
THE ALCOR PROJECT

K. Samelson and F. L. Bauer

Gutenberg University, Mainz, Germany

ALCOR (meaning ALgol COnverteR) is the name of a cooper­
ative group of computing centers, and computer manufacturers.
The members of this group have agreed to use the same re­
stricted version of ALGOL, based on ess~ntially the same
methods of translation. For coding, a single hardware represen­
tation (5 channel paper tape) is used. In this way exchange­
ability of programs for different machines is insured.

The history of the ALCOR group is intimately connected with
the development of ALGOL. In a certain sense both could be .
said to begin with Rutishauser'B paper on automatic program­
ming (9) first published in 1951, which for the first time gave a
systematic, although somewhat complicated, approach to formula
translation. It came too early, however, and remained unnoticed.*

Stimulated by Rutishauser' s paper, the computer group of the TH
Munich in late 1955 started studying formula translation. This led to
the design, by Bauer and Samelson (1), of a formula controlled com­
puter with a very simple and effective control mechanism.

A diagram of the simplest form of this machine is given in
fig. 1. The input language, in ALGOL terminology, consists of
simple arithmetic expressions (without exponentiation) with
numbers only as operands, and with right hand side assignments
like (a+b) x (-a+b) :=g e.

Characters are written on the keyboard 1 and produce coded
signals to the predecoder 5. This separates numbers from oper­
ators x : + - ().

Numbers are sent, as they come in, through numbers con­
verter 7 into the numbers cellar 11. A cellar here is a store of
the type which lately has been called pushdown-store or stack,
working on the "last in first out" principle.

Operators go to operations converter 8. There, each character
coming in from the predecoder is compared with the topmost
element in operations cellar 12 (initially empty). The evaluation

*The same happened to two other papers on essentially the same sub­
ject which ought to be mentioned here: Lehmann 1953 (7), and Bohm
1954 (4).

207

I

I

208 K. SAMUELSON and F. L. BAUER

5 4 8 7

r--- -----~-----
! ~--~--I-_R~ ________ ~ ______ -f ____ ~~
I
I
I
I
I Predecoder
I
I
I
I
I
I
I /---------1
I
L L-_-_-_~-rr----'

3

Key board

Printer

N

Op

2

Op' 0p"
-- ---

0

t Computer

12

0

FIG. 1.

0

t

6

-_.

A

A

Num-
bers

cellar

11

13

is done by means of a decoding matrix. The effects can be de­
scribed in terms of precedence orders of the characters involved
as listed below:

Order
o
1
2
3

incoming characters
(

x:
+ -

)

cellar element

x:
+ -

(

The closing parenthesis never enters the cellar.
If the incoming character has lower order than the cellar ele­

ment, it is simply pushed into the cellar. If the order is equal,
the cellar element is transmitted to the computing unit 10 for
execution, and is replaced in the cellar by the incoming character.
If the incoming character has higher order than the cellar ele­
ment, the latter is again transmitted to the computing unit for

THE ALCOR PROJECT 209

execution. At the same time, contents of the operations cellar
move up, and the process of comparison is repeated with the new
cellar element. Closing and opening parenthesis simply cancel
out upon meeting.

Execution of an operation means that the computing unit ex­
~racts the two top elements of the numbers cellar, executes the
operation indicated ~ith these operands, and returns the result to
the numbers cellar.

An example is given in fig. 2. Here the top field gives the char­
acters of a statement processed from left to right. The two fields
below give the corresponding contents of operations cellar OC and
numbers cellar NC. c and d denote the intermediate results, 0

denotes the number zero which is introduced at the beginning of
expressions in order to take care of possible unary operators +
or -.

The system described can be extended (and has been on paper)
in quite a number of ways which we need not discuss in detail.
The machine as designed immediately interpreted and evaluated
formulae. However, it was clear from the beginning that the
process could be adapted easily to generate programs simply
by being applied to the names (addresses) of numbers instead of
the numbers themselves, and producing instructions instead of
executing operations, with the numbers cellar for intermediate
results added to the generated program.

The basic principle remains unchanged: The characters of the
program are sequentially compared to the cellar elements and
moved into the cellar until a complete (explicit or implied) bracket
structure is detected. T~is is extracted, processed, and replaced

SIS 1 SIS 1 SIS 1 SIS.I SIS 1 SIS lSI SIS 1 S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a + b) x (- a + b) - e . ,

:e: ((+ + (;Q x (- - + + (x ;Q

:&: :9: ((:9: .:e: x ((((x .:e:
:9: :e: ;Q x x x x ;Q

:&: :&: ;Q :e:

0 0 a a b c c c 0 0 a -a b d d e
:&: :&: :&: :&: a :&: :&: :&: C C 0 c -a c c ;Q

:&: :&: :&: C :&: C :9: .:e:
)it ;Q

FIG. 2.

