KONINKLIJKE MILITAIRE SCHOOL

ALGOL 68/19

REFERENCE MANUAL

by

P. E. GENNART
PROFESSOR

AND

G. LOUIS

1975

ECOLE ROYALE MILITAIRE

F.E.

UNIVERSITE CATHOLIQUE DE LOUVAIN
CENTRE DE CALCUL

ALGOL 68/19

REFERENCE MANUAL

MARS 1976 G. LOUIS

(&N e R

1

VI I lu DY

O 00—
¢ DD e e s OOV .

r
B S S Y e
— 2 a3 ..

12.
13.

14,
15.

SR TYO0 QA0 O .

.1. Introduction to version 1, november 1973.
.2. Introduction to version 2, march 1974,

3. Introduction »f version 3, november 1975.
Examples of simple prozrams.

Card~to-tape prozgran.

Quadratic equation solwer.
Re:ursive calculation of a greatest common divisor.
Updating records on CM3-files.
Towers of hanoi.
Inner product.
Symbols.
Meaning of a program.
Values.
Modes. .
Denotations.
Integral denotations.
Real denotations.
Boolean denotations.
Character denotations.
String denotations.
. Routine denotations. (see 21)
paca2s and comments.
Identifiers and identity-declarations.
Names, and associated declarations.
.1. Names.
.2. Creation of names.
Deleted.
The program.
.1. General construction.
.2. Deleted.
.3. Elaboration of a progran.
4. Jumps.
.5. dkips.
Assignations.
Expressions.
Formulas.
Description of the operators.

IO mwo o —

£ 15.,1. Boolean operators.
15.2. Comparison operators.
15.3. Arithmetic operators.
= 15.4, Special operators.

1a.
17.
13.
18
13
19.
20.
20
20
20
20
21.
21
21
21
21

The elaboration of formulas.
Coezrcions.

Conditional statements.

.1. If-statement.

.2, Case-statement.

Repetitive statement.

Multiple values.

.1. Description.

.2. Declarations of multiple values.
.3. Use of multiple values.

.4. The operators upb and 1lwb .
Routines and procedures.

.1. Routine.

.2. Declarations.

.3. Use of routines.

.4. Separately eompiled procedures.

Card-to-tape program, with blocking, and end-of-file mark.

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

W OO0 Ut &5 EFWWw N NN NN —

T T W W /e w ,m e 7 oo s = Bl T e e e

21.5. "Common" identifiers.

21.6. Passing labels as parameters.

2. Deleted.

3. Prelude and postlude.

24, Mathematical functions of the standard prelude.
25. Input and output routines.

[A IEAS]

26. Conversion routines. Input-output with coaversion.

20.1. Basic conversion routines.

26.2. Input-output of one element with conversion.
26.3. Formatted input-output.

27. Id=entification. Context. Scope.

27.1. The identification process.

27.2. The identification conditions.

27.3. The uniqueness condition.

27.4. Context conditions.

27.5. Scope conditions.
A1. Non existing.

A2. A context-free zrammar of ALGOL 68/19,
A3. Preludes and li*raries.

A3.1. Routines of the library prelude.

A3.2. Standard routines : Mathematical functions.
A3.3. Standard routines: Conversions.

A3.3.1. Characters.

A3.3.2. Integers.

A3.3.3. Real numbers.

A3.3.4. Boolean values.

A3.4., Input and output routines.

A3.4.1. Output to the printer.
A3.4.2, Card reading and punching.
A3.4.3. Access to the terminal.
A2.". 4, Access to magnetic tapes.
A3.4.5. Access to magnetic disks.
A3.4.6., Example of disk I/0.

A3.5. Non standard routines.

Reading a card

Ending a progranm

Standard end-of-file

Reading one data per card.

Writing one data per line.

Utilities.

AY, Implementatlon characteristics.

A4.1. Compiler diagnostics.

A4.2. Available characters.

A4.3, Equivalence between characters and integers.
A}.Y4, Limitations on denotations.

A4.5. Runtime storage organization.

A4.6. Example of an ASSEMBLER-compatible subroutine.

»

.

"")(D Q0T U www

A5. Relations between the compiler and the VM/CM3-System.

A5.1. "Limitations'" of the compiler.
A5.2. "Options". '

A5.3. Calling the compilers.

A5.4. Relocatable libraries.

A5.5. Linkage editing.

A5.6. Core image modules.
AS5. "Common" identifiers.

a. Saving a labeled common.

b. Using a labeled common.

c. Security wnen using common identifiers.

Page
Page
Page
Page
Page
Page
Page
Page

! Page
 Page

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

ALGOL®68/19 Table of contents.

d. Examples.
A7. Runtime errors.
" AT.1. Undetected errors.
A7.2. Detected errors.
AT.3. BLocks and units.
AT7T.4. Runtime error localisation.
A7.5. Codes of execution-time errors.
A7.6. Deleted.
AT.7. Runtime errors recovery.
A8. Symbols and their representations.
A9. Calling FORTRAN subroutines.
A9.1. Generalities.
A9.2. Correspondence between ALGOL and FORTRAN parameters.
AG9.3. Important notes.
A9.4. Simple example.
A10. Formatted input-output.
A10.1. Introduction.
A10.2. Input-output devices.
A10.3. Syntax of <formats>.
A10.4., General semantics of a <format)>.
A10.5. General semantics of the GET and PUT procedures.
A10.6. The transmission of data under the control of an <alphanumeric code>.
A10.7. Control codes.
A10.8. Transmission of data without format.
A10.9. Simple example.
A10.10. Important notes.
A10.11. Restrictions and detected errors.

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

Pazge
Page
Page
Page
Page
Page
Page
Page
Page

ALGOL63/19 Acrei=sych {ANUAL Paze |

0.1. Introduaction to version 1, noveaber 1373.

- s D er R S e S P W S AP N s NP AR G SR D an NR S G D G G W NG e Em AR b G R W D R WP M A

ALGOL 53 is defined by the Report on thes Algoritnmic
Language ALGOL 68 (A. van wijnzaarden (&d), Junerische
Mathematik, 14, 79-213, 1959), which will be referced to as
"tne Report!.

ALGOL 63/19 is a subset of ALGOL 63, formally defined by a set
of rules modifying the Report. It's also called ALGOLTZ2.

This Reference Manual is intended as a complete, but informnal
description of the language, tozether with information about
its implementation on an IBM300/30 computer, operating under DO3.
Most of the implementation information is givean in Appendices.

Appendix 2 contains a context-free grammar for the language ;
it may be very ussful for the programmer as a saort syntactic
definition. A somewnat modified use of ths formalism of Appaendix 2
is made in this manual to give the so-called "general constructions”
of syntactic notions.

Thz2 technical terms used in this Manual are put between "quotes" (")
at tneir first appearance, or at some important use. They sometimas
differ from the terms used in the Report. They will not always
be defined.

Some outstanding characteristics of ALSGOL 63/19 and of its
compiler are :

- thne mode constructions of ALGOL03 are included, with ths
exception of unions and structures ; no mode definition m=2cnaanisn is
provided ;

- no opgrator definition mechanism is provided

- the method of passing paramneters is tnat of ALGOL63 ;

- all procedures are 'void', i.e. there are no 'functions' ;

- input-output is not that of ALGOL68, but there is a complete 3ot
of paysical input and output routines, not using tnhne DO3~ systemn ;

- no formats are implemented, but a set of conversion routines is
nrovided to and from character strings.

- runtime errors are cnecked with localization aand 'tracebazk' ;
in particular, pounds of multiple values are checked ;

- storage organization is dynamic (no ‘'heap') ;
- tne possibility of senarate compilation of procedures is »nrovided.
Ih2 design and the implementation of ALGOL 63/19 are the work

of Guy LOJIS and Piet RYPEW3. They received a3 valuable prozranming
aid fron A.M. DOYeN and A. MICHAUX.

0.2. Introducztion to version 2, marca 1974,

- S Er RS AN A e S m o G A D P T S W e e @ KD GD WD SR WP KA D G N e G S G e e

The success of the first version of ALJOL 63/13J 1as led us t»
introduce somne additions in order to facilitate ths task of the
programmer. The most important additions are the introduction in tn=
standard prelude of mathematical functions (which are no longer veoid),
and of formatted input-output on the standard devices, thz extension
of the comparison operators eg ,... to character operands,
the optional suppression of the redundant repetition of the virtual
parameters in a procedure declaration and the addition 2f a cass-
statement. Tne DO3-source statement library can be usa to
include and update parts of programs.

A very fast link-and-go compiler has bezen implemented, with the only
restriction that no separately compiled procedures are permitted. An
overlay feature is also available. A set of plotting routines nas
been included in the library prelude.

0.3. Introduction of version 3, november 1975.

ALGOL 68/19 has been iﬁplemented under VM/CM3 on an IBM 370/153
computer; this was thz work of Guy LOUIS.

Some modifications have been introduced to the langzuage, such as:

- odotional suppression of "apostropnes”" (') surrouading "keyw~ords®, -
witn the restriction that keywords may no longer be used as 1dent1f1ers,

- modes of separately compiled procedures are now tested for
compatibility with pragnats;

- addition of an original "common" feature;

- addition of a powerfull conversational "trace" at runtime;
- complete insertion in tne VA/C¥M3 virtual system;

- possibility of calling "FORTRAN' subprogramns;

1. examples of simple prozrams.

(1:380} char BUF ;

do (TAKE(BUF,1,80,EDr); # repetition ; card inosut routine ¥
TAPnN(Z,BUF,1,80) # tape output #
) # #0F is standard end-of-file #

Hh. Card-to-tape progran, witnh blockinz, and end-o0f-file mar<k.

- P WP e e N MR G AP . e WS Ay N S MLy . e - S S e - " D Cm e W U D e e W L A e A e ap et > A e e -

AL aJo2o/ 19 gursnsavs daddal rasz f

3

J; # blookinz taztor

D¥3L; # dimension of rzacori ¢
r

e

g
I

cegin int
g

2 standard routine =0vw: #

+(4=-1)%80]:= repr 255;
zical end of file £

Ml -

=

h
1
1
z

[}
10
—

I to 3L
N:=L;TAKE(BUF,1+(I-1)%30,80,E0F));
N(2,8U7,1,DIM)

15
(B); GETR(C); #simplified input#

PUTS("a is zero"); goto PROG
begin B:=3/A;C:=C/A;
real D=3%%2_-4%C;
real 35QT;
if D 1t ©
then PUT3("no real roots'); goto PROG
else

AT =3QRT(D);
3 gt O

3
n X1:=(-B-3QT)/2
€
’

® |t 2
=D 7 L
2 o

X1:=(-8+3QT)/2

|

oy
i
—
=
g
<
—
p—

PUTR(C/X1)
simplified output

i
| gud

d. Kecursive calculation o2f a greatest commnon divisor.

e - - Ah W o T D P T - WP T M M wm Vm e v Em e W WD D D WS MR Em D Ar am W S G S En ae Y e o

PaCv: begin proc PaCD =
((int A,3): if 3 ea O tnen PJII(A)
else P3COU(3,A mod 3)
ff PGCD calls itself #

PCD(12,8)

D
=
=7

e. Updating records on C4d3-files.

begin
{)} char FILE = "T&3T DATA A1"; #CH43 identification of the cILZ#
int LENGTH = 89; #length of records in the FILE#
int §; #number of the records to be updated#

[1:LENGTH] char BUFFER;

FORMAT(1,"*(1I5,L,330)");
a format is available on the virtual reader

proc EOFf1 = (: begin CLOSE(FILE); STOP end);
end of file procedure for the reader

ON(T7,EOF1); # recupesrate end of file on reader #

proc 20r2 = (: begin PUT3("end of file on disk™); E0Ff1 end);
end of file procedure on the FILE

o}
o
~~

GET(N); # read number of the record to be updated #
DISKR(FILZ,N,BUFFER,1,LENGTH,E0F2);

read the N-th record on the FILE
DISPLY(BUSFER,1,LENGTA); # displays on terminal #
2T (BUrFER); # read tne record to bz undated #
CLO3EZ(FILE); # close the input file; now,

it's used for output #
DISKA(FILE,N,3UFFER,T,LENITH);
DISPLY(BUFFER,1,LENGTH)
) # continue the loop #

begin
proc nanoi = ((int PEG1, PE32, WJMBZR):
begin int WORK = 6-PEG1-PEG2; ‘%compute Wworkpegh
if NJd8ER gt O
then HANOL(PEGT,WORK,NIM3ER=-1);
FORMAT(3,"314,12,538,12,37,12");
PUT('move from peg",Peul,to peg",PEa2,"piece", dM35E3);
HANOI(WORK,PEG2,NUM3ER=-1)
fi
end
)
for I to 5 do
(PAGS; PJTI(I); LINZ(3); HANOI(1,2,K))
end

W e o e as e e w e

I

ALSILH3/19 Rarsgenes MANJAL cace >
NNz
bes La
int Re3;
proc PRID =
(¢ [] real ®AT1, M4AT2, ref real Re=S):
if lab MAT1 ne lwb 4MAT2 or upb MAT1 ae upb 4T2
then PUT3('...... ")y RES:1=z-32763
else RES:=0;
for I from 1 l4b ¥MAT1 to upb AT
do (RE3:=RE3S+MATI1[I]*MAT2[I])
fi

)3

int N, M; GETI(N); G2TI(4);

[N:4] real MAT1, MAT2;

PROD(MAT1,AAT2,RES ; PUTR(RES);

[1:10] real MAT; FORMAT(1,"*(F10.0)"); G=T
(

i T)
PROD(MAT,MAT,R=3); FORMAP(3,“ E14.T7M); PJP S)

[0}
o

Syabols.

ALGOL 63 "programs" are Written with "symbols". Each symbol
possesses one or more 'representations", which may vary from one
implementation to another. The symbols used in ALGIL 63/19 are
given in appendix 8, togzether witn their representations,
to be used as input for qur compiler, and some other represeatations
used in printed texts. '

Some symbols are single characters (letters, digits, special
characters). Compositions of single characters may constitute one
single s3ymbol, e.zg. ':=' is the "becomes-symbol". Other symbols
are represented by strings of characters in capital letters, enclosed
or not betwz2en apostrophes (for punching) or in underlined lowWar case
letters, or in boldface type (for printing). An example is pegin, or
'"BEGIN', or 3nGIN, tas "begin-symbol".

Unlike ALGOL 68, ALGOL 63/19 does not provide for the definition
of nz2w symbols.

Aeaning of a prozran.

I'ne mz2aning of a prozram is explained in terms of a nypothetical
computer Jhichn performs a set of "actions", the "elaboration" of the
prozram. The computer deals 4ith a set o "objects' oetween walch,
at any given time, certain "relationshios" may 'nold".

Relation3nips are eitner "parmanent”, i.e. independent of the
progzramn and its elaboration, or actions may cause tham to hold or to
cease to nold.

nelations are bhetween objects, Wnicn can be 2itner Yexteranal” or
"internal.

AL3OL0od/19 AersRedleE MANJAL Page

iZxternal objects appear in the progran, and are strinzs of symbols.
Examples : ;) 14 ALPdA £+ Y

Internal objects are "'values®

An external object may "possess" a value (this is one of the relations
waich may hold between objects).

Examples : 14 possesses the suggested value,
; pOsS3esses no value.

The various kinds of values are described in thz next section.

- e - - -

Some values may be considered as e=lementary ; they are subdivided
as follows :

"Plain values" are :

"arithmetic values", i.e "integer®" numbers or "real” numbers,
"trath values?®,
"eharacters"™.

"Formats", as values, are not implemented in ALGOL 63/19, but
a formatted input-output :is available (see A.10).

Other values are constructed with tne aid of elementary valuss.

Tney are : "multiple values" (corresponding to arrays in other
languages) ; they will be described later ;
“structured values" exist in AL3OL 68, but not in
ALGOL 68/19 ;
namnes" and "routinss'" will also be described later.

Fach arithmetic value has a "length number", which cnaracterizes
tne precision of its representation in storage. Ths nuabsr of
differeat length numbers may vary from one computer to another. e
retain only two different length numbers, corresponding to the
available precisions on an IBM/300 or 370 computer. Possible relations
batWween arithmetic values will be defined later ; they correspond
to the usual mathematical relations.

Truth values are suggested by their denotations

true and false

Cnaracter values are defined in =acn implementation by a s=t of
available characters (scse A.4.).

ALGOLO8B/19 Ao eleNZe dANJAL Paze 7

wach value is of one specific "mode". A mode may bz 3eaen 33
the comnon cnaracteristic of a set of values. A mode can be
"specified" in a progran by an external object called a 'declarer”.
In this text, we will also use terms taken from the syntax of tne
Report; some of these terms are given below, tozgetner 4ith declarsars

Ahich specify modes.

Value Declarer Mode

integer int or long int Tintegral' or '"long-integral”
reél real or long real "real' or "long-real"”
truth bool Tboolean"
character char '‘character”
routine begins W4ith proc bezins wWwith "procedure?
multiple begins with [] begins with "row-of "
or [,] or "rod-of -row-of "
or ...(1) or ...(2)
name begins 4ith ref begins with "reference-to’

(1) a nunber of comma-symbols bzatween [and]
(2) a nunber of times "row-of?® :

5. Denotations.

"Denotations" correspond to constants in other languages.

I'ney are external objects whicn possess permaneat values,
not dependant upon tha elaboration of the program.

Limitations on the values of denotations are to be found in A.4.

6.1. Intezral denotations.

Exanples : 0 4035 - 00123 long 0
Note : -1 is not a denotation, but a monadic formula (s=2e 13).

h.2. Real denotations.

txamples : 0.000123 1.238-4 long 3.141592635
.123 12825
Note : 1. is not a dsnotation, but .1 is a real denotation.

6.3. Boolean denotations.

- - A - - - -y > - o - e

[

ALSOLn3/19 RZrgReENCE M4ANUAL Paze

5.4, Cnaracter denotations.

S S W A e e AR A S ek G D S W e ew W

Each character denotes itself, except the '"quote-character",
which is denoted by a double guote-symbol. Thz denotation is
placed betwWween twWwo quote-symbols,

Ex: nAu, " n’ nnnn, C, $$$$_

0.5. String denotations.

A z2haracter string is not an elementary value ; its mnode 1is
'row-0of-cnaracter' ; it has nevertheless a denotation.

Examples : WABCH

$A=33a$d} (the value has five characters)
A B + CM {the value has seven characters)
. "oor 33 (empty string) .

Notes : 1. A character string denotation can only denote
a value with 0, or 2, or more characters. If there -
is only one character bestwesen the quotes, it is a
character denotation.

2. Tne "space-chnaracter" is represented in a string by
itself. At all other places, spaces may be f{reely
used.

y

6.6. Routine denotations. (see 21)

"Spaces" may be inserted between "symbols". They are also
used as "delimiters" between "identifiers" and "keywords®.
Thesy nave no 3pecial meaning outside "stringzs". A spaze in a string -

is a "space-symbol".

"Comments" may be inserted everywhere in a programn. They are enclosad-
between two "comnent-symbols". Four representations are given for

this symbol: #, %, pr and co. pr and ¢g wWwill be us=d wWwhen tne comment

is intended to give information to the compiler at tns beginaing of a
progran (ses 21.4 and 21.5). # and % denote the standard comnent

symbol.

gxamples:

EOFf1 pr # EOF1 is an external procedure #
41 is a labeled comnmnoa 4

AL30L63/19 REFERENCE MANUAL Paze

3. Identifiers and identity-dsclaratioas.

"Identifiers" are external objects which may possess values.

Examples of identifiers : X
A1
MA#THURSA#LEM# (1)

ne first symbol of an identifier must be a letter, the next symbols
may be letters or digits. In our implementation, the total
number of symbols may not exceed 6, but see (1).

Note also that identifiers cannot be choosen to be "keywords".

Unlike denotations, which possess permanent values, mode identifiers
are made to possess values by the elaboration of
- "identity declarations. Exanples

Tnese two examples show the two possible syntactic foras of an
identity declaration. The former coantains an ”equal—symbql".

In AL3OL 08/19, this is the only place where tne 2qual-syabol nas
the representation '='. Tne sescond construction
Wwill be described in section 9. For tas former the general
construction is

<virtual declarer> <identifier> = {expression>.
(for procedures, there is a special rule ; see 22)

Tne word "virtual” will be explained in connasction ~ith multiole
- values (section 20). It has no spnecial meaning outsides that case.

The declarer specifies some mode (see 5) ; the expression (sez 13)
- must yield a value of the same mode. The simplest case of an expression
is a denotation, as in tne 2xample above.

After elaboration of tne first declaration, the identifier
A possesses the value of 3.14, and that value cannot be cnanged.
It is in fact a "constant", represented in the programn (or in dart
of it - see 27) by an identifier. "Variables" sill be described
in the naxt section.

After reading section 17, you 41ill understand that the position
at the right of '=' is strong, wihich means that somne automatic caanges
of mode are possible there.

