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Editor's Notes: 
Although this method is not novel, it has been printed here to summarize for the benefit of a new 

generation of computer personnel. I t  should be noted that :  
1) This method seems advantageous if only a few significant figures are required. Otherwise the 

normal method, Log-Multiply-Antilog, is more desirable and faster in particular for higher order 
roots. These subroutines are normally required for other purposes anyway and space is not  lost. 

2) One immediately notices many tricky ways of coding this method for a computer, via looping 
and the use of tables or converting instructions. Note that,  as one proceeds, the contribution of 
the left-hand term becomes proportionately large enough such tha t  it alone might be used within 
accuracy limits after a certain number of digits are developed. 

3) Although the author states that  this method used more memory space than other routines, it 
seems tha t  the converse could well be true if advantage were taken of higher order differences 
in building up the subtrahend. This appears to be a natural method for a 256 memory machine, 
if it had good indexing and looping features. Remember that  An(X ~) = a constant n[ 

PRELIMINARY REPORTmlNTERNATIONAL ALGEBRAIC LANGUAGE 

Note: 
In the interest of immediate circulation of the results of the ACM-GAMM committee work on an 

algebraic programming language, this preliminary report is presented. The language described naturally 
enough represents a compromise, but  one based more upon differences of taste than on content or funda- 
mental ideas. Even so, it provides a natural  and simple medium for the expression of a large class of 
algorithms. This report has not been thoroughly examined for errors and inconsistencies. I t  is antici- 
pated that  the committee will prepare a more complete description of the language for publication. 

For all scientific purposes, reproduction of this report is explicitly permitted without any charge. 
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PART I - - I N T R O D U C T I O N  

In 1955, as a result of the Darmstadt  meeting on electronic computers, the GAMM (association for 
applied mathematics and mechanics), Germany, set up a committee on programming (Programmierungs- 
ausschus). Later a subcommittee began to work on formula translation and on the construction of a 
translator, and a considerable amount  of work was done in this direction. 

A conference attended by representatives of the USE, SHARE, and DUO organizations and the Asso- 
ciation for Computing Machinery (ACM) was held in Los Angeles on 9 and 10 May 1957 for the purpose 



of examining ways and means :for facilitating exchange of all types of computing information. Among 
otlher things, these conferees felt that a single universal computer language would be very desirable. 
Indeed, the successful exchange of programs within various organizations such as USE and SHARE 
had proved to be very valuable to computer installations. They accordingly recommended that the 
ACM appoint a committee to study and recommend action toward a universal programming language. 

By Oct 1957 the GAMM group, aware of the existence of many programming languages, concluded 
that rather than present still another formula language, an effort should be made toward unification. 
Consequently, on 19 Oct 1957, a letter was written to Prof. John W. Cart III, president of the ACM. 
The letter suggested that a joint conference of representatives of the GAMM and ACM be held in order 
to fix upon a common formula language in the form of a recommendation. 

An ACM Ad-Hoc committee was then established by Dr. Carr, which represented computer users, 
computer manufacturers, and universities. This committee held three meetings starting on 24 Jan 1958 
and discussed many technical details of programming language. The language that evolved from these 
meetings was oriented more towards problem language than toward computer language and was based 
on several existing programming systems. On 18 April 1958 the committee appointed a subcommittee 
to prepare a report giving the technical specifications of a proposed language. 

A comparison of the ACM committee proposal with a similar proposal prepared by the GAMM group 
(presented at the above-mentioned ACM Ad-Hoc committee meeting of 18 April 1958) indicated many 
common features. Indeed, the GAMM group had planned on its own initiative to use English words 
wherever needed. The GAMM proposal represented a great deal of work in its planning and the pro- 
posed language was expected to find wide acceptance. On the other hand the ACM proposal was based 
on experience with several successful, working problem oriented languages. 

Both the GAMM and ACM committees felt that because of the similarities of their proposals there 
was an excellent opportunity for arriving at a unified language. They felt that a joint working session 
would be very profitable and accordingly arranged for a conference in Switzerland to be attended by 
four members from the GAMM group and four members from the ACM committee. The meeting was 
held in Zurich, Switzerland, from 27 May to 2 June 1958 and attended by F. L. Bauer, H. Bottenbruch, 
H. Rutishauser, and K. Samelson from the GAMM committee and by J. W. Backus, C. Katz, A. J. 
Perlis, and J. H. Wegstein for the ACM Committee. (~ 

I t  was agreed that the contents of the two proposals should form the agenda of the meeting, and the 
following objectives were agreed upon: 

I. The new language should be as close as possible to standard mathematical notation and be 
readable with little further explanation. 

II. It should be possible to use it for the description of computing processes in publications. 

III. The new language should be mechanically translatable into machine programs. 

There are certain differences between the language used in publications and a language directly usable 
by a computer. Indeed, there are many differences between the sets of characters usable by various 
computers. Therefore, it was decided to focus attention on three different levels of language, namely a 
Reference Language, a Publication Language, and several Hardware Representations. 

