
Numerische Mathematik Bd. t, S. 41--60 (1959)

Report on the Algorithmic Language ALGOL
by

the A C M Commit tee on Programming Languages and the
G A M M Commit tee on Programming

edited by
A. J. PERLIS and K. SAMELSON

Editors' Note. In the interest of immediate circulation of the results of the AC~-
GAMM committee work on an algebraic programming language, this preliminary
report is presented. The language described naturally enough represents a com-
promise - - b u t one based more on differences of taste than on content or fundamental
ideas. Even so, it provides a natural and simple medium for the expression of a large
class of algorithms. This report has not been thoroughly examined for errors and
inconsistencies. I t is anticipated tha t the committee will prepare a more complete
description of the language for later publication.

For all scientific purposes r~produetion of this report is explicitly permit ted
without any charge.

Part 1. Introduction
In t955, as a result of the D a r m s t a d t meet ing on electronic computers , the

GAMM (Gesellschaft ftir angewandte Mathemath ik und Mechanik), Germany , set
up a commi t tee on p rogramming (ProgrammierungsausschuB). L a t e r a sub-
commi t tee began to work on formula t rans la t ion and on the const ruct ion of a
t rans la tor , and a considerable amoun t of work was done in this direct ion.

A conference a t t e n d e d b y represen ta t ives of the USE, S H A R E , and DUO
organizat ions and the ACM (Association for Comput ing Machinery) was held in
Los Angeles on May 9 and t0, t957 for the purpose of examining ways and means
for fac i l i ta t ing exchange of all types of comput ing informat ion. Among o ther
things, these conferees felt t ha t a single universal compute r language would be
ve ry desirable. Indeed, the successful exchange of p rograms wi thin var ious
organiza t ions such as U S E and S H A R E had proved to be very va luable to
compute r ins ta l la t ions . They accordingly recommended t ha t the ACM appo in t
a commi t tee to s t u d y and recommend act ion toward a universal p rogramming
language.

B y October 1957 the GAMM group, aware of the existence of m a n y p rog ramm-
ing languages, concluded tha t r a the r t han present s t i l l ano ther formula language,
an effort should be made toward unif icat ion. Consequently, on October 19, t957,
a l e t te r was wr i t t en to Prof. JoI~N W. CARR III, pres ident of the ACM. The l e t t e r
suggested t ha t a jo in t conference of represen ta t ives of the GAMM and ACM be
held in order to fix upon a common formula language in the form of a recommen-
dat ion.

42 A . J . I~ERLIS and K. SAMELSON:

An ACM Ad-Hoc committee was then established by Dr. CARR, which re-
presented computer users, computer manufacturers, and universities. This
committee held three meetings starting on January 24, t958 and discussed many
technical details of programming language. The language that evolved from
these meetings was oriented more towards problem language than towards
computer language and was based on several existing programming systems. On
April t8, 1958 the committee appointed a sub-committee to prepare a report
giving the technical specifications of a proposed language.

A comparison of the ACM committee proposal with a similar proposal prepared
by the GAMM group (presented at the above-mentioned ACM-Ad-Hoc committee
meeting of April 18, t958) indicated many common features. Indeed, the GAMM
group had planned on its own initiative to use English words wherever needed.
The GAMM proposal represented a great deal of work in its planning and the
proposed language was expected to find wide acceptance. On the other hand
the ACM proposal was based on experience with several successful, working problem
oriented languages.

Both the GAMM and ACM committees felt that because of the similarities
of their proposals there was an excellent opportunity for arriving at a unified
language. They felt that a joint working session would he very profitable and
accordingly arranged for a conference in Switzerland to be attended by four
members from the GAMM group and four members from the ACM committee.
The meeting was held in Zurich, Switzerland, from May 27 to June 2, 1958 and
attended by F. L. BAUER, H. BOTTENBRUCH, H. RUTISHAUSER and K. SAlVIEL-
SON from the GAMM committee and by J.]DACKUS, C. I~ATZ, A. J. PERLIS, and
J. H. WEGSTEIN for the ACM Committee*.

I t was agreed that the contents of the two proposals should form the agenda
of the meeting, and the following objectives were agreed upon:

I. The new language should be as close as possible to standard mathematical
notation and be readable with little further explanation.

II . I t should be possible to use it for the description of computing processes
in publications.

I I I . The new language should be mechanically translatable into machine
programs.

There are certain differences between the language used in publications
and a language directly usable by a computer. Indeed, there are many differ-
ences between the sets of characters usable by various computers. Therefore, it
was decided to focus attention on three different levels of language, namely a
Re/erenee Language, a Publication Language and several Hardware Represen-
tations.

Re/erence Language
t. I t is the working language of the committee.
2. I t is the defining language.
3. I t has only one unique set of characters.

* In addition to the members of the conference, the following people participated
in the preliminarywork of these committees : GAMM : P. GRAEFF, P. LAUCHLI, M. PAUL,
F. PENZLIN. - - ACM: D. ARDEN, J. McCARTHY, 1~-. RICH, 1~-. GOODMAN, W. TUR-
NANSKI, S. 1ROSEN, P. DESILETS, S. GORN, H. HUSKEY, A. ORDEN, D. C. EVANS.

