simple in nature,
although some are not obvious. The algorithms described
here can be broken into two broad classes: data-manipulation
algotithms, and control-structure algorithms. The former

are described first.

e o e et 2 e

Most denotations are handled by the compiler and
require no run-time action other than copying them to the
work stack. String denotations are somewhat different. The
compiler passes a pointer and a length to the RTS and a
descriptor is built on the stack. ©Note, however, that no

bunch is allocated and the string is not copied. This is
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one of the tyo cases when a row does not have a bunch.

Row and structure denotations (i.e., displeys) are
done by first elaborating the fields, then either errowing
or enstructing (described laterj. Note that in the case of
structures, space 1is allocated in the work stack before
elaborating the fields, to give "enstruct" a place to build

the structure from the fields.

Dereferencing

Dereferencing is normally quite simple. For simple
modes such as ref int, it consists of using the ref on the
top of the work stack to address the value and def bit,
check the def bit, then copy the value to the work stack,
after popping off the ref. More complicateed modes require
more effort. Often a mode template will have to be
traversed looking for amnd checking the def bits. Copying
the value to the work stack may not be sufficient; if the
object points at any bunchés or files, they, and any bunches

they refer to, etc., must be replicated.

In an effort to speed up the RTS, special routines
were written to handle the common modes such as int.
Strings, in particular, are singled out for special
treatment. Normally, dereferencing a string vwould imvolve
copying the bunch, which would involve a memory allocation.
If, however, the dereferenced value is destined to be used

by a standard routine or operator, then no copy is made.
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Because more than one dereference can be made at a
single coordinate, the user is told the mode of the ref if

there is an error {(i.e., if the ref is nil or the value is

undefined).

Assignment and Ascription

There are three kinds of assignment and two kinds of
ascription. Assignment can be done to a row, a flex row, or

a nonrow. Ascription can be done during a declaration or a

call.

Assignment t0o a nonrow is simple, since a contiquoas
object 1is copied from the work stack to the area specified
by the receiving ref. After the copy, the stack 1is poppqd
and the def bit (if any) is turned on. VNote that a scope
check or bounds check will often have to be made, especially
if a structure or a ref is involved. Also, if the value
contains rows, then any bunches must be replicated. For

reasons of efficiency, separate routines were written for

each of the simple modes.

Assignment of a flex row 1is also simple. Here a
check of the transient-name count must be made, im addition
to the scope and bounds checks, but the operation is
essentially a copy of the descriptor. Provision is made for
row of plain, to avoid the scope and bounds checks and

replications. This 4is primarily for strings (flex row of
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char). Note that the row values never have def bits since

they are on the work stack, and thus must be definead.

Assignment of a row is complicated. If the receiving
row is a contiguous slice (i.e., the whole row, or some paczt
in which all elements are adjacent in memory), then the
assignment can proceed via a simple copy, after scope and
bounds checks. If, however, the receiving row is a
noncontiguous slide, then each receiving element must be
indexed individually, them a copy made from the bunch being
assigned. Note that in any event, the elements of the row
being assigned are 1in order in memory, and can be copied

simply, after any subbunches have been replicated.

Ascription is always a copy operation, the source
being on either the current or the previous work stack
{depending on whether in a declaratiomn or call), and the
destination in the <current LSF. Both the work and title
stacks are popped after the copy is made. Usually, the def
bit associated with the receiving location is not turned on
in the case of a declaration {see Chapter Three), but it is

always turned on in the case of a call,

Slicing

There are several kinds of slicing: indexing, which
causes the number of dimensions to decrease; subscripting,
which yields a scalar; and trimming, which does not change

the number of dimemsions. Of course, all these can be done
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on both ref rows and rows.

One of the first decisions made regarding slicing was
that rows would not be operated on directly. Rather, they
are "enreferenced", then sliced, then dereferenced. This
reduces the amount of copying done, and simplifies the

algorithms greatly.

Subscripting is probably the most common of slices,
so an attempt was made to make it fast. 1In contrast to
indexes and trims, which in the interest of simplicity are
done one dimensiom at a time, subscripting is done all at
once. That is, all the subscripts are pushed conto the work
stack, and the addressing calculation is done in a tight
loop. This may not seem significant until it is realized
that indexing and trimming yield new descriptors, which must

be allocated specially.

The subscript calculation proceeds according to the
formula

acc +:2= (index(i)-lwb(i)) xstride (1)
The result of this calculation is the offset (in items) of
the element within the bunch. The calculation of the actual
addresses of the element and its def bit are dcone by
nultiplying this wvalue by tﬁe appropriate spacing, and
adding the offset, then converting from bits to bytes, and

adding the value or def pointer.

indexing is quite straightforward. The arguments are
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the ref row, the index, and the bound nunmber. A new
descriptor is built 1in the heap area, having one less

dimension than the o0¢ld one. Next, all the dJdimension

(4]

descriptors are copied, except the one being deleted. Thes

remain unchanged because the spacing of the remaining

elements in the bunch remains unchanged. The value and def

offsets, however, are changed according to the formula
offset +:= ({index~-lwb)=xstride % spacing

This is to account for the shift in the addressing caused by

selecting an element other +than the first (i.e., that

selected by the lower bound) as the index for the

operation.

There are four kinds of trims: renuaber, triml {lower
bound omnly}, trima (upper bound only), and trimdb {(both
bounds) . The algorithms for the 1last three are very
similar. Renumbering (establishing a new lower bound)
involves copying the descriptor and adjusting the upper and
lower bounds. Offsets and strides remain unchanged, because
the bunch is not affected. Trimu is also simple. It copies
the descriptor, then adjusts the specified upper bound.
Strides and offsets are not changed. Triml amd trimb,
because they <change a lower bound, are more complicated.
After copying the descriptor and changing the bound(s), new
offsets are calculated according to the formula

offset +:= (newlwb-oldlwb)xstride % spacing
This is to account for the shift in the addressing caused by

selecting an element other tham the first as the lower bound
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of the operation. The strides are not changed. Note that
trimu, triml, and trimb are all required to imvolve implicit
renumbering {the new lwb is 1). This is dore 1last, by

simply adjusting the bounds. No other change is involved.

