
Reprinted from the COMMUNICATIONS OF THE ASSOCIATION FOR COMPUTING MACHINERY

Vol. 3, No.5, May 1960
Made in U.S.A.

With tYPographical corrections as of June ~8, 1980

Report on the Algorithmic Language ALGOL 60

J. H. WEGSTEIN
A. VAN WIJNGAARDEN
M. WOODGER

PETER NAUR (Editor)
H. RUTISHAUSER
K. SAMELSON
B. VAUQUOIS

C. KATZ

J. MCCARTHY
A. J. PERLIS

J. W. BACKUS
F.L.BAUER
J. GREEN

Dedicated to the Memory of WILLIAM TURANSKI

INTRODUCTION

Background

After the publication of a preliminary report on the
algorithmic language ALGOL,!' 2 as prepared at a conference
in Zurich in 1958, much interest in the ALGOL language
developed.

As a result of an informal meeting held at Mainz in
November 1958, about forty interested persons from
several European countries held an ALGOL implementation
conference in Copenhagen in February 1959. A "hardware
group" was formed for working cooperatively right down
to the level of the paper tape code. This conference also
led to the publication by Regnecentralen, Copenhagen, of
an ALGOL Bulletin, edited by Peter Naur, which served
as a forum for further discussion. During the June 1959
ICIP Conference in Paris several meetings, both formal
and informal ones, were held. These meetings revealed
some misunderstandings as to the intent of the group
which was primarily responsible for the formulation of the
language, but at the same time made it clear that there
exists a wide appreciation of the effort involved. As a re­
sult of the discussions it was decided to hold an inter­
national meeting in January 1960 for improving the
ALGOL language and preparing a final report. At a Euro­
pean ALGOL Conference in Paris in November 1959 which
was attended by about fifty people, seven European
representatives were selected-to attend the January 1960
Conference, and they represent the following organiza­
tions: Association Francaise de Calcul, British Computer
Society, Gesellschaft fur Angewandte Mathematik und

. Mechanik, and Nederlands Rekenmachine Genootschap.
The seven representatives held a final preparatory meeting
at Mainz in December 1959.

Meanwhile, in the United States, anyone who wished to
suggest changes or corrections to ALGOL was requested to
send his comments to the ACM Communications where
they were published. These comments then became the
basis of consideration for changes in the ALGOL language.
Both the SHARE and USE organizations established
ALGOL working groups, and both organizations were
represented on the ACM Committee on Programming
Languages. The ACM Committee met in Washington in
November 1959 and considered all comments on ALGOL
that had been sent to the ACM Communications. Also,
seven representatives were selected to attend the January
1960 international conference. These seven representa­
tives held a final preparatory meeting in Boston in Decem­
ber 1959.

January 1960 Conference

The thirteen representatives," from Denmark, England,
France, Germany, Holland, Switzerland, and the United
States, conferred in Paris from January 11 to 16, 1960.

Prior to this meeting a completely new draft report was
worked out from the preliminary report and the recom­
mendations of the preparatory meetings by Peter Naur
and the conference adopted this new form as the basis
for its report. The Conference then proceeded to work for
agreement on each item of the report. The present report
represents the union of the Committee's concepts and the
intersection of its agreements.

As with the preliminary ALGOL report, three different
levels of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations.

I Preliminary report-International Algebraic Language,
Comm. A8soc. Camp. Mach. 1, No. 12 (1958),8.

2 Report on the Algorithmic Language ALGOL by the ACM
Committee on Programming Languages and the GAMM Com­
mittee on Programming, edited by A. J. Perlis and K. Samelson,
Numerische Mathematik Bd. 1, S. 41-60 (1959).

REFERENCE LANGUAGE

1. It is the working language of the committee.
2. It is the defining language.

S William Turanski of the American group was killed by an
automobile just prior to the January 1960 Conference.

Communications of the ACM 299

Basis of ten 10

Exponentation i
Parentheses ()

3. The characters are determined by ease of mutual
understanding and not by any computer limitations, coders
notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication

language to any locally appropriate hardware representa­
tions.

7. The main publications of the ALGOL language itself
will use the reference representation.

PUBLICATION LANGUAGE

1. The publication language admits variations of the
reference language according to usage of printing and
handwriting (e.g., subscripts, spaces, exponents, Greek
letters).

2. It is used for stating and communicating processes.
3. The characters to be used may be different in differ­

ent countries, but univocal correspondence. with reference
representation must be secured.

HARDWARE REPRESENTATIONS

1. Each one of these is a condensation of the reference
language enforced by the limited number of characters on
standard input equipment.

2. Each one of these uses the character set of a particu­
lar computer and is the language accepted by a translator
for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from Publication or Refer­
ence language.

For transliteration between the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Reference Language Publication Language

Subscript bracket [] Lowering of the line between the
brackets and removal of the brackets

Raising of the exponent
Any form of parentheses, brackets,

braces
Raising of the ten and of the following

integral number, inserting of the
intended multiplication sign

..

DESCRIPTION OF THE REFERENCE LANGUAGE

WaB sieh liberhaupt sagen lasst, IIlsBt
sich klar sagen; und wovon man nicht
reden kann, daruber mUBB man sehweigen.

LUDWIG WITTGENBTEIN.

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations-reference,
hardware, and publication-and the development de­
scribed in the sequel is in terms of the reference representa­
tion. This means that all objects defined within the
language are represented by a given set of symbols-and
it is only in the choice of symbols that the other two
representations may differ. Structure and content must
be the same for all representations.

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of calculating rules is the well-known arithmetic
expression containing as constituents numbers, variables,
and functions. From such expressions are compounded,
by applying rules of arithmetic composition, self-con­
tained units of the language-explicit formulae-called
assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.

300 Communications of the ACM

Sequences of statements may be combined into compound
statements by insertion of statement brackets.

Statements are supported by declarations which are not
themselves computing instructions, but inform the trans­
lator of the existence and of certain properties of objects
appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an
array of numbers, or even the set of rules defining a func­
tion. Each declaration is attached to and valid for one
compound statement. A compound statement which in­
cludes declarations is called a block.

A program is a self-contained compound statement, i.e,
a compound statement which is not contained within
another compound statement and which makes no use of
other compound statements not contained within it.

In the sequel the syntax and semantics of the language
will be given.4

4 Whenever the precision of arithmetic is stated as being in
general not specified, or the outcome of a certain process is said to
be undefined, this is to be interpreted in the sense that a program
only fully defines a computational process if the accompanying
information specifies the precision assumed, the kind of arithmetic
assumed, and the course of action to be taken in all such cases as
may occur during the execution of the computation.

1.1. FORMALISM FOR SYNTACTIC DESCRIPTION

The syntax will be described with the aid of metalinguis­
tic formulae." Their interpretation is best explained by an
example

(ab) ::= (I [I (ab) (I (ab)(d)

Sequences of characters enclosed in the brackets () repre­
sent metalinguistic variables whose values are sequences
of symbols. The marks :: = and I (the latter with the
meaning of or) are metalinguistic connectives. Any mark
in a formula, which is not a variable or a connective,
denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in a formula
signifies juxtaposition of the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
values of the variable (ab). It indicates that (ab) may have
the value (or [or that given some legitimate value of
(ab), another may be formed by following it with the
character (or by following it with some value of the
variable (d). If the values of (d) are the decimal digits,
some values of (ab) are:

t« (1(37(
(12345(
«(
[86

In order to facilitate the study, the symbols used for
distinguishing the metalinguistic variables (i.e. the se­
quences of characters appearing within the brackets ()
as ab in the above example) have been chosen to be words
describing approximately the nature of the corresponding
variable. Where words which have appeared in this manner
are used elsewhere in the text they will refer to the corre­
sponding syntactic definition. In addition some formulae
have been given in more than one place.