:e:
-OC

0

.:e:
- NC

210 K. SAMUELSON and F. L. BAUER

by the result of the processing. Then the scanning is continued.
With this translation principle as a background, the ZMMD

group (Zurich-Munich-Mainz-Darmstadt), the nucleus of the
later ALCOR group, was set up in 1957 to develop a common lan­
guage, translation philosophy and translation method.

The group was in agreement from the beginning, partly as a
result of the experiment in machine design, to devise a language
and translator system as an efficient programming tool using
available machine facilities to the fullest extent possible. This
ruled out any kind of interpretive system, in particular for float­
ing point machines like PERM and ERMETH, and indicated a
very judicious use of closed subsidiary subroutines. The target
was, and always has been, an easy mathematically oriented lan­
guage, and fast translation into efficient machine programs.

After publication of the first ALGOL report, in the fall of 58,
three people of ZMMD institutes (Schwarz from Zurich, Seeg­
muller from Munich and Paul from Mainz) were brought together
to program a first test model of ALGOL translators for their
respective machines (ERMETH, PERM, Zuse Z 22). These first
models were interpreters because programming was considered
to be simpler. They were finished by the end of 58, were running
in January 59; and were soon converted to program generators.

At the ICIP conference in Paris, June 1959, a report on the
group's translation methods was given in the symposium on auto­
matic programming (2). This marked the start of the expansion
of ZMMD into ALCOR. Several computing centers (Regnecen­
tralen Copenhagen, University of Bonn, Maililiterl Vienna, Oak
Ridge National Lab) showed interest, and decided to join ZMMD
on a cooperative basis. They were given the available ZMMD
material on translatton methods, and began their own work on
translators. The first manufacturer, Siemens & Halske AG, soon
followed suit.

The cellar method outlined above for arithmetics proved to be
suitable for ALGOL in general since practically all delimiters,
apart from their operative meaning, implied a bracket structure
amenable to the cellar treatment.

The essential feature of this method is, as mentioned in publi­
cations (2,11), that each in-coming character is matched with the
topmost cellar element, and that the pair determines the ensuing
action. The cellar system therefore can be considered to be a
kind of automaton, where input (incoming character) and state
(cellar element) determine new state and output. Originally a

THE ALCOR PROJECT 211

decoding matrix, with incoming characters on the one side,
cellar elements on the other side, as inputs, was used to describe
the choice of action for each pair.

In the early days, especially when the figures on the size of the
FORTRAN I translator, and its translation times on the fast IBM
704 became known, it was thought that on the relatively small
machines at the disposal of the group decoding speed was essen­
tial, and a programmed decoding matrix or multiswitch seemed
to be the fastest method. For this reason, and on account of its
simplicity, ZMMD descriptions of the cellar method in 59 were
still in terms of this matrix which had become rather outsized.
The publications (2,11), however, which barely mentioned the
matrix, should have made clear that the manner of decoding was
a question of programming expediency for particular machines,
and not a matter of principle.

In fact, all ALCOR members in 59 started looking for ways
to reduce the matrix in size, with mostly similar results which
only in part were published. First to be mentioned is A. A. Grau
(6) who explicitly introduced the concept of syntactic states,
and pointed out that the system could be considered to be a set of
mutually recursive subroutines. Lucas (8) tried to deduce the
translator mechanism from the syntactic structure. Paul and
Petry independently introduced the direct use of the precedence
order for decoding described at the beginning (unpublished) which
can be extended to practically all operative delimiters with the
precedence ordering shown in Table 1.

The translator mechanism hitherto described (and including
resolution of the for statement and conditional statement and
expression by means of simpler ALGOL elements) serves to
decompose ALGOL statements into a bracket free ordered
sequence of instructions of fixed format (e.g. three address or
single address instruction).

With a high degree of justification, we could call this the end
of ALGOL translation. For the output of decomposition is a fully
sequential language of simple macro-instructions. This language
could serve as input language for an interpretive system or,
alternatively, for a standard compiler system generating machine
programs.

In both cases the proceSSing system has nothing to do with
ALGOL. However, in a translator designed to produce straight
machine programs such a division, although simplifying pro­
gramming by clearly separating tasks, would be uneconomical.

I

212 K. SAMUELSON and F. L. BAUER

TABLE I

Order Incoming character

o (I [I := 1 if 1 for 1

goto 1 array 1 switch 1

procedure 1 value 1 "I

begin 1 segment begin 1

1

2 xl /
3 + 1 -

4 <I ~ 1 = 1 '" 1 ~I >

5 -,

6 1\

7 V

8 ::>

9 -

10) I]1, I : 1 ; 1

then 1 else 1 step 1 -- -- -
until 1 while 1 do 1 -- -
end.