The following sketch represents tne process of the elaboration
of int A = -7

ALGOLBB/19 REFERENC

O]

MANUAL Paze 10

identifier 1integral value

Jdther examnples of valid declarations of the first kind are :

real PI = 3.141592 ; real PI2 = PI/2
g int ONE = long 1 ;
c NO#THING# = (: skip)

9. Names, and associated declarations.

"Names" are values (internal objects), which may bz seen as
memory locations or addresses. There are of course na denotatioas
for names, but there must be some possibility to "create" names
(this involves the reservation of memory), and to associate an identifier

with it. This is achieved by a declaration of the second form,
described hereafter.

9.2. Creation of names.

Example ¢ real X ;

The general construction of a declaration of this kind is
<actual declarer> <identifier> , or more generally,
<actual declarer> <identifier>{,<identifier>}* (1)

The process of the elaboration of the declaration real X may
be summarized as follows

Mdemory space is allocated for a real number
some real number is regzistered in it ;
tne identifier X is made to possess the name
(tne address) of the allocated memory location.

Tne sketch represents this process.

identi- address of some
fier a real real

| _X_!=--<ADDR>==>=-=1...!
possesses rafers to

More technical terms to describe the
same process are : a namne of the mode 'reference-to-real!
is created ; that nane is made to

ALGOL63/19 REFEREZENCE MANUAL Page 11

"refer to" some real value ; the identifier X
is made to possess that name.

To make a name refer to a given value, an assignation may
be used (Example : X :z 3.14 ; see 12). '

Notes : 1. The triplet identifier-name-value corresponds to the
concept of a variable in other languages.

2. A name is always 'specilalized', i.e. it refers to
a value of a given mode.

3. To have the mode of a name, add 'reference to'
before the mode specified by the declarer in the
declaration wWwhich creates that name.

4, "to refer to" is a relation between two internal
objects.

An example of construction (1) :

real X, Y, Z; is equivalent to

LR R R R

Tne simplest general construction of a "program®" is
[<label> :] <block> ,

where a "label" is an identifier (if omitted, the label is
considered to be '"MAINPG'") and a "block™ has the following
general construction:

begin <serial clause> end
and a <serial clause> :

{ { <statement> ; }* <declaration> ; }*
[<label> :]<statement> { ;[<label>]<statement)> }*

In other words, a program is an optional label, followed by a block.
Tne block itself is enclosed between a begin-symbol and an end-symbol,
and is composed of some number of declarations (see 8 and 9) (this
number may be 0), possibly interspersed Wwith unlabeled statements,
and followed by at least one possibly labeled statement.

ALGOL68/19 RZEFSRENCE MANUAL Page 12

The allowed “"statements' are

a "jump" : goto <label> (see 11.4)
a "null-statement® : skip

a "block™" (se2 above)

an "assignation” (see 12)

a "call® (see 21)

a "conditional statement™” (see 18)

a "repetitive statement" (see 19)

The embedded block structure of ALGOL 63/19 follows from the
fact that a block is a statement (and can be a constituent of
another block).

"Common" and "pragmats" can also be used before or after a
program (see 21.4. and 21.5.).

11.2 Deleted.

- P G A S D AP S A e A S A A S e Y e

The "elaboration™ of a program is the elaboration of its block, i.e.
the "serial" elaboration of its declarations and statements (serial
means in the order in which they are written). This serial
elaboration may be altered by the elaboration of a jump (see 11.4).

The label of a jump (see 11.1) must be the label of sone
statement.

The elaboration of a jump consits only in an alteration of the
serial elaboration of the statements of a block : the next statemant
to be elaborated will be the statement which is preceded by the same
identifier as that of the jump. This statement may be outside of
the block (see 27.2). '

Example : L : goto L ° (never Write this)

A skip may sometimes be reguired to place a label somewnere.

ALGOL68/19 REFERZNCE MANUAL Page 13

Zxample: do (....
if COND then gzoto EWDI
else
fi;
ENDT: skip

)

12. Assignations.

An assignation is a statement, the elaboration of which causes a
name to refer to some value.

Exanple : X := 1.0

In this example, the value possessed by the "source” 1.0 is
assigned to the name which is the value posszssed by the
"destination" X.

The general construction is
{destination> := <source>
The destination and the source are "expressions" (see 13).

Note : In Appendix 2, the destination and the source
are given as 'expressions'.

The mode of the destination 42as to bz 'reference', followed by the
mode of the source, so that the name possessed by the destination
can be made to refer to the value of the source. 1In the examnple
above, the mode of 1.0 is 'real', so that the mode identifier X
must have bzen declared 'reference-to-real' (see 9 and 27.2),
for example by real X ;

In the example, after the elaboration of the assignation, tne
memory location corresponding to X contains the aritnmetie value 1,
in floating point internal representation, single precision.

Some automatic changes of mode are possible during the elaboration
of an assignation ; they are known as "coercions" (see 17).

Expressions.

Expressions are external objects possessing values.

ALSOL63/19 Reced 2nNCa AANJAL fage 14

An expression can be : sxanples

an identifier (scse 3) ALPdA

a denotation (see 6) 1.345 , true , ‘“ab"
a "slice" (see 20.3) £10K]

a "formula" (see 14) (£+1-Y)/2.5

an expression between parentheses (A+B)

a éall of a mathematical function SIN(CA+B)

14. Formulas.

- o -

"Formulas™ are used to instruct the computer to perform
operations in thes ordinary 3ense.

Formulas are either '"dyadic formulas"” or "monadic formulas™".
A dyadic formula is one "operator" bestween two "operands™.
gxample : Y-X.

A monadic formula is one operator; followed by one oparand.
Examnple : <X.

Operands may be any expression (see 13).

B3ecause a2 formula may be an opsrand of another formula, composite
fornulas are possible, like X+Y*Z, or X+¥Y+Z.

The elaboration of a formula consits in the elaboration of the
operands, followed by performing the operation. In composite
formulas like the last two examples, the point is to kanow the order
of elaboration, i.e. which formulas are to be considered as operands
for another one.

The answer is given by the "priority" rules. Bach operator
has one owWn priority. The operators available in ALGUL 68/19
are Ziven pbelow, tozether Wwith thneir oriorities. They are described
in the followWing section (15). Tne effect of the priority rules
#ill be described in section 16.

ALSULo3/19 RefoRodlhy MandAL Paze 15

priority 1 none in ALGILO3/1Y
priority 2 Qr

priority 3 and

priority M ea ne

priority 5 : 1t 1le ge gt
priority 6 : - & (dyadic)
priority 7 : * / over mod
priority 4 ¥% upb lwb
priority 9 : none in ALGUL53/19
priority 10 : (monadic operators)

not - + abs repr upb 1lWb
leng short odd sign
round entier

15. Description of the operators.

- - A " g - P A L D G D A D D P M R em s e e n W ab

"Operators" operate on "operands" with given modes, and yield results
Aitn given modes.

15.1. Boolean operators.

i Rk R A R e

not ("not", monadic, priority 10)
and (*and", dyadie, priority 3)
or ("or", dyadic, priority 2)

are tane usual boolean operators, operating on bYoolean values, aad
giving a boolean result.

eq (*"equal", dyadic,priority u4)

ne ("not egqual”, dyadic, priority 4)

1 ("less than", dyadic, priority 5)

le ("less or equal", dyadic, priority 3)

L

e

e ("greater or equal", dyadic, priority 5)
t ("greater tnan", dyadic, priority 5)

are the usual comparison operators. They operate on arithmzatic
or character operands, and give a boolean result.

If tha operands are arithmetic, both must be of the sane length,
but each of tham may be either integral or real.

£xanples : 1) X 1t 5
2) the value of 1 1t 5 is that of tr
3) {1:n] char A 5 ... ;5 i€ A[1] eq "

o compare strings, use the procedure CTOMP (Appendix 3).

[T

RodCz MANUAL Paze 15

3

AL3OL68/19 hiAo

15.3. Arithanetic operators.

- e T D W e A W AN W W W e W E AR e G A W ae A e

a) '+' and '-! ("plus" and "minus", dyadic, priority 6)
'#Y anj /! ("times™ and "divided by"', dyadic, priority 7)

are the arithnetic oderators usually available by aardware on tae
computers,sith aritametic opsrands, and arithmetic results.

doth operands must be of one same length, and the result is of
tnat same lengtnh. Each operand may be either integral or real.
Tne mods of the result of '/' is always '(long-)real’.
I'he mode of the result of '+' , '=-' or '¥' js also '(long-)real', unless if
both operands are of the '(long-)integral 'mode, in Wwaich case the
result is also of that same mode.

Examples : A+1
3%A
b) + and - ("plus™ and "minus", monadic, priority 10)
are tne usual monadic operators on arithmetic opesrands.
'+' has no effect ;3 '-' chanzes the sign
Examples: -X
:2X+1) y
+X
c) "% ("up" dyadic, priority 38)
is the exponentiation operator.
Example : A%#5
Tne second operand must be integral (not loag-integral).
The result has the mode of the first operand.

essive

The elaboration of such a formula consits i ce
cond operand is

nultiplications, followed oy inversion, if th
negative.

n 3su
e sSée

Tnere is no operator to raise a real value to the power another
real value. Standard arithmetic functions should therefore be used.
(see 24).

15.4. Spnecial operators.

1) over and mod ("over" and "modulo", dyadiec, priority 7)

operate on intezral operanis of one s3ame length, giving a result of
the 3ane lengtn.

ALGOL68/19 REFERance JANUAL rage i

The result of A gggg‘a is the result Q of the aritnaetic
division of A by B, defined by

'A} = |Bi#!Qi+R, B ne O, A*3%Q ge 0, 0 le R 1t |B!

The result of A mod B is the value of RES = A-(A over 3)¥3,
if RES is not negative; otherwise, it is RE3+{B|
Examples
The result of e is A
10 over 3 3
10 gover -3 -3
-10 over 3 -3
-10 over =3 3
10 mod 3 1
10 mod -3 1
-10 mod 3 2
-10 mod -3 2

b) upb and lwb (monadic, priority 10
(dyadic, priority 8)

(see 20.4., multiple values)

¢) leng and short ("lengthen™ and "shorten", monadie, priority 10)
The opsrand has the mode int or real

- leng, operating on an operand of the mode int or real ,
gives a result of the mode 1long int , resp. long real ,
the value of which is the equivalent value of the operand (to be
"equivalent" is a relation which can hold between two values, see 3).

- short, operating on an operand of the mode 1long int or long
real , suppresses a long from the mode of the operand.

If the operand has the mode long 1int , the

result is its equivalent shnort value, if any. If the operand nas the
mode long real , then the result is the number of the real

mode Wwhose value lies the nearest that of the operand. .

Examples : lengz x + long 1

leng is an operator,
long is part of the long-integral-denotation
long 1

short long 123456789876 does not exist in
our implementation, because there is no short equivalent of
123456739876.

d) odd ("odd", monadic, priority 10)
The operand has the mode int or 1long 1int

The result is of the mode bogel , and nras the value of true

ALGOL03/19 RECERICE MAHUAL Page 13

i tne operand is odd, else it has the value of false .

e) sizn ("sign"™, nmonadie, priority 10)
Taz :nerand has the mode 1nt , or long int
or real or long real

The result is of the mode int , and nas the value:

-1 for a negative operand
0 for zero
+1 for a positive op=arand.

Tna <perand is real or long real .

Ta2 result is resp. int or long int .

Y211z 1s the rounding operation. The wvalue of the result must
not d4ilfer from the value of the opzrand by more tnan 0.5. The value
of round X is that of entier (X+0.5).

it ohould be noted that the conversion from real to integral is
:l;:js 2xplicit (see also thes next opsrator, entier).

The rasu lt is resp int or long int . Its value is the
grcatest integer the value of whiceh is not greater than that of the
cperand.

Sxamples: the result of entier 1.5 is 1

the result of entier ~1.5 is =2
the result of entier 2.0 is 2

n) zbs ("absolute value of", monadie, priority 10)

i. I the operand is a character, then the result is an integral
volue {(aode int), the "integral equivalent?” of ths character (this
12 2 mnzhins-dependent result, see Appendix 4).

<. tf the operand has an arithmetic value, then the result is an
ltyantic value of the same mode, tne absolute value of thes opzarand.
representation of", monadie, priority 10)
r3e operator of abs operating on a c¢haracter.

1d A is an integral value (mode int) ; thz resalt is
r X, if any, for wniech abs X = A.

ALuULD3/19 RIFSHaNCE MANUAL Page 14

In our implementation, repr zives a3 result waica can bDe internally
stored for every value of the operand from O to 255. Output of s35mne
of tnese characters may 0= impos3ible on some devices, without nowWevar
giving riss to an error condition (see Appendix 4, giving tne
available printer characters).

16. The elaboration of formulas.

The effect of the priority rules in a formula mnay be
summarized as follows

If an operand is parenthesized, or if it is an identifier, a denotation,
a subscripted identifier, or a call, tnen it is ‘'easily identified’.

If tnis is not the case, the priority rules are ussd to identify the
operands. The pareantnesizing rules waiecul follow may be used for this
purpose.

Step 1. Identify all the monadic operators.
An operator is monadic if it is at the left of an easily
- identified operand, and preceded by another operator, or if
it begins a formula. When a monadic opsrator is found,
put parenthesas around it and the next easily identified
opsrand, then take step 1 again, otherwise, take step 2.

Example :
-X+Y becomes (=-X)+Y

X~-~Y bacomes X~-(-Y)
X-=Y+-Z becomes X-(-Y)+(=-2Z)

Step 2. To identify the operands of dyadic opsrators consider the
leftmost operator of the highest priority, if any, not coatained
in an easily identified operand, and put parentheses
around it and its two neighbouring easily identified operands,
then take step 2 again.

Example
- X+Y=-2 becomes (X+Y)+2
X+Y*] bacomes X+(Y*Z)
X+Y®z%42 pecomes X+ (Y*(Z*#2))

L+Y[I+J+X]1%2 pecomes X+(I([I+J+K]%*2)

At tne end of the process, the expression 1s fully parenthesized,ani
all operands are easily identified. TIne elaboration bhezins witn tnae
elaboration of tne operands of the outermost formula (this may involve
elaboration of inner formulas, witn additional parentnesizing processes if
nzeded, as in thes last example above), followed oy the elaboration of
tne operation itself.

These rules follow from the syntax of Appendix 2, where
<01> stands for a formula.

<Upi> stands for an operator witnh priority i
(i=1,2....10).

4L3UL03/19 REFERINCE #MANJUAL rage 20
It follows fron the rule

<0i> ::= <Ui> <Upi> <vi+1>

that a tformula like X+Y-2Z Will bea elaborated froa left
to rigat.

Note that -1#%2,4 nas the value 5,

waer=2as JoT#x%2 has the value 3.

17. Coercions.

a. "Coercions" are automatic changes of mode, whicih are part
of the elaboration of a program. These cinanges affect the valus=ss
of expressions.

cxanple : In the identity declaration real X= 1, the mode
of X is ‘real', whereas tne mode of 1 is 'integral®.
Before making X to possess its value, the mode of 1 has to be
cnanged from 'integral' to 'real'. This is a coercion, xnown
as "widening".

Each coercion transforms:the "a priori" mods of an exoression
into an "a posteriori" mode.

b. Tne only cosrcions available in ALGOL 68/19 are "widening"®
and "dereferencing".

Adhen Jidening, the a priori mode is 'integral' or 'long-integral',
and the a posteriori mode is 'real' or 'long-real', respsctively.

Tne value after coercion is tne real value which is "equivalent™®
to the intezral value before coercion. Every integral value of
one length must of course have an (exact) equivalent real valus of
the sane leangzgth.

Dereferencinz suppresses a 'reference-to' before the mode of
the ziven value. Dereferencing is necessary, e.g. in the assignation

X 1= Y

if o2tn X and Y are of the 'referencz2-to-real 'mode, bascause

it is the value to d4hicn Y refers that is needed in the source,

SO0 a 'reference-to' has to be removed fromn its mode : it goes fron
tne a priori 'reference-to-real'mode to the a posterisri 'real'
nnda.,

c. Co2rcions are not permitted in all "positions" of expres-
sinns. Poasitions are characzterized oy the words : “stronz",
"Wirn", or "Weak".

ALGIOLD3/19 ReEFERENCE MATJAL Paze 27

A ~eak position i3 tnat of thne identifier of a slice
(e.g. X1 in X1[K] ; see 20.3).

A firm position is that of an operand in a formula (see 14).
Strong positions are those of
sources in assignations (see 12),
exprassions in declarations (see 3),

bounds in declarations of multiple values
(sees 20)

subscripts (see 20),

expressions in repetitive statements
(see 19),

th2 integral expression in 3 case
statement (see 13),

the boolean expression in a
conditional statement (see 18),

expressions used in calls (sese 21.c¢),

ideatifiers of calls (see 21).
Note. For some of the positions given as strong, a 'fira’
would nave been sufficient. Thay are however given as strong to
avoid departing from the Report.

d. Thez allowed coercions are :

- in a weak position : a number of times dereferencing, leaving at
least one ref ;

- in a firm position : a number of times derefereancing ;

- in a 3trong position : a nuunber of times dereferencing, pos3sibly
followed by a Widening.

Examples : real £ ;
ref ref ref real XXX ;
ref ref int III ;

in X = 1 , 1 is widened to real in its strong
po3sition ;

, {IIl is dereferenced three times,
then it i3 Jidencd ;

in XXX + 1 y XXX is desreferenced four tines, to

yield a real value ; the operand 1 is not widened (this is not peraittel

in tna firm position of an operand), but the operation + 1as been
deffined also wna2n one operand i3 real and the other onz2 intearal.

AL3OLB3/19 REFERZNCE 44 NJAL

Page 22

18. Conditional statemaeats.
14.17. If-statement.
ixanples: 1. if D 1t 0 tnen D:=
2. if b Lt o
then PUT3 ("NJ ROJT3")
STOP
fi
3. f 1t 0
tnea D:=0; PJTS("'ao roots™")
else D := SQRT(D) ;
PUTR (-3+D)/(2%4) ;
PUTR (-B=D)/(2%4)
fi .

I'me gzeneral construction of an "if-statement’

I < expression>

{

The entire statement is

if and f£1 .

T'ne expression must yield a boolean
(se2 17)

Tn2 then -part is mandatory ; the

Taz2 elaboration of a
folloWwing steps :
- elaborate th= expression ;
- if its value 1is

true , elaborate
part and skip the state

nents of the
- it
angd

e , skip the

its value is f
t meats of the

a2laborate th2 3

dnte taat only statements may bs conditional,

exoressions also may ba conditional.

13.2., Case-statemnent.

e ar wEan wr w—— an

"na3ze-3tatenant”
Nriien

e
statements

provides
could otherdsise

conditional statement

an 1lternative
loox lLike:

is

n <statement>{ ;<statementd>}*
e <statement>{ ;<stateneat>}*}0

enclosed between the two 3pecial brackets

result ; its position is strong

else -part in optional.

consits of tne

statements of tne then -

tenents of the

ta toen -part
else =-part,

if any.

sher=as in ALGOL o3

for 3o0ome 2omoounl if-

AL3JL50/19 REFERZNCE dANJAL rage 23
if ¢1 taen s
else if c2 then s?
else 1f
Tne gzeneral construztion is
case <expression>
in <statement1>,
<statement2>,
<statement N
{ out<statement N+1> 1}0
.esac
The expression must yield an integral result.
The 1in -part must contain at least onzs statement.
The elaboration of the case-statement begins with the
of the expression. If its value is I, witn 1 le I le N,

then statement I is elaborated; otherwise, statement N+1

Its position is strongz.

elaboration

is elaborated.

Note tnat out skip esac is equivalent to esac
ixample:
proc SWITCH = ((int N):
cagse N in goto L1, goto L2 , goto L3
out STOP
esac); ’
int I ; ... SWITCH(I) ;
19. Repetitive statement.
Zxanples. 1. for I from 10 by -2 to -5 do
C A(I]:= A(I]+ 1
B(Il:= B[I]l+ 1
)
2. for I while A+I 1t 10 do (PJTI(I))

Tne general coastruction of the "repstitive statement" is

for <identifier> }0 {

t <exoression> 10
{ by <exoression> }0 { t
4

Xpression> 10 {
(sece 11.1.)

from
o <e while <exoressioa> }0

do (<serial clause>)

The identifier following for must bs considered as being Jdeclared
tnere 4itn the mode 'integral' ; it follows from this that tne
programmear cannot c¢nange its value.

Tne first tnree expressions must yield intesral valuss,
after some coercions, bzcause the position is strong. Tne
expression after while must yield a boolean value.

