


THE 704 FORTRAN I1 AUTOMATIC CODING SYSTEM 

. 
Grace E,  Mitchell 

International Business Machines Corporation 
Research Center 

Yorktown Heights, New York 

ABSTRACT: This paper discusses the addition made in the 
FORTRAN I translator to produce the FORTRAN I1 translator. 
The new source language statements , debugging facilities and 
loader are described. 

Research Report 
RC -136 
September 4,1959 



After the field distribution of FORTRAN I, i t  bec&e clear 

that two principle areas, needed improvement, namely facilities 

for  debugging source programs and facilities for  creating and using 

subprograms. The FORTRAN II project was initiated a s  an attempt 

to solve the above problems. 

The main improvement in the debugging facilities i e  the in- 

corporation of a general and expandable diagnostic procedure in 

the translator. The purpose of this procedure is to find tmd to 

print a description of every detectable e r r o r  in a source program. 

Thus stops in the translator have beereliminated o r  reduced to a 

rkinimum and the ambiguity of the reason for  a failure to translate 

reduced. Routines which a re  helpful in debugging object programs 

during execution can be added to the library of FORTRAN I1 and in- 

cluded in an object program during translation by making use of the 

improved subprogram facilities. 

In FORTRAN I the only available subprograms were the func- 

tion statement, which allowed a programmer to define a function in 

one FORTRAN statement, the ,library tape functions, and the built- 

in functions. In FORTRAN I1 the number of built-in functions has 

been expanded. The expanded FORTRAN source language includes 

a powerful new function facility which enables a programmer to 

write library tape functions in the FORTRAN language instead of 

in the machine language a s  previously required. 

Even greater  flexibility has been added to  the FORTRAN lan- 

guage by incorporating a provision for the calling and writing of sub- 

routines such a s  matrix inversion. In fact any FORTRAN program 

may be written and called a s  a subroutine. A large program can be 

written a s  several subroutines that can be independently compiled 



and debugged. This considerably reduces recompile time and 
*+ 

allows for easy replacement of sections of the program. Machine 

language subroutines (em g., double precision routines which can- 

not be written in the FORTRAN language) may be added to the 

FORTRAN library and called by any FORTRAN program. 
I 

The FORTRAN I1 language is compatible "upwards" with 

the FORTRAN I language, i. e., any FORTRAN I program may be 

compiled using the FORTRAN I1 translator'with the possible excep- 

tions listed below: 

1) Some tables in the FORTRAN I1 translator have been 

reduced in size; therefore a table overflow is possible. 

2)  FORTRAN 11 object programs in general a r e  some- 

what larger than FORTRAN I object programs; therefore 

i t  is conceivable that an extremely large FORTRAN I 

program could exceed memory capacity when compiled by 

the FORTRAN I1 translator. 

It is assumed in this paper that the reader is familiar 

with the 704 FORTRAN I language and 704 SAP language. 

12-Subprogram Facilities 

A. New statements in the language 

1. SUBROUTINE NAME ( X, Y, I, . . . . ) 
This statement, i f  it appears, must be the .first statement in the 

program. The SUBROUTINE statement defines the entire program * 

to  be a closed subroutine, the name of which is NAME .(any alpha- 

numeric characters, not exceeding six, the f i rs t  of which is alpha- , 
I 

betic). The arguments, i f  any, a r e  to be listed inside a pair  of pa- 

rentheses and separated by commas. An argument name is a non- 
L 

subscripted variable name (six o r  fewer alpha-numeric characters, 



f irst  of which is alphabetic). Any alpha-numeric variable name * f' 

which occurs in an executable statement in the subroutine may be 

listed a s  an argument of the subroutine. 

The program which follows the SUBROUTINE statement may be 

any FORTRAN I1 program containing any FORTRAN statements 

except a SUBROUTINE o r  FUNCTION statement. 

2 .  FUNCTION NAME ( X ,  Y, I, . . . .) . 
This statement occurring a s  the f irst  statement to a FORTRAN I1 

program defines the program to be a function subprogram. In the 

case of a function subprogram the name NAME has two distinct 

meanings. 