Definition:

(empty) :: =
(i.e. the null string of symbols).

2. Basic Symbols, Identifiers,Numbers, and Strings.
Basic Concepts.

The reference language is built up from the following
basic symbols:

(basic symbol) :: = (letter)l(digit)l(logical value)l(delimiter)

2.1. LETTERS

(letter) :: = alblcldlelflglhlilj Iklllmlnlolplqlrlsltlulv.lwlxlYlz I
AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITlulVIWIXIYIZ

This alphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not
coinciding with any digit, logical value or delimiter).

6 Cf. J. W. Backus, The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
conference. ICIP Paris, June 1959.

Letters do not have individual meaning. They are used
for forming identifiers and strings" (cf. sections 2.4.
Identifiers, 2.6. Strings).

2.2.1. DIGITS

(digit) ::= 0111213141516171819

Digits are used for forming numbers, identifiers, and
strings.

2.2.2. LOGICAL VALUES

(logical value) :: = truelfalse

The logical values have a fixed obvious meaning.

2.3. DELIMITERS

(delimiter) :: = (operator) I(separator) I(bracketjj(deelarator) I
(specificator)

(operator) .. - (arithmetic operator) I(relational operator) I
(logical operator) I(sequential operator)

(arithmetic operator) ::= +1-lxIII+li
(relational operator) :: = < I~ I= I?; I> l;e
(logical operator) :: = =I::)IVIAh
(sequential operator) :: = go toliflthenlelselforldo7

(separator) :: = ,I. hoi: I jl: = Iiii Istepluntillwhilelcomment
(bracket) :: = (J)1[[11'1' [begfnjond
(declarator) .. - ownlBooleanlintegerlreallarraylswitchl

procedure
(specificator) :: = stringllabellvalue

Delimiters have a fixed meaning which for the most
part is obvious or else will be given at the appropriate
place in the sequel.

Typographical features such as blank space or change
to a new line have no significance in the reference language.
They may, however, be used freely for facilitating reading.

For the purpose of including text among the symbols of
a program the following "comment" conventions hold:

The sequence of basic symbols: is equivalent with

j comment (any sequence not containing ;);
begin comment (any sequence not containing j) j begin
end (any sequence not containing end or ; or else) end

By equivalence is here meant that any of the three sym­
bols shown in the right-hand column may, in anyoccur­
rence outside of strings, be replaced by any sequence of
symbols of the structure shown in the same line of the
left-hand column without any effect on the action of the
program.

2.4. IDENTIFIERS

2.4.1. Syntax

(identifier) :: = (letter) I(identifier)(letter) I(identifier)(digit)

6 It should be particularly noted that throughout the reference
language underlining (for typographical reasons synonymously
bold type) is used for defining independent basic symbols (see
sections 2.2.2 and 2.3). These are understood to have no relation
to the individual letters of which they are composed. Within the
present report boldface will be used for no other purpose.

7 do is used in for statements. It has no relation whatsoever to
the do of the preliminary report, which is not included in ALGOL
60.

Communications of the ACM 301

2.6.2. Examples

'5k"-' lll'1\ =/: 'Tt"
, .. This iii is iii a iii 'string"

(proper string) :: = (any sequence of basic symbols not containing
, or ' >l<empty)

(open string) :: = (proper string) I'(open string)' I
(open string)(open string)

(string) :: = '(open string)'

2.6.3. Semantics
In order to enable the language to handle arbitrary

sequences of basic symbols the string quotes ' and ' are
introduced. The symbol 'If, denotes a space. It has no
significance outside strings.

2.5.3. Semantics
Decimal numbers have their conventional meaning.

The exponent part is a scale factor expressed as an integral
power of 10.

2.5.4. Types
Integers are of type integer. All other numbers are of

type real (cf. section 5.1. Type Declarations).

2.6. STRINGS

2.6.1. Syntax

Strings are used as actual parameters of procedures
(cf. sections 3.2. Function Designators and 4.7. Procedure
Statements).

2.7. QUANTITIES, KINDS AND SCOPES

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements in which
the. declaration for the identifier associated with that
quantity is valid, or, for labels, the set of statements
which may have the statement in which the label occurs
as their successor.

2.8. VALUES AND TYPES

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con­
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The various "types" (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactic units refer to the values of these units.

(expression) :: = (arithmetic expressionjjclsooloan expression) I
(designational expression)

3.1. VARIABLES

3.1.1. Syntax

3. Expressions

In the language the primary constituents of the programs
describing algorithmic processes are arithmetic, Boolean,
and designational, expressions. Constituents of these
expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and sequential,
operators. Since the syntactic definition of both variables
and function designators contains expressions, tIle defini­
tion of expressions, and their constituents, is necessarily
recursive.

(variable identifier) :: = (identifier)
(simple variable) :: = (variable identifier)
(subscript expression) :: = (arithmetic expression)
(subscript list) :: = (subscript expression) I(subscript list),

(subscript expression)
(array identifier) :: = (identifier)
(subscripted variable) :: = (array identifier)[(subscript list)]
(variable) :: = (simple variable) I(subscripted variable)

3.1.2. Examples
epsilon
detA
a17
Q[7,2]
x[sin (nX pi/2), Q[3,n,4ll

3.1.3. Semantics
A variable is a designation given to a single value. This

-.08310-02

- 107
10- 4

+10+5

2.5.2. Examples

o -200.084
177 +07.43108

.5384 9.34 10+10
+0.7300 210-4

2.4.2. Examples

q
Soup
V17a

a34kTMNs
MARILYN

2.4.3. Semantics
Identifiers have no inherent meaning, but serve for the

identification of simple variables, arrays, labels, switches,
and procedures. They may be chosen freely (cf., however,
section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two differ­
ent quantities except when these quantities have disjoint
scopes as defined by the declarations of the program (cf.
section 2.7. Quantities, Kinds and Scopes, and section 5.
Declarations).

2.5. NUMBERS

2.5.1. Syntax

(unsigned integer) :: = (digit) I(unsigned integer)(digit)
(integer) :: = (unsigned integerjj-l-tunsigned integer) I

- (unsigned integer)
(decimal fraction) :: = . (unsigned integer)
(exponent part) :: = 10(integer)
(decimal number) :: = (unsigned integer) I(decimal fraction) I

(unsigned integer)(decimal fraction)
(unsigned number) :: = (decimal numberjkexponent parti]

(decimal number)(exponent part)
(number) :: = (unsigned number) I+(unsigned numberi]

- (unsigned number)

302 Communications of the ACM

Terms:

Factors:

3.3.2. Examples
Primaries:

U
omegaXsumjcos (y-l-z X3)/7 .3941O-8jw[i+2,8]j

(a-3/y+vu-8)

for the modulus (absolute value) of the value of the
expression E

for the sign of the value of E(+1 for E>O, 0 for E=O,
-1 for E<O)

for the square root of the value of E
for the sine of the value of E
for the cosine of the value of E
for the principal value of the arctangent of the value

of E
for the natural logarithm of the value of E
for the exponential function of the value of E (eE) .

abs(E)

omega
sum'[costy-l-s x S)
7.39410-8jw[i+2,8]j(a-3/y+vuj8)

7.39410-8

sum
w[i+2,8]
cos(y+zX3)
(a-3/y+vuj8)

(adding operator) ::= +1­
(multiplying operator) :: = X 1/1+
(primary) :: = (unsigned number) I(variable)1

(function designator) I«arithmetic expression»
(factor) :: = (primary)l(factor)j(primary)
(term) :: = (factor)l(term)(multiplying opreator)(factor)
(simple arithmetic expression) :: = (term) I

(adding operator)(term)l(simple arithmetic expression)
(adding operator)(term)

(if clause) :: = if (Boolean expression)then
(arithmetic expression) :: = (simple arithmetic expression) I

(if clause)(simple arithmetic expression)else
(arithmetic expression)

In(E) ,
exp(E)

sqrt(E)
sin (E)
cos (E)
arctan (E)

sign (E)

These functions are all understood to operate indifferently
on arguments both of type real and integer. They will
all yield values of type real, except for signeE) which will
have yalues of type integer. In a particular representation
these functions may be available without explicit declara­
tions (cf. section 5. Declarations).