DO331ibly

Senantie

W

AL3JL63/19 A7 SR LHNCE HANJAL Pas 4

Ul
(b
ne

If all parts of the statemeant are present, the semantics are
described by the following ejaivaleance

is =23uivalent to

begin int J;
J 1= <B1> ;
int K = <E2>
int L = <E3> ;
bool B ;
1 : if K gt 0
then B8 :=J 1le L
glse 1if K 1t O
then 3 := J 3e L
else 3 := true
£i
£i 3
if 3
then begin int I = J
if <gi>
then <CHAIN>
J 1= J + K ;
goto M
fi
end !
£1i
end
fhe for I -part is requaired only wnen thes value of I is used
in the chain or in the expression after while

If the from -part is omitted, thz effect is the sane as witn
rom 1

If the by ~part is omitted, thes effect is tne same as with

If the to -~ part is omitted, no test ~4ill be provid=i by that
nart on the value of I,

e - part may b2 used to introduce some other test to
p ; it may use the identifier of th=2 for -part.

et of a for - from - by - to - part may be sunnarizead
If ta= identifier has a value wWwhich does not excesd (s
tne value of the tnird expression, then the statemnents 9

vrackets after tha do are elaborated.

l'he First value to be considered for the idasntifier is tnat ol
first expressinn.

After cach elaboration of the stiatements ot the 3e2rial clauasse, a

ALJILH8/19 ASFERINCE MANUAL cage 25

ned value of the identifier is considered. 'nis naw valusz i3 2btain=3
by adding the value of ths second exporession to tne previous value
of the identifier.

To see if th= value of the identifier dozss not exceed tns valu=e
of the third expression, one has to take into account tne sizn of
th2 second expression : if it is negative (see th= exanple), 'to
exceed' is 'to be less than'.

Wwnen the value of the identifier exceeds that of the ¢hird
expression, the elaboration of the repetitive statement is terminated.

Note that even if the progzrammer changes 2 value in 21, 22 or 23
by the elaboration of the serial clause, this has no effect
on the control of the loop, bscause the expressioans are
calculated only at the beginning of the elaboration of the repetitive
clause, This is clear wshen considering the equivalence given above.

Note : The value of the wWhile -part is calculated and tested

before any elaboration of the loop, and thus it can change during
tnat elaboration. :

20. Yultiple values.

Zxamples of declarations involving "multiple values".

[1:10) real X1, Z1;
[1:10,-10:0] int X2;

[] real 11 = X1;

[] char FF = "end of file";
[1:30] char B3UFFER

A multiple value is an internal object consisting of
a "descriptor", aand a number of values,
the "elements" of the multiple value, eacn of w~aica
may b0e selected by "suoscripts'.

I'ne descriptor may be seen a3 some numbar n »f "doublets! (Ki,oi)
of integers, 1 = 1, 2, ..., n.

Ki is the i-th "lower bound",
Ji is tas i-th "upper bound®.

I'he number n W4ill be called the "dimension'" of tne nultiole
vilue ; in our implementation, tne maximum value of n is 7.

Tne nanber of elem=2ants of the nultiple value is

(UT = K1 + 1)%(U2 = X2 + 1)*,_ #(Un - &n + 1)

ALGIL93/19 RZrERANCE 4ANJAL Pagss

oY)
Us

893

no

if eacn factor of this oroduct is positive ; otnerwsise, it i3 zero.

9]
€3]

Tne subscripts select an element in the usual matnsmatical way,
i.2., to =acnh n-tuple of integers, the i-th of wnilcn lies betwee
th2 corresponding bounds, there corresponds one element of the
multiple value.

20.2 Declarations of multiple values.
£xanples of identity-declarations involving multiple values wJere
ziven at the beginning of this section.

Two constructions are possible, with or without an egqual-symbol
(see 5 and 9). We recall them :

The first one is

<virtual declarer> <identifier> = <exvression>

A "virtual-declarer" for a multiple value is a pair of special
brackets, '[' and ']' , the so-called "sub-symbol" and "pus-syambol",
4ith possibly a numnber of comma-symbols between them, followed oy
another (virtual) declarer not beginning with braczkets.

Examples:] es

[
L
[

3 t—-'l"s

i N" Im
}_4

r—||(-1‘

—t e

ef [,] long int
I'nz number of empty places betwsen brackets and/or commas spscifies

the dimeasion of the multiple value. Only the first pair of

prackets must be taken into account to determinz the dimension.

Note tnat no pouands are given in a virtual declarer. Tnis is not
neecessary, bacause bounds ars provided in tne rignt hand side of tne
declaration.

Tnz modes specified by the dsclarers ahbove are respsctively
row-of-real (dimsnsion 1)
row=-of -row-of -row-of-intesgral (dimension 3)
row-o0f-reference~-to-row-of-long-integral (dima2nsion 1)

I'ne exoression at the right hand side of ths egual-synbol must
yizld a nultiple value. Because there are neither denotations nor
oparations for multiple values in ALGUL63/19 (with the exceotion of
rod-nf-character, see below), the only po3sible expression thesre is
an identifier (34 exampnle at the beginning of this section). 1In
ALOJL 63, otner expressions are possible.

If the modz is row-of-character, th2n the expression may be a
denotation (see the Htn examnple above).
I'ne 32cond 2033ible construztion is

<az2tuial declarer> <idantifier> { , <identifier> }¢#¥

ALSILD3/19 e ERsNCe 4ANJAL Pize 4
Se2 tne first tao e2xanples at the beszinning of tanls seation.
"Actual deeclarers" for multionle values begin like {ormal declarers
J4ith tne fact tnat "'bound pairs" must be ziven betwsen tn=
brackets and/or tne comnmas, to allowWw the raegquired memdory raservation.
A pbound-pair has tne form
{expression> : <exprassion>

: is tne "up-to-symbol®.

The position of the expressions is strong, they must yield integral
values.

Example: [1:N,-1:4 over 2] int ABC
Remember that the mode of the identifier A3C is
reference-to-row-of-intezral.

A declaration of this Xind involves tne reservation ¢ memory space
for a multiple value of the mode specified by the declarer. The valus
of the first expression of the i-th bound palr becones the i-th lower
bouad (see 20.1) of the multiple value, and the value of the sscond
exoression of the same bound pair becomes the i-th upper bound.

Another example :

. {1:10] ref [].real TRTR

Only tne first pair of brackets may nave bounds (and aust also
have bounds in an actual declarer). In tnis exanple, m=2nory space
is allocated for ten namnes (addresses).

Note that two pairs of prackets never follow eacn other, i.e. tne

elements of a multiple value are naver themscslves aultiple values.

2).3. Use of multiple values.

Zxamples of statements (takingzg into account thne declarations at
the bezinning of this section) :

real X ;

X = X1{1];
£1{1]:= 2 ;
XK1[2]):= Y1[K+1];
L1 1= L1
X2{1,-1):= 0

'he zeneral construztion
<identifier>{<expression> { , <exoression> }#]

WAiich app=2ars in tn=s examnples above i3 called a "slicev, or
"31b3cripted identifier". [t 15 o0ne of the possible syntactic

AL3OL03/13 RoraRANCE MANJAL Page 23
foras of an exoression (see 13).

[t selects one element from a multiole value, or its aidress,
according to the rules explained below.

Tne mode of the identifier must besgin with 'row-of', or
'reference-to~-rowd-of '. The latter case may be obtained after
dereferencing a numnber of times. Since the position of tne identifier
iz 'weax', one 'reference-to' must be kept.

Tne position of the expressions is strong. Since they mnust yield
intezral values, only derefencing is possible here. Tne
values of the expressions are the subscripts shicia select an elemant
of tne multiple value (see 20.1).

I'ne nunber of subscripts must be equal to the number of row-of's
at tne bezinning or after tne first reference-to of the mode ; this
12an3 tnat only one element may be sslected, and not true ‘'slices!
like in ALS3OL 63. :

If thes modz of the ideatifier begins w#ith 'row-of', then the
n10d2 of tha slice is obtained by removing all the row-of's at the -
n2zinning of the mode : one element is selected oy the subscript(s).

ixanole : in tne assignation

[

mode of Y1 is row-of-real ;
mode of Y1 [1] is real ;
selected element is that with subsecript 1.

ct ot ¢t
DS
M b w

If tne mode of the identifier begins w#ith reference-to, then the
node of the slice is obtained dy removing all the row-0of's whica
immediately follow the first reference-to ; this means that not an
2lement of the multiple value is selectad by the subscript(s), but
its address.

T'nis 1s necessary in assignations like
A1[1]:= 3.14 '

ine modas of X1 is reference-to-row-of-real ;
2 mode of X1[1] is reference-to-real.

e 322 Aay it is nacessary to keep one reference-to in the

DN A
e of tne ideatifier.

[a

i{ tane value is
~34 on2ur after &n
=<47n9le, in

2ded, and not 1its address, ones dereferencing
sz2lection of the nane by the subscriost(s). for

ne
]

i1 1) = Xel2,-2]
22 node of thne ideatifier X2 is

reference-to-rod-nf-rod-of -inteagral ;

AL3OL63/19

tne a priori

REFER2dles AANJAL Paze 2)

mode of X2[2,-2]is

reference-to-integral ;

the position
then widened
needad to be

of a source bzing strong, X2 [2,-2] will bz dereferenced,
to give thz a posteriori mode real, waicu is
assigazsd to X1[1].

In the assignation 21 := X1, a multiple value is assiga=d (after
derefereacing) to tne namne whica is the value of 711,

Another example : Fr(2] eg "n" nas tn= value of true .

20.4 Tnz operators upb and 1lwb .

("upper bound" and "lower bound").

These operators are monadic Witn priority 10,

or dyadic witn priority 3.

As dyadic operators, thzir first operand is an integer (moie int)

with 'row of'.

The result
bound (resp.

As monadic

thelr second operand has a modes beginning

is an integral value (mode int), the n-tnh upper
lower bound) of the multiple value of the second opzrand.

operators, their opzsrand is a multiple value. Tne

result is ths first upper bound (resp. lower bouand) of tnat aultiple

value.

cxamples :

= 3 upb X5 ;
r I from Llwd X1 to wupb X1 do

r")><

These operators are especially valuable W4aen passing a multiole
value to a procedurse (see 21) : the bouads, wWwnicn are part of the
value (see 20.1), are passed tozether with the elemnents, and can bYe
acceded in the procedure with the aid of thz operators upb and luh

A "routine"

is a value (internal object), wnicih mnay Dbe possassel

by a routine denotation or an identifier. Thz node of a routine
bezins WJith 'procedure'. This explains way we W41ill s0metimes
Write a "procedure" instead of a routine.

A routine is defianed a3s 2 sequence of symbols whaichr is the sane

a3z som= blozxk

(see 21.3).

In nigh-level languiages, there are zenerally tWo constructions

o2f tais xind
are called by

Wwitnout paraneters, Jdelivering

in

"saoroutines”, with or without parameters, J4nicn
'call'~stateneats, and "funactioas", also xitn oHr
value, and W~ailceh ecan ba2 opzrands

-1
2xpressions. ALSOL 93/19 zives the pnossibility to define only

Alaoln3/13 Ragsn SnCs 1AJAL rags 30

tne former of tha2se two constructions. dowever, matnenatical functions
iefin=sd in tne standard prelude (s3e2e 23 and Aopendix 3) may
pe usad. In ALSOL 63, both constructions may be 4definzd and used,

A

A routine may obe seen as a piece of program (tne routine denotation),
A1ich 1is written at some place, but has to be elaborated at

sone dther place(s) (the call(s)). Tnhnz2 parameters are o0a2 43y Lo
transfer data from or to the calling program. Another way to

transfer data is to use the identification conditions (see 27.1) :

it is possible to wWrite the progran 30 that an identifier possesses

dne same value, inside and outside a routine.

Thz node of a routine, like that of any other value, is specified
by a declarer, the gzeneral coastruction of wnich 1is :

proc{(<virtual declarer> { , <virtual declarer> }¥*)]

cxamples :

declarers mode

proc procadure

oroc (int) procedure-with-integral-parameter
proc (int , real) procedure-with-integral-paramneter-

and-real-paraneter

Remember that virtual declarers may not contain bounds, but only
brackets and commas, if tney contain declarers for multiple values.

Zxample :

aroe ({,] real ,[(] int)

Althougnh the modes of the matnamatical functions may not explicity
appear in any ALGOL 53/19 program, let us meantion here tnat they are
particular cases of modes of procedures delivering values. The declarer
for suchh a mode is obtained from the gensral coanstruction above
by adding tne mode of the deliverad value.

Zxamnple :

h

I'ne mndz2 of the sine function is
'orocedure-witn-real-paraneter-real’
and its declarer could be
progz (real) real

21.2. Declarations.

1) proc A = (: skip) B does notnine 4

LGOL65/19 REFERINCT “MANUAL Page 31

2) proc (ref real) 3 = # adds 1 to the value #
((ref real X): # to wnicha #
: + 1 # the parameters refers #

3) proc C = ((real X, ref real Y): Y:=X)

assigns to the second paramster the value of tae first

4) proc D = # permutes the values #
((ref real X, Y) : # to Wwhicna the two #
begin real Z ; # parameters refer #
Z 1= X ;
X t= Y ;
Y := 2
end

Tne general construction for an identity declaration of the first
kind (with =) of a procedure-identifier is

proc[(<virtual declarer> { , <virtual declarer> }#*)]
<identifier> = ([(<parameter> { , <paramneter> }*)]:
{statement>
)

where <parameter> stands for
<virtual declarer> <identifier> { , <identifier> }#*

The second kind of a declaration is used to declare identifiers
of the mode reference-to-procedure... . Examples are

5) proc £1, E2

1Q

) proc (ref real) F

10

7) proc (real , ref real) G

3) [1 : 3] proc d

The mode of F in (6) is
reference-to-procedure-with-reference-to-real-paranzter.

The node of 4 in (8) is
reference-to-row-of-procadure ; bounds must be given, bacause the
declarer is an actual declarer.

The external objects appearing at the right of '=' in the
declarations (1) to (4), and in the general construction following
tnem, are "routine denotations". In ALGOL 53/19, this is the only

place Wwnhere they can appear.

Note that the routine possessed by the identifier (A, B ectc.)
after tne claboration of its declaration is not the routine
deaotation, but a sligntly altered construction, which will in turn
be altered before the elaboration of a call of this routine ; we will
only zive th2 final block whicn is elaborated (sse 21.3).

ALGUL63/19 AEFERENCE MANJAL Page 32

The syntax of a routine-denotation is given above, as the part
of the syntax of a procedure declaration at the rignt of '=' . d2
note

- the routine denotation is enclosed betwsen an open- and a close-
symbol.

- a "ecast-of-symdol" (:) is aﬁways prasent ; it separates the parametears,
if any, from the statement ;

- the parameters, if oresent, are enclosed between an open- and 2
close-symbol. In this case, there are two open-symbols at the
bezinning of the denotation ;

- the various kKinds of statements are given in tne grammar at
Appendix 2 (see also 11.1) ;

any one of them, but only one, may be present at the right of the
cast-of -symbol. E£xanples (1), (2) and (3) are clear enougn. In
example (4), the statement is a3 block, wnich is one way to transforam
more than one statement, together with the necessary declarations
nreceding them, into a single statement.

Next Lo the conditions of the gzrammar of thes Appendix 2, the
procedure declaration must satisfy the following coundition about tne
paraneters ,

If the virtual and the formal parameters are present, then
for each virtual declarer between the brackets at the left of the
equal-symbol, there must be 'something' in the parameter list at
the right of that symbol, and in the same sequence

- either the same declarer followed by an identifier (example 2),

- or an identifier contained in an identifier list following thz sane
declarer (example : proc (int , int) A = ((int 3, C)

Otherwsise, the virtual declarers group at the left of the equal symbol
nay b2 omitted (this will generally be the case).

Example
proc (int , real) A = ((int B, real C): skip)
may be replaced by
proc A = ((int B, real C): skip)
21.3. Use of routines,.
sones exanples are given below ; more will bes given later. tor

tnz2 following examples, consider the declarations at tne beginning
of this section, and

real o, N,X ;

ALGJILo3/13 RIFERINCE MANJAL Pagze 33

J) =1 1= A
10) E2 := E1 3
11) F :=2 3
12) & :1= €
13) A

14) B8(4) ;

15) £(M) ;

16) C(1,4) ;

17) C(M,N) 3

13) D(M,N) ;

19) H{3] := E1 ;
20) M: SIN(M+1 0)+C0O3(CO3(X));

(9) to (12) are assignations (see 12), performed with routines, (13)
to (18) are "calls" of procedures delivering no value ; (203) contains
three calls of mathematical functions, delivering 'real' values.

After the elaboration of (9), the name (address) possessed by &1
refers to the value (routine) of A. The elaboration of (10) is
analogous, but involves first a dereferencing of E1. After the
elaboration of (9) and (10), the names possessed by E1 and E2 both
refer to the same routine. (11) and (12) show oW the modes of tne
source and of the destination must correspond in an assignation.

The general construction of a call is
<identifier>[(<expression> { , <expression> }*)]

The positions of the identifier and of the expression are strong
(sece 17).

Note : H{3] is not a call, because ao subscript is allowed
in a3 call. To call the intended procedure, two instructions have to
be used, for example

E1 := d[3]) ; E1;
(remember that £1 has the mode 'procedure').

Thz moide of the identifier - after dereferencing if necessary,
mu3t pegin witn procesdure. I'ne mode of eaczcn expression - after
coercion(s) if n=cessary - must be the 3ame a3 tnat of the
corresponding parameter in the declaration of the identifier (see
aereafter).

I'ne elaboration of a call of a procedure delivering no value is tne
2laporatioa of the block obtained as follows

1. A copy is made of the routine-denstation of the declaration of
tne idantifier of the call.

2. tach paraneter 1is replaced by an identity-declaration, Jnzre
the left hand side of the egual-symbol i3 the oarameter itseslf, and
tnhe rigant nand side the corresponding expression in the call (the
nunoer of expressions must of course be equal to the nunder of
identifiers in tnhe declarations, with appropriate modes).

Thnis ~ould zive, Aith (2) and (14) above

AL3OL63/19 ASFERENCE MANUAL rage 34

ref real X |

dith X instead of M in the call, w2 would nowever come to

]

e

real X = X

#aica is unacceptable. To avoid such a situation Wwhen it appears,
each occurrence of X inside the declaration of B should be replaced
by another identifier, not already contained in the progran ;

this replacemeat must occur before substituting the declarations for
tas parameters. In the last example, one could obtain

><

ref real X1 =z X.

3. Tne open-symbol of the parameter list is deleted.

4. The close-symbol of the parameter list and the cast-of-symbol
following it are replaced by a goon-symbol (;).

5. All comma-symbols of the parameter list are replaced by goon- =
symbols.

6. The open-symbol and the close-symbol of the routine-denotation 3
are respectively replaced by a begin-symbol and a end-symbol.

The copy thus modified is elaborated ; if in the routines-denotation

there i3 no jump (see 11.4) to a label outside that block, tas
next statement will be the statement following the call, if any.

Zxamples '
1. Tne elaboration of A is the elaboration »f

begin sxip end

2. The elaboration of B(M) is that of

begin ref real X =i ;
X (= X + 1 -
end
3. T'ne elaboration of B8(X) is that of .

The call 3(3.14) is incorrect, because 3.14 nas tne mode real ,
Wwhereas tne parameter has been declared ref real , and there is
no mode conversion adding a ref before another mode. Such a call
w2uld pbe rejected by thz syntactic analyzer.

Un the otner nand, C(H4,«) and C(1,d) are correct ((16) ani (17))
D2cads2 ths position of the expressions is strong : the ¥ will
D2 dereferenced to nave the mode real, whereas tne 1 will be widenzad
to tne mode real.

The position of the identifier in the call is also strone : a

AL3OL03/13 RIrER NSk MANUAL raza 33

dereferencinz of ¢ will take place before the elavoration or tas
call £(M) of (15).

The elaboration of a call of a procedure delivering a value follows
the same rules as zabove, with the exception that the block nas a value,
whicn is the value of the call in the expression in waicn it is contained.

for example, the value of the call CO3(X) is the 'real' wvalue
dnich 1is the nearest to the cosine of the value possessed by X.

21.4. Separately compiled proceadures.

Prozrams using "separately compiled procedures™ must be precesded
by pseudo-declarations to specify the mode of these procedures ; the
pseudo~declarations are enclosed between two pr 's (prazmnat-syabols),

and separated by comma-symbols.

The separately compiled procedures themselves ars simply procedurs-
dzclarations.

The order of compilation of separately compiled prograzs has
no snecial meaning.

Examnpole of a separately compiled orocedure, itself using
another separately compiled procedure.

pr proc(int) PRO31 opr

end % of the main programn %

pr proc PROS2 pr
prog PROG1 =
(C int I) :
if I g£ O
then PRS2
Fi
) # end of first procedure #
proc PROG2 = (: PUT3("...."))

Note tnat absolute s2curity is given to the oprogranmer With
tne use of pragmats and separately compiled procedures:

- if, in a pragmat, the mode of an ideatifier
doe3sn't correspond with the mode of an external procedure
or witn tne mode of a previously comnpiled pragnat, 2a
syntactical error arisas,

- 3 test is providzd to verify if tae node of a separately

AL3IL63/19 RofsRanls A4 vJAL Paze 3D

comnpiled routinz corresponds to sonz2 pragmat (if no onragzaat
is found, one is created).