I a) NAME is the name of the subprogram. 

b) NAME is the name of the single-valued function being 

evaluated . 
The function name (any alpha- numeric characters, not: exceeding 

six, the f irst  of which is alphabetic), unlike the name of a subrou- 

tine, has certain restrictions imposed upon the name. 

a) If the function to be evaluated is fixed point, the first 

character of the name must be I, J , K ,  L, M, o r  N. 

b) The class of names reserved for  the library tape func- 

tions (i. e. , names having 4 to 7 characters, the last character 

being F) must not be used a s  names of function subprograms. 

c )  Any name appearing in a DIMENSION statement in the 

function subprogram o r  in a DIMENSION statement in any program 

using the subprogram is excluded f r o m  use as a name of the func- 

tion subprogram. 

The function to be evaluated, by definition, must have at  least one 

argument. The argument list  is identical with that of the subroutine. 

As  in the case of the subroutine, the program which foll.ows the 

FUNCTION statement may be any FORTRAN I1 program containing 

3 



any FORTRAN statements except a FUBCTION o r  SUBROUTINE 
.r' 

statement, 

3 ,  RETURN 
b 

This statement will normally occur in a subroutine o r  function 

subprogram. RETURN i s  a flow statement and causes control 
I 

to be returned to the calling routine. In the case of a subroutine, 

normal return of control is to the main routine statement imme- 

diately following the CALL statement. F o r  a function subprogram, 

the RETURN statement will place the value of the function in the 

accumulator and will return to the arithmetic statement in which 

the function name appears. 

4. CALL NAME ( X , Y , I  ,....) 

The CALL statement consists of a name (six o r  less  alpha-numeric 

characters, the f irst  of which is alphabetic) and may be followed by 

a string of arguments (as defined below) enclosed in parentheses. 

The statement is construed to be a call-in of the subroutine named, 

and a calling sequence is set up transferring control to  that subrou- 

tine and presenting it with the arguments, i f  any, which follow the 

name, 

The order of the arguments is taken from the list  that appeare in 

the CALL statement, reading from left to right. There must be 

agreement in number, order, and mode in the argument list  here 

and the argument list  in the SUBROUTINE statement i f  the subrou- 

tine was compiled by FORTRAN. Control is returned from the 

subroutine to the statement immediately following the CALL state- 

ment (normal sequencing). 

An argument in a subroutine calling statement must be one of the 
. 

following: 

a )  any FORTRAN I1 arithmetic expression such as, 

X ** 2 + SINF (X). 



*, b) the name of an array, without subscripts 

c) and argument of the following form: , nHx x2 

The interpretation of c) is identically the interpretation of a 

Hollerith field in a FORMAT statement. This is not the name of 

a variable, but, a s  with constants, is itself the data under consid- . 
eration. I twi l l  be stored a s  follows: the "nH character stringf' 

(where n is equal to the number of consecutive Hollerith charac- 

t e r s  in the string! immediately following the I H I  ) is dropped, the 

f i rs t  character (x ) and the remaining characters, including blanks, 
1 

are stored a s  successive characters (six to a word) in successive 

words, and i f  the last word is not full, i t  is filled out with blanks. 

5 ,  FUNCTION EVALUATION 

When the name of a function subprogram appears in any FORTRAN 

arithmetic expression, it is construed to be a call-in of the subpro- 

gram to evaluate the named function. A calling sequence is se t  up 

to transfer control to the subprogram and to present i t  with the ar- 

guments which follow the name of the function. As in the case of a 

subroutine, an argument may be any FORTRAN I1 expression, the 

'unsubscripted name of an array , and/or a string of Hollerith char- 

acters. 

6 .  COMMON A, B, ............ 
In FqRTRAN 11, data storage has been moved down in memory so 

that a gap no longer exists between program and data. The arrange- 

ment of such data is in the normal manner, However, data can be 

located at the top of memory by listing such data in a COMMON 

statement. The ~ r d e r i n g  of storage will be that of the COMMON 

list, except a s  i t  is modified by EQUIVALENCE statements. 



The chief purpose of the COMMON statement i s  to permit data 

communication between routines which a r e  independently com- 

piled, 

I 7 .  END (I1, 12' 5' 14, Is) 
a 

The FORTRAN translator interprets the END statement as an end- 
, 
I of-file condition, thereby permitting the stacking of FORTRAN 
1 
I . source programs when compiling. It was deemed advantageous to 
1 have programable sense- switch control when batch compiling; hence, 
il 

I the list of 11 s following the END are interpreted as settings of Sense 

Switches 1 through 5 on the 704 console a s  follows: 

I = 0 means U P  position. 

