COMUNICACIONES TEONICAS

Vol, V

1974 Serie B: Investigacidn No. 70

L5 T

jl *Investigador del CIMAS,

i
' Recibida 14-IV-T74 Revisada por:
Robert Yates.

ABSTRACT

A description of .the implementation of the LISP 1.8
language in the B-6700 computer of the National University
of Mexico is presented, including a brief description of

the interactive facilities and the functions implemented.

INDEX

Introduction.

An Overview of the System.
Description of the Interpreter.
Description of System Functions anc /toms.
Infé?active Facilities.

Use and Generation of the System.
Acknowledgments.

Bibliography.

INTRODUCTION

The LISP (LISt Processing) Language was developed in
1958 by a group headed by Prof. J. MacCarthy at MIT [1].
Since then, LISP has become not only one of the most often
used languages in symbolic manipulation, (séecially in
artificial intelligence, algebraic manipulation, ete.),
but also, thanks to its elegant mathematical structure, a
vehicle for most of the research in the area of automatic
program synthesis #nd verification.

This paper is a description of the implementation of
LISP 1.6 [2,3] on the B-6700 computer of the National
University of Mexico. Although we have tried to be as
clear as possible, some of it may have meaning only to
those familiar with the language. For an introduction to
LISP programming the reader is refered to [H] or [5].

For the sake of completeness, brief descriptions of
the funct@ons implemented and of the interactive facilities
are included as well as instructions to use and generate
the system. A more detailed description of the functions
available can be found in [6]. The reader may also consult
[¢] for the results of a program testing all the features

of the systenmn.

AN OVERVIEW OF THE SYSTEM

LISP has been implemented in the B-6700 through an

Interpreter written in Burroughs Extended Algol [7]. The
interpreter exists in two modes, batch and interactive or
remote, the only difference being the editing and break
packages available in the latter.

In either mode, fhe_Interpreter operates in EVALQUOTE,
reading a pair of s-expressions from its input file, and
printing the\evaluatiﬁn on its ;utput file, until an end of
file condition is encountered on thé'input.

The systemfoperateé'on an arr%y of 64X words, divided
into "spaces" of 256 words tach. Spaces are allocated,
d&namically for the different types of data the system
handles, atoms, lists, large numbefs and arrays.

Within each space, locations are assigned sequentially
for only one " type of data, and with the exception of
arrays where segméntation is avoided, new spaces are assigned,
only when the current one 1is used up.

An inventory of spaces is kept, as well as pointers to
the next available cell of each data-type.

The system will recognize as an atom any sequence of
characters, beginning with an alphabetic c¢haracter, and not
including any of the following () , $ - + . [| or blanks.

The brackets are treated as "super-parentheses"; a
right bracket supplies enough right parenthéﬁes to match
back to the last left bracket or, if none is present, to
match the first ieft parenthesis of the expression. It is
important to point out, that this system does not have

dotted pairs.

Special atoms, 1.e. those including ilegal characters
may be read with the &dsd syntax, where d is any character
not 1is s, the print name of the special atom.

Numbers can be written either in decimal or in octal
(appending a Q), and may be signed or unsigned, integers
or reals; the exponential notation i1s valid.

There are two kinds of numbers in the system, the so-
called "small numbers" and "large numbers'".

Small numbers are integers whose absolute value is
less than 2?°. They are stored as pointers outside the
available space, i.e. positive small number n is represented
as 2" + n , and negative small nuﬁber n as 2% + 22% + |[pnj,

Large numbers, i.e. any non-small number, are stored
in the normal B-6700 format, one per word; no attempt to
avoid duplication 1s made.

Unless expressely indicated not to, the system will
always attempt td store numerical results as small nuﬁbers.

The system allows the user to declare arrays of any
syze and dimensions. The elements »f the arrays may be of
any type, and furthermore, they may be mixed. Multidimen-
slonal arrays are implemented as arrays of arrays.

Arraﬁs of less than 510 words are never segmented.

On the remote version, the system offeﬂs two interac-
tive features, the e&ffing and the break pa. .ages.

The editing package, allows the user to modify the

definition of functions and property lists, while the break

package provides for selective insertion of interruptions
or "breaks" at any point in the definition of a function.
At this break, the user may inquire the value of any atom,
assign new vélues, or evaluate any function, having full
command of EVAL, before continuing the original evaluation.
The typing of "control - A", unwinds the system to the
last ERRORSET, or to the top level, if none is present.

The same effect is gotten by typing the "BREAK" key during
output.

DESCRLPTION OF THE INTERPRETER

SYSTEM ARCHITECTURE.

The Interpreter makes use of the following data

structures as its own tables and pointers.

MEM

DATATYPE

This array of 64 K words holds all the LISP
structures. All the LISP podinters are indices
within this array. As mentioned before MEM is
divided into "spaces" of 256 words each, for the
different LISP data-types. It should be noted
that, as words in MEM are assigned sequentially
within a space, themselves assigned sequentially
also, there is no need for a free storage list,
only a set of pointers to the next available word
of storage, per datatype; on the other hand, this
requires a compacting garbage collector. {The
size of MEM may be modified, changing the defined
identifier MEMORIA}.

Datatype is a one-dimensional array of 256 words,
one per space in MEM, identifying the kind of data

in the corresponding space. To help the compacting

- phase of the garbage collector, pointers linking

spaces of same type are kept. TFinally, the number
of words unused in a space of arrays is also saved.

The format of the words in DATATYPE is shown in fig.
1.

2|1 -
> 13 ATOMS
2
s ATOMS
3
| ,
100 447 ATOMS e
128 4 17
LISTS
(VAP S Ry
ARRAY DATATYPE LARGE
NUMBERS
ARRAY FSL
LISTS <
ARRAYS
ARRAYS
ARRAY MEM
REMAINING TYPE NEXT SPACE
WORDS SAME TYPE

WORD OF DATATYPE

FIG. I MEMORY ORGANIZATION

INDEX

FSL

OBLIST

BUFE

NUMCOL

The wvavriable INDEX points to the next avallable
word in DATATYPE, i.e. to the next available

space.