Report on the Algorithmic Language ALGOL 43

4. The characters are determined by ease of mutual understanding and not
by any computer limitations, coders notation, or pure mathematical notation.

5. I t is the basic reference and guide for compiler builders.
6. It is the guide for all hardware representations.
7.]t will not normally be used stating problems.
8. I t is the guide for transliterating from publication language to any locally

appropriate hardware representations.
9. The main publications of the common language itself will use the reference

representation.
Publication Language (see Part I I Ic)

I. The description of this language is in the form of permissible variations of
the reference language (e.g., subscripts, spaces, exponents, Greek letters) according
to usage of printing and handwriting.

2. It is used for stating and communicating problems.
3. The characters to be used may be different in different countries but uni-

vocal correspondence with reference representation must be secured.

Hardware Representations
I. Each one of these is a condensation of the reference language enforced by

the limited number of characters on standard input equipment.
2. Each one of these uses the character set of a particular computer and is the

language accepted by a translater for that computer.
3- Each one of these must be accompanied by a special set of rules for trans-

literating from Publication language.
Acknowledgements. The members of the conference wish to express their apprecia-

tion to the Association for Computing Machinery, the "Deutsche Forschungsgemein-
sehaft", and to the "Eidgen6ssische Technische Hochschule Ztirieh", for substantial
help in making this conference and resultant report possible.

Part II. Description of the reference language
1. Structure o/the language

As stated in the introduction, the algorithmic language has three different
kinds of representation -- reference, hardware, and publication -- and the
development described in the sequel is in terms of the reference representation.
This means that all objects defined within the language are represented by a
given set of symbols -- and it is only in the choice of symbols that the other two
representations may differ. Structure and content must be the same for all
representations.

The purpose of the algorithmic language is to describe computational processes.
The basic concept used for the description of calculating rules is the well known
arithmetic expression containing as constituents numbers, variables, and func-
tions. From such expressions are compounded, by applying rules of arithmetic
composition, selfcontained units of the language -- explicit formulae -- called
arithmetic statements.

To show the flow of larger computational processes, certain nonarithmetic
statements are added which may describe e.g., alternatives, or recursive repetitions
of computing statements.

44 A.J. PERLIS and K. SAMELSO~:

Statements may be supported by declarations which are not themselves
computing rules, but inform the translator of certain properties of objects appearing
in statements, such as the class of numbers taken on as values by a variable, the
dimension of an array of numbers or even the set of rules defining a function.

Sequences of statements and declarations when appropriately combined, are
called programs. However, whereas complete and rigid formal rules for con-
structing translatable statements are described in the following, no such rules
can be given in the case of programs. Consequently, the notion of program must
be considered to be informal and intuitive, and the question whether a sequence
of statements may be called a program should be decided on the basis of the
operational meaning of the sequence.

In the sequel explicit rules - - and associated interpretations -- will be given
describing the syntax of the language. Any sequence of symbols to which these
rules do not assign a specific interpretation will be considered to be undefined.
Specific translators may give such sequences different interpretations.

2. Basic Symbols
The reference language is bui}t up from the basic symbols listed in Part I I I a.

These are
1. Letters 2 (the standard alphabet of small and capital letters)
2. Figures ~ (arabic numerals 0 9)
3. Delimiters d consisting of

a) operators (~ :
arithmetic operators
relational operators
logical operators
sequential operators

+ - - •

7 V A ~
go to do return stop
/or i/ or i/either or i~

b) s epa ra to r sa : , : ; : z ~ : -+
c) brackets ~: () [~ i'
d) declaratorsgD: procedure array

switch

10

type comment

Of these symbols, letters do not have individual meaning. Figures and deli-
miters have a fixed meaning which for the most part is obvious, or else will be
given at the appropriate place in the sequel.

Strings of letters and figures enclosed by delimiters represent new entities.
However, only two types of such strings are admissible:

t. Strings consisting of figures ~ only represent the (positive) integers G
(including 0) with the conventional meaning.

2. Strings beginning with a letter 2 followed by arbi trary letters & and/or
figures ~ are called identifiers.

They have no inherent meaning, but serve for identifying purposes only.

Report on the Algorithmic Language ALGOL 45

3. Expressions
Arithmetic and logical processes (in the most general sense) which the algorith-

mic language is primarily intended to describe, are given by arithmetic and logical
expressions, respectively. Constituents of these expressions, except for certain
delimiters, are numbers, variables, elementary arithmetic operators and relations,
and other operators called functions. Since the description of both variables
and functions may contain expressions, the definition of expressions, and their
constituents, is necessarily recursive.

The following are the units from which expressions are constructed.

i) (pos i t i ve) N u m b e r s N. F o r m : N ~-~ G . G lo ~ G
where each G is an integer as defined above.

G . G is a decimal number of conventional form. The scale factor 10 =t= G is
the power of ten given by ~ G. The following constituents of a number may be
omitted in any occurrence:

The fractional part . 00 "" 0 of integer decimal numbers;
the integer I in front of a scale factor;
the + sign in the scale factor;
the scale factor lo ~ O.
Examples: 4711

137.06
2.99971o10

lO-- 12
31o--12

i i) Simple Variables V are designations for arbitrary scalar quantities, e.g.,
numbers as in elementary arithmetic.
Form : V N I
where I is an identifier as defined above.

