
COMUNICACIONES TECNCAS

Vol. V

1974 Serie B: Investigaci6n No. 70

I
I

*Investigador del CIMAS.

Rec ibid a 14- IV-7 4 Revisada por :
Robert Yates.

ABSTRACT

.A description of .the implementation of the LISP 1, 6

language in the B-6700 computer of the National University

of Mexico is presented, including a b~ief description of .,,,,_

the interac'ti've facilities and the functions implemented.

INDEX

1. Introduction.

2. An Overview of the System.,

3. Descripti~n of the Interpreter.

4. Description of System Functions anC.: I,to.r,s .

. ,
5. Inter'active Facilities.

6. Use and Generation of the System.

7. Acknowledgments.

8. Bibliography.

1.

INTRODUCTION

The LISP .(LISt Processing) Language was developed in

1958 by a group headed by Prof. J. Maccarthy at MIT [1].

Since then, LISP has become not only one of the most often
.

used languages in symbolic manipulation, (specially in

artificial intelligence, algebraic manipulation, etc.),

but also, thanks to its elegant mathematical structure, a

vehicle for most of the research in the area of automatic

program synthesis and verification.

This paper is a description of the implementation of

LISP 1.6 [2~3] on the B-6700 computer of the National

University of Mexico. Although we have tried to be as

clear as possible, some of it may have meaning only to

those familiar with the language. For an introduction to

LISP programming the reader is refered to [4] or [sJ.

For ·the sake of completeness, brief de scriptions of

the functions implemented and of the interactive facilit ies

are included as we ll a s instructions to use and generate

the system. A more detailed description of the functions

available can be found in [6]. The reader may also consult

[9] for the results of a program testing all the features

of the system.

AN OVERVIEW OF THE SYSTEM

LISP has been implemented in the B-6700 through an

2.

Interpreter written in Burroughs Extended Algol [7]. The

interpreter exists in two modes, batch and interactive or

remote, the bnly difference being the editing and break

packages available in the latter.

In either mode, th~ Interpreter operates in EVALQUOTE,

reading a P,air of s-e_xpressions from its input file, and

printing the. evaluati.on on its output file, until an end of

file condition i.s encountered on the input.

The system operates· on an array of 64K words, divided

into 11spaces" of 256 words :each. Spaces are allocated,

dynamically for the di£ferent type~ of data·the system

handles, atoms, lists,. large numbers and arrays.

Within each space, locations are assigned sequentially

for only one type of data, and with the exception of

arrays where segm~ntation 1s avoided, new spaces are assigned,

only when the current one 1s used up.

An inventory of spaces is kept, as well as pointers to

the next available cell of each data-type.

The system will recognize as an atom any sequence of

characters, beginning with an alphabetic character, and not

including any of the following () , $ - + . [J or blanks.

The bpackets are treated as 11super-parentheses 11 ; a

right bracket supplies enough right parentheses to match
- ,.,

back to the last leftoracket or, if none is present, to

match the first left parenthesis of the expression. It is

important to point out, that this system does not have

dotted pairs.

3.

Special atoms, i.e. those including ilegal characters

may be read with the $dsd syntax, where dis any character

not is s, the print name of the special atom.

Numbers can be written either in decimal or in octal

(appending a Q), and may be signed or unsigned, integers

or reals; tl'e exponential notation is valid.

There are two kinds of numbers in the system, the so­

called "small numbers 11 and "large numbers".

Small numbers are integers whose absolute value is

less than 220
• They are sibred as pointers outside the

available space, i.e. positive smai1 number·n is represented

as 220 + n , and negative small number n as 221 + 220 + lnl,

Large numbers, i.e. any non-small number, are stored

in the normal B-6700 format, one per word; no attempt to

avoid duplication 1s made.

Unless expressely indicated not to, the system will

always attempt to store numerical results as small numbers.

The system allows the user to declare arrays of any

syze and dimensions. The elements rif the arrays may be of

any type, and furthermore, they may be mixed. Multidimen­

sional arrays are implemented as arrays of arrays.

Array$ of less than 510 words are never segmented.

On the remote version, the_systern offePs two interac­

tive, features , the editing and the break pa. ,ages.

The editing package, allows the user to modify the

definition of functions and property lists, while the break

4.

package provides for selective insertion of interruptions

or "breaks" at any point in the definition of a function.

At this break, the user may inquire the value of any atom,

assign new values, or evaluate any function, having full

command of EVAL, before continuing the original evaluation.

The typing of "control - A11 , unwinds the system to the

last ERRORSET, or to the top level, if none is present.

The same effect is gotten by typing the "BREAK11 key during

output.

s.

DESCRIPTION OF THE INTERPRETER

SYSTEM ARCHITECTURE.

The Interpreter makes use of the following data

structures as its own tables and pointers.

MEM This array of 64 K words holds all the LISP

structures. All the LISP pointers are indices

within this array, As mentioned before MEM is

divided into 11 spaces 11 of 2 5 6 words each , for the

different LISP data-types, It should be noted

that, as words in MEM are assigned sequentially

within a space, themselves assigned sequentially

also, there is no need for a free storage list,

only a set of pointers to the next available word

of storage, per datatype; on the other hand, this

requires a compacting garbage collector. (The

size of MEM may be modified, changing the defined

identifier MEMORIA).

DATATYPE Datatype is a one-dimensional array of 256 words,

one per space in MEM, identifying the kind of data

in the corresponding space. To help the compacting

phase of the garbage collector, pointers linking

spaces of same type are kept. Finally, the number

of words unused in a space of arrays is also saved.

The format of the word5 in DATATYPE is shown in fig.

1.

2 I

2 2

2

I 5

3
I

100 4 7

128 4 7

- - - --- - - -- ~ -

~RRAY DATATYPE

REMAINING
WORDS TYPE.

. ATOMS

ATOMS

ATOMS

LISTS

LARGE

NUMBERS

LISTS

ARRAYS

ARRAYS

' I
l
I
I

ARRAY MEM .

NEXT SPACE
SAME TYPE

..,
!'