In an effort to speed things up, trims allocate new
descriptors only when instructed to do so by the compiler.
If a series of trims is being domne, then only one descriptor

need be allocated, and then reused in subsequent

operations.

Of course, in all slicing operations, the indices are

checked against the bounds to ensure correct specification.

Multiple Selection

Multiple selection is really more like slicing than
selection, since both the argument and result are ref rows
{fagain <row values are enreferencedje. Normally, a new

descriptor is allocated by a multiple selection.

Only the item offset, and the def offset and spacing
are affected during the selection. The item offset is
increased by the offset of the field within the structure.
The item spacing remains unchanged, because the 1items are
still embedded within the structures (i.e., no copy is
made). If there is no def bit asscociated with the field
{i.e., it 1s stowed), then nothing else is done. 1If the

field has a def bit, then the def offset (which nmust
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previously have been zero, since the row clements were
stowed and thus had no def bits) is set to the sum o0f the
old item offset and the def bit offset within the
structure. The def spacing 1is set equal to the item spacing

(which is egunal to the length of the structure).

Selection

—— S e e e

There are two kinds of selections: ref selections and
value selections. Here again, enreferencing could have been
used, but it was decided (arbitrarily) to implement two

different routines.

Ref selections are very straightforward; after
checking for nil, the offset of the field is added +to the
value pointer 1in the ref, and the def offset of the field

(if any) is added to the def pointer.

Value selections are a bit more complicated. Since
the structure is on the work stack, the field must be copied
out of the structure, then the work and title stacks popped,
then the £field pushed onto the work stack, and the title
stack pushed (for the field titles). It was decided that a

memory allocation was undesirable, so the field is copied

onto a lower part of the work stack (i.e., the WS |is

pushed), then c¢opied back after suitable adjustments are

made to the WS pointer., This is one of sewveral routines

which use "extra" work-stack space.
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Rowing and Enrowing

There are four kinds of rowing, and two kinds of
enrowing {used in row displays). A value can be rowed to
form a row of mode; a ref to mode can be rowed to form a ref
to rtow of mode; a rovws of mode can be rowed to form a row
rows of mode; or a ref to rows of mode camn be rowed to forn
a ref to row rows of mode. & collection of mode cam be
enrowed to row of mode; or a collection of Tows of mode can

be enrowed to row rouws of mode.

In all types of rowing, there is one object on the
top of the wcrk stack at entry, and a row or ref to row
there on exit. A nevw descriptor is always built, In the
first case {(mode to row of mode), a bunch is also built. In
the second case, no bunch is built, since the rules for refs
in the language require that no copy be done. This 1is one
of the two cases when a row descriptor has the "no bunch®
flag turned on. In the third case, the descriptor on the
work stack is simply stretched by one dimemsion. The sanme
is true 1in the fourth case, except that, since the

descriptor is not on the stack, a new one must be allocated,

and a copy made.

In both types of enrowing, there 3is a group of
objects on the stack at entry, and a row descriptor there on

exit. In both cases, new bunches are allocated, and copies
made of all subelements. In the first case, the objects on

the stack are copied sequentially into the bunch. In the
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second case, each of the o0ld bunches (i.e., each element

within them) is copied into the new bunch.

s

In rowing, none of the strides, offsets or spacings
is changed. The new stride is the . largest of the cld
strides. In enrowing, the def spacing is set to one, ths
def offset to zero, the item spacing to the size of the
objects, and the item offset to zero. The stride of the new
dimension is the largest of the c¢ld strides times the number
of objects copied from the stack. Any bunches created by
rovwing or enrowing are without def vectors, since all the

elements within the bunches must be defined (they came off

the work stack).

Declaration, Generation, and Skip

Declarations, generators and skips are either trivial
or nearly impossible, depending om the mode involved. Plain

modes are trivial. Stowed and united modes are difficult.

Declaring a variable of plain or complex mode
consists only of building the ref (if any). Ne action is
taken to generate a plain mode, since space is allocated in
the LSF at «compile time, and this is 1left as <zeros.
Generating plain skips consists simply of pushing some zZeros
cnto the work stack, and, in the case of complex, turning on

the def bits.

Generating a complicated value involves more work. If
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the mode contains rows, then the bunches must be allocated.
In order to do this, all structures must be traversed,
looking for rows as fields, and all rows recursed, 1lcoking

for subrows. For this purpose, as well as the handling of

n

heap allocation, a generate routine is needed. I€ it i

N

givern a location for the value to be generated, then thi
space is used; otherwise, space is allocated in the heap for
it. Only the top level of any mode (except rows} 1is so
allocated; space for the entire value is obtained in one
piece. Scope can be either local or primal, depeanding on
another ©parameter givenm by the compiler. Aside from the
initialization of row descriptors after allocating Dbunches,
all areas are left as zeros. This includes all def bit

locations, so values are initially undefined.

The declaration of a c¢oaplicated value involves
elaborating the bounds (if any), possibly replicating thenm
for repeated fields or modes, then calliing the gemerator,
ascribing the ref which ié returned, then popping the bounds
(which are not popped by the generator, to allow for joined
declarations), and turniang on the def bits for +the tags
declared. The reascn for turning on the def bits last is

given in Chapter Three.

Elaborating the bounds of certain modes may Tregquire a
call. In particular, modes vwhose actual bounds contain
generators which involve the current mode recursively will

cause the code generator to recurse indefinitely 1if the
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actual bounds are not made into a routine and called. Note,
however, that this does not solve all problems: the routine
must have the same scope as the declaration, or bogus scope
errors may arise. This implies a special kind of btlock

entry which dces not change the scope level.