This H4-word array holds a pointer to the last
used word of MEM of each type, or a zero if none
has been allocated so far.

Atoms with same hashing are linked together. The
hashing heads are held in OBLIST, a one~dimensional
array of 128 words. New atoms ave aliways inserted
at the head of the list.

This is a two-dimensional array that serves as

I/0 buffer, one array row per file. Their size is
modified when a new file is created.

The number of characters so far written or read

from buffer BUFF[I,*] are kept in NUMCOL[I].

PBUFTIN, PBUFFOUT These are pointers (in ALGOL sense),

LINEA, PLINEA. As the size of an I/0 buffer is variable

ARGS

pointing intc the current input and output buffers
respectively. PBUFFIN poinfs to the next character
to be read, while PBUFFOUT points just ahead of
the last character written.

s
PLINEA [I] holds the number of words of buffer
BUFF [I]. For convenience and speed, the number
of characters are held in LINEA [I].

The array ARGS is used as a stack, where old
bindings of arguments in lambda expressions, as

well as locals and labels in prog's are saved.

Each word of ARGS holds two pointers, one to the
o0ld binding, and one to the atom, to ease re-bing
ing when exiting a lambda or prog expression. At
each funétioﬁ call, a marker i1s inserted in ARGS
acting as a separator. This marker holds a
pointer to the name of the function called, a link

to the previous marker, and a distinguishing mark.

(See figs. § and 10).

B The index in ARGS of the laét marker is saved in
B,

S Variable S points to the top of the stack ARGS.

EJEC The expression currently under evaluation is

pointed at by EJEC,.

STACKE In the interactive version, the editing routines
make use of array STACKE as a stack, when
traversing the iist structure being edited. To
facilitate the work of the editor, it holds both
a pointer to the head of the sublist, and a
number, the index of this sublist in the list
minus'one. (See fig. 2).

PE Pointer to the top of STACKE.

MACRODEF Contains the text associated with the
macro-instructions defined in the editing routine.

LASTDEF Points to the next available byte in MACRODEF.

(LAMBDA (X} (IF (ZEROP X) 1| (TIMES X (F{DECR X)h))

FIG. 2a. ORIGINAL EXPRESSION

300 301 303
LAMBDA '
302,, 304 305 . 308 309
. | 5
| i
X IF
306 307 3lo 3]
S
I i I {
ZEROP X TIMES X
32 313
'J'
n’
A
F
34 315
| |
DECR X

FIG. 2b. ORIGINAL EXPRESSION IN MEM

2 30 FIG. 2c. STACKE, WHEN THE EXPRESSION

304 UNDER ANALYSIS IS (F (DECR X))
300

10.

DATA TYPES.

The format of the datatypes handled by the system in
MEM is as follows:

List nodes use one word of storage to house the 2
pointers, "CAR" in field [45:22] and "CDR" in [21:22] plus
a space for the garbage collection mark in [47:1]. {See
fig. 3).

An atom uses at least 3 words of étorage, according to
the format illustrated in fig. 4, where:

The "fun" field ([28:9]) carries a number that uniquely
identifies system functions. Program defined functions
carry their definition as first element in the property list.
"trace" ([46:1]) is on when a trace of this atom 1s desired;
in those cases "# recur" ([37:9]) will hold the recursion
level for that function. "funarg" ([23:1]) indicates a
functional argument (see evaluation). Finally, "oblist"
([19:20]) is,used to link atoms with same hashing.

The organization of arrays is indicated in fig.5 and
fig. 6, for unsegmented and segmented arrays respectively.
In both cases, each segment carries a header word with: the
declared lower bound of the array in field "liminf" ([45:13]),
segment size in field "dim" ([32:9]) and a special mark
(bit 23} @hich is on for headers. Segments of the same array
are linked, in a circular list, via the field link ([2i:22]),
the last segment having the segmentation bit (bit 22) off.
Unsegmented arrays point to themselves and the segmentation

bit is off.

c é | CAR //% CDR

FIG. 3 LIST NODE

G P |
VALUE | PROPERTY LIST
C R
-]
| NAME R OBLIST
S| LENGTH # RECU H FUN
PRINTNAME
FIG. 4 ATOMS
= 3
LIMINF DIM e LINK
WORD O " WORD |
WORD 2 WORD 3
e T e e
FiG. 5 UNSEGMENTED ARRAY
2 > S 3

FIG. 6 SEGMENTED ARRAY

i2.

PROCEDURES.

Initialization and Miscellaneous Routines.

Initialization of the system is carried out by procedure
INICIALLZA. This procedure fills in the system predefined
atoms and functions into array MEM, setting up in an appro-
priate manner the hashing heads in OBLIST, as well as DATA
TYPE, TSL and INDEX. TFinally INICIALIZA sets up the I/0
buffers.

DUMP. Procedure DUMP.is used to dump array MEM. Its

argument is the index to a file.

ERROR. ERROR is used to print out error me$sages.

Storage Handling Routines.

Free storage cells are provided to the system by _
procedures LITT (for nodes and numbers), LIFTATOM (for atoms)
and LIFTARRAY (for arrays). The operation of the fiprst two
is straightforward. LIFTARRAY will never segment an array
of less than 510 words. It will first search in any
previous arraylspaces for available storage, and if none is

found it will ask for a new space to be allocated,

New spaces are allocated by procedure GETSPACE, which
keeps DATATYPE up to date. When no more free storage is
available, GETSPACE calls on GARBAGE to perform the garbage

collection and compactification.

13.

The compacting garbage collection is done in foup
steps: the first is the marking phase, where all’ the
elements taking part in the computation are marked to sepa
rate them from the garbage. The structures to be saved
are pointed at by EJEC, the elements from the stacks used
for evaluation (argument stack, Algol stack) and the atoms
(including their values and property lists). This is done
by the recursive procedure MARCA which traverses a list
structure marking the elements and Espol written intrinsics
that scan the stack for list pointers.