~

~

~

-
~

W,ORD OF OATATYPE

FIG. I MEMORY ORGANIZATION

1
!

'

ARRAY FS1:..

INDEX

' 7.

The variable INDEX points to the next available

word in DATATYPE, i.e. to the next available

space.

FSL This 4-word. array holds a pointer to the last

used word of MEM of each type, or a zero if none

has been allocated so far.

OBLIST Atoms with same hashing are linked together. The

hashing heads are held in ·oBLIST, a one-dimensional

array of 128 words. New atoms are allways inserted

at the head of the list.

BUFF This is a two-dimensional array that serves as

NUMCOL

I/0 buffer, one array row per file.

modified when a new file is created,

. . .
Their size is

The number of characters so far written or read

from buffer BUFF[I,*] are kept in NUMCOL[I].

PBUFFIN, PBUFFOUT These are pointers (in ALGOL sense),

pointing into the current input and output buffers

respectively. PBUFFIN points to the next character

to be read, while PBUFFOUT points just ahead of•

the last character written.

LINEA, PLINEA. As the size of an I/0 buffer is variable,

ARGS

PLINEA [I] holds the number of words of buffer

BUFF [r]. For convenience and speed, the number

of characters are held in LINEA [I].

The array ARGS is used as a stack, where old

bindings of arguments in lambda expressions, as

well as locals and labels in prog 1·s are saved.

B

s

EJEC

STACKE

8.

Each word of ARGS holds two pointers, one to the

old binding, and one to the atom, to ease re-bind

ing when exiting a lambda or prog expression. At

each function call, a marker is inserted in ARGS

acting as a separator. This marker holds a

pointer to the name of the function called~ a link

to the previous marker, and a distinguishing mark.

(See figs. 9 and 10).

The index in ARGS of the last marker is saved in

B.

Variable S points to the top of the stack ARGS.

The expression currently under evaluation 1s

pointed at by EJEC.

In the interactive version, the editing routines

make use of array STACKE as a stack, when

traversing the list structure being edited. To

facilitate the work of the editor, it holds both

a pointer to the head of the sublist, and a

number, the index of this sublist in the list

minus·one. (See fig. 2).

PE Pointer to the top of STACKE.

MACRODEF Contains the text associated with the

macro-instructions defined in the editing routine.

LASTDEF Points to the next available byte in MACRODEF.

....--

300

LAMBDA

9.

(LAMBDA (X) (IF (ZEROP X) I . (TIMES X (F (DECR X)))))

FIG. 2a. ORIGINAL EXPRESSION

301

30Q2J
304 305 308 309

·x

- -- -

2

3

2

IF

306 307

ZEROP X TIMES

F

DECR X

FIG. 2b. ORIGINAL EXPRESSION IN MEM

- -

310

304

300

FIG. 2c. STACKE ·• WHEN THE EXPRESSION

UNDER ANALYSIS IS (F (DECR X))

311

X

10.

DATA TYPES.

The format of the datatypes handled by the system in

MEM is as follows:

List nodes use one word of storage to house the 2

pointers, 11 CAR11 in field [45: 22] and 11 CDR 11 in [21: 22] .;,lus

a space for the garbage collection mark in [47:1]. (See

fig. 3) .

An atom uses at least 3 words of storage, according to

the format illustrated in fig. 4, where:

The "fun" field ([28 :9]) carries a number that uniquely

identifies system functions. Program defined functions

carry their definition as first element in the property list.

"trace" ([46: 1]) is on when a trace of this atom is desired;

in those cases "# recur'1
([37 :9]) will hold the recursion

level for that function. "funarg" ([23: 1]) indicates a

functional argument (see evaluation). Finally, 11oblist"

((19:20]) is.used to link atoms with same hashing.

The organization of arrays is indicated in fig.5 and

fig. 6, for unsegmented and segmented arrays respectively.

In both cases, each segment carries a header word with: the

declared lower bound of the array in field "liminf'' ([45:13]),

segment size in field "dim" ([32: 9]) and a special marl<

(bit 23) which is on for headers. Segments of the same array

are linked, in a circular list, via the field link ([21:22]),

the last segment having the segmentation bit (bit 22) off.

Unsegmented arrays point to themselves and the segmentation

bit is off.

11.

CAR I CDR

FIG. 3 LIST NOD.E

G F
u

PROPERTY VALUE N LIST
C

A
R
G

T
NAME ~ ~ RECUR ;; FUN OBLIST

C LENGTH E

P,RINTNAME

- - - - - - - - ---..J - - - ~ - - -
FIG. 4 ATOMS

s
UMINF DIM T E LINK -

G

WORD 0 . WORD I

,WORD 2 \NORD 3

'
-- - -

FIG. 5 UNSEGMF.:NTED ARRAY

l - I - - I-., .,, -- - --- ,, 1--

,_ - - i-. --- -
FIG. 6 SEGMENTED ARRAY

-
12.

PROCEDURES.

Initialization and Miscellaneous Routines.

Initialization of the system is carried out by procedure

INICIALIZA. This procedure fills in the system predefined

atoms and functions into array MEM, setting up in an appro­

priate manner the hashing heads in OBLIST, as well as DATA

TYPE, FSL and INDEX. Finally INICIALIZA sets up the I/O

buffers.

DUMP. Procedure DUMP.is used to dump array MEM. Its

argument is the index to a file.

ERROR. ERROR is used to print out error messages,

Storage Handling Routines.

free storage cells are provided to the system by

procedures LIIT (for nodes and numbers), LIFTATOM (for atoms)

and LIFTARRAY (for arrays). The operation of the first two

is straightforward. LIFTARRAY will never segment an array

of less than 510 words. It will first search in any

previous array spaces for available storage, a~d if none is

found it will ask for a new space to be allocated.

New spaces are allocated by procedure GETSPACE, which

keeps DATATYPE up to date. When no more free storage is

available, GETSPACE calls on GARBAGE to perform the garbage

collection and ~ompactification,

13.