Skips of complicated modes are done as generators,
for simplicity. Since generators return refs, a
dereferencing must occur. However, since skip is required
to be defined, all the def bits within the ﬁalue must be
turned on. This requires a special routine. Note that it
is also necesséry to f£ill 1in some value for unioms. To
enable this, the compiler suggests some mood (via the mode

field of the template) for the "make defined" routime to

use. If this mode is a row, then a bunch nust be

alleocated.

Control-sSstructure Algorithms

Control-structure algorithms are those which
implement syntactic structures which imply transfer of
control, or which manage stack frames (i.e., block entry,

block exit).

Block Entry and FExit

Block entry allocates space for a new stack frame,
and the nest level is set to that of the old LSF, plus one.

This increment does not occur if this is a block created by
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the compiler around amn actual bound. The 01d LSF is chained
to the new one, then the pointer in the task display is
updated, after being saved in the new LSF (this is the push
chain). Finally, the new work- and title-stack pointers are

set up, after saving the o0ld ones in the old LSF.

If there is a wvalue to be yielded by the block, then
the value is copied to the cld work stack before the Dblock
is exited. There is a special routine to do this. ©Note
that a scope check may be required here. If there is no

value, then this routine is simply not called.

Calls and Returns

Calls are done 1in several stages. First, a return
address and coordinate are put on the work stack; then the
arguments are elaborated; then the «call primary is
elaborated. At this time the actual call takes place.
Control is transfered to the address given by the call
primary {proc value}. At the start of +the proc, a block
entry is made; then the parameters are ascribed from the old
work stack. At this point the call is complete. Note that
the arguments have been popped off the o0ld stack, and all

that remains there is the return address and coordinate.

Before returning, if a value is to be yielded, it is
copied onto the ©ld work stack, and popped off the current
one. A scope check must be made here. The value copied

goes above the return address on the old stack. Because of
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this, a different routine is used from that which copies

values at block exit.

When the value (if amny) has been copied, a block =xit
is done. Now the actual return takes place. Controli is
transferred to the return address, and the address and
coordinate are popped off the work stack. The returned

value, if any, is at the top of the stack.

The coordinate of the call is pushed for the benefit
of the traceback routine. In the event of an error, a trace
of work stacks is used to find the <coordinates of any
calls. In order to distinguish calls from ordimary block
entries, a flag is turned on in the LSF during a call, and

turned off during the return.

Loops

There are two major kinds of loop: those with and
those without control ints. Loops without control ints
{loops with_ no for, from, by or to part) comnsist of the
elaboration of the while part (if any), followed by a
conditional jump to the exit ({omitted if no while part), the

loop body, then an unconditional branch back to the top of

the loop.

Loops with control ints are of two types: those with
to parts, and those without them. In either case, the from

and by parts are elaborated (they may be implicit and
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supplied by the compiler), and initialization of the control
int takes place. VYext, the to part (if any) is elaborated,
and the test of the comtrol int is made, provided there is a
to part. WNow the while part is done, followed by the 1loop
body. At the.end of the loop, the increment is performed.
If there is a to part, themn overflow is not an error, and if
one occurs wvwhile incrementing the control int, the values of
the control, by, and to ints are juggled tb cause the test
to fail. This will happen 1if "TO maxint® is given. If
there is no tc part, then overflow causes an error. In any
event, the control int is updated, and a branch is made to

the test at the top of the loop.

Choice Clauses

Boolean choices (if clauses) are very
straightforward. The boolean expression is elaborated, and
a conditional branch is made around the then part. There is
an unconditional branch at the end of the then part, if

there is an else part. The else part, if any, follows.

Integral choices (case clauses) are also gquite
simple. The integral expression is elaborated, and checked
for being im range. If it is in range, then a pointer is
selected from the branch table, and the appropriate clause
is invoked. If the int is out of range, the out branch is
taken. If the clause has no out part, the compiler supplies

one. Following the branch table are the cases, each {except
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the 1last) followed by an unconditional brarck around the

remaining cases.

United choices (case conformity clauses) ars nore
complicated. First, the <current mnood of the chooser is
fonnd, then a search is made of the branch table to see
which part (in or out) should be chosen. If no match is
found, then the stack is popped, and the out part is taken.
If a match is found, then the stack is compressed (the value
required may be smaller tham the union which contained it),
and the selected in part is taken. If the mode required by
the in part is a union, then the value must be reunited (the
0ld union cannot be used, since it may be of a different
size). As in the integral choice, each part (in or ocut) is
followed by an unconditional jump to the end of the clausg.
I1f there is no out part, the compiler prcvides one, unless

all the moods in the union have been mentioned in the in

parts.
Parallelism

Parallel processes are handled as coroutines. Only
one process is ever running at any time; all others are then
waiting for service. Each' process (task) has a task
display, and these displays are chained together to form a
tree. Scheduling is very simple: the task tree is traversed
looking for some process which 1s ready to run {i.e., which

has no 1live children, and is not waiting on a semaphore).
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The first process found is started. If no process is found,
the progran has deadlocked. No effort is made at either
deadlock ﬁrevention or aggrevation. A process gives up the
CPU only when it "down"s a semaphore and is thus required to
wait, or when it creates childrem via a parallel clause.
More elaborate schemes could be used for.scheduling, perhaps
even timeslicing, but the cost would be very high, and
everyone would have to pay, not just those using

paralleliism.

When a new task is created, the o0ld task display is
replicated, and chained. All stack frame pointers remain
unaltered, since the new process is allowed to access all
values global to the creating one. Note that since several
processes are always created together (a parallel clauge
must have more than one unit), each process will initially
have a sibling. The old process is made inactive by making
the number of active children nonzero, and storing the
registers and coordinates. The nevw processes have their
registers initialized to the same values as in the . 0ld
process. This implies that in the new processes, all the
LSF pointers will point at the same LSF, No harm arises
from this, however, because every new process allocates a
nev LSF immediately, so the same work- and title-stack

pointers are stored repeatedly in the old LSF.

When a process terminates, it simply unchains its

task display from the others in the task +tree, decrements
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its parent's child count, and calls the scheduler. Processes

terminate omly at the ends of parallel clauses or duriag

gotos.

