
ABSTRACT

THE SYNTAX AND SEMANTICS OF THE PROPOSED INTER­
NATIONAL ALGEBRAIC LANGUAGE OF THE ZURICH ACM­

GAMM CONFERENCE

J. W. BACKUS,

International Business Machines Corp., New York, lISA

This paper gives a tutorial summary of the syntax and interpretation
rules of the proposed international algebraic language put forward by
the Zurich ACM-GAMM Conference, followed by a formal, complete
presentation of the same information. Notations are presented for
numbers, numerical variables, Boolean variables, relations, n-dimen­
sional arrays, functi ons, operator s and algebraic expre s sions. Means
are provided in the language for specifying assignment of values to.
variables, conditional execution of statements, iterative proce<i;ures,
formation of compound statements from sequences of statements,
definition of new statements for arbitrary procedures, reuse and
alteration of program segments.

The proposed language is intended to provide convenient and concise
means for expressing virtually all procedures of numericaL compu­
tation while employing relatively few syntactical rules and statement
types.

THE SYNTAX AND SEMANTICS OF THE PROPOSED INTER­
NATIONAL ALGEBRAIC LANGUAGE OF THE ZURICH ACM­

GAMM CONFERENCE

J. W. BACKUS,

International Business Machines Corp., New York, USA

General

In May 1958 a conference in Zurich completed a joint project
of the ACM (Association for Computing Machinery) and the GAMM
(Association for Applied Mathematics and Mechanics) by approving
a proposed International Algebraic Language (IAL). Other papers
to be presented here discuss the history of the project and various
aspects of the language. It is the purpose of the present paper to
precisely describe both the syntax and semantics of IAL. The description
given here will be that of the so-called "reference language" which,
for definiteness, employs a specific set of symbols and notational
conventions.

It should be kept in mind, however, that the reference . language
form of IAL exists primarily for the purpose of describing the rules
of construction of the language and its meanings. In actual use, a
variety of symbolizations and notational conventions are envisaged,
each representation being a fairly direct transliteration of the reference
language and having the same rules of syntax and semantics. "Hard­
ware representations" will generally use a smaller set of symbols
than that employed in the reference language and will be suitable for
mechanical translation into machine programs by a given type of
machine. On the other hand, the "publication forms" of the language
will employ many of the notational conventions of mathematics (e. g. ,
exponents, subscripts, .Qreek letters) and will be used in human
communication of IAL programs.

The description of the reference language is given in two
parts. Part I gives a brief informal description of the major elements
of the language in terms of examples. Part II gives a formal description
of the structure of the language.

1

Part I : Informal Desc:ri.Dtion

General

An IAL program is a sequence of statements which may
be interspersed with certain declarations. Each staterr~ent describes
a rule of computation and. explicitly or implicitly, specifies a successor­
statement (the successor being the next sta.tement in the program unless
otherwise stated). The computing rule given by a program is, of course.
the sequence of computations specified by the statements when taken
in the order provided by successor-relations. Declarations state certain
facts which are to obtain throughout the computation. Their location
in the program is generally unimportant.

The following paragraphs present some of the important
properties of expressions and statements. with examples.

Algebraic Expressions

1. Algebraic expressions are composed of variables, constants,
functions, and operators for the usual arithmetic operations.

2. Names of variables. functions and other entities are composed
of alphabetic and numeric characters. the first being alphabetic. Any
length sequence of characters may be used.

3. It is understood that the arithmetic operations in an expression
signify a floating point approximation of real number arithmetic. Some
variables may be declared to be integer-valued. The effect of such
a declaration is that any value which is to be assigned to such a
variable is first rounded to the nearest integer.

4. Array declarations ,cf. Declarations below) may state that
certain names are the names of arrays of data of various dimensions.
These names may appear in expressions as subscripted variables which
are followed by a sequence of subscripts enclosed in a pair of square
brackets. the number of subscripts corresponding to the dimensionality
of the array and each subscript separated from the next by a comma.
Since parentheses are used to enclose function arguments (and sub­
expressions). it is easy to distinguish between functions and subscripted
variables. A subscript may be any expression; the value of the subscript
is the integer formed by rounding the value of the expression (if itis
not already an integer).

