
C Backus· The syntax and semantics of the proposed international algebraic language 125

c The syntax and semantics of the proposed international algebraic language of the

Zurich ACM-GAMM Conference
By J. W. B a c k us, International Business Machines Corp., New York (USA)

This paper gives a summary of the syntax and interpretation
rules of the proposed international algebraic language put for­
ward by the Zurich ACM-GAMM Conference, followed by a for­
mal, complete presentation of the same information. Notations
are presented for numbers, numerical variables, Boolean varia­
bles, relations, n-dimensional arrays, functions, operators and
algebraic expressions. Means are provided in the language for the
assignment of values to variables, conditional execution of state­
ments, iterative procedures, formation of compound statements
from sequences of statements, definition of new statements for
arbitrary procedures, and the re-use and alteration of program
segments.
The proposed language is intended to provide convenient and
concise means for expressing virtually all procedures of numeri­
cal computation while employing relatively few syntactical rules
and types of statement.

La syl1taxe et la semantique de langage algebraic international
propose par la Conference de Zurich (ACM et GAMM).
L'autcur caracterise brievement la syntaxe et les regles d'inter­
pretation du langage algebrique international propose a la Con­
ference de Zurich (ACM-GAMM) puis en donne un expose formel
et complet. II indique les notations utilisees pour designer les
nombres, les variables numeriques ou booIeennes, les relations,
les agencements pluri-dimensionnels, les fonctions, les operateurs
et les expressions algebriques. Ce langage permet d'exprimer
difierentes operations: affectation de valeurs aux variables, exe­
cution conditionnelle des expressions, procedes iteratifs, forma­
tion d'expressions complexes a partir d'une suite d'expressions
elementaires, definition de nouvelles expressions pour des opera­
tions arbitraires, reemploi et modification de certaines parties du
programme.
Le lang age envisage est conyu pour permettre d'exprimer la
quasi totalite des procedes de calcul numerique de maniere com­
mode et concise a l'aide d'un nombre relativement restreint de
regles de syntaxe et d'expressions-types.

Satz- und W ortbedeutungslehre der vorgeschlagenen I nternationalen
Algebraischen Sprache der Ziiricher ACM-GAMM-Konferenz. Der
Bericht gibt eine erklarende Zusammenfassung der Satz­
lehre und Darstellungsregeln der vorgeschlagenen Internationalen
Algebraischen Sprache, herausgebracht von der Ztiricher ACM­
GAMM-Konferenz. Es folgt dann eine formale, vollstandige Zu­
sammenstellung desselben Stoffes. Symbole flir Zahlen, nume­
rische Variable, Boolesche Variable, Beziehungen, n-dimensio­
nale Bereiche, Funktionen, Operatoren und algebraische Aus­
drticke werden erlautert. In der Sprache sind Hilfsmittel vor­
gesehen, urn Variablen \Verte zuzuschreiben, beClingte Ausflih­
rung von Satzen, lterationsverfahren, die Bildung zusammen­
gesetzter Satze aus Folgen von Satzen, Definition neuer Satze flir
beliebige Verfahren, die Wiederverwendung und Anderung von
Programmteilen ausflihren zu konnen.
Die vorgeschlagene Sprache soli bequeme und kurze Ausdrticke
haben, urn wirklich aile Verfahren der numerischen Rechen­
technik ausdrticken zu konnen. Dabei soli sie moglichst wenig
Regeln der Satzlehre und Satzarten verwenden.

CUUTa'KCUC U Ce.MaTU'Ka .AteJICoyuapoouozo aJ/,ze6pau"te­
C'KOZO 5l,3bt'Ka, npeoJ/,oJICeuuozo ua IJ;1OPUXC'KOU 'Koutj'le­
peuu,uu, CB5l,3aUUOU Accou,uau,ueu no BbL"tUCJ/,UTeJ/,bUbL.M
.Maw,uua.M U 06w,ecTBO.M npu'KJ/,aouou .MaTe.MaTU'KU U .MC­
xauu'Ku. B ,n;oKJIa,n;e KpaTKo M3JIOlKeHbI npaBVlJIa CVlHTaK­
cVlca VI liIHTepnpeTaQVIVI MelK,n;YHapo,n;HoPO aJIre6paWlec­
Koro H3bIKa, npe,n;JIOlKeHHOro Ha IJ)OPMXCKOH Kompe­
peHQ'liIVI; 3aTeM ,n;aHo cPopMaJIbHOe nOJIHOe npe,n;cTaBJIe­
HVle TOH lKe caMoH VlHcP0pMaQ'liIVI. ,n;aHbI 0603Ha'IeHVlH
,n;JIH 'IVlCJIeHHbIX, nepeMeHHblx. 6YJIeBbIX nepeMeH­
HbIX, 3aBVlcVlMocTeH pa3MepHblx MHolKecTB, cPYHKQVlH,
onepaTopoB VI aJIre6paVl'IeCKVlX BblpalKeHVlH. B H3bIKe
npe,n;Y'cMoTpeHbI cpe,n;cTBa ,n;JIH 3a,n;aHliIH 3Ha'IeHVlH ne­
peMeHHblx, YCJIOBHOrO BbITIOJIHeH'liIH YTBeplK,n;eHVlH, VlTe­
paTVlBHbIX npoQeccoB, o6pa30BaHVlH COCTaBHblX YTBeplK­
,n;eHliIH Vl3 nOCJIe,n;oBaTeJIbHOCTeH YTBeplK,n;eHVlH, onpe,n;e·-