The compacting garbage collection is done in four

steps: the first is the marking phase, where ~11· the

elements taking part in the computation are marked to sep~

rate them from the garbage. The structures to be saved

are pointed at by EJEC, the elements from the stacks used

for evaluation (argument stack, Algol stack) and the atoms

(including their values and property lists). This is done

by the recursive procedure MARCA which traverses a list

structure marking the elements and Espol written intrinsics

that scan the stack for list pointers.

The second is the moving stage, where all marked

elements are copied sequentially, per data type, into a

duplicate of array MEM (MEM1), modifying the elements in

MEM, to point to the place where they now lie in the dupli

cate. A dup~icate of DATATYPE is also constructed in this

phase.

The third phase, updates all the pointers in MEM1,

making use of the addresses left in MEM. Figure 7 illus­

trates this phase. Once more, Espol written intrinsics

are used to modify the contents of the machine 1 s stack.

Finally, the contents of MEM1 is copied back into MEM.

In a future version of the system, this will be handled

by exchanging the appropriate data descriptors, and letting

the MCP take care of removing the now unwanted array MEM1

(local to procedure GARBAGE).

--

310

200

A

llO

316

317

318

320

365

320

)

)

)

4
)

C >
I

250

B

300

304

303

301

302

MEM

318

318 316

316 113

C

o) INITIAL STATE (A,B,C AND D ATOMS)

4>

')

I

')

I

300

301

302

303

304

200

250

318

220

115

MEM I

14.

320

365

316

b) MEM AND MEM I AFTER THE MOVING INFORMATION PHASE

300

301

302

303.

304

200

250

303

220

115

301.

302

ti t,'.EM I AFTER UPDATING POINTERS (WE ASsu:,iE THAT THE ATOMS IN 200, ~20 A;'ll) :::::o
WERE.-~!3T MOVED) l FIG. 7 OPERATION OF THE GARBAGE COLLECTOR

--
15.

Input Routines.

The input routines are driven by procedure LEE.

Its arguments are a pointer where to start constructing

the list structure, a boolean variable indicating whether

one or two s-e~pressions are to be read and the input file.

LEE will in turn call on TERMINALISTA (for a 11
]

11
),

CREALISTA (for a 11
(

11
), CREANUMERO (for a number),

FINDELISTA (for a 11)"), CREATOMO (for an atom) and

CREASPECIAL (for' a "$ 11
) •

The last two procedures will call on INSERTATOMO to

either create the atom if not present in the system, or

get a pointer to it.

It is important to note that while reading an

s-expression, the list structure is being constructed like

a threaded list, with the last element always pointing to

the previous level (see fig. 8).

These threads are removed when the expression is

completed.

Also among the input routines is procedure LEECH, to

read a character at a time.

Output Procedures.

The output procedures are driven by IMPR and IMPR2.

The only diffe~ence between them, is that IMPR2 will output

(A B (C D E) (-F G (H I)))

A B

C D E F. G

FIG. 8 LIST STRUCTURE AS IT LOOKS AFTER TrlE ATOM 1-1 Ht\S BEEN R[t~D.

H

~
CT, .

,

17.

special atoms in a format acceptable by the input routines.

IMPR (IMPR2) calls on PRINT (PRINT2) to recursively

print a list structure. In turn PRINT (PRINT2) calls on

PRINTNUM1 for small numbers, PRINTNUM2 for large numbers,

PRINTATOM (PRINTATOM2) for atoms and PRINTARRAY for arrays.

Also part of the output procedures are ESCRIBE to

print a line, IMPCH to print a character, ESYZE and

PRETTYPRINT to do the prettyprint and IMPTRACE to printout

the tracing of atoms and functions.

Evaluation.

Evaluation is performed basi~ally by EVAL, which

recursively evaluates list expressions. EVAL is assisted

by procedures EQUAL to evaluate (EQUAL X Y), GETD to obtain

the address ~fa given system function, EVALQUOTE, - which

converts list structures read in evalquote notation to eval

notation and by ARREGLOS, to create the declared arrays.

The system uses the so-called "shallow approach" [a] ,

to store the values of atoms, (i.e., only the last binding

is stored at the value cell of an atom).

When a lambda expression is encountered, the arguments

are evaluated, previous bindings of the parameters are

saved in ARGS and new binding are made. On exiting, the

parameters are rebound to their previous values. A similar

18.

approach is used in prog expressions for locals and labels.

Functional arguments are detected by the Interpreter,

and the bindings are done in the property list cell instead

of the value cell,

The functional argument problem is solved providing

FUNCTION with an optional second argument. This argument

specifies certain variables whose values at that time are

saved for future reference. The funarg bit of the function

passed is set to 1 to alert the Interpret about this. (See

figures 9, 10 and 11).

The current values of these variables are stored in

the property list of the function, under a special header,

and the "funarg" bit in set to one.

DESCRIPTION OF SYSTEM FUNCTIONS AND ATOMS

The B-6700 LISP allows the user to redeclare syste~

functions, both to create a synonym and to assign a new

meaning to a standard function. Also, standard atoms such

as NIL or T may get new values assigned, but the user is

advised against this, as the results are unpredictable.

The system 1s very flexible in handing arguments to

functions, letting the user pass any nwnber of them.

Missing arguments are always assumed to be NIL (even in

arithmetic fW1ctions), while the extra ones are evaluated

in program defined functions and ignored in system fuDctions.

····-··· -··-··-·-------

19.

ZEROP

X 3

FACT

TIMES

IF

X 4

FACT

TIMES

IF

X 5

FACT

TIMES

IF

X PREVIOUS BINDING OF X

FACT

Fig. 9. State of ARGS during the evaluation of
FACT(5) defined as (FACT (X) ·(IF (ZEROP X) 1
(TIMES (FACT (DECR X)) X))) •

y

F

RETURN

A

PROG

X

H

G

u

LAMBDA

--
--
,(--
--
--...
~ -...

--
-...
~ -
--

-

--

□
I--,

,

~

n_

I :
I I u-

..

~

20.