2

Examples of Algebraic Expressions

1.

means:

2.

means:

3.

means:

4.

means:

3. 14x(alpha+sin{x))

3. 14X(OC+sin(x))

(b/Z - sqrt(axc - (b/Z)tZJ..)/a

(b/Z - .J axc - (b/Z)2)/a

R (i+l. nx 5 rr, j~~
R.~1 oJ(5. 0+1 In particular, if i and j both have the

IT ,3 1,) •

value 1 (or 1. Z) when the above expression is encountered, it is
then equivalent to: RZ, 1)(51, Z

Boolean Expressions

Some variables or arrays of quantities may be declared
to be Boolean-valued (i. e •• having only the value 0, "false", or 1,
"true"). These variables, the constants 0 and 1, Boolean-valued
functions, and subexpressions of the form:

(ErE')
may be combined with the Boolean operators "and", "or", "not",
and "equivalent" to form a Boolean expression. (In the above Eand
E' are algebraic expressions and r is a relation, e. g., (x/y> 1) •)

Examples of Boolean Expressions

1.

This Boolean expression is true if, and only if, either X is greater
than Y or Y is greater than Z2 or both. The operator is that
for "or".

Z. (h A) AB) V (All (X= Y.,. 1))

Here A and B must be Boolean-valued variables. The expression
is true when either A is false and B is true or when A is true
and X· equals Y+ 1.

3

Statements

1. Statements may be either "basic" (described below) or
"compound" (formed from a sequence of statements enclosed in
"statement parentheses", begin and end). Statements are separated
one from the next, by the separator ";".

Example of a Compound Statement

In ~eneral, if SI' S2"'" Sn are statements then

is a statement.

2. A statement may be labeled, as follows:

L:S

where L is a name or an integer; L thus becomes the label of
the statement S.

As signment Statements

Assignment statements direct that an expression is to be
evaluated and assigned as the value of a variable.

Example of Assignment Statements

means: assign the value of atb as the value of x •

2. alpha:= 4. 63

4. B:=(x>O)AA

here A and B are Boolean variables and Breceives the truth­
value of the Boolean expression on the right.

go to Statements

1. A go to statement may specify some statement, other than

4

the st atement which follows it, as its successor in the computing
process described by the program. This may be done explicitly by
writing the label of the desired successor as follows:

go to A

where A is the label of some statement in the program. Or, the
successor of the go to statement may be made to depend upon the
value of some expression by the use of a switch variable whose
subscript is the desired expression. The value of a switch variable
is a label. Thus if "branch" is the name of a switch variable, then

go to branch Q.+ j]

has as its successor that statement whose label is the value of
branch [it j] .

2. Switch variables are defined by switch declarations. Thus
the switch variable "branch" might be defined by the following declaration:

switch branch(A l, A2, B I, B2)

where AI, A2, B I, B2 are labels of statements. The value of
branch (i+jJ. is then the (i+j)th label in the sequence (or the nth
label, where n is the integer formed by rounding i+j). For example,
if itj equals 3, then the value of branch .Q.tJ] is BI, and in that
instance, "go to branch O+j]" has the same significance as
"gotoBI"

3. Switch variables may be used in the definition of other
switch variables. Thus the following two switch declarations might
appear in a program:

switch branch{A I, A2, B l, B2)

switch fork(branch (i) ,AI,BI)

In this case if i equals 4 and j equals l, the value of fork [j)
is B2 •

4. A switch variable may have no value in some cases. For
example, branch (il as defined above has no value if the integer
nearest i is less than I or greater than 4 . In such an instance
the successor of "go to branch (1) " is the next statement in the
program.

5

if Clauses and if Statements

The if clause, "if B", where B is some Boolean expressi on,
combines with the statement, S, following it to form a compound state­
ment. This compound statement has the same effect as S if B is
true and has the effect of Iino operation" if B is false.