Examples :

iii) Subscripted Variables
multidimensional arrays.
Form :

a

x 11
P S I 2
A L P H A

V designate quantities which are components of

where ! ~-~ E, E, " ' " , E is a list of arithmetic expressions as defined below. Each
expression E occupies one subscript position of the subscripted variable, and is
called a subscript. The complete list of subscripts is enclosed in the subscript
brackets [1.

The array component referred to by a subscripted variable is specified by the
actual numerical value of its subscripts (cf. arithmetic expressions).

Subscripts, however, are intrinsically integer valued, and whenever the value
of a subscript expression is not integral, it is replaced by the nearest integer (in
the sense of proper round off).

46 A.J. PERLIS and K. SAMELSON:

Variables (both simple and subscripted ones) designate arbi trary real numbers
unless otherwise specified. However, certain declarations (cf. type declarations)
may specify them to be of a special type, e.g., integral, or Boolean. Boolean (or
logical) variables may assume only the two values " t r ue" and "false ".

iv) Functions F represent single numbers (function values), which result
through the application of given sets of rules to fixed sets of parameters.

Form : F ~-~ I (P, P , P)

where I is an identifier, and P, P, " '" , P is the ordered list of actual parameters
specifying the parameter values for which the function is to be evaluated. A
syntactic definition of parameters is given in the sections on/unction declaration, s
and procedure declarations. If the function is defined by a/unction declaration, the
parameters employed in any use of the function are expressions compatible with
the type of variables contained in the corresponding parameter positions in the
function declaration heading (cf./unction declaration). Admissible parameters
for functions defined by procedure declarations are the same as admissible input
parameters of procedures as listed in the section on procedure statements.

Identifiers designating functions, just as in the case of variables, may be
chosen according to taste. However, certain identifiers should be reserved for
the standard functions of analysis. This reserved list should contain:

abs (E) for the modulus (absolute value) of the value of the expression E
sign (E) for the sign of the value of E
entier (E) for the largest integer not greater than the value of E
sqrt (E) for the square root of the value of E
sin (E) for the sine of the value of E

and so on according to common mathematical notation.

v) Arithmetic expressions E are defined as follows:
A number, a variable (other than Boolean), or a function is an expression.

Form : E

If E 1 and E2 are expressions, the first
then the following are expressions:

t. E ~ + E 1
2. ~ - - E 2

3. ,-~E~ + E 2
4. ~.~E1 - - E2
5. ~'~E1)<E2

8. ~ (~)

of which are neither " + " nor " - - " ,

The operators + , -- , • / appearing in t through 6 have the conventional meaning.
The parentheses f" ~ used in 7 denote exponentation, where the leading ex-
pression is the base and the expression enclosed in parentheses is the exponent.

Report on the Algorithmic Language ALGOL 47

Examples : 2 t 2 ~ n ~ $ means 2 (2~)
2 ~" 2 ~) n ~ means (22) ~

The proper interpretat ion of expressions can always be arranged by appro-
priate positioning of parentheses.

An arithmetic expression is a rule for comput ing one real number by
executing the indicated arithmetic operations on the actual numerical values
of the consti tuents of the expression. This value is obvious in the case of
numbers N. For variables V, it is the current value (assigned last in the
dynamic sense), and for functions g it is the value arising from the comput ing
rules defining the function (cf./unction declaration) when applied to the current
values of the function parameters given in the expression.

The sequence of operations within one expression is generally from left to
right, with the following additional rules:

a) parentheses are evaluated separately
b) for operators, the conventional rule of precedence applies:

first : • /
second: + --

I n order to avoid misunderstandings, redundant parentheses shoutd be used
to express, for example, ab in the form (a• or (a/c)• rather than by

c

a • b/c, or a/c • b respectively, and to avoid constructions such as a/b/c.
Examples : A

Alpha
Degree
A [1,1~
A [j + k - - 2 , i - - k]
A [~uEs?]
a • (omega •
0.5 • a IN • (N--1)/2, O~

vi) Boolean expressions B are defined analogously to arithmetic expressions:
a) A t ru th value, a variable (Boolean by declaration), or a function (Boolean

by declaration) is an expression.
Fo rm: B --~ 0 (the t ru th value "false")

~-~ 1 (the t ru th value " t rue")
~-~V
~-~F

b) If El and E 2 are arithmetic expressions then the following arithmetic
relations are expressions:

B ~ (E~ <E2)
~(E~ < ~)

(E~ > ~)
(E~ = E~)

48 A.J . PERLIS and K. SAMELSON:

Such expressions take on the (current) value " t r u e " whenever the cor-
responding relation is satisfied for the expressions involved, otherwise " fa l s e" .

c) If B 1 and B 2 are expressions, the following are expressions:
B ~.~T B 1

~ B1 V B 2
B 1 A B 2
B 1 ~ B 2
(B1)

The operators 7, V, A, ~ have the interpretations " n o t " , " o r " , " a n d " ,
and " e q u i v a l e n t " .

In terpre ta t ion of the b inary operators will be from left to right. The scope of
" 7 " is the first expression to its right. Any other desired precedence must be
indicated by the use of parentheses.

