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FOREWORD 

C.. 

THE PURPOSE of this manual i s  to familiarize the IBM customer engineer with the 
language and data processing methods found in the Fortran automatic coding systems. 
Some service hints are also included where available. 

The reader is expected to have at least a cursory knowledge of the Fortran Primer 
and Fortran Reference manuals. With this background, the material in this manual 
can be of great value; without it many points will be obscure. Wherever possible, 
references are made to the two manuals just mentioned. 

Much thought has been given to what should be included in this manual. A survey 
of customer engineering opinion indicates that the most difficult problems are ex- 
perienced in the data transmission area. Therefore, this manual concentrates most 
heavily on input-output, and mentions arithmetic processing only briefly. 

A word should be said concerning the interrelationships of the various Fortran 
systems. At this time the Fortran I and I1 systems have been stabilized; that is ,  
there will be no more major changes in the organization of their executive programs. 
The Fortran 709 system i s  at present in a state of major change. In general, much 
will be common in all three systems. For instance, the function of all tape units in 
the three Fortran modes will be the same. Where the drum was used in Fortran I 
and 11, upper core storage will be used by Fortran 709. More diagnostic routines are 
written into Fortran I1 and Fortran 709 than in Fortran I. All manual operation 
features of the three systems are alike, except for the use of sense switch 6 to control 
batch compiling in Fortran I1 and Fortran 709. 

This manual supersedes the Fortran Translator Customer Engineering Manual of 
Instruction, Form 29-9437-0. It supplements the following published IBM manuals: 

Title Form 

Programmer's Primer for Fortran 32-0306 
Programmer's Reference Manual Fortran 32-7026 
IBM Reference Manual, Fortran I1 (S) C28-6000 
IBM Reference Manual, Fortran I1 (S) C28-6001 
IBM Reference Manual, Fortran Automatic 

Coding System C28-6003 
IBM Fortran Gener a1 Information Manual F28-6019 
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1.00.00 FORTRAN EXECUTIVE ROUTINE 

1.01.00 INTRODUCTION 

The problems involved in man's communication with the complex computer 
are  in many respects similar to those problems involved with his communi- 
cation with another man who speaks an unfamiliar language. There must be 
language translation in either situation in order that the communication be 
fruitful. In considering current problems of communication with the computer 
we will consider here only the medium of "writtenM language, although there 
are  research teams seriously engaged in communicating with the machine by 
the spoken word. 

The Frenchman who must learn English has a great advantage over the 
Oriental who i s  faced with the same task. The former need not learn a 
new set of symbols (Roman and Arabic) that i s  the first  task of the latter. 
The position of man and machine i s  more akin to the Oriental's problem 
of learning English than that of the Frenchman. Man must f irst  learn the 
symbols that the machine uses to build its words. 

The machine's symbolism (speaking now of the 701, 704, 709, and 7090) is 
binary in nature. The need for recognition of two symbols makes the internal 
circuitry of the machine relatively simple. In terms of machine hardware, 
the binary symbol takes the form of a component conducting or not conducting, 
a pulse available or not available, a core saturated in one direction or the 
opposite direction, o r  a changing magnetic flux on tape or the lack of that 
change. The internal evidence of this binary symbolism is  brought to the 
surface of the machine in the readable fokm of light patterns. The individual 
lights are binary, in that they are either on or off. Needless to say, the nor- 
mal man has little difficulty learning the binary symbolism of the computer. 

The Oriental should not be considered an English scholar, simply because 
he has learned the 36 symbols that express all our literature. Similarly, the 
man who wants to communicate with the machine should not feel satisfied that he 
knows machine language by virtue of his recognition of the on or off condition 
of a light. He must learn the limitations and rules involved in grouping the 
symbols together into intelligible patterns to form words, and those words 
into complete thoughts. 

In considering words of the English language, we know that the words can 
be categorized into one of seven types (nouns, verbs, adjectives, and so  on) 
depending primarily upon their use in a sentence. When considering binary 
language, the types of words recognizable by the machine are clearly defined 
by their use in a program and fall into the following categories. 



Operation Code. Command to the machine to perform a given sequence of 
events (E. g. , the binary bit pattern 000101000000 informs the computer: 
"Remove a number fr0.m core storage and place that number into a central 
processing unit register called the accumulator. If another number is  already 
in the accumulator, destroy it. 11) 

Address. Action in the computer cannot take place unless the location of an 
activity i s  defined. The address defines the location of activity during the 
execution of an instruction. In the example given in the definition of an instruc- 
tion, the core storage cell from which data is withdrawn has a location called 
an address (e. g. , 01010101). Similarly, if an operation code informs a tape 
unit to write, an associated address defines which specific tape unit is to 
perform this action. 

Data. Arithmetic processing involves the combination of numbers. Usable 
numbers must have magnitude and sign and should be expressible in either 
fixed point (1.64,268) or exponential form (3 x lo6,  1.6 x 10 -4). The internal 
circuitry of the computer expresses all these factors in binary form. 

AddressModifiers. It is possible to perform the same series of operations 
many times on different areas of the machine, without repeating the writing 
of the instructions, through modification of the addresses associated with the 
instructions. The address modifiers alter the addresses between successive 
executions of the instructions. This is comparable to the use of business 
routing forms where the originator fills in the blanks, indicating destinations 
of the information. For example: 

Form number-is forwarded to , , and v i a -  
on the following dates: a n d -  . 

The blanks represent areas of activity; the preset wording represents the 
commands that are  unchanging. The selection of words to "fill in the blanks1' 
in a computer i s  controlled by address modification words. Generally, the 
select ion is  sequential in nature. 

What can man gain by grouping the computer's words together? Consider 
f irst  the grouping of operation codes. The uninitiated vChinamanll will be 
delighted to learn that there are  only 200 or less combinations of words that 
can be called operation codes. He says to himself, "If I could express these 
A, B, C combinations in Chinese, which is familiar to me, I will have little 
difficulty remembering all the operation codes. " 

This system has been adopted by the users of computers. IBM and the SHARE 
organization have established a standard set of symbols to take the place of the 
operation code bit-no-bit pattern. This symbolism is in the form of abbrevia- 
tions of the function of each code. These symbols are called mnemonic because 
they are  reminders of the function. The following chart illustrates the point. 



Machine Language Function Mnemonic Code 

0 0 0 1 0 0 0 0 0 0 0 0  ADD to the current value in the ADD 
accumulator 

0 0 0 0 1 0 0 0 0 0 0 0  MULTIPLY the present value of the MPY 
given register by a given number 

0 0 0 0 0 0 0 1 0 0 0 0  TRANSFER to a new location when the TRA 
next instruction is required 

0 0 0 1 1 0 0 0 0 0 0 1  STORE the contents of the MQ STQ 
register in core storage 

Consider again the Oriental's problem of learning English. In the light of 
the previous paragraph, he has learned that groups of symbols are called words, 
and there seems to be no end to the combination of symbols. In order to 
systematize his approach to the language learning problem, he knows that he 
can group the words in categories depending on their usage. This grouping 
brings out common factors from which general conclusions can be drawn. 
Once the general conclusions a re  accurately drawn, the learning of the new 
language i s  reduced to expansion of well established facts. Unfortunately 
for the Oriental, English cannot be resolved into a collection of precise, 
arithmetic formulae. Therefore, he is always faced with modification of 
his general conclusions. 

The man communicating with the machine, however, does not have to 
contend with this "grey area" of learning. After all, the machine is just 
a machine. Provided it is operating in the manner for which it was designed, 
the message delivered by a given command will be identical on the first  
and millionth pass. The mechanism is  designed to respond in as  predictable 
a series of events a s  those which occur when a simple lever is operated. 

Notice that the language of the computer is  highly precise in form, as is 
the mnemonic code. There is no need for confusion intranslating from the 
mnemonic to binary--and yet the translation must be accomplished. 

The next question is ,  which agent in the transaction should learn the foreign 
language? (It is only necessary for the Oriental to learn English in order 
to communicate with an ~iqglishman. If the Englishman were also to learn the 
other language, a redundant effort would be made. ) Based on its speed and 
accuracy and its untiring effort, the computer was selected as  the translator. 

Fortran is a program which controls the machine to accept our familiar 
notation and pass on the binary translation to the machine circuits. Man 
writes his operation codes in familiar mnemonic and the machine translates 
the mnemonic to binary. This translation is  one of the functions of Fortran, 
SCAT, and other assembly routines. An important difference in Fortran is 
that the machine does not start with mnemonic language but rather with a 
special, concise Fortran language of mathematical symbols from which it 
generates its mnemonic and binary operation codes. It is to be emphasized 
here that the prime function of the Fortran system was to permit the math- 
ematician to use his symbols rather than SHARE mnemonic codes in 



controlling the machine. The word Fortran is a contraction of Formula Translation. 
The following diagram shows how the Fortran language relates to mnemonic. 

Fortran Language Mnemonic Function Machine Language 

ADD Add to the current 0 0 0 1 0 0 0 0 0 0 0 0  
' value in the 

ac cumulator 

TRA Transfer to a new 
location when the 
next instruction 
is required 

X=A + B *ST0 Put the current value 
of A + B in storage 
cell X 

*The ST0 represents the mnemonic translation of the equal sign only. 

The ultimate goal in translating the Fortran language to usable form is a binary 
object program. In writing the binary program, Fortran also writes its own series 
of mnemonic instructions. A listing of the mnemonic program is  available to the pro- 
grammer under sense switch control, in addition to a binary punched object program. 

In review, we have considered only one part of the machine language, operation 
codes. Through our analysis we learned that the number of operation codes was 
limited. The machine assumes the burden of translation. Also, since the machine is  
concise in its language, we must be concise in the language we use in communicating 
with it. Fortran language is a form of mathematical language which meets the quali- 
fications of precision. Fortran :mnemonic instruction coding i s  a secondary output of 
the prime function of converting from the mathematical source program to the binary 
object program. 

Let us focus our attention on the second category of machine words -- addresses. 
We have stated that addressing defines the area of activity of an operation code. How 
can these addresses be best grouped and then subjected to translating from binary to 
familiar language? Grouping can best be accomplished by considering core storage 
as opposed to non-core-storage locations. 

Core storage addresses each have well defined binary "cell numbersll similar to 
the house numbers on a given street. The number of numbers depends on how long 
the street is  or how large core storage is. (From the Fortran point of view, there 
are different programs written for 4k and 8k systems. ) 

Again, difficulty i s  experienced in communicating in the binary symbolism of the 
machine when referring to core storage addresses. Man has grouped his addresses 
into octal notation by considering groups of three binary lights to produce eight possi- 
ble light patterns. By inspection, in other words, man has simply translated binary 
to octal notation for ease of communication (from one man to another). The combina- 
tion of a mnemonic operation code and address is called an instruction; e. g. , C LA 



0700, clear and add the number which i s  at storage location 0700. With the mnemonic 
notation of operation code and octal addressing, man is prepared to program the com- 
puter. He can specify precisely what i s  to happen (operation code) and where it i s  to 
happen (address). However, in using the octal address notation already described, 
the programmer i s  limited in his programming flexibility, Programming of the type 
just described (CLA 0700) is  called absolute addressing because the address (0700) is 
inflexibly 0700. If for some unpredictable reason the data at 0700 was moved, the 
CLA instruction must be altered to meet the requirements of the new data location 
and, for that matter, any absolute address in the program may have to be altered to 
meet unpredictable requirements. 

In order to take into consideration future needs of a given program, absolute ad- 
dressing was replaced by symbolic addressing. Essentially , symbolic addressing 
put the bookkeeping job of assigning data and instructions to storage squarely on the 
shoulders of the computer. Using the preceding example, the CLA 0700 instruction 
in symbolic form might appear as CLA R, where R is  now an arbitrary symbolic 
address. The machine has the capability of doling out the storage area to a given 
program and eventually assigning an absolute value to R once all the needs of the 
program have been satisfied. The assignment of core storage locations to instruc- 
tions and data i s  called assembling. Assembly is  one of the functions of UASAP 1 
and 2, UASAP 3 and 4, SCAT, and Fortran. Fortran differs from the other executive 
routines listed because the programmer has no control over the symbols used as 
symbolic addresses by the Fortran program. This is  a great advantage in that the 
programmer using Fortran need not be concerned with the details of keeping track of 
symbols. (Because the programmer using SCAT must make constant reference to 
his symbols, it i s  best that he have his choice of symbols for his addresses.) The 
symbols that the machine has manufactured for its core storage addresses will ap- 
pear in the printed symbolic listing of the Fortran assembled program. 

In summary, although core storage addresses represent one of the major cate- 
gories of machine "words, fl the programmer using Fortran need not concern himself 
with these addresses because the machine assigns both symbolic and binary addresses 
to the object program. 

Let us next consider the non-core storage addresses. Input-output devices all have 
addresses. Unlike core -storage, these devices provide the programmer with 
his program results. If results are to appear on tape, for example, the programmer 
must have control over which tape i s  to receive this information. The Fortran 
program cannot assign arbitrary symbolic and absolute binary addresses to input- 
output media; this assignment i s  the responsibility of the programmer. A family 
of Fortran statements is  provided to specify use of tapes, card machines, drum, 
sense lights, and sense switches during the run of the object program. The language 
used is specific and closely resembles the standard SHARE coding. For example: 

SHARE Fortran Statement 

RDS 302 
WRS 232 

READ DRUM 2*, 1, AB 
WRITE TAPE 2*, AB 

*The 2's in these statements are drum and tape unit addresses. 



Consider next the data. Like the operation code and the address, the internal cir  - 
cuits of the machine respond only to the data in binary notation. However, Fortran 
controls the machine to accept decimal notation and to pass on the binary equivalent 
to the machine circuits. In addition, when required, Fortran control informs the 
machine to translate the binary back to understandable decimal for the printed report. 

Using Fortran, data coming into the machine during the run of the object program 
can be alphabetic, decimal, fixed point, floating point, on tape, or on cards. No 
standard form is required of the data because the author of the source program de- 
scribes the form with Fortran statements, called Format statements. Format state- 
ments describe the data cards according to field length, floating versus fixed point, 
sign, and placing of the decimal point. 

Address modifiers like adverbs are difficult to describe in general terms. Their 
use is associated only with the modification of core storage addresses. They add 
finesse to the programmer's technique by relieving him of the monotony of repeating 
instructions used in a repetitive manner. Address modification is defined in terms 
of operation codes, addresses, and a new term, index registers. Index registers are  
central processing unit devices. Index registers enter into the discussion because 
they contain the amount that an address is changed during a given operation. For 
example: TRA 6000, 1 is an ''indexedM instruction written in SHARE symbolic. In 
everyday terms it says lltake the next instruction from location 6000 less the amount in 
the number one index register. " Therefore, if the index register contained 1000, the 
transfer would take place to location 5000 instead of 6000. Address modifier words 
describe the contents (i. e. , 1000) of index registers and the "nameM of the index regis- 
ter  (i. e. , 1). There are three index registers in the 704 and 709, identified in SHARE 
symbols as 1 ,  2, and 4. Whenever an index register i s  called for in an instruction such 
as CLA, TRA, or STQ, the contents of the index register are subtracted from the ad- 
dress of that instruction. Other instructions (e.g. , TM, TXI, AXT) alter the contents 
of the index registers. Simply by using the notation already introduced in operation 
coding and addressing, a system of address modification can be built into a UASAP 1 
and 2, UASAP 3 and 4, or SCAT program. How does Fortran handle address modifiers? 
Easily understandable Fortran statements are translated to address modifiers. Con- 
sider the Fortran l1DOM statement. This statement permits the programmer to repeat 
a series of commands. For example: 

External Formula Number 
1 DO25 I = l ,  10 

A(1) = B+C 
R(1) = A*D 

25 PRINT 1 . A (I) , R (I) 
STOP 

The first statement (1) indicates the address modifiers. It says ''the object pro- 
gram should execute the following statements up to and including the one labeled 25. 
It should repeat this process from the time that I has an initial value of 1 up to and 
including the time that I equals 10, each time through the program increasing I by 
a factor of 1. l 1  The contents of the index register would initially be 10, and indexing 
instructions would be built into the object program to reduce these contents by 1 ,  



each pass through the program. The selection of which index register (1, 2, or 4) 
is  to be used in the object program is the choice of the Fortran program. A series 
of SCAT coded instructions to accomplish the same result would require several 
dozen instructions. 

In conclusion, the Fortran system contains a concise language, mathematical in 
background, employing familiar symbols which are readily translated to machine 
binary coding. The programmer need not learn anything more about the machine 
than the limitations placed on his mathematics by the physical size of the machine and 
some statements governing the input-output transmission. In the run of the Fortran 
executive routine, Fortran language i s  translated to SHARE mnemonic and relocatable 
binary cards. The SHARE symbolic operation code listing is  only secondary to the 
machine control. Addressing of core storage is  symbolic and i s  entirely under control 
of the machine. Input-output addressing i s  under option of the programmer. Data 
can be of any decimal form, as  is  described by Format statements in the program. 
Address modification i s  employed by the Fortran program but is  given to the program- 
mer in easily understood language. The selection of index registers and indexing 
instructions i s  made by the computer under control of the Fortran translator program. 

1.02.00 GENERAL ORGANIZATION OF TRANSLATOR 

In all three Fortran modes (I, 11, and 709), the translator is  described in terms 
of six sections. Each section is distinct in purpose. Section 3.00.00 of this manual 
describes, in programmer's terms, the functions of each section of the translator. 
A digest of Section 3.00.00 follows in Section 1.02. 

1.02.01 Section I 

In this translator section, source cards, punched in the Fortran language, or  BCD 
tape containing the source information, are read into the system. If card input is  
used, the information on the cards is  transmitted to tape 2 in BCD. If tape input 
i s  used, tape 2 is  originally set  up with the source program in BCD. 

With tape 2 containing the source program, the translator proceeds to code all 
the statements in the source program. Every statement receives a code number, 
called the "internal formula number" (IFN). These numbers are assigned in sequence 
starting with 1. All internal references to the original statement are  made using 
IFN as identification. The IFN i s  not to be confused with the "external formula number" 
(EFN) punched in the source program cards. Input-output statements receive more 
than one IFN. 

The scanning of the BCD file on tape 2 occurs only once. All information con- 
tained in this file must be coded as it i s  being read. The information will take one 
of two forms: compiled instruction tables (CIT) or non-CIT . (The CIT format i s  
described in detail in Section 2.03.00. It i s  a standard form, and the final form of 
all Fortran statements and data before they are  compiled in Section 6). The CiT 



information i s  stored temporarily on tape 3 in Section 1. This information is  erased 
during Section 1' and i s  stored on tape 2, file 2. The CIT contains the results of 
analysis of all arithmetic statements. This analysis i s  completed in Section 1. 
It is the most important part of the Fortran program in that it accomplishes the 
translation between source arithmetic statements and machine instructions. 