Example of the use of if statements

if (a) 0) x:= 1 ; ~ (a~ 0) begin x:= y : p::..: 0 end;

if (a'~O) go to B ; S

In the above program segment statement S is encountered unless a
is negative, in which case 'go to B' is executed; if a is positive and
non-zero, x is 1 and p is unaffected when S is reached, otherwise
x ~qaals y and p equals O.

for Clauses and for Statements

1. A for clause, like an if clause, combines with the statement,
S, following it to form a compound statement. A for statement specifies
that a given variable take on a succession of valuesand that the governed
statement, S, be executed once for each value of the variable. Thus,

for x:= 1, r+ s,k,6.3, -10; a::~(a+x)/x

causes the governed statement to be repeated five times, once for each
of the listed values of x. Since the statement governed by a for clause
may be an involved compound statement which may include other for
statements, complex recursive procedures may be easily specified
by their use.

2.
sions:

Sequences oi values may also be given as arithmetic progres-

for i:=a1'Z~ (biZ) y-l-l

this clause directs that i should assume the values: a2 , a 2 + b/2.
a 2 f- b, •••• a 2 + nb/2, • .. until y i- 1 is reached but not passed.
Several such progressions may be included in a single for clause

~ r:= 1(3)10,12(4)20,21(-7)1

this gives the sequence of r-values: 1,4',7,10,12,16,20,21,14,7 •

6

converge Statements

1. A ~onverge statement preceding a compound statement S
causes those substatements comprising S, which do not explicitly
specify a successor, to have the statement following S as their
common successor. However, in the case of an if statement, only
the successor of the governed statement is altered. Thus the suc­
cessor of an if statement with a false Boolean expression is the
next statement. Thus:

converg=.i begin ~ Bll Sl; if BZl S2i2:!.B3; 53 end l S4

causes that single statement 5i to be executed which coi-:responds to
the first true Boolean e~pression Bi ; this 8i is then succeeded by
84. Thus if B 1, B Z and B3 are all true, the effect is to execute
8 1 and then 84 •

Z. A converge statement may also be used to conveniently
select a single statement for execution as follows:

converge: begin go to branch [i];L J :'81 ; L Z:8Z ; L3:83 end;
S4 if "branch .til II takes on the values L I , LZ' L3 for i= l,Z, 3 , then
the statement following converge has the effect of the single statement
8i followed by 54'

do Statements

1. A do statement is simply a shorthand way of rewriting a
segment of a program which appears elsewhere. Thus,

do A ; X:IS y + z ; A: r:= x+r

is another way of writing the following:

B: r:= x+r ; x:= y+z ; A: r:= x-t-r

here the copied statement has been given a new label, B, simply to
avoid having two statements with the same label. The choice of
new labels in the copy is immaterial as long as the reassignment
is done consistently throughout the copy.

2. A do statement may specify a sequence of statements to
be copied by giving two labels.

do R,8

7

thus represents the sequence of statements from the one labeled R
through the one labeled S.

3. A do statement may require that certain alterations are
to be made inthe copy which it represents.

do R,S (x-I-y ~x, am4beta)

stands for the segment from R through S but with the name "x"
replaced by "x-t-y" everywhere it appears and with "beta" replaced
by 11 a [iJ " ,

stop Statements

stop statements have no successor, hence they signify
the operational end of the process described by a program.

return Statements

A return statement, written "~turnlll is used only in
programs which define the meaning of procedure statements. It
signifies that the defined procedure has been completed and that
the successor of the procedure statement which invoked the
defining program is the next statement in the invoking program.

Procedure Statements

A procedure statement indicates that some particular
process is to be performed, employing those entities indicated by
input parameters and producing results which are del?ignated by
the output parameters. (Some procedure statements may also indicate
specific successor statements by a list of labels or switch variables
which are associated with various exit conditions). Thus

integrate (F{r,). a, b, e)= :(int):{L)

b
might indicate that .JF(r, x)dx is to be found with an error less than
e (if possible with t~e given procedure), that the result is to be
assigned as the value of int and that if the desired result is not
obtained the successor of this statement should be the one labelled L

Some procedure statements may simply be added to IAL

8

as primitives (and realized by machine language subroutihes). Others
may refer, by the name which stands in front (e. g., "integrate"), to
an IAL program (c£ procedure declarations) which represents the process
indicated.

Some procedure statements may not have any input parameters,
others may have no output parameters. Thus a procedure statement which
causes one number to be obtained from an external medium might be,

in'-'= : (a)

indicating that the number should be assigned as the value of a. Another
might be

print (r, s, t).