The second is the moving stage, where all marked
elements are copied sequentially, per data type, into a
duplicate of array MEM (MEM1), modifying the elements in
MEM, to point to the place where they now lie in the dupli
cate. A duplicate of DATATYPE is also constructed in this
phase.

The third phase, updates all the pointers in MEM1,
making use of the addresses left in MEM. Figure 7 1llus-
trates this phase. Once more, Espol written intrinsics
are used to modify the contents of the machine's stack.

Finally, the contents of MEM1 is copied back into MEM.

In a future version of the system, this will be handled
by exchanging the appropriate data descriptors, and letting
the MCP take care of removing the now unwanted array MEM1

(local to procedure GARBAGE).

14.

310 320 : 365
200 320 250 > 318
‘], J, 318 316
J !
A ' 8 220 316 > 113]
c 3 0
a) INITIAL STATE (A,B,C AND D ATOMS)
310 300
S S
316 304 '!» !»
37 300 200 320
318 303 301 250 365
S 47 302 | 318
320 _ 301 _ 303 220 316
S 5 304 15
365) {1 302 ?
MEM _ MEM |

b) MEM AND MEM | AFTER THE MOVING INFORMATION PHASE

& 4

300 200 201
301 250 302
302 303
303. 220 304
304 s

? ?

¢ KEM | AFTER UPDATING POINTERS (WE ASSUME THAT THE ATOMS IN 200,220 AND 030
WERE- AT MOVED)

L FIG. 7 OPERATION OF THE GARBAGE COLI.ECTOR

15.

Inﬁut Routines.,

The input routines are driven by procedure LEE.
Its arguments are a pointer where to start constructing
the list structure, a boolean variable indicating whether

one or two s-expressions are to be read and the input file.

LEE will in turn call on TERMINALISTA (for a "]"),
CREALISTA (for a "("), CREANUMERO (for a number),
FINDELISTA (for a ")"), CREATOMO (for an atom) and
CREASPECIAL (for a "$§").

The last two procedures will call on INSERTATOMO to
either create the atom if not present in the system, or
get a pointer ‘to it.

It is important to note that while reading an
s-expression, the list structure is being constructed like
a threaded list, with the last element always pointing to
the previoué level (see fig. 8).

These threads are removed when the expression is
completed.

Also among the input routines is procedure LEECH, to

read a character at a time.

Qutput Procedures.

The output procedures are driven by IMPR and IMPR2.

The only difference between them, is that IMPR2 will output

(A B(CDE)(FG(H1)))

A

\

FIG. 8 LIST STRUCTURE AS IT LOOKS AFTER THE ATOM H

HAS BEEN RTAD.

‘9T

17.

special atoms in a format acceptable b§ the input routines.
IMPR (IMPR2) calls on PRINT (PRINT2) to recupsively
print a list structure. In turn PRINT (PRINT2) calls on
PRINTNUM1 for smail numbers, PRINTNUMZ2 for large numbers,
PRINTATOM (PRINTATOM2) for atoms and PRINTARRAY for arrays.
Also part of.the output procedures are ESCRIBE to
print a line, IMPCH to print a character, ESYZE and
PRETTYPRINT to do the prettyprint and IMPTRACE to printout

the tracing of atoms and functions.

Evaluation.

Evaluation is performed basically by EVAL, which
recursively evaluates 1list expressions. EVAL is assisted
by procedures EQUAL fo evaluate (EQUAL X Y), GETD to obtain
the address of a given system function, EVALQUOTE, ~ which
converts list structures read in evalquote notation to eval

notation and by ARREGLOS, to create the declared arrays.

The system uses the so-called "shallow approach" [8],
to store the values of atoms, {(i.e., only the last binding

is stored at the value cell of an atom).

When a lambda expression is encountered, the arguments
are evaluated, previous bindings of the parameters are
saved in ARGS and new binding are made. On exiting, the

parameters are prebound to their previous values. A similar

18.

approach is used in prog expressions for locals and labels.

Functional arguments are detected by the Interpreter,
and the bindings are done in the property list cell instead
of the value cell.

The functional argument problem is solved providing
TUNCTION with an optional second argument. This argument
specifies certain variables whose values at that time ave
saved for future reference. The funarg bit of the function
passed is set to 1 to alert the Interpret about this. (See
figures 9, 10 and 11).

" The current values of these variables are stored in
the property list of the function, under a special header,

and the "funarg” bit in set to one.

DESCRIPTION OF SYSTEM FUNCTIONS AND ATOMS

The B—é?OO LISP allows the user to redeclare sysiem
functions, both to create a synonym and to assign a new
meaning to a standard function. Also, standard atoms such
as NIL or T may get new values assigned, but the user is
advised against this, as the results are unpredictable.

The system i1s very flexible in handing arguments to
functions, letting the user pass any number of them.
Missing arguments are always assumed to De NIL (even in
arithmetic functions), while the extra ones are evaluated

in program defined functions and ignored in system functions.

lgl

R

ZEROP :

X 1 -' -—;]—> 3
FACT €

TIMES G 1

IF <t A

P .
FACT 0 :
TIMES G _‘]

iF &t ;]

X &= ——;}9 5
FACT <

TIMES <« D

iF e ;]

X o -—j—a- PREVIOUS BINDING OF X
FACT et <J

Fig. 9. State of ARGS during the evaluation of
FACT(5) defined as (FACT (X) (IF (ZEROP X} 1
(TIMES (FACT (DECR X)) X))).

20.

Suiiaeds mame
¥ e ——> PREVICUS BINDING OF Y

F | S e

RETURN <—— :|

A € —~:|-—> -1 {PREVIOUS BINDING OF A)
PROG <« ‘_l

X i _1 > PREVI_OUS BINDING OF X

H S | ———> PREVIOUS PROPERTY LIST OF H
G e =

U s > PREVIOUS BINDING OF U
LAMBDA <€—1— e

Fig. 10a. sState of ARGS when' entering F after the first call

of G in the program of Fig. 11.