PREVIOUS BINDING OF Y

-I (PREVIOUS BINDING OF A)

PREVIOUS BINDING OF X

PREVIOUS PROPERTY LIST OF H

PREVIOUS BINDING OF U

Fig. lOa. State of ARGS when· entering F after the first call

of Gin the program of Fig. 11.

A

y

F

RETURN

A

?ROG

X

H

G

u
LM!.BOA

~

<;;

<

<:

~

I (PREVIOUS Bl NDING OF A)

PREVIOUS BINDl~G OF Y

• I (PREVIOUS BINDING OF A)

PREVIOUS BINDING OF X

PREVIOUS PROPERTY LIST OF H

PREVIOUS BINDING OF A

Eig. l0b. State of ARGS when entering F after the second call

of Gin the program of Fig. 11. Note that A has been rebound

21..

~ -1 just before· entering F, as a result of using (FUNCTION F (A)} . •

r

L I S ?

;i

47
0F.1-H.E< C

B 6 7 0 0

-(COi X> CPHOG (A)

))

CF ~ >
~

SETCA --1)
.. J
~

(SETO .~ 1)

< RE:TUTIN CH X> J

<LANRDA CU) CG CFLir-JCTION F:) U)) (3)
-3
It
<I.Al\111DA CTJ) CG (FUNCTION F U\)) U)) C~)
3
Ill

?E~lD
I!

22.

'13/20/71•

Fig. 11. Simple LISP program showing the FUNARG problem. Note

the use of the opti?nal second argwnent of function in the second

call of G and its effect.

23.

SYSTEM FUNCTIONS~·

Unless contrarily specified we shall use the letter

A to denote non-numeric atoms and N to denote n~~bers

(either small or large). In this case, we shall

distinguish them by the use of an I if N is small and a B

in case N is a large number. Letter L will usually stand

for a list, M for an array and X will be used whenever

the kind of obj ect we are making use of is inmaterial for

the function being considered (i.e., if the function is

defined for any i tem already existing in the system).

S-expressions will be denoted by an S.

To simplify even more our notation, our symbols so

defined may appear one followed by another. By this we

mean that the argument of the function may be of any of

the kinds represented by the let ters appearing in such a

chain. For example, if we write 11 PRETTYPRINT (AL A)",

we mean that the firs t argument of PRETTYPRINT may be

either an atom or a list and that the second must be an

atom; this, of course, would not exclude th~ case in which

the second is omited: PRETTYPRINT (AL).

All conventions above remain valid for letters having

indices.

Recall that any argument not present will be ass~ued

to be NIL by the sys tem.

24.

To avoid repetition we shall only state explicity

those functions in which no argument evaluation is made,

and so, reference to argwnents is really reference to the

arguments' value. Also, if we do not state the contrary,

we assume, the file "CARD" for input and "LINE 11 in output

functions; these will also be usually the files used when

the file designator of an input/output functions is omited

or is NIL.

ABS(N).- Returns the absolute value of N.

ACCEPT (A). - Displays A on the "SPO" and causes th·e

execution to be suspended until a response is keyed

in at the SPO. Its value is that response.

ADD(A AI ALN).- Searches for the label AI in the property

list of A. If found, ALN is added as an element of

the property associated to AI (Thus, that property

must be a list); otherwise ALN is put as a singlet

at the end of the property list of A after the label

Al.

AND(S1 s2 ... Sn).- Evaluates sequentially the Si's. If

any of them is NIL, execution terminates and the

value of AND is NIL; otherwise the value is S .
n

AND() is always T.

APPEND(L1 L2).- Makes a list with all the elements of 1
1

followed by the elements of L2 .

25.

ARRAY(LN
1

LN 2 ... LNn S).- Returns an n-dimensional array

created in the following way: if the i-th argument

is a list, it must be of the form (N.
1.1

and

then the i-th dimension of the array is created to

have (N. -N. +1) elements, and having its lower bound
1 1 .l.2

equal to N ..
1.1

If it is a number, its efect is equiva

lent to having placed (0 N.).
1

Al l the elements of the

array are assigned the value S, evaluated once for the

whole array,

ARRAYP(X).- T if X 1s an array, NIL in any other case.

ARRAYSIZE(M).- Returns the number of elements of M; in case

Mis multidimensional returns its number of rows.

ARRAY*CLN
1

LN 2 ... LNn S).- Same as ARRAY but Sis e valuated

again for each element of the array.

ASSOC(ALN L).- Searches in L for a sub-list having its

CAR equal to ALN, I f f ound, the value of ASSOC is

such sublist, otherwise is NI L.

ATOM(X).- NIL if Xis a list T otherwise.

BAKGAG(S).- Sets the error-print control equal to S , so

that error messages are not printed while that

control is T. Eve n though no e rror mes s age is

printed, unwinding always takes place.

previous setting,

Ret urns

BREAK(L).- L must be o f the f orm (A1 A2 ... An), where e ach

26.

of the A. 1 s has a definition as a LAMBDA or NLAMBDA
].

expression; if such is the case, a call to BREAK1 is

inserted in the definition of A. after its argument
l.

list. This function is defined only in the remote

version.

BREAK1(A LS).- If Land Sare not present or if Sis

different from NIL, calls the break routine of the

interpreter; otherwise nothing happens. Neither A nor

Lare evaluated. In the batch version, its effect is

identical to COMMENT.

BREAKIN(A s1 S2).- Inserts a call to BREAK1 in the

definition of A. s1 is of the form (BEFORE L) or

(AFTER L), where Lis a pattern, and s
2

a condition;

if s1 matches with some part of the definition of A,

(see editing command "B") the call to BREAK1 is

inserted there and the value is T; in the other case,

the value is NIL. Defined only in the remote version.

CAR(AL).- As usual its value is the first element of AL

in case AL is a list. If AL is an atom, returns its·

value.

CDR(AL).- If AL is a list returns it with the CAR deleted,

if it is an atom returns its property list.

C ... R(AL).- All combinations of CAR and CDR up to the fourth

level are included.

r

27.

COMMENT (X),- Used to introduce comments in a program.

Returns always NIL; Xis not evaluated.

COND (L1 L2 ... Ln),- The L
1
. are of the form (S. ,S S.