3.2.5. Transfer functions
It is understood that transfer functions between any

pair of quantities and expressions may be defined. Among
the standard functions it is recommended that there be
one, namely

entier(E) ,

which "transfers" an expression of real type to one of
integer type, and assigns to it the value" which is the
largest integer not greater than the value of E.

3.3. ARITHMETIC EXPRESSIONS

3.3.1. Syntax(procedure identifier) :: = (identifier)
(actual parameter) :: = (string)l(expression)l(array identifierj]

~ (switch identifier) I(procedure identifier)
(letter string) :: = (letter)I(letter string)(letter)
(parameter delimiter) :: = ,J)(letter string) : (
(actual parameter list) :: = (actual parameter) I

(actual parameter list)(parameter delimiter)
(actual parameter)

(actual parameter part) :: = (empty) I«actual parameter list»
(function designator) :: = (procedure identifier)

(actual parameter part)

value may be used in expressions for forming other values
and may be changed at will by means of assignment state­
ments (section 4.2). The type of the value of a particular
variable is defined in the declaration for the variable

~ itself (cf. section 5.1. Type Declarations) or for the corre­
sponding array identifier (cf. section 5.2. Array Declara­
tions).

3.1.4. Subscripts
3.1.4.1. Subscripted variables designate values which

are components of multidimensional arrays (cf. section
5.2. Array Declarations). Each arithmetic expression of
the subscript list occupies one subscript position of the
subscripted variable, and is called a subscript. The com­
plete list of subscripts is enclosed in the subscript brackets
[]. The array component referred to by a subscripted
variable is specified by the actual numerical value of its
subscripts (cf. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of
type integer and the evaluation of the subscript is under­
stood to be equivalent to an assignment to this fictitious
variable (cf. section 4.2.4). The value of the subscripted
variable is defined only if the value of the subscript ex­
pression is within the subscript bounds of the array (cf.
section 5.2. Array Declarations).

3.2. FUNCTION DESIGNATORS

3.2.1. Syntax

3.2.2. Examples

sin(a-b)
J'(v-l-s,n)
R
S(s-5)Temperature:(T)Pressure:(P)
Compile(' : = ')Stack: (Q)

3.2.3. Semantics
Function designators define single numerical or logical

values, which result through the application of given sets
of rules defined by a procedure declaration (cf. section
5.4. Procedure Declarations) to fixed sets of actual param­
eters. The rules governing specification of actual param­
eters are given in section 4.7. Procedure Statements. Not
every procedure declaration defines the value of a func­
tion designator.

3.2.4. Standard functions
Certain identifiers should be reserved for the standard

~ functions of analysis, which will be expressed as procedures.
It is recommended that this reserved list should contain:

Communications of the ACM 303

means

(factor) both denote division, to be understood as a multi­
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (cf. section 3.3.5).
Thus for example

a/bX7/(p-q)Xv/s

Writing i for a number of integer type, r)or a number of
real type, and a for a number of either integer or real
type, the result is given by the following rules:

aii If i>O, aXaX ... Xa (i times), of the same type as a.
If i=O, if a~O, 1, of the same type as a.

if a=O, undefined.
If i <0, if a~O, 1/ (aX aX ... Xa) (the denominator has

i factors), of type real.
if a=O, undefined.

air If a>O, exp(rXIn(a», of type real.
If a=O, if r>O, 0.0, of type real.

if r;;;;O, undefined.
If a<O, always undefined.

« «aX (b- l»X7) X «p- q)-I» Xv) X (S-I)

The operator / is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator + is defined only for two
operands both of type integer and will yield a result of
type integer defined as follows:

a+b= sign (a/b) X entier (abs (a/b)

(cf. sections 3.2.4 and 3.2.5).
3.3.4.3. The operation (factor)j(primary) denotes

exponentiation, where the factor is the base and the pri­
mary is the exponent. Thus, for example,

means

means2inik

while

2i(nim)

3.3.5. Precedence of operators
The sequence of operations within one expression is

generally from left to right, with the following additional
rules:

3.3.5.1. According to the syntax given in section 3.3.1
the following rules of precedence hold:

first: i
second: X/+
third: +-

3.3.5.2. The expression between a left parenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Consequently
the desired order of execution of operations within an
expression can always be arranged by appropriate position­
ing of parentheses.

3.3.6. Arithmetics of real quantities
Numbers and variables of type real must be inter­

preted in the sense of numerical analysis, i.e. as entities
defined inherently with only a finite accuracy. Similarly,
the possibility of the occurrence of a finite deviation

else (simple arithmetic expression)

else if true then (simple arithmetic expression)

is equivalent to the construction:

3.3.4. Operators and types
Apart from the Boolean expressions of if clauses, the

constituents of simple arithmetic expressions must be of
types real or integer (cf. section 5.1. Type Declarations).
The meaning of the basic operators and the types of the
expressions to whith they lead are given by the following
rules:

3.3.4.1. The operators +, -, and X have the conven­
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/(factor) and (term)+

Simple arithmetic expression:

U - Yu-l-omega.xsum'[eos (y+zX3)/7.3941O-Siw[i+2,SJl

(a-3/y+vuiS)

Arithmetic expressions:

wXu-Q(S+Cu)i2
if q>O then S+3XQ/A else2XS+3Xq
if a<O then U+V else ifaXb>I7 then U/V else if

k~y then V/U else °
aXsin(omegaXt)
0.57toI2Xa[NX (N -1)/2, OJ
(AXarctan(y) + Z)i(7 + Q)
if q then n -1 else n
if a<O then A/B else if b=O then B/A else z

3.3.3. Semantics
An arithmetic expression is a rule for computing a

numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith­
metic operations on the actual numerical values of the
primaries of the expression, as explained in detail in sec­
tion 3.3.4 below. The actual numerical value of a primary
is obvious in the case of numbers. For variables it is the
current value (assigned last in the dynamic sense), and for
function designators it is the value arising from the com­
puting rules defining the procedure (of. section 5.4.
Procedure Declarations) when applied to the current
values of the procedure parameters given in the expression.
Finally, for arithmetic expressions enclosed in parentheses
the value must through a recursive analysis be expressed
in terms of the values of primaries of the other three kinds.

In the more general arithmetic expressions, which include
if clauses, one out of several simple arithmetic expressions
is selected on the basis of the actual values of the Boolean
expressions (cf. section 3.4. Boolean Expressions). This
selection is made as follows: The Boolean expressions of
the if clauses are evaluated one by one in sequence from
left to right until one having the value true is found.
The value of the arithmetic expression is then the value
of the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position is
understood). The construction:

304 Communications of the ACM

from the mathematically defined result in any arithmetic
expression is explicitly understood. No exact arithmetic
will be specified, however, and it is indeed understood
that different hardware representations may evaluate
arithmetic expressions differently. The control of the
possible consequences of such differences must be carried
out by the methods of numerical analysis. This control
must be considered a part of the process to be described,
and will therefore be expressed in terms of the language
itself.