. I = 1 means DOWN position. 

1. FUNCTION SUBPROGRAM 

The following program is an example of a function subprogram, 

FUNCTION SUM ( Y, Z, N) 

DIMENSION Y (2 O), Z (2 0) 

SUM = O..O 

D O 5 1 =  1, N 

SUM =' Y (I)* Z (I) + SUM 

RETURN 

END (2, 2, 2, 2, 2) 

CLA NAME is always compiled prior to the return. 

In the above program the CLA SUM is not necessary; 

however, in many problems the CLA is required since 

the value of the function must be left in the accumula- 

tor. The arguments Y, Z,  and N which appear in the 

FUNCTION statements a r e  dummy variables. The 

dummy variables in any subprogram, either function 



o r  subroutine, a r e  assigned no memory locations regardless 
.(, 

of the DIMENSION statement since they function solely a s  

name forms within the subroutine. A subscripted dummy 

variable must be listed in a DIMENSION statement o r  the 

translator will interpret the subscripted variable name, a s  

a function name. In the case of two o r  three dimensional 

arrays,  the DIMENSION statement is used by the translator 

to compile the instructions which compute the absolute mem- 

ory locationof a reference to a subscripted variable.. It is 

necessary to assure compatibility in data storage betweenthe 
I subprogram which uses the data and the calling routine which 

provides data. Therefore, the dimension information for  the 
1 

two o r  three dimensional dummy variables must be the same 1 
/I a s  the dimension information for those actual variables which 

the dummy variables represent. 

2 ,  SORTING SUBROUTINE 

The following program is an example of a sorting subroutine 

(statements 1-5) followed by a skeleton main routine (statements 

10-20). 
1 SUBROUTINE SORT ( A ,  N ) 

I 

I 

DIMENSION A ( 15 0 ) 

D O 4 J = 2 ,  N 

SMALL = A ( J  - 1)  

D O 4 I = J ,  N 

IF ( A  (I) - SMALL) 3, 4, 4 

3 SMALL = A (I) 

A (I) = A- (J -1 ) 

A (J - 1 )  =SMALL 

4 CONTINUE 

RETURN 

DIMENSION ALPHA (150), BETA ( 150 ) 

7 



CALL SORT ( ALPHA, M ) 

CALL SORT ( r  BETA, K ) . 

. 
20 END ( 2,  2 ,  2,  2, 2 ) 

These a r e  two distinct programs which give 

r i se  to two separate and complete compilations, pro- 

I ducing a relocatable binary deck for the subroutine and 

a relocatable binary deck for the main routine. 

'I 3. The following skeleton routine calls for a subroutine 

which compares Hollerith data, 

- 
I CALL FILE ( IHA, IHB, IHC ) 



RETURN 

30 CALL PROG 3 (D) 

RETURN 

END ( 2 ,  2 ,  2 ,  2 ,  2 ) 

A subroutine may refer  to as  many other subroutines as 

desired and at  any depth. In the last example the subrou- 

tine FILE re fe rs  to other subroutines namely RECORD, 

PROG 1, PROG 2, and PROG 3 .  In this example, the rou- 

tine RECORD is assumed to be a SAP coded program which 

reads an identifying character from a tape file into a loca- 

tion D in such a way that decisions can be made to  identify 

and process the file of data. Notice that SAP coded pro- 

grams can now be combined with FORTRAN programs in 

a convenient manner. 

Ill-Subprogram Linkage and the B S S  Loader 

All routines produced by FORTRAN 11, both master  routines and 

subprograms, a r e  loadable by the Binary Symbolic ~'ubroutine 

Loader. This BSS Loader enabl es  assembled programs in relo- 

catable binary to retain symbolic references to  subprograms at 

lower levels. A s  a result a routine and all its subprograms can 

be compiled o r  assembled independently. At execution time the 

relocatable binary decks of the main routine and all subprograms 

(all starting at relocatable 0) may be stacked in the card reader.  

in any order, loaded by the BSS Loader, and run. 