Examples : (x = 0)
(x > 0) v (y > 0)
(p ^ q) v (x ~ y)

4. Statements 22
Closed and selfcontained rules of operations are called Statements 2~. They are

defined recursively in the following way:
a) Basic s ta tements 22 are those described in this section.
b) Strings of one or more s ta tements* m a y be combined into a single (com-

pound) s ta tement by enclosing them within the " s t a t e m e n t parentheses" begin
and end. Single s ta tements are separated by the s ta tement separator " ; " .

Form : 22 ~-~ begin 22; 22; . . . ; 22 end

c) A s ta tement m a y be made identifiable by at taching to it a label L, which
is an identifier I , or an integer G (with the meaning of identifier). The label
precedes the a t tached s ta tement being labeled, and is separated from it by the
separator colon (:). Label and s ta tement together consti tute a s ta tement called
" labe led s t a t emen t" .

Form : 2~ ~ L : 22

A labeled s ta tement m a y not itself be labeled. In the case of labeled compound
statements, the closing parentheses end m a y be followed by the s ta tement label
(followed by the s ta tement separator) in order to indicate the range of the com-
pound s ta tement :

Form: 22 ~-~ L :begin 22; 22; "'" ; 22 end L ;

i) Assignment statements serve for assigning tile value of an expression to a
variable.

Form i) : 2~ ~ V :---- E .

* Declarations which may be interspersed between statements have no operational
(dynamic) meaning. Therefore, they have no significance in the definition of compound
statements.

Report on the Algorithmic Language ALGOL 49

If the expression on the right hand side of the assignment delimiter : = is
arithmetical, the variable V on the left hand side must also be numerical, i.e.,
it must not be Boolean.

Generally, the arithmetic type of the expression E is determined by the con-
stituents and operations of the expression E. However V may be declared to be
of a special type provided this declaration is compatible with the possible values
of the expression E.

Form ii) : 22 --~ V : = B

If the expression on the right hand side of the assignment s ta tement is Boolean,
f may be any variable. This means that the t ruth values " t r u e " , and " fa l se"
of the Boolean expression m a y be interpreted arithmetically as integers " 1 " and
" 0 " , which may then be assigned to a numerical variable.

ii) 'Go to' statements. Normally, the sequence of operations (described by the
s tatement of a program) coincides with the physical sequence of statements. This
normal sequence of execution may be interrupted by the use of go to statements.

Form : 21 ~-, go to D

D is a designational expression specifying the label of the s tatement next to be
executed. I t is either a label L or a switch variable I [E] (cf. switch declaration),
w h e r e / i s an identifier and E a subscript expression. In the latter case, the numeri-
cal value of E (the value of the subscript) is an ordinal which identifies the com-
ponent of the switch I (named by declaration). This element which is again a
designational expression specifies the label to be used in the go to statement.
This label determination is obviously a recursive process, since the elements of
the switch may again be switch variables.
Examples : go to hell

go to exit [(i ~ 2 ~ - - 2 ' t 2 ~ +1)/21
where exit refers to the declaration
switch exit : = [D 1, D 2, "'" , D,~]

iii) ' I f ' Statements. The execution of a s tatement may be made to depend
upon a certain condition which is imposed by preceding the s tatement in question
by an i/ statement.

Form : 22 ~-- i / B

where B is a Boolean expression.
If the value of B is " t r u e " , the s tatement following the i/ s ta tement will be

executed. Otherwise, it will be bypassed, and operation will be resumed with
the next s ta tement following.
Example : I n the sequence of s tatements

i/ (a > 0) ; c : = a ~ 2 ~ + b ~ 2 ~ ;
(a < 0); c ' = a ~ 2 ~ + b ~ 2 ~ ;

i/ (a = 0) " go to bed

one and only one of the three statements rightmost in each line will be executed.
Numer . Math . Bd. I 4

50 A.J . PERLIS and 1K. SAMELSON:

iv) 'For ' statements. Recursive processes m a y be initiated by use of a /or
statement, which causes the following s ta tement to be executed several times, once
for each of a series of values assigned to the recursing variable contained in the
/or statement.

Form" 2 2 ~ a) /or V : = l

b) /or V ' = E~I (E~I) Eel ,"" ,E~ (E,~) Eek

where 1 is a list of k expressions El , E 2 E k; and Eg, Esj, E~; are expressions.
In Form a) the intent is to assign to Vin succession the value of each expression
of the list (expressions taken in order of listing) and the s ta tement following the
/or s ta tement is executed immediately following each such assignment.

In Fo rm b) each group of expressions E i (Es) E, determines an arithmetic
progression. The value of Ei is the initial value, E S gives the value of the increment
(step), and E~ determines the end value which is the last t e rm of the progression
contained in the interval [Ei, E~J. The intent is to assign to V each value of
every progression (these again taken in the order of listing from left to right),
and the s ta tement following the /or s ta tement is executed immediately follow-
ing each such assignment.