Reference Language 

1. It is the working language of this committee. 

2. It is the defining language. 

3. It has only one unique set of characters. 

(i) In addition to the members of the conference, tile following people participated in tile preliminary work of these committees: 
GAMM P. Graeff, P. Lauchli, M. Paul, F. Penzlin 
ACM D. Arden, J. McCarthy, R. Rich, R. Goodman, W. Turanski, S. Rosen, P. Desilets, S. Gorn, H. Huskey, A. Orden, 

D. C. Evans 
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4. The characters are determined by ease of nmtual understanding and not by any computer limita- 
tions, coders notation, or pure mathematical notation. 

5. It is the basic reference and guide for compiler builders. 
6. It is the guide for all hardware representations. 
7. It  will not normally be used stating problems. 
8. It is the guide for transliterating from publication language to any locally appropriate hard- 

ware representations. 
9. The main publication of the common language itself' will use the reference representation. 

Publication Language (see Part IIIc) 
1. The description of this language is in the form of permissible variations of the reference language 

(e.g., subscripts, spaces, exponents, Greek letters) according to usage of printing and hand- 
writing. 

2. It  is used for stating and communicating problems. 
3. The characters to be used may be different in different countries but univocal correspondence 

with reference representation must be secured. 

Hardware Representations 
1. Each one of these is a condensation of the reference language enforced by the limited number 

of characters on standard input equipment. 
2. Each one of these uses the character set of a particular computer and is the language accepted 

by a translator for that computer. 
3. Each one of these must be accompanied by a special set of rules for transliterating from Pubtica- 

tion language. 

PART I I - -DESCRIPTION OF THE REFERENCE LANGUAGE 

A. S T R U C T U R E  OF THE L A N G U A G E  

As stated in the introduction, the algorithmic language has three different kinds of representations--- 
reference, hardware, and publication and the development described in the sequel is in terms of the 
reference representation. This means that all objects defined within the language are represented by 
a given set of symbols--and it is only in the choice of symbols that  the other two representations may 
differ. Structure and content must be the same for all representations. 

The purpose of the algorithmic language is to describe computational processes. The basic concept 
used for the description of calculating rules is the well-known arithmetic expression containing as con- 
stituents numbers, variables, and functions. From such expressions are compounded, by applying rules 
of arithmetic composition, self-contained units of the language--explicit formulae~-called arithmetic 
statements. 

To show the flow of larger computational processes, certain non-arithmetic statements are added 
which may describe alternatives or recursive repetitions of computing statements. 

Statements may be supported by declarations which are not themselves computing rules, but inform 
the translator of certain properties of objects appearing in statements, such as the class of numbers 
taken on as values by a variable, the dimension of an array of numbers or even the set of rules defining 
a function. 

Sequences of statements and declarations, when appropriately combined, are called programs. How- 
ever, whereas complete and rigid formal rules for constructing translatable statements are described in 
the following, no such rules can be given in the case of programs. Consequently, the notion of program 
must be considered to be informal and intuitive, and the question whether a sequence of statements may 
be called a program should be decided on the basis of the operational meaning of the sequence. 
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In the sequel explicit rules--and associated interpretations--will be given describing the syntax of 
the language. Any  sequence of symbols to which these rules do not assign a specific interpretation will 
be considered to be undefined. Specific translators may give such sequences different interpretations. 

B. B A S I C  S Y M B O L S  

The reference language is built up from the basic symbols listed in Par t  IIIa.  

1. Letters X (the standard alphabet of small and capital letters) 
2. Figures .¢ (arabic numerals 0, . . . .  9) 
3. Delimiters ~ consisting of 

a. operators oo: 
ari thmetic ÷ - × / 
relational < < = > > 
logical ~ V /~ -= 
sequential go to do return stop for 

b. separators ~r: , " ; :=  = :  --~ 10 
c. brackets ~: ( )  [] T l 
d. declarators ¢: procedure array switch type 

0 or if either or if 
begin end 

comment 

These are: 

Of these symbols, letters do not  have individual meaning. Figures and delimiters have a fixed meaning 
which for the most part  is obvious, or else will be given at  the appropriate place in the sequel. 

Strings of letters and figures enclosed by delimiters represent new entities. However, only two types 
of such strings are admissible: 

1. Strings consisting of figures f only represent the (positive) integers G (including 0) with the 
conventional meaning. 

2. Strings beginning with a letter X followed by arbitrary letters X and/or figures i are called 
identifiers. They have no inherent meaning, but  serve for identifying purposes only. 

C. E X P R E S S I O N S  
Arithmetic and logical processes (in the most general sense), which the algorithmic language is pri- 

marily intended to describe, are given by arithmetic and logical expressions, respectively. Constituents 
of these expressions, except for certain delimiters, are numbers, variables, elementary ari thmetic oper- 
ators and relations, and other operators called functions. Since the description of both variables and 
functions may contain expressions, the definition of expressions, and their constituents, is necessarily 
reeursive. 

The following are the units from which expressions are constructed: 

1. (positive) Numbers N o 
Form: N ~ G.G10 i G  where each G is an integer as defined above. 

G.G is a decimal number of conventional form. The scale factor :to ± G  is the power of ten 
given by ±G.  The following constituents of a number may be omitted in any occurrence: 
The :fractional part  . 0 0 . . .  0 of integer decimal numbers; the integer 1 in front of a scale factor; 
the + sign in the scale factor; the scale factor L0 ±0 .  