126 Chapter II . Common symbolic language for computers I Langage symbolique commun pour les machines a calcul numerique

JIeHHSI HOBbIX YTBep:lK,Zl;eHHH ,!IJISI npOH3BOJIbHbIX npo­
QeccoB, nOBTopHoro HcnOJIb30BaHHSI H H3MeHeHHSI OT­
Pe3K'OB nporpaMMbI.
ITpe,!lJIaraeMbIH SI3bIK npe,!lHa3Ha'ieH ,!IJISI 06eCne'leHHH
Y,!I06HbIX H TO'lHbIX Cpe,!lCTB BbJpa:lK:eHHH, B CYII\HOCTH,
Bcex npoQeccoB QHcPpoBoro BbI'l'H'CJIeHHH, XOTH OH H
Tpe6yeT OTHOCHTeJIbHO MaJIO CHHTaKCH'leCKHX npaBHJI
H nmOB YTBep1K,!IeHHH.

La sintaxis y la semantica del lenguaje algebraico internacional
propuesto en la Conferencia ACM-GAMM de Zurich. Este
articulo resume la sin taxis y las reglas de interpretaci6n del
lenguaje algebnl.ico internacional propuesto en la Conferencia
ACM-GAMM de Zurich, seguida de una presentaci6n formal
completa de la misma informaci6n. Las notaciones se refieren a
numeros, variables numericas, variables booleanas, relaciones,
disposiciones n-dimensionales, funciones, operadores y expresio­
nes algebraicas. Se proporcionan los medios adecuados en el
lenguaje para las asignaciones de valores a las variables, la
ejecuci6n condicional de las proposiciones; los procedimientos
iterativos, la formaci6n de proposiciones compuestas a partir
de secuencias de proposiciones, la definici6n de nuevas proposicio­
nes por procedimientos arbitrarios y la reutilizaci6n y modifica­
ci6n de partes del programa.
Se considera que el lenguaje propuesto proporciona los instru­
mentos adecuados y suficientemente concisos para expresar
virtualmente todos los procedimientos de cilculo numerico, aun
empleando un numero relativamente pequeno de reglas sintac­
ticas y de tipos de proposici6n.

1. General

In May 1958 a conference in Zurich completed a joint
project of the ACM (Association for Computing Machinery)
and the GAMM (Association for Applied Mathematics and
Mechanics) by approving a proposed International Alge­
braic Language (IAL) or ALGOL. Other papers to be
presented here discuss the history of the project and various
aspects of the language. It is the purpose of the present
paper to describe precisely both the syntax and semantics
of IAL. The description given here will be that of the
so-called "reference language" which, for definiteness,
employs a specific set of symbols and notational con­
ventions.
It should be kept in mind, however, that the reference
language form of IAL exists primarily for the purpose of
describing the rules of construction of the. language and
its meanings. In actual use, a variety of symbolizations and
notational conventions are envisaged, each representation
being a fairly direct transliteration of the reference lan­
guage and having the same rules of syntax and semantics.
"Hardware representations" will generally use a smaller
set of symbols than that employed in the reference language
and will be suitable for mechanical translation into machine
programs by a given type of machine. On the other hand,
the "publication forms" of the language will employ many
of the notational conventions of mathematics (e.g., expo­
nents, subscripts, Greek letters) and will be used in human
communication of IAL programs.
The description of the reference language is given in two
parts. Chapter 2 gives a brief informal description of the
major elements of the language in terms of examples.
Chapter 3 gives a formal description of the structure of the
language.

2. Informal description

2.1 General

An IAL program is a sequence of statements which may
be interspersed with certain declarations. Each statement
describes a rule of computation and, explicitly or implicitly,
specifies a successor-statement (the successor being the

next statement in the program unless otherwise stated).
The computing rule given by a program is, of course, the
sequence of computations specified by the statements when
taken in the order provided by successor-relations. Declara­
tions state certain facts which are to obtain throughout the
computation. Their location in the program is generally
unimportant.
The" following paragraphs present some of the important
properties of expressions and statements, with examples.