3.4. BOOLEAN EXPRESSIONS

3.4.1. Syntax

(relational operator) :: = < I~ 1= 16: I> I~
(relation) :: = (arithmetic expressionxrelational operator)

(arithmetic expression)
(Boolean primary) :: = (logical value) 1(variable) I

(function designator) I(relation) I«Boolean expression»
(Boolean secondary) :: = (Boolean primary)h (Boolean primary)
(Boolean factor) :: = (Boolean secondary) I

(Boolean factor);\(Boolean secondary)
(Boolean term) :: = (Boolean factor)I(Boolean term)

V(Boolean factor)
(implication) :: = (Boolean term[(implication):::>(Boolean term)
(simple Boolean):: = (implication) I

(simple Boolean)=(implication)
(Boolean expression) :: = (simple Booleam]

(if clause)(simple Boolean) else (Boolean expression)

3.4.2. Examples

x= -2
Y>V V z<q
a+b > -5;\ z-d > qi2
p;\q V x~y

g==,a;\b;\, cVdVe:::>, f
if k<I then s>w else h~c
if if if a then b else c then d else f then g else h <k

3.4.3. Semantics
A Boolean expression is a rule for computing a logical

value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4. Types
Variables and function designators entered as Boolean

primaries must be declared Boolean (cf. section 5.1.
Type Declarations and sections 5.4.4. Values of Function
Designators) .

3.4.5. The operators
Relations take on the value true whenever the corre­

sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators-, (not), 1\ (and),
V (or), :::> (implies), and == (equivalent), is given by the
following function table.

bi false false true true
b2 false true false true---------------------------
,bI true true false false
bI;\b2 false false false true
bIVb2 false true true true
bI:::>b2 true true false true
bI_b2 true false false true

3.4.6. Precedence of operators
The sequence of operations within one expression is

generally from left to right, with the following additional
rules:

3.4.6.1. According to the syntax given in section 3.4.1
the following rules of precedence hold:

first: arithmetic expressions according to section 3.3.5.
second: < ~ = 6: > ~

third:' ,
fourth: ;\
fifth: V
sixth: :::>
seventh: =

3.4.6.2. The use of parentheses will be interpreted in
the sense given in section 3.3.5.2.

3.5. DESIGNATIONAL EXPRESSIONS

3.5.1. Syntax

(label) :: = (identifier) 1(unsigned integer)
(switch identifier) :: = (identifier)
(switch designator) :: = (switch identifier)[(subscript expression)]
(simple designational expression) :: = (label) I(switch designator) I

«designational expressionr)
(designational expression) :: = (simple designational expression) [

(if clause)(simple designational expression) else
(designational expression)

3.5.2. Examples

17
p9
Choose[n-I]
Town[ify<O then N else N+l]
if Ab<c then 17else q[if w~O then 2 else n]

3.5.3. Semantics
A designational expression is a rule for obtaining a label

of a statement (cf. section 4. Statements). Again the
principle of the evaluation is entirely analogous to that of
arithmetic expressions (section 3.3.3). In the general case
the Boolean expressions of the if clauses will select a
simple designational expression. If this is a label the
desired result is already found. A switch designator refers
to the corresponding switch declaration (cf. section 5.3.
Switch Declarations) and by the actual numerical value
of its subscript expression selects one of thedesignational
expressions listed in the switch declaration by counting
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua­
tion is obviously a recursive process.

3.5.4. The subscript expression
The evaluation of the subscript expression is analogous

to that of subscripted variables (cf. section 3.1.4.2). The
value of a switch designator is defined only if the subscript
expression assumes one of the positive values 1, 2, 3, ... ,
n, where n is the number of entries in the switch list.

3.5.5. Unsigned integers as labels
Unsigned integers used as labels have the property that

leading zeroes do not affect their meaning, e.g. 00217
denotes the same label as 217.

Communications of the ACM 305

L: L: '" begin D ; D ; .. D ; 8 ; 8 ; ... 8 ;
8 end

begin x : = 0 ; for y : = 1 step 1 until n do x : =
x+A[y] ;

if x>q then go to 8TOP else if x>w-2 then
goto8 ;

Aw: 8t: W: = x-l-bob end

It should be kept in mind that each of the statements S
may again be a complete compound statement or block.

4.1.2. Examples
Basic statements:

a:= p+q
go to Naples
8TART: CONTINUE: W : = 7.993

Compound statement:

4. Statements

The units of operation within the language are called
statements. They will normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their successor
explicitly, and shortened by conditional statements, which
may cause certain statements to be skipped.

In order to make itpossible to define a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive. Also since
declarations, described in section 5, enter fundamentally
into the syntactic structure, the syntactic definition of
statements must suppose declarations to be already de­
fined.

4.1. COMPOUND STATEMENTS AND BLOCKS

. 4.1.1. Syntax

(unlabelled basic statement) :: = (assignment statement) I
(go to statement) I(dummy statement)[(procedure statement)

(basic statement) :: = (unlabelled basic statement)I(label):
(basic statement)

(unconditional statement) :: = (basicstatement) [(for statement) I
(compound statement) [(block)

(statement) :: = (unconditional statement) [
(conditional statement)

(compound tail) :: = (statement) end [(statement)
(compound tail)

(block head) :: = begin(declaration) I(block head)
(declaration)

(unlabelled compound) :: = begin (compound tail)
(unlabelled block) :: = (block head) ; (compound tail)
(compound statement) :: = (unlabelled compound) [

(label): (compound statement)
(block):: = (unlabelled block)I(label): (block)

This syntax may be illustrated as follows: Denoting
arbitrary statements, declarations, and labels, by the
letters S, D, and L, respectively, the basic syntactic units
take the forms:
Compound statement: '

Block:

Q: begin integer i, k ; real w
for i : = 1 step 1 until m do
for k : = i-l-I step 1 until m do
begin w : = A[i, k] ;

A[i, k] : = A[k, i] ;
A[k, i] : = wend for i and k

end block Q

4.1.3. Semantics
Every block automatically introduces a new level of

nomenclature. This is realized as follows: Any identifier
occurring within the block may through a suitable declara­
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the block has no
existence outside it, and (b) that any entity represented
by this identifier outside the block is completely inacces­
sible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the block and in the level immediately outside it. The
exception to this rule is presented by labels, which are
local to the block in which they occur.

Since a statement of a block may again itself be a block
the concepts local and non-local to a block must be under­
stood recursively. Thus an identifier, which is non-local
to a block A, mayor may not be non-local to the block B
in which A is one statement.