A l l  arithmetic instructions written in this section are written in CIT form and 
placed in a record called the COMP AIL file (Complete Arithmetic, Input-output, 
Logical). 

The non- CIT information is stored in buffer areas temporarily in core storage. 
When the buffers are full, their information is transferred to tape 4. The buffer units 
are ten words long and located in lower storage. 

1.02.02 Section 1' 

Section 1' places the CIT information of tape 3 on the second file of tape 2, arranges 
the tape 4 tables in order, and stores the information in tape 2, files 3, 4, and 5. 

1.02.03 Section 2 

Section 2 compiles the instructions associated with indexing that result from DO 
statements and the occurrence of subscripted variables. These instructions are 
placed in the COMPDO file in CIT form. 

In this section the program assumes that there are many index registers in the 
machine. Indexing instructions are going to be generated through the use of: 

Arithmetic statements. For example, I = N + 1 where N is  a subscript. 
The contents of an index register will be increased by one. 

DO statements. For example, DO 10 I = 1, 5. Here, statements up to and 
including 10 will be repeated for all values of I from 1 to 5. To the reader 
familiar with programming, this statement implies the use of indexing 
instructions to accomplish the given result. The handling of indexing becomes 
more complex where DO statements fall within DO statements to create 
llDO nests. l 1  

Combination of arithmetic and DO statements. 

1.02.04 Section 3 

Section 3 merges the COMPAIL and COMPDO files into a single file, meanwhile 
completing the compilation of non-arithmetic statements begun in Section 1. At this 
point the object program is complete but it has been assumed that the 709 is a machine 
with an unlimited number of index registers . 

1.02.05 Section 4 

Section 4 carries out an analysis of the flow of the object program to be used by 
Section 5. The running of the object program is simulated in order to do this. The 
object program may be run several hundred times in this section. 



1.02.06 Section 5 and 51 

Section 5 manipulates the symbolic tag information so as to write the object pro- 
gram with the three actual index registers of the 704-9. The processing is very 
complex; however, certain tabled information of interest is generated during the run. 
All major decisions concerning index registers are recorded in the predecessor 
(PRED) table, and a table of all tagged instructions (STAG) is recorded. These are  
one-word entry tables which remain in core storage. 

Section 5' is generally considered a bookkeeping section. Up to this point the 
constants involved in the object program have been stored in tables. Since all 
information from the translation must get to the object program in compiled instruction 
tables (CIT), a departure i s  made from the normal sense of CIT1s in that the constants 
are also transmitted in this form. In the place of an instruction code, the SAP 
mnemonic for octal data (OCT) is entered into the decrement field of the second word 
of the CIT entry. In this form the information from the following tables is recorded 
in the object program: FMCON, FLOCON, ASSIGNED CONSTANTS, FORMAT and 
UNIVERSAL CONSTANTS. 

1.02.07 Section 6 

Section 6 assembles the object program, producing a machine language program on 
cards or tape ready for running. The object program can also be produced in Share 
symbolic language, if desired. 

1.03.00 NUMBER OF INSTRUCTIONS IN EACH SECTION 

There are approximately 24,000 instructions in the Fortran executive program. 
The number of instructions in each section of Fortran I are as  follows: 

Section No. No. of Instructions 

1.04.00 FORTRAN SYSTEM TAPE 

1.04.0 1 General Organization 

The complete Fortran translator program is written on the Fortran system tape. 
The program is written and executed in sections, each section consisting of a number 
of variable-length records. An individual record is called into core storage from the 
system tape when it is  needed. 

Versions of the Fortran translator differ according to size of the 704 used to run the 
program. The most common version is designated 4- 1-4-1. This program requires 
a single 737 (4k words), a single 733 Drum (8k words), and four 727 tape units. There 
is also an 8-1-4-1 version almost identical to 4-1-4-1 except that it requires a 



704 with two 737 I s  providing Bkstorage. For large programs i t  will run considerably 
faster than the 4- 1-4- 1 version. There is another modified Fortran version for use 
on 704% with the 738 (32k words and no drum). 

The system tape has three files. The first two files are  the executive routine o r  the 
system proper. The third file is the library (FSgure 1). File 1 contains a special 
f i rs t  record called 1-CS and 7 other ordinary system records (Figure 2.) The end-of- 
file mark is not considered to be an ordinary system record. File 2 of the Fortran 
system tape consists of ordinary records numbered 8 through 67 (Figure 3). These 
records are  not called into core storage and executed in sequence, but a re  executed in 
the order shown in Figure 4. Firs t  of all, the special program 1-CS, the first  record 
(number 0) in file 1, is loaded. Then 1-CS reads in record 1. This is the first  
executable record of Section 1. It i s  called the "card-to-tape simulator. It reads 
the source program from the card reader. This source program, consisting of 
Fortran statements, is converted to BCD and written on tape 2. The EOF signal 
from the card reader causes the skip to the beginning of file 2. Records 8 through 
67 are  then executed in sequence. The following list specifies the records of file 2 
and the section of which each is a part, for Fortran I. 

Section No. 
1 
2 
3 
4 
5 
5 
6 

Records Included 
8-20 

21-36 
37-41 
42-48 
49-54 
55-67 
2-7 

1.04.02 Fortran I Ordinary System Records 

The first  word of each system record is a check sum for that record; i t  is placed 
in location 2 by the 1-CS program (Figure 5). The second word of each record is a 
control word which is placed in location 178. The address field of the control word 
gives the first  storage location into which the first  step of the program is to be stored. 
This location is called the llload address." The remaining words of the program will 
be stored in consecutive locations above the first location o r  load address. 

The decrement of the control word contains the address to which control is to be 
transferred after the record has been completely read (Figure 6). This address is 
referred to as  the llTRA address." 

The information stored in location 17 can be displayed to find out the last TRA 
and LOAD address handled by the 1-CS program. This information could be helpful 
if the machine "hangs upt1 somewhere in the running of the Fortran program or  comes 
to a halt at some storage location not in an e r ror  stop listing. Table I shows the 
TRA and LOAD add re~se s  for the various records of the Fortran program, providing 
a reference for determining what record or what area of the program is failing. By 
displaying location 178 and using the table, the particular record and section where 
the stop is  encountered can be identified. This does not necessarily mean that the 
e r ro r  is in this particular record, since the trouble could be introduced earlier  and 
not indicated at that time. 
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LOCATION 17 

Figure 5 .  Ordinary Fortran Record 

TRA ADDRESS LOAD ADDRESS 

STORE RECORD PROPER 

ADDRESS AFTER THE BEGINNING A T  T H I S  

RECORD I S  READ. ADDRESS 

3 DECREMENT 17 2 1 ADDRESS 3 5 

Figure 6 .  Record Control Word 

After record 67 is loaded, a search through the library, file 3, follows to incorpo- 
rate any library functions into the compilation. When this search is completed, the 
system tape is rewound and the first  two records of file 1 are  skipped. Records 2 
through 7 a re  loaded and executed. These six records comprise Section 6 of the 
Fortran program. At this point the Fortran run is complete. This arrangement of 
the program into records on tape requires a program within the machine that allows 
the next record to be read when it is signaled that the previous record is completed. 
This program is called 1-CS and is described in detail in the following section. 

1.04.03 1-CS (Tape 1 to Core Storage Program) 

It is important from a service standpoint for the customer engineer to understand 
the 1-CS self loading program. This short program is relatively simple but it is the 
key program in monitoring the progression of the Fortran translator. With a knowledge 
of the loader the customer engineer can better determine which record of the trans- 
lator is failing. A listing or a map of the translator will have to be used by the 
customer engineer to isolate the subroutine of the record that is giving trouble. 

Figure 7 is a block diagram representing the loading of 1-CS into storage. After 
the load-button sequence and bootstrap, the tape record monitor is loaded in des- 
cending sequence from locations 27 to 4. The COPY instruction at location 1 and 
the TXI at location 2 accomplish this loading. The copy loop stores COPY 3 at 3 and 
LTM at 2. The LTM is performed and the COPY 3 stores BST at  location 3. The 
program control enters the monitor proper at location 4. Figure 8 shows the oper- 
ation of the monitor in block diagram form. 

1.04.04 The Tape Record Monitor 

The program in storage from 4 through 27 reads in, sequentially, all the records of 
the systems tape (tape 1). The records are check sum and redundancy checked. If 
no e r ro rs  exist, the program proceeds into the record that has read in. The check 
sum, which is the first  word of each tape record, is stored a t  location 2. The 
record control word, which is the second word on tape, is stored a t  location 17. The 
record control word's address is the address used to store the first  instruction 
(third word) of the record currently being read in. The record control word's de- 
crement is the location of the first  instruction to be executed after the current re-  
cord is read in. These a re  not relative addresses but absolute locations. Refer to 
FIgure 8. 



1.04.05 Listing of 1-CS on Tape 

The following listing of 1-CS shows the instruction 
sequence on tape and the locations where the instruc- 
tions a r e  stored. 

Sequence 
On Tape 

0 

Storage 
Locations Operation 

0 LXA 
1 (originally) CPY 
2 (originally) TXI 
1 CPY 

27 HTR 
26 TZE 
25 COM 
24 ACL 
23 COM 
22 TRA 
21 RTT 
20 WRS 
17 HTR 
16 TXI 
15 CAD 
14 CAL 
13 STA 
12 ARS 
11 STA 
10 CAL 
7 CPY 
6 CPY 
5 RDS 
4 LXD 
3 (originally) CPY 
2 LTM 
3 BST 

Address, Tag, 
Decrement 

091 
2 , l  
1,1,1 
3 1 , l  
3 
0 
6 
2 
6 
27 
12 
333 
0 
15,1,77777 
091 
17 
26 
22 
15 
17 
17 
2 
221 
2 7 , l  
3 
7 
221 

W I T H  COPY A T  LOC. I, 

LOAD NEXT 20 WORDS 

INTO 27 THROUGH 4. 

P U T  COPY 3 

LOC. 3 

INTO 2 + 
L T M  A T  2 a 

PUT E S T  221 

I INTO I 
LOC, 3 ' 

A T  LOCATION 4 ENTER 0 I PROGRAM MONITOR O F  

TRANSLATOR RECORDS 

FlGUR E I:' 
Figure 7.  
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1.04.06 Listing of 1-CS in Storage 

The original boot-strap loading loop in locations 1 ,2 ,3  is wiped out by the self- 
loading 1-CS. After loading, the program is located in core storage as  follows: 

ADDRESS TAG, 
LOCATION OPERATION DECREMENT 

I X A  
CPY 
LTM 
BST 
IXD 

RDS 
CPY 
CPY 
CAL 
STA 

ms 
STA 
CAL 

CAD 

TXI 

HTR 
WRS 

RTT 
TRA 
COM 
ACL 

COM 
TZE 

HTR 

COMMENT 

Zero to XRA initially 
Loads most of 1-CS 

Backspace to reread record 
Clear XRA before reading 

next record of Fortran 
Read next record 
Check sum of record ---- 2 
Control word -----------I7 
Control word ---------- Acc 
Where record is to begin in 

storage 
DECREAcc ----ADRAcc 
Transfer address -------26 
Again control word ----- Acc 

to start  computing check 
sum 

Copy record &.compute check 
sum 

Repeat & store record in con- 
secutive ascending 
addresses 

Control word location 
Write delay 

Test for redundancy error  
Recognize redundancy e r ror  
Check sum in Acc 
Bring in transmitted check 

sum to be compared 

Check sum OK, go to TRA 
address 

Read error  



1.04.07 Control Words of 1-CS Monitor 

Table I shows a listing of all the control words used by the monitor. An under - 
standing of this listing will give you access to the area  of Fortran that is causing an 
error  stop. The control word for the record currently in process is  stored i; 
location 17. Suppose, for example, that the machine stopped at an unlisted stop 
during the Fortran run. A display of location 17 showed a decrement of 335 and an 
address of 110. In Table I you will find that all the control words a r e  unique and 
that the one in this example indicates the stop occurred during the run of Section 1, 
while record 1 of the first file on the tape was being run. Also indicated in the 
listing is the first  instruction stored in this record (REW. . .222). Notice that this 
is not the first  instruction executed in this record. The first  instruction executed in 
this record is located a t  the address indicated by the decrement of storage location 
17. In the present example this is an RDS. . . .32 1 instruction located a t  335. With a 
dump or listing of the Fortran tape you should be able to follow the sequence of 
instructions from that starting point. The last column in the list indicates the high 
order storage location used in the storing of the current record. Notice that the 
load address and last address of the records indicate that during the assembly many 
core storage locations a re  rewritten many times. For instance, records 11 and 12 
of Section 1 are  both stored starting at 3440 and ending above the 50000 area. This 
may make tracing difficult where only portions of a previous record a r e  erased in 
order to store the shorter current record. 

On a listing of the Fortran system tape you may have difficulty locating the 
f i rs t  executed record if you do not know the organization of the list. Most lists of 
tape records indicate the order of full 704 words in the record starting with zero. 
Recall that the I1zeroth" word in the record i s  the record check sum and the flfirst'l 
word is the control word that is stored in location 17. The first ordinary word of the 
record proper is the "secondw word. Since the order of instructions is relative to a 
starting point of zero, how do you find inthe listing, the first executed instruction 
whose absolute location is 3351 To find the relative address in the list use the 
following formula: 

Relative Address =: decrement of 17 - address of 17 + 2 

In the example of the previous paragraph, the relative address in the listing of 
the RDS . . . . 32 1 instruction is: 

R.A. = 335 - 110 + 2 = 227 

The corresponding listing of records on the Fortran I1 Systems tape i s  given in 
Table 11. It follows the same general organization a s  the information in Table I 
for Fortran I. 

1.05.00 UPDATING THE EDIT DECK 

Additions, deletions, and changes in the list of library functions can be made by 
means of the Fortran librarian, FNLIB 1. Each time the librarian is used it re-  
writes completely the list of functions; hence it should be followed by all the routines 
which the system is  to contain. 



Each routine consists of one o r  more control cards, followed by the routine 
proper on relocatable binary cards. The routine proper must meet the specifications 
given on page 40 of Form 32-7026. 

The control cards a re  punched a s  if for loading by NYBL1. The loading address 
(9L address) must be zero, and the check sum must be given. The first control 
card has in its 8L address the number of locations occupied by the subroutine, and 
in its 8R address the 2's complement of n, where n is the length of the common 
storage regionused by the routine. Succeeding rows have in the left word a function 
name (without the terminal F) followed if there is room by a blank character and 
zeros in internal 704 BCD with the significant characters packed to the left, and 
in the address of the right word the corresponding entry point into the routine, 
relative to zero. For example, the control card for the UASC--1 routine, which 
can calculate either cosine o r  sine by entering a t  relocatable 0 or 1, has COSbOO and 
0 in its 7's row and SINbOO and 1 in its 6's row. If there a re  too many function 
names to fit on 4 single control card, they may be continued on additional control 
cards. On these additional cards do not repeat the information given in the 8's row 
of the first  control card. 

The entry point which will cause the specifications for a library routine to be 
met can be given a function name (or several names if desired). Such names can be 
distinguished a s  primary or  secondary names by not prefixing, or prefixing, the 
entry point with a minus sign (punch in column 37 of the appropriate row of the 
control card). The meaning of primary and secondary arises from the following 
rule of precedence which is used by the Fortran system in compiling library routines 
into the object program. 

RULE. When a function is mentioned in a source program, the routine which will 
be used is the first routine on the system tape which meets either of the following 
conditions: (1) the name mentioned is a primary name of the routine; or (2) the 
name mentioned is a secondary name of the routine, and at least one of the primary 
names of the routine is  also mentioned. (If no such routine exists, the universal 
empty routine HTR 1, 4 is compiled). 

If the system tape is arranged with the routines which have many secondary 
names preceding the routines with few or none, this rule will prevent unnecessary 
duplication of routines in the object program. Suppose, for example, that the 
system tape contains an a r c  sine routine which also has an entry point which will com- 
pute a square root, and that this routine is given two names, ASINF (primary) and 
SQRTF (secondary). Suppose also that later on the tape is an ordinary square 
root routine with the single name SQRTF (primary). Then a source program which 
asks for both ASINF and SQRTF will cause compilation of the former program only. 

In addition to the updating of the edit deck, your listing in this manual of the 
records on the master tape should be maintained up to date. In order to do this 
properly you must have three documents: 

1. The memorandum describing the change. 

2. The deck of cards which produce the correction. 

3. Either a dump or  SAP listing of FORTRAN. 



Referring to Table I, the following items a re  required: 

Required Information Where Found 

Record number 
Description of record 
Transfer address 
Load address 
Last address 
Contents of transfer word 
Contents of load word 

Section No. 

First  three digits of *000 correction card 
Usually not changed 
8L decrement of 000 correction card 
8L address of 000 correction card 
8R address of 000 correction card 
SAP listing or  dump of Fortran 
SAP listing or dump of Fortran 

Memorandum 

*The 000 correction card is the first card in the correction deck; the three 
zeros are  the last three digits of the card number. 

1.06.00 FORTRAN TAPE ASSIGNMENT 

Figures 9 and 10 represent the contents of the tapes in Fortran processing. They 
indicate the contents of all four tapes at the end of each of the six sections. With the 
exception of the first  four records of file 5, tape 2, the assignment of tapes is 
identical in all Fortran modes. (Fortran I processing does not develop these fowr 
records. ) 

1.07.00 RELATING TAPE ASSIGNMENT IN FORTRAN I AND I1 TO FORTRAN 709 

Fortran I and Fortran I1 utilize the first four tapes identically. Fortran 11, how- 
ever, uses additional tape units 5, 6 and 7. They have the following function 
during batch compiling; 

Tape 5: The programs to be batch compiled a re  recorded on tape, separated 
by END statements. If the input is card on-line, all card information 
i s  transmitted to tape 5. If the input is off-line, tape 5 is used as  
the off-line input. 

Tape 6: This becomes the output tape for batch compiling. All source 
programs in Fortran language, storage maps and SAP mnemonic 
outputs appear on this tape. This tape receives the output infor- 
mation for all object programs that p rev iwly  were consigned to tape 2. 

Tape 7: This tape recovers the binary object programs of the batch-compiled 
source programs. This is ,  in Fortran I, the responsibility of tape 3. 



Notes: (1) If no entries exist, no identification exists either. (2) Also includes new FUNCTION statement. (3) Identification 
label number of the tape tables. 

