f=o4

Proposed Specifications for FORTRAN II for the 704.

Programming Research Department
International Business Machines Corporation
590 Madison Avenue

New York 22, New York

September 25, 1957

Specifications for FORTRAN Il for the 704,

_g_eneral

FORTRAN has now had some use at a large number of installations
and has been used heavily for some time at at least six ingtallations. A
large number plan to use the system for the majority of their programming
work, Difficulties in using FORTRAN have fallen into two categories (1)
Difficulties arising in the initial period of putting the system into use, and
(2) Difficulties arising from the properties of the system. Problems in the
first category are being solved by on-the-spot expert assistance to those
installations experiencing an undue amount of difficulty. The comsensus of
opinion concerning difficulties in category (2) is that the principal areas
needing improvement are (a) facilities for debugging source programs and
(b) facilities for creating and using subroutines. FORTRAN II will contain
improved facilities in both these areas along the lines described below.

Debugging Facilities

The main improvement contemplated is the incorporation of a general
and expandable diagnostic procedure in the translator. The purpose of this
procedure is to find and to print a description of ev. ry detectable error in
a source program. Thus stops in the translation wiil be eliminated or
reduced to a minimum and ambiguity of the reason fur a failure to translate
will be progressively reduced. Error print-outs will often include values
of parameters helpful ia locating the trouble.

A variety of routines which are helpiul in debugging object programs
during execution can be added to the library of FORTRAN and included in an
object program during translation by making use of the improved subroutine
facilities described below. |

Subroutine Facilities

A) New statements in the language
(1} SUBROUTINE DEFINITION, NAME(X,Y,1,....}

This statement, if it appears, must be the first staternent
in the program. The SUBROUTINE DEFINITION statement

«2 -

defines the entire program to be a subroutine, the name of
which is NAME (any alpha-numeric characters, not exceeding
six, the first of which is alphabetic). The arguments, if any,
are to be listed inside a pair of parentheses and separated by
commas. An argument name is a non-subscripted variable
name (six or fewer alpha-numeric characters, first of which
is alphabetic). Any alpha-numeric variable name which occurs
in an executable statement in the subroutine may be listed as
an argument of the subroutine.

The program which follows the SUBROUTINE DEFINITION
statement may be any FORTRAN program containing any
FORTRAN statements except 2 SUBROUTINE DEFINITION
statement.

(2) RETURN

This statement will normally occur in a subroutine (a program
beginning with a SUBROUTINE DEFINITION statement). RE-
TURN is a flow statement and causes control to be returned

to the calling routine. Normal sequencing would be to the
statement following the subroutine calling statement.

(3) UPPER,A,B,.....

In FORTRAN II, data storage will be moved dowa in memory

so that a gap no longer exists between program and data. The
arrangement of such data will be in the normal manner. How-
ever, data can be located at the top of memory by listing such
data in an UPPER statement. The ordering of storage will be

that of the UPPER list, except as it is modified by EQUIVALENCE
statements.

(4} NAME (X,Y,I....)

Any statement which consists only of a variable name (six or
less alpba-numeric characters, the first of which is alphabetic)
and which may be followed by a string of arguments (as defined
below) enclosed in parentheses, will be construed to be a call-
in of a subroutine having that name, and a calling sequence will
be set up to transfer control to that subroutine, and to present
it with the arguments, if any, which follow the name.

The order of the arguments is taken from the list, reading from .
left to right. There must be agreement in number, order, and
mode, in the argument list here and the argument liat in the
SUBROUTINE DEFINITION statement, if the subroutine was

-3

compiled by FORTRAN.

Control from the subroutine continues with the statement
following this statement {(normal sequencing).

An argument in a subroutine calling statement must be one
of the following.

1. fixed point constant

2. floating point constant

3. fixed point variable, with or without subscripts
4. floating point variable, with or without subscripts
5. the name of an array, without subscripts

6. an argument of the following form:

The interpretation of this is identically the interpretation of

a Hollerith field in a FORMAT statement. This is not the
name of a variable, but, as with constants, is itself the data
under consideration. It will be stored as follows: the 'nH'
characters are dropped, the first character of the first word
is the first Hollerith character (X,), the remaining characters,
including blanks, are stored as successive characters (six

to a word) in successive words, and if the last word is not

full, it is filled out with blanks.

(5} IF TAPE CHECK n,,n)

Control is transferred to the statement .vith statement number
n; or np according as the tape check indicator and light of the
704 are ON or OFF, and the light and indicator are turned

OFF.
(6) END

This statement is treated as an end-of-file condition thereby
permitting the stacking of source programs when compiling.