- no test on pragnats ozcurs if option JJ0IZZ{ is active (tais
1as no conseguence on security, be2cause ao TEXD file i3 gea=zraten).

Note that the coapiler use3s and saves C45 files with
FILSTYPE 'PRAGHMAT' to comnpile suca programs.

If an error coacarning a pragmat-identifier is detected, all [SKT
files of prograns using tuis pragnat-ideantifier are erased. Furthznore,
the ‘'identifier PRAGMAT' file 1is also erasei.

21.5. "Common' identifiers.

-

ror further information about this feature, sese Anpendix 5.
21.6. Passing labels as parameters.

A tricx can be used to pass a label as parametsar or to have
3 label in common. This is achieved by using a procedure:

proc SO0TO1 = (: zoto LABZIL1)

fou pass GUTOU1 as parameter to another procedure or you nake
3JTO1 an identifier in common. Calling this parameter will aave
the desired effect.

A prozram actually written by a progranmer in ALSOL 53
(called a "particular progran") must be seen as beeing enclossi in an
outer block, containing some dzclaratioas. Tnis block contains tnae
30-called "standard prelude”™ and "library prelude”, preceding tns=
progran, and the "standard postlude", following it.

Thz standard prelude of ALGOL 53/19 contains tne opesrator-
daclarations (see 15) (tnere are no explicit opsrator deczlarations
in AL3OL $3/19) and the declaration of tnz2 mathenatical fuanztions
(see 24).

The lioprary prelude contains all imnlicit dazclarations, oWn to
1 particular implemeatation. Fhe library prelude of ALIOL 03/19
is ziven in fopendix 3. It contains the dzclarations of input/outout
(sea 29) 2ad conversion routines (sees 20), and otner utility routines.

3eparately compiled prozedares, when bdz2ing 23lled in another
orozran, MmMu3t als30 bs tnought as heinsg contained in the lidrary

ALGOL63/13 RersRoNCE AANUAL Pazre 37
preluie.
I'ne standard postlude contains

ZXIT: CP("CLO3E RDR"™); CP("CLO3E PUN");
CP("CLO3Z PRT NAM& RUNLIST aAL3OL™M)

Note that every program zoes throuza tunls standard »ostlude,
even if it terminates abhnormally (with runtime errors).

24. #dathesmatical functions of the standard prelude.

"Mataematical functions™ are provided in ALGIL 63/19 under
tne form of procedures deliverinz values, to bz used in calls.

. gxample :
F iz SIN(X)

Tne mathematical sinus of tne value of X is couputed, and
the result is the value of the call SIN(X) ; its mode is 'real'.

All mathematical functions of the library prelude are built along tn
' sane line ; tneir names suggest the computed fuanction, togatnsr Jitn
the lengtn of the argument and result. The numerical alzorithas
are those used in the corre;pondlna FURTRAN-functions from thea
I134/350 DO3 system.

The table of Appzndix 3 (A3.3) gives the identifiers 132d,
togethar with tneir modes. Restrictions on tae values of the
parameter are also given, and tne corresponding error
cods wWhen tne calculation fails.

Sxamples of the use of matnematical functions.

1. To calculate tane sumn of the sguares of a sine and a cosino.

(/JO

:=0.39
CO: (x) %2

2. To calculate a non integral power of a real numnbar.

real A,X,Y ;
Ar= 3.14 5 Xi= 3.15 3
{:1= E) P(X*LN(A)) ;
ote : A#%*X is not permitted necause X is real, but tne

routines (L)ZXP and (L)LN may be used for the purpose.

25. Inout and output routins

I I I T R R

A complete set of "input/output routinss" is nrovided in
ALSIOL n3/13. Tney are nost those of ALSGOL HY.

=)

=

ALGIL05/19 RITEHANCs AAWJAL Page 33

| !
Access to, and control of:
one virtual card readsr,
on2 virtual card puncher,
onz virtual line printer,
one virtdal console,
virtual tap=s and disks.

is mnade possible by those routinss. They are basic in the sanse
tnat they achieve the pasic transfers of data (characters or bytes)
and control of equipement. More elaborate routinss can b2 written
by the user, but all basic possibilities of ths egquipement are
available.

Blocking and deblocking of the records must be done by the user.
No simultaneity of input, output and processing is made possible.

Conversion of data from and to character string can be done
by using another set of routines (see 26).

Thne examples at the end of section 25 snow now the input and
output routines snould bz used in connection with the conversion
routines.

20. Conversion routines. Input-output with conversion.

25.1. Basic conversion routines.

[} 4

The "conversion routinas" of Appandix 3 (A3.3) convart data

to or from character string representation, from or to internal code
corresponding to the mode of the data. Tae ¢haracter string considered
is part of another character string (in a2 typical usz, an

output or an input buffer). . :

Tney will normally be used in conjuaction with the input and
output routines mentioned in section 25. Thgy are ziven by pairs,
one normally usesd on input, the other one on output, for the same
node of data. :

Zxamnples.

1. Reading a card containing a character string and a real numnber.

[1:30] char 3; [1:10] char TITLE ; int PAGE;
READ(B,1,80);

rac(s,1,TITLE,1,10) ;

INI(3,21,2,PAG2);

2. Ariting a line with =2 title and a paze nunber (consider also
the declarations of examnple 1 in connection with tne following
instructions).

ALGOL68/19 REFERENCE MANJAL Paze 39

[1:120]) char LINZ;
BLANK(LINE) ;
FILL(LINE, 110, 4, "PAGE");
TRC(TITLE,1,LINE, 30, 10);
QUTI(LINE, 115, 2, PAGE);
WRITE(1,LINE, 1, 120);

26.2. Input-output of one element with conversion.

A simplified set of combined input or output, and conversion routines
is also part of the library prelude (see A3.56). They make it
possible to read one elementary value directly into a 'variable', and
to write such a value on a line of the printer.

Exanple
:L..If. A!B!C’D;
GETI(A); GETI(B); GETI(C); GETI(D);
PUTR((A+B+C+D)/4);

These instructions read 4% integral numnbers, each onsg being
puncned on a separate card, and print their aritnmetic mean on
oneg line of the printer with a standard floating point format.

26.3. Formatted input-output.

- - -G n - .-

ity

Formatted input-output®" is made possible using three routines
FORMAT, GET, PUT.

The first one activates a "format® string to be used in the future
input and output calls of “GET" and "PUT". The routines G5T and PUT
have a variable number of parameters. Their elaboration is descri-
bed at appendix 10, together with their associated format calls.

Simple exaaple :
int M,N ; M:=3 ; N:=zd ;
FORMAT(3,"2(I4)") ;

PUT(M,N);
FORMAT(1,"3TAZAM"); [1:10)peal T; GET(N,T,M);

27. Identification. Context. Scope.

A "range" is either a block, or a routine denotation or a do
statement.

Each occurrence of an identifier in a program is eitner a
"defining occurrence", or an "applied occurrence”.

ALSOILH3/13 R cRENCE MANJAL Page 4J

4 ziven occurr=ance of an identifier is a defining occurr=nzcz 1if it
follo4s a declarer, or if it is a label (sese 11).

Jtherdise it is an applied occurrence.

A given applied occurrence of an ideatifier may "identify” sone
i2fining occurrence of the same identifier by tne following steps :

Step 1 : The gziven occurrence is termed the 'home', and step 2

is taken ;

Step 2 : If there exists a smallest range containing ths nome,

tnen this range, with the exclusion of all ranges contained within
it, is termed the home, and step 3 is taken ; otherwise, there is no
defining occurrence which tha given occurrence identifies.

Step 3 : If the home contains a defining occurrence of the considared
identifier, then the given occurrence identifies it ; otharwise,

step 2 is taken.

cxample : in the following example, a defining occurrence of an
identifier and an applied occurrence of the same identifier are
placed aoproximatively along ths same vertical line.

begin real A ; hegin real A ;
A = 1

end ;

=
SN 1]
Y

(1) Tne mode of a defining occurrence of an ideatifier, and that
of an applied occurrence of the same identifier which identifies the
first one, are »2ne same mode.

Tais means tnat the mode specified in a declaration for a ziven
idzntifier must bs considered as the definition of the mode of the
sana identifier in all applied occurrences whicha identify the first one.

(2) E£acn anolied occurrence of an identifier must identify sone
42fining occurrence of the samne identifier (there must be a declaration
for eavery identifier or it must appear somewnere as a label ; the
condition is in fact stronger, sze 27.1).

It saould be noted tnat the defining occurreace of some idzntifiers
2an be found in tne standard prelude (see 23), or in the
liorary orelude of the particular impleneantation ; this is the casa
for tna label SXIT , and for tne identifier 5IN, for examnle, in
our implenzantation (see 24 to 25). +further, a truzs declaration may
b2 renlazed by a »nseudo-declaration at the head of the prozran,
batWzan tWo pr-symhols (see 21.4.) or two go-synd>ols (sze 21.5.).

Ja=2 adlitioaal rule must be rpesnocted in ALGJIL 53719 ¢ a Jdeclaration

ALJOL0o3/139 RowsHanCs MANUAL PaTe 40

of an identifier aust (lexi

O
ozcurence of it (tnis rule 4o

cogranihically) preacede saca aponlied
4223 not anply to labels).

AS a consequencze, to declara two mutually racursivs proceduras,
the following trick nas to n2e used

prog Pj

oroc A = (:... ;P; ...);
proc 3 = (:t...345 ...)3%
P:=3;

another rule, which has notning to do with identification, =3y bde
nentioned nere : bafore elaborating an instruction with an applied
ccurrence of an identifier, the declaration containing the defiaing
occurrence of that identifier must nave bezn elaborated.
This maxes it possible to write mzsaningful prograns like this :

int N;
SATI(W);
[(1:N] real X;

dowever, the effect of these prograns is undefinzsd (s=e AT.):

<. NI pr proc A pr
goto Lj goto L; cee
int I; proc 4 = ... A; %Zassuns 4 uses Iz
L:e I:i=1; L: A int I;

.
. ..

SAVE COM(I) %sese 21.5.4%

i

A "reacn” is a range, with thz exclusion of all its constitusznt
ranges.

(3) Two defining occurrences of tha2 same identifier may not apoear
in the s3aze reach.

real X ; int X ; 13 not allowed, bDut

Exampnle X ;
27.1 above 1s correct.

: a
tne example of

D R I R e

Tne zonditions (1), (2) and (3) are called "coatext conditions™.
fney are cnecxed at compile time.

. wm e Eb e e w ap aw e m M e A a o e e s -

2 are dealing here #ith a »nroblen of anotner kxind., It 13 ziven
toretner 41iCn T2 ¢ontext conditions, Decailse it has soa2tnins
to 42 4ith ranges.

S5/139 Reregl Nl MANUAL rage 42

[

aL3JL

v

£acn value (this is an internal object) has onz specific "scope".
The scope of a plain value is the prograna (see 4 and 11).

The scope of a nane is tnhne smallest range containing the declaration
57 thez identifier which poss=23ses that name.

Tne scope of a multiple value, and that of a routins, Wwill be
ziven pelow.

Let us first see which problems arise in zonansction with scopes.
It must first be understood that there are only problems ~ith values
involving names. T[fnere is a "scopz conditions" in assignations :

(4) The scope of the source must be not smaller than the scope
2f tne destination.

Tais may be sketched as follows (the brackets represent scopes
5% corresponding values in an assignation from right to left) :
g g

ey
]
]

ey
'
\

|
I
|
|
LG
1
!
i
|

f
{
or H
g
is allowed. is not allowed.
Zxamples of programs :
begin bezin
int Y ref int XX ;
Y = 2 int ¥ ;
begln begin
ref int YY ; int X 3
1Y := ¥ X =1
end X 1= X
end end ;
¥ 1= XX
end
is zalloned. is not allow=zd.

ne reason 41y the construction on the right is not allowsd may bde
2xo0lained by the following sketches :

") 3State after elaboration of ref int XX (outer block) ani

e
int X (inner blozk) followed by X := 1 :

4L3JIL63/13 dzrof<iCis JANJAL Page 43

2) State after elaboration of XX := X : the address (1) has
been conied into (2)

| _XX_l--=<_AD1 >=->--<_AD3 >~

. :—&—:1"'<-423_>——>--1_i_{-<-
. 3) After leaving ths inner block, the right half of thzs sketecn

abpove 'disappears' i.e. the corresponding nexnory space may have
heen freed and used for other purposes

{ XX 1===<_AD] >==>==<_AD3 Dmmmd === 2722

N

The address (3) now refers to an unoredictable value (pa2raiads
to no valus at all). The assignation Y := XX 1s no lonzer possible.

I'ne scope of a multiple valus is the smallest of tne scone
elemeants, if aany ; othersise, it is th= program. The scopa
multiple value can chanze during elaboration.

Exannle :

bezin
[1:2] ref _real _YY ;
real X1 ;
begzin real X2 ;
bezin [1:2] ref real X{ ;
XX[1] = X1 ;
KX[2] 1= X2 5 #1i
A4(2] 1= X1 #2¢
end
end
end

I'ne namne AL refers to 2 multiple valu=a, thz2 ~2lenents »F whian
are 01123,

After tne elaboration 2f tne assiegnation #1#, tne 32002 oF that
nultiole value i3 that of X2 ; after thz 2lahoration oF #2#, 1t is
rtaat of X1.

AL SJLod/13 AP ERENCs AANJAL Pare 4

It is aecessary to know th2 scope of a multiple value, defore
assigning it to a nane. Tnz assignation YY :=z XX would not b2
valid, if it took the place of tne assignation #2#, but it would
after it.

Being a dynamic condition, the scone condition cannot bz checxked
at compile time. In our implementation, it 1is not checked at
elaboration time zither. wWhsn not satisfied, it can produce
unpradictable results.

The scopz of a routine possessed by a given denotation D is tne
smallest. rangze containing that dsnotation.

txample with »orocedures:

begin
pro¢c PRICT = ((ref proc PAR):
begin
proc A = (:)
if # a boolean ZXPR # then PAR:=zA elses PAR:=STOP fi
end

proc VAR;

PROCT1(VAR);

VAR # tnis program violates ths scopes condition
if the value of EXPR is true #

(D
R

[}

AL3DOL63/719 APPENDIX 1 Pagze 45

A1, NON EXISTING

AL3ULh3/19 APPENDIX 2 Page 456

A2. A context-free grammar of ALGOL 63/19.

The writing rules of the ‘'context-free zrannar® use the {ollowingz
meta-symbols

< and > to enclose "mesta-notions" ;

HH to separate a meta-notion from its definition rules
(this meta-symbol can be read : 'is a', or 'must be a') ;

| (read : 'or') to separate alternate definitions ;
{ and } to enclose two or more alternate definitions ;

{ and }* to enclose a part of a definition rule waich may be
reproduced a nunber of times, including 0 ;

{ and }+ idem, except : at least one time ;

{ and }0 iden, except : O or one tims, i.e. optional part.([and]
are also used in the manual itse1lf; when some ambiguity arises,
refer to tnis appendix).

Jther marks stand for themselves, and are ALGOL 68 symbols.
42ta-notions and/or ALGOL 68 symbols, when not separated by
nata-symbols, must follow one another (but sse 7).

Zxample : the rule for <degl> should be read (someswhat expanded)
A declaration is

either an actual declarer followed oy an identifier, and pos-
sibly folloded by other identifiers, with commas as separators,
or a virtual declarer followed by an identifier, followed by an
eqJil-symbol, followed by either an expression or a routine.

Thnere nay be some slight departures from the rules given above,
Dut W2 think they are obvious enouzh to n=ed no furtner explanation.

T.<program>::={ pr <virt decl suite> pr | co #see 21.5.# co }*
s

o}
{ {<label>:}0 <block> { SAVE #see 21.5# }0 |
<virt decl> <id> = <routin=> }
<plock>::= begin <serial clause> end

<serial clause>::={{<stat>;}*<decl>;}*
{<label>:}0<stat>{;{<1label>:}0<stat>}*

<routine>::=({ (<param> {,<param>}*) }0: <stat>)
<param>::=<virt desel><id> {,<id>}*
2.<dael>ri={<azt decl><id> {,<id>}* |

<yirt dercl><id> = [<exor> | <routinz> }}
<virt deel saiter:i=<virt declry<ido{ ,<idy J#{ ,<virt docl><i>{,<ii>1*)x

ALuJLS3/19 APPSNOIX 2 Pata 47
<virt decl>:i=t[{,}*]}0 <virt nonros decl>
<act decl>::={ [<bound>{, <bouni>}*] }I<virt noarows decl>
<houad>::=<exor> : <expr>

<virt noarou decl>::=z { ref <virt decl> |

{ long }o{ int | real } i bool | char |
proc { (Kvirt decl> {,<virt d=2c1>}*) }0 }
3.<stat>::={ goto <id> | skip | <block> | <expr> := <expr> |

<id> [(Kexpr> {,<expr>}*) 10 |

if <exor> then <stat> {;<stat>}*[el
{ for <id>}0{ from <expr>}0{ by <expr
{ Wnile <expr>}0 do (<ssrial clause>)
case <expr> in <stat>{,<stat>}#*{ out <stat>}0 esac }

se <stat>{ ;<stat>}#}0 fi
>} 0f

to <expor>}0

.Lexpr>::=01

<0i>::= {<Ji+1> | <0i> <0Oni> <Ji+1> } , i from 1 to 9
<O10>::={<0p10><010> | (Kexpr>) | <base> }

<based>::={<id> {[<expr> {, <expr>}*]}0 | <denotation> !
<id> (Kexpr>{ ,<expr>}#*)}

<Op2>::z or <0p3>::= and <Opl>::= { eqa | ne }

<Op5»::={ L1t | le | ge | gt } 0pd>::= { - | +}

<upP>::={ * | / | over | mod } <OpB>::= { ** | 1wb | upb }

<Op10>::={ round | sign i odd i snort | lenz | repr | abs |
not | upb i lwb | eatier i + | -}

.<id>::=<1label>::= <letter> [<letter> <digit>}*

letter>::={ A | ... | Z} <digit>::={0 } ... | 9 1}
<denotation>::= {{lonz}0{<Kdigit>}+} true | false "{<item>}*'* |

{ longz }o{<digit>}+ E {+}-}0{<digit>}+ |

{ long 10{<digit>}*.{<digit>}+{E{+}}0 {<dizit>}+}0}

<item>::= { <any character, except the quote-character (' or 3)> |
{double quote-character ('" or 33)> }

ALGOL63/19 APPENDIX 3 rage 49

A3. Preludes and libraries.

The 'ALGASLIB TXTLIB S2' CM3 file contains the library prelude
of ALGOL68/19. .

Two kinds of routines can be found in this library
- ""standard routines"
mathematical routines : (see A3.2)

EXP, LN, SQRT, SIN, CO3, TAN, ARSIN, ARJOS, ARTAN,
LEXP, LLN, LSQRT, LSIN, LCOS, LTAN, LARSIN, LARCOS, LARTAN.

conversion routines : (see A3.3)

TRC, FILL, INI, OUTI, INLI, OUTLI, INR, INLR, OUTR, OUTLR,
QUTFR, OUTFLR, INB, OUTB, COMP.

input-output routines : (see A3.4)

READ, WRITE, LINE, PAGE, PUNCH, ACCEPT, DISPLY, TAPER, TAPZW,
wIM, RSEW, B3R, CLO3SE, DISKR, DISKW, FORMAT, GET, PJT.

- "non-standard routines"

which contain among others simplified input-output routines
(see A3.6) :

TAKE, STOP, EOF, GETI, GETLI, GETR, GETLR, GET8, GZTS,
PJTI, PUTLI, PUTR, PUTLR, PUIB, PUTS, TIME, DATE, BLANK,
DUMP, CMS, CP, ON, RESET.

Note: Programmer routines, which are the separately compiled
procedures (see 21.4) and which need "pragmats" to be used
may be catalogued in some 'TXTLIB' library (see A5.4).

ALGILB3/19 APPENDIX

A3.2. otandard routines

EXP
L "
34T i
SIN "
Co3 . i
FAN R
ARSIN "
ARCOS o
ARTAN !
LZXP proc (

LLN "

L3QRT i
° L3Ii i
LCJ3 "
LTAN i
LARSIN "
LARCOS3 "
LARTAN "

(1) Tnis Aenotation means

(2) Arzument not to close

Standard routines: Conv

S A . S e D D o D s D ar WD e e A e - -

There is no conversion her
a. Transfer into tne
raferred to by the first pa
oarogc TRC

((

Jre = 473 | 3
151D (D D W

(L e LB [l

Error 11 if one of the
b

Matnematical

- an D e A S R M P G P S En M e S S D Y D G D ML WD S D My NS W M GRS W D S W SN A W e e

3

53
59

60
61
62
63
o4
65
66
53

fate 4)

functions.