4.2. ASSIGNMENT STATEMENTS

4.2.1. Syntax

(left part) :: = (variable) : =
(left part list) : : = (left part) [(left part list)(left part)
(assignment statement) :: = (left part list)(arithmetic expression) I

(left part list)(Boolean expression)

4.2.2. Examples

s := prO] := n:= n+1+s
n := n+1
A := B/C-v-qX8
s[v,k+2] : = 3-arctan(sXzeta)
V:= Q>Y;\Z

4.2.3. Semantics
Assignment statements serve for assigning the value of

an expression to one or several variables. The process will
in the general case be understood to take place in three
steps as follows:

4.2.3.1. Any subscript expressions occurring in the left
part variables are evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.
4.2.3.3. The value of the expression is assigned to all

the left part variables, with any subscript expressions
having values as evaluated in step 4.2.3.L

4.2.4. Types
All variables of a left part list must be of the same

declared type. If the variables are Boolean, the expression
must likewise be Boolean. If the variables are of type

8 end... 8L: L: '" begin 8 ; 8

Block:

306 Communications of the ACM

else (unconditional statement)

else if true then (unconditional statement)

is equivalent to

f------------f------1
if B1 then 81 else if B2 then 82 else 83 ; 84
~ t ~ J

B2 falseB1 false

(for list element) :: = (arithmetic expression) I
(arithmetic expression) step (arithmetic expression) until
(arithmetic expression) I(arithmetic expression) while
(Boolean expression)

(for list) :: = (for list elementjjrfor list), (for list element)
(for clause) :: = for (variable) : = (for list) do

4.5.4. GO TO into a conditional statement
The effectof a go to statement leading into a conditional

statement follows directly from the above explanation of
the effect of else.

4.6. For STATEMENTS
4.6.1. Syntax

If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement.

For further explanation the following picture may be
useful:

4.5.3. Semantics
Conditional statements cause certain statements to be

executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1. If statement. The unconditional statement of
an if statement will be executed if the Boolean expression
of the if clause is true. Otherwise it will be skipped and the
operation will be continued with the next statement.

4.5.3.2. Conditional statement. According to the syn­
tax two different forms of conditional statements are
possible. These may be illustrated as follows:
if BI then 81 else if B2 then 82 else 83 ; 84

and
if B1 then 81 else if B2 then 82 else if B3 then 83 ; 84

Here B1 to B3 are Boolean expressions, while S1 to S3 are
unconditional statements. S4 is the statement following
the complete conditional statement.

The execution of a conditional statement may be de­
scribed as follows: The Boolean expression of the if clauses
are evaluated one after the other in sequence from left to
right until one yielding the value true is found. Then the
unconditional statement following this Boolean is exe­
cuted. Unless this statement defines its successor ex­
plicitly the next statement to be executed will be S4, i.e.
the statement following the complete conditional state­
ment. Thus the effect of the delimiter else may be de­
scribed by saying that it defines the successor of the state­
ment it follows to be the statement following the complete
conditional statement.

The construction

4.3.2. Examples

(go to statement) :: = go to (designational expression)

go to 8
go to exit [n+1]
go to Town[if y<O then N else N+1]
go to if Ab<c then 17 else q[if w<O then 2 else n]

4.3.3. Semantics
A go to statement interrupts the normal sequence of

operations, defined by the write-up of statements, by
defining its successor explicitly by the value of a designa­
tional expression. Thus the next statement to be executed
will be the one having this value as its label.
. 4.3.4. Restriction

Since labels are inherently local, no go to statement can
lead from outside into a block.

4.3.5. GO TO an undefined switch designator
A go to statement is equivalent to a dummy statement

if the designational expression is a switch designator
whose value is undefined.

4.4. DUMMY STATEMENTS
4.4.1. Syntax

(dummy statement) :: = (empty)

4.4.2. Examples
L:
begin ... John : end

4.4.3. Semantics
A dummy statement executes no operation. It may

serve to place a label.

4.5. CONDITIONAL STATEMENTS
4.5.1. Syntax

(if clause) :: = if (Boolean expression) then
(unconditional statement) :: = (basic statementjkfor statementj]

(compound statement) I(block)
(if statement) :: = (if clause) (unconditional statement) I

(label): (if statement)
(conditional statement) :: = (if statementj ldf statement) else

(statement)

4.5.2. Examples

if x>O then n : = n+1
if v>u then V: q: = n-l-rn else go to R
if s<OVP;;i;Q then AA: begin if q<v then a : = vis

else y : = 2Xa end
else ifv>s then a: = v-q else if v>s-l

then go to 8

real or integer, the expression must be arithmetic. If
the type of the arithmetic expression differs from that of
the variables,. appropriate transfer functions are under­
stood to be automatically invoked. For transfer from
real to integer type, the transfer function is understood
to yield a result equivalent to

entier(E+O.5)

where E is the value of the expression.

4.3. GO TO STATEMENTS
4.3.1. Syntax

(for statement) :: = (for clause)(statement)I
(label): (for statement)

4.6.2. Examples

for q : = 1 step s until n do A[q] : = B[q]
for k := 1, VIX2 while Vl<N do

for j : = I+G, L, 1 step 1 until N, C+D do
A[k,j] : = B[k,j]

4.6.3. Semantics
A for clause causes the statement S which it precedes to

be repeatedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

~ i
Initialize ; test ; statement S ; advance ; successor

~ i
for list exhausted

In this picture the word initialize means: perform the first
assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. If so, the execution con­
tinues with the successor of the for statement. If not, the
statement following the for clause is executed.

4.6.4. The for list elements
The for list gives a rule for obtaining the values which

are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they
are written. The sequence of values generated by each of
the three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:

4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as calculated immediately before the corre­
sponding execution' of the statement S.

4.6.4.2. Step-until-element. A for element of the form
A step B until C, where A, B, and C, are arithmetic expres­
sions, gives rise to an execution which may be described
most concisely in terms of additional ALGOL statements
as follows:

V:= A
Ll: if (V-C)X sign(B»O then go to Element exhausted;

Statement S .
V:= V+.B ;
go to Ll

where V is the controlled variable of the for clause and
Element exhausted points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed by a
for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional ALGOL statements as

308 Communtcatfons of the ACM

follows:

L3:V:=E;
if ..,F then go to Element exhausted
Statement S ;
gotoL3 ;

where the notation is the same as in 4.6.4.2 above.
4.6.5. The value of the controlled variable upon exit.
Upon exit out of the statement S (supposed to be com­

pound) through a go to statement the value of the con­
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde­
fined after the exit.

4.6.6. Go to leading into a for statement
The effect of a go to statement, outside a for statement,

which refers to a label within the for statement, is unde­
fined.

4.7. PROCEDURE STATEMENTS

4.7.1. Syntax

(actual parameter) :: = (string) I(expression) I(array identifier) I
(switch identifier) I(procedure identifier)

(letter string) :: = (letter)I(letter string)(letter)
(parameter delimiter) :: = ,I(letter string):(
(actual parameter list) :: = (actual parametef>I

(actual parameter list)(parameter delimiter)
(actual parameter)

(actual parameter part) :: = (empty) I
«actual parameter list»

(procedure statement):: = (procedure identifier)
(actual parameter part)

4.7.2. Examples

Spur (A) Order : (7)Result to: (V)
Transpose (W,v+l)
Absmax(A,N,M,Yy,I,K)
Innerproduct(A[t,P ,u],B[P],lO,P, Y)

These examples correspond to examples given in section
5.4.2.

4.7.3. Semantics
A procedure statement serves to invoke (call for) the

execution of a procedure body (cf. section 5.4. Procedure
Declarations). Where the procedure body is a statement
written in ALGOL the effect of this execution will be equiva­
lent to the effect of performing the following operations
on the program:

4.7.3.1. Value assignment (call by value)
All formal parameters quoted in the value part of the

procedure declaration heading are assigned the values
(cf. section 2.8. Values and Types) of the corresponding
actual parameters, these assignments being considered as
being performed explicitly before entering the procedure
body. These formal parameters will subsequently be
treated as local to the procedure body.