Gotos

At first sight, gotos may seem ghastly and impossible
to implement, since they can jump out of an indefinite
nupber of ©blocks, and an indefinite depth of recursion, as
well as terminating an indefinite number of processes and
transput operations. However, with the structures outlined
here, the goto is very simple to implement. The compilet
gives the branch address, and the mcde of the LSF belonging
to the range containing the label. The goto routine then
loops, searching the LSF chain for a stack frame of the
correct mode. ©Each LSF of the incorrect mode is exited.
When the correct LSF is found, the pointer from it to its
task display is followed, and the children fields of this
task display are zeroced. Thus all stack frames are properly
exited, and all processes terminated. The task displays and
LSFs associated with the terminated processes are later
garbage collected. Any transput 6perations in progress
during the Jjump are implicitly shut down, since event
routines are called using the same conventions as any other
call, and all +transput routines expect the case where no

return is made.

This Simple implementation of goto can be seen as a
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clear case of good triumphing over evil.

A special case of a goto occurs with the label

<]

"stop". Stop is not handled as a label, but rather as
special routine, since if the user were to invoke it in th=
niddle of his program, it would be highly undesirable %o
throw away all the informétion which might appear in a dump

by exiting all the blocks din the program. Termination

occurs immediately, and in the block containing the applied

occurrence of stop.

2.6 The Garlkage Collector

The garbage collector is a standard noncompressing
mark-and-free garbage collector. The first stage marks all
blocks (titles) which can be reached from the program, and
the second stage passes sequentially through memory, turning
off the marks and consolidating those areas not marked into
the free 1list. The garbage collector is invoked only when
an attempt to allocate a block of memory fails. If
insufficient space .is collected to satisfy the request
causing the collect, the program is terminated. Note that

runaway recursion will cause this type of termination.

The marking algorithm is a limited-stack, hard/soft-
mark scheme, carefully designed to accept storage structures
of arbitrary size amnd conmplexity. Initially, standard
recursion is used (employing a pre-allocated, fixed—size

stack) , and each block encountered is hard marked. ¥Whenever
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a hard-marked block 1is encountered, a return is made
immediately. If the stack overflows, then a pointer to the
block is added to a secondary (and much smaller, pre-
allocated) stack, so that marking cam be resumed there
later. A return is made from the overflow as if marking had
continued normally beyond that point. Onder this schene,
one phase of marking will mark the tree (or graph) up to a
certain depth from the start node, and pointers will be kept
to unmarked nodes at that depth. Thus, when the primary
stack is about to wunderflow (signifying that marking is
complete), a pointer 1is removed from the secoandary stack,
and markiﬁg is resumed. If that stack is empty, marking is

finished, provided there are nc soft marks.

Soft marks occur when the secondary stack overflows:
The block causing the overflow is soft marked, and a count
is updated. Then, marking is continued as though all were
well, but when the marking would normally be complete (both
stacks empty), the count is checked. If nonzero, then a
scan of memory is made to locate a soft-marked block, and
marking resumes at this block. If by some stroke of
providence a soft mark is encountered during normal marking,
it is made hard, and the count is decremented. Marking 4is
complete when the stacks are both empty, and the soft-mark

count is zero.

The occurrence of a soft mark is clearly a disaster.

This 3is +the reason for having the second stack. It is
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believed that while chaining of blocks in an ALGOL 68
program may often be deep, it will rarely be both wide and
deep. That is, there will rarely be more than a few
{perhaps five) deep chains in a program. For this reason, =
small secondary stack (say, thirty-two entries) should be
sufficient to ensure that only the user testing the garbage

collector will ever cause it to generate a soft mark.

Marking begins with the initial task display. Under
normal circumstances, all blocks can be reached from there.
However, under some circumstances the general copy routine
causes a disconnection in the program +tree, so a special
mark pass may be required if the copy routine was active
when the garbage collect was initiated. Similarly, the user
may have associated texts with files which have no other

pointers to them, so marking must be done on all file

textse.

Whenrn marking is complete, a pass is made along the
block <chain and all marks turned off. If a block is found
which is not marked, or which has not beemn flagged as a
system block {e-g., file, book, profile blockj), themn it is
marked as being free, and merged with any free neighbours.
Note is made of the largest free block so found, to see

whether allocation will be successful.

Implicit in the above algorithm is that blocks are
being collected, =not words or bytes. This is because the

principal entity handled by the garbage collector is a
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title. Thus if a row is allocated, and only one element can
still be reached, tﬁe entire bunch (and anything peoianted at
by refs in it) will be saved. This is considered +too rare
an event tc be concerned about. More important is the fact
that only title.information is kept about the <contents of
the work stack. That is, when am object is put on the work
stack (so that the collector need know about it --- it wmay
be the only gointer to some other object), only its embedded
title pointers are noted for the garbage collector (by
putting them on the title stack, which is used during
marking to handle temporaries). This precludes having a

compressing garbage collector, since not all pointers are

being considered.

There were several reasons for mnot having a
compressing garbage collector. First, and probably
foremost, compressing garbage «collectors are very complex
and nearly impossible to debug {(and they always have bugs
--— the SPITBOL garbage collector still had bugs three years
after distribution, in spite of several attempts by the
authors to clean it upj. Second, they are slower, and the
gain in memory wutilization does not appear to be great
(first fit is almost always over ninety-five percent
effective 1in its wuse of memory [9, pp. 447-450]). Third,
they require complete knowledge of any temporaries, which,
in this case, would either mean pushing all pointers of any
type, or pushing the modes of objects on the work stack.

This, however, would mean that both stacks would be pushed
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for modes like int, which is much tco costly.

The only apparent advantage in having a compressing

garbage <collector is that memory allcecation is very si

typically a subtraction from a pointer. However, sincs

there is little reason to believe that memory allocation is

a bottleneck, the extra cost of allocating by Dblock is

deemed to be acceptable.