21,

(]
A —l | (PREVIOUS BINDING OF A)
Y - ——> PREVIOUS BINDING OF Y
F ol]
RETURN <—i— N
A o —~1> -1 (PREVIOUS BINDING OF A)
PROG ~ <——i— 1 ' |
X Bt i > PREVIOUS BINDING GF X
VN | > PREVIOUS PROPERTY LIST OF H
e L b
1 —1—> PREVIOUS BINDING OF A
LAMBDA <—i— -

Fig. 10b. State of ARGS when entering F after the second call
of G in the program of Fig. 1l. Note that A has been rebound

to ~1 just before entering F, as a result of using (FUNCTION F (A)).

22.
L ISP B 6700 UEHSION Z.1(0D/2567%4) . 03/20/72 1R:30:0%
. .
47
DEFINECC
*
CFCY) CIF CMINUSP AY Y (MINUS Y]
&
LGEH XY (PROG €AY
-
(SETQ A 1)
*
CRETURN (H X331
L 4
)
(P
T
SETCA =1)
-] :
-1
(LAMADA (U (G C(FUNCTION F) U)) ¢3)
- 3 “
L
(LAMRDA (1)) (G CFUNCTION F €AY UYY ¢3)
3
H]
2END
i

Fig. 1ll. Simple LISP program showing the FUNARG problem. Note
the use of the optional second argument of function in the second

call of G and its effect.

23.

SYSTEM FUNCTIONS,

Unless contrarily specified we shall use the letter
A to denote non-numeric atoms and N to denote nwnbers
(either small or large). In this case, we shall
distinguish them by the use of an I if N is small and a B
in case N is a large number. Letter L will usually stand
for a list, M for an array and X will be used whenever
the kind of object we are making use of is inmaterial for
the function being considered (i.e., if the function is

defined for any item already existing in the system).

S-expressions will be denoted by an S.

To simplify even more our notation, our symbols so
defined may appear one followed by another. By this we
mean that the argument of the function may be of any of
the kinds represented by the letters appearing in such a
chain. Tor example, if we write "PRETTYPRINT (AL A)",
we mean that.the first argument of PRETTYPRINT may be
either an atom or a list and that the second must be an
atom; this, of course, would not exclude the case in which

the second is omited: PRETTYPRINT (AL).

All conventions above remain valid for letters having

indices.

Recall that any argument not present will be assumed

to be NIL by the system.

- 24.

To avoid repetition we shall only state explicity
these functions in which no argument evaluation is made,
and 50, reference to arguments is really reference to the
arguments' value. Also, if we do not state the contrary,
we assume, the file "CARD" for input and "LINE" in output
functions; these will also be usually the files used when

the file designator of an input/output functions is omited

or is NIL.
ABS(N).- Returns +the abscolute wvalue of N.

ACCEPT(A).- Displays A on the "SPO" and causes the
execution to be suspended until a response is keyed

in at the SPO. Its value is that response.

ADD(A AT ALN).- Searches for the label AI in the property
list of A. If found, ALN is-added as an element of
the property associated to AI (Thus, that property
must be a list); otherwise ALN is put as a singlet

at the end of the property list of A after the label
AI .

AND(S1 82...Sn).— Evaluates sequentially the Si's. if
any of them is NIL, execution terminates and the
value of AND is NIL; otherwise the value is Sn'
AND() is always T.

APPEND(L1 Lz).— Makes a list with all the elements of L1

foliowed by the elements of LZ'

25,

ARRAY(LN1 LN2...LNn S).- Returns an n-dimensional array
created in the following way: if the i1-th argument
is a list, it must be of the form (Ni N,) and

ok 2
then the i-th dimension of the array is created to

have (Ni -N. +1) elements, and having its lower bound
1 2

equal to N, . If it is a number, its efect is equiva
1

lent to having placed (0 Ni). All the elements of the

array are assigned the value S, evaluated once for the

whole array.
ARRAYP(X).- T if X is an array, NIL in any other case.

ARRAYSIZE(M).- Returns the number of elements of M; in case

M is multidimensiconal returns i1ts number of rows.

ARRAY*(LN, LN,...LN 8).- Same as ARRAY but 5 is evaluated

1 2
again for each element of the array.

ASSOC(ALN L).- Searches in L for a sub-list having its
CAR equal to ALN. If found, the value of ASS0C is

such sublist, otherwise is NIL.
ATOM(X).- NIL if X is a list T otherwise.

BAKGAG(S).- Sets the error-print control equal to &, so
that error messages are not printed while that
control is T. Even though no error message 1s
printed, unwinding always takes place. Returns

previous setting.

BREAK(L).- L must be of the form (Ai AZ"'An)’ where each

26.

of the Ai's has a definition as a LAMBDA or NLAMBDA
expression; if such is the case, a call to BREAK1 is
inserted in the definition of A; after its argument

list. This function is defined only in the remote

version.

BREAK1(A L S).- If L and S are not present or if § is
different from NIL, calls the break routine of the
interpreter;lotherwise nothing héppens. Neither A nor
L are evaluated. In the batch version, its effect is

identical to COMMENT.

BREAKIN(A 81 82).— Inserts a call to BREAK1 in the

definition of A. 81 is of the form (BEFORE L) or
{(AFTER L), where L is a pattern, and 5, a condition;
if S1 matches with some part of the definition of A,
(see editing command "B") the call to BREAK1 is

inserted there and the value is T; in the other case,

the value is NIL. Defined only in the remote version.

CAR(AL).~ As usual its value is the first element of AL
in case AL 1s a list. If AL is an atom, returns its:

value.

kl

CDR(AL)}.- If AL is a list returns it with the CAR deleted,

if it is an atom returns its property list.

C...R(AL) .~ All combinations of CAR and CDR up to the fourth

level are included.

2dx

COMMENT (X).~ Used to introduce comments in a program.
Returns always NIL; X is not evaluated.
COND (Ll LZ"'Ln)'- The L. are of the form (Si ’Si ...Si
1 2 k
where the Si s, are predicates. The lists are
considered sequentially until an Sj , i not NIL, then,
1
Sj thru Sj are evaluated and the value of the last
2 k.
]
one is returned; if kj=1 the value of S. is returned.

1
If all the predicates are NIL, returns NIL.

CONS (S L).- Returns at list with CAR S and CDR L.