X'45C905D3"

i

B (2)

o X'U2AEACHA "

X'4DCIOFDA"

(2)

oo

S RTT)
ol
1o jw

hexadecimal 42AEACHF!

to a (2x+1)-multiple of PI/2.

ersions.

e,

raneter.

First string.

but only transfer of

"substrings™.

second string of a substring of the wvalue

3tarting at the character A[I], *#

transfer into 8,
startinzg at the character

#
301, #

a substring of length J#

following conditions is not satisfied

AL 30L03/19 APrENnIX 3 Page 59
I ge lwWdD A K ze 1ldo 3
I+J-1 1le upb 4 K+J-1 le upb 3
0 1t J

b. Transfer into the {irst string the value of the second one.

pro¢ *FILL =

ghar A, # First strinz. #
A field beginning at the cnaracter A[(I]
and with lengtna J, will receive tne

r X): # string X. If X is too long, it #
will be cut at the rigat ; if too short
it will be left adjusted in tne field
and padded to the right witnh blanks

e s
SIS o
ot jer

|

mm
[-

)
‘g zrror 12, if one of the following conditions is aot satisfied

ge lub
1 e

s =
o

OHH
el

+J
1l

jer b g

dJ

J0ote : use 3LANK to fill a string W~ith blanks.

_onnarison of substrings.

o
|

P =
ar

/\|(_,

ro2 CJi ’
(Jes A, int I, {lchar 3, int J,K, ref int R):

1
a

';..‘—‘()

Comparison of two substrings, the first beginning at A[I],
the sscond at B[J], with lenzgth K; the value of tns
result R is:

-1 , Wwhen the first substring is less than the second,

0 , when tnz2 first substrinz is equal to the second,

+1 , when the first substring is greater than the soﬂond
The comparison is made using the 'CLCL' A33EM3LER instrucztion,
which performs a logical coanarison bbtween the 'nexadscimal
values' representing the strings.

Error 10 occurs when:
K le 0,
I 1t lab A,
J 1t lub 83,
I+X-1 2t upb A,
J+K-1 gt upb 3.
¥

=]

3. Conversion of ¢haracters of a strinz to an intezral value.

AL3ILH3/19 APPuNDIX 3 Paze 51

proc INI =
((ref [] cnar A, # 3trinz A contains tae strinz #
to be converted.
int I # A field bezinning at A[I}, #
int J, # and with lenestn J if J zt O, #
i “4ith leanzth 2 if J 12 92, #
ref int Y): # 4ill become the value to wnica Y refers, #
3 Jith conversion (see below) if J 2zt O, #
i Aithout conversion otherwiss #
)

Error 15 if one of the following conditions is not satisfied :

- if J gi 0 : I ge 1lwb A (conversion)
I+J-1 le upb A
J le 255

the field contains at least one digit, followinz an
optional + or - sign, witn optional ﬁlanxs at
. any place. No other character is used.
leadingz zeroes are ignored.
the correspondinz integral value is less than 327907
. ' and 3greater tanan -32763.

- if J 1le 9 : I ge lwb A (no conversion)
2

*b. Conversion of an integral value to characters.

progc JUTI = ‘ _
' ((ref [] char A, # 3tring A receives the converted #
value.
int I, # A field bezinning at the cnaracter #
int J, # ALI], and #ith length J if J gt 0, #
Jith lenzth 2 if J le 0,
int X): # w4ill receive tns value of X, #
converted to descimal canaracters if
#J gt O,4#
witnout coanversion otherwiszs.
)
. The converted value is rignt adjusted, and nas a ninus-sign if
nscessary.

Zrropr 17 if one of the following conditions is not satisfied

- if J gt 0 I ge lab A (conversion)

I+J-1 le upb A

J le 25°

tne field is long enouzh to receive tne value
- if J le 0 I ze lwb A {(no conversion)

I+1 le upp A

2. Zonversion of caarazters of a strinz to 3 lonz-intezral value.

| ALSJLS3/19 APPuavIX 3 Paza 52

?

proc (ref [] ch £, i
= N ot tha

i
axce
geh of

n
, 2
thean tane lenzt

3
Srror 10 in the samne conditions 33 Tor error 1

| the linits of ths intezral value are 23
if J le 0, tnen I+3 1le upb 4.

? d. Conversion of a l1lonz-integral value to characters.

| proc (ref [] char , int , int , 1lonz int)
? OQUILT # see QUTI, except that if J le O, #
i # then the lenzth of the field is 4 instead of 2 #

ne same conditions as fo
if J Lle 0, then I+3 le upb 3

There are two 1input routines, oae for the mode ‘real', and
one for the mode 'long-realt, and four output routines, one for
every length numder, one for cutput uith o2r without exgoon=2at part.

a. Coanversion of characters, of a string to a real value.

((ref [] char A, # Stringz A contains the string #
to be converted.
int I, # A Tield beginning at A[I], #
int J, # and with length J if J gt 0 #
Wwith length 4 if J le 0
ref real Y): # will become tne value to which Y ref
with conversion (see below) if J gt
without conversion otherwise.
)

Zrror 19 if one of tne followinz is not satisfied

- if J gt 0 : I ge 1lwb (conversion)
I+J-1 1le
J le 255
tne field contains a number in decimal form, consisting of
- 2ither an optional + or - siga,
an iatezral part of 1 to) digits,
the letter & followed by an optional + or - sign and
an exponent of 1 or 2 dirits,
-or an optional + or - sian,
an optional intezral part of m (le 9) digits,
a point,
a fractional part 1 to J-m digits,
an optional (letter £, followed oy
an optional + or -gian, ani
an exponant of 1 or 2 digits),

o =
= ==

p—

ph A

AL3OLBB/19 APPIuDIX 3

¥
fu
U3
w
U
L

Wwitn blanks and noa significant zeross usad
freely tanrouznout the field.

Tne value of the numbar, wnen normalized under decimal form,
must have an exponent not greater than 75 in absolute

value.
Examples of valid strings :18 E 25 -55-3
.1 2.553
1. and 1.£3 are not valid.
-if Jle 0 : I ge 1lwb A (no conversion)

I+3 le wupb A
the value must be a normalized floating point number.

b. Conversion of characters of a string to a long-real value.

. proc (ref [] char , int , int , ref 1long r)
INLR =# see INR, except that for J le 0, t gth of the #
field is 8
Error 20 in the same conditions as for 19 (INR), except that
the number of significant digits may be up to 13, ani
if J le 0, then one condition 1is
I+7 le upb A.

c. Conversion of a real value to characters, Wwith exponent part.

proc OUTR =
((ref [] char A,# String A receives the #
converted value.
int I, # A field beginning at thne character #
int J, # A[I] , and W4ith length J if J gt O #
Wwith lenzth 4 if J le 0
int K, # will receive with K significant decimal #
' # digits if J gt 0, without conversiont#
real X): # otherwise, tha value of X #

)
The format of the converted value i3 a2 rignt-adjusted numb
padded to tne left with blanks, and containing a - sien if ae
: a point,
K decimal disits,
the letter &,
a + or - sign,
an exoonent of 2 Jdisits.

ar
cessary,

Normal roundinz takes onlaze, if necaessary.

Zrror 21 Wwill be raised 1f one of the following conditions is aot
satisfied

- ifJ z£t 0 : I ge 1lwb A (conversion)
I+J-1 le upb A
J le 255
J ze KD
X0zt U

ALGOL63/193 APPENDIX 3 Paze 514

K
- ifJ le 0 : I b A (no convarsion)
I U

d. Conversion of a loanz-real value {o characters, Wwith exoonznt part.

real) OUTLR
en

proc (ref ,
z gth of tns field is 8, #
srror 23-in the same conditions as error 21 (OUTR), except:

if J 1le 0

o
—
+
-
| L
[[¢]
=
&
=g

e Conversion of a real value to characters, without
gxponent part.

proc OJJTIFfR

((ref [J char A, # like QOUTR #
int I, # but without exponent part. #
int J, # If J le 0, no difference with JUTR #
int X,
real X):

)

Tne format is a right-adjusted nuaber, padded to the left with blanxks,
and consisting of : a - sign if necessary,
an integral part of 3 digits, depending on thne
value,
a point,
a fractional part of K digits.

grror 22 4ill be raised if any of the following conditions is not
satisfied

-if J gt O I ge 1lwWb A (conversion)
I+J-1 le upb A
J le 256
J ge K+3+2
K zt O
K + 3 le 13

-if J le 0 : I ge 1lwb (no conversion)
I+3 le upb A

f. Conversion of a lonz-real value to characters, wWithout
2x2o%nent part.

(refl]
=4
i

3

i

2 r 1) JUTrLR

gth of tne field is 8 for #

E

[ORTe}

[N ey

O

= O

int
I

>3
O jct
ot jcr

O -
W
('fp—-‘

Qn;
t

3' L"-I

€al
len

O LD
Q|-
D -
©
ct -

Sh . -

U
L

»ror 24 in tne 33ame conditions as error 22, except,

ALGOL58/19 APPZNDIX 3 Paze 55

if J le 0: I+7 le wupp A

A3.3.4., Boolean values.

a. Conversion of characters of a string to a boolean value.

((ref [] char A, # 3tring A contains the string #
to be converted.

int I, # A field beginning at A[I], #
int J, # and wita length J, if J gt 0, #
i with length 1, if J le 0, #
ref bool Y): # Wwill be scann=d, to find a value it

to be assigned to Y (ses below)

if J le 0, then there is no coanversion ;

if J gt 0, then the field is scanned, blanks are ignored,
if tne first non blanx caaracter is '1', then true is
assigned to Y,
if it is '0', then false is assignsd to Y.

Error 13 if one of the following conditions is not satisfied

-if J 1le 0 : I ge 1lwb A (no conversion)
I le wupb A

-if J gt O I ge 1luwb A (conversion)
I+J-1 le upb A
J le 255

the field contains more than one non blanx cnaracter,
or a non-0 or non-1 character.

b. Conversion of a boolean value to characters.

aroz QUT3 =
((ref [] char A, # String A receives the #
converted value.
int I, # A field bezinninzg at A[I], #
int J, # and 4ith length J if J gt O, #
Wwith lenzgth 1 if J 1le 0,#
bool X) # Will receive the value of X #
(see below)
)
if J 1le 0, then there is no convearsion ;
if J gzt 0, tnen thz field receive '1' in its rightmost

s a
position if the value of X is trus , and a '0' otherwise.
Tne other positions of the field, if any, arz filled ~itn blanxs.

Error 14 if one of the following conditions is not satisfiad

ALGOL68/19 APPENDIX 3 Page 55

- if J gt 0 : I ge 1lwb A (conversion)
I+J-1 le upb A
J le 256
- if Jle 0 : I ge lwb A (no conversion)
: I le upb A
I+J-1 le upb A I 1le wupb A
J le 256

proc WRITE =
((int K, # Skip K lines before printing. #
ref [] char A,# String A contains #
the data to be output.
int I, # Starting from A{I], #
int J) # output J characters #
to the first J places of the
current line.
)
proc LINE =
((int K) : # K lines are skipped immediately. #)

proc PAGE = (: #body #) # The printer is positioned at the #
first line of the next page

Limits : 0 le K 1t 3
0 1t J le 132
lwb A le I
I+J-1 le upb A

If not respected, error 30, for the three routines.

An error 30 also occurs, when something wrong arises wWith the
virtual printer (not ready, not attached,.....).

ref [] char A,# String A will contain #
the data after input.
t I, # Start filling A from A[I], *#
int J): # with the first J characters of the #
next record

ALGOL63/19 APPaaDIX 3 Page 57

progc PUNC:
(

~~ i,
s
i
I

[l char A,# 3tring A contains #
the data to ba outpnut.

int I, # Startinz from A[I] #
int J) : # output J characters into the #
first J positions of
a new record
)
Notes : Limits lwb 4 1le I
I +J -1 1le wupb A
0 1t J le 80 for RZAD and 0 1t J le 80 for PUNCH

Errors if not respected : 31 (READ) or 32 (PUNC).
An "end of file" is not detected by R=AD, but see TAKE.
An error 31 (READ) or 32 (PUNCH) also occurs, wnen something

. wrong arises with tne virtual RDR or PCd (not ready, not
attached,....).

A3.4.3 Access to tne terminal.

((ref [] char A,# String A will contain #
the data after input.

int I, # Start filling A from A[I] #
int J) # with J characters #
entered from terminal.
)
proc DISPLY =
(¢ ref [] char A,# String A contains #
the data to be output.
int I, # Start position in A : A[I]; #
int J): # output J characters into the #
’ _ # first J positions of a new line #

of terminal.

)

Notes : Limits : see card reading aad punching, except 0 1t J le 13J
Errors if not respected : 33 (ACCEPT) or 34 (DI3PLY)
An error 33 (ACCEPT) or 34 (DISPLY) also occurs when something
Wwrong arises with the virtual console (not ready, not attached,

A logical "end of file” ('*E0f' characters) is detected
by ACCEZPT and provocates an error 38.

A3.4.4 Access to magnetic tapes.

AL3IL68/19 AP2aNDIX 3 Page 56

oragc TAPSER =
((1int K, # CM35 nunber of the virtual tanse,
1 (131) , 2 (132) , ... 3
ref [] char A, # String A will coatain #
tne data after input.
int I, # 3tart fillinz A from A[I], #
int J, # Witn the first J caaracters #
of tne next record of the tan=z.
proc P): # P i3 called on end of files. #
)
proc TAPZJ =
) ((int K, # CM3 number of the tans #
ref [] char A, # 3tring A contains #
¥ the data to be output. #
int I, # Starting at A[{I] , #
int J): # J characters W~4ill be used to#
Wwrite a record on tape.
)
proc WIM =
((int X) : # C45 number of tne taps #
write a taps~-mark.
) .
proc REW = !
((int K): # CM3 number of tne tapz #
rewind the tape.
)
proc 33R =
((int K): # CAS number of the tape #
oack-space one recerd.
)
Limits : iwb A le I I + J -1 le upb A
1 le & le 4 J gt 0 1in TAPzR
‘ J gt 17 in TAP=W
Srror 35 if one of the conditions is not satisfied.
An zrror 35 i3 also detected, when something «“rong arises
Aith thes tape (unit not attacned, taps not ready,...).
wotes 1. Alternate tapz-switcaing is iznored.
2. when, on input, J i3 greater than the phaysical langta of
tnz record, fillinzg «itn blanks ocours at the rizgnht
3. Une of the following actions can be tns cause of 3 tape
input-noutout error later on:
- "over-uWriting” a record (not waen extending an existing
file by searcning for the taoe-marxk, backsoacing ona
record and starting to Jrite) ;

AL3OL03/19 APPZdDIX 3 rase 5)

- a call of [APiERrR , followed by a 2all of TAPeAa 2r Wl

- R . Y D S G D ES R M W e aR W M AN G TR M D W W W S A W

proc CLO3E = (({lchar FILE):
closes the current CAS-FILE #)

proc DISKR =
(({lchar FILE, int I, refllchar A, int J, K, proc £0F):
reads a record from the current CM3-FILE;

I is the position of the record in the FILE,

string A Wwill contain the data after input;

filling A begins at A[J], with the K first characters

of the I-th record if I gt 0, or of the next record

if I le 0.

EOF is called Wwhen the end of the file is reacned.

)

pro
(

~iQ

DISKW =
(] cnar FILE, int I, ref [] char A, int J, K):
writes a record on the current CM3-FILE;
I is the position of the record in the FILE;
string A contains the data to be output;
starting at A{J], K characters will be used
to construct the I-th record if I gt O, or
the next record if I le O
i

Error 37 occurs if one of the following conditions is not satisfied
in DISKR or DISKW:

Wb A J+K-1 le upb 4

J
0 1 le K le physical record length

=13
1o @

Error 35 (CLOSE) or 37 (DISXR or DISKW) also occurs when something
Jrong arises wWwith the FILE (file not found,...) (see the ASSEM3LER
macros r30PEN, F3CLO3E, F3RZAD, F3ARITE).

Wotes:
- the identifier FILE is the CM3 identification for a file (FILKNAME
FILETYPE FILEMODE);

- if I le 0, the transmission takes pnlace seguentially, according to
tne last input-output in the file; otherwise, I is the position in
the file (first record nis namdber 1);

- CLO3% must bz used to close a file previously used for input (output),
wnen now used for output (input); CLJI3Y may be used to ensure proper
closing of a file.

- for furtner information about CA3 disk I/0, see the ASSEM3LER macros
F30PZd, FSCLOSKE, F3READ, rSAAITZ.

ALGOLH3/19 APPuNDIX 3 Page 99

A3.4.0. Examnple of disk I/0. (3ee another example at 1.)

begin
{] cnhnar FILZ = "3X DATA A1";
{1:100] char 3UFFER; int PO3;
GETI(PO3); GET3(BUFFER);
we update tne PUS-th record of the FILE, with 3UFrER

co
DIo(d(Fle PO3,B8UFFER, 1,100
now, we make a listing of
CLUOSE(FILE);

proc =07 = (: begin CLUSE(rILE); STOP end);

)
he FILc #

do (
DI3SKR(FILE,0,307%ER,1,100,E07);
reading is sequ entlal bncaJse of the 0
PUT3(BUFFER)
)

0]
A

A3.5. Non standard routines.

TAKE = !

(ref [] char A, int I, J, proc EOF):

This routine is equivalent to routine READ, but it tests
for the CM3 virtual end-of-file on the virtual reader; a
logical end-of-file ('*EOF' characters) is also datected;
w#n2n an end-of-file occurs, procedure EJF is called;
limitations: I ge 1lwb A, I+J-1 le upb 4, 0 1t J le 30.
Runtime error code is that of FILL (12) or READ (30).

- w w anm ge oy e -

roc 3TOP = (: zoto EXIT)

1]

tnis poroca2dur2 can de used to stop the execution of a osrozran,
or a3 paranater of the proceduras TAPZR, TAKE, DISKR, ... #

2. 3tandard =zad-of-file

ALGILS53/19 APPENDIX 3 Page o1

prog LU =
(

begin PUTS("EnND OF FILE"); #printeri
FORMAT(Y4,"320"); PUT("SND OF FILE'); #terminal #
STOP

1]

nd
)

this procedure can be used in the sane context as 3TOP

d. Readinz one data per card.

proc GETI = ((ref int I): #
begin [1:80] char 3UFFER ;
proc EOF = (: begin
. FILL(BUFFER,1,80,"END OF FILZ IN ""GETI""");
PUTS(BUFFER); DISPLY(BUFFER,1,80); STOP
end
TAKE(BUFFER,1,80,E07) ;
INI(BUFFER,1,80,I)
end
)
proc GETLI = ((ref long int LI)
’ begin [1:80] char BYFFER ;
proc &07 = (begin
FILL(BUFFER,1,80,"END OF FILE IN "73STLIM")
PUT3(BUFFER); DISPLY(BUFFER,1,380); STOP
end
) 3
TAKE(BUFFER,1,30,E0F) ;
. I4LI(3U7FER,1,30,LI)
end
)
oroc GETR = ((ref real R):
begin [1:80] char BUFFER ;
proc 20F = (: begin
FILL(BUSFER, 1,80, "END OF FILE IN ""3ETR""™")
PUTS(BUTFER); DISPLY(BUFFZR,1,80); 3TOP
end
) 3
TAKZ (BUFFER,1,80,E0F) ;
INR(BUFFER,1,89,R)
end

)

AL3QOL68/19 APPENDIX 3 Page 62

proc GETLR = ((ref long real LR)
begin [1:80] char BUFFER ;

proc EJOf = (: ©begin
rILL(Bu?FER,1,8 TEND OF FILE IN "GETLR"")
PUT3(BUFFER); DIoPLY(dJLFER,1,80); STOP
end

;
TAKE (BUFFER, 1,80, EOF)
INLR(BUFFER,1,80,LR)

proc GETB = ((ref bool B):

begin [1:30] char BUFFER ;

proc EOF = (: begin
FILL(BUS#ZR,1,80,"AND OF FILE Id ""GET3"'"")
PUTS(BUFFER); DISPLY(SUFFER 1,80); STOP
end

)
TAKE (BUFFER,1,80,E07) ;
INB(BUFFZR,1,80,8)

begin [1:80] char BUFFER ;
1,80,"END OF FILE IN WnZITSNN)
H DISPLY(BJFFER,1,30); STOP

n

2R ; QUTL(BUFFER,1,20,1) ;

a3 OUTLI(BUFFER,1,20,LI)
5R,1,20)

L33L65/19 APPEIOIX 3 fagzs 33
Rroc PUTR = ((real R):
begin [1:30] char BUFraR ; OUFH(JJFEER,1,30,6,H) ;
WRITE(1,SUFF5R y 30)
en
)
proe PUTLR = ((long real LR):
begin [1:30] char 3UFFER ; OUTLR(BUFFER, 1,30,14,LR) ;
WRITE(1,BUFFE » 30)
end
)
proc PUTB = ((bool B):
begin [1:10] char 3UFFER ;
if 3 then 3JFFER :2 n '"TRUZ ru
else BUFFER ;= v TEAL3E
WRITE (1, BJ FZR,1,10)
end

proc PUTS = (([] char S)
begin[lwb 3 : upb_S] char BUFFER 3 BUSFER :=2 5
WRITE(1,BUFFER, lub S, upb S- lub S+1)
end
)

f. Utilities.

proc (ref [] char) TIds =((ref [] char a)
This routine puts the time of day in A
Aith the format Hid.M4.S3 » left aligzned and
right filled with blanks #
error if UbDb A - 1lwb A +1
error if upb A - Wb A +1

error cods is 93)

255 ¢
3 #

—
=9
It jer

proc (ref [] char) DATE = ((ref [) char A)
This routine puts tha date in 4
Wwith the format M4/DD/YY |, left alizned andg rigat-filled
dith blanks

error if upb A - 1wb A + 1 ot 255 ¢
¥ error if Upb 4 - lwb 4 4+ 1 1t 3 #
error code is 93 ¢)

AL3OL63/19

APPZADIX 3 page 51

prog SLANK =
((ref [] char 3UFFER)
Tnis procedure £ills a buffer 4ith bdlank characters.
for I from 1lwb BUFFER to upb BUFFER do (3UfFsER[I} = ™
)
proc DUMP =

(C [char A):
prints a DUMP using the CP COMMAND 'DUMP';
Example: DUAP("EFFC.100") #
).