4.7.3.2. Name replacement (call by name)
Any formal parameter not quoted in the value list is

replaced, throughout the procedure body, by the corre-

sponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible con­
flicts between identifiers inserted through this process and
other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement and execution
Finally the procedure body, modified as above, is

inserted in place of the procedure statement and executed.
4.7.4. Actual-formal correspondence
The correspondence between the actual parameters of

the procedure statement and the formal parameters of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of
the procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the
same order.

4.7.5. Restrictions
For a procedure statement to be defined it is evidently

necessary' that the operations on the procedure body de­
fined in sections 4.7.3.1 and 4.7.3.2 lead to a correct ALGOL
statement.

This imposes the restriction on any procedure statement
that the kind and type of each actual parameter be com­
patible with the kind and type of the corresponding formal
parameter. Some important particular cases of this gen­
eral rule are the following:

4.7.5.1. Strings cannot occur as actual parameters in
procedure statements calling procedure declarations
having ALGOL 60 statements as their bodies (cf. section
4.7.8).

4.7.5.2. A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value can only correspond
to an actual parameter which is a variable (special case of
expression].

4.7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre­
spond to an actual parameter which is an array identifier
of an array of the same dimensions. In addition if the
formal parameter is called by value the local array created
during the call will have the same. subscript bounds as
the actual array.

4.7.5.4. A formal parameter which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier, because these latter do not possess
values (the exception is the procedure identifier of a pro­
cedure declaration which has an empty formal parameter
part (cf. section 5.4.1) and which defines the value of a
function designator (cf. section 5.4.4). This procedure
identifier is in itself a complete expression).

4.7.5.5. Any formal parameter may have restrictions
on the type of the corresponding actual parameter asso­
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).

In the procedure statement such restrictions must eVI­
dently be observed.

4.7.6. Nonlocal quantities of the body
A procedure statement written outside the scope of any

non-local quantity of the procedure body is undefined.
4.7.7. Parameter delimiters
All parameter delimiters are understood to be equiva­

lent. No correspondence between the parameter delimiters
used in a procedure statement and those used in the pro­
cedure heading is expected beyond their number being the
same. Thus the information conveyed by using the elabo­
rate ones is entirely optional.

4.7.8. Procedure body expressed in code
The restrictions imposed on a procedure statement

calling a procedure having its body expressed in non­
ALGOL code evidently can only be derived from the charac­
teristics of the code used and the intent of the user and
thus fall outside the scope of the reference language.

5. Declarations

Declarations serve to define certain properties of the
identifiers of the program. A declaration for an identifier
is valid for one block. Outside this block the particular
identifier may be used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the begin, since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi­
cance implied by the nature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by
a go to statement) all identifiers which are declared for
the block lose their significance again.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a
reentry into the block, the values of own quantities will
be unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions (cf. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. No
identifier may be declared more than once in anyone
block head.

Syntax.

(declaration) :: = (type deolarationjkarray declarationi]
(switch declaration) I(procedure declaration)

5.1. TYPE DECLARATIONS

5.1.1. Syntax

(type list) :: = (simple variable) I
(simple variable), (type list)

(type) :: = reallinteger\Boolean
(local or own type) :: = (typerlown (type)
(type declaration) :: = (local or own type)(type list)

Communications of the ACM 309

5.1.2. Examples

integer p,q,s
own Boolean Acryl,n

5.1.3. Semantics
Type declarations serve to declare certain identifiers to

represent simple variables of a given type. Real declared
variables may only assume positive or negative values
including zero. Integer declared variables may only assume
positive and negative integral values including zero.
Boolean declared variables may only assume the values
true and false.

In arithmetic expressions any position which can be
occupied by a real declared variable may be occupied by
an integer declared variable.

For the semantics of own, see the fourth paragraph of
section 5 above.

5.2. ARRAY DECLARATIONS

5.2.1. Syntax

(lower bound) :: = (arithmetic expression)
(upper bound) :: = (arithmetic expression)
(bound pair) :: = (lower bound): (upper bound)
(bound pair list) :: = (bound pair)l(bound pair list),(bound pair)
(array segment) :: = (array identifier)[(bound pair list)] I

(array identifier), (array segment)
(array list) :: = (array segmentjj/array list),(array segment)
(array declaration) :: = array (array list)[(local or own type)

array (array list)

5.2.2. Examples

array a, b, c[7:n,2:m], s[-2:10]
own integer array A[if c<O then 2 else 1:20]
real array q[-7:-1]

5.2.3. Semantics
An array declaration declares one or several identifiers

to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subscripts and the types of the variables:

5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower and upper bound of a
subscript in the form of two arithmetic expressions sepa­
rated by the delimiter: The bound pair list gives the
bounds of all subscripts taken in order from left to right.

5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.

5.2.4. Lower upper bound expressions
5.2.4.1. The expressions will be evaluated in the same

way as subscript expressions (cf. section 3.1.4.2).
5.2.4.2. The expressions can only depend on variables

and procedures which are non-local to the block for which
the array declaration is valid. Consequently in the outer­
most block of a program only array declarations with
constant bounds may be declared.

310 Communications of the ACM

5.2.4.3. An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4. The expressions will be evaluated once at
each entrance into the block.

5.2.5. The identity of subscripted variables
The identity of a subscripted variable is not related to

the subscript bounds given in the array declaration. How­
ever, even if an array is declared own the values of the
corresponding subscripted variables will, at any time,
be defined only for those of these variables which have
subscripts within the most recently calculated subscript
bounds.

5.3. SWITCH DECLARATIONS

5.3.1. Syntax

(switch list) :: = (designational expression)!
(switch list),(designational expression)

(switch declaration) :: = switch (switch identifier): = (switch list)

5.3.2. Examples

switch 8 : = 81,82,Q[m], if v> -5 then 83 else 84
switch Q : = p1,w

5.3.3. Semantics
A switch declaration defines the values corresponding

to a switch identifier. These values are given one by one
as the values of the designational expressions entered in
the switch list. With each of these designational expres­
sions there is associated a positive integer, 1, 2, ... , ob­
tained by counting the items in the list from left to right.
The value of the switch designator corresponding to a
given value of the subscript expression (cf. section 3.5.
Designational Expressions) is the value of the designa­
tional expression in the switch list having this given value
as its associated integer.

5.3.4. Evaluation of expressions in the switch list
An expression in the switch list will be evaluated every

time the item of the list in which the expression occurs is
referred to, using the current values of all variables
involved.

5.3.5. Influence of scopes.
Any reference to the value of a switch designator from

outside the scope of any quantity entering into the desig­
national expression for this particular value is undefined.