DECR (N).- Eeturns N-1.

DEFINE (L).- Each element of L is a list of at least two
elements, the first always an atom. If there are only
two elements the second is either a LAMBDA or NLAMBDA
expression that becomes the definition of the atom, or
is another atom, defining the first atom to be the
same function as the second one. If there are more
than two elements, they are the list of arguments and
the body of a LAMBDA expression to be associated with

the atom. Returns a list of the defined functions.

DEFLIST (L AIL).- L is a list of pairs, atoms and properties.
The properties are saved in the property list of the

respective atom under the label AI.

28,

DIFFERENCE (Ni NQ}.- Returns Ni - NZ'

DISPLAY(A) .- Displays A on the SPO, returns NIL.

DIVIDE(Nl Nz).— Constructs a list with QUOTIENT(N1 NZ) and
REMAINDER(Ni N,

DREMOVE(ALN L).-~ Searches in L for all the elements EQUAL
to ALN. Returns L with those elements removed,

(This function is destructive).

DREVERSE(ALN).- If L is a list, returns it with all its
elements in reverse order; otherwise returns ALN.

(This function is destructive).

DSUBST(ALN1 ALN2 L).~ Searches in L for all the elements
EQUAL to ALNi. Returns L with those elements
replaced by ALN,. (This function is destructive).

DUMP(A) .- Writes the main system array (MEM) on the file A,

assumed to be a printer with MAXRECSIZE of at least

22 words.

EDIT(A).- Calls the system editor. Defined only in the

remote version. A is the function to be edited.

ELT(M N1 N2...Nn).- Returns the N1 s Ny sy «evy N -th

element of M.

ENTIER(N).~ Evaluates to the greatest integer less than or

equal to N.

29,

EQ(AI1 AIz).— T if its arguments are equal, NIL otherwise.

EQP(AN, AN,).- T if its arguments are equal, NIL other-

wise.

EQUAL(ALN1 ALNQ).- T if its arguments are equal, NIL

otherwise.

ERRORSET(S).- Evaluates S and returns a list with that

value in case no error occurred during the evaluation;

in other case returns NIL.
EVAL(S).~ Evaluates S and returns that value.

EXPT(N, N,).- Computes the N, th power of N,.

FILE(A L).- Defines A as the file having the attributes
indicated in L; these must appear in L as sub-lists

on the form {(attribute value). No mnemonics are

allowed.
FIXP(X).- T if X is an integer, NIL otherwise.
FLOAT{(N).- Converts N into a large number.
FLOATP(X).~- T if X is a large number, NIL otherwise.
TMINUS(N) .- FLOAT(MINUS(N)).

PPLUS(N1 N2...Nn).- FLOAT(PLUS(N1 N .Nn)).

g7 *

FQUOTIENT(N1 N2).~ Returns N1/N2.

30-

PTIMES(N1 NQ"'NH)'— FLOAT(TIMﬁS(Nl NZ"'NH))'

FUNCTION (AL L).- Used to pass functional arguments. It
does not evaluate its argumgnts. AL 1s either the
name of a function or a LAMBDA or NLAMBDA expression.
If L is present, it is a list of atoms whose values

at that point are saved, to be restored when the

functional parameter to which AL is bound, is invoqued.

GENSYM().~ Creates and returns an atom of the form

GDDDDD, new at each call, where D is a digit.

GETD(A) .- Returns the definition of A. If A is synonym of

some function, returns that atom.

GETP(A AI).- Searches in the property list of A for the
label AI; if found the value is the associated

property, otherwise is NIL.

GO(A).- Transfers control to the expression following the
label A (which is evaluated). Its use anywhere

outside a PROG may cause unexpected results.

(’;“.REA’I‘ERP(N:L N2).— T if N is greater than N,, NIL in any

other case.

IF(S1 82 83).- If S1 is different from NIL returns S,,
otherwise returns 83. Note that only one of them is

evaluated.
INCR(N).- Computes N + 1.
(LAMBDA L S, 82"'Sn) L= Defines a function whose

independent variables are given in L. Also provides

a one-to-one correspondence between them and the

31.

elements of I..1 = (Si Sé...Sé) which contains the
arguments of the function, in the following way: If
more formals (the elements of L) than arguments are
found, the remaining are assigned value NILj; if, on
the other hand, more arguments than formals appear,
the remaining arguments are evaluated but ignored.

Once the binding is finished, the Si's are evaluated

sequentially and the value is Sn'

LEFTSHIFT(N I).- Shifts I places to the left on the bits

of the integral part of N. I must be less than or

equal to 39.

LENGTH(ALN).- If ALN is a list returns its number of

elements; or, ALN in the other case.

3

LESSP(N, N,).- T or NIL according to whether N, is less

1

than N2 or not.

LIMINF(M).- Returns the lower bound of M.

I_.IST(X1 xz..an).- Makes a new list containing all its

arguments.

LOAD(A S).- Reads an S-expressiocn from file A. If S 1is

different from NIL, that expression is considered as

argument of DEFINE; if NIL, LOAD returns the read

eXpression.

LOCK(A).- If A is a disk-file it is closed permanently;

if it 1s a tape—file LOCK rewinds it.

LOGAND(N1 N2...Nn).- Evaluates the logical operation "and"

of its arguments.

—

32.

LGGDR(N1 Nz...Nn).— Evaluates the logical operation'or"

of its arguments.

LOGXOR(N, N,...N_).- Evaluates the logical operation

"exclusive or'of the Ni's.

MAP(L S).- S must be a functional argument; applies S to
L and then to the successive CDR's of L until L is

NIL.

MAPC(L 8).- S must be afunctional argument; applies S to

all the elements of L. Returns NIL.

MAPCAR(L S).- Similar to MAPC, but a list is constructed

with the resulting evaluations.

MAPLIST(L S).~ Similar to MAP, but makes a list with the

resulting evaluations.
MAX(N1 NQ"'Nn)" Returns the greatest of the Ni's.