Examples: 4711 1 .37 .06  2.99971010 10-12 310-12 

2. Simple Variables V 
are designations for arbi trary scalar quantities; e.g., numbers as in elementary arithmetic. 

Form: V ,-~ I where I is an identifier as defined above. 
Examples: a X 11 PSI2 ALPHA 
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3. Subscripted Variables V 
designate quantities which are components of multidimensional arrays. 

Form: V ~ I [ C ]  
where C ~ E, E, ~ . . . .  , E is a list of arithmetic expressions as defined below. Each expression 
E occupies one subscript position of the subscripted variable, and is called a subscript. The 
complete list of subscripts is enclosed in the subscript brackets [ ]. 
The array component referred to by a subscripted variable is specified by the actual numerical 
value of its subscripts (cf. arithmetic expressions). 

Subscripts, however, are intrinsically integer-valued, and whenever the value of a subscript expression 
is not integral, it is replaced by the nearest integer (in the sense of proper round off). 

Variables (both simple and subscripted ones) designate arbitrary real numbers unless otherwise speci- 
fied. However, certain declarations (cf. type declarations) may specify them to be of a special type, 
e.g., integral, or Boolean. Boolean (or logical) variables may  assume only the two values true and false. 

. Functions F 
represent single numbers (function values), which result through the application of given sets 
of rules to fixed sets of parameters. 

Form: F ,-  I (P, P, ~ ,  P) 
where I is an identifier, and P, P, ~ . . . .  , P is the ordered list of actual parameters Specifying the 
parameter  values for which the function is to be evaluated. A syntactic definition of parameters 
is given in the sections on function declarations and procedure declarations. If the function is 
defined by a function declaration, the parameters employed in any use of the function are ex- 
pressions compatible with the type of variables contained in the corresponding parameter  posi- 
tions in the function declaration heading (cf. function declaration). Admissible parameters for 
functions defined by procedure declarations are the same as admissible input parameters of pro- 
cedures as listed in the section on procedure statements. 
Identifiers designating functions, just as in the case of variables, may be chosen according to 
taste. However, certain identifiers should be reserved for the standard functions of analysis. 

This reserved list should contain: 
abs (E) for the modulus (absolute value) of the value of the expression E 
sign (E) for the sign of the value of E 
entire (E) for the largest integer not  greater than the value of E 
sqrt (E) for the square root of the value of E 
sin (E) for the sine of the value of E 

and so on according to common mathematical notation. 

5. Arithmetic expressions E are defined as follows: 
a. A number, a variable (other than Boolean), or a function is an expression. 

Form: E ~ N  ~ ' ~ V  ~ F  

b. If E1 and E2 are expressions, the first symbols of which are neither "+"  nor " - " ,  then 
the following are expressions: 
E ~  + E l  ~ E 1  × E2 

~ . - E 2  ~ E i  / E~ 
El+E~ ~E~ T E~ 
E~ - E~ ~ (El) 

The operators + ,  - ,  X, / appearing above have the conventional meaning. The parentheses 
~ denote exponentiation, where the leading expression is the base and the expression 

enclosed in parentheses is the exponent. 
12 
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Examples: 2 T 2 I" n $ .~ means 2 (~'~) 
2 T2.L Tn.L means(22) n 

(7 a T 2 ~ ' b l  .L T 2 5  means a 2 

The proper interpretation of expressions can always be arranged by appropriate positioning 
of parentheses. An ari thmetic expression is a rule for computing one real number  by executing 
the indicated arithmetic operations on the actual numerical values of the constituents of the 
expression. This value is obvious in the case of numbers N. For variables V, it is the 
current value (assigned last in the dynamic sense), and for functions F it is the value arising 
from the computing rules defining the function (cf. function declaration) when applied to the 
current values of the function parameters given in the expression. 

The sequence of operations within one expression is generally from left to right, with the follow- 
ing additional rules: 

affparentheses  are evaluated separately 
b. for operators, the conventional rule of precedence applies: 

first: × / second: + - 
In order to avoid misunderstandings, redundant  parentheses 

for example, - - -  

should be used to express, 

ab in the form (a ×b) / c  or (a/c) × b rather  than by a × b/c, or a/c ×b,  respectively, 
c 

and to avoid constructions such as a/b/c. 
Examples: A 

Alpha 
Degree 
A [1, 1] 

A [ j ÷ k - 2 ,  j - k ]  
A [mu [s]] 
a × sin (omega × t) 
0.5 × a [(N × ( N - 1 ) ) / 2 ,  0] 

Boolean expres,~ions B are defined analogously to ari thmetic expressions: 
a. A t ruth value, a variable (Boolean by declaration), or a function (Boolean by declaration) 

is an expression. 
Form: B ~ 0 (the t ru th  value Jalse) ~ V 

1 (the t ru th  value true) ~ F 

b. If E ~ and E~ are arithmetic expressions, then the following ari thmetic relations are expressions: 
B ~  (E~ < E~) ~ ( E ~  ~ E~) ~ ( E ~  > E2) 

~, (E~ ~ E~) ~ (E~ ~ E2) ~ (E~ = E2) 
Such expressions take on the (current) value true whenever the corresponding relation 
is satisfied for the expression involved, otherwise false. 

c. If B~ and B2 are expressions, the following are expressions: 
B ~ - ~  B1 N B i  ~ B~ 

B~ V B2 ~ (Bd 
~ B ~  AB2 

Theoperators  ~ ,  V , / k ,  ~ have the interpretations not, or, and, and equivalent. Interpre- 
tation of the binary operators will be from left to right. The scope of " ~ "  is the first ex- 
pression to its right. Any  other desired precedence must  be indicated by the use of parentheses. 