2.2 Algebraic expressions

a) Algebraic expressions are composed of variables, con­
stants, functions, and operators for the usual arithmetic
operations.

b) Names of variables, functions and other entities are
composed of alphabetic and numeric characters, the first
being alphabetic. A sequence of characters may be of
any length.

c) It is understood that the arithmetic operations in an
expression signify a floating point approximation of real
number arithmetic. Some variables may be declared to
be integer-valued. The effect of such a declaration is that
any value which is to be assigned to such a variable is
first rounded to the nearest integer.

d) Array declarations (d. 2.5) may state that certain names
are the names of arrays of data of various dimensions.
These names may appear in expressions as subscripted
variables which are followed by a sequence of subscripts
enclosed in a pair of square brackets, the number of
subscript corresponding to the dimensionality of the
array and each subscript separated from the next by
a comma. Since parentheses are used to enclose function
arguments (and subexpressions), it is easy to distinguish
between functions and subscripted variables. A subscript
may be any expression; the value of the subscript is the
integer formed by rounding the value of the expression
(if it is not already an integer). .

Examples of algebraic expressions:

1) X tH + Y tH
means: X2 + y2

2) 3.14 X (alpha + sin (x))

means: 3.14 X (r£ + sin x)

3) (b/2 - sqrt (a X c - (b/2) t 2 I)/a ...
means: (b12 - Vax c - (b/2)2/a

4) R [i + 1, jJ X S [i, j + 1J
means: R i + 1,j X Si,j+l.

In particular, if i and j both have the value 1 (or 1,2) when
the above expression i.s encountered, it is then equivalent
to: R 2, 1 X S1.2·

2.3 Boolean expressions

Some variables or arrays of quantities may be declared to
be Boolean-valued (i. e., having only the value 0, "false",
or 1, "true"). These variables, the constants ° and 1,
Boolean-valued functions, and subexpressions of the form:

(ErE')

may be combined with the Boolean operators "and", "or",
"not", and "equivalent" to form a Boolean expression.
(In the above E and E' are algebraic expressions and r is
a relation, e.g., (x/y> 1).)

Examples of Boolean expressions:

1. (X > Y) V (Y > Z t 2 ~)
This Boolean expression is true if, and only if, either X is
greater than Y or Y is greater than Z2 or both. The operator
is that for "or".

2. ((l A) II B) V (A II (X = Y + 1))

C Backus· The syntax and semantics of the proposed international algebraic language 127

Here A and B must be Boolean-valued variables. The
expression is true when either A is false and B is true or
when A is true and X equals Y + 1.

2.4 Statements

2.41 a) Statements may be either basic or compound
(formed from a sequence of statements enclosed in the
statement parentheses, begin and end). Statements are
separated one from the next, by the separator";".

Example of a compound statement:

begin a[i]: = b [i] + c [i]; x: = a [i] end

In general, if S1' S2' "', Sn are statements then

begin S1; S2; ; ; Sn end

is a statement.

b) A statement may be labeled, as follows:

L:S

where L is a name or an integer; L thus becomes the label
of statement S.

2.42 Assignment statements

Assignment statements direct that an expression is to be
evaluated and assigned as the value of a variable.

Examples of assignment statements:

a) x: = a + b

means: assign the value of a + b as the value of x.

b) alpha: = 4.63

c) r [i, j]: = s [i] + t [j]

d) B: = (x > 0) II A

here A and B are Boolean variables and B receives the
truth-value of the Boolean expression on the right.

2.43 go to statements

a) A go to statement may specify some statement, other
than the statement which follows it, as its successor in the
computing process described by the program. This may
be done explicitly by writing the label of the desired
successor as follows:

go to A

where A is the label of some statement in the program.
Or, the successor of the go to statement may be made to
depend upon the value of some expression by the use of a
switch variable whose subscript is the desired expression.

, The value of a switch variable is a label. Thus if "branch"
is the name of a switch variable, then

go to branch [i + j]
has as its successor that statement whose label is the value
of branch [i + j].
b) Switch variables are defined by switch declarations (2.53).

~ Thus the switch variable "branch" might be defined by the
. following declaration:

switch branch (AI, A2, Bl, B2)

where AI, A2, Bl, B2 are labels of statements. The value
, of branch [i + jJ is then the (i + j) th label in the sequence
(or the nth label, where n is the integer formed by rounding

: i + j). For example, if i + j equals 3, then the value of
branch [i + j] is B 1, and in that instance, "go to branch

; [i + j]" has the same significance as "go to B 1" .

,c) Switch variables may be used in the definition of other
, switch variables. Thus the following two switch declarations
might appear in a program:

switch branch (AI, A2, Bl, B2)

switch fork (branch [i], AI, Bl).

In this case if i equals 4 and j equals 1, the value of fork [jJ
is B2.

d) A switch variable may have no value in some cases. For
example, branch [iJ as defined above has no value if the
integer nearest i is less than 1 or greather than 4. In such
an instance the successor of "go to branch [i]" is the next
statement in the program.