MEMB(AI L).- Searches in L for an element EQ to AI; if
found, the value of MEMB is the CDR segment of L

whose CAR is AI. 1In the other case is NIL.
MEMBER(ALN L).- Same as MEMB, but searches with EQUAL.
MIN(N, NZ...Nn).w ?eturns the smallest of the N.'s.
MINUS(N).- E;aluates -N.

MINUSP(N) .- T or NIL according to whether N is less than

Z2ero or not.

33,

NCHARS(A) .~ Computes the number of characters of the name
of A.

NCONC(L1 L2).— Includes the elements of L2 after the last

element of L1 in Ll' (This function 1s destructive).

NEQ(AIl AIz).- NOT(EQIAI1 AIZJ).

2

' L} 1 1 o oy
(NLAMBDA L 5, 82...Sn)(81 S ...Sm). Same as LAMBDA except
that the Si's are not evaluated.

NOT(S).- EQ(S NIL).

NTH(L N).~ Returns the -N-th element of L.

NULL(S) .- Identical to NOT.

NUMBERP(X).- T or NIL'accordihg whether X is number or not.

OR(S1 82...Sn).— If Si is different from NIL, execution
terminantes and the value of OR is Si; otherwise

S;41 is considered. OR() Is always NIL.

PACK(L).~ L is of the form (AN1 ANZ"'ANn)' Returns an

atom whose printname is the concatenation of the

AN.'s..
&

PAGE(A) .- Performs a skip to the top of the next page of
file A,

PLUS(N1 N2"an)‘_ Returns N1 * ¢i% +Nn' If n = 0 returns 0.

34.

PRETTYPRINT(AL A).- If AL is an atom its definition is

prettyprinted on file A; otherwise it proceeds as

before with each element of AL.
PRINT(X).~- Prints X on file LINE changing line.

PRINTCI—I(A:L Az).- Prints the first character of A, on file

1
A, following the previous contents of that line.

PRINTLEVEL(I A).- Sets the print level of file A to I.

Returns previous setting.

PRINT4(X A).- Prints X on file A without changing the

record.

PRINT2(X) .- Identical to PRINT, only that special atoms are

written in a way acceptable to the input routines.

PRINT3(X A).- Similar to PRINT1, but operating as PRINT?2

on special atoms.

PROG(L S1 82...Sn).- Initializes the elements of L to NIL,
then evaluates sequentially the Si's unless a GO is
executeé. Returns 8§ unless a RETURN is executed.

It is permissible to nest PROG and to transfer to an

outer one from an inner one.

PRDGI(S1 82...Sn).- Evaluates the Si's in sequence

returning S,

PROGN(S1 82...Sn).— Evaluates the Si‘s in sequence

returning Sn.

35.

PROP(A ALN X).- Searches in the property list of A for an
element EQUAL to ALN. If found returns the

remaining of the property list, otherwise X.
it

PUT{A AI ALN).- Puts on the property list of A property

ALN under label AIL.
QUOTE(X) .~ Returns X unevaluated.
QUOTIENT(N1 Nz).- Computes the integral part of Ni/Nz'

READ().- Reads an S-expression from file CARD.

READATT(A1 Az).u Eeturns the value of attribute A2 in file
A

1
READCH(A) .- Reads a character from file A.
RECLAIM().- Causes a garbage collection.

REMAINDER(N, N,).- Computes N, mod N,.

REMOVE(ALN L).- Creates a list with every ocurrence of ALN

removed from L.

REMPROP(A AI).- Removes label AL and the property associlated

to it from the property list of A.
REPLACA(AL ALN).- Replaces the CAR of AL with ALN.
REPLACD(AL L).- Replaces the CDR of AL with L.

RETURN(X).- Exits the PROG with value X.

36.

REVERSE(ALN).- Creates a list whose elements are the

elements of ALN in inverse order.
REWIND(A).- Rewinds file A.

RIGHTSHIFT(N I).- Shifts I places to the right the bits

of N. I has to be less than 389.

SELECTQ(AI Ly Lyesoby X).- Each L. is of the form

(ALi Si1 Siz...Sini) and they are not evaluated.

TE AL, is an atom and equal to AL the Sils are
evaluated and the value of SELECTQ is Sini. If AL.
is a list and AI 1is MEMB of ALi the same procedure

is applied, otherwise Livq is taken. If none 1is

satisfied the value of SELECTQ is ¥.

SET(A X).- The value of A become X. If X is of the form

(FUNCTION AL), the property list of A is replaced

by that of AL.

SETA(M Nl NZ"'Nn X).- Assigns to the Nl " Nz,...,Nn

-th element of M the value of X. The dimension of

M is at least n.

SETATT(A L).- Adds to A the attributes and values

indicated in L {(see FTILE).
SETQ(A X) .- SET(QUOTE(A)X).

SETQQ(A X).- SET(QUOTE(A) QUQOTE(X)).

37.

SPACE(A I).- Advances I records in the file A.
SQRT(N).- Computes the square root of ABS(N).

SUBST(ALN1 ALN2 L).~ Creates a list with every appearance

of ALN:1 in L replaced by ALN, .

SYSFILES{).- Returns a list of the form (Al AZ"‘An)’

where each of the files LISPSYSFILE/Ai 1s present in

the user's library. (See SYSIN, SYSOQUT),.

SYSIN(A).- Reads from the sysfile named LISPSYSFILL/A.
(See SYSOQUT).

SYSOUT(A).- Performs a dump of the interpreter's memory
into sysfile LISPSYSTILE/A. This allows the user

future recovery at this point.

TEREAD(A) .- Terminates inputing from the current record of

fi le Ao'

TERPRI(A).- Terminates outputing into file A. Repeated

use of TERPRI outputs blank lines.
TIME(I).- Same as the time function of the system.

TIMES(N1 Nz...Nn).~ Computes the product of the Ni's.

If n = 0, returns 1.

TRACE(L).- L is of the form (A, Ayev A). Sets up a trace
of functions (or atoms' value) Ai. Every change in

value, call to or return from Ai will be printed.

38.

UNBREAK(L).- L is of the form (Al A2...An). Removes the
call to BREAK1 from the definition of Ai as put by
BREAK.