FIGURE 9. FORTRAN TAPE 2 
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Pre-6 
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File 
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EOF 
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and 
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EOF 
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File 
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EOF 
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Subroutines 
Closed 

Subroutines 

CONSTANT 
EOF 

File 
5 

10 END 
11 SUBDEF (1) 
12 COMMON 
13 HOLARG 
0 TEIFNO 
2 TIFGO 
3 TRAD 
1 TDO 
6 FORVAL 
5 FORVAR 
4 FORTAG 
7 FRET 
8 EQUIT 
9 CLOSUB 

EOF (3) 

File 3 

Tag List 
? 5 WRIREC 

EOF 

File 4 

BB List 

ASSIGN 
CONSTANT 

EOF 

File 
6 

File 
7 
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Rec. Count 

EOF 

-' 

-_ 

Not 
in 

Fortran I 

File 
8 

ASSIGN 
EOF 

File 
9 

RECORD 
COUNT 
FIXCON 

File 
10 



Symbolic Name* Fortran 11 709 Fortran 

STAPE4 
STAPES 
STAPE6 
STAPE7 

*This is the name used by the executive program in 
referring to tape in any one of the three Fortran modes. 

1.08.00 FORTRAN SOURCE PROGRAM CARD FORMAT 

Each statement of the Fortran Source Program is punched onto a separate card. 
If a single statement is too long to fit on a single card under the card layout system 
specified below, it may continue over as  many as  nine continuation cards. 

A properly punched Fortran 709 source statement card is shown in Figure 11. 

I F  TH IS  CARD CONTAINS 
A SOURCE PROGRAM 

COMMENT ONLY, A C I S  I PUNCHED I N  COLUMN I. 

THE STATEMENT I S  
PUNCHED I N  

COLUMNS 7-72 

FORTRAN STATEMENT 
SAMPLE Y(I)=A*X ( I )  + q 

THE STATEMENT I F  THIS I S  A CON- 
NUMBER, WHICH TINUATION CARD, A 

MUST NOT EXCEED CHARACTER OTHER 
32767, IS PUNCHED THAN ZERO I S  

I N  COLUMNS 1-5 PUNCHED I N  
COLUMN 6 

I F  THE STATEMENT COLUMNS 73-80 ARE 
HAS NOT BEEN IGNORED BY 
COMPLETELY FORTRAN AND ARE 

PUNCHED AFTER AVAILABLE FOR 
COLUMN 72,  I T  80URCE CARD 
MUST BE CON- IDENTIFICATION. 
TINUED ON A 
CONTINUATION 

CARD 

Figure 11. Sample Source Statement Card 

26 



1.09.00 USING THE FORTRAN SYSTEM TAPE 

Set the system tape to logical 1, and set  two machine tapes to logical 3 and 4. If 
operating with off-line input, set  the input tape (bearing the source program as the 
first  file) to logical 2; otherwise se t  a machine tape to logical 2. 

At the 704 card reader, load the one-card Fortran system caller FNSC1, followed 
(if the input is on-line) by the source program deck. Do not use extra blank cards. 

(If tape 1 is known to be rewound, FNSCl is not necessary. With off-line input, 
simply press  LOAD TAPE and, when the card reader is selected, press 
START on the card reader. With on-line input, ready the source program in the 
card reader and press LOAD TAPE. ) 

Place the SHARE printer board 2 in the 704 printer. Set the sense switches as  
follows : 

Switch 1. UP to obtain the object program as  a binary tape (tape 4) 
and a s  a deck of binary cards. 
DOWN to obtain binary tape (tape 4) only. 

Switch 2. UP to produce on tape 2 two files containing the source program 
and a map of object program storage, 
DOWN to add a third file to tape 2, containing the object program 
in the language of the forthcoming modified SHARE symbolic 
assembly program. 

Switch 3. DOWN to list on-line the first  two or  three files of tape 2, de- 
pending upon whether switch 2 is up or  down. 

Switch 4. Up or DOWN to cause on-line listing to be single or  double- 
spaced. 

The program ends by executing a load button sequence to the card reader. If 
the card reader is not ready, the machine will hang up a t  location 77775*; if i t  is 
ready but empty the machine will stop at  777778. 

1.10.00 RUNNING THE OBJECT PROGRAM 

The binary deck that is produced when switch 1 is up consists of the object 
program in relocatable binary, together with the four-card Fortran relocating 
loader UA CSB3 and appropriate control card and transfer card. The binary deck 
is thus ready far immediate loading and execution. For further details see the forth- 
coming SHARE write-up for UA CSB3. 

Details about using the binary tape form of the object program will be announced 
later. 

The printer board to be used with Fortran object program is SHARE 2. 

There a r e  nine standard error  stops in object level input-output routines. 
They a r e  to be recognized not by looking at  the instruction counter but by looking a t  



the HPR instruction itself in the storage register. 

HPR 0,o End of file in reading binary tape. Press  START 
to resume reading next file. 

HPR 0 , l  End of file in reading cards o r  BCD tape. Press  
START to resume reading next file. 

HPR 1,l Inappropriate character encountered in a data 
HPR 2 , l  field in reading cards o r  BCD tape. Pressing 
HPR 3 , l  Start causes that character to be treated a s  a zero. 
HPR 4 , l  

HPR 0,2 Non-Hollerith character encountered in reading card. 
Correct card, ready in card reader, and press START. 

HPR 0 ,3  Redundancy check in reading BCD tape. Press  START 
to accept information read. 

HPR 0,4 Echo check in printing. Press  START to continue. Press  
RESET and START to repeat line, and continue. 

1.11.00 DESCRIPTION OF TAPE AND DRUM USAGE DURING A FORTRAN I RUN 

With sytem tape rewound on tape drive 1 and the source program ready in the 
card reader,  hit the load tape button. The special f irst  record on the system tape 
is stored in 0-27. The second record on the first  file of the system tape is a 
card- to-tape simulator that puts the source program on tape 2 in BCD. If the 
card reader is empty, this program is not executed since the source program is 
assumed to be on tape 2 already. In either case the EOF signal from the card 
reader causes the Fortran system tape to skip to the beginning of the second file. 
The records in file 2 a r e  executed sequentially. Each record is a program or  part 
of a program. In some cases these records a r e  copied to drum and used over 
again. 

During the first  section, tape 2 is read, using programs copied from tape and 
some stored temporarily on drum. All four logical drums are  used. Tape 3 is 
also written during this section. Tables of information are  written on drums and 
tape 4. At the end of this section, the tables from the drums and tape 4 a re  written 
a s  additional files on tape 2. If the programmer has made e r rors  which the Fortran 
diagnostic can catch, these e r ro rs  are  printed on line at  the end of Section 1. 

The second section processes table information from the drums and tape 2 
(additional files) and writes a new tape 4; it also writes tables on drums. 

The third section merges the tapes 3 and 4 using another file on tape 22 
intermediately, and finally prepares a tape 3. 

The fourth section examines this tape 3 and writes tables on drums and in 
core. 

The fifth section writes a tape 4, and tables on drums, then uses the tables 
from section 4 and tape 4 to write a new tape 3. 



The last section takes the tables from the additional files on tape 2 and writes 
them on the drums, then, using these tables, writes the first  part of the output 
storage map as a new second file on tape 2. Next the first  pass of a special assembly 
program is made over tape 3. Then a library search is made. The library is the 
third file on the Fortran tape. When this is finished the Fortran tape rewinds, spaces 
over the first  two records on the first  file, and makes the second pass of the assembly. 
The binary output from this assembly is written on tape 4. More of the storage map 
is written on tape 2. 

If sense switch 1 is up, contents of tape 4 are  punched on line; if not, no punching 
takes place. 

If sense switch 2 is down, a third file is written on tape 2 (obtained by translating 
tape 3). This is the symbolic version of the tlobjectll program. 

If sense switch 3 is  down, tape 2 is rewound and printed on line. 

Finally all tapes (1,2,3,4) are  rewound and the load button sequence is executed. 
The words "end of diagnostict1 a re  printed, tapes a re  rewound, and the 704 stops at  
17777. 

1.12.00 SERVICE AIDS 

To successfully run the Fortran translator the 704 must be in prime working 
order. The tape system in particular, and the drum are  given a good work-out 
during the execution of the program. The following items are  listed to assist you in 
analyzing troubles. 

1. Mechanical adjustment of 727's is very critical as  far as  tape creep goes. 
Creep can be recognized by observing a mark on tape (e. g. , load point during a 
multiple write-backspace-write operation. The tape should tend to creep forward 
(i. e. , lengthening the inter-record gap). Care must be taken on 704 systems to 
keep this forward creep to a point where 20 to 25 passes a r e  possible before the 
gap becomes too large. The customer is allowed to program up to ten passes. 

2. When using Model I 727's the belt tension for capstans must be correct. 
Refer to page 55 of 727 Customer Engineering Manual of Instruction (Form 223-6681). 

3. Tape operation may be improved by installing the capstan drive shaft change, 
E.C. 242797, B/M 561995, on a Model I1 727. 

4. The recovery time of the "write load point delay SS-753" has given trouble. 
Refer to CEM 803 for correction. 

5. If you have installed B/M 562270, note: 
1. Item4ofCEM787. 
2. CEM 815. 

These modifications eliminate the necking down of the start envelope that appeared 
about 12 rns after go. 



6. Noisy pre-amps have caused record trouble on Fortran and the SHARE assembly 
program. Refer to CEM 234; recommended frequency is  two weeks if trouble has been 
encountered. 

7. A 100 uu capacitor must be connected from the output of AND circuit E to 
ground on Systems 5.11.05 to prevent errors  on "read printer. " E. C. 243552 adds 
this capacitor (704). 

8. E. C. 242469 must be installed to prevent drum LDA trouble on Fortran. 
During the installation of E. C. 242469, wires may have been left out from MF 1-617-1 
to MF 1-G29- 1 and from MF 1-F30-2 to MF 1-G29-2. Check your machine. 

Keep in mind that some of the stops recorded in operator's manuals a re  mislead- 
ing in their explanations. It is possible that a drum check sum er ror  may be in- 
dicated by the listing but the actual trouble may be due to tape creep. Some stops a re  
ambiguous in this respect. Make sure you have the latest listing of error  stops to 
obtain the greatest assistance in analyzing machine operation and stops. 

I. 13.00 FORTRAN I1 REFINEMENTS 

From a user's standpoint, there are generally two areas where the present 
Fortran system needs improvement. First  of all, the system requires improved 
facilities for debugging source programs. Secondly, it needs better facilities for 
creating and using subroutines. An improved version of the system called Fortran I1 
will contain improvements in these areas. This version is  to be available in the not too 
distant future. 

The main improvement contemplated a s  far as debugging is concerned, is the in- 
corporation of a general and expandable diagnostic procedure in the translator. This 
procedure i s  designed to find and print a description of every detectable e r ro r  in a 
source program. Thus, stops in translation will be eliminated or  reduced to a mini- 
mum. The description of the failure will be documented in such a way as  to eliminate 
ambiguity. The print-outs will include useful information in locating trouble and will 
be a definite aid to the customer engineer as  well a s  the customer. 

A variety of routines that a re  helpful in debugging object programs during execution 
can be added to the library of Fortran. The routines can be included in the object 
program during translation by making use of the improved subroutine facilities added 
to Fortran 11. These new facilities are  provided by six new statements that a re  added to 
the Fortran language. 

1.14.00 ANSWERS TO COMMON GENERAL QUESTIONS INVOLVING FORTRAN 

1. Why is Fortran used and what a re  its advantages over the SHARE assembly 
program ? 

Fortran allows a programmer to write in relatively familiar and simple language 
the steps of a procedure to be carried out by the 704. The programmer need 
not know 704 language, and is relieved of clerical work; human e r ror  is 
minimized. The programmer writes in symbolic machine language in SHARE. 
Fortran translates, compiles, and assembles, whereas a SHARE assembly 
program essentially just assembles, although subroutines can be compiled from 
the library tape of SHARE. 



2. Can Fortran be used for logical problems a s  well a s  mathematical problems? 

Fortran is  essentially designed for mathematical problems. It can be used for 
logical problems. However, it wouldn't be as  efficient in input/output as  a 
manually coded program. 

3. What a re  the minimum machine requirements for using Fortran? Can the 
library routines used during the translation be contained on more than one tape? 

Fortran will run on the minimum 704 defined by the SHARE organization: Single 
737, 733, four tape units, floating point, and the Copy Add and Carry Logical 
word instruction. There are  variations of Fortran for 704's with larger core 
storage with or without a drum. As Fortran now stands, any library routines 
to be used during translation must be included in file 3 of the Fortran system 
tape. 

4. What size of program will it write and how can it be determined whether the 
object program is too large for the particular 704 system? 

There is no definite limit as  to the size of an object program that can be 
written by the Fortran system. It is possible to exceed the capacity of a 32k 
core storage. It is not too difficult, therefore, to write a program that will 
exceed 4k storage. This is  an aspect of Fortran that is bothersome. The size 
of the object program can be estimated by a method described on page 60 of 
Form 32-0306. Other limits regarding the size of the source program a r e  given 
on page 44 of Form 32-7026. 

5. What does the 704 system do during each of the six phases or  sections? Which 
tapes a re  used? 

The general description of the six sections of the Fortran translator a re  in- 
cluded in Section 1.11.00 of this manual. An explanation of the machine opera- 
tion during the six different phases is  simmarized in Section 3. There may be 
an exception but generally all four tapes are  used in every section. 

6. How are  the Fortran statements translated into 704 language? Does each 
statement se t  up a standaridzed loop ? 

A brief description of the Fortran translation is contained in Section 1.02.00. 
In general, each subroutine of the output program has been constructed, in- 
struction by instruction, so  as to produce an efficient program. In addition 
each subroutine is constructed to fit efficiently with adjacent subroutines and 
the over-all program. Fortran written programs seldom contain sequences of 
even three instructions whose operation parts alone could be considered a 
precoded "skeleton. " 

7. How can the program be restarted after an unlisted stop ? 

There is  no convenient restart  point for running Fortran after an unlisted stop. 
Essentially, it means starting over at the beginning. If all the source program 
has been read from cards successfully, then the cards do not have to be reread. 
The source program will already be on tape 2 in BCD. The starting procedure 



is the same a s  if the source program were put on tape 2 after being prepared 
on off-line equipment. 

8. Can the 704 be put into an e r ror  loop so that the cause of machine trouble can 
be located? 

No, there a re  no facilities in Fortran that permit looping on an e r ror  condition. 
It is possible, by altering the program manually, to accomplish this, but it 
would be time consuming. It may be necessary in some instances. 

9. What do each of the 32 Fortran statements accomplish and how are  they used? 

The Fortran language is completely covered in Form 32-7026. It is recom- 
mended that the beginner s tar t  with Form 32-0306 which provides a very 
sound introduction to the Fortran language. 

10. How would an operator go about running the object program? 

The complete details regarding tapes, sense switches, cards, and so on, 
related to running the Fortran program or the object program, are 
in Section 1.09.00 of this manual. 



2.00.00 GENERAL FORTRANeRECORD STRUCTURE 

THE TWO PRINCIPAL forms that the ob ject-source program takes in its examination 
by the translator a re  CIT1s (compiled instruction tables) and tables. Both forms a re  
described in detail in the Section 3.00.00. 

There is common information which should help in integrating the tables. For 
instance, file 5 of tape 2 contains many tables. The first  word of all these tables is 
a label number which is used in Section 1' to merge together all common information. 
The second word in the records of this file is a count of the number of words in the 
record. 

Fortran I does not have any of the first  four records of file 5, tape 2 of Fortran I1 
and Fortran 709. Therefore, the record number of a record in Fortran I1 will be 
four more than the corresponding number in Fortran I. 

Any reference to storage on drums implies the use of either Fortran I o r  11. If 709 
Fortran is under consideration, upper core storage will be used in place of the drum. 

2.01.00 CALLFN RECORD 

The CALLFN record is a table of IFN1s presented in CALL statements. (See page 
16-18 of Form C28-6000 for a full explanation of the CALL statement). Each entry 
into the table requires only one full word. The decrement of the word contains the 
IFN of the first  variable in the CALL statement; the address contains the IFN of the 
last variable in the CALL statement. 

2.02.00 CLOSUB RECORD 

The CLOSUB record is a table of closed routines called for in the source program. 
The entry is made for each library subroutine called for in the source program. The 
entry is the BCD representation of the names of these closed subroutines and demands 
only one word of storage because six BCD characters a r e  sufficient to hold any of the 
names of the closed subroutines. (See page 8 of Form 32-0306.) 

The table entry is SQRTF for the following statement: 

ROOT = (-B SQRTF (B**2. - 4. * A*C) ) / (2*A) 

The CLOSUB table is stored during the run of Section 1' on tape 2, file 5, record 
14 in Fortran I1 and 709 or record 10 of the same tape in Fortran 1. The first word 
of the first  record is the labelnumber, 9. The second word is a count of the number 
of words in the CLOSUB table. 

2.03.00 COMPILED INSTRUCTION TABLES 

By the end of Section 3, the object program is completely compiled in symbolic form 
(with the exception of library subroutines). The compiled instructions, and later all 
constants, must be placed in a table which is translatable by the compiler that is the 
major porition of Section 6. Ultimately most source information must appear in a 
compiled instruction table (CIT) . 



Notice that several CIT1s a re  stored on tape during the run of the executive routine. 
There is only one standard four-word format for CIT1s: 

Decrement Address 

Word 1 

Word 2 

Word 3 

Word 4 

* Decrement of Word 4: 
Fortran I - The subscript, if any, of the symbolic address. 
Fortran I1 and 709 - Relative absolute part of address of the 

instruction; for example, in 
CLA N + 3 

The + 3 would be entered into this field. 

(IFN) 
Internal formula No. 
Operation code of Instr. 
in SAP mnemonic 

The decrement of word 1 contains the IFN of the statement from which the 
instruction was generated. The address of word I indicates the number of the in- 
struction generated as  a result of the statement. It would contain four if the table 
entry were the fourth instruction necessary to carry out the original Fortran state- 
ment. 

Instruction number 
within formula number 
Decrement of Type A 
instruction 

The decrement of word 2 contains a BCD mnemonic representation of the instruc- 
tion for which this entry is made (e. g., CLA, OCT). From this entry the reader can 
appreciate the sophistication of the Fortran translator; the executive program has 
written a symbolic instruction which will be subsequently assembled by an assembly 
program similar to USAP 1 and 2. The address of word 2 contains, if any, the 
decrement of a type A instruction. 

Word 3 contains a BCD representation of the symbolic address assigned to the 
instruction by the executive routine. A s  in coding by hand, the executive routine 
uses symbolic addressing in writing its instructions in symbolic form. It is interest- 
ing to note that the symbols used by the machine have no mnemonic value to the haman 
reader but of course a one-bit differenoe in configuration is accurate enough dis- 
crimination for the machine. A typical sumbolic address is ) 84: 

Symbolic address (BCD) assigned by executive 
routine 

The decrement of word 4 is explained in the footnote under the preceding diagram. 
The address of word 4 contains the symbolic tag of the FORTAG table for this 
instruction. 