5.4. PROCEDURE DECLARATIONS

5.4.1. Syntax

(formal parameter) :: = (identifier)
(formal parameter list) :: = (formal parameter) [

(formal parameter list)(parameter delimiter)
(formal parameter)

(formal parameter part) :: = (empty) I«formal parameter list»
(identifier list) :: = (identifierjkidentifier list),(identifier)
(value part) :: =value(identifier list) ; [(empty)
(specifier) :: = string I(type) [anruy] (typejarnayjlabedjswf tch]

procedureI(type)procedure
(specification part) :: = (empty)[(specifier)(identifier list) ; I

(specification part) (specifier) (identifier list)

(procedure heading) :: = (procedure identifier)
(formal parameter part) ; (value part)(speciflcation part)

(procedure body) :: = (statement)j(code)
(procedure declaration) :: =

procedure (procedure heading)(procedure body) I
(type) procedure (procedure heading)(procedure body)

5.4.2. Examples (see also the examples at the end of
the report).

procedure Spur(a)Order:(n)Result:(s) value n
array a ; integer n ; real s
begin integer k
s:= 0 ;
for k : = 1 step 1 until n do s : = s + a[k,k]
end

procedure Transpose (a)Order :(n) value Il

array a ; integer n ;
begin real w ; integer i , k
for i := 1 step 1 until n do

for k : = l+i step 1 until n do
begin w : = a[i,k]

a[i,k] : = a[k,i]
a[k,i] := w

end
end Transpose

integer procedure Step (u) ; real u
Step: = if O~uf\u~1 then 1 else 0

procedure Absmax(a)size :(n,m)Result:(y)Subscripts:
(i,k) ;

eornmerrt The absolute greatest element of the matrix a,
of size n by m is transferred to y, and the sub­
scripts of this element to i and k

array a ; integer n, m, i, k ; real y
begin integer p, q
y:= 0
for p : = 1 step 1 until n do for q : = 1 step 1 until

mdo
ifabs(a[p,q]»ythenbeginy:=abs(a[p,q]) ; i:=p ;

k:=q
end end Absmax

procedure Innerproduct (a,b)Order:(k,p)Result :(y)
value k ,

integer k,p ; real y,a,b,
begin real s
s:= 0 ;
for p : = 1 step 1 until k do s : =s+aXb
y:= s
end Innerproduct

5.4.3. Semantics
A procedure declaration serves to define the procedure

associated with a procedure identifier. The principal con­
stituent of a procedure declaration is a statement or a
piece of code, the procedure body, which through the use
of procedure statements and/or function designators may
be activated from other parts of the block in the head of
which the procedure declaration appears. Associated with
the body is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters.
Formal parameters in the procedure body will, whenever
the procedure is activated (cf. section 3.2. Function

Designators and section 4.7. Procedure Statements)
be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal
will be either local or non-local to the body depending on
whether they are declared within the body or not. Those
of them which are nonlocal to the body may well be local
to the block in the head of which the procedure declaration
appears.

5.4..4. Values of function designators
For a procedure declaration to define the value of a

function designator there must, within the procedure body,
occur an assignment of a value to the procedure identifier,
and in addition the type of this value must be declared
through the appearance of a type declarator as the very
first symbol of the procedure declaration.

Any other occurrence of the procedure identifier within
the procedure body denotes activation of the procedure.

5.4.5. Specifications
In the heading a specification part, giving information

about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In this
part no formal parameter may occur more than once and
formal parameters called by name (cf. section 4.7.3.2)
may be omitted altogether.

5.4.6. Code as procedure body ~

It is understood that the procedure body may be ex­
pressed in nOn-ALGOL language. Since it is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language.

Examples of Procedure Declarations:

EXAMPLE 1.

procedure euler (fct, sum, eps, tim) ; value eps, tim
integer tim ; real procedure fct ; real sum, eps
eommerrt euler computes the sum of fct(i) for i from zero up to
infinity by means of a suitably refined euler transformation. The
summation is stopped as soon as tim times in succession the abso­
lute value of the terms of the transformed series are found to be
less than eps. Hence, one should provide a function fct with one
integer argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in the case
of a slowly convergent or divergent alternating series ;
begin integer i, k, n, t ; array m[O:15] ; real mn, mp, ds
i : = n : = t : = 0 ; m[O]: = fct(O) sum: = m[O]/2
nextterm: i : = i-I-I ; mn : = fct(i)

for k : = 0 step 1 until n do
begin mp : = (mn+m[k])/2 ; m[k] . - mn

mn : = mp end means
if (abs(mn) <abs(m[n]»f\(n<15) then

begin ds := mn/2 ; n:= n+l m[n]:=
mn end accept

else ds : = mn ;
sum : = sum + ds ;
if absfds) <eps then t : = t+l else t : = 0
if t<tim then go to nextterm

end euler

Comrmrrrlcat.iorrs of the ACM 311

EXAMPLE 2.8

procedure RK(x,y,n,FKT,eps,eta,xE,yE,fi) ; value x,y
integer n ; Boolean fi ; real x,eps,eta,xE array
y,yE ; procedure FKT ;
comment : RK integrates the system Yk'=h(x,Yl ,Y2,... , Yn)
(k= 1,2, ... ,n) of differential equations with the method of Runge­
Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values x and y[k] for x and the un­
known functions Yk (x). The order n of the system. The procedure
FKT(x,y,n,z) which represents the system to be integrated, i.e,
the set of functions fk . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval xE. The output parameter yE which repre­
sents the solution at x=xE. The Boolean variable fi, which must
always be given the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh­
points "0 , xi , ... , Xn , then the procedure must be called repeat­
edly (with X=Xk, XE=Xk+lo fork=O, 1, ... , n-l) and then the
later calls may occur with fi=false which saves computing time.
The input parameters of FKT must be x.y,n, the output parameter
z represents the set of derivatives z[k]=h(x,Yll], y[2], ... , ylnl)
for x and the actual y's. A procedure comp enters as a non-local
identifier
begin

array z,yl,y2,y3[I:n] ; real xl,x2,x3,H ; Boolean out
integer k,j ; own real s,Hs ,
procedure RKlST(x,y,h,xe,ye) ; real x,h,xe ; aeray

y,ye ;
comment: RKlST integrates one single RUNGE-KUTTA

with initial values x,y[k] which yields the output
parameters xe=x+h and ye[k], the latter being the

8 This RK-program contains some new ideas which are related
to ideas of S. GILL, A process for the step-by-step integration of
differential equations in an automatic computing machine, Proc.
Camb. Phil. Soc. Vol. 47 (1951) p. 96; and E. FROBERG, On the
solution of ordinary differential equations with digital com­
puting machines, Fysiograf. saua: Lund, FiJrhd. 20 Nr. 11 (1950)
p. 136-152. It must be clear, however, that with respect to com­
puting time and round-off errors it may not be optimal, nor has it
actually been tested on a computer.

solution at xe. Important: the parameters n, FKT, z
enter RKlST as nonlocal entities

begin
array wll ;n], a[I:5] ; integer k,j ,
a[l] : = a[2] : = a[5] : = h/2 ; a[3]: = a[4] : = h
xe := x
for k : = 1 step 1 until n do ye[k] : = w[k] : = y[k]
for j : = 1 step 1 until 4 do
begin

FKT(xe,w,n,z)
xe : = x-l-ajj] ;
for k : = 1 step 1 until n do
begin

w[k] : = y[kl+aU]Xz[kl
ye[k] : = ye[k] + aU+l]Xz[kl/3

end k
end j

end RKlST
Begin of program:

if fi then begin H : = xE-x s : = 0 end else H : = Hs
out : = false ;

AA: if (x+2.01XH-xE>0)=(H>0) then
begin Hs : = H ; out : = true H' - (xE-x)/2

end if ;
RKlST (x,y,2XH,xl,yl)

BB: RKlST (x,y,H,x2,y2) ; RKlST(x2,y2,H,x3,y3)
for k : = 1 step 1 until n do

if eomp (yl [k],y3[k],eta) >eps then go to CC
comment: comp(a,b,c) is a function designator, the value

of which is the absolute value of the" difference of the
mantissae of a and b, after the exponents of these
quantities have been made equal to the largest of the ex­
ponents of the originally given parameters a.b,c

x : = x3 ; if out then go to DD
for k : = 1 step 1 until n do y[k] : = y3[k]
ifs=5 then begin s : = 0 ; H: = 2XH end if
s : = s+1 ; go to AA ;

CC:H:=0.5XH ; out:=false ; xl:=x2
for k : = 1 step 1 until n do yl [k] : = y2[k]
go to BB ;

DD: for k : = 1 step 1 until n do yE[k] : = y3[k]
end RK

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS
All references are given through section numbers. The references are given in three groups:

def Following the abbreviation "def", reference to the syntactic definition (if any) is given.
synt Following the abbreviation "synt", references to the occurrences in metalinguistic formulae

are given. References already quoted in the def-group are not repeated.
text Following the word "text", the references to definitions given in the text are given.