Examples: (X = O) (X > O) V (y > O) ( p A  q) V (x ~ y )  

D. S ~ I A T E M E N I S  ,~v 
Closed and self-contained rules of operations are called basic Statements E. They are defined re- 

cursively in the following way: 
Strings of one or more statements ('z) may be combined into a single (compound) s ta tement  by en- 

(5) Declarations, which may be interspersed between statements, have no operational (dynamic) meaning. Therefore, they have 
:~o significance in the definition of compound statements. 
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closing them within the "statement  parentheses" begin and end. Single statements are separated 
by the s tatement  separator ";".  

Form: 2~ ~ begin E; E; . . . . .  ; E end 

A statement  may be made identifiable by  attaching to it a label L, which is an identifier I, or an 
integer G (with the meaning of identifier). The label precedes the statement labeled, and is sepa- 
rated from it by  the separator colon (:). Label and statement together constitute a s tatement 
called "labeled s tatement ."  

Form: E ~ L: 
A labeled statement may  not itself be labeled. In the case of labeled compound statements, the 
closing parenthesis end may be followed by the s tatement  label (followed by  the statement separator) 
in order to indicate the range of the compound statement:  

Form: ~ ~ L: beg inE;~ ;  ~ ; E  end L; 

1. Assignment statements 
serve for assigning the value of an expression to a variable. 

Fo rmi )  2 ~ V : = E  
If the expression on the right hand side of the assignment delimiter ": ="  is arithmetical, the 
variable V on the left hand side must  also be numerical; i.e., it must not  be Boolean. Generally, 
the arithmetic type of the expression E is determined by the constituents and operations of 
the expression E. However, V may be declared to be of a special type provided this declara- 
tion is compatible with the possible values of the expression E. 

Formi i )  2 ~ V  : = B  
If the expression on the right hand side of the assignment statement is Boolean, V may be 
any variable. This means that  the truth values true and false of the Boolean expression may 
be interpreted arithmetically as integers "1", and "0", which may then be assigned to a nu- 
merical variable. 

. Go to statements 

Normally, the sequence of operations (described by  the statement of a program) coincides with 
the physical sequence of statements. This normal sequence of execution may  be interrupted 
by the use of go to statements. 

Form: E ~ go to D 

D is a designational expression specifying the label of the statement to be executed next. I t  is 
either a label L or a switch variable I [E] (cf. switch declaration), where I is an identifier and 
E a subscript expression. In the latter case, the numerical value of E (the value of a sub- 
script) is an ordinal which identifies the component of the switch I (named by declaration). 
This element which is again a designational expression specifies the label to be used in the go to 
statement.  This label determination is obviously a recursive process, since the elements of the 
switch may again be switch variables. 

Examples: go to H A D E S  
go to exit [(i T 2 $ - j  T 2 $ +I)/2],  where exit refers to the declaration 

switch exit :=  (D1, D2, ~ ,  Dn) 

. I f  statements 

The execution of a s tatement may be made to depend upon a certain condition which is imposed 
by preceding the statement in question by an i f  statement. 

Form: 2~ ~ i f  B where B is a Boolean expression 
If the value of B is true, the statement following the i f  statement will be executed.  Other- 
wise, it will be bypassed and operation will be resumed with the next s tatement  following. 
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Example: In the sequence of statements 
if  (a> 0); c :=a1"  2 + X b ~ ' 2  L 
if (a <0); c : = a  T 2 $ + b ~ 2 +  
if (a = 0); go to bed 

one and only one of the three statements rightmost in each line will be executed. 

. For statements 

Recursive processes may be initiated by use of a for statement,  which causes the following 
statement  to be executed several times, once for each of a series of values assigned to the re- 
cursing variable contained in the for statement.  

Form: i) f o r V  :=  C 
ii) f o r V  :=  E~ (E~) E ~ , ~ , E ~ k ( E ~ k )  E~k 

where C is a list of k expressions E ,  E~ . . . . .  Ek; and E~j, E~j, E oj are expressions. 

In the Form (i) the intent is to assign to V in succession the value of each expression of the 
list (expressions taken in order of listing) and the s tatement  following the for statement  is 
executed immediately following each such assignment. 

In Form (ii) each group of expressions E~ (E~) E ~ determines an arithmetic progression. The 
value of E~ is the (i)nitial value, E~ gives the value of the increment or (s)tep, and E o deter- 
mines the (e)nd value which is the last term of the progression contained in the interval [Ei, E ~]. 
The intent is to assign to V each value of every progression (these again taken in the order of 
listing from left to right), and the s ta tement  following the for statement  is executed immedi- 
ately following each such assignment. 

The effect of a for statement  may be precisely described in terms of "more elementary" state- 
ment  forms. Thus Form (i) is precisely equivalent to: 

V := E l ; E ;  V :=  E2;E; . . . .  ; V :=  E k ; E ;  where E is the s tatement  following 
the for statement.  