The effect of a / o r s ta tement may be precisely described in terms of "more
e lementa ry" s ta tement forms. Thus the form (a) is precisely equivalent to

V : = E 1 ; 2 2 ; V : = E 2 ; 2 2 ; .. . V : = E k ; 2 2

where 22 is the s ta tement following t h e / o r statement.
The form (b) is precisely equivalent to

V : = E ~ , ; L 1 : 2 2 . ; V : = E i ~ + E ~ ; i/ (V ~ E ~) * * ; goto L 1"

V : = E i k ; L k ' 2 2 ; V : = E i k + E , k ; i/ (V ~ E e k) ; goto Lx"

where 22 is the s ta tement following t h e / o r statement.
Examples: a) /or I : = l (1) n; p ' = p •

b) /or a : = 1 , 3 , 5 , 9 . 7 6 , ' " , - - 1 3 . 7 5 ;
begin

end

v) Alternative statements. An alternative s ta tement is one which has the
effect of selecting execution for one from a set of given statements in accordance
with certain conditions which exist when the s ta tement is encountered.

Fo rm: i/ eitherB 1;221; or i/ B?; . . . ; or i/ Bk; 22k; end

where 22i is any s ta tement other than a quantifier, i.e., i / , /or, or or i], and B i is
any Boolean expression.

* If 2: is a labeled statement L 1 is that label. If not the effect is as though it
had a (unique) label L 1.

** This relational form obtains if the progression is increasing; if decreasing, the
relation ~ is understood to be employed.

Report on the Algorithmic Language ALGOL 51

The effect of an a l t e rna t ive s t a t emen t m a y be precisely described in te rms of
" m o r e e l e m e n t a r y " s t a t emen t forms. Thus the above form is precisely equi-
valent to the sequence of s t a t emen t s :
i~ B 1 ; begin 221; go to next end; i / B 2 ; begin 222; go to next end; "" ; i / B k ; 22k where
- n e x t " is the label of the s t a t emen t following the a l t e rna t ive stat-ement.

Example : i / e i t h e r (a > O) ; y : = a + 2 ; ori] (a < O) ; y : = a / 2 ; o r i / (a = O) ;
y : = 0.57 end.

vi) 'Do' Statements. A s ta tement , or s t r ing of s ta tements , once wr i t t en down,
may be entered again (in the sense of copying) in any place of the p rogram b y
employing a do s ta tement which dur ing copying permi ts subs t i tu t ion for cer tain
const i tuents of the s t a t emen t reused.

Form : 2/~.~ do LI , L 2 (S~. -+ I S ~ --~ I)

where L 1 and L 2 are labels, the S ~ are str ings of symbols not conta in ing the
separa to r --~ and the / are identif iers , or labels, and the list enclosed by paren-
theses is a subs t i tu t ion list.

The do s t a t emen t opera tes on the s t r ing of s ta tements from, and including,
the one labeled L1 through the one labeled L2, which s ta tements cons t i tu te the
range of the do s ta tement . If L~ is equal to/52, i.e., if the range is just the one
s t a t emen t L~, the charac ters ", L2" m a y be omit ted.

The do s t a t emen t causes itself to be replaced b y a copy of the s tr ing of s ta te-
ments cons t i tu t ing its range. However , in this copy all identif iers or labels,
l is ted on the r igh thand side of a separa to r "->" in the subs t i tu t ion list of the do
s ta tement , (and which are ut i l ized in these s ta tements) are replaced b y the
corresponding str ings of symbols S_, on the left hand side of the separa tors "-->".
These str ings S ~ m a y be chosen freely wi th the one res t r ic t ion tha t the sub-
s t i tu t ions produce formal ly correct s t a t emen t s in the copy*.

Wheneve r a do s t a t emen t contains in i ts range another do s ta tement , the
copying, and subs t i tu t ing process for this second innermost do will be executed
first.

Therefore the (actual) copy induced from a do s t a t emen t never contains a
do s ta tement .

Declara t ions within the range of a do s ta tement are not reproduced in the
copy

Examples" do 5,12 (x[i~ --~ y, black label --~ red label, "" , / (x, y) -+ g)
do12 A , A B C (x t 2 ~ + 3 / y - + A , ' ")

The range of a do s t a t emen t should conta in complete s t a tements only i.e., if
the begin (end) del imiter of a compound s ta tement lies in the range of the do, then
so should the match ing end (begin). If this rule is not compl ied with the result
of the do s t a t emen t m a y not be the one desired.

* Thus, in the copy produced any designational expression whose range is a
s ta tement within the range of the do s ta tement must be transformed so that its range
refers to the copy produced.

Numer. Math. Bd. t 4 a

52 A.J. PERLIS and K. SAMELSON:

vii) Stop statements. Stop is a delimiter which indicates an operational
(dynamic) end of the program containing it. Operationally, it has no successor
statement.
Form : 2/,-~ stop

viii) Return statements. Return is a delimiter which indicates an operational
end of a procedure. I t may appear only in a procedure declaration (cf. procedure
declaration).
Form : iN ~,~ return

ix) Procedure statements. A procedure statement serves to initiate (call for)
the execution of a procedure, that is, a closed, selfcontained process with a fixed
ordered set of input and output parameters, permanently defined by a procedure
declaration. (cf. procedure declaration)

Form : iN ~-~ I (P,, Pi , "" , P~) = : (Po, Po, "'" , Po)
Here I is an identifier which is the name of some procedure i.e., it appears in the
heading of some procedure declaration (cf. procedure declaration), Pi, Pi , "" , Pi
is the ordered list of actual input parameters specifying the input quantities to
be processed by the procedure.