1 1 1 2 1 k,
J.

where the S, , are predicates.
11

The lists are

considered sequentially until an S. , is not NIL,
J1

S. thru S.
J 2 Jk.

J

are evaluated and the value of the

then,

last

one is returned; if k.=1 the
J

value of S. is returned. .,
-'1

If all the.predicates are NIL, returns NIL.

CONS (SL).- Returns at list with CAR S and CDR L.

DECR (N).- Returns N-1.

DEFINE (L). - Each element of L is a list of at least two

elements, the first always an atom. If there are only

two elements the second is either a LAMBDA or NLAMBDA

expression that becomes the definition of the atom, or

is another atom, defining the first atom to be the

same function as the second one. If there are more

than two elements, they are the list of arguments and

the body of a LA~BDA expression to be associated with

the atom. Returns a list of the defined functions.

DEFLIST (LAI).- Lis a list of pairs, atoms and properties.

The properties are saved in the property list of the

respective atom under the label AI.

28.

DISPLAY(A).- Displays A on the SPO , returns·NIL.

DIVIDE(N1 N2). - Constructs a lis t with QUOTIENT(N1 N2) and

REMAINDER(N 1 N2).

DREMOVE(ALN L).- Searches in L for all the elements EQUAL

to ALN . Returns L with those element s removed,

(This function is destructive) .

DREVERSE(ALN),- If Lis a list, retur ns it with all its

e lements in reverse order; otherwise returns ALN.

(This func tion is destructive).

DSUBST(ALN1 ALN 2 L).- Searches in L for all the elements

EQUAL to ALN1 . Returns L with t hose elements

replaced by ALN2 . (This function is destructive) .

' DUMP(A). - Writes the main system array (MEM) on the file A,

as sumed to be a printer with MAXRECSIZE of at least

22 words .

EDI T(A) .- Calls the system edit or . Defined only in the

remote version. A is the function to be edited.

ELT(M N1 N2 ... Nn).- Returns the N1
element of M.

N -th n

ENTIER(N).- Evaluates to the greates t integer less than or

equal to N.

29.

EQ(AI1 AI 2).- T if its arguments are e~ual, NIL otherwise.

EQP(AN1 AN2).- T if its arguments are equal, NIL other­

wise.

EQUAL(ALN1 ALN2).- T if its arguments are equal, NIL

otherwise.

ERRORSET(S).- Evaluates Sand returns a list with that

value in case no error occurred during the evaluation;

in other case returns NIL.

EVAL(S).- Evaluates Sand returns that value.

FILE(A L).- Defines A as the file having the attributes

indicated in L; these must appear in Las sub-lists

on the form (attribute value). No mnemonics are

allowed.

FIXP(X).- T if Xis an integer, NIL otherwise.

FLOAT(N).- Converts N into a large number.

FLOATP(X),- T if Xis a large number, NIL otherwise.

FMINUS(N).- FLOAT(MINUS(N)).

30.

FTIMES(N1 N2 ... Nn).- FLOAT(TIMES(N1 N2 ... Nn)) . .
FUNCTION (ALL).'- Used to pass functional arguments. It

does not evaluate its argum~ts. AL is either the

name of a function or a LAMBDA or NLAMBDA expression.

If Lis present, it is a list of atoms whose values

at that point are saved, to be restored when the

functional parameter to which AL is bound, is invoqued.

GENSYM(),- Creates and returns an atom of the form

GDDDDD, new at each call, where Dis a digit.

GETD(A),- Returns the definition of A. If A is synonym of

some function, returns that atom.

GETP(A AI),- Searches in the property list of A for the

label AI; if found the value is the associated

property, otherwise is NIL.

GO(A).- Transfers control to the expression following the

label A (which is evaluated). I~s use anywhere

outside a PROG may cause unexpected results.

GREATERP(N
1

N2).- T if N1 is greater than N2 , NIL in any

other case.

IF(S
1

s
2

s
3
).- If s1 is different from NIL returns s2 ,

otherwise returns s 3. Note that only one of them is

evaluated,

INCR(N).- Computes N + 1.

(LAMBDA L s
1

s
2
... Sn) L1 .- Defines a function whose

independent variables are given in L. Also provides

a one-to-one correspondence between them and the

31.

elements of L1 = (s1 s 2 ... S~) which contains the

arguments of the function, in the following way: If

more formals (the elements of L) than arguments are

found, the remaining are assigned value NIL; if, on

the other hand, more arguments than formals appear,

the remaining argl.lments are evaluated but ignored.

Once the binding is finished, the S.'s are evaluated
l.

sequentially and the value is S . n

LEFTSHIFT(N I).- Shifts I places to the left on the bits

of the integral part of N. I must be less than or

equal t'o 39.

LENGTH(ALN).- If ALN is a list returns its number of

elements; or, ALN in the other case .

. 1

LESSP(N1 N2).- Tor NIL according to whether N1 is less

than N2 or not.

LIMINF(M).- Returns the lower bound of M.

LIST(X1 x2 ... Xn).- Mak.es a new list containing all its

arguments.

LOAD(A S).- Reads an S-expression from file A. Ifs is

different from NIL, that expression is considered as

argument of DEFINE; if NIL, LOAD returns the read

expression.

LOCK(A).- If A is a disk-file it is closed permanently;

if it is a tape-file LOCK rewinds it.

LOGAND(N1 N2 ... Nn).- Evaluates the logical operation "and"

of its arguments.

32.

LOGOR(N1 N 2 ... Nn). - Evaluates the logical operation "or"

of its arguments.

LOGXOR(N1 N2 ... Nn). - Evaluates the logical operation

"exclusive or11 of the N. 1 s.
J.

MAP(L S).- S must be a functional argument; applies S to

Land then to the .successive CDR 1 s of L until Lis

NIL.

MAPC (L S) , - S must be a functional argument; applies S to

all the elements of L. Returns NIL.

.
MAPCAR(L S).- Similar to MAPC, but a list is constructed

with the resulting evaluations.