CM3 =
(C [] char COM, ref int I):

#

i1

executes the C43 command COM; I contains the RETUAN-CODZ

Example: Co3S("LIST * * pm RC) #

(((] char COM, ref int I):

executes th VP command COM; I contains the Re£TURN-CODE

Example: CP("43G OP T",RC) #

)

ALGOLA3/19 APPLADIX 4 rage o0»

A4, Implementation characteristics.

No '"compile-time diagnostics” are given in this manuzl, because of
the completeness and clarity of the error messages printed during
a compilation.

The "runtime diagnostics™ are to be found in AT.

Any character available on the hardware of the IBM 370
machine is accepted by the compiler (256 available internal characters).
No further limitations exist on tapes and disks and limitations
on the available characters on special devices (TEKTRONIX,...) are
to be found at another place. SET facilities of CP/CMS
can also be used to represent characters.

Equivalence between characters available on the various devices
. which can be attached to a VM/CMS virtual machine are to be
found elsewneres (3270, cable-print, EAI, Tektronics,...).

Ab4.4, Limitations on denotations.

1. Integral denotations are limited to 32767, but 'negative'
integral values must bz not less than -32768.

2. Long integral denotations are limited to 2147483647, but 'nezgative'
long-integral values must be not less than -2147433643.

3. Real dsnotations:

-real: max 9 significant digits.

-long real: max 18 significant digits.

-exponant: max 2 digits.

-if we normalize the number: .X1...Xn 10%**s, X1 ne 0,
then is| le 75.

4, String denotations are limited to 127 characters.
(This dozsn't mean all row-of-character values are
limited to 127: [1:20000])char A is executable, but
FILL(A,1,20000,"...#200 characters#...") is
syntactically incorrect).

ALSIL63/19 APPENDIX 4 Page 55

de Will describe hereafter some general ideas on
the "runtime storage organization” of this implementation of
ALGOL63/19. ‘

A4.5.1. General organization.

! SUPERVISOR |

B | (===~ hegin address of

' PA ! available core
]

| Enhadiesiidiifhhd et]

| DA H

1 1

[Badadedatadadadedd i]

i i

1 ¥

]]

I 1

))

I t

i [}

]]

e T f

' D3 1 end address of

------------ {=== available core
PA ! program area

It contains the particular program, the separately
compiled routines, if any, and (the part of) the standard
prealude nzseded for the program; see the LOAD MAP for
further information about the map of the PA.

PA : data area

It contains the 'static part' of the values of the
identifiers used in the program; it is used as a 'staczsx'
(crescent order of addresses in core).

DS : dynamnic stack

It contains tne 'dynamnic part', if any, of ths values
of the identifiers used in tne program; it is also used
as a 'stack' (decrescent order of addresses in core).

Locations in the DA and D3 are created at th= elaboration
2f declarations and are freed wazn they are no longer accessible
for the prozram (Wnen leaving the range of that location).

R12 (General Purpose Register 12) is the bass register usad
for PA; at any time of the elaboration of an ALGOL progzranm,
it contains the bezin address of the zcurrent (external) procedure
being executed (main program or separately compiled routine).

R13 (General Purpose Register 13) is tne bas2 register used
for DA; at any time of the elaboration of an ALGOL program,
it contains the begin address of tha data area of the current procedure
peinzg executed (main program or procedure).

Alb.5.2. Data aresas.

AL30Lb3/19 APPEZADIX 4 Pamte 97
(1) DA for a 'block' (bezin -dloc« or do =-bloex)

—
<
lav
—
o
~

VALUES

The DA for a block is aligned on a multiple of 4 bytes.

TOP(D3) is the currant top of the dynamic stack (4 bytes);
it changes dynamically when declaring multiple values.

TOP(DA) is static and gives the maximal address for the
current DA, as long as wWe are in the reach of the block
(4 bytes).

VALUES are the locations for the values of the identifiers
declared in the reach of the block (see A4.5.3).

(2) DA for the 'prozram'

TOP(DS)

O

i DISPLAY |---~

VALUES

The DA for the orogran begins at the first available
address after the PA (aligned on a multiple of B8 bytes).

TOP(D3) : last available address in zore + 1
DISPLAY : address of tnis DA.

VALUES : s=e (1).

(3) DA for a ‘'procedure!

ALSOLOB/19 APPZIDIX 4 Pize 23
! ropP(Ds) |
t |
jmEETSsEesemmese- i
' ToP(DA) |
| |
| TESTessessseesse- i
Implicit parameters

C

=

<

8]

fo =

W (s

o]

[#2)

FJ
e e WV e o - —

i RSTURN ADDRE3S |

VALUES

- Implicit paramneters
TOP(D3) and TOP(DA) : see (1).
OLD PA B3ASZ : value of R12 of the 'calling' procedure.
OLD DA BASHE : valge of R13 of the 'calling' procedure.

RzTUaN ADDRESS ¢ value of the return address to the 'calling!
routine.

- Explicit parameters
Locations for tne values of tnz paransters (see A4.5.3.).

- Tne DISPLAY is a list of addresses of the DA of tne
surrounding procedures (the address of tas current procedurs
being the last in tne DISPLAY). It is used to address
locations of the values of the identifiers declared in
procedures surrounding the current one.

fhe length of the DISPLAY of a procedure is
('level' of the procadure)*l4 +4 bytes
(Main program and separately compiled routine nave level 0).

- VALUZ3 : s (1).

[
D

A4.5.3. Representations of values.

1) 392lean values : last bit in one bhyte in DA.

z) Ccnaracter values : 1 byte, in DA.

) Intezer values : 2 bytes, aliined on a1 12, in DA,
-, -233 integzer values : B bytes, aliznad on a 14, in DA,

ALGLnS/) AlPavul L Fase O
5) Heal values N onytes, alirnazd on o2 A, In
h) Long real values : Y nwytoes, alizned o9n a2 45, in
7) AMltiple values 3 nytes, alisned on a 44, in

o AluV) |

1 [}

[}

- A(LY) is tne address of the DOPL VECTOR.

A{rmLe=4) is thne address of the elements, waich sta

DOPL VECTOR (standing in DA) :

n

ot

DA,

nd in the D3.

DAL

, LWLy
) I
| = =sTss- Rt |
A U O & I
]] \
[} i i
') i |
[} 1 [}
boLad b b
N is the aunbar of dimansions of the multiple value (2 bytes).
L is tne total nuaber of bytes required for the 2lemznts
(2 oytes).
Li is the i-th loaer bound (2 oytes).
Ui i3 tae i-tn uoper bound. 1T 1la 1 1le
Di=ti-Li+1 is the i-th stride (2 bytes).
3) Procedure value : 12 bytes, alizned on a M4, in

Al ¢ address of the amachine coda tor the pro

A? : rlobal display address (Address of the
tae surroundine orocelare) (4 bytes).

A3 : rlobal base recister (base adidress of
separately compiled nodule (cin bhe tae

DISPL

tne tA\
niin

a (4 oytes).

1Y of

Af e
NeITCAIN) WADT 2

AL3ILH3/19 APPadDIX 4

?az2 70
the declaration of tne procedure occuars) (4 bytes).

9) Exceptions

(1) a primitive denotation (integer, real,

2 long integzer,
lonz real) stands in PA.

(2) the value of an exteraal procedure : Al in PA.
(3) a strinz denotation : elements in PA.
(u4) a string denotation as parameter

(A(DV),A(EL2d),DOPE VECTOR)

Al 30L08/19 APPCiDIX 4 £aTe

A4.0. txample of an A35MM8LER-compatible subroutine.

* dZ ASSUME TdIS ROJTINS IS CALLED FRIM AN ALJOL PRUSAAA;
* IT'S ZQUIVALENT TO:
#
* proc TIiSl = ((int I, ref int J): J:=I)
*
*
ALTEST C3ECT
BT EQU 1
RES EQU 3
SASZREG EQU 12
PARAMREG EQU 13
RZTURNRS EQU 14
3RANCHRI ZQU 15
#® .
USING *,BA3<RZG
USING PARAM,PARAMREG
*
* 3AVE OLD REGISTERS AND 35T NEW BASE REGISTER
*
STM4 BASERZG,RZTUINRG,O0(REGS)
LR PARAMREG,RES
LR 3ASEREG, BRANCHRS
4
¥ 30DY OF THE PRICZDURZ; \
* THE WHOLE SET OF RESISTERS CAN 3% USED,
* SXCZIPT 3A35REG AND PARAMREG:
*
L REG1,d
AC 0(2, Rdulj I
*
* RETURN TO Td& CALLIN3 PROGIAM:
#
LM 3ASEREG,RITUANRG, PARAM
3R RETURJRS
*
3SAVZ AREA AND PARAMETER Z0da:
*
PARAH D3ECT
D3 54 SAVEAREA
I D3 4
J D3 A

END

AL3JL03/19 APPENDIK 5 Paze 72

A5. Relations betwe=sn tne comnniler and the VA/CS-3ysten.

- v S G P En e R AP NP M S NS S S NP e S NS e e S MDD A G D NP s WP NP NP A Mn ES YD M e e e = -

A5.1. "Limitations" of tne compiler.

ALGOL63/19 prozrams are punched in columas 1 to 380 of a
Cd3 file with FILETYPE 'ALGOLCM3'. The comniler scans only
columns 1 to 72; columns 73 to 39 may be used for
nunbering purposses.

T'wo conmpilers exist: FALGOL which is a very fast "compile and 30"
(executes immediately the source program) and doesa't accept separately
comnpiled procedures anor common identifiers and ALGOLCM3 wnica produces
modules to be assembled by the CMS loader progranm.

Tneir principal limitations are:
- generated code for one module: at most H4K bytes (not including
constants, variables and multiple values); see also 21.4 and 21.5;
- at most 64 blocks in a module;)
- at most 255 identifiers in a bloeck.

The compilers reside completely in core, which is one of the reasons for
tneir fastness (no 'worxfiles' on disks for tables,...); they reaguire
virtual machines of at least 132K bytes.

When thz compilers are invoked, the input file must stand on a disk
accessed in A, B/A, C/A...

)

- Option LIST causes the compiler to produce a listing (CY3 file
A#itn FILETYPE 'LISTING';

- Option NOLIST suppresses the LIST option (no listing is produced,
even if syntactical errors have baen destected);

- Option PRINT causes tne compiler to print the listing, if any,
directly on the virtual printer;

- Jption VNUPRINT suppresses the PRINT option (thes listing, if any,
is a 'LISTING' file); '

- Option XR&EF causes thz2 comniler to producs a cross-refersnce and
Synnosl table;

- OUntion HNUXREF subpresses the XREF option;

- Uption DZiCK causes the compiler to produce an objeset module (TM3 file
Jith FILETYPE 'TEXT') and COM4A0N files, if nseded (see 21.5.);

- Option VUDECK suppresses the DACK option (WODECK is tne option taken
if syntactical errors arises);

- Ontion TRACK causes the comniler to oreparz2 a future trace at runtine
(g2neratinn of a CM3 file witn SILSTYPS "ALGTRACE'; ses Aovnendix 4;

ALuIL08/19 APPENDIX >

T
)
L

73
- Jption WOTRACS s3uporesses the TRACZ option.

I'ne "standard options" taken by the compiler are:

LIST, NOPRINT, NOXREF, D:CK, NOIRACEHE.

A5.3. Calling the comnpilers.

The syntax of a call of the compilers is:

;
:

{ ALGOLCMA3 | FALGOL } <filename> [<option> {<optionm>}* [)]]

Ahzre <filenamne> is a CM3 filename and <option> is one of the allowed
options (see A5.2.).

A5.4. Relocatable libraries.

An 'ALGO3LI3 TXTLIB 32' library exists, whicn contains the standard
prelude of ALGOL63/19. The CM3 commaand 'GLOBAL TATLIB ALGHBLIB' must bs used
to load or include object modules nroduced by the ALIOLCMS3 comnpiler (this
command is irrelevant for FALGOL). To use tne facility of "AUTOLINK"

., offered by the CMS loader, all separately compiled procedures must be
edited in CMS files with filenane 'ALXL¥XX..' and filetype 'ALGOLCHS',
if the name of the procedure is '"XXXX..'. Otherwise, the prozrammer 2an

« Obviously choose the filenamn=. ’

Examnle:

proc RUJUTI1 = (:) must be edited as a file 'ALRDJUT1 ALGUOLCHMS',
if you want the autolln< of ROUT1; if not, you nust type the I4ZLUDZ
command.

I'nz programnmer can use the facilities of CM3S to catalogue object
nodules in private 'TXTLIB's. Like any other separately comnoiled routine,
catalogued routines are available in ALS3JL53/19 programns W4ith the us2 of
°p "

pragmats".

A5.5. Linkaze editing.

The order of compilation or loadinz of separately comnoiled orozranas
is meaningfull. First 'LOAD' is considered to be the main prozran. If you
A4ant to chanmge ths order in the loadinz, see the LOAD conmand.

A5.6. Core image modules.

Jse the CMS comnmand GENMOD to catalozue a previously loaied
program. Note that in ALGUOL, you must specify the entry point
Wwaen usinzg GENMOw, if tne2 name of the module is choosen to
be different from the namz of the main progran.

AL3OLOY/19 APPENDIX 5

Sxamnple:

1) LOAD TE3T 2
324M0D TEST(FROM ALTEST

or
LOAD Tes3T
JuNMOD ALTEST

)

Paze T4

LDAD Tes3T

SGENMOD TEST(rfR04 ALMAINPG
or

LOAD TaasT

GENMDD ALAAINPG

if TE3T ALGOLCMS contains:

TEST: begin skip end

ezin skip end

e
[
Gl
(]
-
C
[
~
-t
o
o
g
'V
[
s
b
>4
(&)
'“C\
i
G
w
b}
U

A0. Coancn! idzantifiers,
3enarately comniled proczadures may use mode-identifiers defined
in tne2 outer bHezin-dlock or 3o0ae maln-program. This 1s achieved in two
steps:
- defining +“labeled commons? or “common blocks" to be s3avad at
ths 2nd of a zain orozranm;

- u3ing opseudo comuon declarations at the b
sezparately compiled procedurs.

(0]
[$2]
[
=
3
Ht
o
Ul
(@]
[
[

i. Saving a labzaled common.
After the gnd-symbol of a main »rogram, the prozrammer can add a
{saved common>:
{saved common>::= 3AVE <common block> {,<conmon block>}*

<zommon dlockd>:i:= {<commuon identifier> ALL |

{ <common identifier>}0 (<id>{,<id>}1#*) }
{common ideatifier>::=z <id> (see Appendix 2)

<Common identifier> will be the name of a <common block>. when

not preassant, the FILEJAME of the current compiled program iz taken as
<common 1identifier>. In a <saved common>, at most onz <common
identifier> may be taken to be optional. <Common identifier> may not
o= 'ALL'.

<Id> must be a mods-identifier (no 1labels are allow=zd (1))
dzfined in th=z reach of the outer besgin-bloeck of the current n2in
progran. If 'ALL' is used, the whole set of identifisrs A-2lared in
the r2zch of the outer begin-block is considered to be savzd in ths
current <coamon block>. The order of the identifiers has nd> special
meaning.

(1) See also 21.6, to have a label in common.

Note tnat ontion D53ICK must be active to ensure proper savinzg of
common3s. Tn2 comdiler uses and saves CMs3 files with FILETYPE 'CO4H2d!
to coapile zoamon blocks.

b. Using a labzl21 =o571mon

Before a 3enarately cowdiled procedure, pssudo dzelarations may
22 added, wusinz tae s22cial Tcomnent! surrounded by co-symbols (see
7.)}. Thesz declaraticns are considered to be addad to the library
sr2lude.

a2 syntaz of this <commoan ennazat> folloas:

{comuon 2271a2nt> iz 290 <2o1mon itamd {,<comnon item> ¥ oo

LA et Wl bt NS R i L T Aoy o~

<connon item>::= <common identifier)>
{ O 1<id1>=}0 <idz> {, (<i41>»=}0 <id42> t#) }O

<comamon ildentifier>:c=z <id1>cv= <id2>:0:=<1d> (soe asoendix 2)

(Comnmndn identifier> must be the nams of a <commnon blook> defined
in 30m2 main progzran. Wnen tnea ODLlu al part of tae <cowmon 1tem> 1is
not present, the wnole set of identifiers ol this <coammnon block> is

sed, 1.e. all 1identifiers presesnt in ths <common tloc«> ¢an be used
in tanis procedure.

‘Otherwise, <id2> must be an identifier contalined 1in the current
(eommon blocek>» and Kidl1> is the nesw identifier associated with <id2>,
i.e. <id1>» can be used in tais procedure instead of id2>. If <id1> is
not present, it's coansidered to be the sane as <id2>.

The numoer and order of tnes identiflisrs have n0o 3nscial meaning,
I'n2 mode of the 1identifiers is considered to be ths samne as tne mode
of tne corresoponding identifiers in the curerent <common block>.

c. Security wnan using conmon identifiers.

Absolute sescurity is given to the oDrozranmer whien using the
common {eature: whea in a main progran, a <common block> is saved and
it doesa't 'correspond!' (1) witan a <common block> having the same
{common identifier> defined in a previous compilation of this main
progran, all TdEXT files of progedures using tnis common are éerased;
furthemore, 1in separately compiled routines wusing <common items>,
modes of <conamon identifiers> are tested for compatibility.

To ensure tnis security, you must compile the main prozrans
detf'ining <common blocks> »pefore conpiling subroutines using them.
Jdtherwise, tne comdpiler will reject any attemdpt to use a not yet savead
comnon. Furtasmore, whan re-compiling main prozrams ({because of
nodifications to declarations and/or to <common blocks>, you would
first erase C0440N files; otherwise the compiler will orobably find
syntactical errors.

Tne declarations of identifiers saved 1in 3 <common blockx> must
niva Heen elaborated at runtimz beforz they can be ussd in a orocedure
asing this common (see 27.1. Context conditions).

(1) Tn 'corresponi' means that, for a givea ideantifier, the modsz
1171 dispnlacement Iin the Data Areas at runtims are the same in tne two
<eammon bloeks> (sse AU.5.).

1. =“xanples.

- e e - - - -

ALJIL03/19 APPuENUIX © 2T
1) Main p»rogram:

we assume tinis orogram is edited unier
tne nane of PROJT ALGOLCAS AV}

or prog P1, nroc(ref int) P2, proc P3, P4 pr

int A2; ... [A1:42] real MAT;

pro¢ TT = (:)
bool Bj
Pl oo... P2(A2);5 P33 PUS

end

3AveE COMt ALL , CO42(A1,A2)., COM3(8,TT), ALL

2) Subroutins 1:

co COM1 co

proc P1 = (:
tnis routine can use A1, A2, TT, B, MAT,... Wwithout

declaring them #
)

3) Subroutine 2:

co COM2(A1,A2) co

proc P2 = ((ref int A3):
tnis routine can use A1, A2 without declaring them;

note that modifying A3 chanzes also tne value of A2 #

)
4) Subroutine 3:

co CUA3(TI1=TT) co

proc P3 = (: TT1)
this nas tne samne effect a3 callinz TT

ALaJLD2/ 1Y AT LAl A W
5) Subroutins 4:
#{(1)# co PRUST co #or (2)# co PRUST(A3=42,a1) co

proc P4 = (:
this routine can use the whole set of ideatifiers

of tne main nrogram (1), or only A1 and A3 (A3 means

(2) of tnhe main program #

)

A2)

jo=d

LSuio3/18 APPENUIX T 2aze T4

funtime errors.