The list of actual output parameters Po, Po, . . . , Po, specifies the variables
to which the results of the procedure will be assigned, and alternate exits if any.
The procedure declaration defining the procedure called contains in its heading
a string of symbols identical in form to the procedure statement, and the formal
parameters occupying input and output parameter positions there give complete
information concerning the admissibility of parameters employed in any procedure
call shown by the following replacement rules:

formal parameters in procedure
declaration

input parameters
single identifier (formal variable)

array, i.e., subscripted variable with
k (~ 1) empty parameter positions
function with k empty parameter
positions
procedure with k empty parameter
positions
parameter occurring in a procedure
(added as a primitive to the language)*

admissible parameters in procedure
statement

any expression (compatible with the
type of the formal variable)
array with n (=> k) parameter posi-
tions k of which are empty
function with n (~ k) parameter posi-
tions k of which are empty
procedure with k empty parameter
positions
every string of symbols S, which
does not contain the symbol " ,"
(comma)

* Within a program certain procedures may be called which are themselves not
defined by procedure declarations in the program, e.g., input -- output procedures.
These procedures may require as parameters quantities outside the language, e.g., a
string of characters providing input -- output format information.

Report on the Algorithmic Language ALGOL 53

output parameters
single identifier (formal variable) simple or subscripted variable
array (as above for input parameters) array (as above for input parameters)
(formal) label label

If a parameter is at the same time an input and output parameter this para-
meter must obviously meet the requirements of both input and output parameters.

Within a program, a procedure statement causes execution of the procedure
called by the statement. The execution, however, is effected as though all formal
parameters listed in the procedure declaration heading were replaced, throughout
the procedure, by the actual parameters listed, in the corresponding position, in
the procedure statement.

This replacement may be considered to be a replacement of every occurence
within the procedure of the symbols, or sets of symbols, listed as formal para-
meters, by the symbols, or sets of symbols, listed as actual parameters in the
corresponding positions of the procedure statement, after enclosing in paren-
theses every expression not enclosed completely in parentheses already.

Furthermore, any return statement is to be replaced by a go to statement
referring, by its label, to the statement following the procedure statement, which,
if originally unlabeled, is treated as having been assigned a (unique) label during
the replacement process.

The values assignable to, or computable by, tile actual input parameters must
be compatible with type declarations concerning the corresponding formal para-
meters which appear in the procedure.

For actual output parameters, only type declarations duplicating given type
declarations for the corresponding formal parameters may be made.

Array declarations concerning actual parameters must duplicate, in corre-
sponding subscript positions, array declarations referring to the corresponding
formal parameters.

8. Declarations d
Declarations serve to state certain facts about entities referred to within the

program. They have no operational meaning and within a given program their
order of appearance is immaterial. They pertain to the entire program (or proce-
dure) in which they occur, and their effect is not alterable by the running history
of the program.

i) Type declarations zJ. Type declarations serve to declare certain variables,
or functions, to represent quantities of a given class, such as the class of integers,
or class of Boolean values.
Form: A ,-~ t y p e (I, I , " " I, I [~, "" I [,], "'" I [, ,~,'" ")

where t y p e is a symbolic representative of some type declarator such as integer
or boolean and the I are identifiers.

Throughout the program, the variables, or functions named by the identifiers I,
are constrained to refer only to quantities of the type indicated by the declaration.
On the other hand, all variables, or functions which are to represent other than
arbitrary real numbers must be so declared.

54 A.J. PFRLIS and K. SAMELSON:

ii) Array declarations A. Array declarations give the dimensions of multi-
dimensional arrays of quantities.

Form: A ~-~array (I, I , "'" I [l : l'~, I , I , ' " , I [/: l ' l , " ')

where array is the array declarator, the I are identifiers, and the " l " , and " Y "
are lists of integers separated by commas.

Within each pair of brackets, the number of positions of 1 must be the same
as the number of positions of !'.

Each pair of lists enclosed in brackets ~l:i'd indicates that the identifiers
contained in the list I , I , . . . , I immediately preceding it are the names of arrays
with the following common properties:

a) the number of positions of ! is the number of dimensions of every array.
b) the values of l, and l' are the lower and upper bounds of values of the

corresponding subscripts of every array.
An array is defined only when all upper subscript bounds are not smaller

than the corresponding lower bounds.

iii) Switch declarations A. A switch declaration specifies the set of designa-
tional expressions represented by a switch variable. If used in a go lo statement,
its value specifies the label of the statement called by the go to statement (cf.
go to statements)

Form : A ,-~ switch I : = (D1, D2, " - , D,~)

where switch is the switch declarator, I is an identifier, and the D i are designa-
tional expressions (cf. go to statement).

The switch declaration declares the list D1, D2 D,~ to be a symbolic vector
(the "switch"), the designational expression D k being the k th component.
Reference is made to the switch by the switch variable I [El, where I is the switch
identifier and E is a subscript expression. The switch variable when used in
go to statements selects, by the actual value of its subscript, that component of
the switch determining the label called for by the go to statement. A switch variable
being a designational expression, may appear as a component of a switch.

iv) Function declarations A. A function declaration declares a given expression
to be a function of certain of its variables. Thereby, the declaration gives (for
certain simple functions) the computing rule for assigning values to the function
(cf.]unctions) whenever this function appears in an expression.