2.44 if clauses and if statements:

The if c~use, "if B", where B is some Boolean expression,
combines' with the statement, S, following it to form a
compound statement. This· compound statement has the
same effect as S if B is true and has the effect of "no
operation" if B is false.

Example of the use of if statements:

if (a > 0); x: = 1; if (a = 0); begin x: = y;
p: = ° end;

if (a < 0); go to B; S

In the above program segment statement S is encountered
unless a is negative, in which case "go to B" is ex­
ecuted; if a is positive and non-zero, x is 1 and p is un­
affected when S is reached, otherwise x equals y and p
equals 0.

2.45 for clauses and for statements:

a) A for clause, like an if clause, combines with the state­
ment, S, following it to forma compound statement. A for
statement specifies that a given variable take on a succes­
sion of values and that the governed statement, S, be ex­
ecuted once for each value of the variable. Thus,

for x: = 1, r + s, k, 6.3, -10; a: = (a + x)/x

causes the governed statement to be repeated five times,
once for each of the listed values of x. Since the statement
governed by a for clause may be an involved compound
statement which may include other for statements, com­
plex recursive procedures may be easily specified by their
use.

b) Sequences of values may also be given as arithmetic
progressions:

for i: = a t 2 t (b/2) y + 1
this clause directs that i should assume the values: a 2,

a 2 + b/2, a 2 + b,"', a 2 + nb/2,'" until y + 1 is reached
but not passed. Several such progressions may be included
in a single for clause; e.g.

for r: = 1(3)10, 12(4)20, 21(-7)1

gives the sequence of r-values: 1,4, 7, 10, 12, 16, 20, 21,
14,7.

2.46 converge statements

a) A converge statement preceding a compound statement S
causes those sub statements comprising S which do not ex­
plicitly specify a successor, to have the statement following
S as their common successor. However, in the case of an if
statement, only the successor of the governed statement is
altered. The successor of an if statement with a false Boolean
expression is the next statement. Thus:

converge; begin if B 1; S1; if B 2; S2; if B 3; S3 end; S4

causes that single statement Si to be executed which corre­
sponds to' the first true Boolean expression B i ; this Si is
then succeeded by S4' Thus if B1, B2 and B3 are all true,
the effect is to execute S1 and then S4'
b) A converge statement may also be used to conveniently
select a single statement for execution as follows:

converge; begin go to branch [iJ; L 1; S1; L 2 : S2;
L3: S3 end; S4

128 Chapter II . Common symbolic language for computers / Langage symbolique commun pour les machines a calcul numerique

If "branch [i]" takes on the values L 1 , L 2 , La for i = 1,2,3,
then the statement following converge has the effect of the
single statement Si followed by S4'

2.47 do statement

a) A do statement is simply a shorthand way of rewriting a
segment of a program which appears elsewhere. Thus,

do A; x: = y + z; A: r: = x + r
is another way of writing the following:

B: r: = x + r; x: = y + z; A: r: =x + r
where the copied statement has been given a new label, B,
simply to avoid having two statements with the same label.
The choice of new labels in the copy is immaterial as long
as the reassignment is done consistently throughout the
copy.
b) A do statement may specify a sequence of statements to
be copied by giving two labels.

do R, S

thus represents the sequence of statements from the one
labeled R through the one labeled S.
c) A do statement may require that certain alterations are
to be made in the copy which it represents.

do R, S (x + y ---.. x, a[iJ ---.. beta)

stands for the segment from R through S but with the
name "x" replaced by "x + y" everywhere it appears and
with "beta" replaced by "a [iJ" .

2.48 stop statements

stop statements have no successor, hence they signify the
operational end of the process described by a program.

2.49 return statements

A return statement, written "return", is used only in pro­
grams which define the meaning of procedure statements.
It signifies that the defined procedure has been completed
and that the successor of the procedure statement which
invoked the defining program is the next statement in the
invoking program.

2.410 Procedure statements

A procedure statement indicates that some particular pro­
cess is to be performed, employing those entities indicated
by input parameters and producing results which are de­
signated by the output parameters. (Some procedure state­
ments may also indicate specific successor statements by a
list of labels or switch variables which are associated with
various exit conditions). Thus

integrate (F(r) , a, b, e) = : (int) : (L)
b

might indicate that j' F(r, x) dx is to be found with an
a

error less than e (if possible with the given procedure), that
the result is to be assigned as the value of "int" and that
if the desired result is not obtained the successor of this
statement should be the one labelled L.
Some procedure statements may simply be added to IAL
as primitives (and realized by machine language sub­
routines). Others may refer, by the name which stands in
front (e.g., "integrate"), to an IAL program (d procedure
declarations 2.56) which represents the process indicated.
Some procedure statements may not have any input para­
meters, others may have no output parameters. Thus a
procedure statement which causes one number to be ob­
tained from an external medium might be,

in = :(a)

indicating that the number should be assigned as the value
of a. Another might be

print (r, s, t).