UNBREAKIN{(A L).~ Removes the call to BREAK1 in A set by

BREAKIN at L. (See BREAKIN for the form of L).

UNPACK(A).- Creates a list whose elements are the letters

of the print-name of A.

UNTRACE(L).- L is of the form (A1 A2...An). Removes the

tracing mark set by TRACE.

WRITE(X A'S).~ If S dis NIL it will output X on file A;
otherwise a list whose elements are lists containing
both the name and the definition of each element of

X is written on A (as LOAD requires).

ZEROP(N).- T or,NIL according to whether N is zero or not.

IR |

39.

SYSTEM ATOMS. The predefined atoms in the system are:

Name
ARROW
BLANK
COMMA
DASH
DOLLAR
DOT
LBRACK
LPAR
NIL
PLUSS
RBRACK
RPAR
SLASH
STAR

The following table, lists the file attributes

Value

¢.

NIL

-\VL._..J

implemented in the system, and the type of object the

attribute accepts or returns.

Name

ATTERR
ATTVALUE
ATTYPE
BLOCK

Type
Predicate
Number
Number

Number

BUFFERS
DATE
DENSITY

EOF

EXTMODE
TILETYPE
FORMMESSAGE
KIND
MAXRECSIZE
MYUSE

OPEN
PARITY
PRESENT
PROTECTION
RECORD
RESIDENT
SAVEFACTOR
SECURITYTYPE
SECURITYUSE
TITLE

Numbenr
Number
Number
Predicate
Number
Number
Atom
Number
Number
Number
Predicate
Number
Predicate
Number
Number

Number

" Number

Number
Number

Atom

40.

" 41.

INTERACTIVE FACILITIES

THE EDITOR. As mentioned before, a call to the
function EDIT causes the interpreter's editor routine to
be activated. The argument of EDIT is an atom whose
definition i1s to be edited. The editor answers with the
ready character ":"; whenever this character appears, any
nunber of commands can be sent provided they do not exceed
a line. These commands are sequentially executed unlesg
an error occurs, in which case the erroneous part will be
written followed by a "?7", and the remaining ignored.

A very useful feature of the editor is the mécro
facility that allows the user to define a parametrized
collection of editing commands. This definition may then
be simply invoqued or applied repeatedly to an expression
until an error occurs.

Most of.the editor's commands refer to a part of the
expression being edited. That part is called "the current
expression" and will be denoted by EP. Initially EP is set
to the definition of the argument of EDIT. We now describe
the commands defined: (we still follow the notation
introduced before unless quoted).

It should be pointed out, that commands implying a
modification of the list structure are destructive, i.e.,

actual REPLAdA, REPLACD and NCONC are performed.

I.- Sets EP to that element of EP indicated by I. In

42,

this and in any case in which EP is tried to be set
out of bounds, an error will occur but EP will not

be modified.

“.",- Moves EP one level upwards.

w/v_ _ Moves EP to the level at which edition began.
"¢ _ Moves EP one site backward at the same level.
.- Moves EP one site forward at the same level.

.~ Sets EP to the fragment of the 1ist containing EP and
whose CAR is EP. Example:
: P3 =P
{ ABCDE)
wwen: & CBE J
The printing routine identifies a fragment printing

... Dbefore it.

" A L $cSTRINGc.- Defines a macro-instruction A by
associating the string between the delimiter "c¢" with
A. L must be either vacuous (i.e., a blank or (}) or
a list of formal symbols separated by commas. The
formal symbols must be atoms (§-notation is allowed).
Delimiter "¢" may be any character not contained in
the string. These definitions are saved in the
property 1list of A and may be reused without definition

in another call to the editing routine,.

43.

"!" A L.- Invocates the text associated with A. L is a
list of the form (X1=X2= e ,Xn); where each X, is
.either any string not containing ")" and commas or
else a string of the form $cSTRINGe; where, as before,

¢ is any character not contained in the string.

"&" AL .~ Similar to "! A L™, but will iterate the macro-
instruﬁtiop (once the proper . parameter replacement
has been done) until an error occur during its

evaluation.

Nested invocation.- Macro-instructions may be nested up to
any - (reasonable) level. If an error occurs during
a nested invocation, the only text ignored will be
that of the macre being executed (i.e., the one at
the highest level) and execution will continue

normally at the point following this last invocation.

Parameter conventions.- It is not strictly necessary that
the number of parameters appearing in an invocation
command coincides with the number of formals in the
declaration. Paramefers may be omitted provided that
their site is indicated by two consecutive commas.
Also, a right parentheses set after the i-th parameter,
will cause the remaining n-(i+1) to be omitted. For
example, the following syntax is correct:

A (Xl,,,Xu, 583 ,Xn_m). Whenever a parameter is

omitted from the parameter-list, its site in the text

44,

associated with the macro identifier will be filled
with a blank space. Note that the parameters are not

evaluated in any form, as the macros are just a text

substitution method.

Use of dots.- The use of a dot in the definition of a macro-
instruction will cause the parameters to be appended
to the part of the text preceeding the corresponding
formals whenever these appear in the form <any text>.
X;. For example, suppose we define A(X) as $$P.X$,
then a call to A in the form A(L 3) will cause the
replacement "PL 3" and calling A(P) will cause the
replacement "PP", Note‘fhat defining A(X) as $85PX$

. would not be equivalent, yielding "PX" in both cases.
- Examples:

1) Suppose we want to change all lists of the form
(set (gquote a) b) to (setq a b), then a procedure
ma& be |
HS$"B (set- {(quote ==) ==)

¢l setq
£ 2
Q 2"

2) To remove all the parentheses inside EP, we may
proceed as follows:
81 S$"%k52 1 = M
82 §" ¢+ 1v
¥ 51

45.

"Q" I.~ Removes the I-th element of EP.
"I" I S.- Inserts S as de I-th element of EP.
"R" I S.- Replaces the I-th element of EP by S.

"A" I S.- Appends S to the I-th element of EP.