Form (ii) is precisely equivalent to: 

V :=  Ei~; L~: E('~); V :=  V + E ~ ;  i f  (V _< (4)E~t) ; go to L~; . . . .  ; 
V :=  E ~ k ; L k : d o L ~ ; V  :=  V+E~k;  if (V _< ~E,k); go to Lk; where E is the s ta tement  

following the for statement.  
Examples: a) f o r I  :=  l ( 1 ) n ; p  :=  p X y + A [ I ]  

b) for a := 1, 3, 5, 9.76, ~ ,  -13.75;  
begin . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  e n d  

5. Alternative statements 

An alternative statement is one which has the effect of selecting for execution one from a set 
of given statements in accordance with certain conditions which exist when the s ta tement  is 
encountered. 

Form: i f  either B1; E~; or i f  B~; E2; . . . .  ; or i f  Bk; Ek  end w h e r e E i i s a n y s t a t e m e n t o t h e r  
than a quantifier; i.e., if, for, or or if, and B~ is any Boolean expression. 

The effect of an alternative s tatement  may be precisely described in terms of "more elementary" 
s tatement  forms. Thus the above form is precisely equivalent to the sequence of statements: 
if B,; begin El;  go to next end; i f  B2; begin E~; go to next end; . . . . .  ; i f  Bk; E~ where " n e x t ' i s  
the label of the statement following the alternative statement.  

Example: lt~f either (a> 0); y :=  a + 2 ;  or if  (a <0); y :=  a/2; or i f  ( a=0) ;  y := .57 end. 

(3) If "2 is a labeled statement, L~ is tha t  label. If not, tile effect is as though it had a (unique) label L~. Lk ( k ~ l )  are 
theoretically unique labels. 

(~) This relational form obtains if the progression is increasing; if decreasing, the relation > is understood to employed. 
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6. Do statements 
A statement,  or string of statements, once written down, may be entered again (in the sense 
of copying) in any place of the same program by employing a do statement  which during copy- 
ing permits substitution for certain constituents of the statements reused. 

Form: ~ ~ do L1, L~ (S <-~I, ~ . . . . . .  , S ~-~I) 
where L1 and L~ are labels, the S-, are strings of symbols not  containing the separator (--~) 
and the I are identifiers, or labels, and the list enclosed by parentheses is a substitution list. 
The do statement operates on the string of statements from, and including, the one labeled L1 
through the one labeled L2, which statements constitute the range of the do statement.  If 
L1 is equal to L2; i.e., if the range is just the one s ta tement  L~, the characters ",L~" may 
be omitted. 
The do statement causes itself to be replaced by a copy of the string of statements constituting 
its range. However, in this copy all identifiers or labels, listed on the right hand side of a sepa- 
rator "-~" in the substitution list of the do statement, (and which are utilized in these state- 
ments) are replaced by the corresponding strings of symbols S-~ on the left hand side of the 
separators "--~". These string S-. may be chosen freely with the one restriction that  the sub- 
stitutions produce formally correct statements in the copy (s). 
Whenever a do statement contains in its range another do statement, the copying and sub- 
stituting process for this second innermost do will be executed first. Therefore the (actual) 
copy induced from a do statement never contains a do statement.  Declarations within the 
range of a do statement are not  reproduced in the copy. 

Examples: do 5, 12 (x [i]--~y, black label-~red label, ~ ,  f (x, y)--~g) 
do 12A, ABC (x 1" 2 j~ ÷3/y--~A, ~ )  

The range of a do statement should contain complete statements only; i.e., if the begin (end) 
delimiter of a compound statement  lies in the range of the do, then so should the matching 
end (begin). If this rule is not complied with the result of the do statement may  not be the 
one desired. 

7. Stop statements 
Stop is a delimiter which indicates an operational (dynamic) end of the program containing it. 
Operationally, it has no successor statement in that  program. 

Form: E ~ stop 

8. Return statements 
Return is a delimiter which indicates an operational end of a procedure. It  may appear only in a 
procedure declaration. (cf. procedure declaration.) 

Form: E ~ return 

9. Procedure statements 
A procedure statement serves to initiate (call for) the execution of a procedure, which is a closed 
and self-contained process with a fixed ordered set of input and output  parameters, permanently 
defined by a procedure declaration. (cf. procedure declaration.) 

Form: E ~ I  (Pi, P i , ~ , P d  = : ( P o ,  P o , ~ , P o )  
Here I is an identifier which is the name of some procedure, i.e., appears in the heading of some 
procedure declaration. (cf. procedure declaration.) Pi, P i ,  ~ . . . .  is the ordered list of actual 
input parameters specifying the input quantities to be processed by the procedure. Po, Po, ~ 
is the ordered list of actual output  parameters specifying the variables to which the results of 
the procedure will be assigned and alternate exits, if any. The procedure declaration defining 
the called procedure contains, in its heading, a string of symbols identical in form to the procedure 
statement,  and the formal parameters occupying input and output  parameter positions there 
give complete information concerning the admissibility of parameters used in any procedure 
call, shown by these replacement rules: 

(5) Thus, in the copy produced, any designational expression whose range is a s ta tement  within the range of the do statement  
must  be transformed so that  its range refers to the copy produced. 