Some execution time errors are not detected. I'nesy are

scope condition not satisfied in an assignation ;

in a multiple value declaration for A, the condition
-32 le Ui-Li+1 1t 32K

is not satisfied for each (Ui, Li) of A ;

In a multiple value declaration for A, the total number of
bytes required for the elements of A is at least 32K ;

undefined formula evaluation ;
uninitialized values ;

use of identifiers whose declaration nas noat yet besan
elaborated (see 27.1, Context conditions).

Tnese errors can cause unpredictable situations, in particular
"PROSRAM CdZCK3", at the .time the error occurs, or later.

2.

Detected errors.

Some other errors (see A7.5) in the standard and non-standard
routines are detected at run tims. They are handled by a module
named "ALJERROR", not accessible for the ALGOL prozranmar.

Tnis module prompts at your terminal thz message

RUNTIMZ ERROR XX (message)

and Arites on the virtual printer the message

RINTIME ERROR XX (message)

AT UNIT YY O 3LOCK ZZ

PROIRAYM 3455 REGISTER = X'TITT?

DATA 3A32Z RZGISTER = X'ODDD?

TRACEBACK FULLOWS

XX i3 tne codes of the error (sse A7.5) ;

Y{ i3 tne uait nuaber af the ALGIL-unit where the error
ocaurs (see A7.3) ;

e block number of ths ALJJL-block wWwhaere thes error
oeccurs (see AT.3) ;

[N
i~
e
[42]

ct
=
¢

KL aJLLDOO/ 1Y ArrLNiULI A ratc JJ
TITT is the bezin address of tha 'current' separately coadiled
rodtine (main or procedure) walch nas zaused tae error
{code O or 1), or waich nas called tae standard routiae
ahiich causes tne error (otnsr codes).
dessagze is a snort descrintion of the error.

To avoid printing of thess messazes on tne real printer, sst
tnz CP command 'SPOOL PRT TO *' in your 'PHROFILE',

LIT

ts

2 action after printing the error messazes is: goto
but see also the recovery of runtimes errors in AT7.T7T.

A "block" is a begin -block, a do -block, or a procedure.
Blocxs are numbered in the order their begin-symbols appear ; this
is tne same numbering as in the LISTING file. Blocxs are
namoered in the order they appear in the crogram. 3lock
nunber of a main program or of a separately compiled
routine is 1.

A 'unit is:
- tne 'opening of a blocx or procedurs' ;
- a statement, except if-statement and cass-statement ; or

)

- a declaration (between ;) ; or

- by - to - wnile -part' (even if not
resent), waich is unit 1 of the do-loop; or

a paramnefer of the GET and PUT procadures
(see FORHUATIED I/D) .

Units are numbzared in thes order thsy apoear ia each block. Tne
'opening of a block' has unit number 0.

A7.4, funtime error localisation.

To locate precisely a runtime error in a prozran :
- 2o13ider the runtime error n2s3sacse (AT7.2) ;

- 1loo% in the LOAD MAP ror the module with bagin address
TITT ; this is tne module Wnhnere thz error has occured ;

- count the numnder of bloecxks and units to locate the unit
Ahere tnhe eror has occured (usze tne LISTING file Waich contains
the Hlnok nuaders).

ALUOL03/19 APPuNDIX 7 Faze 31

If a "program check™ occurs, ALPERRIUA 4ill also be called.
This module proapnts at your terminal the messaga

PRISRAM CHECK (message)

and Wwrites at the virtual printer the mnessaze

PROGRAM CHECK XX (ME33AGZ) INSTRUCTION ADDRES3 = X'AAAA!
AT UNIT YY OF BLOCK ZZ
PROGRAYM 8432 REZSISTER = X'TTTT!

DATA 3BA3< R2ZGISTER = X'DDDD!
- TRACEBACK FOLLOWS

XX is tne code of the "orogram checx'" :

01 : operation exception;

02 : privileged op=zration;

03 : execute;

04 : protection exception;

05 : addressing excebption;

00 : specification exception;

07 : data exception;

08 : fixed point overflow exception;
09 : fixed point divide exception;
10 : decimal overflow exception;

11 : decimal divide exception;

12 : exponent overflow excepntion;

13 : exponent ,underflow exception;
14 : significance;

15 : floating point divide excepntion.

INSTRUCTION ADDREISS 13 the virtual macnins address of the error.

XX, YY, ZZ, TTTT, DDDD and TRACE3ACX FOLLOWS3

334G,
e samne meanlng as for thz 'detected errors’'.

A3
nave th

T'o avoid printing of these messagzes on the real printer, sst
the CP command 'SPOOL PRT TO *' in your 'PROFILE',.

If an "interruot" occurs (caus=2d by the virtual "interrunt-key"),
ALBZRRUR will also be called; the message is:
INTERRJPT AT UNIT YY OF BLOCK ZZ
Tne virtual interrunst key is the CP command SXTERNAL; this can be

usefull when a prozram "loops™ infinitely or to causs ALGIL trace
to be entered.

If an error 4 nas occured during code gen=sration, ths orogramnar

mist know that units are numnbered modulo 255.

A7T.5. Codes of execution-time errors.

4
h)
“

| Qe

A3l o/

¢4

0t

D
e
@
om
32
a
(8]
32
O
<3

n

33

-
€.
)
(2]

n

v e 3 1
m4aitlDLi2

E!

tinon of

>

333izn3

«

G

8}
[4}]

tn sid

21 22

)
2=

1

[
[

=T

.

oJt?

10

i

-

(@Y

4
.

—

0

oo

A

F=
(]

Al
[Q\]

o

f—
ip]
.o

u—,

[aN}

-

-

(]
|

-1 1)

L e .r
(2 JE SV |

oMo N
OO0

s} 1
F= (D "™ F=
T Y Y

tn «r ~_ A

Q1 O~
NN D

N
=
— YL ()
) Y
X () <1l
[B VS RS

et

— O e 0
Y IO O

[0 PR SR ¢ I
e,) <T
[FARGEIREE I |

O OaN
NN -0

=
n.,
1l N
oy
Yy
< (3 O
~
es oo
™M~
MM @
33
S]
«
n
T K,
oYM O
EReR S I
e S |
Ny) oo
ee oo -
~
OO
MY O
[
ta
D
«T N,
(RS o
5
fr,
— (N
AR NARNEY]
|
o
(e
[qQT |
t1] fe)
[0 BEQ VRN O
<L -1 @
Ny fm 3
N0
Y (v (V)
b 1
L) =
el Ny N
RN N
e N |
MM
[D e gl o
[SANAANAS!

el

4
-

()

il

-7
£

F—

el

n

3%

M

R

(2]
€.
O
£,
| &
(0]
L -
n
£,
O 0
| SRS
| P |
Q O
t
2 D)
A
00
P I
I I
O
[B
PS¢)]
b RS
(SRS
oo
e F
~ £,
(@]
(0 O
<.
[T
e
€.
[
—
£ 4
O G,
rd
[
O
O
QT
o o
[
[PPN
O m
£,
4+ O
@ g,
n £,
(]
Q)
-~
OO0
K oapyel]
T
|
@ O
«< >
f+
O
Q

m

a
Sy..

inn

funat

[(}]
«
F)
Q
P
3
[4h]
T3
™
a
m
<.
[\
n -
o~
O m
i 32D
FO RN
m £
| S A
a
~t $.
[RN e
Q
™ 0l
o]
it Ol
c
el
T A
o 1z
~
— @©
O ~4
G 02
ns
aQ
A
P
>
-
¢ ~—
1]
O o
0,
«“
-y~
O o
|
3
at
(ol
2 €,
(4l
£, T
(O «
v,
>
"

)
X3

N

rn
T
a.,
tn
11
m

I TION

cJaJ

~

re

—

Y
g1
e
red

{11
\AJ

Dy
[2
r
jom |
[x}
)
(]

T,
fn,

Ol

£
ol

.

nana2r

20de

T2

is

value

2on1it

[

e

212 »of tae

naly o=

aQ

. s
«1lm

man

£X2292t

tail

222403,

rror

N1en

™
oo
an

AL IIOLHB/1Y arrLdulk o 2aga o

A

proc desil =
(C int CoNodIVTud I 30 A254T4)
Cody L3 the ecode nunher of an error;
the aysten raesets the 3tiandard action {or
tnis aerror
i

int EOV = T7 ;
proc BOF1 = (: g
ON(EUF BOFT)

int <G = 52
nroc ERRJIR =
(

Y:= -993.0
)

UN(NEG,ERROA)

FORMAT(1,"#(F8.4)") ;
do (GET(X); Y:=Y+X) ;

ah2n the end of file occurs, the loop ends
and Wwe 30 to LA3ZELT #

LABKLT ¢ Yo=33aT(Y)

it Y is negative, a 3pecial value wWill be
computed for Y and the prozgram will continue
normally #

HESET(NEG) 3 # no protranmer action for
errors in SQRT #
PUTR(Y)

end

dotes

- The prozranmer nust be very carefull with the cnoice of the oro-
codure he passes a3 paraneter to JIN and Re3ET (see Scope Con-
Aitiona (27.5%)). The tfurther elaboration ¢ the prozgran may be

‘undefinad!' a3 in the next oxannle

sxample

et

begin

proc A=(goto L) ;

ON(TT7,A)

L ¢ skip

end ;
[1:100]) int I,J ; FORAAT(1,"*(I4)") ;
GET(I,J) #if in this statement an end of file oc-
curs, tne prozram violates the scope conditions and
the further elaboration is undafinzd #

end

- If the programmer doesn't use these recovering facilities, the
standard action will be taken.

- The total number of the bypassed errors cannot exceed 16 at any
time of tne =laboration of an AL30L63/19 progran.

al3dLod/19 APPENDIX © £are 39

Ad. oSymbols and threir represeantations.
letter A to Z (capitals) over over
digit 0 to 9 modulo mod
point . lower bound ldab
dividad by / entier
up L usper bound unb
olus + not not
minus - apsol. value of abs
times * representation of repr
pacomnes .= or 1= lenzthen leng
cast of .. or , shorten saort
opan (odd odd
close) sign sign
comma , round round
sub (/ or < or [integral int
v bus /) or > or | real r=al
ug to : boolean bool
lapel .. or character char
. g0 0on .y Oor ‘ long long
quote T or § reference to ref
equals eq in formulas procedure proc
= otherwise bazin bezin
comnmant pr oafore a progran end end
' co »nefore a progranm
#,%5 at any place if if
true true then then
' false false : else else
or or fi £fi
and and zoto goto
not eguaal ne sKip skip
is less than 1t for for
less or e3. le from from
Zr. or a3J. ge by by
greater than gt to to
. tinmes ten to do do
tae powar X Wnile while
case case in in
s out out esac e3acg

Keywords can b2 punchad in two ways: wWwith or without "avpostrophes” ('):
pezin for example, can ve represented as BZSIN or '333IN'; but don't
forzet that in the Cv3 version of ALGOL63/19, keysords cannost be used
as ideatifiers.

b s "l A e ST N T fa b 4 lav WA 7 L T N~

AJ. Callinz FOATRAN suproutinss,

The possibility exists to call FORTHAN external subroutines
dithin ALJGOL prozrams. Tnerefore, tne programnsr nast add '"FORT'
before 2aca virtual declaration of a FOATRAN subroutine in the
‘pragnat' (21.4) bafore his prozran.

sxanple:

or FORT proc A1, A2, proc(int) A3 pr

pr #03T proc(int,ref int,refl,lreal) A4 pr
begin end

means taat:

- two external FORTRAN subroutines without paramnzters are
available; A

- an external ALGOL procedure exists;

- an external FORTRAN subroutine with three parameters
is available.

fh2 compiler provides a test to see if the virtual
paramneters are of one of the following modes:

- int, long int, real, long real, char, bool (1)

- ref int, ref long int, ref real, ref long real,
ref char, ref bool

- [Jeaar, ref(lchar

-t ref }O [{,}*] ‘'one of the modes (1)

Ansn eancountering suea oragmnats, the compiler generates
an ALJJUL-F0RTRAJ interface: wnen option DECK is active,
it generates a TeXT rfile ALxxxx, if the name of the
extern3al FORATRAN subroutine is fxxx'.

corresponds to

i ref }0 int INTEGER*2

{ ref 10 long int INTEGIR*Y

{ ref }0 real RZAL#Y

t ref }0 lonz real REAL*3

{ ref 10 char LOGICAL #1

t ref }0 bool LOGICAL*1

{ ref 10 {Jchar LOSICAL#1 variable (n)
Aaere n is the numnber of elemn2nats
of tne ALGIL value.

Le2f VL {,1#%] int INT25353%2 variable (N1,...340)

Whizre p is the anunbaer of dim=snsions
of th= value and the ¥i arz tn2 numbar

ALSILOS/19 ArPuNolX 9 Paze oY
of elem2nts in eazcn dimsnsion.

Similar correspondence for long int,

A9.3. Important notes.

1) The »nhilosopay of the use of ALGOL parameters is
preserved by the interface: nevertheless, an ALGUL paraneter
passed without ref can have its value modified by the FOITRAN
subprogram; if an ALGOL parameter is passed with a ref, the
FORTRAN subroutine can modify the referred value.

Bmxamples:

pr FORT proc(int) EXT1 pr SU3RJUTING ZXT1 (I)
begin INTEGER*2 I

int B; B:=0; I=1+1

EXT1(1); RZITURN

IAT1(8); # B eq O +# . END

P
ey

Tne value of 3 and that of 1 are not modified oy EXT]1.

pr FORT proc(int,ref int) EXT2 pr

begin SUBROUTINE £XT11 (I,J)
int I; , INTEGZR#*2 I,J
EXT2(1,I); # I eq 2 # J=I+1
EXT2(I,I); # I eq 3 # RETURN

end END

2) Note that if tae types and numbers of FORATRAN paramneters
do023n't map tne modes and number of ALSOL oarameters, the
effect would be undefined.

3) The i-th dimension of a FOATRAN parameter corresponds to

tae number of elements of the (n-i+1)=-tn <bound paird> of tns ALUIL
paraneter,

Zxample: [-3:3,1:4] real A corresponds to RIZAL A(4,7)

4) Tae correspondanca between ALGUL char and bool values and FORTRAN
LO3ICAL#*n variables 1s imperative. If another types are cnosen,

tne effect is undefined (this is oftea a question of alizanment).

ixanple:

ALSILB3/19 APPENDIX 9 Paze 33

3J3R0UTINE EXT(A)

LOGICAL*T A(4) THI3 IS Td2 NORMAL UECLARATION

LOGICAL®*4 A THIS DACLARATION I3 PERALTTED

REAL A IF TAIS DECLARATION IS U3D, A4 ZAROIR
WILL PRO3ABLY OCCUR.

WRITE(O,*)A

RETUAN

RD)

1 CCa

5) Don't forzet ALGOL multiple values are stored 'line per
line', Wwhereas FORTRAN arrays are stored 'column per column

gxample:

1

pr FORT proc(refl,J)long int) EXT3 pr 3J3RJUTINE EXT3(A)
begin [1:2,1:3] long int A; INTEGER A
£XT3(A); DIMENSION A(3,2)
FORMAT (4,"strean”); PUT(A) READ(5,%) A
end C the data entered
the displayed values are: C from the terminal are:
1231056 c 123456
: A(1,2)=10
' RETURN
SND

0) Bounds of multiple values as paraneters mnust bs of the mode

long int. Tnis is a FORTRAN restriction: it doesn't acceot
at run timz bounds of arrays to be INTEGER#*¥2 variables.
See A9.4 for examples.)

7) Recuperation of execution errors.

When an execution error due to a FORTRAN subprozram occurs,
two cases arises:

- if it's a program check, ALSGOL recuperates the interrupt
following messaze wWwill be printed:

Id A FORTRAN SU3PROGRAM. ..
PROGRAM CHECX nn (messace)
INSTRUCTION ADDR=ES3 = XXXXX
CALLED AT UNIT XX OF BLOCK YY

........ see AT

- if it's anotner runtims error (for example comouting the
SQAT of a nezative numnber or invalid FILEDEF,...), the
messagze will be printed by FORTRAN and the program wWwill
terminate with A3END.

and the

3) von't forgzet the CiM3 command SLOBAL TXTLIB FORTLIB AL353LIS

Anen loading an ALGIOL-FORTRAN mixed prozran.

A9.4. Simple example.

4LsuL 63719 APPINDIX 9 Pace 33

pr FOaT proc(refl,lreal,lonz iat,lonz int,ref real)syd or

bezin
int N, ™; G<TI(d); GeTI(M);
[1:8,1:M]real MATI;
FORMAT(1,"*(F10.0)7); SET(MAT1);
real RZ31, RE32;
3JM(MAT1,1leng N,leng M,RE31);
Ru352:=0;
for I to d do (for J to 4 do (RE32:=rE32+9AT1[I,J]));
if REST ne ReE32 then
tnen # c'est a douter de tout! # stop
fi
11:2,1:3] real UAT2;
for I to 2 do
(for J to 3 do (4AT2{I,J):=I+J)
)3
SUM(MAT2,long 2,lonz 3,R&eS); PUTR(RES)
end

SU3R0UTINE 3SUM(MAT,N,4,RES)
REAL*®4 4AT(M,N)

INTESER N,M

DI 1 I=1
DU 1 J=1
RZ3=RE3+
RETURN
END

M
N
AT

H
MAT(I,J)

Formatted input-outpuat.

A19.1. Introduction.

I'ne standard prelude contains tnrez procedures dealing Witn

input-output.

formatt=d

- proc{ int ,[] caar) FORYAT
- oroc((] union (int, real, long int, long real,
cnar, (] char, ref [] int, ref [] longz int,
ref [} real, ref [] long real, ref [,] int,
ref [,] long int, ref [,] real, ref [,] long
real)
) PUT
- proc{ [] union (ref int, ref long int, ref real,
ref long real, ref char, ref [] cnar,
ref [) int, ref [] lonz int, ref [] real,
ref [} long real, ref [,] int, ref [,] long int,
ref [,} real, ref [,] long real)
) GET

¥or tne prozrammer #h0 is not familiar with the ALGOL63 notations,

2 Jrocedure Wwith a parameter of mode (] union (model ,...,

mode N)

is aporoximatively a procedure accepting a variable nunber

of parameters,

each of Which being of one of the modes mode I.

Ta=

only available coercion on each paraneter 1is the dereferencing.

furdAT 1is a procedure by wihich 3 <format> is associated with

'input-output device'.

an

PUT and 32T are procsdures by which data (AL3OL values)

are read or written under

- . - - — e . Er ar e e AP e W Em e e WS ar oar we

Tne first paraneter of
ziving tae

If its value is 1, the device

If its value is 2, tne device

If value 1s 3, tne device

If its value is 4, the device

In tne rest of this chapter,

"input-output devic=',

the control of

the ©OXMAT proczdure is an i
associated #ith tne

is the
is tne

is tne

is tne terninal,

W2 shall denote

a <format>.

n

tezer value
<for

mat>.
virtual reader.
terminal, used as input.
virtuial printer.
used as outout.

hy IO

tne innut-osutput device associated witn a <format>.

oy

Inzre exists two 'types' of

davices:

ALSULS3B/19 4 APPENDIX 10 Parz)1

- inout devices (1 and 2)
- output devices (3 and 4).

The second paramneter of the FU4AAAT orocedure is a 'row of
cnaracter' value giving the <foraat>.

{format>::= { 3TR5AM | { <record length>,}0
{<item> {,<item>}* | {<Kitem>,}#* <stream zroup>} }
{stream zIroud>::s ¥ (Kitem> {, <item>}*)
<itemd>::= { <simple item> | <groun> }
{group>::= <numdar> (<item> {, <item> }*)
<simple item>::= { <alpnanumeric code> | <control code> }
<alohanumeric code>::= { <integer code> | <real code> | <string code>
{integer code>::= I <number>
<real code>::=z {E } F } <number>.<numberd>

{strinz code>::= S <number>

<control code>::= {<line code> | <page code> | <sxkip code> | <column
code> | <no sxip line code> }

<line code>::= L

{page coded>::= P

<{skip code>::= X <Lnumber>

<column code>::= C <number>

<no sxip line code>::= R

{number>::z {d}+

<numberd>::= {d}+

{record length>::= {number>

<d>::= {01112131415106171319}

3lanks nave no special meaning in a <format>.

In order to improve readability or construction of <formats>, dlanks
may be used freely.

In tne rest of this chapter, when Wwe shall speak about <formats>,
W2 shall suppose <formats> have been 'developed' : to 'develop'
a <format> We replacs all <groups> in it by a number of times
{(corresnonding to <numbar>) the list if <items> contained in tnat
{groun> and 4e& restart the orocess.

T'nen, the notation 'na2xt item in a format' will become obvious.

exanple I14,3(I5,34) 1is developed into I4,I5,34,I5,34,I5,34

410.4, General semantiecs of a <format>.