* 

The COMPAIL file, the second file on tape 2, is a typical CIT table. 

Symbolic tag 

2.04.00 COMMON RECORD 

Normally data and instructions a re  compiled adjacent to each other in order to 
preserve high-order storage cells. 



The COMMON statement in FORTRAN I1 permits the programmer to assign 
specific core storage areas to the storage of data. The COMMON statement is  of the 
following form: COMMON X, ANGLE, MATA, MATB 

The items listed after COMMON statements will be assigned to core storage 
starting at location 774628. Entire arrays may be shifted to high-order storage 
through the use of the COMMON statement. (See pages 20-22 of Form C28-6000.) 

The COMMON record is  a compilation of all COMMON statements and is  re -  
corded on 2 ,  file 5, record 3 during the run of Fortran 11. It i s  generated during the 
run of Section 1'. The first  word of this record is the label number, twelve. The 
second word is  a count of the number of words in the COMMON record. 

Each entry into the table demands as many words a s  there a re  items following the 
word vcommonw. For example, the COMMON statement 

COMMON X, ANGLE, MATA, MATB 
requires the use of four full words and is  recorded in the following format in BCD: 

Word 1 
Word 2 
Word 3 
Word 4 

2.05.00 DIM RECORD 

The DIM record is generated during the arithmetic processing in Section 1, as  a 
result of encountering DIMENSION statements, and is recorded on drums. Recall 
that the DIMENSION statement consists of a list of variables with an integer in 
parentheses following the variables. Integer represents the greatest number of 
elements in an array. (See pages 28 and 47 of Form 32-03061.) During Section 1' 
the DIM table is converted to the SIZE table. 

The DIMENSION statement is not executed (no instructions will appear in the object 
program for this statement) but will preserve blocks of storage for subscripted 
variables. The entry into the DIM table will occupy three words for one or  two 
dimensions and four words for three dimensions. The entries a re  made according 
to the following format: 

One-dimensional array: (Example: DIM A (7)) 

Word 1 
Word 2 
Word 3 

Decrement 

Two-dimensional array (Example: DIM A (7, 12) 

Word 1 
Word 2 
Word 3 

Subscripted variable 
Dimension 
Check sum of entry 

Decrement 
A 
7 

A + 7  

Subscripted variable 
Dimensions 1 & 2 
Check sum of entry 

Address 

12 
+ 12 



Three-dimensional array: Example: DIM A (7, 12, 6) 

Word 2 
Word 2 
Word 3 
Word 4 

Decrement Address 

A+ 7 + 1 2 +  6 

Subscripted variable 
Dimension 1 & 2 . 
Dimension 3 
Check sum of entry 

2.06.00 DOTAG B FORMAT 

This is  the first record of file 6 on tape 2, with all Fortran modes. The DOTAG B 
table is  the result of an analysis of priority of interlocking DO statements (nests). In 
this analysis an entry is  made into the DOTAG table for every entry of the TDO table. 
The DOTAG B table is  a collection of nine-word records. The first  five records a re  
identical to the corresponding entry in the TDO table. The last four records a re  a 
result of the analysis of the nests of DO statements. The last four records take on 
the following format: (for description of n l ,  ng, n3, see Section 2.22.00). 

Word 6: Decrement eve1 number (described in Section 3.00.00). 
Address f2 - ;: + nf "3 (Only the integral part of the term in 

brackets is multiplied by n3). 

Word 7 : Decrement An integer representing level 2 0. 
Address Level of definition of nl. 

Word 8: Decrement The bits in the field indicate to which level control will 
pass from this DO statement. (I. e. , a bit in 7 indicates 
that control will pass to the seventh level from the 
current DO.) Control will always pass to a lower level 
from current level. 

Address Level of definition of n2. 

Word9: 1 - 5  Test table number: A quantity to be entered into the 
indexing routine which optimized XR 's. 

6 - 19 Symbolic tag to which reference is made with the test 
table number. 

20 - 35 Level, of definition of n2. 

For example, given the same DO statements a s  described in the TDO table format 
(5 DO 8 I = 1. 26, 2): 

Word 6 
Word 7 
Word 8 
Word 9 

Address 
26 
Level of definition of n l  
Level of definition of n2 
Level of definition of n3 

Decrement 
1 (first DO in nest) 
4 

Test 
Table No. 

Symbolic 
Tag 



Use only integral part of previous calculation (13). Address of word 6 = 
13 x n3 = 13 x 2 = 26 

2.07.00 THE END RECORD 

The END statement permits batch compiling. Several programs can be compiled 
with one pass of the Fortran translator provided an END statement separates the 
various symbolic programs. If only one program is being compiled, there is  no need 
to include an END statement, although an END record is generated with five 11211 
entries a s  described below. 

The END statement permits the programmer to use separate sense switch control 
for each of his programs. The specifications for use of the END statement a re  on 
page 22 of Form C28-6000. Briefly stated, the 0,1,  or 2 designation following the 
END indicate: 

0 = Ignore the sense switch and assume it is up. 
1 = Ignore the sense switch and assume it is down. 
2 = Interrogate the sense switch. 

For example: END (2, 2, 2, 0, 1). This statement indicates: 
Interrogate SS 1, 2, and 3. 
Ignore SS 4 and assume it is up. 
Ignore SS 5 and assume it is down. 

The END statement takes precedence over the sense switch settings if the 0 and 1 
codes a re  used. 

In addition to sense switch control, the END statement simulates an end-of- file 
condition on card reader o r  tape and permits passage of 1-0 control from one program 
to the next. 

The END record is always generated, whether an END card is used or not. During 
1' the END record is recorded on tape 2, file 5, record 1. (Of course, there is no 
such entry in Fortran I, because it does not contain the END facility. ) The END 
record on file 5, is the only record in this file not to have a label number. 

The END entry is always a five-word record. The 0, 1, or 2 designation is stored 
in the addresses of these five words (in binary). 

For example, END (2, 2, 2, 0, 1) appears in the END record as: 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 



2.08.00 EQUIT RECORD 

The EQUIVALENCE statement permits the progra,mmer to equate the names of 
several different quantities, o r  to assign the same storage location to several different 
variables, (See page 36, Form C28-6000.) 

For example: EQUIVALENCE (A, B, C (5)) 

This statement says that location A, location B and the fourth location after C 
(the fifth location including C) a r e  identical. In general A (P) is defined for P 2 1 
and means the (P-1)th location after A or the beginning of the A array,  that is the 
Pth location in the array. 

The EQUIT record is a table containing all the information included in 
EQUIVALENCE statements. Each item in the pairs of parentheses demands two full 
704-9 words for storage. A minus sign in the last entry indicates the end of a series 
of equivalent storage locations. 

For example, the following entry would be made for the foregoing EQUIVALENCE 
statement: 

EQUIVALENCE ( A, B (I) ,  C (5) ) 

The Equit Entry 
Word 1 1 A 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 - 
note minus sign 

The "11' entry in word 2 is entered automatically and is associated with A. The lllu 
entry is word 4 is the 1 in parenthesis after the B. The "5" entry in the word 6 is the 
5 following the C. 

The EQUIT record is generated during the run of Section 1' and is recorded on 
tape 2, file 5, record 13 during Fortran I1 and 709 or record 9 during Fortran I. 
The first  word in the first record is the table number, 8. The second word is a count 
of the number of entries into this table. 

2.09.00 FIXCON RECORD 

The FMCON record is a table of fixed point constants specified by the program. 
These constants are  entered in fixed point form a s  data or a re  subsequently computed 
from other fixed point constants. These numbers, entered without decimal points 
during READ statements and defined according to some FORMAT gtatement as  fixed 
point constants, a re  one of the types entered into the FMCON table. Numbers 
appearing a s  constants in statements of the form A = 3 + B are  entries in the 
FMCON table; in this example is an entry. 

The FMCON table is generated during Section 1 and is stored on drum in a two- 
word format for each entry. It seems peculiar but it is necessary to the program 
control, that each entry consists of (1) the fixed point constant in binary and (2) the 



check sum of that word. An entry for the fixed point constant 5 would appear as: 

Word 2 is the check sum of word 1. 

Word 2 

In Section 3 the FMCON table becomes the only record of tape 2, file 9. 

000 . . . . . . . . . . . . . . .  0 101 

2.10.00 FLOCON RECORD 

The FLOCON record is a table of floating point constants occurring in the source 
program. They may be entered from an input source such as  cards o r  tape, computed 
from combinations of floating point constants, or appear as  coefficients with decimal 
points in Fortran source statements. 

The FLOCON table is developed during Section I and i s  stored on the drum, in 
Fortran I, in the same format a s  the FIXCON table. That is ,  there are two words 
required for each entry, the first containing the floating point constant and the second 
the check sum of this one word. (In Fortran 11 and 709, this table is  stored in 
high-order core storage. ) 

The FLOCON table is stored on tape 2, file 4, the first  record, and also on the 
drum during the processing that occurs in Section 1. 

2.11.00 FORMAT RECORD 

The FORMAT record is a table of arguments presented in FORMAT statements. 
The arguments a r e  stored in BCD form in sequential storage locations. Since the 
length of arguments is a variable, the number of words required to store all the 
argument must be variable. Each entry into the table is separated from succeeding 
entries by a word filled with bits. See Section 2.16.00. The format of the FORMAT 

entry is identical to that of the H0LAR.G entry. 

The Format record is generated during the processing of Section 1'. It is 
stored on tape 2, file 4, the second record. 

2.12.00 FORSUB RECORD 

The FORSUB record is a table of the subroutines described in the source program. 
This table has only one word per entry. An entry is made for each Fortran I1 
statement headed by the subroutine statement. The entry itself is a BCD image of the 
function described in the subroutine statement. For example (page 31, Fortran 
Reference --nual): 

1. Subroutine MATMPY (A, N ,  M, B, L, C) 

The BCD image of MATMPY would be entered into the FORSUB table. 

This table is generated in Fortran II and 709 during the run of Section 1 1 .  It is 
stored in the second record of file 3, on tape 2. Of course, Fortran I does not have 
subroutine calling facility. 



2.13.00 FORTAG RECORD 

The FORTAG record is a table that represents an index to the TAU table. It has 
a one-word entry of the following format: 

* XR INFO - This field indicates whether o r  not the FORTAG entry uses an 
absolute or  symbolic index register. If there are  no entries, a symbolic XR 
is inferred. If there is  an entry the field is treated like the tag field of an 
instruction (e. g. , 24 = XRA, 25 = XRB, 26 =XRC). 

IFN 

** Index to TAU table - The bit configuration in this field indicates which TAU 
table entry has the associated IFN. 

This table is generated during Section 1 and appears as  a table in storage as a 
buffer. From the buffer area the table is written on tape 4 temporarily. Then 
during Section 1' the FORTAG table becomes the eleventh record of file 5 on tape 
2 in Fortran I1 and 709. It is the seventh record on the same tape of Fortran I. 

1 17 24 26 27 35 

* XR 
INFO 

2.14.00 FORVAL AND FORVAR RECORDS 

** INDEX TO 
TAU TABLE 

The FORVAL and FORVAR records are  tables of the fixed point non-subscripted 
variable, appearing to the left of (FORVAL) , and the right of (FORVAR) , of the 
equality sign in a statement. A fixed point non-subscripted variable must satisfy the 
following conditions : 

1. Must be six o r  less than six characters. 
2. The first  character must be alphabetic. 
3. If an integer, it must start  with I, J, K, L, M, or  N. 
4. Must not read like a function name. 
5. Must not have a left parenthesis following it. 
6. Must be entered a s  data in fixed point form. 

For example, if A and B are  fixed-point form, the statement, "ARG = BRAND + 
6" contains "ARGT1 a s  an entry in the FORVAL table and "BRAND" as  an entry in the 
FORVAR table. 

The tables are  generated during Section 1' and are  written on tape 2, file 5, record 
9 and 10 in Fortran I1 and 709 or  record 5 and 6 in Fortran I. The label number of the 
FORVAL table is  6. The label number of the FORVAR table is  5. Both label numbers 
a re  the first  words of the first  records, in the respective tables. The second words 
in each record a re  the counts of the entries into these tables. Only one word is 
necessary to hold each entry in BCD form. 



For example the statement ARG = BRAND +6 would be written: 

FORVAL TABLE (BCD) 

FORVAR TABLE (BCD) 

2.15.00 FRET TABLE 

The FRET table is a table generated from the FREQUENCY statements given in 
the source program. (See page 37, Form 32-7026.) This is a variable length entry 
table; that i s ,  each entry occupies an indeterminate number of words, dependent on 
the number of branch points described by frequency statements. Each FREQUENCY 
statement permits the programmer to specify the number of times a particular 
branching point will be utilized by the source program. For instance, a particular 
IF statement may appear in a program as: 

The programmer can best use index registers in the program by informing the 
program that branch 10 will be used five times, branch 20 will be used three times 
and branch 30 will be used six times, by entering the following frequency statement: 

FREQUENCY 38 (5,3,6) 

The general form is 

FREQUENCY N (i, j, k. . . . ) 
Where N = EFM of branch point 

i, j ,  k = frequency of each branch 

Entries into the FRET table are  made according to the following format: 

Word 1 
Word 2 
Word 3 
Word 4 

Decrement Address 

The length of each entry will be determined by the number of branches. 

The FRET table is generated during the run of Section 1. It appears a s  record 8 
on file 5, of tape 2, during Fortran I. It appears a s  the record 14 of the same file 
during Fortran 11 and 709. Notice that the first  word in each entry is fbdgged with a 
minu s sign. 

Before the table is recorded on tape 2 in Section 1' all the EFN1s a re  changed to 
their corresponding IFN1s. This means that 38 in the previous example would be 
replaced by its corresponding IFN. 



2.16.00 HOLARG RECORD 

The Holarg record i s  a collection of Hollerith arguments of CALL statements. In 
a CALL statement, the Hollerith argument is not describing argument of some 
subroutine but is  itself the data to be operated upon. (See page 16, of Fortran 11, 
Form C28-6000. ) An example of this kind of CALL statement is: 

265 CALL 56H * * * * * * This data indicates the Orbital entry point 
* * * * * *  

The number 265 is the external formula number. The 56 specifies the number 
of Hollerith characters (including blanks) that are  in the Hollerith argument. H 
indicates that this i s  a Hollerith argument. The res t  of the statement is data o r  
commentary which will be later used in a print-out during the run of the object program 
under control of a PRINT 265 statement. 

The HOLARG record is generated during the run of Section 1'. It is on tape 2, 
file 5, record 4 of Fortran I1 compilation. The first  word in the record is the label 
number, 13. The second word is a count of the number of words in this record. 
After this a variable number of words are  required to store each entry. Since the 
storage consists of BCD entries, the number of full words required will be equal to 
the number of BCD characters divided by six, allowing another full word for any 
fractional part. A word consisting of 36 binary bits is stored immediately after the 
last word. The preceding example will be entered into the HOLARG record in BCD 
as: 

Word 1 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 
Word 7 
Word 8 
Word 9 
Word 10 
Word 11 

*Blank - - 110 000 

2.17.00 LAMBDA, ALPHA, and BETA TABLES 

OCTAL 

The LAMBDA and ALPHA tables a re  generated during the arithmetic processing of 
Section 1. They represent the output of the executive program in its analysis of arith- 
metic statements. Pages 6 and 7 of Form 32-0306 describe the order of operation of 
arithmetic statements. In terms of the object program arithmetic statements must 
generate arithmetic and storing instructions with appropriate checking. These 
instructions must occur in proper order according to the placement of the operation 
symbols: + - * / ) ( **. The LAMBDA table is an internal record of the order of 
operations necessary to accomplish the required object program. It contains a 
symbol-by-symbol analysis of the right-hand side of arithmetic statements. Each 
operation symbol receives a level number during this analysis which indicates the 
priority that the operation has in the processing. 



The ALPHA table is used in Section 1 a s  a tally of the level of the operation symbol 
currently under investigation. Because the level number changes repeatedly through 
the analysis, the ALPHA table must be similarly altered. This alteration is much too 
detailed for this manual. 

The LAMBDA table requires three words for each entry. Each entry in turn is the 
result of an operation symbol in a Fortran statement. Therefore, it is common for 
the LAMBDA table resulting from one Fortran arithmetic statement to extend over 
100 core storage locations. The general configuration of the three-word entry is: 

Word 1 
Word 2 
Word 3 

Symbolic tag info. I Current level number 
Operation code: + * ** / - 
Level number o r  BCD used in the source statement. 

The BETA table is closely associated with the LAMBDA and ALPHA in that it 
contains information on the control of arithmetic processing. This table requires 
only one word per entry. Its control is beyond the scope of this manual. 

2.18.00 NONEXEC RECORD 

The NONEXEC record is a table of IFN's and associated EFNts for non-executable 
Fortran statements. The following statements are  non-executable,: 

PAUSE, FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY 

Each entry into the NONEXEC table requires only one word. The decrement of 
this entry contains the IFN, and the address contains the EFN of the non-executable 
instruction. 

The NONEXEC table is generated during the run of Section 1 and is stored during 
Section 1' on tape 2, file 5, record 15 in Fortran I1 and 709 or  a s  record 11 in Fortran 
I. The first  word in the record is the label number; the second number is a count of 
the number of words in the table. 

2.19.00 SIGMA AND TAU TABLES 

The SIGMA and TAU tables a re  collections of the subscript information used by the 
source program. An entry into the SIGMA table requires two or three full words of 
storage, depending on the dimensions of the subscripts. An entry into the TAU table 
requires three, five, or seven full 704-9 words, again dependent upon the dimensions 
of the subscripts. Both tables are stored on drum during the run of Section 1. They 
a re  recorded according to the following format: 

One-Dimension Subscripts. (Example: B (5 * I + 6) 

The symbol in the parentheses is the subscript of B. It is the most complex type 
of subscript, chosen intentionally to indicate its entry into the SIGMA and TAU tables. 
It will be entered in a two word storage space of the SIGMA table according to the 
following format: 



Sigma Table 

TAU tab le 

Word 1 
Word 2 

Two-Dimensional Subscripts. Example: B (5 * I + 6, 7 * J + 8) 

The example shown will enter the SIGMA and TAU tables in the following format. 