MAPLIST(L S).- Similar to MAP, but makes a list with the

res ulting evaluations.

MEMB(AI L).- Searches in L for an element EQ to AI; i f

found, the value of MEMB is the CDR segment of L

whose CAR is AI. In the other case is NIL.

MEMBER(ALN L).- Same as MEMB , but searches with EQUAL.

MINUS(N).- Evaluates - N.

MINUSP(N).- Tor NIL according to whether N is less than

zero or not.

33.

NCHARS(A).- Computes the number of characters of the name

of A.

NCONC(L1 1 2).- Includes the elements of L2 after the last

element of L1 in L
1

. (This function is destructive).

(NLAMBDA L s1 S~ ... Sn)(S1 s2 ... S~).- Same as LAMBDA except

that the S! 1 s are not evaluated.
1

NOT(S).- EQ(S NIL).

NTH(L N).- Returns the N-th element o f L.

NULL(S).- Identical to NOT.

NUMBERP(X).- Tor NIL according whether Xis number or not.

OR(S1 s2 •.. Sn).- If Si is different from NIL, execution

terminantes and the value of OR is S-; otherwise
l.

Si+i is considered. OR() Is always NIL.

PACK(L).- Lis of the f orm (AN1 AN 2 ... ANn). Returns an

atom whose printname is the concatenation of the

AN.'s.
l.

PAGE(A).- Performs a skip to the top o f the next page of

file A.

34.

PRETTYPRINT(AL A).- If AL is an atom its definition is

prettyprinted on file A; otherwise it proceeds as

before with each element of AL.

PRINT(X).- Prints X on file LINE changing line.

PRINTCH(A1 A2).- Prints the first character of A
1

on file

A2 following the previous contents of that line.

PRINTLEVEL(I A).- Sets the print level of file
0

A to I.

Returns previous setting.

PRINT1(X A).- Prints X on file A without changing the

record.

PRINT2(X).- Identical to PRINT, only that special atoms are

written in a way acceptable to the input routines.

PRINT3(X A).- Similar to PRINT1, .but operating as PRINT2

on special atoms.

PROG(L s1 s2 ... Sn).- Initializes the elements of L to NIL,

then evaluates sequentially the s. 'sunless a GO is
i

executed. Returns S unless a RETURN is executed. n

It is permissible to nest PROG and to transfer to an

outer one from an inner one.

PROG1(S
1 S2 ••. Sn).- Evaluates the S · IS

i
in sequence

returning s1 .

PROGN(S
1 s2 ••• sn) . - Evaluates the s. 's in sequence

i

returning s .
n

35.

PROP(A ALN X).- Searches in the property list of A for an

element EQUAL to ALN. If found returns the

remaining of the property list, otherwise X.
n

PUT(A AI ALN).- Puts on the property list of A property

ALN under label AI.

QUOTE(X).- Returns X unevaluated.

QUOTIENT{N1 N2).- Computes the integral part of N1IN 2.

READ().- Reads an S-expression from file CARD.

READATT(A1 A2).- Returns the value of attribute A2 in file

A1·

READCH(A).- Reads a character from file A.

RECLAIM().- Causes a garbage collection.

REMOVE(ALN L).- Creates a list with every ocurrence of ALN

removed from L.

REMPROP(A AI).- Removes label AI and the property associated

to it from the property list of A.

REPLACA(AL ALN).- Replaces the CAR of AL with ALN.

REPLACD(AL L). - -Replaces the CDR of AL with L.

RETURN(X).- Exits the PROG with value X.

36.

REVERSE(ALN).- Creates a list whose elements are the

elements of ALN in inverse order.

REWIND(A).- Rewinds file A.

RIGHTSHIFT(N I).- Shifts I places to the right the bits

of N. I has to be less than 39.

SELECTQ(AI L1 L2 ... Ln X).- Each Li is of the form

(ALi Si1 Si 2 ... Sini) and they are not evaluated.

If AL. is an atom and equal to AI the Si~s are
1)

evaluated and the value of SELECTQ is Sini. If ALi

is a list and AI is MEMB of AL. the same procedure
1

is applied, otherwise Li+i is taken. If none is

satisfied the value of SELECTQ is X.

SET(A X).- The value 0£ A become X. If Xis of the form

(FUNCTION AL), the property list of A is replaced

by that of AL.

SETA(M N1 N2 ... Nn X).- Assigns to the N1 , N2 , ... ,Nn

-th element of M the value of X. The dimension of

Mis at least n.

SETATT(A L).- Adds to A the attributes and values

indicated in L (see FILE).

SETQ(A X).- SET(QUOTE(A)X).

SETQQ(A X).- SET(QUOTE(A) QUOTE(X)).

37.

SPACE(A I).- Advances I records in the file A.

SQRT(N).- Computes the square root of ABS(N).

SUBST(ALN1 ALN2 L).- Creates a list with every appearance

of ALN 1 in L replaced by ALN2 .

SYSFILES().- Returns a list of the form (A1 A2 ... An),

where.each of the files LISPSYSFILE/A. is present in
i

the user's library. (See SYSIN, SYSOUT).

SYSIN(A).- Reads from the sysfile named LISPSYSFILE/A.

(See SYSOUT).

SYSOUT(A).- PerfoI'Jils a dump of the interpreter's memory

into sysfile LISPSYSFILE/A. This allows the user

future recovery at this point.

TEREAD(A).- Terminates inputing from the current record of

file A.·

TERPRI(A).- Terminates outputing int o file A. Repeated

use of TERPRI outputs blank lines.

TIME{I).- Same as the time function of the systeffi.

TIMES{N1 N2 ... Nn).- Computes the product of the Ni's.

If n = 0, returns 1.

TRACE(L).- Lis of the form (A1 A2 ... An). Sets up a trace

of functions (or atoms' value) A .. Every change in
J.

value, call to or return from A, will be printed.
J..

38.

UNBREAK(L).- Lis of the form (A1 A2 ... An). Removes the

call to BREAK1 from the definition of

BREAK.

A.
. l

as put by

UNBREAKIN(A L).- Removes the call to BREAK1 in A set by

BREAKIN at L. (See BREAKIN for the form of L).