Cellar element

x 1 /

+ 1 - 1 -1

<I~I=I",I~I>

1\

V

::>

(1 procedure call 1 standard

function call 1] 1 := I !! I thenE 1

then~ 1 elseE 1 else~ 1 for 1 for:= 1

step 1 until 1 while 1 do 1 goto 1

begin 1 begin ~ 1 begin array 1 -- ---
segment begin 1 array 1 array[1

array: 1 switch 1 switch:= 1 -- --
procedure 1 type procedure 1

procedure(1 type procedure(

Furthermore, what comes after decomposition makes up the
bigger part of the detail work to be done for the individual
machine. Therefore, we shall consider it briefly.

As mentioned before, operations required in the macroin­
structions usually are not directly available in machines, and
have to be translated into machine terms. This begins with
arithmetic operations on different number types. Type handling
very much depends on the machine, and within the ALCOR group
different methods are used. The extremes probably are the

THE ALCOR PROJECT 213

translator ALCOR Z 22 on one side, ALCOR S 2002 on the other
side.

On the Zuse Z22, arithmetic operations must be done by sub­
routines. Therefore types are handled dynamically: every quan­
tity stored carries a type characteristic, and the arithmetic
subroutines evaluate this characteristic, carry out the operation
accordingly, and attach the correct characteristic to the result.

The Siemens 2002 is a floating point machine, and real type
arithmetics is naturally identified with floating point arith­
metics. As for integers, after long discussions we came to the
conclusion that for us they were most important as subscripts.
Therefore they are internally identified with machine addresses
which necessarily means fixed point numbers. Thus we have
two different types of arithmetics which are incompatible, and
type handling has to be completely static. This means that the
type analysis has to be done completely during translation,
with type transfer instructions in case of mixed arithmetic.
As a consequence some restrictions, e.g. for actual parameters
in procedure statements, had to be made. This we accepted
since we considered the running time of the generated pro­
gram to be far more important.

With respect to relations, and much more so with the Boolean
operations, the situation is similar: in part at least they have
to be represented by (open or closed) subroutines.

Next to decomposition the major task in ALGOL translation is
the storage allocation as induced by the block structure. The
block structure itseU is a prime example of a bracket structure
to be handled by the cellar method, both on the program and on
the data storage side.

Conceptually this is very simple and elegant as long as the own
is excluded: all the variables and arrays declared in each block
are put on top of what is already present after the begin, and are
taken out again after the corresponding end, and the numbers
cellar for intermediate results is always at the momentary end

j of the sequence.
In practice, however, we have again the problem of static treat­

ment (during translation) versus dynamic treatment (at run time).
In a largely interpretive system, fully dynamic treatment as de­
scribed by Dijkstra (5) is possible and very sensible.

The situation is different for a generating system. For dynamic
treatment essentially means that data storage for each block is
a relatively addressed sequence, with the point of reference dif-

, i

214 K. SAMUELSON and F. L. BAUER

ferent for each block, and determined by the running program.
This can be handled effectively, if a sufficient number of index
registers is available so that to each block a register of its own
can be assigned. Otherwise, index registers would have to be
simulated or shared, which is costly both in computing time and
instruction storage, or the block data would have to be read­
dressed at each entry which also is rather tedious.

Therefore in our ALCOR translators two different data stacks
were introduced: a static stack, comprising the simple variables
and certain subsidiary quantities, which could be completely as­
signed and addressed at the end of translation, and a dynamic
stack for arrays, (where some address calculation usually has
to be done anyway) with a "free storage indicator" or stack
pointer ,handed over from block to block. It should be mentioned
here that this dynamic stacking of arrays was standard operating
procedure in the subroutine organization of the ERMETH and on
PERM since the mid fifties.

Handling of blocks immediately leads us to the delicate problem
of how to handle procedures. Conceptually, dynamic stacking again
is the immediate answer to the problem of data storage, since it
means that at ,each procedure call, the momentary free storage is
available to the procedure, and no data storage need be reserved.
However, due to the admission of non-local quantities in procedures,
we have the same problem of dynamical relative addressing as with
blocks in general. Therefore it was decided, to assign static data
storage to each procedure separately within the block containing the
procedure, which of course rules out recursive procedures. The
waste of static storage, in conflict with our original cellar prin­
ciple, was considered regrettable.