S i m a  Table 

Decrement 
+6 
+6 

Word 1 
Word 2 
Word 3 

I Decrement I Address I 
Word 1 1 6 8 I 

Address 

Decrement 
5 

5 + 1  

Addend 
Check sum 

Address 

I (BCD) 

Word 2 
Addends 1 & 2 
Check sum 

Multiplier 
Variable 
Check Sum 

6 8 I 
Tau Table 

Multipliers 1 & 2 
Variable 1 
Dimension of I 

1 in DIM statement 

Address 
7 
I (BCD) 
J (BCD) 

Word 1 
Word 2 
Word 3 
Word 4 

Word 5 I 5 + D  + 7+I+J I Check sum 

Decrement 
5 

d. See Section 
2.05.00 

Three-Dimensional Subscripts. Example: B (5 * I + 6, 7 * J + 8, 4 * I + 2) 

Sigma Table * 
Decrement Address 

Word 1 Addends 1 & 2 
Word 2 Addend 3 
Word 3 6 + 2  +8 Check sum 

Word 1 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 
Word 7 

Tau Table 

Multipliers 1 & 2 
Multiplier 3 

Decrement 
5 
4 

dl=dimension of I 
5 4 dl 

Variable 1 
Variable 2 
Variable 3 

Address 
7 

I (BCD) 
J (BCD) 
K (BCD) 

d2=dimension of J 
7 1 J K d 2  Check sum 



2.20.00 SIZE RECORD 

The SIZE record is a table of the variables and maximum dimensions of arrays  
described by dimension statements. It is closely associated with the TAU table. 
(See Section 2.19.00) 

The SIZE record requires two full words for each entry. (See page 35 of 
Form 32-7026 for a detailed description of the DIMENSION statement. ) The entry is 
of the following format: 

Word 1 
Word 2 

BCD image of the variable 
Total size of array in binary 

For example, given the DIMENSION statement: 
DIMENSION C (3, 4, 5) 

The table entry would appear as: 

Word 1 
Word 2 

C (BCD) 
60 (i.e. 3 x 4 x 5) 

The SIZE table is generated during Section 1 and is stored in Section 1' on tape 2, 
file 4, record 3. 

2.21.00 SUBDEF RECORD 

Fortran 11 can also call in subroutines described by the programmer in the source 
program. For example, the subroutine introduced by the statement SUBROUTINE 
MATMPY (A, N, M, B, L, C) could be called into the main program by the statement: 

CALL MATMPY ( X, 5, 10, 4, 7, Z). 

Essentially, what happens is that the previously described MATMPY subroutine is 
brought into the compilation with the arguments of the SUBROUTINE statement. 
Naturally the arguments of the SUBROUTINE statement should correspond in mode, 
number, and order to those of the original MATMPY subroutine. (See pages 16 and 
17 of Form C28-6000.) 

The SUBDEF record is generated during the run of Section 1'. It is recorded on 
tape 2, file 5, in record 2. The first  word of this record is the label number, 11. 
The second word of this record is a count of the number of words in the record. 

Each entry into the SUBDEF record requires one full word for the name of the 
subroutine (e.g. , MATMPY) and one full word for each of the arguments included 
in the parenthesis. For example, the subroutine statement SUBROUTINE MATMPY 
(A, N, M, B, L, C) is recorded as: 

Word 1 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 
Word 7 

Decrement Address 
MATMPY 

A 
N 
M 
B 
L 
C 



2.22.00 TDO RECORD 

The TDO record is a table which results from DO statements in the symbolic 
program. Each entry requires five full words. The five words are  written 
according to the following format. 

Word 1: Decrement External formula number (EFN) of the DO 
statement (a) 

Address The EFN of the last statement executed under 
control of the DO statement (b) 

Word 2: Decrement The BCD symbol for the integer variable of the 
DO statement (I, J, K, L, M, ORN) 

Word3: Address First value of variable (nl) 
Word 4: Address Final value of variable (nP) 
Word 5: Address Increment of the variable (n ) 

3 

NOTE: The symbols in parentheses are those used by the authors of Fortran. 
(See pages 24, 45 and 46 of Form 32-0306.) 

The following DO statement would result in the table entry shown: 

5 DO 8 I = 1, 25, 2 

Word 1 
Word 2 
Word 3 
Word 4 
Word 5 

The TDO record is written during the run of Section 11, on tape 2, file 5, on 
record 4 of Fortran I or record 8 of Fortran I1 and 709. The first  word of the first  
record is the label number of the TDO record, 1. The second word of the first 
record is a count of the number of words in the TDO table. 

Decrement 
5 
I 

Before tape 2 receives the TDO record in Section 11, all the EFN's a re  replaced 
by IFN1s. (For example, the address of the first word becomes an IFN.) 

Address 
8 

1 
25 
2 

2.23.00 TEIFNO RECORD 

Two reference numbers a re  associated with Fortran statements, the internal IFN 
and external EFN formula numbers. All statements in the source program have 
internal formula numbers (IFN). These numbers a re  assigned to the statement 
sequentially starting with 1. The external formula number (EFN), on the other hand, 
is an arbitrary integer assigned to the statement by the programmer. It is entered 
into the location field of the source program card by the programmer, generally to 
permit reference to the particular statement by the source program. There is no 
need to assign an external formula number to any statement to which reference is 
never made. Therefore, all statements have IFN and some have both IFN and EFN. 

The EFN's and their corresponding IFNts a r e  stored in the TEIFNO record by the 
translator during the run of Section l1 . Each statement requires the use of one 



For example, if the following statement is the 28th statement in the program, the 
indicated table entry is made. 

full 704-9 word for storage. The entry is made a s  follows: 

STATEMENT 
1 5 D 0 6 1 = 1 , 8  

Decrement 
IFN 

TEIFNO Entry 
28 15 I 

Address 
EFN 

The TEIFNO (Table of External and Internal Formula Numbers) record is 
generated during the run of Section 1' a s  previously stated. This table is stored 
on tape 2, file 5, record 1 of Fortran I or the fifth record of the same tape and 
file on Fortran I1 or 709. The first  word of the first record is the label number of 
the record, 0. The second record is a count of the number of words in the table. 

2.24.00 TIFGO RECORD 

The TIFGO record is a table of the IF, ASSIGN, and GO TO statements in the 
source program. Each statement in the program demands the use of two full 704 words 
for storage. This section describes entries that result from each type of statement. 
The first  word of the first  record in the TIFGO table is the label number. For this 
table the label number is two. The second word of the first  record is a count of the 
number of words in the TIFGO table. 

IF Statement Entry. Example: 16 IF (E) nl, n2, n3 

The entry for this statement would be a s  shown below, provided the IF statement 
given was the 31st statement in the source program. (See page 16 of Form 32-0306.) 

Word 1 
Word 2 

Unconditional GO TO Entry. Example: 21 GO TO n 

Decrement 
(IFN) 31 
"2 

The entry for this statement would be a s  shown below, provided the given state- 
ment was the third statement in the source program. (See page 14 of Form 32-0306.) 

Address 
n 

n3 

Word 1 
Word 2 

Decrement 
(IFN) 3 

0 

Address 
0 
n 



Assigned Go To Entry 

In this type of statement the GO TO destination is determined by a previous ASSIGN 
statement. (See pages 48 and 49 of Form 32-0306.) The list of alternatives following 
in parenthesis are  merely a list of all the possible GO TO destinations. 

For example, consider the following statement: 
21G0TON(B1,  B2, B3, B 4 . .  . . . . . . . . . . BN) 

The GO TO destination will be the Ith statement. The TIFGO table entry for this 
statement would be: (Assume an IFN of 6) 

Decrement I Address 

*CTRAD1 - The number of the entry in the TRAD record corresponding to 
the first  possible transfer address given in the GO TO argument. 
**CTRADN - The number of the last possible transfer address. 
( See Section 2.25.00) 

Word 1 
Word 2 

Computed GO TO Statement. Example: 26 GO TO (B1, B2, B3.. . . BN) I. 

In thts type of statement a transfer will take place in the object program dependent 
on the current value of I. I is a variable which is assigned some computed integer 
by the source program. The transfer takes place to the Ith term of the GO TO list 
of B's. For example, if the value of I is computed a s  3, then the program will 
transfer to the third location in the list of locations which follow GO TO (BQ in the 
example). The entry for the computed GO TO takes the following form: 

IFN (6) 
*CTRAD1 

2 
**CTRADN 

Assign Statement Entry. Example: 29 ASSIGN 30 to N 

Word 1 
Word 2 

This statement is used in conjunction with a GO TO statement, a s  described under 
the computed GO TO Statement. 

The table entry of the above example takes the following form: 

Decrement 
EFN 26 
CTRAD, 

Address 
2* 
CTRANN 

Indicator- Controlled IF Statement. Example: 16 IF (sense light N) 30, 40 

Word 1 
Word 2 

This statement is used in conjunction with: 
1. Sense switches 
2. Sense lights 
3. Divide check indicator 
4. Accumulator overflow light 
5. Quotient overflow light 

Decrement 
EFN 29 
BLANK 

Address 
6* 

A s  signed value 30 - 



If the corresponding N light i s  on or  switch is down, transfer of the program proceeds 
to the statement specified by the first  number following the parenthesis. If the 
corresponding N light is off o r  switch is up, transfer of the program proceeds to 
the statement specified by the second number following the parenthesis. 

The table entry takes the following format, for the example given: 

Word 1 
Word 2 

*3 = Sense Switch o r  Sense Light 
4 = Divide Check 
5 = ACC or  MQ overflow 
(Refer to pages 18-19 of Form 32-7026.) 

Decrement 
EFN, 16 

30 

The TIFGO record is generated in Section 1. The entries indicated in this section 
contain the external formula numbers (EFN) specified by the programmer. However, 
before the TIFGO table is written on tape 2 in Section l t ,  all EFNts a re  replaced by 
their corresponding IFN 's. 

Address 
3, 4, o r  5* 

40 

2.25.00 TRAD RECORD 

The TRAD record is a table of all possible transfer addresses listed in assigned 
and computed GO TO statements. See Section 2.24.00. 

As many words a re  used for each entry (each assigned GO TO) a s  there a re  
possible transfer addresses in the GO TO statement. The transfer address is entered 
in binary form into the address field of consecutive words on tape in the TRAD record. 

Recall that the TIFGO record uses a standard two-word format, which did not 
have enough storage space for the transfer acidresses of the assigned GO TO1s. In 
the TIFGO record, the references made to the TRAD table were: 

1. In the decrement field of the second word, the number of the word in the 
TRAD table which contains the first  possible transfer address, reading the 
GO TO argument left to right. 

2. In the address field of the second word, the number of the word in the TRAD 
table which contains the last possible transfer address. 
For example, if the following two assigned GO TO statements a re  given first 

in the source program: 
26 GO TO (3, 6, 9, 4, 28) I ; IFN = 61 
28 GO TO (11, 13, 14, 15) I ; IFN = 62 

The following table entries a re  made in binary, in Section 1': 

TIFGO Table 
Decrement Address 

Word 1 Label number 
Word 2 Number of entries 

Word 4 1 3 (1st TRA adr) 1 7 (last TRA adr) I 
Word5 
Word 6 

62(IFN) 
8 (1st TRA adr) 

2 
1 (last TRA adr) 



TRAD Table 
Word 1 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 
Word 7 
Word 8 
Word 9 

The TRAD record is generated during the processing in Section 1. It is entered 
on tape 2, file 5, a s  record 7 in Fortran I1 and 709 and record 3 in Fortran I. The 
first  word of the first  record is the label number three. The second word of the 
first record is a binary count of the number of words in the TRAD record. 

Word 10 
Word 11 

The previous examples of table entries indicate the format in Section 1. In lt, 
however, where the tables a r e  recorded on tape 2, all the EFN1s are  replaced with 
their corresponding IFN1s. 

3 
X 1 4 

28 

13 l1 

15 

2.26.00 TSTOP RECORD 

Label number 
Number of entries 

F i r s tGOTO 

\ SecondGOTO 

The TSTOP r e c o ~ d  is a table of IFN1s associated with STOP statements in the 
source program. Each entry into the table requires only one word. The decrement 
of the word contains the IFN and the address contains the EFN of the STOP statements. 

The TSTOP table is generated during Section 1' on tape 2, file 5, record 16 in 
Fortran 11 and 709 or a s  record 12 in Fortran I. The first  word in the record is the 
label number, the second word is a count of the number of words in the table. 



3.00.00 FORTRAN AUTOMATIC CODING SYSTEM 

I C.. 

This section reproduces, with permission of the Institute of Radio Engineers, 
the paper which appeared in the Proceedings of the Western Joint Computer 
Conference, February 26-28, 1957. 

T h e  FORTRAN Automatic Coding System 
J. W. BACKUS?, R. J. BEEBERt, S. BESTS, R. GOLDBERGt, L. M. HAIBTt, 

H. L. HERRICKt, R. A. NELSONt, D. SAYREt, P. B. SHERIDANT, 
H. STERNt, I. ZILLERt, R. A. HUGHESO, AND R. NUTT(~ 

HE FORTRAN project was begun in the sum- 
mer of 1954. Its purpose was to reduce by a large 
factor the task of preparing scientific problems for 

IBM's next large computer, the 704. If it were possible 
for the 704 to code problems for itself and produce as 
good programs as human coders (but without the 
errors), it  was clear that large benefits could be achieved. 
For it was known that about two-thirds of the cost of 
solving most scientific and engineering problems on 
large computers was that of problem preparation. 
Furthermore, more than 90 per cent of the elapsed time 
for a problem was usually devoted to planning, writing, 
and debugging the program. In many cases the de- 
velopment of a general plan for solving a problem was 
a small job in comparison to the task of devising and 
coding machine procedures to carry out the plan. The 
goal of the FORTRAN project was to enable the pro- 
grammer to specify a numerical procedure using a con- 
cise language like that of mathematics and obtain 
automatically from this specification an efficient 704 
program to carry out the procedure. I t  was expected 
that such a system would reduce the coding and de- 
bugging task to less than one-fifth of the job it had been. 

Two and one-half years and 18 man years have elapsed 
since the beginning of the project. The FORTRAN 

t Internat'l Business Machines Corp., New York, N. Y. 
Mass. Inst. Tech., Computation Lab., Cambridge, Mass. 
Radiation Lab., Univ. of California, Livermore, Calif. 
United Aircraft Corp., East Hartford, Conn. 

system is now complete. I t  has two components: the 
FORTRAN language, in which programs are written, 
and the translator or executive routine for the 704 
which effects the translation of FORTRAN language 
programs into 704 programs. Descriptions of the FOR- 
TRAN language and the translator form the principal 
sections of this paper. 

The experience of the FORTRAN group in using the 
system has confirmed the original expectations con- 
cerning reduction of the task of problem preparation 
and the efficiency of output programs. A brief case 
history of one job done with a system seldom gives a 
good measure of its usefulness, particularly when the 
selection is made by the authors of the system. 
Nevertheless, here are the facts about a rather simple 
but sizable job. The programmer attended a one-day 
course on FORTRAN and spent some more time re- 
ferring to the manual. He then programmed the job 
in four hours, using 47 FORTRAN statements. These 
were compiled by the 704 in six minutes, producing 
about 1000 instructions. He ran the program and found 
the output incorrect. He studied the output (no tracing 
or memory dumps were used) and was able to localize 
his error in a FORTRAN statement he had written. 
He rewrote the offending statement, recompiled, and 
found that the resulting program was correct. He esti- 
mated that it might have taken three days to code this 
job by hand, plus an unknown time to debug it, and 
that no appreciable increase in speed of execution would 
have been achieved thereby. 



THE FORTRAN LANGUAGE previously defined functions. Having defined ROOTF 

The FORTRAN language is most easily described as above, the Programmer it to any set of 
arguments in any subsequent arithmetic statements. For by reviewing some examples. 
example, a later arithmetic statement might be 7 ' 

Arithmetic Statements 

Example 1: Compute: 

root = 
- (B/2) + z/(B/2IL AC 

FOR TRA N Program : 

ROOT 
= ( - (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A. 

Notice that the desired program is a single FOR- 
TRAN statement, an arithmetic formula. Its meaning 
is: "Evaluate the expression on the right of the = sign 
and make this the value of the variable on the left." 
The symbol * denotes multiplication and * * denotes 
exponentiation (i.e., A * * B means AB). The program 
which is generated from this statement effects the 
computation in floating point arithmetic, avoids com- 
puting (B/2.0) twice and computes (B/2.0) * * 2 by a 
multiplication rather than by an exponentiation routine. 
 a ad (B/2.0) * * 2.01 appeared instead, an exponentia- 
tion routine would necessarily be used, requiring more 
time than the multiplication.] 

The programmer can refer to quantities in both 
floating point and integer form. Integer quantities 
are somewhat restricted in their use and serve primarily 
as subscripts or exponents. Integer constants are written 
without a decimal point. Example: 2 (integer form) vs 
2.0 (floating point form). Integer variables begin with 
I, J, K, L, M, or N. Any meaningful arithmetic expres- 
sion may appear on the right-hand side of an arithmetic 
statement, provided the following restriction is ob- 
served: an integer quantity can appear in a floating- 
point expression only as a subscript or as an exponent 
or as the argument of certain functions, The functions 
which the programmer may refer to are limited only 
by those available on the library tape a t  the time, such 
as SQRTF, plus those simple functions which he has 
defined for the given problem by means of function 
statements. An example will serve to describe the latter. 

Function Statements 

Exam$le 2: Define a function of three variables to be 
used throughout a given problem, as follows: 

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 a Y i / ~  

+ 14.0, 7.63). 7 

DO Statements, DIMENSION Statements, and Sub- a 1 
scripted Variables I 

'7 
Example 3: Set Q... equal to the largest quantity J 1 

P(ai+bi)/P(ai-bi) for some i between 1 and 1000 . 
where P(x) =co+clx+c~x2+cfi8. 

FORTRAN Program: 

1) POLYF(X)=CO+X* (Cl+X* (C2+X*C3)). 

* 21 
2) DIMENSION A(1000), B(1000). 
3) QMAX = - 1.0 E20. 

3 ; 
4) DO 5 I = 1, 1000. 
5 )  QMAX = MAXF(QMAX, POLYF(A(1) 

+B(I))/POLYF(A(I) -B(I))). 
3 

6) STOP. 

The program above is complete except for input and 
output statements which will be described later. The 
first statement is not executed; i t  defines the desired 
polynomial (in factored form for efficient output pro- 
gram). Similarly, the second statement merely informs 
the executive routine that the vectors A and B each have 
1000 elements. Statement 3 assigns a large negative 
initial value to QMAX, - 1.OX 1020, using a special 

3 
concise form for writing floating-point constants. State- 
ment 4 says "DO the following sequence of statements 3 
down to and including the statement numbered 5 for 
successive values of I from 1 to 1000." In this case 
there is only one statement 5 to be repeated. I t  is exe- 
cuted 1000 times; the first time reference is made to 
A(l) and B(l), the second time to A(2) and B(2), etc. 
After the 1000th execution of statement 5, statement 
6-STOP-is finally encountered. In statement 5, 

3 
the function MAXF appears. MAXF may have two 
or more arguments and its value, by definition, is the 3 
value of its largest argument. Thus on each repetition 
of statement 5 the old value of QMAX is replaced by 
itself or by the value of POLYF(A(I)+B(I))/POLYF 
(A(1) -B(I)), whichever is larger. The value of QMAX 

I 

after the 1000th repetition is therefore the desired 
maximum. 3 ~ 

Example 4: Multiply the n Xn matrix au(n < 20) by - 
ROOTF(A, B, C) its transpose, obtaining the product elements on or be- ' 

= (-(B/2.0) + SQRTF((B/2,0). * 2  - A*C))/A. 10" the main diagonal by therelation 3 
Function statements must precede the rest of the pro- 
gram. They are composed of the desired function name 
(ending in F) followed by any desired arguments which and the remaining elements by the relation 
appear in the arithmetic expression on the right of the 
= sign. The definition of a function may employ any c j , ~  = ci, j. 