UNPACK(A).- Creates a list whose elements are the letters

of the print-name of A.

UNTRACE(L).- Lis of the form (A1 A2 ... An). Removes the

tracing mark set by TRACE.

WRITE(X AS}.- If S is NIL it will output X on file A;

otherwise a list whose elements are lists containing

both the name and the definition of each element of

Xis written on A (as LOAD requires).

ZEROP(N).- T or,NIL according to whether N is zero or not.

l
l

39.

SYSTEM ATOMS. The predefined atoms in the system are:

Name Value

ARROW t

BLANK

COMMA ,

DASH

DOLLAR $

DOT

LBRACK [

LPAR (

NIL NIL

PLUSS +

RBRACK]

RPAR)

SLASH I

STAR *

T T

The following table, lists the file attributes

implemented in the system, and the type of object the

attribute accepts or returns.

Name

ATTERR

ATTVALUE

ATTYPE

BLOCK

Predicate

Number

Number

Number

40.

BUFFERS Number

DATE Number

DENSITY Number

EOF Predicate

EXTMODE Number

FILETYPE Number

FORMMESSAGE Atom

KIND Number

MAXRECSIZE Number

MYUSE Number

OPEN Predicate

PARITY Number

PRESENT Predicate

PROTECTION Number

RECORD Number

RESIDENT Number

SAVEFACTOR Number

SECURITYTYPE Number

SECURITYUSE Number

TITLE Atom

• 41.

INTERACTIVE FACILITIES

THE EDITOR. As mentioned before, a call to the

function EDIT causes the interpreter's editor routine to

be activated. The argument of EDIT is an atom whose

definition is to be edited. The editor answers with the

ready character ":II; whenever this character appears, any

number of commands can be sent provided they do not exceed

a line. These commands are sequentially executed unles~

an error occurs, in which case the erroneous part will be

written followed by a 11?11 . ' and the remaining ignored.

A very useful feature of the editor is th~ macro

facility that allows the user to define a parametrized

collection of editing commands. This definition may then

be simply invoqued or applied repeatedly to an expression

until an error occurs.

Most of.the editor's commands refer to a part of the

expression being edited. That part is called "the current

expression" and will be denoted by EP. Initially EP is set

to the definition of the argument of EDIT. We now describe

the commands defined: (we still follow the notation

introduced before unless quoted).

It should be pointed out, that commands implying a

modification of the list structure are destructive, i.e.,

actual REPLACA, REPLACD and NCONC are performed.

I.- Sets EP to that element of EP indicated by I, In

f

42.

this and in any case in which EP is tried to be set

out of bounds, an error will occur but EP will not

be modified.

"-".- Moves EP one level upw~rds.

"/".- Moves EP to the level at which edition began.

"<". - Moves EP one site backward at the same level.

">".- Moves EP one site forward at the same level.

"=".- Sets EP to the fragment of the list containing EP and

whos·e CAR is EP. Example:

p 3 = p

(A B C D E)

(C D E)

The printing routine identifies a fragment printing

before it.

"#"AL $cSTRINGc.- Defines a macro-instruction A by

associating the string between the delimiter "c" with

A. L must be either vacuous (i.e., a blank or()) or

a list of formal symbols separated by commas. The

formal symbols must be atoms ($-notation is allowed).

Delimiter "c11 may be any character not contained in

the string. These definitions are saved in the

property list of A and may be reused without definition

in another call to the editing routine.

43.

"!"AL.- Invocates the text associated with A. Lis a

list of the form (X1 ,X2 , ... ,Xn); where ,each Xi is

.either any string not containing ")" and commas or

else a string of the form $cSTRINGc; where, as before,

c is any character not contained in the string.

"*"AL.- Similar to"! A L11
, but will iterate the macro-

.
instructiop (once the proper .. parameter replacement

has been done) until an error occur during its

evaluation.

Nested invocation.- Macro-instructions may be nested up to

any (reasonable) level. If an error occurs during

a nested invocation, the only text ignored will be

that of the macro being executed (i.e., the one at

the highest level) and execution will continue

normally at the point following this last invocation.

Parameter conventions.- It is not strictly necessary that

the number of parameters appearing in an invocation

command coincides with the number of formals in the

declaration. Parameters may be omitted provided that.

their site is indicated by two consecutive commas.

Also, a right parentheses set after the i-th parameter,

will cause the remaining n-(i+1) to be omitted. For

example, the following syntax is correct:

! A (X1 ,,,X4 , ... ,X). Whenever a parameter is n-m

omitted from the parameter-list, its site in the text

44.

associated with the macro identifier will be filled

with a blank space. Note that the parameters are not

evaluated in any form, as the macros are just a text

subst~tution method.

Use of dots.- The use of a dot in the definition of a macvo­

instruction will cause the parameters to be appended

to the part of the text preceeding the corresponding

formals whenever these appear in the form <any text>.

X .. For example, suppose we define ACX) as $$P.X$,
l.

then a call to A in the form A(L 3) will cause the

replacement "PL 3" and calling A(P) will cause the

replacement "PP 11
• Note.that defining A(X) as $$PX$

would not be equivalent, yielding "PX" in both cases.

Examples:

1) Suppose we want to change all lists of the form

(set (quote a) b) to (setq ab), then a procedure

may be

HS$"B (set• (quote ;;:;:;) ;:;;:;)

cl setq

t 2

Q 2 II

2) To remove all the parentheses inside EP, we may

proceed as follows:

S1 $11 *S2 1 ="

S2 $ 11 t 1"

* S1

45.

"Q" I.- Removes the I-th element of EP.

urn IS.- Inserts Sas de I-th element of EP.

"R" IS.- Replaces the I-th element of EP by S.

"A" IS.- Appends S to the I-th element of EP.

IN THE ABOVE FOUR COMMANDS THE MODIFICATIONS ARE DESTRUCTIVE

"E" S.- Evaluated the S-expression S.

"EQ" s 1 s 2.- Evaluates the EVALQUOTE-expression given by

the S. 's'
l.