Chapter 3

Error Checking

3.1 Types of Errors

There are some sixty types of error which can occur
at run time in ALGOL 68. This chapter describes some of
these, aand the methods of detection wused im FLASC.
Unfortunately, there are whole classes of errors which are

not detected by FLASC. These are discussed later.

The most common run-time errors include: arithmetic
overflows, undefined values, division by zero, undeclared
tags (this really is a run-time error; more on this laterj.
attempts to slice, dereference, assign to or select <from
nil,> memory overflows, scope wiolations, deadlocks of
parallel processes, subscripts out of ramrge, bounds which do
not match ({during assignment),  indefinite loops or
recursion, assertions which do not hold, page or line linmits

exceeded, invalid <characters in input, several dozen other

transput errors, and argurents of standard functions out of

range.

46
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To gain an appreciation for Jjust how many error

[Tt

checks need be made im & typical program, consider the

following clause:
a := b + c;

*a', *b?*, and 'c! are all ref ints. How many checks must be

performed here?

Clearly, an overflow <check mnmust be made for the
addition. 2lso, it is apparent that undefined value checks
must be made on °'bf and *c'. It is less obvious that %a’,
*be¢, or 'c' might be nil. (They may have been ref int
parameters, and nil could have been passed in.) Least
evident is the fact that *at', 'b', or 'c' may never have
been declared, since declaratiomns may have been skipped ({se¢e
next example). Thas this innocuous-looking clause requires
nine checks, even though most production compilers would

preduce only three machine instructions!

Because declarations are elaborated at run time, and
because units used for initialization may contain gotos, it

is possible to jump over some declarations:

BoCL £f;
read (f) ;
BEGIN
INT i ¢= IF £ THEN 1 ELSE GOTO a FI;
INT § = 2;
a: print (i+7)
END

'j¢ is declared if and omly if 'f' is 'true'. This can be
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determined only at run time. Thus, in a naive compiler, the
occurrence of a tag must involve a rum-time check .to
determine whether it is declared, even though it appears in
a declaration! This kind of problem need not inveoclve a

goto: ordering of declarations 3is also important; for

example, in

REAL a := p(2);
PRCC (REAL)} REAL p = sin:

°p? is unknown when 'a' is to be initialized. Note that the
identification rules of ALGOL 68 require that the inner !'p°®

be identified, rather than some outer one.
In a similar vein, consider:
INT a:=3, bs:=a+1, c:=bx2:

Here, 9%a® and 'b® are being used before they are guaranteed
to be defined, because of the rules of collateral

elaboration.

Now, also with respect to collateral elaboration,

consider the fcllowing example:

STRING s := fahg";

s{3] = (s = "ab"}[3];
If the right-hand side of the second assignment is
elaborated before the left-hand side, then a subscript error
occurs. If the 1left-hand side 1is elaborated before the

right-hand side, then an attempt will be made to flex 's!
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while there 1is a transient name outstanding (on the work

stack) .

Perhaps the ugliest of all checks is the scope check,
which ensures that no ref can be made to refer to a value
which will 'gc away" before the ref dqoes (i.e., no refs can
be 1left pointing off into outer spacej. Perhaps the
simplest example which demonstrates that this check must be
done at run time is the following:

PROC copy = (REF INT i) REF INT : i;
REF INT i;
BEGIN

INT k3
J = copy(k)

END
Here, *copy® could have been made arbitrarily complex,
without <changing its function, so that no compiler could
detect the scope violation in the fifth line. This means
that the check must be done at rum time. The check is often
far from simple, though, as the fecllowing shows:
[3] REF INT ii :=
BEGIN
{3] REF INT jj := (NIL, NIL, NIL);
INT k;
BOOL f; read(f);
IF £ THEN jj[2] := k FI;
j3
END;
Here, a row of ref int 1is being yielded by the 'begin®
clause. The scope of this row will depend on the refs

within it. In particular, it is initially of primal scope

(and hemnce can be assigned to anything), because all its
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constituent parts are nil (amnd thus primal). ¥Now, depending
on the run—-time value of 'f', the scope is made local, by
assigning 'k, Thus, depending on °*f', there may be a scope
error. But the only way to detect this is to break open the
row, and check each element for invalid scope. This sane

sort of thing has to be dome with structures,
An overflow error carn arise in loops:

FOR i FROY maxint-2 DO
print (i)
(03))
Here, 'i' will clearly overflow on the fourth iteration. The
only reason this is remarkable is that the Teport could be
interpreted to state that the loop should continue past the
fourth iteration, but gives no clue what to primt. It is
also important to coansider the inverse situation:
FOR i FROM maxint-2 TO maxint DO
print (i)
0D
Here, no overflow should occur, and the 1loop should
terminate without incident after three iterations. However,
if the algorithm given in the report is followed, an
overflow will cccur during the increment at the end of the

third iteratione. This was the special case mentioned in

Chapter Two.

Sadly, there is a very large class of very common

errors which are not detected by FLASC, and, indeed, cannot
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be detected Lty any LP. These invelve constructs which are
undefined due to the rules of collaterality. These rules
state that the order of elaboration of the ¢two sides of
assignations and operations, the arguments of calls and
slices, and a host of other things is left undefined. Thus,
any program which could yield different results with
different "legal! orders of elaboration is undefined. Here
are some examples of this phenomemon:

INT i 2= 1;

PROC inc = (REF INT a) INT : a +:= 1;

i + inc(i); #boonm#

(i = 2) & 1i; #boom#
STRING s := "abhc";

s{1] + (s == fab"); #bhoom#
s{inc(i} ] == s[i]; #boom#
{6,6] INT j;
j{inc{ij,inc (i) ] == 1; thoom#
The first two examples are probably the simplest. Herée,

depending on which side 1is dome first, different results
will occur. The third involves a more subtle problen. One
of the valid orders is to perform an index, then go do the
other side, then come back and dereference. This results in
an attempt to flex while there 1is a transient name
outstanding. The fourth will duplicate one of the
characters within the string, but which one? The f£ifth

could select different elements of the array.