FORTRAN Program: 
DIMENSION A(20, 20), C(20, 20) 
DO 2 I = 1 , N  P 

1 
I 

1 
I 

2 / 1 U J ,  1) = C(L  J)  I I READ, P R I N T ,  FORMAT, IF  and GO TO Statements 

I- / Erampk 5 :  For each case, read from cards two vec- 

STOP 
tors, ALPHA and RHO, and the number ARG. ALPHA 
and RHO each have 25 elements and ALPHA(1) 

As in the preceding example, the DIMENSION 
statement says tha t  there are two matrices of maximum 
size 20 X20 named A and C. For explanatory purposes 
only, the three boxes around the program show the 
sequence of statements controlled by each DO state- 
ment. The  first DO statement says tha t  procedure P, 
i .e . ,  the following statements down t o  statement 2 (outer 
box) is t o  be carried ou t  for I = 1 then for I = 2 and so 
on up  t o  I =N.  The  first statement of procedure 
P ( D 0  2 J = 1, I) directs tha t  procedure Q be done for 
J = 1 t o  J =I .  And of course each execution of pro- 
cedure Q involves N executions of procedure R for 
K = l ,  2, . . , N. 

Consider procedure Q. Each time its last statement 
is completed the "index" J of its controlling DO state- 
ment is increased by 1 and control goes to  the first 
statement of Q, until finally its last statement is reached 
and J = I. Since this is also the last statement of P and 
P has not been repeated until I =N,  I will be increased 
and control will then pass to  the first statement of P. 
This statement (DO 2 J = 1, I) causes the repetition 
of Q t o  begin again. Finally, the last statement of Q and 
P (statement 2) will be reached with J = I and I = N, 
meaning that  both Q and P have been repeated the 
required number of times. Control will then go to  the 
next statement, STOP. Each time R is executed a new 
term is added to  a product element. Each time Q is 
executed a new product element and its mate are ob- 
tained. Each time P is executed a product row (over t o  
the diagonal) and the corresponding columil (down t o  
the diagonal) are obtained. 

T h e  last example contains a "nest" of DO state- 

<ALPHA(I+l ) ,  I = 1 t o  24. Find the SUM of all the - 
elements of ALPHA from the beginning to  the last 
one which is less than or equal t o  ARG [assume 
ALPHA(1) SARG  ALPHA(^^)]. If this last element 
is the Nth, set VALUE =3.14159 * RHO(N). Print a 
line for each case with ARC, SUM, and VALUE. 

FORTRAN Program: 

DIMENSION ALPHA(25), RHO(25) 
1) FORMAT(SF12.4). 
2) READ 1, ALPHA, RHO, ARG 

SUM = 0.0 
D O 3  I = 1 , 2 5  
I F  (ARG-ALPHA(1)) 4, 3, 3. 

3) SUM =SUM +ALPHA(I) 
4) VALUE=3.14159 * RHO(1- 1) 

P R I N T  1, ARG, SUM, VALUE 
GO T O  2. 

The  FORMAT statement says tha t  numbers are to  
be found (or printed) 5 per card (or line), tha t  each 
number is in fixed point form, that  each number oc- 
cupies a field 12 columns wide and tha t  the decimal 
point is located 4 digits from the right. T h e  FORMAT 
statement is not executed; i t  is referred t o  by the READ 
and P R I N T  statements to  describe the desired arrange- 
ment of data  in the external medium. 

The  READ statement says "READ cards in the 
card reader which are arranged according t o  FORMAT 
statement 1 and assign the successive numbers obtained 
as  values of ALPHA(1) I = 1, 25 and RHO(1) I = 1, 25 
and ARG." Thus "ALPHA, RHO, ARG" is a descrip- 

ments, meaning tha t  the sequence of statements con- tion of a list of 51 quantities (the size of ALPHA and 
trolled by one 110 statement contains other DO state- RHO being obtained from the DIMENSION state- 
ments. Another example of such a nest is shown in the ment). Reading of cards proceeds until these 51 quanti- 
next column, on the left. Nests of the type shown on the ties have been obtained, each card having five numbers, 
right are not permitted, since they would usually be as  per the FORMAT description, except the last which 
meaningless. has the value of ARG only. Since ARG terminated the 

Although not illustrated in the examples given, the list, the remaining four fields on the last card are not 
programmer may also employ subscripted variables read. The  P R I N T  statement is similar t o  READ except 
having three independent subscripts. that  i t  specifies a list of only three quantities. Thus  



each execution of PRINT causes a single line to be 
printed with ARG, SUM, VALUE printed in the first 
three of the five fields described by FORMAT state- 
ment 1. 

The I F  statement says "If ARG-ALPHA(I) is 
negative go to statement 4, if it is zero go to statement 
3, and if it is positive go to 3." Thus the repetition 
of the two statements controlled by the DO consists 
normally of computing ARG - ALPHA(I), finding it  
zero or positive, and going to statement 3 followed by 
the next repetition. However, when I has been in- 
creased to the extent that the first ALPHA exceeding 
ARG is encountered, control will pass to statement 4. 
Note that this statement does not belong to the se- 
quence controlled by the DO. In such cases, the repeti- 
tion specified by the DO is terminated and the value of 
the index (in this case I) is preserved. Thus if the first 
ALPHA exceeding ARG were ALPHA (20), then RHO 
(19) would be obtained in statement 4. 

The GO TO statement, of course, passes control to 
statement 2, which initiates reading the 11 cards for the 
next case. The process will continue until there are no 
more cards in the reader. The above program is entirely 
complete. When punched in cards as shown, and com- 
piled, the translator will produce a ready-to-run 704 
program which will perform the job specified. 

Other Types of FORTRAN Statements 

In the above examples the following types of FOR- 
TRAN statements have been exhibited. 

Arithmetic statements 
Function statements 
DO statements 
I F  statements 
GO TO statements 
READ statements 
PRINT statements 
STOP statements 
DIMENSION statements 
FORMAT statements. 

The explanations accompanying each exam~le  have 
attempted to show some of the possible applications and 
variations of these statements. I t  is felt that these 
examples give a representative picture of the FOR- 
TRAN language; however, many of its features have 
had to be omitted. There are 23 other types of state- 
ments in the language, many of them completely 
analogous to some of those described here. They pro- 
vide facilities for referring to other input-output and 
auxiliary storage devices (tapes, drums, and card 
punch), for specifying preset and computed branching 
of control, for detecting various conditions which may 
arise such as an attempt to divide by zero, and for pro- 

* 

viding various information about a program to the 
translator. A complete description of the language is to 
be found in Programmer's Reference Manual, the FOR- 
TRAN Automatic Coding System for the I B M  704. 

Preparation of a Program for Translation 

The translator accepts statements punched one per 
card (continuation cards may be used for very long 
statements). There is a separate key on the keypunch- 
ing device for each character used in FORTRAN state- 
ments and each character is represented in the card by 
several holes in a single column of the card. Five 
columns are reserved for a statement number (if pres- 
ent) and 66 are available for the statement. Keypunch- 
ing a FORTRAN program is therefore a process similar 
to that of typing the program. 

Translation 

The deck of cards obtained by keypunching may 
then be put in the card reader of a 704 equipped with 
the translator program. When the load button is pressed 
one gets either 1) a list of input statements which fail 
to conform to specifications of the FORTRAN language 
accompanied by remarks which indicate the type of 
error in each case; 2)  a deck of binary cards representing 
the desired 704 program, 3) a binary tape of the program 
which can either be preserved or loaded and executed 
immediately after translation is complete, or 4) a tape 
containing the output program in symbolic form suitable 
for alteration and later assembly. (Some of these out- 
puts may be unavailable a t  the time of publication.) 

THE FORTRAN TRANSLATOR 

General Organization of the System 

The FORTRAN translator consists of six successive 
sections, as follows. 

Section 1: Reads in and classifies statements. For 
arithmetic formulas, compiles the object (output) in- 
structions. For nonarithmetic statements including 
input-output, does a partial compilation, and records 
the remaining information in tables. All instructions 
compiled in this section are in the COMPAIL file. 

Section 2 :  Compiles the instructions associated with 
indexing, which result from DO statements and the oc- 
currence of subscripted variables. These instructions 

L/ 
are placed in the COMPDO file. 

Section 3: Merges the COMPAIL and COMPDO 
files into a single file, meanwhile completing the compila- 
tion of nonarithmetic statements begun in Section 1. 

3 
The object program is now complete, but assumes an 
object machine with a large number of index registers. 

Section 4: Carries out an analysis of the flow of the 
3 

object program, to be used by Section 5. 
Section 5: Converts the object program to one which 

involves only the three index registers of the 704. 
\3 

Section 6 :  Assembles the object program, producing 
a relocatable binary program ready for running. Alsc 1.3 
on demand produces the object program in SHARE 
symbolic language. 

(Note: Section 3 is of internal importance only; Sec- 
tion 6 is a fairly conventional assembly program. These 

3 
sections will be treated only briefly in what follows.) 

3 



Within the translator, information is passed from 
section to section in two principal forms: as compiled 
instructions, and as tables. The compiled instructions 
(e.g., the COMPAIL and COMPDO files, and later their 
merged result) exist in a four-word format which con- 
tains all the elements of a symbolic 704 instruction; 
i.e., symbolic location, three-letter operation code, sym- 
bolic address with relative absolute part, symbolic tag, 
and absolute decrement. (Instructions which refer to 
quantities given symbolic names by the programmer 
have those same names in their addresses.) This sym- 
bolic format is retained until section 6. Throughout, the 
order of the compiled instructions is maintained by 
means of the symbolic locations (internal statement 
numbers), which are assigned in sequential fashion by 
section 1 as each new statement is encountered. 

The tables contain all information which cannot yet 
be embodied in compiled instructions. For this reason 
the translator requires only the single scan of the source 
program performetl in section 1. 

A final observation should be made about the organ- 
ization of the system. Basically, it is simple, and most 
of the complexities which it  does possess arise from the 
effort to cause it  to produce object programs which 
can compete in efficiency with hand-written programs. 
Some of these complexities will be found within the 
individual sections; but also, in the system as a whole, 
the sometimes complicated interplay between compiled 
instructions and tables is a consequence of the desire to 
postpone compiling until the analysis necessary to 
produce high object-program efficiency has been per- 
formed. 

Section 1 (Beeber, Herrick, Nutt, Sheridan, and Stern) 

The over-all flow of section 1 is 

which can be compiled are compiled, and the remaining 
information is extracted and placed in one or more of 
the appropriate tables. 

In contrast, arithmetic formulas are completely 
treated in section 1, except for open (built-in) sub- 
routines, which are added in section 3;  a complete set 
of compiled instructions is produced in the COMPAIL 
file. This compilation involves two principal tasks: 1) 
the generation of an appropriate sequence of arith- 
metic instructions to  carry out the computation speci- 
fied by the formula, and 2) the generation of (symbolic) 
tags for those arithmetic instructions which refer to 
subscripted variables (variables which denote arrays) 
which in combination with the indexing instructions to 
be compiled in section 2 will refer correctly to  the indi- 
vidual members of those arrays. Both these tasks are 
accomplished in the course of a single scan of the for- 
mula. 

Task 2) can be quickly disposed of. When a sub- 
scripted variable is encountered in the scan, its sub- 
script(~) are examined to determine the symbols used 
in the subscripts, their multiplicative coefficients, and 
the dimensions of the array. These items of information 
are placed in tables where they will be available to 
section 2; also from them is generated a subscript com- 
bination name which is used as the symbolic tag of 
those instructions which refer to the subscripted vari- 
able. 

The difficulty in carrying out task 1) is one of level; 
there is implicit in every arithmetic formula an order of 
computation, which arises from the control over order- 
ing assigned by convention to  the various symbols 
(parentheses, + , - , * , /, etc.) which can appear, and 
this implicit ordering must be made explicit before 
compilation of the instructions can be done. This ex- 
plicitness is achieved, during the formula scan, by 

1 Input-output 1 Arithmetic 7 Others 1 out in the order of increasing level number the correct 
sequence of arithmetic instructions will be obtained. The 

. 

I 

Treat statement I 1 Treat statement sequence of level numbers is obtained by means of a 

+ set of rules, which specify for each possible pair formed 
of operation type and symbol type the increment to  be 

Read and classify next source statement No more associating with each operation required by the formula 

For an input-output statement, section 1 compiles the 
appropriate read or write select (RDS or WRS) in- 
struction, and the necessary copy (CPY) instructions 
(for binary operations) or transfer instructions to pre- 
written input-output routines which perform conver- 
sion between decimal and binary and govern format (for 
decimal operations). When the list of the input-output 

I and assign internal sta ement numbed statements a level number, such that  if the operations are carried 

statement is repetitive, table entries are made which 
will cause section 2 to generate the indexing instructions 
necessary to make the appropriate loops. 

The treatment of statements which are neither input- 
output nor arithmetic is similar; i.e., those instructions 

addid to or subtracted from the level number of the 
preceding pair. 

In fact, the compilation is not carried out with the 
raw set of level numbers produced during the scan. 
After the scan, but before the compilation, the levels 
are examined for empty sections which can be deleted, 
for permutations of operations on the same level which 
will reduce the number of accesses to  memory, and for 
redundant computation (arising from the existence of 
common subexpressions) which can be eliminated. 

An example will serve to show (somewhat inaccurate- 
ly) some of the principles employed in the level-analysis 
process. Consider the following arithmetic expression : 



A + B * * C * ( E + F ) .  pression. The number of u's remaining a t  this point - I 1 

In the level analysis of this expression parentheses 
are in effect inserted which define the proper order in 
which the operations are to be performed. If only three 
implied levels are recognized (corresponding to +, * 
and * * ) the expression obtains the following: 

(in this case four) determines the number of intermedi- 
ate quantities which may need to be stored. However, 
further examination of this case reveals that  the result 
of 243 is in the accumulator, ready for uo; therefore the 
store and load instructions which would usually be 
compiled between 2.43 and uo are omitted. 

The brackets represent the parentheses appearing in the 
original expression. (The level-analysis routine actually 
recognizes an additional level corresponding to func- 
tions.) Given the above expression the level-analysis 
routine proceeds to define a sequence of new dependent 
variables the first of which represents the value of the 
entire expression. Each new variable is generated when- 
ever a left parenthesis is encountered and its definition 
is entered on another line. In the single scan of the ex- 
pression i t  is often necessary to  begin the definition of 
one new variable before the definition of another has 
been completed. The subscripts of the u's in the follow- 
ing sets of definitions indicate the order in which they 
were defined. 

This is the point reached a t  the end of the formula 
scan. What follows illustrates the further processing 
applied to the set of levels. Notice that  UQ, for example, 
is defined as  * * F. Since there are not two or more 
operands to  be combined the * * serves only as a level 
indication and no further purpose is served by having 
defined UQ. The procedure therefore substitutes F for 
UQ wherever UQ appears and the line ue = * * F is deleted. 

Throughout the object program will appear in- 
structions which refer to subscripted variables. Each 
of these instructions will (until section 5) be tagged with 
a symbolic index register corresponding to  the particu- 

3 
lar subscript combination of the subscripts of the varia- 
ble [e.g., (I, K, J )  and (K, I ,  J )  are two different sub- 3 
script combinations]. If the object program is t o  work " 

correctly, every symbolic index register must be so 
governed that  i t  will have the appropriate contents a t  \3 
every instant that  i t  is being used. I t  is the source pro- 
gram, of course, which determines what these appro- 
priate contents must be, primarily through its DO 13 
statements, but also through arithmetic formulas (e.g. 
I = N+ 1) which may define the values of variables ap- 
pearing in subscripts, or input formulas which may 
read such values in a t  object time. Moreover, in the 

3 
case of DO statements, which are designed to  produce 3 
loops in the object program, i t  is necessary to  provide 
tests for loop exit. I t  is these two tasks, the governing 
of symbolic index registers and the testing of their , 
contents, which section 2 must carry out. 

3 
Much of the complexity of what follows arises from 

the wish to carry out these tasks optimally; i .e . ,  when 
a variable upon which many subscript combinations de- 

3 
pend undergoes a change, to alter only those index 
registers which really require changing in the light of 
the problem flow, and to handle exits correctly with 

3 
a minimum number of tests. 

If the following subscripted variable appears in a 
FORTRAN program 3 

the index quantity which must be in its symbolic index 
LJ 

register when this reference to  A is made is 
7 

Similarly, F is then substituted for u8 and us= * F is where cl, c2, and c3 in this case have the values 2, 4, and 
deleted. This elimination of "redundant" U'S is carried 6 ;  i, j, and k are the values of I ,  J, and K a t  the moment, 
t o  completion and results in the following: and d i  and d j  are the I and J dimensions of A .  The 

2 
uo = + A  + 213 

effect of the addends 1, 3, and 5 is incorporated in the 
address of the instruction which makes the reference. 

u3 = *u4*u5 In general, the index quantity associated with a sub- 
- 3 

script combination as  given above, once formed, is not 
recomputed. Rather, every time one of the variables in 3 
a subscript combination is incremented under control of 

These definitions, read up, describe a legitimate a DO, the corresponding quantity is incremented by 
procedure for obtaining the value of the original ex- the appropriate amount. In the example given, if K ,3 



is increased by n (under control of a DO), the index The decrement parts of the FORTRAN indexing 
quantity is increased by csd;djn, giving the correct new 
value. The following paragraphs discuss in further detail 
the ways in which index quantities are computed and 
modified. 

Clzoosing the Indexing Instructions; Case of Subscripts 
Controlled by DO'S 

We distinguish between two classes of subscript ; 
those which are in the range of a DO having that sub- 
script as its index symbol, and those subscripts which 
are not controlled by DO's. 

The fundamental idea for subscripts controlled by 
DO'S is that  a sequence of indexing instruction groups 
can be selected to  answer the requirements, and that 
the choice of a particular instruction group depends 
mainly on the arrangement of the subscripts within the 
subscript combination and the order of the DO'S con- 
trolling each subscript. 