Another procedure statement may specify the replacement
of a matrix. A. by its inverse:

invert (A r,l) ==: (A LJ)

In general. it is intended that virtually any process can be
expressed by a procedure statement.

Declarations

Declarations in an IAL program state certain facts which
are to obtain throughout the program. They may appear at any point
in the program, but their position in it is not significant.

Type Declarations

A type declaration, boolean or integer. asserts that the
value of a variable or function or element of an array will always
be of the given type. Thus,

boolean (a, b, c)

asserts that any value assigned to entities having the names a, b.
or c will be changed to a zero or a one according to same rille, t,
(e. g •• t(x)= 1 when x= I, otherwise t(x}:= 0).

Thus

a:= x

9

in a program containing the above declaration would be equivalent
to:

a:= t(x)

or again the appearance of a function b(x) in an expression in the
program would be equivalent to t(b(x)).

Similarly,

integer (r,s)

constrains entities having names r or s to have integer values by
rounding non-integer values to the nearest integer.

array Declarations

array declarations specify the upper and lower bounds
for the subscripts which may be meaningfully associated with an
array. Thus

array (a,b,c [1:100], r,s [-10.1:+10,50J)

indicates that a, b, c are one-dimensional arrays whose subscripts
have meaning only in the range 1 to 100 (inclusive), and that r, s are
two-dimensional arrays whose first subscript should lie between -10
and +10 and the second between land 50 (inclusive).

switch Declarations

switch declarations have already been described under
the heading, "go to statements".

Function Declarations

Certain functions may be defined for use within a program
by a function declaration as follows:

g(x, y) := w + x + f(y, x)

If, in the program containing the above declaration, the following
appears: g{ t/v. h(v» I then its value.is given by the expression:

w+t/v+f{h(v). t/v)

10

Note, in this case, that g(x, y) is always a function of w even
though it does not appear as an argument.

comment Declarations

comment declarations do not affect the behavior of the
program, they simply provide the ability to incorporate verbal

. comments in a program. For example:

comment This is the end of Section 1.

The comment may be arbitrarily long provided it does not contain
a statement separator, semicolon.

Procedure Declarations

Procedure declarations are unique among declarations:
precisely one procedure declaration must precede the program
it refers to. Such a declaration indicates that the IAL program
following defines one or more procedure statements and/or functions.
For example:

procedure branch (a) : (L 1, L2, L3) ;
begi:r:. branch: if (a<O); go to L 1; "!~J a:::O): ~~ L2;

if (a~O); go to L3 end

This comprises a procedure declaration followed by a program
of one compound statement. The procedure statement defined
thereby is one named "branch" which selects one of three successors
according as the vdue of the input is negative, zero, or positive.
Thus the procedure statement,

branch (x - f(y)) : (aCi] , BB, MM)

used in any program means, by virtue of its defining program:
go to the statement indicated by the switch variable a [il when
x - f(y) is negative. if it is zero, go to BB, and if it is positive,
go to MM.

11

One more example:

ptocedure root (a, b), ckroot(a, b)::::: (c) : (d);
begin ckroot: i£(a - b<:O) ; go to d;

root: c:= sqrt(a - b) ; root:= c ; return end

The procedure declaration, together with the program, defines a
function, root, and a procedure statement, named "ckroot". The
calculation of the function begins with the statement labelled root,
and its value is that of the variable, root, when return is encountered.
The program for ckroot begins at the first statement, labelled ckroot.

The process corresponding to

ckroot (x, y / z) ::::: (a) : (GL)

therefor either gives a the- value sqrt(x-y/z) or, if x-y/z
is negative, specifies the statement labelled GL as its successor.
On the other hand,

v:= r + root(m, n)

results in v having the value r + sqrt(m - n) regardless of the
sign of m - n.

Part II : Formal Dyscriphon

General

The Zurich ACM-GAMM Conference had two principal
motives in proposing the IAL :

and,

1) To provide a means of communicating numerical
methods and other procedures between people.

2) To provide a means for realizing a stated process
on a variety of machines with the only differences
between the realizations of a program on two
machines being those imposed by differences in
word lengths. overflow conditions and the like.