IN THE ABQVE FOUR COMMANDS THE MODIFICATIONS ARE DESTRUCTLVE

*

"E" 8.- Evaluated the S-expression S.

"EQY S, S$,.- Evaluates the EVALQUOTE-expression given by

the Si's‘

"pP", - Prints EP.

46.

"PL" I.-~ Prints EP changing provisionally the print level

of LINE to I.
"PP" .~ Prettyprints EP.
"F".- Terminates edition.
"M" A.- Change EP to the definition of A.

"N" S.- Terminates current edition and starts a new one with

S (after EVALuating it).

" o.- Moves EP to the element immediately "following" it
{(in print order) no matter how many right parentheses
need to be jumped; if none "follows" it, an error 1is

produced (E,e., it goes up until EP can be advanced

forward one place).

"(" I.- Inserts a left-parenthesis before the I-th element

of EP, I = 0 is invalid; for example.

Pp(2P
(ABCD)

(A(CBCD))

nym I, I,.~ Inserts a right-parenthesis after the I,-th

element of the I,-th element of EP(I1 = 0 is invalid};

for example,

=

47.

P)23P
(A(BCDETF) GH)
(A(BCD)ETFGH)

"[" I.- Removes the left parentheses before the I-th

element of EP; e.g.,

P[4iP
(AB)
A

or

P[2p
(a(B)C)
CAB)Y -

"]" I.- Moves the right parentheses following the I-th

element of EP to the end of EP; example,

P]lz2rp __
(A(BC)D)
(A{(BCD))

4i8.

nAv I,- Removes both the left and the right parentheses

from the I-th element-of EP.

g 11 I2.- Inserts a left parenthesis before the Il—th
element and a right parenthesis after the I, element

of EP. 0Of course, I:L must be less than or equal

to IQ.

ALL SIX COMMANDS ABOVE ARE DESTRUCTIVE

"B" Al,, - Searches in EP for an expression matching with the
pattern AL, if found, sets EP to that expression, in
other case causes an error. (If AL is an atom, EP is
set to the fragment beginning in that atom). AL m£§”'
contain étoms, ", "=z=" or more patterns. Any atom
appearing in AL distinct from "&" and "==" will match
with exactly the same atom contained in some
expression, "&" will match with any s-expression and

M==" will match with the CDR of any list.

"CY <option> AL $.- <option> must be either vacuous or "2V,
searcheé in EP all sub-expressions matching with AL.
If the option was "?'", the editor will write each of
these, waiting for an answer and if that answer 1is
different from a cayriage return, nothing happens;
otherwise the expression is replaced, if <option> was

vacuous, the replacing is made unconditionally.

49,
BREAK FACILITIES .

BREAK1(A L S).- Allows the programmer to stop execution at
the moment BREAK1 is evaluated. If S is present the
break routine of the interpreter is called provided
that S is not NIL; otherwise, it is called always. In

the first case, the break routine will write:

bl

BREAK OF A < place > < pattern > WITH §,

where L = (< place > < pattern >), and<place>is either
BEFORE or AFTER. The break routine is now ready td
execute its own commands (the break ready character is

Wh") ., The commands defined are:

YE" S.~ Evaluates the S-expression.

"EQM 81 82.- Evaluates the EVALQUOTE-expression given by the
'Si's.

"R" S.- Terminates the break returning value 8.

WF",~ R'NIL.

50.

- USE AND GENERATION OF THE SYSTEM

The LISP system operates in two modes; batech and

remote. The batch system is called by the following cards:

? RUN LISP/LISP

7?7 DATA CARD
(LISP program)

(2]

END
For the remote versions type
E * SYSTEM/LISP

and the system will answer writing a title and a ready
character (¥) indicating that it 1s waiting for input.

Typing ?END terminates the session.

The seqﬁence of cards to compile the source file
-LISP/SOURCE- in order to generate the interpreter in the

remote or batch mode are the following.

For batch:

COMPILE LISP/LISP ALGOL LIBRARY

=J

? ALGOL PROCESSTIME = 1203 ALGOL IOTIME = 120,
? ALGOL FILE TAPE = LISP/SQURCE

? STACK = 2500

? DATA

$ SET MERGE RESET REMOTE

? END

0 2 SR R

51.

and for the remote version

< W

COMPILE OBJECT/LISP WITH ALGOL TO LIBRARY
ALGOL PROCESSTIME = 120; ALGOL IOTIME = 120
ALGOL FILE TAPE = LISP/SQOURCE

STACK = 2500

DATA

SET MERGE

SET REMOTE

END

e

52,

ACKNOWLEDGMENTS

—

The authors gratefully acknowledge the participation
of Mr. Max Dfaz in this project. He collaborated in many
routines, and was particularly responsible for the

implementation of macros in the editor and the prettyprint

routines.

53.

" BIBLIOGRAPHY

J. Me«:Carthy. Recursive Functions of Symbolic
Expressions and Their Computation by Machine. Part I.
"Communications of the ACM", 3, pp 184 - 185, April

1960.
{

W. Teitelman, D. G. Bobrow, A.K. Hartley, D.L. Murphy.
BBN-LISP, Tenex Reference Manual. Bolt, Beranek and

Newman, Inc., July 1971.

Lynn H. Quam. Stanford LISP 1.6 Manual. Stanford
Artificial Intelligence Project. SAILON 28.3, Sept.

1968.

C. Weissman. "LISP 1.5 Primer". Dickenson Publishing

Company, Inc. Belmont Calif. 1967.

W.D. Maurer. "The Programmer's Introduction to LISP".

American Elsevier Inc. New York, 1972.

M. Magidin, R. Segovia. Manual Preliminar del Sistema
LISP B-6700. Comunicaciones Técnicas del CIMAS, 3, 18,
1972.

Burroughs B6700/B7700 Extended Algol Compiler. Form

No. 5 000 136, June 1972.

J. Moses. The Function of FUNCTION in LISP. "SICSAM

Bulletin') 15, p 13-17, July 1970.

9.

M. Dfiaz. Las Funciones Definidas en el Sistema
LISP B-6700. Comunicaciones Técnicas del CIMAS.
(To be published).