There was no great concern, however, over recursive proce­
dures. These recursive functions were originally introduced by
McCarthy in order to formulate elegantly the theory of computa­
bility. They were considered by us to be of very little value in a
language intended to describe actual rules of computation since
they, in effect, do not describe recursive computation of the func­
tion value, but a recursive build-up of the explicit rule of com­
putation for the function value.

In conformity with the general emphasis on efficiency of
generated programs, methods to evaluate subscripts of sub­
scripted variables recursively and using index registers were
considered rather early (11) since these were deemed to be the
most important problem of optimization.

j

THE ALCOR PROJECT 215

Schemes of this type were incorporated in the translators for
PERM by Seegmiiller, and for ERMETH by Schwarz.

The extent of the language adopted by the ALCOR group after
lengthy deliberations in 1960 was described in the ALGOL Manual
of the ALCOR group by Baumann (3).

The main restrictions against ALGOL 60 are:
(1) no conditional Boolean expressions since these essentially

duplicate the propositional calculus which is the better known
of the two

(2) no "'conditional designational expressions" since they are
unnecessary

(3) no while-element in the for clause since this essentially
duplicates the step until element

(4) no own since neither need nor definitions are clear
(5) no recursive procedures.
In addition there are rules for the use of procedures which

are essentially programming rules.
(1) type procedures are called only by function deSignators.

They serve only to compute the function value, and no side effects
of any kind (recomputation of actual or global parameters, side
exits) are permitted.

(2) In proper procedures called by procedure statement the
function character is underlined by a standard heading of the form

P(x,y) results: (u,v) exits: (I,m)
separating different classes of parameters. This separation has
to be used also in procedure statements.

These rules are intended to keep the notation close to standard
mathematical form, and to ensure easy reading of programs. The
ALCOR group considered both these requirements to be funda­
mental postulates With respect to the language.

To conclude, we corne back to the ALCOR group to give a short
survey of its present status.

The following translators were designed on the basis of ALCOR
plans and are now running:
ALCOR-ERMETH, -MAILUFTERL, -ORACLE, -PERM, -S 2002,
-Z 22, -Z 22 R.

They are all of the "load-and-go" type requiring no intermediate
print-out although none of them except the ORACLE-translator has
magnetic tapes at its disposal.

A translator for the Telefunken TR 4 has been programmed in
Munich and will become operative with the machine. Smaller
translators exist for DERA in Darmstadt and for the Zuse Z 22
(ALCORETTE) .

, I

i

. i
I

216 K. SAMUELSON and F. L. BAUER

The membership of the group at present is as follows:
Institut.fUr Angewandte Mathematik der Eidgenossischen Tech-

nischen Hochschule, Zurich
Rechenzentrum der Technischen Hochschule Munchen,
Institut fur Angewandte Mathematik der Universita:t Mainz,
Institut fur Praktische Mathematik der Technischen Hochschule

Darmstadt,
Zentral-Laboratorium der Siemens & Halske AG., Munchen,
Institut fUr Angewandte Mathematik der Universitat Bonn,
IBM-Forschungsgruppe Wien,
Oak Ridge National Laboratory, Oak Ridge, Tenn.,
Telefunken GmbH., Backnang,
Zuse KG., Bad Hersfeld,
Dr. Neher Laboratory of the Netherlands Postal- and Telecom­

munications Services, Leidschendam,
Standard Elektrik Lorenz AG., Informationswerk, Stuttgart
IBM-Deutschland,' Sindelfingen

Here, the last three should properly be called associated mem­
bers since they developed, or are in the process of developing,
their translators completely on their own. Their membership
therefore concerns mainly use of the common hardware repre­
sentation, and adoption of ALCOR-conventions concerning the
use of ALGOL.

The ALCOR group is essentially an experiment which is not
finished yet. Its success so far has been very encouraging al­
though not perfect. In particular, the problem of active cooper­
ation between members has not been solved to full satisfaction.
This is due mainly to the severe shortage ip. ma~power and funds
in the University institutes which all had a full computing and
teaching load to cope with. Thus every institute had to go
ahead on its own to build its translator as the manpower situation
permitted. The result was that the translators (all essentially
one man jobs) show slight deviations. Thus there is still room for
improvement, as was to be expected in a group consisting of
members as individualistic as university institutes usually are.

In spite of these minor faults, however, we feel that we, in the
ALCOR group, have already proved our point: it is possible to
set up a uniform system which allows free exchange of pro­
grams and information between machines of types as widely dif­
ferent as e.g. Zuse Z 22, PERM, ERMETH and Siemens S2002
without seriously impairing the efficiency of the individual
machine.

	Image
	Image (2)
	Image (3)
	Image (4)
	Image (5)
	Image (6)
	Image (7)
	Image (8)
	Image (9)