It appears that IAL, as given by informal descriptions here and

12

elsewhere (reference 1), suffices rather well for goal 1).
However, if programs are to be written for a variety of machines
to translate from IAL to the machine's language in such a way
that goal 2) is satisfied, two requirements must be met:

I) There must exist a precis~ description of those
sequences of symbols which constitute legal IAL
programs. Otherwise it will of ten be the case that
a program which is legal ami translatable for one
translating program will not be so with respect to
another.

II) For every legal program there must be a precise
description of its "meaning", the process or trans­
formation which it describes, if any. Otherwise
the machine language programs obtained by two
translating programs from a single IAL program
may behave differently in one or more crucial
respects.,

Heretofor there has existed no formal description of a machine­
independent language (other than that provided implicitly by a
complete translating program) which has met either of the two
requirements above. Consequently, as anyone who has actually
been involved in writing a translating program can testify, a large
number of decisions affecting membership in the class of legal
programs and the meaning of legal programs must be made during
the construction of the translating program.

If, therefor, IAL is left in its present state of incomplete
and informal description, it is likely that many ma.n-years may be
invested in producing a number of translating programs which will
not reliably produce equivalent machine programs. In this case
the great potential benefits and savings offered by goal 2) will
be lost.

The author had hoped to complete a formal description
of the set of legal IAL programs and of their meanings in time to
present it hE'.re. Only the description of legal programs haa been
completed however. Therefor the fornlal treatment of the semantics
of legal programs will be included in a subsequent paper. The work
which has already been done ill this direction indicates a need for
minor modifications in IAL to facilitate its completion. These

13

changes will require the approval of the appropriate groups. Since
some of these changes are present in both parts I and II of this paper,
nd cificial' status for the descriptions contained in it should be
assumed, although the changes are few and, for the most part, slight.

Syntax of IAL

In the description of IAL syntax which follows we shall
need some metalinguistic conventions for characterizing various
strings of symbols. To begin, we shall need metalinguistic formulas.
Their interpretation is best explained by an example:

(ab)::::: (or [Or (ab) (or (ab> <d)

Sequences of characters enclosed in 11.(> It represent meta­
linguistic variables whose values are strings of symbols. The marks
11 :~ " and "Of" are metalinguistic connectives. Any mark in a
formula, which is not a variable or a connective, denotes itself (or
the Class of marks which are similar to it). Juxtaposition of marks
and/ or variables in a formula signifies juxtaposition of the strings
denoted. Thus the formula above·gives a recursive rule for the
formation of values of the variable <ab) . It indicates that <ab) may
have the value "(" or "(,, or that given some legitimate value of ~ab> ,
another may be formed by following it with the character "(" or by
following it with some value of the variable (d) . If the values of <:d)
are the decimal digits, some values of (ab) are:

[«(1(37(
(12345(
«(
(86

Integers and Numbers

~digit>:a 0 Or 1 or 2 Or 3 or 4 or 5 or 6 Or 7 Or 8 Or 9
(integer>:::: (digit) or <'integer)(digit>
(dn):;: (integer). '01' .(integer) or (integer) or ~dn) (integer)
<si):::; +(integer) br -<integer) or (integer)
.(en):;: (dnJ 10(si) '()"i lJo<si)
(number):::. (integer)ot L.~) or (~n>

14

Identifiers and Variables

< letter):!! a M' b f5'f c,m d tfr e ft f trP g 1ft h trf i rr
j~kf5'flnm~n~oftpftqnrft
s~tftu~v·ftw~xftyftz~AU

B~CnD~E~FnG'~HnlmJ
8'f. K or L Or MOrN 1n' 0 1J'f P "8! Q trf R
OiSorTarUrrV8'rWOrXirYi5'fZ

<identifier):a (lette:W;>or(j.dentifier)¢etter> or (identifier><digit)
(id):.= <identifier)
<. variable): a 4d)

Subscripted Variables and Arrays

<el):=. (ar exp) Of ~el> , (ar exp>
(subscr var):.: (id) [(el>]
<blank):,a (the null string of characters)
(ppel) := (blank) Of (p'pe1)4r exp) ,
(pel}:a (ppel) or (;.Jel), Or~el> ' (ar exp;>
<array>:= (id) [(pel) 1