D I I I R I A i e

LINREES

3 23ll of tns FOI4AT procedure onccurs, a <format> is 11ie
tayailzole' 173 1is ass3ociated with its input-outnut deavie=.

g

(%2

{fz»=3t> will remain 'availanle' until another call
27 T2 fo44AT orocedur: for a1 input-outnut device

W

—

of tne same type i3 =laborated.

In other words, at any time of the execution of an AL.uJL prozranmn,
at most two 'available' <formats> exist (one for input deviceas
(1 and 2) and onez for output devicas (3 and U4)).

Furtihenore, with any <format> is associated a 'buffer' of a certain
'leangth'. The buffer length is the nunber of caaracters wnich will
be considered on eacn card or on each printer or terminzl line.
They are taken in tne leftmost positions of ths card or of the lins.

If no <record length> is specified in the <format>, tne value of
'lengtn' is 30 Wnea I0=1, 130 when I10=2, 132 waen 10=3 and
130 wnea IO0=4 (80, 130 and 132 are the maximal allowed values).

A10.5. General semantics of the GET and PUT proczdures.

When 3 <format> is 'available',

- if I0 = 3 or 4, seguences of calls of the PJT procedure
can be elaborated.

- if I0 = 1 or 2, sequences of calls of thz 3ZT procedure can ba
elaborated.

given this sequence of calls using ths same <format>, consider the
virtual sequence composed of all paranster lists together. In this
last sequence (refered to as the 'data list'), the notion 'next item
in tne data list' become’ obvious.

Tne case of multiple values is explained later on (see A10.10).

To elaborate the szquence of calls of GiT (resp. PUT), we consider
tozether

1) the sequence of <items> of tne available <fornat>
2) tne sequence of <items> of the 'data list'

Then, We 'elaborate' (cfr later on) tne first <command codss>
of the <format>, if any, until we reach an <alpnanum2ric code>.

Then, for each data,

- Wwe 'elaborate' (cfr later on) the 'transmission' of this
data under tne control of the <alphanumneric code>.

- Wwe 'elaborate' the following <command codes> until we
reach an <alphanumeric code> or the end of tha <formnatd>.

I'ne transmission taxes plac=s betwien th2 program and the buffer.
It end3s Jhen the end of the data list of a particular G&T or PJT
instraction is encountered. It may be resumed if a new 32T or PJUT
instru2tion is elaborated 4ith the sane <format>.

'me 'buffer' will bz filled accordiny to the 'elaboration' of
tn=2 sejuence of the <data items> of the data list. It will be tilled
from left to richt ; each <alpnanumnaric> transmission occunies tne

next W (see A10.0) characters in the puffer, the 'first iten' in the

ALsJLb3/19 APP=wDIX 10 rarze 33
sgquenca beginaing at the first position.

An error condition is raised (s=2e A10.17) if there is no mor=2
<alpnanumeric codz> for a given <data item>, or if taesre i3 1ot 2a0uzn
space in the pbuffer for ths next data item.

The transmission between the buffer and the inout-output davicea
is governed by the following rules :

- on input, the buffer is filled with the next record at the
elaboration of the first call of G&T. It may be filled again Waen tne
end of a <stream group> is encountered (see A10.7 f), or if an
L code is used (s=ce A10.7 a).

- on output, the buffer is printed or displayed if an L or P code is
encountered, or if ths end of a <stream group> is reached
(see A103.7 f), or if the format ceases to be available, or at
the =2nd of the prozran.

A10.5. The transmission of data uader thz control of an <alphanumneric codae>.

a) Integer code.

Ths I format code is used to transmit data of mode 1int or longz
int .
Its form is "Iw", Wwhere 4 is a positive number giving the total
nunber of characters involved in the transmission.
The conversion rules and restrictions on the value of w and on ta=z
format of the transmitted data are to be found in the procedures JUTI,
OUTLI, INI, IWLI.

D) Real code.

]

ormat codes are used to transmit data of mode real

Their form is "Fw.d" or "Zw.d", where W 1s a positive numnder
givinz the total nuaber of characters involved in the transmission
and d i3 2 (pos3sibly 0) positive nunbar giving the number of digits
after the decimal point.

Tne conversion rules and the restrictions on tne values of w and
d and on the format of the transmitted data are to be found in tne
procadures OUTrR, QUTrd, OUTLR, OUTFLR, INR, INLR.

On input, only w is significant (s=e INR and INLR).

2) 3String code.

format code is used to transmit data of mode char or

Its form is "34", Wwhnere W is a positive nunber givins the total
nunber of characters involvesd in the transmission.

AL3JdL02/19 APPENDIX 10 Parte i

If the transmnitted data is a caarazter, tnzn tas 5 fornat code
spzcifies a field of w cnaracters : on iluaput, tne first caaractsr
of tne field is read and tne next (wWw-1) are skipsed ; on Hutput tne
enarazter is written and the aext (wW-1) are filled witn blanxs.

If the transmnitted data is 2 row of character of length 1, tnen
the 3 rformat code specifies a field of w characters : on indnut,
the first 1 cnaracters of tne field are read and the naxt (w-1) are
skipped ; 27 output, 1 characters are WJritten and the nsxt (w-1)
are filled 4ith blanks.

If 1>w then 3 runtimz2 error numober 73 occurs.

S i s

A10.7. Control codes.

a. Line code.

Tne L format code is used as control code.
If I0 = 1, the transmission of data bagins at the next card.
If IO 2, 3 or 4, the transmission of data begins at tne next line.

0. Page code.

The P format code is us=d only waen IO = 3.
Transmission of data bezins at the next page.

(¢}

. Remain code. }
Tha R format code is used only when 10 = 3.
It allows tne prozranuner to make "ovarWriting™.
The transmission of data begins at the samne line of ths printer.

d. 3«ip eode.
The form of the skip code is "Xw", where # is a3 positive number.

The X format codes spzcifies a field of w characters to be skipned
oa inout or filled W“ith blanks on output.

(D

. Column code.
Th=2 form of tne column code is "Cw", Wwnere w is a positive numnber
fh2 C format code snecifiies the position in tne record Where the
transfer of ths next data is to begin.

C may be us=d to "backspace" (see exanoles).

)

Stream 3roud.
Tnz strezmn zroun 133 two effects :
(1) if format control reaches tas 2nd of a <{stream zrou’>, then
control reverts to tne besinninz of taat <strean zroun>,

nermitting infinite replication of formats.

(2) “4ata transnitted under tne control of a2 <strean Iroun> are
eonsidered to be "stre2am orientedit. Fhis neans taat data

ALGOLO3/19 APPInVIX 10 Paze)5

may extent beyond the capacity of tna ouffar. 0n dutout,
Wwnen it becomes full, it is traasaitted and used azain Tor
the n=2xt data, if any. Jn input, wWi2n it nhas bde=n read into
tne last position, it is filled azain +ith tas n=2xt zard,
if need=d.

Notes

1. Even in 2 <strean group> transmission, thnz prozramnnsr can
bypass tne point (2) (with control codes) aad use only tne
facility of infinite replication.

2. No data item may be truncated by tnes end of tne bHuffer
(see A10.10.4).

Tne possibility exists to transfer data ‘without' formnat,

‘ using tae GZT and PUT procedures. Data are then considered
to be 'stream oriented' and the real format has no snecial
meaning.

1 4

Exanple:

FORMAT(1,"strean"); GET(I,J);
FORMAT(4, "stream"); PUT(A,B);

Tnis involves the transmission of data with a standard format
on output and with no format on input. On input, a comma (,) is used
to separate data and blanks may be used freely. No data may be
truncated between two lines.

This feature is similar to the G=T LIST and PJT LIST of PL/IL
and to the unformatted input-outout of FORTRAN.

A10.9. Simole example.

ALSULD3/13 APP=0DIX 10 Pate jH
fuiAiPL OF FORAATTED IWPul - JQUTPUTH

Je Wwant to read a matrix, line par lins;

tne first card contains the dimensions of tnes matrix

and tne next on2s the elements (10 p2r card)

FORM#ATHT = "2(I4),L,*(¥0.2,X2)"

MY L et

C:r_j f—
et

1, FUH44AT#1) ; # a new <format> is ‘'available’

for the reader #
G2T(N,M) 3 # w2 read tne bounds with the '2(I4)' <Kitemw> #
(1:4d, 1 4] real A ; # We reserve dynanically the place #
‘"T(A) ; # reading the matrix with the '*#(70.2,X2)' <item> #

t nod, we read 3 list of variables #

int A1 , A2 ; real A3 , A4 ; [1:60] char BUFFER ;

[1:3) long int A5 ;
FURMAT(1,"I4,C50,I10,L,360,L,3(X5,I10),L,F5.0,C1,F5.0") ;
SET(A1,A2,BUFFER,A5,A3,A4) ; #A3 and AM possess tqo same valuet
or GET(A1,A2,3UFFER,A5) § wvuuen. s GET(A3,Al) ;

another matrix is read , columnn per colunn
with a format given by the prozrammsr at runtime

It ;

GETI(N) ; GETI(M) ;

[1:30] gn_g FORA#AT#2 ;3 [1:N,1:4] real 8 ;

GETS(FORM2) ; # the <format> is punched freely on a card

and W2 suppose wWwe read
72,%(F6.2,X2)
i
FORMAT(1,FORMEATHZ) .,

for I to ™ do (for J to § do (GET(B[I,JI]))) ;

[1:100] int C ; now 42 use 2 <fornats>, one for ths
reader and one ror ths printer #
FORGAT(1,"STREAM!) ;
FORMAT(3,"120,#(T4,X4,I4)") ;
for I to 100 do (GET(C[I]) ; PUT(L,CLI]))
2nd # of tiais simple program #

note tnat tnree ways of defininz a <format> are given

A130.10. Inportant notes.

S e er Es an D G M S M M e D ae e s o ap . -

1) Facilities for input-sutput of multionle values nave also neen oHrovidad.

ALSGJLb3/19 ArPovolX 19 rane g7

Wnzn two-dimzansional arrays are us=2d, ta2 transnaission 2f daca i
oerformed line »ner line. If transnission 2olumr n2r colunn i3 nes
the progranmnar nust comdute himself tnz indexes.

i=21,

X

:DJ

mple

KD

FORIMAT (3,"*(14)") ;

[1:8] int MAT1, 4AT2 ;

PUT(MAT1,MAT2) ; # nas the same effect as #
for I to d do (PIT(MATI{I])) ;
or I to N do (PUT(MAT2[I]))

.
’

(1:4, 1:4] int HMAT3 ;
"PUT(MAT3) ; # nas the samne effect as #
for to N do (for J tod do (PUT(AAT3[I,Jd]1))) ;

but nas not the same effect as
for J to M do (for I to N do (PUT(MAT3{I,J])))

.
’

2) The possibility of readingz, constructing and transforming <formnats>

¢ at runtime is provided : sese the examnples in 4.10.9.
. 3) <Formats> have nothing in common Wwith the bloeck structure necanisnm
of ALGOL : they are 'global' in ths sense that, when a <fornatd>
is 'available', opening and closing of blocxs or calling of oronzaiures
nave no effect on tha fact that a <foraat> remains or not 'availaosle'.
. The following orogram is perfectly executable
Te3T ¢ begin int I , J ;
. proc A = (PUT(I)) ;
FORMAT(3, 'stream™);
bezin int J ; PIT(J) ;
A3
FORMAT(1,"10(I4)™") ;
32T (Jd)
end ;
G2r(I); PIT(I)
. end

4) <Record lenzth> can be us2d a4nen, for exandple, you don't ~ant to
432 tn2 last colums of your iaput cards bacauses tn=y are irrelevant.

{Record length> must also be used to ensure data ars aot truncated:

exanple : FORMAT(3,"*#(17)") onrovocates a runtine zrror if
more than 13 intezers arz2 nrinted;

FIORMAT(3,"120,%(110)") i3 always ex=cutable

| A10.11. gestrictions and detected errors.

& runtimz 2rror 70 o224ars ahen

- syntax i3 not respacted in <foranats>

- <nunbzr> is eajual to 9 or zreater taan 25)

- tnera exist aonly <zoantrol codes> in 1 (tr2a trhanD

- <rezord lenztny exceeds 33 10 [= 1, 132 i¢ 1.2 = 3,
111 130 1€ [= 2 ar

AL 30L03/19 APPEd21X 10 Pate)3

- th2 <format> is too lonz (ca. 4390 onytes in intaernal reocsseatati
- invalid <control codes> accordinzg to tne d=vice

1 (P codis 311 R zode wiza I0 = 1, 2 or 4).

: - something wrong Wwita tn2 device (device not ready,

| not attached,...).

i A runtime error 71 occurs wnen no <format> is 'available'.

(in particular wWwhen an I/0 is rejuested and no more <alpaanumeric
code> exits.

example : FORMAT(3,"I4") 3 PUT(1,2)).

; A runtime error 72 occurs if an invalid device type i3 speacified
i -(I0 ne 1, 2, 3, 4)

T AR T

A runtime error 73 occurs if 1>w in a 3 format code.

5 A runtime error 74 occurs if :
- a3 call of G2T is elaborated and no <format> is 'available'
for I0 = 1 or 2 ;
- a call of PUT is <elaborated and no <format> is ‘'available’
for IO = 3 or 4.

A ruatime error 75 occurs if the mode of the 'next item in the
data 1list!' doesn't correspoad with tnz "next <alphanumeric coda>' in
the <format> .

2xample : FORMAT(3,7I47") ; PUT(Y.DEOQ)

A runtime error 7o occurs if tne length of a iata exceeds 'buffer’
capacity (evea in a <stream ground>).

gxample :
| real A , 3 ; int I ; [1:100] int C ;
i rDR4AP(1 "10,2(F7. 2)M) ; SET(A,B) ;
; FORMAT(3,7C130,I4m) 5 PUT(I) ;
; -ua4AT(3 “E(IT)v) 3 PUT(C) ;

A ruantime error 77 occurs wnen a virtual "end of file" aas b=2aa
detected on tae virtual reader (physical end of file or '"*3ygf!
cnaractsars) or on the terminal ('#207' characters).

dowaver, see the recovery of ruatime errors at Appendix 7.

[

Jtner errors, suci as invalid cnaracters in inout fields are d=t
ny procedures INI,INLI,INR,INLR,JDJTI,OUTLL,0U0rR,00TLR,2JIFR,SJivL3

u&qar(s wI2v)y PUT(9Y93);
runatime error 19 onccurs
FORMAT (1,7I3%) 5 SaT(I)
runtine error 15 ocours
if tne next field in the
card contains 183 #

dote tnat, wnz2n A1 runtimne error T70-77 N33 do2ureld,
tnz <format> i3 1o lonzer 'aviilahle!',

	ALGOL 68 19 MANUAL - 1_Page_001
	ALGOL 68 19 MANUAL - 1_Page_002
	ALGOL 68 19 MANUAL - 1_Page_003
	ALGOL 68 19 MANUAL - 1_Page_004
	ALGOL 68 19 MANUAL - 1_Page_005
	ALGOL 68 19 MANUAL - 1_Page_006
	ALGOL 68 19 MANUAL - 1_Page_007
	ALGOL 68 19 MANUAL - 1_Page_008
	ALGOL 68 19 MANUAL - 1_Page_009
	ALGOL 68 19 MANUAL - 1_Page_010
	ALGOL 68 19 MANUAL - 1_Page_011
	ALGOL 68 19 MANUAL - 1_Page_012
	ALGOL 68 19 MANUAL - 1_Page_013
	ALGOL 68 19 MANUAL - 1_Page_014
	ALGOL 68 19 MANUAL - 1_Page_015
	ALGOL 68 19 MANUAL - 1_Page_016
	ALGOL 68 19 MANUAL - 1_Page_017
	ALGOL 68 19 MANUAL - 1_Page_018
	ALGOL 68 19 MANUAL - 1_Page_019
	ALGOL 68 19 MANUAL - 1_Page_020
	ALGOL 68 19 MANUAL - 1_Page_021
	ALGOL 68 19 MANUAL - 1_Page_022
	ALGOL 68 19 MANUAL - 1_Page_023
	ALGOL 68 19 MANUAL - 1_Page_024
	ALGOL 68 19 MANUAL - 1_Page_025
	ALGOL 68 19 MANUAL - 1_Page_026
	ALGOL 68 19 MANUAL - 1_Page_027
	ALGOL 68 19 MANUAL - 1_Page_028
	ALGOL 68 19 MANUAL - 1_Page_029
	ALGOL 68 19 MANUAL - 1_Page_030
	ALGOL 68 19 MANUAL - 1_Page_031
	ALGOL 68 19 MANUAL - 1_Page_032
	ALGOL 68 19 MANUAL - 1_Page_033
	ALGOL 68 19 MANUAL - 1_Page_034
	ALGOL 68 19 MANUAL - 1_Page_035
	ALGOL 68 19 MANUAL - 1_Page_036
	ALGOL 68 19 MANUAL - 1_Page_037
	ALGOL 68 19 MANUAL - 1_Page_038
	ALGOL 68 19 MANUAL - 1_Page_039
	ALGOL 68 19 MANUAL - 1_Page_040
	ALGOL 68 19 MANUAL - 1_Page_041
	ALGOL 68 19 MANUAL - 1_Page_042
	ALGOL 68 19 MANUAL - 1_Page_043
	ALGOL 68 19 MANUAL - 1_Page_044
	ALGOL 68 19 MANUAL - 1_Page_045
	ALGOL 68 19 MANUAL - 1_Page_046
	ALGOL 68 19 MANUAL - 1_Page_047
	ALGOL 68 19 MANUAL - 1_Page_048
	ALGOL 68 19 MANUAL - 1_Page_049
	ALGOL 68 19 MANUAL - 1_Page_050
	ALGOL 68 19 MANUAL - 1_Page_051
	ALGOL 68 19 MANUAL - 1_Page_052
	ALGOL 68 19 MANUAL - 1_Page_053
	ALGOL 68 19 MANUAL - 1_Page_054
	ALGOL 68 19 MANUAL - 1_Page_055
	ALGOL 68 19 MANUAL - 1_Page_056
	ALGOL 68 19 MANUAL - 1_Page_057
	ALGOL 68 19 MANUAL - 1_Page_058
	ALGOL 68 19 MANUAL - 1_Page_059
	ALGOL 68 19 MANUAL - 1_Page_060
	ALGOL 68 19 MANUAL - 1_Page_061
	ALGOL 68 19 MANUAL - 1_Page_062
	ALGOL 68 19 MANUAL - 1_Page_063
	ALGOL 68 19 MANUAL - 1_Page_064
	ALGOL 68 19 MANUAL - 1_Page_065
	ALGOL 68 19 MANUAL - 1_Page_066
	ALGOL 68 19 MANUAL - 1_Page_067
	ALGOL 68 19 MANUAL - 1_Page_068
	ALGOL 68 19 MANUAL - 1_Page_069
	ALGOL 68 19 MANUAL - 1_Page_070
	ALGOL 68 19 MANUAL - 1_Page_071
	ALGOL 68 19 MANUAL - 1_Page_072
	ALGOL 68 19 MANUAL - 1_Page_073
	ALGOL 68 19 MANUAL - 1_Page_074
	ALGOL 68 19 MANUAL - 1_Page_075
	ALGOL 68 19 MANUAL - 1_Page_076
	ALGOL 68 19 MANUAL - 1_Page_077
	ALGOL 68 19 MANUAL - 1_Page_078
	ALGOL 68 19 MANUAL - 1_Page_079
	ALGOL 68 19 MANUAL - 1_Page_080
	ALGOL 68 19 MANUAL - 1_Page_081
	ALGOL 68 19 MANUAL - 1_Page_082
	ALGOL 68 19 MANUAL - 1_Page_083
	ALGOL 68 19 MANUAL - 1_Page_084
	ALGOL 68 19 MANUAL - 1_Page_085
	ALGOL 68 19 MANUAL - 1_Page_086
	ALGOL 68 19 MANUAL - 1_Page_087
	ALGOL 68 19 MANUAL - 1_Page_088
	ALGOL 68 19 MANUAL - 1_Page_089
	ALGOL 68 19 MANUAL - 1_Page_090
	ALGOL 68 19 MANUAL - 1_Page_091
	ALGOL 68 19 MANUAL - 1_Page_092
	ALGOL 68 19 MANUAL - 1_Page_093
	ALGOL 68 19 MANUAL - 1_Page_094
	ALGOL 68 19 MANUAL - 1_Page_095
	ALGOL 68 19 MANUAL - 1_Page_096
	ALGOL 68 19 MANUAL - 1_Page_097
	ALGOL 68 19 MANUAL - 1_Page_098
	ALGOL 68 19 MANUAL - 1_Page_099
	ALGOL 68 19 MANUAL - 1_Page_100
	ALGOL 68 19 MANUAL - 1_Page_101
	ALGOL 68 19 MANUAL - 1_Page_102
	ALGOL 68 19 MANUAL - 1_Page_103