3.2 Some Error-Checking Technigues

Many of the error checks are very straightforward.

For example, subscript checking is done during slicing,
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since the descriptors have +the necessary information

available.

Checks for nil are very simple: when a mname is
required which cannot be nil, a check for a zero valuse

pointer field is made (nil is always zero).

Most arithmetic errors (such as overflow, underflow,
divide by zero, etc.}) are handled as program interrupts,
which are caught by the operating system interface. The
method used to tell the RTS that an interrupt has occurred
is via a BPI (branch on program interrupt) ‘*imstruction®.
This is a noop which follows any instruction expected to
interrupt, specifying a branch address and interrupt type.
If an interrupt of the specified type occurs, then the
braanch is taken. This allows the RTS to <recover from
interrupts in a very controlled manner. Note that not all
interrupts result in an error. Overflow during a 1loop

increment (if the loop has a to part) is not an error.

Memory overflovws, as mentioned earlier, are caught by
the garbage <collector, after it tries and fails to recover
sufficient space to satisfy the current request for memory.

Stack overflow (i.e., Trunaway recursion) is caught in the

Same wWavVe.

Deadlock is detected by the scheduler, when it cannot

find a ready task to dispatch.

Output limit overruns are caught by the newline and
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newpage routines. This check is made cnly on the standard
output file. Time 1imit overruns are caught by the
operating system dinterface, and a global flag is set. The
RTS checks this flag prior to executing any function which

might result in a loop. This includes gotos, locop bottoms,

and calls.

Assertions, which are handled by the ASSERT operator,

are trivial to check.

The checks which pose difficulties are the undefined,

scope, bounds, and tramsient-name checks. These are nowvw

described in some detail.

Undefined-value checking 1is the most pervasive and
expensive check made. It is estimated that as much as 25%
of the run time is spent doing undefined-value checking. By
way of Jjustification, this 1is also the most common error

made by students.

It was considered essential that an accurate way be
found to perform the undefined-value check. By accurate, it
is intended that all programs containing errors be stopped,
and that no valid programs be stopped. This criterion rules
out the method of setting aside a special value as undefined
{besides, it is not clear what value of bool or char to make
undefined). It should be noted that both WATFIV [6] and
PL/C [5] wuse +this method, and in both it is possible to

cause erroneous terminations. For example, din the WATFIV
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progranm,

INTEGER I, J, K
INTEGER M/Z201010101/
DO 10 I=1,256
J = (I-1)xH
K=4d
10 PRINT 1, K
1 FORMAT(® ',34)
STOP
END

the message "“J UNDEFINED IN LINE 5" is given, even though

‘this is patently untrue. The sinmplest way to solve this

problem is to use a separate bit (a def bit) to give the
defined status of the value. Having decided to wuse an
nextra bit, it nust next be decided where this bit should
be put. Two possibilities arise: the bit can be put at some
fixed point with —respect +to the value (e.g., at the
beginning or end), or it <cam be put at some arbitrary
location, unrelated to the location of the value. The
former has the advantage of higher speed and smaller names,
while the 1latter has +the advantage of better storage
utilization, especially in arrays. It should also be noted
that unless the def bit is put at the fronmt of the value,
neither def bits nor values are handled in a uniform manner,
which violates a previous design goal. It was decided on
the basis o©f Dbetter packing in rows, and - the uniform

treatment, to make the def bit separate from the value.

As some of the examples in the last section showed,

there are ways other tham a lack of ipitialization to give

rise +to an undefined wvalue. In FLASC, all these situations
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are taken care of by associating a def bit with the entity
in question. In particular, each tag has a def bit (as does
any value it may refer to). This is regardless of what mode
the tag may be. Thus, whenever a tag is encountered, its
def bit is checked to see if the tag has beem declared. In
order to catch collaterality errors in declarations, the def
bits for the tags being declared are turned on at the very

end, so that if the tags appear in initializations, an error

will result.

Not all def checks are simple and straightforward.
Only those cases where the mode is not stowed lead to simple
solution ({i.e., simply checking the bit pointed at by the
Tef). Stowed modes have multiple def bits, which may be
difficult to address. In particular, a structure is not
required to have the def bits of its fields contiguous and
starting on a nice boundary, so each must be addressed
separately. The addresses of the bits can, of course, be

determined from the mode template, but this is a slow

process.

Rows may or may not have fast def checks.  If thé def
vector pointer is zero, them there is no check at all, since
this condition assures that the entire row is defined. If
there 1is a def wvector, themn chances are that it is
contiguous {this happens when the elements of the row are
contiguous). If so, then a trick can be used to check all

the bits at once. This is done by use of the COMPARE LONG
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instruction of the /370. A pad character of X'FF' is used
in conjunction with a length of zero to check all the def

bits in all but the first and last bytes. These must be

handled separately.

If, however, the row is not comtiguous, aﬁd so tre
def bits are not contiguous, then each def bit must he
addressed separately. This is very slow. This situation
can arise when a ref row has been sliced. To implement this
addressing, a work area is needed to store the indices. This
gives rise to one of the few implementation restrictions on
the language accepted: in FLASC, rows can have only up to
255 dimensions. The question now arises where to put this
work area. Fortunately, a ref must appear between amny two
noncontiguous rows in a path through a data structhre {i.c.,
it is possible to have ncrow of ref to ancrow, but not ;o
have ncrow c¢f ncrow). This means that the work area .for

indices can be statically allocated, since the def check

stops 1if it encounters a ref. {Incidentally, other

recursive utilities have the same property, and use the sanme

static work area.j

O0f course this "extended" def check is recursive in
the mode. That is, if the mode is struct of row of union of
struct ..., then the routine will recurse. This implies a
stack. This stack is also statically allocated, and implies
another of the implementation restrictions of FLASC: rows,

~

structures and unions can be nested to a maximum depth of
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255 without an intervening 7ref. (Again, other recursive

utilities use this stack.)

