Proposed Specifications for FORTRAN I for the 704.

Programming Research Department
International Business Machines Corporation
590 Madison Avenue
New York 22, New Yozk

Novemcber 18, 1957

Specifications for FORTRAN 1 for the 704.

General

FORTRAN bas now had some use at a2 large number of instailations
and has bean used heavily for some time at at least six installations. A
large number plan to use the system for the majority of their programming
work, Difficulties in using FORTRAN bavs fallen intc two categorias (1)
Difficulties arizing in the initial period of putting the system into use, and
{2) Difficulties arising from the propertiea of the system. Problems in the
first category are being sqlved by on-the-apot expert agsistance to those
instaliations experiencing an undue amount of difficulty. The consensus of
opinicn concerning difficulties in category {2) is that the principal areas
needing improvement are {a) facilities for debugging source programs and
{b) facilitiee for creating and using subroutines. FORTRAN H will contain
improved facilities in both these areas along the lines described kelow,

Debug%Faeilities

The main improvement contemplated ie the incorporation of a general
and expandable diagnostic procedure in the translator. The purpose of this
procedure is to find and to print 2 description of every detectable error in
a source program. Thus siops in the translation will be eliminated or
reduced to a3 minimum znic snmbigrity of the reascr for a failure to translate
will be progressively reducsd. Error print-outs wiil often incilude values
of parameters helpful in locating the trouble,

A variety of routines which are helpful in dobugging object programas
‘during execution can be added to the library of FURTRAN and included in an
object program during translation by making use of the improved subroutine
facilities described below.

Subroutine Facilities

A) New statements in the language
{1} SUBROUTINE, NAME(X,Y,L,....} !

This statement, if it appears, must be the first statement
in the program. The SUBROUTINE statement defines the

-2

entire program to be a subroutine, the name of which is
NAME (any alpha-numeric characters, not exceeding six,

the first of which is alphabetic}. The arguments, if any,

are to be listed inside & pair of parentheses and separated

by commas. An argument naroe ig a non-gubscripted variable
name {six or fewer alpha-numeric characters, first of which
is alphabetic). Any alpha-numeric varigble name which
occurs in an executable statement in the subroutine may be
listed ac an argument of the subroutine,

The program which follows the SUBROUTINE statement
may be any FORTRAN program containing any FORTRAN
statements except a SUBROUTINE statement.

(2) RETURN

This statement will normally occur in a subroutine (a pro-
gram beginning with a SUBROUTINE statement). RETURN
is a flow statement and causes control to be returned to the
calling routine. Nozrmal sequencing would be to the state-
ment following the subroutine calling statement.

{3) COMMON A,B,.....

In FORTRAN 11, data storage will be moved down in memory
so that a gap no longer exists between program and data. The
arrangement of such data will be in the normal manner. How-
ever, data can be located at the top of memory by listing such
data in a CCHMMON statement. The o:-isring of storage will
be that of the COMMON list, except as it is modified by
EQUIVALENCE statements.

(4} CALL NAME (X,V,I....}

Any statement which congists only of & variable name (six oy
less alpha-numeric characters, the first of which is alphabetic)
and which may be followed by 2 string of arguments (as de-
fined below) snclosed in parentheses, will be construed to be a
call-in of a subroutine having that name, and a calling sequence
will be set up to transfer control to that subroutine, and to
present it with the arguments, if any, which follow the name.

The order of the arguments is taken irom the list, reading
from left to right. There must be agreement in nurnber,
order, 2nd mode, in the argument list here and the argument
list in the SUBROUTINE statement, if the subroutine was

compiled by FORTRAN,

Control from the subroutine continues with the statement
following this statement (noxrmal sequencing}.

An argument in a subroutine calling statement must be
one of the following.

.
2,
3.
&

&

5.
60

fixed point constant

floating point constant

fixed point variable, with or without subacripts

floating point variable, with or without sub-
scripts

the name of an array, without subscripts

an argument of the following form:

s nmlm‘. o es e e @ "n’

The interpreiation of this is identically the interpretation
of 2 Hollerith field in 2 FORMAT statement. Thia is not
the name of &2 variable, but, as with constants, is itself
the deta under consideration. It will be stered as follows:
the ‘n¥H’ charactars are dropped, the firast eharacter of
the first word is the first Hollerith charaetex (X}, the
rernaining charactere, including blanks, &re gstored asg
successive characiere {six to 8 word) in guccesgive
words, aod i dhe aat word is not {ull, i1t is Hlled oug

with blanks.

18y BND (4 Ly L L, z}) one caen owly

I = 0,//069\

This statsment iz treated a8 an end-of-file condition there-
by pormitting the stacking ¢f gource programe when com-

piling.