Form: A ~ I~. (I, I I) : = E

where the ! are identifiers and E is an expression which, among its constituents,
may contain simple variables named by identifiers appearing in the parentheses.

The identifier I x is the function name. The identifiers in parentheses designate
the formal parameters of the function.

Whenever the function I x (P, P P) appears in an expression (a/unction
call) the value assigned to the function in actual computation is the computed
value of the defining expression E. For the evalution, every variable V which

Report on the Algorithmic Language ALGOL 5 5

is listed as a parameter I in the/unction declaration, is assigned the current value
of the actual parameter P in the corresponding position of the parameter list
of the function in the function call. The (formal) variables V in E which are
listed as parameters in the declaration bear no relationship to variables possessing
the same identifier, but appearing elsewhere in the program. All variables other
than parameters appearing in E have values as currently assigned in the program.

Example : I (Z) : = Z + 3 X y

alpha : = q + I (h + 9 • mu)

In the statement assigning a value to alpha the computation is:

alpha : = q + ((h + 9 • mu) + 3 • y)

v) Comment declarations A. Comment declarations are used to add to a
program informal comments, possibly in a natural language, which have no
meaning whatsoever in the algorithmic language, and no effect on the program,
and are intended only as additional information for the reader.

Form: A ~ comment S;;

where comment is the comment declarator, and S. is any string of symbols not
containing the symbol " ; "

vi) Procedure declarations A. A procedure declaration declares a program
to be a closed unit (a procedure) which may be regarded as a single compound
operation (in the sense of a generalized function) depending on a certain fixed
set of input parameters, yielding a fixed set of results designated by output
parameters, and having a fixed set of possible exits defining possible successors.

Execution of the procedure operation is initiated by a procedure statement
which furnishes values for the input parameters, assigns the results to certain
variables as output parameters, and assigns labels to the exits.

Form: A ~-~ procedure I (Pc) = : (P0), I (Pi) = : (Po), "" , I (P~) = : (P0)

A ; A ; ' " ; A ; begin 22 ; 22 ; ' " ; A ; A ; "." ; ~ ; 22 end

Here, the I are identifiers giving the names of the different procedures contained
in the procedure declaration. Each Pi represents an ordered list of formal input
parameters, each Po a list of formal output parameters which include any exits
required by the corresponding procedures.

Some of the strings "-~ : (Po)" defining outputs and exits may be missing
in which case corresponding symbols " I (Pc)" define a procedure that may be
called within expressions.

The A in front of the delimiter begin are declarations concerning only input
and output parameters. The entire string of symbols from the declarator procedure
(inclusive) up to the delimiter begin (exclusive) is the procedure heading. Among
the statements enclosed by the parentheses begin and end there must be, for each
identifier I listed in the heading as a procedure name, exactly one statement

56 A.J. PERLIS and K. SAMELSON:

labeled with this identifier, which then serves as the entry to the procedure. For
each "single output" procedure I (Pi) listed in the heading, a value must be assigned
within the procedure by an assignment statement " I := E" , where I is the
identifier naming that procedure.

To each procedure listed in the heading, at least one return statement must
correspond within the procedure. Some of these return statements may however
be identical for different procedures listed in the heading.

Since a procedure is a self-contained program (except for parameters), the
defining rules for statements and declarations within procedures are those already
given. A formal input parameter may be

a) a single identifier / (formal variable),
b) an array I E, , "'" ,J with k (k = 1, 2) empty subscript positions,
c) a function F (, , - " ,) with k (k = 1, 2) empty parameter positions,
d) a procedure P (, , "'" ,) with k (k ~ 1, 2) empty parameter positions,
e) an identifier occurring in a procedure which is added as a primitive to the

language.

A formal output parameter may be
a) a single identifier (formal variable)
b) an array with k (k = 1, 2) empty subscript positions

A formal (exit) label may only be a label.
A label is an admissible formal exit label if, within the procedure, it appears

in go to statements or switch declarations.

An array declaration contained in the heading of the procedure declaration,
and referring to a formal parameter, may contain expressions in its lists defining
subscript ranges. These expressions may contain

1. numbers
2. formal input variables, arrays, and functions.

All identifiers and all labels contained in the procedure have identity only
within the procedure, and have no relationship to identical identifiers or labels
outside the procedure, with the exception of the labels identical to the different
procedure names contained in the heading.

A procedure declaration, once made, is permanent, and the only identifiable
constituents of the declaration are the procedure declaration heading, and the
entrance labels. All rules of operations and declarations contained within the
procedure may be considered to be in a language different from the algorithmic
language. For this reason, a procedure may even initially be composed of state-
ments given in a language other than the algorithmic language, e.g., a machine
language may be required for expressing input-output procedures.

A tagging system may be required to identify the language form in which
procedures are expressed. The specific nature of such a system is not in the
scope of this report.