Scope checking corresponds rather <c¢losely to def
checking. Here again, the mode nmust be recursed (irn
general}, lccking for all title pointers, to compare their
scope with that of the receiving name. Again, if a ref is
encountered, the check does not go below that 1level, since
that ref must have the correct scope (it has been assigned,

SO0 a previous scope check was done).

Bounds checking must also do this recursion,
comparing the ©bounds of the source rows with those of the
destination rows (bounds <checking is dome omly during
assignment) . There are two complications, though. If a
pafticular level is flex, then the check 1is ©bypassed, but
only for that level. Other levels must still be checked. If
a particular level is flat, then not only must the bounds be
identical at this level (1:0 does not match 2:0, even though
both are flat), but ckecking must continue to levels below
that which is flat. This means that even flat bunches must

have at least one element, as mentioned in Chapter 7Two.

Even though many (most?) collaterality errors having
to do with transient names will never be detected (because
FLASC does +things in a left-to-right order}, some sort of
check 1s required to maintain dintegrity of the data
structures. This check is accomplished by having a

transient-name count (TNC) associated with each bunch. This
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count is updated whenever a transient name pointing into
that bunch is created (via slicing), and downdated when the
name is destroyed ({via voiding or dereferencing). Assignament

to a flex row checks this count, and gives an error if it is

not Zero.

This count updating is done via two routines: deflex
and dectnc. Deflex takes a ref flex row, and returns a TNC
pointer and a transient ref row (transient refs -look the
same as other refs). In the process, it increments the
TNC. The TNC pointer is above the ref im +the stack, and
stays there though subsequent actions (e.g., slicing,
rewing, etc.). HWhen a tramsient ref is to be voided or
dereferenced, dectnc is called. It chases the TNC pointer,

decrements the TNC, and deletes the pointer from the stack.

Note that when a balance of ref and transient ref is
made (yielding transient ref), a call is made to another
routine, maketrans, which pushes a zero TNC pointer onto the
stack. Therefore, dectnc must be prepared to accept a zero

pointer. This situation will also occur if a nil ref flex

row is rowed.



Chapter 4

Tracing and Dumping

O0f course, not all errors have the good wmanners to
make themselves known by causing an immediate and correct
diagnostic message. As we all know, just the opposite is
more commonly the <case. For this reason, it is extremely
desirable to have some sort of tracing and dumping
facility. A clear «case for this is made in [5], for the
PL/C compiler. Tracing has also been implemented in SNOBOL
{8] and SPBITBOL ([7]. These systems provide especially

useful tracing facilities. Unfortunately, ALGOL 68 does not

lend itself to tracing.

Dumping can often be as important a debugging aid as
tracing. It has the advantage that it is only done once, as
opposed to tracing, which tends to be a continuous, paper-
wasting process. Dumps are an invaluable aid in determining
what "really happened® in the program. However, unless the
dump 1s symbolic, it is of 1little or no use to the student

user. SPITBCL provides an excellent dumping facility.

59
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Also cf considerable diagnostic use is some sort of
flow trace ({which has also been implemented in PL/C), and,
in some cases, an executiom profile. In almost alil czses, a
flow trace of, say, the last 25 branches _takeﬁ is
sufficient. This is simple to provigde. Gathering of
profile information is also guite simple, and can provse

invaluable in avoiding wasted effort speeding up seldom-used

modules. This facility has been provided in ALGOL W [1].

4.1 Tracing

Unlike other languages which provide suitable tracing
facilities {most notably SNOBOL) , ALGOL 68 has the
orthogonalized concept of a ref. This causes severe
difficulties in tracing. In fact, it makes tracing

ineffective.

In most languages, "variables" are traced. In BRLGOL

68, there are no variables. Instead, tags possess refs,
which peint at values. This, in itself, causes no
problems. However, when an argument is passed to a proc, it
may be passed as a ref, For example, in

PROC p = (REF INT 5§) VOID : je¢:=1;

INT i;

PR trace i PR

i = 1;

p (i}
*i®* 1is passed as a ref. But how can we trace 'i!? Inside

ip*, it is known as 'j*, so any message should say "j = 2 in
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line 1¥; but them it is not clear that this *4' is the same
thing as 'i'. If, on the other hand, we say "i = 2 in line

1", massive confusion could result.

There 1is, however, a moare fundamental croblen
involved here. "p! need not be called with 'i? as its
argument. How, then, do we decide whether or not to producs
a trace message? This problem can be solved by associating
a flag (like the def bit; a trace bit) with the value, which
would be checked during assignment, and, if on, would result
in a message. This technigue will still not tell us whether
to print ) or *j*, +though (i.e., what printable

designation to usej.

This problem of printable designatiomns is a serious
one. There exist many objects which will never have them,
€.d., most heap values. The problem is even worse when the
user wishes +to trace pointers (i.e., ref refs, or ref ref
refs). Here, not only is it wunclear what printable

designation to use, but also what to print as a value.

One possible solution to this dilemma is to disallow
tracing of amny but "simple" tags (i.e., variables of plain
modes) . This will still not cope with ref parameters,
however. There are two alternatives open: associate with
fhe value not only a trace bit, but also a trace string,
which is to be used as the printable designation daring
tracing; or make no attempt to trace the value in the proc,

but instead produce a possibly spurious message upon return
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from the proc (this need only be done for ref parametérs).
Neither method is really satisfactory. The first prints
messages with incorrect names in them, while the second

produces messages at the wrong time (as well as producing

extra messages).

Still another difficulty is the multiple wuse of
similar tags. It is very common to have several 'i's in a
program, and a message = saying only *i*' would be
insufficient. It would also be difficult to tell the
compiler how to trace the vérious 'i's, especially if they
occur in nested blocks. One possible solution would be to

print the «coordinates of the declaration along with the

message.

Due to these and other more esoteric difficulties, it
was decided that tracing should not be attempted im FLASC.
The philosophy behind this decision was that since tracing
could not be guaranteed to work, it should not be included
at all. It was felt that the user could perform much better
and (to him) more meaningful tracing than the compiler, by

using the equivalent of primt calls. To make this a bit
more palatable, a trace «call (which looks and acts like
print) has been included. This routine checks the value of
a user~accessible boolean wvariable "trace flag", and prints

messages only when it is true.