Another procedure statement may specify the replacement
of a matrix, A, by its inverse:

invert (A [,] = : (A [,J)

In general, it is intended that virtually any process can be
expressed by a procedure statement.

2.5 Declarations

Declarations in an IAL program state certain facts which
are to obtain throughout the program. They may appear
at any point in the program, but their position in it is not
significant.

2.51 Type declarations

A type declaration, boolean or integer, asserts that the
value of a variable or function or element of an array will
always be of the given type. Thus,

boolean (a, b, c)

asserts that any value assigned to entities having the names
a, b, or c will be changed to a zero or a one according to
some rule, t, (e.g., t (x) = 1 when x = 1, otherwise t (x) = 0).
Thus

a: = x

in a program containing the above declaration would be
equivalent to:

a: = t(x)
or again the appearance of a function b (x) in an expression
in the program would be equivalent to t (b (x)) .
Similarly,

integer (r, s)

constrains entities having names r or s to have integer
values by rounding non-integer values to the nearest integer.

2.52 array declarations
array declarations specify the upper and lower bounds for
the subscripts which may be meaningfully associated with
an array. Thus

array (a, b, c [1: 100J, r, s [-10,1: + 10,50J)
indicates that a, b, c are one-dimensional arrays whose
subscripts have meaning only in the range 1 to 100 (in­
clusive), and that r, s are two-dimensional arrays whose
first subscript should lie between -10 and + 10 and the
second between 1 and 50 (inclusive).

2.53 switch declarations

switch declarations have already been described under the
heading, "go to statements" (2.43).

2.54 Function declarations

Certain functions may be defined for use within a program
by a function declaration as follows:

g(x, y): = w + x + fey, x)
If, in the program containing the above declaration, the
following appears: g (t/v , h (v)), then its value is given by
the expression:

w + tlv + f(h (v), t/v)
Note, in this case, that g (x, y) is always a function of w
even though it does not appear as an argument.

2.55 comment declarations

comment declarations do not affect the behavior of the
program, they simply provide the ability to incorporate
verbal comments in a program. For example:

comment This is the end of Section 1.

C Backus· The syntax and semantics of the proposed international algebraic language 129

The comment may be arbitrarily long provided it does not
contain a statement separator, semicolon.

2.56 Procedure declarations

Procedure declarations are unique among declarations:
precisely one procedure declaration must precede the pro­
gram it refers to. Such a declaration indicates that the IAL
program following defines one or more procedure state­
ments and/or functions. For example:

procedure branch (a): (L1, L2, L3);

begin branch: if (a < 0); go to L1; if (a = 0);

go to L2; if (a > 0); go to L3 end

This comprises a procedure declaration followed by a pro­
gram of one compound statement. The procedure state­
ment defined thereby is one named "branch" which selects
one of three successors according as the value of the input
is negative, zero, or positive. Thus the procedure statement,

branch (x - f (y)) : (a [iJ, BB, MM)

used in any program means, by virtue of its defining pro­
gram: go to the statement indicated by the switch variable
a [iJ when x - f (y) is negative, if it is zero, go to BB, and
if it is positive, go to MM.
One more example:

procedure root (a, b), ckroot (a, b) = : (c) : (d);
begin ckroot: if (a - b < 0); go to d;

root: c: = sqrt (a - b); root: = c;
return end

The procedure declaration, together with the program, de­
fines a function, root, and a procedure statement, named
"ckroot". The calculation of the function begins with the
statement labelled root, and its value is that of the variable,
root, when return is encountered. The program for ckroot
begins at the first statement, labelled ckroot.
The process corresponding to

ckroot (x, y/z) = : (a) : (GL)

therefore either gives a the value sqrt (x - y/z) or, if x-y/z
is negative, specifies the statement labelled GL as its suc­
cessor. On the other hand,

v : = r + root (m, n)

results in v having the value r + sqrt (m - n) regardless
of the sign of m - n.

3. Formal description

3.1 General

The Zurich ACM-GAMM Conference had two principal
motives in proposing the IAL:

a) To provide a means of communicating numerical me­
thods and other procedures between people.

and,

b) To provide a means for realizing a stated process on a
variety of machines with the only differences between
the realizations of a program on two machines being
those imposed by differences in word lengths, overflow
conditions and the like.

It appears that IAL, as given by informal descriptions here
and elsewhere [lJ, suffices rather well for goal (a). However,
if programs are to be written for a variety of machines to
translate from IAL to the machine's language in such a
way that goal (b) is satisfied, two requirements must be met:
c) There must exist a precise description of those sequences

of symbols which constitute legal IAL programs. Other­
wise it will often be the case that a program which is
legal and translatable for one translating program will
not be so with respect to another.

d) For every legal program there must be a precise descrip­
tion of its "meaning", the process or transformation
which it describes, if any. Otherwise the machine lan­
guage programs obtained by two translating programs
from a single IAL program may behave differently in
one or more crucial respects.