The following program is an example of a mairix mualti-
plication subroviine {statements 1 » 7} followed by 3
sample main routine {siatemenis § ~ 11}

10
11

-4 -

SUBROUTINE, MATMPY(A,N, M, B, L, C)

DIMENSION A(10, 15), B(15, 12), C(10, 12)

DO51I= 1,N

DO57J= 1,L

C(1,J) = 0.0

DOSK= 1I,M

C(I,J) = C(I, IH+A(L, K)*B{K, J)

RETURN

END (2,2, &, ?,4)

DIMENSION X(10, 15}, Y(15,12), z(10, 12), D(10, 15},
E(15, 12), F{10, 12)

CALLMATMPY(X,5,10,Y,7,2)

CALLMATMPY(D, 6, 8,E, 5, F)

PRINT 10,2, F Li.s—

FORMAT(6E15. 6)

STOP

These are two distinct programs which give rise to two
separate and complete compilations, producing 2 reloctable
binary deck for the subroutine and a relocatable binary deck
for the main routine.

The following skeleton routine calls for a subroutine which
compares Hollerith data.

Gl

FILE(1HA, 1HB, 1HC}

END
SUBROUTINE, FILE(X, Y, Z)

RECORD{D)

M IF(D-X)1, 10, 1

1
2
3

IF(D-Yj}2,20,2
lF(D‘z)ss 3on 3
PAUSE
RETURN

10%PROG (D)

RETURN

20°“PROG2(D)

C) Subroutine

25e

RETURN

30 ¢p) PROG3{D)}
RETURN
END

A subroutine may refer to as many other subroutines as
desired and at any depth, In the last example the subroutine
FILE refers to other subroutines, namelyhRECORD, PROG],
PROGZ; and PROG3. In this example, the routine RECORD
is assumed to be a SAP coded program which reads an
identifying character from a tape file into a location D in such
a way that decisions can be made to identify and process the
file of data,

Notice that SAP coded programs can now be combined with
FORTRAN programs in a convenient manner,

Linkage and the BSS Loader

We must distinguish now between subroutines and functions.
A function name is the name of a piece of data and can be
used 28 an operand in an arithmetic expression. The calling
sequence and the method of constructing programs which
compute function values remain unchanged in FORTRAN IL..
The only change is that the linkage in the calling program
will utilize the transfer vector. There will be no change in
FORTRAN functions,

All routines produced by FORTRAN II, both master routines
and subroutines, will be loadable by the proposed Binary
Sumbolic Subroutine Loader. This BESS Loader will enable
assembled programs in relocatable binary to retain symbolic
references to subroutines at lower levels, As a resulta
routine and all its subroutines can be compiled or assembled
independently. At execution time the relocatable binary decks
of the main routine and all subroutines (all starting at re-
locatable C) may be stacked in the card reader in any order,
lcaded by the BSS Loader and run.

The BSS Loadar will load absolute and relocatable binary cards
and accept the usuel control cards plus one which will give the
symbolic name of the routine and various other information.
The first n words of a routine in relocatable binary form

which makes symbolic reference to n other routines will
contain the BCD symbolic names of the routines referred to.

entry point

function

FORTRAN subroutine

RETURN

@6&7

These n words are called the TRANSFER VECTOR, Ref-
erence to a routine B is made from routine A by transferring
to that word of routine A which containg the BCD name of
routine B. The BSS Loader will replace the symbolic name of
B within the routine A by a transfer to the proper entry point
in B after B has been assigned a location.

Since FORTRAN will compile routines which make symbolic
reference to other routines, each routine in a program may
be compiled or recompiled independently from the others.

In fact, routines may be compiled which refer to subroutines
which have yet to be written,

The construction of a FORTRAN subroutine which uses, say,
the sine funkc‘:_tion and a FORTRAN subroutine called by the
statomen;'”NAME«A, B, C) can be outlined as follows,

SINBOO BCD SINDOO } transfer vector
NAMEDb BCD NAMEDb HR o

SXD $ 4T 2 e
SXD $+:1,2 prologue for
SXD $12,1 E» this subroutine
CLA 1,4
STA
ete,
CLA

Shhsx ! sINb0O, 4

a0 vXs

Hisx 77 NAMED, 4
HTR sy A
HFR < B
HTER rsx C
LD)¢
LXD $.4
LXD $41,2
LXD $12, 1
TRA ngl; 4 where this subroutine

has n arguments

m?c:r

The cperation of the loader will cause the location of the
transfer vector, and the number of entries in it, to be
placed in the symbol table. When the program control

cards for the routines SIN and NAME are encountered,

their names and absolute entry points will also be placed

in the symbol table, When & transfer card is eacountered,
the 'second pass’ will begin, and the two BCD words in the
example will be replaced by trap transfers to the appropriate
locations.