16 



input 
parameters 

output  
parameters 

formal parameters in admissible parameters in 
procedure declaration procedure statement 

'single identifier (formal variable) 

array; i.e., subscripted variable with 
k = 1 empty parameter positions 

function with 
! positions 

k empty parameter 

procedure with k empty parameter 
posit ions 

parameter occurring in a procedure 
(added as a primitive to the lan- 
guage). (~) 

(single identifier (formal variable) 
I 
! 
array (as above for input parameters) 

(formal) label 

any expression (compatible with the 
type of the formal variable) 

array with n(>k) parameter posi- 
tions, k of which are empty 

)unction with n (> k) parameter posi- 
tions, k of which are empty 

(same) 

every string of symbols s, w h i c h  
does not contain the symbol "," 
(comma) 

simple or subscripted variable 

array (as above for input parameters) 

label 

If a parameter is at the same time an input and output  parameter this parameter must obviously 
meet the requirements of both input and output  parameters. 
Within a program, a procedure statement causes execution of the procedure called by the state- 
ment. The execution, however, is effected as though all formal parameters listed in the procedure 
declaration heading were replaced, throughout the procedure, by the actual parameters listed, 
in the corresponding position in the procedure statement. 
This replacement may be considered to be a replacement of every occurrence within the pro- 
cedure of the symbols (or sets of symbols) listed as formal parameters, by the symbols (or sets 
of symbols) listed as actual parameters in the corresponding positions of the procedure statement, 
after enclosing in parentheses every expression not enclosed completely in parentheses already. 
Furthermore, any return statement is to be replaced by a go to statement referring, by its label, 
to the statement following the procedure statement, which, if originally unlabeled, is treated 
as having been assigned a (unique) label during the replacement process. 
The values assigned to, or computable by, the actual input parameters must be compatible 
with type declarations concerning the corresponding formal parameters which appear in the 
procedure. 
For actual output  parameters, only type declarations duplicating given type declarations for 
the corresponding formal parameters may be made. 
Array declarations concerning actual parameters must duplicate, in corresponding subscript 
positions, array declarations referring to the corresponding formal parameters. 

E. D E C L A R A T I O N S  ,~ 
Declarations serve to state certain facts about entities referred to within the program. They have 

(6) Within a program certain procedures may bc called which are themselves not  defined by procedure declarations in tile pro- 
gram; e.g., input-output procedures. These procedures may require as parameters quantities outside the language; e.g., a string 
of characters providing input-output format information. 
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no operational meaning and within a given program their order of appearance is immaterial. They 
pertain to the entire program (or procedure) in which they occur and their affect is not alterable by the 
running history of the program. 

. Type declarations 

Type declarations serve to declare certain variables, or functions, to represent quantities of a 
given class, such as the class of integers or class of Boolean values. 

Form: A ~ type (I, I, ~ ,  I, I[ ], ~ * ~ ,  I[ ,], ~ ,  I[ ,,], ~ )  where type is a symbolic 
representative of some type declarator such as integer or boolean, and the I are identifiers. 
Throughout the program, the variables, or functions named by  the identifiers I, are constrained 
to refer only to quantities of the type indicated by  the declarator. On the other hand, all variables, 
or functions which are to represent other than arbitrary real numbers must be so declared. 

. Array declarations 

Array declarations give the dimensions of multidimensional arrays of quantities. 
Form: ~ ~ array (I, I, ~ ,  I[C : C'], I, I, ~ ,  I[C : C'], ~ )  where array is the array 

declarator, the I are identifiers, and the "C" and " C ' "  are lists of integers separated by commas. 
Within each pair of brackets, the number of positions of C must be the same as the number 
of positions of C'. 
Each pair of lists enclosed in brackets [C : C'] indicates tha t  the identifiers contained in the 
list I, I, ~ ,  I immediately preceding it are the names of arrays with the following common 
properties: 
a. The number of positions of C is the number of dimensions of every array. 
b. The values of C and C' are the lower and upper bounds of values of the corresponding 

subscripts of every array. 
An array is defined only when all upper subscript bounds are not smaller than the corresponding 
lower bounds. 

. Switch declarations 

A switch declaration specifies the set of designational expressions represented by a switch 
variable. If used in a go to statement,  its value specifies the label of the statement called by 
the go to s ta tement  (cf. go to statement).  

Form: ~ ~ switch I : = (D1, D~, ~ ,  Dn) where switch is the switch declarator, I is an 
identifier, and the Di are designational expressions (of. go to statement).  
The switch declaration declares the list D1, D.., ~ ,  D n to be a symbolic vector (the "switch"), 
the designational expression D k being the k-th component. Reference is made to the switch 
by the switch variable I[E], where I is the switch identifier and E is a subscript expression. 
T h e  switch variable, when used in go to statements, selects by the actual value of its subscript 
tha t  component of the switch determining the label called for by the go to statement.  A 
switch variable, being a designational expression, may  appear as a component of a switch. 

. Function declarations 

A function declaration declares a given expression to be a function of certain of its variables. 
Thereby, the declaration gives (for certain simple functions) the computing rule for assigning 
values to the function (of. functions) whenever this function appears in an expression. 