A particularly useful tracing feature in SNOBOL is

function tracing, which gives a message each time a functicn
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is entered or left. This message gives the function name,
the level of nesting, and the arguments and result ¢£ the
functione. Uﬁfortunately, all of the difficulties arising in
value +traciang recur here: the proc may not have a printable
designation, ahd it may not be possible to print the values
of the arguments or result in a meaningful way. This is

very likely to be the case for arguments, since they would

commonly be refs. Function +tracing was therefore not

attempted.

Branch tracing and profile gathering have, however,
been included. These keep track of "major decision
points®". These are the various points in the program where
control flow 1is altered from the sequential. Such points
include the branches implicit in 1'if?, _'case', *do? and
parallel constructs, as well as the explicit ones in gotos,
calls and returns. The branch trace dumps the last 25 major
points passed, while the profile gives a count of how many
times each major point has been passed. The profile is

output as a tar graph, sorted by coordinate. Profile

information is optional.

4,2 Dumping

Dumping, though more tractable than tracing, is still
not simple. Here also, the concept of ref is diffcult to

handle. It is possible (and not unreasonably difficult}) to

give a complete, absolutely accurate dump. However, this is
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not 1likely to be what the user wants, especially not the
first-year student user. Such a dump for the program given

in the last section might look like:

stack frame : p
j: #

stack frame : nain
p = #2
iz #3

primal environ

$#t (ref) : -> #4

#2 (proc) : procedure
#3 (ref) -> #4

#4 {int) 2

(It is possible in this case for the RTS to give the nanme
*p® to the first stack frame, although 1in some cases it
could not give any name.) In this simple case, the dump may
appear acceptable, but what happens with more complicated
programs? In particular, in such a scheme, strings would be
dumped as rows of characters. For example:

[3] CHAR s := Wabc";

REF CHAR ¢ = s[2];
INT i

might produce:

stack frame
S #1
c #2
i #3

de 48 049

#£1 (ref) => #4
#2 (refh -> %7
#3 (ref) : -> #5
#4 {({1:3]) -

[1] %6

{2] $7

{33 #8
#5 {int) : undefined
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#6 (char) : "a"
#7 {char) : Ub"
#8 {(char) = "c"

Note that inm general, rows and structures (imcluding LS
have to be broken open in this manner, to display the
subnames properly. It is suggested that the user would much

rathetr see:

stack frame

S "abc"
"bﬂ

undefined

Q
ot

par

2ven though this dces not preserve some of the information
about the refs in the progran. Normally this detailed
information is required only for refs to heap values (i.e.,
linked 1lists). In this <case, the dump must necessarily
assume a format sipilar to the first one given, since there
will mot normally be any printable designations to give to
nodes in the lists. Rows, of course, always present a

problem, since they are usually large, and must be displayed

element-by-elenent.

Dumping in FLASC is still undergoing evolution, but
currently the user can select between a full or partial
dump, in simple or complete format. A partial dump omits
objects not in LSFs {(i.e., row bunches and heap values).
Complete format is the first shown above; simple format is
the last. was and structures are dumped element-by-element

regardless of format, but in complete format, an extra level

of indirection is given.



Chapter 5

Some Pragmatic Coamsiderations

As no doubt became apparent in Chapter Two, the FLASC
system was written in /370 assembler. The reasons for this
are gquite simple: all the alternatives examined either
required writing and/or maintaining the version of the
compiler in which FLASC was to be written, or was orders of
magnitude too clumsy or inefficient to be used (PL/I was in
this category). Both authors of FLASC had comsiderable
prior experience in writing large assembler programs, so it
vas felt that few problems would arise due to poor
understanding or programming practice. This has turmned  out

to be the case.

The compiler and run-time system comprise about 40000
lines of code, and occupy about 120K bytes of memory. An
additional 40K bytes are required for standard tables. A
small program (<200 lines) will compile and rum in less than

250K bytes.

Because it 1is 1in assembler, and because the /370

66
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instructions MVCL, ICM, STC¥ and CLCL are s¢ usesful, FLASC
will @not run on a /360 without very costly operating svystem
support to interpret these very commonly-used /370-specific
instructions. FLASC is, however, operating svstz:
independent. It ruas under MTS, 0S/VS, and CP/CHS. Other
operating systems can be accommodated by rewriting the
operating system interface, which is about 2000 lines of

code.

At the time of this writing, the compiler is nearing
completion, and the RTS is complete except for some parts of
formatted transput and dumping. Most of the RTS has been

tested by running hand-coded progranms.

Possibly the best way to ensure the doom of a student
compiler 1is +to produce obscure and inaccurate diagnostic
messages. A great deal of careful thought has been put into
the FLASC diagnostics, and it is felt that most of them are
now adequate. This, however, cannot be verified until the
system has actually been used by students. This will occur
soon. ¥hen it is known what types of errors are most
common, the diagnostics (ard compile-time fixups) can and

will be made much more effective.

A very important consideration concerning any student
compiler 1is the cost of its use. In the tests performed,
the run-time cost of FLASC compared favorably with that of
PL/C, the only available system which could be considered

comparable. It is expected that compilation costs will be
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somewhat lower than those of PL/C.

Is it worth it? There was a severe and ccnstant
temptation tc change the language to make the systez Dotk
easier and more efficient, but this vas not yieldei +o.
Perhaps omne of the most valuable lessons to come out of this
effort is that a language should be designed with errors in
mind. ALGCL 68 was not, and consequently it has many types
of errors which are difficult +to understand, detect, or
recover from. Both the syntax and the semantics suffer from
this. However, <compared to the other three major general-
purpose languages (FORTRAN, ALGOL 60, and PL/I), ALGOL 68
provides a flexibility and naturalness that makes it a nicer
language to'program in. It is therefore considersd valuable

to have a checkout compiler for this language.
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