The BSS Loader will load absolute and relocatable binary cards 

and accept the usual'control cards plus the program card which 

, will give the symbolic name of the routine and various other infor- 

mation. The f i rs t  n words of a routine in rrlocatable binary form 

1 which makes symbolic reference to n other routines will contain 

the BCD symbolic'names ofthe routines referred to. These n 



words a r e  called the transfer vector., ReEerence $0 a routine B 

is made from routine A by t rmsferr ing to. that word of routine 

A which contains the BCD name of the routine B. The BSS 

Loader will replace the symbolic name of B within the routineA ' 

by a transfer to the proper entry point in B after B has been as-  

signed a location. Since FORTRAN will compile routines which 

make symbolic reference to other routines, each routine in a 

program may be compiled o r  recompiled independently of'the 

others. In fact, routines may be compiled that refer  to subrou- 

tines yet to be written. The construction of a FORTRAN subrou- 

tine that uses, say, the sine function and a FORTRAN subroutine 

called by the statement CALLNAME (A, B, C) can be outlined as 

follows: 

SINbbb BCD SINbbb transfer  vector 

NAMEb BCD NAMEb 

D entrypoint SXD $ ,  1 

SXD $ + 1 J  prologue for 

SXD $+%4 this subroutine 

CLA 1, 4 

STA 

etc. 

CLA 

, FORTRAN t 

subroutine TSX NAMEb, 4 

TSX A 

TSX B 

TSX C 

LXD $ 8 1  



L X D  $ + 2 , 4  

T R A  n t 1 , 4  where this subroutine d .  

has n arguments 

The operation of the loader will cause the location of the  transfer 

vector, and the number of the entries in it, to be placed in the . 
symbol table. When the program control cards for the routines 

SIN and NAME a r e  encountered, their names and absolute entry 

points will be placed in the symbol table. When a transfer card 

is encountered, the "second passu will begin, and the two BCD 

words in the example will be replaced by t rap transfers to the 

appropriate locations. 

IV-'DIAGNOSTIC 

The Section I diagnostic program in the FORTRAN I translator 

has been left intact in the FORTRAN I1 translator with the addition 

of detecting punctuation e r ro r s .  An additional diagnostic program 

for  detecting source level programming e r r o r s  has been added to 

Section I prime. This new diagnostic checks for  duplicate state- 

ment numbers, transfers to non-executable o r  non-existent state- 

ments, parts  of the program which cannot be reached, a non-exe- 

cutable o r  a conditional transfer  statement as the last statement 

within the range of a DO, and a DO statement at  a followed by a 

non-executable statement at cu + 1. 

A general diagnostic program has also been incorporated in the 

FORTRAN I1 translator. If a machine e r r o r  o r  a programming 

e r r o r  (in Sections 2 through 6) is detected, the translator trans- 

fers  control to the general diagnostic which prints information as 

to the Section of the translator in which the atop occurred, the 

record number of the system tape whose contents were in mem- 

ory at  the time of the stop, the reason for  the stop, and instruc- 

tions to  the machine operator. The general diagnostic program 

was designed not only as an aid to programmers in debugging their 



programs, but also as  an aid to the customer engineer in  case of 
e- 

machine trouble. , 

V-Changes in the FORTRAN Translator 

Major revisions were made in Sections 1 and 6. A new Section 

Pre-6 was added. Section 1 was modified to classify the new 

statements, compile the instructions for RETURN, CALL, and 

by the author. 

function evaluation. Section Pre-6 compiles the prologue for the 

functions and subroutine subprograms. Section 6 was modified to 

handle the COMMON statement and the new arrangement of data 

storage. 

Section 1 changes were programmed by Mr. P. B. Sheridan and 

Mr. L. M. May. Changes to  the loader, diagnostic editor and 

the diagnostic programs were programmed by Miss B. A. Brady. ' 

Section Pre-6 and modifications to Section 6 were programmed 
' 



References 

Reference Manual FORTRAN I1 for the IBM 704 Data 

Processing System, International Susiness Machines. 

Programmerf s Primer for FORTRAN Automatic Coding 

System for the IBM 704, International Business Machines. 

J. W. Backus, et al, "The FORTRAN Automatic Coding 

Systemf", Proceedings of the Western Joint Computer 

Conference (February, 1957). 