Form: A ~ In (I, I, ~ ,  I) : = E  where the  I are identifiers and E is an expression which, 
among its constituents, may contain simple variables named by identifiers appearing in the 
parentheses. 
The identifier I,m is the function name. The identifiers in parentheses designate the formal 
parameters of the function. 
Whenever the function I,~ (P, P, ~ . . . .  , P) appears in an expression (a function call) the value 
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assigned to the function in actual computation is the computed value of the defining expression E. 
For the evaluation, every variable V which is listed as a parameter I in the function declaration 
is assigned the current value of the actual parameter  P in the corresponding position of the 
parameter list of the function in the function call. The (formal) variables V in E which are 
listed as parameters in the declaration bear no relationship to variables possessing the same 
identifier, bu t  appearing elsewhere in the program. All variables other than parameters appear- 
ing in E have values as currently assigned in the program. 

Example: I(Z) : = Z + 3  × y 

alpha : = q + I ( h + 9  X mu) 
In the s tatement  assigning a value to alpha the computation is: 

alpha : = q + ( ( h + 9  × m u ) + 3  × y) 

. Comment declarations 
Comment declarations are used to add to a program informal comments, possibly in a natural 
language, which have no meaning whatsoever in the algorithmic language, no effect on the pro- 
gram, and are intended only as additional information for the reader. 

Form: A ~ c o m m e n t  S; where comment is the comment declarator, and S; i sany  str ingof 
symbols not  containing the symbol ";". 

. Procedure declarations 
A procedure declaration declares a program to be a closed unit (a procedure) which may be re- 
garded as a single compound operation (in the sense of a generalized function) depending on a 
certain fixed set of input parameters, yielding a fixed set of results designated by output  
parameters, and having a fixed set of possible exits defining possible successors. 
Execution of the procedure operation is initiated by  a procedure statement which furnishes values 
for the input parameters, assigns the results to certain variables as output  parameters, and assigns 
labels to the exits. 

Form: ~x ~ procedure I (Pi) = :  (Po), I(P~) = :  (Po), ~ ,  I(Pi) = :  (Po) 
A; ~x; . . . . .  ; A beginE;E; . . . . .  ; A; A; . . . .  ; E ; E  end 

Here the I are identifiers giving the names of the different procedures contained in the procedure 
declaration. Each P~ represents an ordered list of formal input parameters, each Po a list of 
formal ou tpu t  parameters which includes any exits required by the corresponding procedures. 
Some of tile strings " =  : (Po)" defining outputs  and exits may be missing, in which case the 
corresponding symbols "I(P~)" define a procedure that  may be called within expressions. 
The As in front of the delimiter begin are declarations concerning only input and output  
parameters. The entire string of symbols from the declarator procedure (inclusive) up to the 
delimiter begin (exclusive) is the p~'ocedure heading. 
Among the statements enclosed by the parentheses begin and end there must be, for each identifier 
I listed in the heading as a procedure name, exactly one s tatement  labeled with this identifier, 
which then serves as the entry to the procedure. For each single output  procedure I(P~) listed 
in the heading, a value must  be assigned within the procedure by  an assignment s tatement 
"[ : = E" where I is the identifier naming that  procedure. 
To each procedure listed in the heading, at  least one return statement must correspond within 
the procedure. Some of these return statements may, however, be identical for different pro- 
cedures listed in the heading. 
Since a procedure is a self-contained (except :for parameters) program, the defining rules for 
s tatements and declarations within procedures are those already given. A formal input parameter 
IInay be 

a. a single identifier [ (formal variable) 
b. an orray [ [ , , ,  ......... , ] with k (k = 1, 2, . . .) empty  subscript positions 
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c. a Function f ( , , ~ ,  ) with k (k = 1, 2, . . .) empty parameter positions 
d. a Procedure P ( , ,  ~ ,  ) with k (k = 1, 2 . . . .  ) empty parameter positions 
e. an identifier occurring in a procedure which is added as a primitive to the language. 

A formal output  parameter may be 
a. a single identifier (formal variable) 
b. an array with k (k = 1, 2, . . .) empty subscript positions. 

A formal (exit) label may be only a label. 
A label is an admissible formal exit label if, within the procedure, it appears in go to statements 
or switch declarations. 
An array declaration contained in the heading of the procedure declaration, and referring to a 
formal parameter, may contain expressions in its lists defining subscript ranges. These ex- 
pressions may contain 

a. number 
b. formal input variables, arrays, and functions. 

All identifiers and all labels contained in the procedure have identity only within the procedure, 
and have no relationship to identical identifiers or labels outside the procedure, with the exception 
of the labels identical to the different procedure names contained in the heading. 
A procedure declaration, once made, is permanent, and the only identifiable constituents of the 
declaration are the procedure declaration heading, and the entrance labels. All rules of opera- 
tions and declarations contained within the procedure may  be considered to be in a language 
different from the algorithmic language. For this reason, a procedure may even be composed 
initially of statements given in a language other than the algorithmic language; e.g., a machine 
may be required for expressing input-output procedures. 
A tagging system may be required to identify the language form in which procedures are ex- 
pressed. The specific nature of such a system is not in the scope of this report. 
Thus by using procedure declarations, new primitive elements may be added to the algorithmic 
language at  will. 

Delimiters (a) 
Operators 

Separators 
Brackets 
Declarators 

PART I I I a  BASIC SYMBOLS (a) 

(~ )  ~ + - × / = ~ > > < > ~ V 
go to do return stop for i f  or i f  i f  eith(~" 

( )  • . . 