"P".- Prints EP.

f

46.

"PL" I, .. Prints EP changing provisionally the :;:,rint level

of LINE to I.

11PP".- Prettyprints EP.

11 F". - Terminates edition.

"M" A.- Change EP to the definition of A.

"N" S.- Terminates CUI"rent edition and starts a new one with

S (after EVALuating it).

''@".-Moves EP to the element immediately "following" it

(in print order) no matter how many right parentheses

need to be jumped; if none ''follows II it, an error is
4

produced (i~e., it goes up until EP can be advanced

forward one place).

11
(

11 I.- Inserts a left-parenthesis before the I-th element

of EP, I= 0 is invalid; for example.

p (2 p

(A B C D)

(A(BCD))

11
)

11 r 1 r 2 .- Inserts a right-parenthesis after the : 2-th

element of the I 1-th element of EP(I1 = 0 is invalid};

for example,

P) 2 3 P

(A (B C D E F) G H)

(A (B C D) E F G H)

47.

"[" I.- Removes the left parentheses before the I-th

element of EP; e.g.,

or

p [1 p

(A B)

A

p [2 p

(A (B) C)'

(A B)

11
] •

1 I.- Moves the right parentheses following the r..:.th

element of EP to the end of EP; example,

p] 2 p

(A (B C) D)

(A (B C D))

48.

"t" I.- Removes both the left and the right parentheses

from the I-th element·of EP.

11%11 I
1

I
2

. - Inserts ,a. left parenthesis before the I 1 -th

element and a right parenthesis after the I 2 element

of EP. Of course, r1 must be less than or equal

to I 2 .

ALL SIX COMMANDS ABOVE ARE DESTRUCTIVE

11B11 AL.- Searches in EP for an expression matching with the

pattern AL, if found, sets EP to that expression, in

other case causes an error. (If AL is an atom, EP is

set to the fragment beginning in that atom).
• .. , __ • ,.

AL may·

contain atoms,"&", "==" or more patterns. Any atom

appearing in AL distinct from 11 &11 and 11 == 11 will match

with exactly the same atom contained in some

express·ion, "&" will match with any s-expression and

"==" will match with the CDR of any list.

"C" <option> AL S.- <option> must be either vacuous or"?",

searches in EP all sub-expressions matching with AL,

If the option was"?", the editor will write each of

these, waiting for an answer and if that answer is

different from a carriage return, nothing happens;

otherwise the expression is replaced, if <option> was

vacuous, the replacing is made unconditionally.

49.

BREAK FACILITIES,

BREAK1(A LS).- Allows the programmer to stop execution at

the moment BREAK1 is evaluated. If Sis present the

break routine of the interpreter is called provided

that Sis not NIL; otherwise, it is called always. In

the first case, the break routine will write:

BREAK OF A< place>< pattern> WITHS,

where L = (< place > < pattern >), and<place> is either

BEFORE or AFTER. The break routine is now ready to

execute its own commands (the break ready character is

"*"). The commands defined are:

"E" S.- Evaluates the S-expression.

11EQ 11 s 1 s 2.- Evaluates the EVALQUOTE-expression given by the

• S • IS•
l.

"R" S.- Terminates the break returning value S.

"F".- R·NIL.

so.

USE AND GENERATION OF THE SYSTEM

The LISP system operates in two modes; batch and

remote. The batch system is called by the following cards:

? RUN LISP/LISP

? DATA CARD
(LISP program)

? END

For the remote versions type

E * SYSTEM/LISP

and the system will answer writing a title and a ready

character (t:1:) indicating that it is waiting for input.

Typing ?END terminates the session.

The sequence of cards to compile the source file

-LISP/SOURCE- in order to generate the interpreter in the

remote or batch mode are the following.

For batch:

? COMPILE LISP/LISP ALGOL LIBRARY

? ALGOL PROCESS TIME = 120; ALGOL IOTIME = 120,

? ALGOL FILE TAPE = LISP/SOURCE

? STACK = 2500

? DATA

$ SET MERGE RESET REMOTE

? END

51.

and for the remote version

? COMPILE OBJECT/LISP WITH ALGOL TO LIBRARY

? ALGOL PROCESSTIME = 120; ALGOL IOTIME = 12·0

? ALGOL FILE TAPE = LISP/SOURCE

? STACK = 2500

? DATA

$ SET MERGE

$ SEr REMOTE

? END

•

52.

ACKNOWLEDGMENTS

The· authors gratefully acknowledge the participation

of Mr. Max Diaz in this project. He collaborated in many

routines, and was particularly responsible for the

implementation of macros in the editor and the prettyprint

routines.

'

53.

BIBLIOGRAPHY

1. J. Mc,:Carthy. Recursive Functions of Symbolic

Expressions and Their Computation by Machine. Part I.

"Communications of the ACM", l_, pp 184 - 195, April

1960.

2. W. Teitelman, D. G. Bobrow, A.K. Hartley, D.L. Murphy.

BRN-LISP, Tenex Reference Manual. Bolt, Beranek and

Newman, Inc., July 1971.

3. Lynn H. Quam. Stanford LISP 1.6 Manual. Stanford

Artificial Intelligence Project. SAILON 28.3, Sept.

19 69.

4. C. Weissman. "LISP 1. 5 Primer". Dickenson Publishing

Company, Inc. Belmont Calif. 1967.

5. W. D. Maurer. "The Programmer's Introduction to LISP".

American Elsevier Inc. New York, 1972.

6. M. Magidin, R. Segovia. Manual Preliminar del Sistema

LISP B-6700. Comunicaciones Tecnicas del CIMAS, 3, 16,

19 72,

7. Burroughs B6700/B7700 Extended Algol Compiler. Form

No. 5 000 136, June 1972.

8. J. Moses. The Function of FUNCTION in LISP. "SICSAiV.

Bulletin': ~, p 1 3-17, July 1970.

, 54.

9. M. D!az. Las Funciones Definidas en el Sistema

LISP B-6700. Comunicaciones Tecnicas del CIMAS.

(To be published).