(see below for definition of (ar 'exp»

Parameters, Functions and Pure Functions

<nq):; <any character other than a quote mark ">
<. arb):a. <nq) Ot~rb)<,nq)
(quoted string):: "(arb) "
(param):=. (ex.p)o:r (quoted string) m 4t-rray)rr<pure function)

O! (pure procedure)
(param list):a.(param) Or {,J>aram list), (param)
(function):a (id)(lparain list»

(PI):=. (blank) or <pl) (param) ,
(ppl):;a (pI) Or Q,pl) Or Q>pl> ' (pararrl)
Qure function/:=. (id} ((Ppl))

. .
Ari~etic Expressions, Boolean Expressions, and Expressions

<factor f.=. <number> or (function) Or (variable) Or q.ubscr var)
Or .((ar exp» or (factor} '~r exp)~

15

(term)::; qactor) or ~erm)X<factor) or (term) I (factor)
(ar exp>:5. «term) Of + <term) or -4erm; or(ar exp)+(term)

or 4r ex,p> - Qerm) , ,

<ar exp A):s/...ar, exp)
(relation):.s. <01".> or!f Oi':;:.or= or .'
<reI exp):.=: ((ar exp) < relation> <ar exp A»
(bool term):=. 0 or 1 or~el exp) Of Qunction> or

(yariable) or ~ubscr var) Or «bool exp»
, Or·..,(bool term) < boal exp):5 (bool te rm) or (bool extY V (bool term>

or ~ool exp) /\~ool term) Or
(bool exp> =-(bool term)

<. exp):=. (ar exp) Or (bool exp)

As signment Statements

(left element):=. <variable) 01' (subser var>
(assnmt stmt):=. (.left element)::::: I...exp>

go to Statements and Designational Expressions

<desig exp):::. (id) or Qnteger) GrQd)«exp)J
(go to stmt):a .go to (desig exp)

if Statements

6J. clause):=- ti. (bool exp)
4!. stmy:a (if clause); ~tmt)

for Statements

<el):; (ar exp) or (el) , (ar exp)
~unsigned exp):.:;. ~erm> Or~nsigned '~xp) + 4erm)

n ~nsigned exp) - ~erm>

16

~-e>:.; ~r ex'}» (~r ex}» ~nsigned exy>
~P~::: (ap) or <apl),(ap)
(for clause A):= for (left element}:= < el)
(for clause :s}::: for (left element):= <ap1)
<for stmt):= (for"clause A); (stmt) or (tor clause B);

(stmt)

converge statements
ti

<fonverge clause) ::.. converge
~converge stmt):: (converge clause>; (stmt)

do Statements

(sc) := (any character other than ,,~o)
(ss) := (sc> or(ss) <sc)
(subsl}:.:. (ss)"'~d>Or(SubBl> ,YB)~d)
(label):: (id}tn(lnteger)
(do stmt)::= do¢abe1)or do~abel)((subs!)

OF do ~abe1), (labe1)
or do (label) ,~abe:Q «subsl»

stop Statements

~top stm~ :E stop

Procedure statements and Pure Procedures

(oe) :=. ~eft element)
~ut list}:~ (6e/or~utlist), cf>~ .
~uc) :=. (label) or(d) [(exp)]
(succr list) :: (Suc>6'f~uccr list>. ~uc>
(A) :: =:(<out lis~) Or4>lank)
(B):!! :(4uccr list» Or (b1a~
4>roc stmt):: ~nction)~(B>' .