The basic symbols represented by signs other than underlined words have been collected at the beginning.
The examples have been ignored in compiling the index.

+, see: plus
see: minus

X, see: multiply
I, +, see: divide
i, see: exponentiation
<, ~, =, ~, >, rf, see: (relational operator)
=, :;), V, A, -', see: (logical operator)
" see: comma
., see: decimal point

312 Communications of the ACM

[0, see: ten
., see: colon
" see: semicolon
:= , see: colon equal
jji, see: space
(), see: parentheses
[], see: subscript bracket
, " see: string quote

(actual parameter), def 3.2.1,4.7.1
(actual parameter list), def 3.2.1,4.7.1
(actual parameter part), def 3.2.1, 4.7.1
(adding operator), def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6

(arithmetic expression), def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1,
4.6.1, 5.2.1 text 3.3.3

(arithmetic operator), def 2.3 text 3.3.4
array, synt 2.3, 5.2.1, 5.4.1
array, text 3.1.4.1

(array declaration), clef5.2.1 synt 5 text 5.2.3
(array identifier), def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8
(array list), def 5.2.1
(array segment), def 5.2.1
(assignment statement), def 4.2.1 synt 4.1.1 text 1,4.2.3

(basic statement), def 4.1.1 synt 4.5.1
(basic symbol), def 2
begin, synt 2.3, 4.1.1

(block), def 4.1.1 synt 4.5.1 text 1,4.1.3,5
(block head), def 4.1.1
Boolean, synt 2.3, 5.1.1 text 5.1.3

(Boolean expression), def 3.4.1 synt 3,3.3.1,4.2.1,4.5.1,4.6.1 text
3.4.3

(Boolean factor), def 3.4.1
(Boolean primary), def 3.4.1
(Boolean secondary), def 3.4.1
(Boolean term), def 3.4.1
(bound pair), def 5.2.1
(bound pair list), def 5.2.1
(bracket), def 2.3

(code), synt 5.4.1 text 4.7.8,5.4.6
colon:, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1,5.2.1
colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1
comma, , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1, 5.1.1, 5.2.1, 5.3.1,

5.4.1
comment, synt 2.3
comment convention, text 2.3

(compound statement), def 4.11 synt 4.5.1 text 1
(compound tail), def 4.1.1
(conditional statement), def 4.5.1 synt 4.1.1 text 4.5.3

(decimal fraction), def 2.5.1
(decimal number), def 2.5.1 text 2.5.3
decimal point. , synt 2.3, 2.5.1

(declaration), def 5 synt 4.1.1 text 1, 5 (complete section)
(declarator), def 2.3
(delimiter), def 2.3 synt 2
(designational expression), def 3.5.1 synt 3, 4.3.1, 5.3.1 text 3.5.3
(digit), def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / +, synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1

(dummy statement), def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3,3.3.1,3.4.1,3.5.1,4.5.1 text 4.5.3.2
(empty), def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1,5.4.1
end, synt 2.3, 4.1.1
entier, text 3.2.5
exponentiation j, synt 2.3, 3.3.1 text 3.3.4.3

(exponent part), def 2.5.1 text 2.5.3
(expression), def 3 synt3.2.1, 4.7.1 text 3 (complete section)

(factor), def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1

(for clause), def 4.6.1 text 4.6.3,
(for list), def 4.6.1 text 4.6.4

(for list element), def 4.6.1 text 4.6.4.1,4.6.4.2,4.6.4.3
(formal parameter), def 5.4.1 text 5.4.3
(formal parameter list), def 5.4.1
(formal parameter part), def 5.4.1
(for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete sec­

tion)
(function designator), def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3,5.4.4

go to, synt 2.3, 4.3.1
(go to statement), def 4.3.1 synt 4.1.1 text 43.3

(identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
(identifier list), def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1

(if.clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
(if statement), def 4.5.1 text 4.5.3.1
(implication), def 3.4.1
integer, synt 2.3,5.1.1 text 5.1.3

(integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1
(label), def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1 4.1.3
(left part), def 4.2.1
(left part list), def 4.2.1
(letter), def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
(letter string), def 3.2.1, 4.7.1
local, text 4.1.3

(local or own type), def 5.1.1 synt 5.2.1
(logical operator), def 2.3 synt 3.4.1 text 3.4.5
(logical value), def 2.2.2 synt 2, 3.4.1
(lower bound), def 5.2.1 text 5.2.4

minus - , synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X , synt 2.3, 3.3.1 text 3.3.4.1

(multiplying operator), def 3.3.1

nonlocal, text 4.1.3
(number), def 2.5.1 text 2.5.3, 2.5.4

(open string), def 2.6.1
(operator), def 2.3
own, synt 2.3,5.1.1 text 5, 5.2.5

(parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1,5.4.1 text

3.3.5.2
plus + ,synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
(primary), def 3.3.1
procedure, synt 2.3, 5.4.1

(procedure body), def 5.4.1
(procedure declaration), def 5.4.1 synt 5 text 5.4.3
(procedure heading), def 5.4.1 text 5.4.3
(procedure identifier) def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
(procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
program, text 1

(proper string), def 2.6.1

quantity, text 2.7

real, synt 2.3,5.1.1 text 5.1.3
(relation), def 3.4.1 text 3.4.5
(relational operator), def 2.3, 3.4.1

scope, text 2.7
semicolon; , synt 2.3, 4.1.1, 5.4.1

(separator), def 2.3
(sequential operator), def 2.3
(simple arithmetic expression), def 3.il.! text 3.3.3
(simple Boolean), def 3.4.1
(simple designational expression), def 3.5.1

Communications of the ACM 313

(simple variable), def 3.1.1 synt 5.1.1 text 2.4.3
space iii ,synt 2.3 text 2.3, 2.6.3

(specification part), def 5.4.1 text 5.4.5
(specificator), def 2.3
(specifier), def 5.4.1
standard function, text 3.2.4, 3.2.5

(statement), def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete sec-
tion)

statement bracket, see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1

(string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes' " synt 2.3, 2.6.1, text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript bracket [], synt 2.3, 3.1.1, 3.5.1, 5.2.1

(subscripted variable), def 3.1.1 text 3.1.4.1
(subscript expression), def 3.1.1 synt 3.5.1
(subscript list), def 3.1.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1

(switch declaration), def 5.3.1 synt 5 text 5.3.3
(switch designator), def 3.5.1 text 3.5.3
(switch identifier), def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
(switch list), def 5.3.1

(term), def 3.3.1
ten 10 , synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5
true, synt 2.2.2

(type), def 5.1.1 synt 5.4.1 text 2.8
(type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

(unconditional statement), def 4.1.1, 4.5.1
(unlabelled basic statement), def 4.1.1
(unlabelled block), def 4.1.1
(unlabelled compound), def 4.1.1
(unsigned integer), def 2.5.1,3.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

(upper bound), def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3

(value part), def 5.4.1 text 4.7.3.1
(variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
(variable identifier), def 3.1.1

while, synt 2.3, 4.6.1 text 46.4.3

END OF THE REPORT

314 Communications of the ACM

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