Heretofore there has existed no formal description of a
machine-independent language (other than that provided
implicitly by a complete translating program) which has
met either of the two requirements above. Consequently, as
anyone who has actually been involved in writing a trans­
lating program can testify, a large number of decisions af­
fecting membership in the-class of legal programs and the
meaning of legal programs must be made during the con­
struction of the translating program.
If, therefore, IAL is left in its present state of incomplete
and informal description, it is likely that many man-years
may be invested in producing a number of translating pro­
grams which will not reliably produce equivalent machine
programs. In this case the great potential benefits and
savings offered by goal (b) will be lost.
The author had hoped to complete a formal description of
the set of legal IAL programs and of their meanings in
time to present it here. Only the description of legal pro­
grams has been completed however. Therefore the formal
treatment of the semantics of legal programs will be in­
cluded in a subsequent paper. The work which has already
been done in this direction indicates a need for minor modi­
fications in IAL to facilitate its completion. These changes
will require the approval of the appropriate groups. Since
some of these changes are present in both chapters 2 and 3
of this paper, no official status for the descriptions con­
tained in it should be assumed, although the changes are
few and, for the most part, slight.

3.2 Syntax of IAL

In the description of IAL syntax which follows we shall
need some metalinguistic conventions for characterizing
various strings of symbols. To begin, we shall need meta­
linguistic formulae. Their interpretation is best explained
by an example:

<ab): == (or [or <ab) (or <ab) <d)

Sequences of characters enclosed in "<)" represent meta­
linguistic variables whose values are strings of symbols.
The marks ": ==" and "or" are metalinguistic connectives.
Any mark in a formula, which is not a variable or a con­
nective, denotes itself (or the class of marks which are
similar to it). Juxtaposition of marks and/or variables in a
formula signifies juxtaposition of the strings denoted. Thus
the formula above gives a recursive rule for the formation
of values of the variable <ab). It indicates that <ab) may
have the value "(" or "[" or that given some legitimate
value of <ab), another may be formed by following it with
the character" (" or by following it with some value of the
variable <d). If the values of <d) are the decimal digits,
some values of <ab) are:

[(((1(37(
(12345(

(((
[86

3.31 Integers and numbers

<digit) : == 0 or lor 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9

<integer): == <digit) or <integer) <digit)

<dn) : == <integer) or <integer) or <integer) or
< dn) <integer)

<si) : == + <integer) or -<integer) or <integer)

<en) : == <dn) lO<si) or lo<si)
<number) : == <integer) or <dn) or <en)

130 Chapter II . Common symbolic language for computers / Langage symbolique commun pour les machines a caleul numerique

3.32 Identifiers and variables

<letter) : == a or b or c or d or e or f or g or h or i or j
MkMIMmMnMoMpMqMrMs
MtMuMVMWMXMYMZMAM
BMCMDMEMFMGMHMIMJ
or K or L or M or Nor 0 or P orQ or R
or S or T or U or V or W or X or Y or Z

<identifier) : == <letter) or <identifier) <letter) or
<identifier) <digit)

<id) : == <identifier)
<variable) : == <id)

3.33 Subsctipte<t, variables and arrays

<el): ==_<ar exp) or <el), <ar exp)
<subscr~ar): == <id) [<el)]
<blank): == <the null string of characters)
<ppel): == <blank) or <ppel) <ar exp)
<pel): == <ppel) or <pel), or <pel), <ar exp)
<array): == <id) [<pel)]

(see 3.35 for definition of <ar exp»)

3.34 Parameters, functions and pure functions

<nq): == <any character other than a quote mark)
<arb) : == <nq) or <arb) <nq)
<quoted string): == "<arb)"
<param) : == <exp) or <quoted string) or <array)

or <pure function) or <pure procedure)
<param list) : == <param) or <param list), <param)
<function) : == <id) «param list»)

<pI) : == <blank) or <pI) <param)
<ppl) : == <pI) or <ppl) or <ppl), <param)
<pure function): == <id) «ppl»)

3.35 Arithmetic expressions, Boolean expressions, and ex­
pressions

<factor) : == <number) or <function) or <variable)
or <subscr var) or «ar exp») or <factor)
t <ar exp).),

<term) : == <factor) or <term) X <factor) or <term)
/ <factor)

<arexp): == <term) or + <term) or -<term) or
<arexp)+ <term) or <ar exp)-<term)

<ar exp A) : == <ar exp)
<relation) : == < or > or:O;: or :2: or = or :f:
<reI exp) : == «ar exp) <relation) <ar exp A»)
<boo.! term) : == 0 or 1 or <reI exp) or <function) or