Of' 4<0:=: «Outli s t»~
Or (id):«Succr lis91

~pol):= (blank> or (ppo1)(&e),
(pol) :: ~pol> 6"f .($01>. Or ~ol) , (oe)
(AI):=- =: «pol))
~psl>:::. (blank) or (Ppsl> <!suc) , .
4isl):: (pps1) m- 4>sl) • Or~81>, <suc)
(13'>::! : «psI» .
(F*>::. (function) or <pure functiori)Or4d)

17

[.. pure procedure may have any of the forms of a
procedure statement but at least one position of
one existing list must be empty: at least one input
parameter position or one output position or one
successor positionj

return Statements

<return stmt):.= return

Type Declarations

~d lis~>:: (id) Or ~d list} , «id) .
4>001 declat):.= boolean ((id list>)
(integer declar>:=. integer (id list>)
(type dec1ar):: ~ool decla~ Or (integer declar)

array Declarations

(ulb) :: (ar exp)
~lb A) :: (ar exp)

(ulbi):.=. (uibA): (ulb)
or (ulbA>. ,{uibl), (ulb)

<;'rray se~:: ~d> [~bl>] Or (j:d), ~rray seg)
~:1>:= <array se~ Or(arl), <array Bet>
~rray decla~:=. array (o(iir!,» .

switch Declarations

~e):: (fd) Or ~ntege~ or <Jd) [<:"x~
<del):: (de> OF (3.el) , (de)
(Switch decla?:=. switch (ld>:= (del))

J8

Function declarations

<function declav :=. {1~ (1d list)) := ~xp>

Comment declarations

<pot sc) :.= ~ny character other than ";I~
<8 tr) :.= ,(not s c) 0 r (s tr) <rot 89
<Comment declar):;:. comment ~t;>

Common declarations

<fom entry>:=. (id) (4d list))
(Com list>:=. <tom entry) Or ~om list), (com entry)
(Common declat):=. common (~om list»)

Statements and Declarations

<b stmt) :..= ~ssnmt stmt)
.or ~o to stmt)

OF <.8-0 stmt)
or <$;top stm!)
Or <1Sroc stm9 or ~eturn stmy

4asic stmp::=. ~ stm90F
(labe1):~ stmt)

(81):~ <$tm~ or (sl>; <stmt)
or .~1) ; (declar)
OF (decla~ j 4il}

<$ stm~:=. (b stmt) or (if stm~
or <(or, stmt) OF <fonverge stmt)
or begln (Si}end .

4 tm9:=. <u stm9 or qabeJ): ~ stmt>

(declar):=. <type decla9 or «rray decla»
or ~witch decla? or <1unction dec1ar)
or ~omment declar) or~ommon dec1ar>

Syntactic Properties of IAL Statement Lists

a) L is the entry label of a statement S if S has the form:

L:(P stmt>

19

b) If dZ is a designational expression in statement list S
and there is a switch declaration:

switch xl := (..••. ' dZ"")

then dZ is said to succeed any designational expression of the form
Xl [<exp>] . Further, if d 3 succeeds dZ and dZ succeeds d 1, then d 3
succeeds d I .

Definition of an IAL Program

An IAL Program is a stat~ment list «'sl)) with the following
properties:

1) No two statements or substatements have the same
prefixed label.

2) No designational expression succeeds itself.

3) Every designational expression has some label as
successor, or is itself a label.

4) . To every n-place array name or subscripted variable
name there corresponds one and only one entry of that
name in an n-place array segment (n = 1/2 number of
entries in the upper-lower-bound list, ~lb1».

ACKNOWLEDGMENT

The proposed International Algebraic Language is the
direct and indirect product of many people's work. Most directly
it is the result of the Zurich Conference at which the participahts
were: F. L. Bauer, H. Bottenbruch, H. Rutishauser, and K.
Samelson (representing the GAMM), and J. W. Backus, C. Katz,
A. J. Perlis, and J. H. Wegstein (representing the ACM).
Extensive preparatory work was done by larger ACM and GAMM
committees (see reference 1). All of this, in turn, was based
on prior work done by many individuals and groups in the field of
automatic programming. The earliest work (to the author's
knowledge) in this area was that of Rutishauser I in Switzerland,
and of Laning and Zierler, in the United States.

20

REFERENCE

1. Perlis, A. J. j and Samelson, K., "Preliminary
Report - International Algebraic Language lt

Communications of the ACM vol. 1, no. 12 (Dec. 1958)

21

	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_01
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_02
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_03
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_04
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_05
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_06
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_07
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_08
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_09
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_10
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_11
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_12
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_13
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_14
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_15
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_16
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_17
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_18
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_19
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_20
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_21
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_22
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_23
	Backus-Syntax_and_Semantics_of_Proposed_IAL_Page_24