B} Examples

The following program is an exampie of a matrix multiplication
subroutine (statements 1 - 7) followed by a sample main
routine (statements 8 - 11).

10
11

SUBROUTINE DEFINITION, MATMPY(A,N,M,B,L,C)

DIMENSION A(10, 15), B(15, 12), C(10, i2)

DO 5 I= I,N

DO 5 J= 1,L

C({1,J)= 0.0

DO 5 K= i,M |

C(1,J) = C{I, J)+A(l,K)sB(K, J)

RETURN

END

DIMENSION X(5, 10), Y(10,7), Z(5,7), D(6, 8), E(8,5),
F(6, 5)

MATMPY(X,5,10,Y,7,2)

MATMPY(D,6,8,E, 5, F)

PRINT 10,Z, F

FORMAT(6E15. 6)

STOP

These are two distinct programs wl.ich give rise to two
separate and complete compilations, producing a relocatable
binary deck for the subroutine and a relocatable binary deck
for the main routine.

The following skeleton routine calls for 2 subroutine which
compares Hollerith data,

W N -

10

20

FILE(1HA, 1HB, 1HC)

END
SUBROUTINE DEFINITION, FILE(X,Y,Z)

RECORD{D)
IF({D-X)1, 10,1
IF(D-Y)2, 20,2
IF(D-2)3, 30,3
PAUSE
RETURN
PROGI(D)
RETURN
PROG2(D)

RETURN
30 PROG3(D)

RETURN

END '

A subroutine may refer to as many other subroutines as
desgired and at any depth. In the last example the subroutine
FILE vefers to other subroutines, namely RECORD, PROGI,
PROG2, and PROG3. In this example, the routine RECORD
is assumed to be a SAP coded program which reads an
identifying character from a tape file into a location D in such
a way that decisions can be made to identify and process the
file of data.

Notice that SAP coded programs can now be combined with
FORTRAN programs in a convenient manner.

C) Subroutine Linkage and the BSS Loader

We must distinguish now between subroutines and functions.
A fundtion name is the name of a piece of data and can be
used as an operand in an arithmetic expression. The calling
sequence and the method of constructing programs which
compute function values remain unchanged in FORTRAN 1I.
The only change is that the linkage in the calling program
will utilize the transfer vector. There will be no change in
FORTRAN functions.

All routines produced by FORTRAN II, both master routines
and subroutines, will be loadable by the proposed Binary
Symbolic Subroutine Loader. This BSS Loader will enable
assembled programs in relocatable binary to retain symbolic
references to subroutines at lower levels. As a resulta
routine and all its subroutines can be compiled or assembled
independently. At execution time the relocatable binary decks
of the main routine and all subroutines (all starting at re-
locatable O) may be stacked in the card reader in any order,
loaded by the BSS loader and run.

The BSS Loader will load absolute and relocatable binary cards
and accept the usual control cards plus one which will give the
symbolic name of the routine and various other information.
The first n words of a routine in relocatable binary form

which makes symbolic reference to n other routines will
contain the BCD symbolic names of the routines referred to.

entry point

function

RETURN

-6 -

These n words are called the TRANSFER VECTOR. Ref-
erence to a routine B is made from routine A by transferring
to that word of routine A which contains the BCD name of
routine B. The BSS Loader will replace the symbolic name of
B within the routine A by a2 transfer to the proper entry point
in B after B has been assigned a location.

Since FORTRAN will compile routines which make symbolic

reference to other routines, each routine in a program may

be compiled or recompiled independently from the others.

In fact, routines may be compiled which refer to subroutines
which have yet to be written.

The construction of 2 FORTRAN subroutine which uses, say,
the sine function and a FORTRAN subroutine called by the
statement NAME(A, B, C) can be outlined as follows,

SINbOO BCD SINbLOO } - transfer vector
NAMEb BCD NAMED
SXD §$.4
SXD $+1,2 prologue for
SXD $+2,1 this subroutine
CLA 1,4
STA
etc,
CLA
TSX SINLOO, 4
STO
FORTRAN subroutine TSX NAMED, 4
HTR A
HTR B
HTR C
LXD §$.4
LXD $+1,2
LXD $+2,1
TRA n#+l,4 where this subroutine

has n arguments

* Il

-l -

The operation of the loader will cause the location of the
transfer vector, and the number of entries in it, to be
placed in the symbol table. When the program control

cards for the routines SIN and NAME are encountered,

their names and absolute entry points will also be placed

in the symbol table. When a transfer card is encountered,
the 'second pass'! will begin, and the two BCD words in the
example will be replaced by trap transfers to the appropriate
locations.