<variable) or <subscr var) or «bool
exp») or 1 <bool term)

<bool exp) : == <bool term) or <bool exp) V <bool
term) or <bool exp) II <bool term>
or <bool exp) == <bool term)

<exp) : == <ar exp) or <bool exp)

3.41 Assignment statements

<left element) : == <variable) or <subscr var)
<assnmt stmt): == <left element):= <exp)

3.42 go to statements and designational expressions

<desig exp): == <id) or <integer) or <id) [<exp)J
<go to stmt) : == go to <desig exp)

3.43 if statements

<if clause) : == if <bool exp)
<ifstmt): == <if clause); <stmt)

3.44 for statements

<el): == <ar exp) or <el), <ar exp)
<unsigned exp): == <term) or <unsigned exp) +

<term) or <unsigned exp) - <term)
<ap) : == <ar exp) «ar exp») <unsigned exp)
<apl): == <ap) or <apl), <ap)
<for clause A): == for <left element): = <el)
<for clause B) : == for <left element) : = <apl)
<for stmt): == <for clause A); <stmt) or

<tor clause B); <stmt)

3.45 converge statements

<converge clause) : == converge
<converge stmt): == <converge clause); <stmt)

3.46 do statements

<sc): == <any character other than "~")

<ss) : == <sc) or <ss) <sc)
<subsl) : == <ss) ~ <id) or <subsl), <ss) ~ <id)
<label) : == <id) or <integer)
<do stmt): == do <label) or do <label) «subsl»)

or do <label), <label)
or do <label), <label) «subsl»)

3.47 stop statements

<stop stmt) : == stop

3.48 Procedure statements and pure procedures

< oe) : == <left element)
<out list) : == <oe) or <outlist), <oe)
<sue) : == <label) or <id) [<exp)]
<succr list) : == <sue) or <succr list), <sue)
<A) : == =: «out list») or <blank)
<B): == : «succr list») or <blank)
<proc stmt): == <function) <A) <B) or <id) = :

«outlist») <B) or <id) : «succr list»)
<ppol): == <blank) or <ppol) <oe),
<pol) : == <ppol) or <pol), or <pol), <oe)
<A'): == =: «pol»)
<ppsl) : == <blank) or <ppsl) <sue),
<psI) : == <ppsl) or <psI), or <psI), <sue)
<B/): == : «psI»)
<F*) : == <function) or <pure function) or <id)

<A *) : == <A) or <A')
<B*) : == <B) or <B/)
<pure procedure): == <pure function) <A *) <B*)

or <F*) <A') <B*)
or <F*) <A *) <B/)

[a pure procedure may have any of the forms of a
procedure statement but at least one position of
one existing list must be empty: at least one input
parameter position or one output position or one
successor position].

3.49 return statements

<return stmt): == return

3.51 type declarations

<id list) : == <id) or <id list), <id)
<bool declar) : == boolean «id list»)
<integer declar): == integer «id list»)
<type declar) : == <bool declar) 0'" <integer declar)

C Backus· The syntax and semantics of the proposed international algebraic language 131

3.52 array declarations

<ulb): == <ar exp)

<ulb A) : == <ar exp)

<ulbl) : == <ulbA) : <ulb)
or <ulbA), <ulbl), <ulb)

<array seg) : == <id) [<ulbl) J or <id), <array seg)

<arl) : == <array seg) or <arl), <array seg)

<array declar): == array «arl»)

3.53 switch declarations

<de): == <id) or <integer) or <id) [<exp)J

<del) : == <de) or <del), <de)

<switch declar) : == switch <id) «del»)

3.54 Function declarations

<function declar): == <id) «id list») : = <exp)

3.55 comment declarations

<not sc) : == <any character other than" ;")

<str) : == <not sc) or <str) <not sc)
<comment declar) : == comment <str)

3.56 common declarations

<com entry): == <id) «id list»)

<com list): == <com entry) or <com list),
<com entry)

<common declar): == common «com list»)

3.57 Statements and declarations

<b stmt) : == <assnmt stmt)
or <go to stmt)
or <do stmt)
or <stop stmt)
or <proc stmt) or <return stmt)

<basic stmt) : == <b stmt) or
<label) : <b stmt)

<sl) : == <stmt) or <sl) ; <stmt)
or <sl); <declar)
or <declar); <sl)

<u stmt): == <b stmt) or <ifstmt)
or <for stmt) or <converge stmt)
or begin <sl) end

<stmt) : == <u stmt) or <label) : <u stmt)
<declar) : == <type declar) or <array declar)

or <switch declar) or <function declar)
or< comment declar)or< common declar)

3.6 Syntactic properties of IAL statement lists

a) L is the entry label of a statement S if S has the form:

L: <u stmt)

b) If d 2 is a designational expression in statement list S
and there is a switch declaration:

switch Xl: = ("', d 2,"')

then d 2 is said to succeed any designational expression of
the expression of the form Xl [< exp)]. Further, if d3 suc­
ceeds d 2 and d 2 succeeds d l , then d 3 succeeds d l •

3.7 Definition of an IAL program

An IAL program is a statement list «sl») with the following
properties:
a) No two statements or substatements have the same

prefixed label.
b) No designational expression succeeds itself.
c) Every designational expr(ssion has some label as suc­

cessor, or is itself a label.

d) To every n-place array name or subscripted variable
name there corresponds one and only one entry of that
name in an n-place array segment (n = 1/2 number of
entries in the upper-lower-bound list, <ulbl»).