DO'S often exist in nests. A nest of DO's consists of 
all the DO's contained by some one DO which is itself 
not contained by any other. Within a nest, DO'S are 
assigned level numbers. Wherever the index symbol of a 
DO appears as a subscript within the range of that DO, 
the level number of the DO is assigned to the subscript. 
The relative values of the level numbers in a subscript 
combination prod.uce a group number which, along with 
other information, determines which indexing instruc- 
tion group is to be compiled. 

The source language, 

instructions are functions of the dimensions of arrays 
and of the parameters of DO's; that  is, of the initial 
value nl, the upper bound n2, and the increment n3 
appearing in the statement DO 1 i = n l ,  n2, n3. The 
general form of the function is [(n2 - nl +nr)/n3]nrg 
where g represents necessary coefficients and dimen- 
sions, and [ x ]  denotes the integral part of x. 

If all the parameters are constants, the decrement 
parts are computed during the execution of the FOR- 
TRAN executive program. If the parameters are vari- 
able symbols, then instructions are compiled in the 
object program to compute the proper decrement val- 
ues. For object program efficiency, it is desirable to 
associate these computing instructions with the outer- 
most DO of a nest, where possible, and not with the 
inner loops, even though these inner DO'S may have 
variable parameters. Such a variable parameter (e.g., 
N in "DO 7 I = 1, N") may be assigned values by the 
programmer by any of a number of methods; it may be 
a value brought in by a READ statement, it may be 
calculated by an arithmetic statement, i t  may take its 
value from a transfer exit from some other DO whose 
index symbol is the pertinent variable symbol, or it may 
be under the control of a DO in the nest. A search is 
made to determine the smallest level number in the 
nest within which the variable parameter is not assigned 
a new value. This level number determines the place 
a t  which computing instructions can best be compiled. 

Case of Subscripts not Controlled by DO'S 

The second of the two classes of subscript symbols is 
DO S K = I , J  that of subscript symbols which are not under control 

5 . . . A (I, J, KK) . . . (some statement referring to of DO'S. Such a subscript can be given a value in a 

A ( I l  J ,  K )  number of ways similar to the defining of DO param- 
DO 10K= J .5  eters: a value may be read in by a READ statement, 

produces the following DO structure and group combi- 
nations : 

level 1 

level 2 

level 3 

levels group no. 

I ,  .T, K - (1, 2, 3) - 6 

level 3 

K ,  J, I - (3, 2, 1) - 1. 

it may be calculated by an arithmetic statement, or it 
may be defined by an exit made from a DO with that  
index symbol. 

For subscript combinations with no subscript under 
the control of a DO, the basic technique used to intro- 
duce the proper values into a symbolic index register is 
that  of determining where such definitions occur, and, 
a t  the point of definition, using a subroutine to compute 
the new index quantity. These subroutines are generated 
a t  executive time, if i t  is determined that  they are 
necessary. 

If the index quantity exists in a DO nest a t  the time 
of a transfer exit, then no subroutine calculations are 
necessary since the exit values are precisely the desired 
values. 

Producing the Decrement Parts of Indexing Instructions Mixed Cases 

The part of the 704 instruction used to change or test In cases in which some subscripts in a subscript com- 
the contents of an index register is called the decrement bination are controlled by DO'S, and some are not, 
part of the instruction. instructions are compiled to  compute the initial value 



of the subscript combination a t  the beginning of the 
outside loop. If the non-DO-controlled subscript sym- 
bol is then defined inside the loop (that is, after the 
computing of the load quantity) the procedure of using 
a subroutine a t  the point of subscript definition will 
bring the new value into the index register. 

An exception to the use of a subroutine is made when 
the subscript is defined by a transfer exit from a DO, 
and that  DO is within the range of a DO controlling 
some other subscript in the subscript combination. 
In such instances, if the index quantity is used in the 
inner DO, no calculation is necessary; the exit values 
are used. If the index quantity is not used, instructions 
are compiled to simulate this use, so that in either case 
the transfer exit leaves the correct function value in 
the index register. 

Modification and Optimization 

Initializing and computing instructions correspond- 
ing to a given DO are placed in the object program a t  a 
point corresponding to the lowest possible (outermost) 
DO level rather than a t  the point corresponding to the 
given DO. This technique results in the desired removal 
of certain instructions from the most frequent inner- 
most loops of the object program. However, it necessi- 
tates the consideration of some complex questions when 
the flow within a nest of DO'S is complicated by the 
occurrence of transfer escapes from DO-type repetition 
and by other I F  and GO TO flow paths. Consider a 
simple example, a nest having a DO on I containing a 
DO on J, where the subscript combination (I, J )  appears 
only in the inner loop. If the object program corre- 
sponded precisely to the FORTRAN language pro- 
gram, there would be instructions a t  the entrance point 
of the inner loop to set the value of J in (I, J )  to the 
initial value specified by the inner DO. Usually, how- 
ever, it is more efficient to reset the value of J in (I ,  J) 
a t  the end of the inner loop upon leaving it, and the ob- 
ject program is so constructed. In this case it becomes 
necessary to compile instructions which follow every 
transfer exit from the inner loop into the outer loop (if 
there are any such exits) which will also reset the value 
of J in (I, J )  to the initial value it should have a t  the 
entrance of the inner loop. These instructions, plus the 
initialization of both I and J in ( I ,  J )  a t  the entrance 
of the outer loop (on I ) ,  insure that J always has its 
proper initial value a t  the entrance of the inner loop 
even though no instructions appear a t  that point which 
change J. The situation becomes considerably more 
complicated if the subscript combination (I ,  J )  also ap- 
pears in the outer loop. In this case two independent 
index quantities are created, one corresponding to 
( I ,  J )  in the inner loop, the other to (I, J )  in the outer 
loop. 

Optimizing features play an important role in the 
modification of the procedures and techniques outlined 
above. I t  may be the case that the DO structure and 

subscript combinations of a nest describe the scanning 
of a two- or three-dimensional array which is the equiva- 
lent of a sequential scan of a vector; i.e., a reference 
to each of a set of memory locations in descending order. 
Such an equivalent procedure is discovered, and where 
the flow of a nest permits, is used in place of more com- 
plicated indexing. This substitution is not of an empiri- 
cal nature, but is instead the logical result of a general- 
ized analysis. 

Other optimizing techniques concern, for example, 
the computing instructions compiled to evaluate the 
functions (governing index values and decrements) men- 
tioned previously. When some of the parameters are 
constant, the functions are reduced a t  executive time, 
and a frequent result is the compilation of only one 
instruction, a reference to a variable, to obtain a proper 
initializing value. 

In choosing the symbolic index register in which to 
test the value of a subscript for exit purposes, those 
index registers are avoided which would require the 
compilation of instructions to modify the test instruc- 
tion decrement. 

Section 4 (Haibt) and Section 5 (Best) 

The result of section 3 is a complete program, but one 
in which tagged instructions are tagged only sym- 
bolically, and which assumes that there will be a real 
index register available for every symbolic one. I t  is the 
task of sections 4 and 5 to convert this program to one 
involving only the three real index registers of the 704. 
Generally, this requires the setting up, for each symbolic 
index register, of a storage cell which will act as  an 
index cell, and the addition of instructions to load the 
real index registers from, and store them into, the index 
cells. This is done in section 5 (tag analysis) on the basis 
of information about the pattern and frequency of flow 
provided by section 4 (flow analysis) in such a way 
that the time spent in loading and storing index registers 
will be nearly minimum. 

The fundamental unit of program is the basic block; a 
basic block is a stretch of program which has a single 
entry point and a single exit point. The purpose of sec- 
tion 4 is to prepare for section 5 a table of predecessors 
(PRED table) which enumerates the basic blocks and 
lists for every basic block each of the basic blocks which 
can be its immediate predecessor in flow, together with 
the absolute frequency of each such basic block link. 
This table is obtained by an actual "execution" of the 
program in Monte-Carlo fashion, in which the outcome 
of conditional transfers arising out of IF-type state- 
ments and computed GO TO'S is determined by a ran- 
dom number generator suitably weighted according 
to whatever FREQUENCY statements have been pro- 
vided. 

Section 5 is divided into four parts, of which part 1 is 
the most important. I t  makes all the major decisions 
concerning the handling of index registers, but  records 



them simply as bits in the PRED table and a table of 
all tagged instructions, the STAG table. Part 2 merely 
reorganizes those tables; part 3 adds a slight further 
treatment to basic blocks which are terminated by an 
assigned GO TO; and finally part 4 compiles the finished 
program under the direction of the bits in the PRED and 
STAG tables. Since part 1 does the real work involved 
in handling the index registers, attention will be con- 
fined to this part in the sequel. 

The basic flow of part 1 of section 5 is, 

Yes 

I Any PRED entries- Form new region I 

Treat new region '22 
Consider a moment partway through the execution 

of part 1, when a new region has just been treated. The 
less frequent basic blocks have not yet been encoun- 
tered; each basic block that has been treated is a mem- 
ber of some region. The existing regions are of two 
types: transparent, in which there is a t  least one real 
index register which has not been used in any of the 
member basic blocks, and opaque. Bits have been en- 
tered in the STAG table, calling where necessary for 
an LXD (load index register from index cell) instruc- 
tion preceding, or an SXD (store index register in index 
cell) instruction following, the tagged instructions of the 
basic blocks that  have been treated. For each basic 
block that  has been treated is recorded the required 
contents of each of the three real index registers for 
entrance into the block, and the contents upon exit. 
In the PRED table, entries that have been considered 
may contain bits calling for interblock LXD's and 
SXD's, when the exit and entrance conditions across the 
link do not match. 

Now the PRED table is scanned for the highest- 
frequency link not yet considered. The new region is 
formed by working both forward over successors and 
backward over predecessors from this point, always 
choosing the most frequent remaining path of control. 
The marking out of a new region is terminated by en- 
countering 1) a basic block which belongs to an opaque 
region, 2) a basic block which has no remaining links 
into i t  (when working backward) or from it (when 
working forward), or which belongs to a transparent 
region with no such links remaining, or 3) a basic block 
which closes a loop. Thus the new region generally 
includes both basic blocks not hitherto encountered, and 
entire regions of basic blocks which have already been 
treated. 

The treatment of hitherto untreated basic blocks in 
the new region is carried out by simulating the action 
of the program. Three cells are set aside to represent the 
object machine index registers. As each new tagged in- 
struction is encountered these cells are examined to see 

if one of them contains the required tag; if not, the 
program is searched ahead to  determine which of the 
three index registers is the least undesirable to  replace, 
and a bit is entered in the STAG table calling for an 
LXD instruction to that  index register. When the 
simulation of a new basic block is finished, the en- 
trance and exit conditions are recorded, and the next 
item in the new region is considered. If it  is a new basic 
block, the simulation continues; if i t  is a region, the 
index register assignment throughout the region is 
examined to  see if a permutation of the index registers 
would not make it  match better, and any remaining mis- 
match is taken care of by entries in PRED calling for 
interblock LXD's. 

A final concept is that of index register activity. 
When a symbolic index register is initialized, or when 
its contents are altered by an indexing instruction, the 
value of the corresponding index cell falls out of date, 
and a subsequent LXD will be incorrect without an 
intervening SXD. This problem is handled by activity 
bits, which indicate when the index cell is out of date; 
when an LXD is required the activity bit is interrogated, 
and if it is on an SXD is called for immediately after the 
initializing or indexing instruction responsible for the 
activity, or in the interblock link from the region con- 
taining that instruction, depending upon whether the 
basic block containing that instruction was a new basic 
block or one in a region already treated. 

When the new region has been treated, all of the 
old regions which belonged to it simply lose their iden- 
tity; their basic blocks and the hitherto untreated basic 
blocks become the basic blocks of the new region. Thus 
a t  the end of part 1 there is but one single region, and 
it  is the entire program. The high-frequency parts of the 
program were treated early; the entrance and exit con- 
ditions and indeed the whole handling of the index 
registers reflect primarily the efficiency needs of these 
high-frequency paths. The loading and unloading of the 
index registers is therefore as much as possible placed 
in the low-frequency paths, and the object program 
time consumed in these operations is thus brought near 
to  a minimum. 

The preceding sections of this paper have described 
the language and the translator program of the FOR- 
TRAN system. Following are some comments on the 
system and its application. 

Scope of Applicability 
The language of the system is intended to be capable 

of expressing virtually any numerical procedure. Some 
problems programmed in FORTRAN language to  date 
include: reactor shielding, matrix inversion, numerical 
integration, tray-to-tray distillation, microwave propa- 
gation, radome design, numerical weather prediction, 
plotting and root location of a quartic, a procedure for 
playing the game "nim," helicopter design, and a number 



of others. The sizes of these first programs range from 
about 10 FORTRAN statements to well over 1000, or 
in terms of machine instructions, from about 100 to 
7500. 

Conciseness and Convenience 

The statement of a program in FORTRAN lan- 
guage rather than in machine language or assembly 
program language is intended to result in a considerable 
reduction in the amount of thinking, bookkeeping, 
writing, and time required. In the problems mentioned 
in the preceding paragraph, the ratio of the number of 
output machine instructions to the number of input 
FORTRAN statements for each problem varied be- 
tween about 4 and 20. (The number of machine instruc- 
tions does not include any library subroutines and thus 
represents approximately the number which would need 
to be hand coded, since FORTRAN does not normally 
produce programs appreciably longer than correspond- 
ing hand-coded ones.) The ratio tends to be high, of 
course, for problems with many long arithmetic expres- 
sions or with complex loop structure and subscript ma- 
nipulation. The ratio is a rough measure of the concise- 
ness of the language. 

The convenience of using FORTRAN language is 
necessarily more difficult to  measure than its concise- 
ness. However the ratio of coding times, assembly pro- 
gram language vs FORTRAN language, gives some in- 
dication of the reduction in thinking and bookkeeping 
as well as in writing. This time reduction ratio appears 
to range also from about 4 to  20 although it  is difficult 
to estimate accurately. The largest ratios are usually 
obtained by those problems with complex loops and 
subscript manipulation as a result of the planning of 
indexing and bookkeeping procedures by the translator 
rather than by the programmer. 

Education 

I t  is considerably easier to teach people untrained in 
the use of computers how to write programs in 
FORTRAN language than it  is to teach them machine 
language. A FORTRAN manual specifically designed 
as a teaching tool will be available soon. Despite the 
unavailability of this manual, a number of successful 
courses for nonprogrammers, ranging from one to three 
days, have been completed using only the present ref- 
erence manual. 

Debugging 

The structure of FORTRAN statements is such that 
the translator can detect and indicate many errors 
which may occur in a FORTRAN-language program. 
Furthermore, the nature of the language makes it possi- 
ble to  write programs with far fewer errors than are to 
be expected in machine-language programs. 

Of course, it  is only necessary to obtain a correct 
FORTRAN-language program for a problem, therefore 
all debugging efforts are directed toward this end. Any 

errors in the translator program or any machine mal- 
function during the process of translation will be de- 
tected and corrected by procedures distinct from the 
process of debugging a particular FORTRAN program. 

In order to produce a program with built-in debugging 
facilities, it  is a simple matter for the programmer to 
write various PRINT statements, which cause "snap- 
shots" of pertinent information to be taken a t  appropri- 
ate points in his procedure, and insert these in the deck 
of cards comprising his original FORTRAN program. 
After compiling this program, running the resulting 
machine program, and comparing the resulting snap- 
shots with hand-calculated or known values, the pro- 
grammer can localize the specific area in his FORTRAN 
program which is causing the difficulty. After making 
the appropriate corrections in the FORTRAN program 
he may remove the snapshot cards and recompile the 
final program or leave them in and recompile if the pro- 
gram is not yet fully checked. 

Experience in debugging FORTRAN programs to  
date has been somewhat clouded by the simultaneous 
process of debugging the translator program. However, 
i t  becomes clear that most errors in FORTRAN pro- 
grams are detected in the process of translation. So far, 
those programs having errors undetected by the trans- 
lator have been corrected with ease by examining the 
FORTRAN program and the data output of the ma- 
chine program. 

Method of Translation 

In general the translation of a FORTRAN program 
to a machine-language program is characterized by the 
fact that each piece of the output program has been 
constructed, instruction by instruction, so as not only 
to produce an efficient piece locally but also to  fit effi- 
ciently into its context as  a result of many considerations 
of the structure of its neighboring pieces and of the 
entire program. With the exception of subroutines (cor- 
responding to  various functions and input-output 
statements appearing in the FORTRAN program), the 
output program does not contain long precoded instruc- 
tion sequences with parameters inserted during trans- 
lation. Such instruction sequences must be designed to  
do a variety of related tasks and are often not efficient 
in particular cases to  which they are applied. 
FORTRAN-written programs seldom contain sequences 
of even three instructions whose operation parts alone 
could be considered a precoded "skeleton." 

There are a number of interesting observations con- 
cerning FORTRAN-wri tten programs which may throw 
some light on the nature of the translation process. 
Many object programs, for example, contain a large 
number of instructions which are not attributable to  
any particular statement in the original FORTRAN 
program. Even transfers of control will appear which 
do not correspond to any control statement (e.g., DO, 
IF,  GO TO) in the original program. The instructions 
arising from an arithmetic expression are optimally 



arranged, often in a surprisingly different sequence than 
the expression would lead one to expect. Depending 
on its context, the same DO statement may give rise to 
no instructions or to several complicated groups of in- 
structions located a t  different points in the program. 

While i t  is felt that  the ability of the system to  trans- 
late algebraic expressions provides an important and 
necessary convenience, its ability to treat subscripted 
variables, DO statements, and the various input-output 
and FORMAT statements often provides even more 
significant conveniences. 

In any case, the major part of the translator program 
is devoted to handling these last mentioned facilities 
rather than to translating arithmetic expressions. (The 
near-optimal treatment of arithmetic expressions is sim- 

"ply not as complex a task as a similar treatment of 
"housekeeping" operations.) A list of the approximate 
number of instructions in each of the six sections of the 
translator will give a crude picture of the effort expend- 
ed in each area. (Recall that  Section 1 completely treats 

arithmetic statements in addition to  performing a num- 
ber of other tasks.) 