Thus by using procedure declarations, new primitive elements may be added
to the algorithmic language at will.

delimiters d :

Operators
~-~ + go to

= do
• return
/ stop

-1 /or
V i~
A or i/
: i f either
4:

>=
<__

non-delimiters ff :

letters
~-~A through Z

a through z

Report on the Alogrithmic Language ALGOL

Part III

a) Basic symbols

Separators Brackets

 9)
; [
: =]

lo begin
end

digits
~-~ 0 through

b) Syntactic skeleton

Declarators
9 ~'~ procedure

switch
array
t ype *
eomf4~ent

9

Syllables:

list
1--~E,E, "",E
simple variable
V~-~I

subscripted variable
v ~ x EE, E , . . . , W/

/unction
F ~ I (P , P , "",P)
expression and Boolean expression

BE } For the composi t ion rules see the appropr ia te sections in Pa r t I I .

statement label
L,-.~I

61

* Representant

57

58 A . J . PERLIS and K. SAMELSON"

designational expression
D ~ - , L

i EEl
parameters
P F o r the c o m p o s i t i o n rules see the a p p r o p r i a t e sec t ions in P a r t I I

identifier

integer
~ . . . ~
number

m a y be e m p t y
N ~ G . G l o -4- G

*~ m a y be e m p t y

string o/ symbols
S = ~ x x x "'" x x where x is no t a , and a is a p a r t i c u l a r de l imi t e r

S t a t e m e n t s 2/:

assignment statement

V : = B

compound statement
2J ~ begin 22, ; 22 . . . ; X end

- - a t lease one

labelled statement
2~ ~,~ L : 2J where 21 is un labe led .

go to - - statement
21~-~ go to D

do - - statement
22 ~-~ do L , L (S~. -~ I , S_~ --~ I , " " , S_+ --> I)

m a y be e m p t y m a y be e m p t y

quanti f ier statements
22 ~.,i/ n

~ r g : = l
/or V : = E (E) E , E (E) E , " " , E (E) E

alternative statement
22 ~-, i~ either B 1; 211; or i / B 2" 22~ ; . . . ; or i / B k ; 1~ k end

stop- and return-statement
22 ~ stop

return

~Report on the Algorithmic Language ALGOL 59

procedure statement
2~ ~-~ I (R) = : (R) where R ~.o p , p p

Declarations A :

Function declaration
A~X(R) : = E

Procedure declaration
A ~ procedure I (R) = : (R) I (R) --- : (R) ...

may be empty m a y be empty
A ; A ; " ; A; begin 2J; 22;. . . A; d ; " " ; 2~; 22end
where R ~-~ P, P, P, "'", P, P

Switch declaration
A ~.~ switch I : = (D, D, "'" , D)

Array declaration
A ~.~ array (I, I , " " , I (~! : I~, I , " ' , I [l:l], I , ' " ")

Symbol classi/ication declaration
A ~-~ type (I, I , " " , I)

Comment declaration
A ~-~ comncent S ;

I (R) = : (R)

may be empty

c) Publication language
As stated in the introduction, the reference language is a link between hardware

languages and handwrit ten, typed or printed documentat ion.
For transliteration between the reference language and a language suitable

for publications e, the following

transliteration rules
may be used
re/erence language
subscript brackets []
exponentiat ion parentheses ~
parentheses ()
basis of ten 10

s ta tement separator

publication language
lowering of the line between the brackets
raising of the line between the arrows
any form of parentheses, brackets, braces
raising of the ten and of the following integral
number, inserting of the intended multiplica-
tion sign
line convention: each s ta tement on a separate
line may be used

Furthermore, if line convention is used, the following changes may be simul-
taneously used:
multiplication cross
decimal point
separation mark

• multiplication dot
decimal comma

, any common separation mark tha t will not
be ambiguous

 9 ~ For example, for lectures in numerical analysis.

60 A. J . PERLIS and K. SAMELSON: Report on the Algorithmic Language ALGOL

Example
In t eg ra t ion of a funct ion F (x) b y S impson ' s Rule. The values of F(x) are

suppl ied b y an assumed exis tent funct ion routine. The mesh size is ha lved unt i l
two successive Simson sums agree to wi th in a prescr ibed error. Dur ing the mesh
reduct ion F (x) is eva lua ted at most once for any x. A value V grea ter t han the
m a x i m u m absolute value a t t a ined by the funct ion on the in te rva l is requi red for
init ial izing.

abs (absolve value) is the name of a s t a n d a r d procedure always avai lable
to the p rog rammer so t ha t i t need not be supplieo as an input parameter .

procedure Simps (F (), a, b, delta, V)

comment a, b are the min. and max. resp. of the poin ts def. in te rva l of integ.
F () is the funct ion to be in tegra ted .
delta is the permiss ible difference be tween two successive Simpson sums.
V is grea ter t han the m a x i m u m absolute value of F on a, b;

begin
Simps:Ibar : = V • (b - - a)

n : = I
h : = (b - - a) / 2
j : = h • (F(a) + F(b))

Jl: S : = 0
/or k : = 1 (1) n

S : =
s + ~ (a + (3 • k -- 1) • h)
I : = J + g • 2 1 5

i / (delta < abs (r - - Ibar))

begin Ibar : = I
J : = (I + J) / 4
n : = 2 •

go to Jl
end Simps : = I/8
return
integer (k, n)
end Simps

Computation Laboratory Carnegie Ins t i tu te of Technology
Pittsburgh, Pennsylvania

and
Mathematisches Institut der Universit~it Mainz

(Received October 20, 1958)