(3) ~ ( ) [ ] ~" j~ begin end 
( ~) ~ procedure switch array comment type* 

A 

Non-delimiters (~) 
Letters 
Digits 

(X) ~ A . . . . . .  Z, a . . . .  z 
if) ~ 0 ~ 9 

PART 
Syllables 

List 
Simple variable 
Subscripted variable 
Function 
Statement label 
Expression 
Boolean expression 

* Representant .  
** Where R ~ P, P, P, , ~ , ~ , ~ ,  P, P 

I I Ib - -SYNTACTIC SKELETON 

(C) ~ E , E , ~ , E  
i v )  ~ I 
(V) ~ I [ E , E , ~ w ~ , E ]  
(F) ~ I (R)** 
(L) ~ I N G 
(E) ~ (See the appropriate sections in Part  II for 
(B) the composition rules) 
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Designational expression 
Parameters 

Identifier 
Integer 

Number 

Symbol string 

Statements (E) 
Assignment statement 
Compound statement 

Labelled statement 
Go to statement 
Do statement 

Quantifier s tatement 

Alternative 
Stop and return statements 
Procedure call statement ~ 

Declarations (A) 
Function declaration 
Switch declaration 
Symbol classification declaration 
Comment declaration 
Array declaration 
Procedure declaration 

(D) ~ L ~ I [ E ]  
(P) ~ (See the appropriate sections in Part  II for the composi- 

tion rules) 
(I) ~ X ~  . . . . .  ~ 
(G) ~ ~-~-~ . . . . .  ~ 

be m a y  e m p t y  
( N )  N 

T 
(S~) ~ ~ a a a . . . .  a a where c~ is not the particular 

8 given in the subscript 

(~) ~ V :=  E ~ V : = B  
(~2) ~, begin ~ ; E; ~ ; ~ end (at least one ~) 

(~) ~ L : ~  where ~ is unlabeled 
(~) ~ go to D 
(~) ~ do L1, L2 (S-~I, S--~I, ~ ,  S-~I) 

may be empty may be empty 
(~) ~ i f  B 
(~) ~ for V := C 
(~) N f o r V : =  E (E) E , E  (E) E , ~ , , E  (E) E 
(~) ~ i f e i t h e r B 1 ; N d o r i f B 2 ; E ~ ; ~ ; o r i f B k ; ~ 2 k e n d  
(E) ~ stop ~ return 
(~) ~ T(R) = : ( R )  

(~) N I ( R )  : =  E 

(A) N switch I : -  (D, D, ~ ,  D) 
(A) ~ type (I, I, ~ ,  I) 
(A) ~ comment S; 
(A) ~ array (I, I , ~ , I  [C : C ' ] , I , ~ )  
(~) 

may be empty may be empty may be empty 

(A) N procedure I ( R )  = :  (R) I ( R )  = :  (R) ~ I ( R )  = :  (R) 
A; A; . . . .  ; A; b e g i n ~ ; ~ ;  ~ ,  A; A; ~ 2~;~ end 

PART I I I c - - P U B L I C A T I O N  LANGUAGE 

As stated in the introduction, the reference language is a link between hardware languages and hand- 
written, typed or printed documentation. For transliteration between the reference language and a 
language suitable for publications (for example, lectures in Numerical Analysis) the following trans- 
literation rules may be used: 

Reference Language 

subscript brackets [ ] 
exponentiation parentheses T $ 
parentheses ( ) 
basis of ten 10 

statement separator 

Publication Language 

lowering of the line between the brackets 
raising of the line between the arrows 
any form of parentheses, brackets, braces 
raising of the ten and of the following integral 

number, inserting of the intended multiplication sign 
line convention: each statement on a separate line 

may be used. 
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Furthermore, if line convent ion is used, the following changes m a y  be s imul taneously  used:  

multiplication cross × mult ipl icat ion dot  
decimal point  decimal comma , 
separation mark  , any  common non-ambiguous separat ion mark  

Example:  integrat ion of a funct ion F(x) by Simpson's Rule. The values of F(x) are supplied by  an 
assumed existent  funct ion routine.  The mesh size is halved unt i l  two successive Simpson sums agree 
within a prescribed error. During the mesh reduct ion F(x) is evaluated a t  most  once for any  x. A 
value V greater  than  the max imum absolute value a t ta ined  by  the funct ion on the interval  is required 
for initializing. 

procedure Simps (F( ), a, b, delta,  V); 
comment a, b are the min and max, resp. of the points def. interval  of integ. F(  ) is the funct ion to 

integrated.  
del ta  is the permissible difference between two successive Simpson sums V is greater  than  
the max imum absolute value of F on a, b; 

begin 
Simps: 

J l :  
for 

begirt. 

Ibar:  = V X (b - a) 
n : =1  
h : = ( b - a ) / 2  
J : = h  × ( F ( a ) + F ( b )  ) 
S : =0 ;  
k : =1  (1) n 
S : = S + F  ( a + ( 2 x k - 1 )  x h )  
I : = J + 4 × h × S  
(delta < abs ( I -  Ibar) ) tT~ 
Ibar:  = I 
J : = (I + J ) / 4  
n : = 2 × n ;  h : =  h/2 
go to J1 end 
Simps : =  I/3 

return 
integer (k, n) 

end Simps 

(7~ abs (absolute value) is the name of a standard procedure always available to the programmer so that it need not be sup- 
plied as an input parameter, 
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