Section Number Number of Instructions 
1 5500 
2 6000 
3 2500 
4 3000 
5 5000 
6 2000 

The generality and complexity of some of the tech- 
niques employed to  achieve efficient output programs 
may often be superfluous in many common applications. 
However the use of such techniques should enable the 
FORTRAN system to  produce efficient programs for 
important problems which involve complex and unusual 
procedures. In any case the intellectual satisfaction of 
having formulated and solved some difficult problems 
of translation and the knowledge and experience ac- 
quired in the process are themselves almost a sufficient 
reward for the long effort expended on the FORTRAN 
project. 
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Editor 
Record 
Number 

SECTION 
FN090 
FNl00 
FNl 10 
FN120 
FN130 
FN140 
FN 150 
FN160 

SECTION 
FN 170 
FN180 

FN190 
FN200 
FN2 10 
FN220 

SECTION 
FN230 
FN240 

FN2SO 
FN260 

FN265 
FN270 
FN280 

FN290 
FN300 
FN3 10 
FN320 
FN330 
FN340 
FN350 

FN360 

FN370 

SECTION 
FN380 

7 

FN390 

FN400 
FN4 10 
FN420 

Load 
Address 

30 
30 

7700 
3440 
3440 
3440 
3440 
3472 

6613 

1666 
30 

3177 
104 
104 

5474 

5566 
7730 

5566 
7742 
3751 

6665 
7616 
6721 
6721 
6721 
450 
30 

5256 

3646 

30 

6350 

30 
7200 

30 

30 

Description 
of 

Subroutine 

1 
Clear Drum 
Common Storage 
Write Drum 
State D 
State C 
State B 
State A 
Diagnostic 

1 ' 
Drum tables to tape 
Program constants 

and subroutine 
Subroutine 
Program constant 
Part I AMW 
Part 11 AMW 

2 
Block 1 
Block 2, RELCON 

state 
Drum set up 
Block 2, normal 

state 

Block 2, common 
Block 3, common 

and Part 1 
Block 3, Part 2 
Block 3A 
Block 3B 
Block 3C 
Block 4, RELCON 
Block 5, Initializing 
Block 5, Alpha 

cycle 
Block 5, Beta cycle 

and common 
Instruction inver - 

sion 

3 
Merges DO file 

and COMPAIL 
file 

Merges DO file 
and COMPAIL 
file 

Creates TIFGO file 
Creates TIFGO file 
Merges TIFGO file 

and file resulting 
from 1 

Contents of 
TR Word 

053400 100037 

053400 102105 
053400 102103 
053400 102104 
053400 102106 
300000 403510 

076600 000302 
053400 101707 
007400 101710 

077200 000224 

1 - CS 
053400 207766 

053400 207765 

077200 000223 

050000 007776 
053400 100733 
053400 100733 
053400 100733 
050000 001430 
053400 105377 

053400 200145 

053400 200072 

077200 000224 

076200 000222 

053400 402225 

053400 401055 

Last 
Card 
No. 

001 
8 3 
03 
48 
35 
45 
79 
85 

19 

06 
0 2 
01 
20 
12 

41 

24 
02 

26 

42 

07 
05 

006 

055 

1 10 

005 

004 

050 
005 

055 

0 26 

Contents of 

First Word 

070000 000001 
050000 100001 
053400 102105 
053400 103163 
056000 002102 
076000 000140 
077200 000222 
300000 403510 

076600 000302 

000000 000000 
063400 200102 
000000 000000 
053400 101707 
007400 101710 

000000 000000 

053400 100030 
050000 003777 

063400 405622 
076600 000333 
000000 000000 

000000 000000 
076600 000303 
053400 100733 
053400 100733 
053400 100733 
000000 000000 
053400 105377 

063400 406376 

053400 105374 

077200 000224 

050000 102136 

076200 000222 
063400 407217 
053400 402225 

053400 401055 

TRA 
Address 

30 
4 
4 

7700 
7703 
7706 
7711 
3472 

4 

4 
4 

6613 
104 
104 

5522 

4 
7730 

7732 
4 

4012 

4 
6721 
6721 
6721 
6721 
470 
30 

62 

66 

30 

4 

30 
4 

30 

30 

Last 
Address 

40 
3437 
7763 
5 370 
50 30 
5351 
6750 
7136 

7407 

2072 
10 3 

3177 
753 
502 

7320 

6565 
7773 

6650 
776 1 
5565 

7073 
7774 
71 13 
7613 
7232 
1443 
2 17 

7620 

66 37 

162 

6520 

2135 
7324 
2 367 

11 22 
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Editor 
Record 
Number 

Description 
of 

Subroutine 

Last 
Card 
No. 

SECTION 4 
33 
26 
04 
12 
04 
10 
2 3 

121 
04 
11 
08 
99 

19 
02 
01 
0 1 

59 
10 
08 
08 
15 
08 
09 
08 
18 
END 

0 2 
08 
16 
19 
10 
19 
01 
07 

FN430 
FN440 
FN4SO 
FN460 
FN470 
FN480 
FN490 

TRA 
Address 

Part I 
Part I1 

Part I11 
Part IV 
Part V 
Part VI 

107 
4 

1063 
111 
42 
42 

100 

4 
15651 

314 
314 

3470 

30 
4 
4 

30 

166 
166 
166 
166 
166 
166 
166 
166 
166 

OF FILE 

1-CS 
335 

4 

166 
166 
166 

4 
74 

FILE 

Load 
Address 

SECTION 5 (TAG ANALYSIS) 

30 
33 

3064 
33 
33 
33 
33 

30 
15651 

317 
320 
317 

30 
1033 
4020 
7000 

30 
166 
166 
166 
166 
166 
166 
166 
166 

(Not in 
110 

1400 
166 
166 
166 

77766 
74 

MARK (END 

FNSOO 
FNS 10 
FNS 20 
FN5 30 
FNSSO 

SECTION 
FN560 
FN570 
FNS80 
FN590 

Contents of 
TR Word 

Part IA 
Part IB 
Part 2 
Part 3A 
Part 4 

5' 

002000 000107 

002000 001062 
002000 000240 
002000 000042 
002000 000042 
002000 OOO101 

053400 100356 
076200 000223 
076200 000222 
001622 000000 

076400 000203 

076200 000304 
077200 000202 
076200 000202 
053400 100145 
053400 1001% 
053400 100111 
076200 000303 
076200 000304 
076200 000221 

edit deck) 
077200 000222 

077200 000203 
077200 000204 
076000 000162 

077200 000202 
OF FILE) 

SECTION 6 
FN600 
FN6 10 
FN620 
FN6 30 
FN640 
FN65O 
FN660 
FN670 
FN680 
FN690 

REWIND SYSTEMS TAPE 

FNDSO 
FN060 
FIW70 
FN080 

Contents of 
First Word 

Last 
Address 

000000 000000 
002000 001062 
060100 000147 
002000 000240 
002000 000042 
002000 000042 
002000 000101 

076700 000022 
053400 100356 
000000 077777 
076200 000222 
000000 000003 

076400 000203 
050000 000000 
000000 000000 
076000 000006 

000000 200000 
077200 000202 
076200 000202 
053400 100145 
053400 100146 
053400 100111 
076200 000303 
076200 000304 
076200 000221 

076200 000321 
056000 001412 
056000 001412 
056000 001412 
056000 001412 
070000 OOOOO1 
070000 OOOOO1 

1305 
1104 
3210 
437 
16 1 
205 

1021 

5672 
16001 

650 
65 3 

446 3 

444 
1063 
4020 
7013 

205 
SO1 
424 
434 
664 
424 
472 
450 

100 1 

357 
2113 
1024 
474 

1011 
77777 

309 



Record 
Number 

Transfer 
Address 

8L Decrement 

Load 
Address 

8L Address 

0000 
0110 

Last 
Address 

8R Address 

0027 
0416 

Contents of 
Transfer Word 

Contents of 
Load Word 

Description 
of Record 

FILE 1 
000 
00 1 

1-CS (LOC'S 0-27) 
Card to  Tape 

SECTIC 
002 
003 
004 
005 
006 
007 
008 
009 
0 10 
011 

rT 6 
Diag. Caller for Rec. 115 
CIT to  SAP Conver. 
Diag. Caller for Rec. 003 
On-Line Print 
Diag. Caller for Rec. 005 
Tape 3, 7 to  2, 6 
Diag. Caller for Rec. 007 
Successful Compilation 
Source Program Error 

4 l(4k) 
Batch Compilation Monitor 
Machine Error 
Common (4k) 
Delete (8k) Common, Initial 

and State A. 
Write Drum (Init. ) 
State D (4k) 
Delete (8k) States B, C ,  

and D. 
State C (4k) 
State B (4k) 
State A (4k) 
Diagnostic for Sec. 1 

Diag . Caller for Rec. 024 -0 63400 2 00000 -0 63400 2 00000 
Section 1' 7776 1302 1 0 77200 0 00202 0 77200 0 00202 

* ~ e c o r h  020 Uses Modulo Addressing. 

SECTION 1 ' 
021 
022 
023 
024 

Note: All Record Numbers suffixed by an "A" are 8k records. 
TABLE 11. 704 FORTRAN 11, PAGE 1 
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Common 
Part A 
Diag. Caller for Rec. 022 
Part B 

I 
SECTION 2 
0 27 
028 
0 29 
030 
031 

032 
033 
0 34 
0 35 

Block 1 
Diag. Caller for Rec. 027 
B u m  Setup 
Block 2 - RELCON 
Diag. Caller for Rec. 
029 and 030 

Block 2 - Normal 
Diag. Caller for Rec. 032 
Block 2 - Common 
Diag. Caller for Rec. 034 



i C. Note: All Record Numbers suffixed by an "A" are 8k records. 
TABLE 11. 704 FORTRAN 11, PAGE 2 

Record 
Number 

SECTION 
0 36 
0 37 
0 38 

0 39 
040 
04 1 
042 
043 
044 
045 
046 
047 
048 
049 
050 
05 1 
052 
05 3 
054 

SECTION 
055 
056 
057 

058 
059 
060 
06 1 

I 
SECTION 

Description 
of Record 

2 (cont'd) 
Block 3 - Common, Part 1 
Block 3 - Part 2 
Di ag . Caller for Re c. 
036 and 037 

Block 3A 
Diag. Caller for Rec. 039 
Block 3B 
Diag. Caller for Rec. 041 
Block 3C 
Diag. Caller for Rec. 043 
Block 4 - RELCON 
Diag. Caller for Rec. 045 
Block S - Initialization 
Diag. Caller for Rec. 047 
Block 5 - Alpha 
Diag . Caller for Rec. 049 
Block 5 - Beta and Common 
Diag. Caller for Rec. 051 
Block 6 - Inversion 
Diag. Caller for Rec. 053 

3 
Open Subroutines 
Part 1 of Merge 
Diag . Caller for Rec. 
055 and 056 
Part 2 of Merge 
Diag . Caller for Rec. 058 
Part 3 of Merge 
Diag . Caller for Rec. 060 

4 (4k) 

Transfer 
Address 

8L Decrement 

0004 
6721 

0 300 
6721 
0300 
6721 
0300 
672 1 
7400 
0470 
2000 
00 30 
2000 
0062 
6000 
0066 
6000 
00 30 
7000 

0004 
0030 

7755 
00 30 
7755 
0030 
7755 

062 
063 
064 
065 
066 

067 
068 
069 
070 
07 1 
072 
07 3 
073A 
074 

SECTION 
062 
through 
072 

0112 
1400 
0004 
1063 

3211 
011 1 
0440 
0042 
0 162 
0042 
0444 
0 100 
0 100 
1022 

Part 1 
Diag. Caller for Rec. 062 
Part 2, First Rec. 
Part 2, Second Rec. 
Diag . Caller for Rec. 
064 and 065 

Part 3 
Diag. Caller for Rec. 067 
Part 4 
Diag . Caller for Rec. 069 
Part 5 
Diag. Caller for Rec. 071 
Part 6 
Delete (8k) Part 4 
Diag. Caller for Rec. 073 

4 (8k) 
Same Records as 
used by the 
4k Version 

Load 
Address 

8L Address 

6665 
76 14 

0 300 
6721 
0300 
672 1 
0300 
6721 
7400 
0450 
2000 
0030 
2000 
5256 
6000 
3646 
6000 
0030 
7000 

707 1 
0030 

7755 
0030 
7755 
00 30 
7755 

0030 
1400 
0033 
3064 

3211 
0033 
0440 
0033 
0 162 
0033 
0444 
0033 
0033 
1022 

Last 
Address 
8R Address 

7073 
7774 

0321 
7113 
032 1 
7613 
0321 
7232 
742 1 
1443 
2021 
0217 
2021 
76 20 
602 1 
66 37 
6021 
0162 
7021 

7777 
2326 

7776 
2367 
7776 
2715 
7776 

1327 
1421 
1104 
3210 

3232 
0437 
046 1 
0161 
0203 
0205 
0465 
1021 
0000 
1043 

Contents of 
Transfer Word 

-0 53400 1 00027 
0 so000 0 07776 

-0 63400 2 00000 
-053400100733 
-063400200000 
-0 53400 1 00733 
-0 6 3400 2 00000 
-0 53400 1 00733 
-0 63400 2 00000 
0 SO000 0 01430 
-063400200000 
0 53400 1 00131 
-063400200000 
053400200146 
-0 63400 2 00000 
0 53400 2 00126 
-0 63400 2 00000 
0 77200 0 00224 
-063400200000 

-053400100027 
0 53400 1 02164 

-0 63400 2 00000 
0 53400 4 02274 
-063400200000 
053400401202 
-0 63400 2 00000 

Contents of 
Load Word 

0 00000 0 00000 
-0 63400 1 77777 

-0 63400 2 00000 
-053400100733 
-063400200000 
-0 53400 1 00733 
-0 63400 2 00000 
-0 53400 1 00733 
-0 63400 2 00000 
+010000000001 
-063400200000 
0 53400 100131 
-063400200000 
-063400406252 
-0 63400 2 00000 
000000000000 
-0 63400 2 00000 
0 77200 0 00224 
-063400200000 

2OOOO1401306 
0 53400 1 02164 

-0 63400 2 00000 
0 53400 4 02274 
-063400200000 
053400401202 
-0 63400 2 00000 

0 77200 0 00224 
-063400200000 
-053400100027 
-053400100SSl 

-0 63400 2 00000 
-0 54300 3 07774 
-063400200000 
-053400100031 
-0 63400 2 00000 
OSO000000032 
-063400200000 
0 77200 0 00224 

----- - ----- 
-0 6 3400 2 00000 

000000000000 
-063400200000 
000000000000 
-063400400122 

-0 6 3400 2 00000 
000000000000 
-063400200000 
OOOOO1000000 
-0 63400 2 00000 
000000700000 
-063400200000 
000000000000 

----- - ----- 
-0 63400 2 00000 



Transfer 
Address 

8L Decrement 

SECTION 4 (8k) (cont'd) 
Delete (4k) Part 6 

:::A 1 Part 6 (8k) 
Same as 4k 

Load 
Address 

8L Address 

OOO1 
0033 

SECTION 
075 
075A 
076 

076A 
077 

078 
078A 
079 
080 
080A 
08  1 
082 
082A 
08 3 
084 
084A 
085 
086 
086A 
087 
088 
088A 
089 

SECTION 

Last 
Address 

8R Address 

0000 
1021 

5 (4) 
Part 1A - Optimize 
Delete (8k) Part 1A 
Part 1B - Initialize and 

predict Limit 
Delete (8k) Part 1B 
Diag . Caller for Rec. 

075 and 076 
Part 1C - Succ. Limit 
Delete (8k) Part 1C 
Diag . Caller for Rec. 078 
Part 1D - Pred. UNDO 
Delete (8k) Part 1D 
Diag. Caller for Rec. 080 
Part 1E - Succ. UNDO 
Delete (8k) Part 1E 
Diag. Caller for Rec. 082 
Part 2 - Permute 
Delete (8k) Part 2 
Diag . Caller for Rec. 084 
Part 3 - GO TO N, ASCONS 
Delete (8k) Part 3 
Diag. Caller for Rec. 086 
Part 4 - COMPILE 
Delete (8k) Part 4 
Diag. Caller for Rec. 088 

5 '  

Contents of 

Entire Section 
09 1 Ogo I Diag. Caller for Rec. 090 

Contents of 
Transfer Word 

0210 
1125 

an "A" are 8k rec 
TABLE 11. 

I 
SECTION 6 

11, PAGE 3 

09 2 
093 
094 
095 
096 
097 
098 
099 
100 
10 1 
10 2 

10 3 
104 
105 
106 

Pre-6 
Diag. Caller for Rec. 092 
Binary Search 
Diag. Caller for Rec. 094 
Assign Common 
Diag . Caller for Rec. 096 
Equiv - DIM 
Diag. Caller for Rec. 098 
Common Mapping 
Fortran FTN Assn 
Diag. Caller for Rec. 

100 and 101 
First Pass CIT 
Diag. Caller for Rec. 103 
Map Fortran Funct. 
Diag . Caller for Rec. 105 

Note: All Record Numbers suffixed by 



Transfer 
Address 

8L Decrement 

Load 
Address 

8L Address 
Address 

8R Address 
Contents of Contents of 

Transfer Word Load Word 

J 6 (contfd) 
Map EIFN 
Diag . Caller for Rec. 107 
Map Program 
Map Other Variables 
Write Prog . Card 
OP Tables 
Second Pass CIT 
Diag. Caller for Rec. 109, 

110, 111, 112, 113 
Library Search and Punch 

J 1 (8k) 
Delete (4k) Common 
Common, Initial, and 

State A (8k) 
Delete (4k) Write Drum 

and Initial 
Delete (4k) State D 
States R, C,  and D (8k) 
Delete (4k) State C 
Delete (4k) State B 
Delete (4k) State A 
Diagnostic for Sec. 1 

020 Uses Modulo Addressing. 

016 
016A 
017 
018 
019 
0 2 w  
* Record 

I 
SECTIOE 
075 
075A 
076 
076A 

i 5 (8k) 
Delete (4k) Part 1A 
Part 1A - Optimize 
Delete ( 4 )  Part 1B 
Part 1B - Initialize and 

Pred. Limit 
Diag . Caller for Rec. 

075 and 076A 
Delete (4k) Part 1C 
Part 1C - Succ. Limit 
Diag . Caller for Rec. 078A 
Delete (4k) Part 1D 
Part 1D - Pred. Undo 
Diag . Caller for Rec. 080A 
Delete (4k) Part 1E 
Part 1E - Succ. Undo 
Diag . Caller for Rec. 082A 
Delete (4k) Part 2 
Part 2 -, Permute 

77750 
0001 
4740 

77750 
000 1 
4740 

77750 
0001 
4740 

77750 
0001 
0317 

77750 
0001 
0320 

77750 
0001 
0317 

77750 
cords. 

088 
088A 
089 
Note: A: 

Diag . Caller for Rec. 084A 77750 
Delete (4k) Part 3 0000 
Part 3 -, GO TO N, ASCONS 0320 

Diag . Caller for Rec. 086A 77750 
Delete (4k) Part 4 0000 
Part 4 -, COMPILE 3541 
Diag . Caller for Rec. 088A 77750 

11 Record Numbers suffixed by an "Au are 8k re 
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