4. Acknowledgment

The proposed International Algebraic Language is the
direct and indirect product of many people's work. Most
directly it is the result of the Zurich Conference at which
the participants were: F. L. Bauer, H. Bottenbruch,
H. Rutishauser, and K. Samelson (representing the GAMM) ,
and J. W. Backus, C. Katz, A. J. Perlis, and J. H. Weg­
stein (representing the ACM). Extensive preparatory
work was done by larger ACM and GAMM committees [1 J.
All of this, in turn, was based on prior work done by many
individuals and groups in the field of automatic program­
ming. The earliest work (to the author's knowledge) in this
area was that of Rutishauser, in Switzerland, and of Laning
and Zierler, in the United States.

5. Reference

[lJ PERLIS, A. J., and K. Samelson: Preliminary Report-Inter­
national Algebraic Language. Communications of the ACM,
Vol. 1, No. 12, Dec. 1958.

6. Discussion

Hans Riesel (Sweden): According to Mr. Bauer the symbols
and notations of ALGOL were chosen to be a compromise
between the characters now available on coding and
punching devices and those which are desirable. It would
have been better to choose a few characters, so that almost
everybody has punching devices which can use the language,
and that translation from the Algol-reference language to
a special language for the computer may be avoided. If it
is necessary to make a translation, the symbols should be
much closer to ordinary mathematical representation,
supplemented if necessary for the special needs of numer­
ical work.
Mr. Backus said that a good common language should be
a good means of communication both amongst machines
and also between people. There is a danger that the present
compromise might prove to be neither.

Jan V. Garwick (Norway): In at least 90% of all cases,
for statements are used in the following way:

1) There is an array declaration e.g. of the form

array (a [0 : 19J)

2) There is a for statement, followed by another statement,
of the form

for i: = 0 (1) 19

... a [iJ ...

Most of the information in the for statement is here redun­
dant because the array declaration and the a [iJ in the
statement following the for together show the range of
values of i.
It seems therefore better to use a statement of the form,

2a) for all
... a [iJ ...

Generalisations of this for all statement could be:

for all < k

for all ~ s

for all =1= k

for all s ::::; i < k

(if here s = k, the following statement is ignored).

132 Chapter II

If one wants to count backwards, a dash is added to i, e.g.

for all if ;;::: s

(meaning i = 19, 18, ... s).

ALGOL appears to lack any expressions for packing and
unpacking and for masking words. If one wished to describe
an Algol-computer in Algol, expressions of this type would
seem to be necessary.

L. Nolin (France): Le vocabulaire mInImUm du langage
ALGOL etant maintenant a peu pres fixe, il semble opportun
de songer serieusement a Ie completer en introduisant des
abreviations couramment utilisees dans la redaction des
problemes numeriques.
Par exemple, soient ~, Ct., ~, y, "1/ des expressions arithme-

tiques et rune expression booIeenne: [L (~, Ct., ~,y, r, "1/) est
une expression arithmetiqueI) designant:
- Ie plus petit nombre ~ defini a 10'" pres, compris entre ~
et y, qui satisfait a la condition r, s'il existe un tel nombre
- Ie nombre "1/ dans les autres cas; :I (~, Ct., ~, y, r) est
une expression booIeenne signifiant:
- il existe au moins un nombre ~, defini a 10" pres, com­
pris .entre ~ et y, qui satisfait a la condition r; V (~, Ct., ~,
y, r) est une expression booIeenne signifiant:
- tout nombre ~, defini a 10'" pres, compris entre ~ et y,
satisfait a la condition r.
II est clair que ces expressions sont dans chaque cas parti­
culier, des abreviations d'expressions - fort longues - du
langage ALGOL prlmitif.

1) Cette expression pourrait etre utilisee, par exemple, dans un
enonce de consultation de table.

	Backus-ICIP-1959_Page_1
	Backus-ICIP-1959_Page_2
	Backus-ICIP-1959_Page_3
	Backus-ICIP-1959_Page_4
	Backus-ICIP-1959_Page_5
	Backus-ICIP-1959_Page_6
	Backus-ICIP-1959_Page_7
	Backus-ICIP-1959_Page_8

