
DRAFT: October 4, 1978 3:35 PM

We are hoping to release this in a week or so. Please read this and tell us how to make it
clearer. Some of the things written are not quite true yet, so if you want to try using Poplar
let me know. -Jim

The Poplar language is intended for text manipulation. It is based on ideas from LISP, SNOBOL.
and A P L . It is experimental in the sense that we do not know quite how to use it. Certain of your
favorite features have been left out or given strange implementations in order to encourage
exploration of different programming styles. This manual describes the current implementation.
Read this, try it, and give us some feedback. Example programs, successful or not, will be greatly
appreciated. Comments, especially about capabilities we do not offer, are solicited.

This manual is composed of several sections: ji

General Iteration and Recursion
File, Display, and Keyboard operations
Precedence and Scope
The Poplar Executive

It has some appendices:

A: Examples
B: Index to Routines
C: Syntax Equations for Poplar
D: Getting Started

Poplar
Jim Morris

Eric Schmidt

Strings and Lists
Function Application
Conditional Branching
Iteration over Lists
Variables, Assignment, and Sequencing
Forms
Patterns and Matching
Matching Combined with Evaluation
Tlie Matching Process

We recommend new users read the main part once over and then follow the directions in Appendix

D. i

Strings and Lists

Any sequence of characters enclosed in quotes is a string. For example,

" I am a string"
" i am a string with a
carriage return in it"
I I M

are three different strings. The last is called the empty string.

Numbers are also strings, but need not be quoted; e.g. 123 = "123".

Special, two-character combinations can be used to represent characters which are inconvenient to

type into strings:

t" is a quote mark •
t is a space (There is a space after that " t ") .
tt is just t

In general for any upper-case letter X from A - Z , tX is the A S C I I character control-X. In particular,

tM is a carriage return
t! is a tab
T Z is control-Z

Finally, tnnn where nnn is precisely three digits is considered a single character with that octal

A S C I I code.
If

A list is a sequence of things surrounded by brackets and separated by commas. For example,

["abc", "xyz"]

[16]

[1
are lists, the last being the empty list, or nil. Lists can be components of lists, e.g.

["roster", ["jim", "417 Smith St.", "555-7821"], ["fred", "625 B St.", "555-9021"]]

is a list of three items, two of which are lists of three items.

The major difference between strings and lists is that lists have a structure that makes it faster to
pick out the pieces. It will be faster to extract "625 B St." from the list structure above than to
find the same information in the string

"[roster, [jim, 417 Smith St., 555-7821], [fred, 625 B St., 555-9021]]"

For the list you simply say "Get the second item in the third sublist". For the string you would
have to say something like "Go to the third bracket. Go to the first comma. Skip the space. Get
all the characters up to the next comma."

Function Application

The operator / (application) means apply the function that follows it to the preceeding value.

There are many built-in functions. For example, the function length may be applied to strings or
lists to produce the number of characters in the string or items in the list.

"abc'Viength = 3
""/length = 0
["abc", "c"]/length = 2
[]/length = 0

Functions with two or more inputs take them in a list.

The function cone will combine a list of strings into one.

["abc", "def"]/conc = "abcdef"
[123, 678]/conc = 123678
["abc", ""]/conc = "abc"

The functions plus, minus, times, and divide may be applied to pairs of numbers.

[1,3]/plus = 4
[1,"a"]/plus is an error
[4,6]/minus = -2
[3, -8]/times = -24
[7, 3]/divide = [2, 1]

The value of a divide operation is a quotient and remainder.

Since they are used so frequently, there are shorter notations for cone, plus and minus.
Concatenation is designated simply by juxtaposition.

"abc" "def" = "abcdef" i

Plus and minus are designated by + and -. ! -

123 + 4 = 127
5-10 = -5

The various components of a list may be designated applying the list to a number, as if the list were
a function. The numbering starts with 1.

^ 1/["ab". " c" , "d"] = "ab"
3/["ab", "c" , "d"] = "d"
4/["ab", "c" , "d"] is an error

Applying a list to a negative number results in the list minus that number of elements.

^ -1/["ab", " c" , "d"] = ["c", "d"]
-2/["ab", " c" , "d"] = ["d"]
-3/["ab", "c" , "d"] = []

Two lists may be concatenated by placing two commas between them.

["abc", "def"] „ [123, 456] = ["abc", "def", 123, 456]
[123, 456] „ [0] = [123, 456, 0]
["a", "b"] „ [] = ["a", "b"]

The expression x--y will generate a list of numbers starting with x and ending with y.

1-7 = [1 , 2, 3, 4, 5, 6, 7]
3 - 3 = [3]

4 - 2 = [4, 3, 2]

Tne function sort rearranges a list in ascending alphabetical or numerical order.

[4, 1, -2]/sort = [-2, 1, 4]
["beta", "zero", "alpha"]/sort = ["alpha", "beta", "zero"]

I f the element of a list is itself a list, sort assumes the first component of the list is a string and uses
that string in deciding where the list goes.

[["fred", 20], ["al", 100], ["jane", 3]]/sort = [["al" , 100], ["fred", 20], ["jane", 3]]

The function usort, ("unique sort"), sorts a list of strings and then eliminates duplicates.

["X", "a", "X", "b"]/usort = ["a", "b", " x "]

There is a complete list of all Poplar built-in functions (called routines) in Appendix B .

Conditional Branching

Certain primitive operations islist, isnull, and isstring, return the special value fail i f their argument
is not as they describe it.

[2, 3]/islist = [2, 3]
"2,3"/islist = fail
[]/isnull = []
[3, 4]/isnull = fail
"a'Visstring = "a"
[5]/isstring = fail

The operation of matching, described fully below, also can return fail. This simplest case of
matching is a test for string equality written as "string1/{string2}".

" a b c " / { " a b c " } = "abc
" a b c " / { " a " } = fail

The value fail may be used to select differing values for an expression in a variety of ways. The

relevant operators for doing this are |, and >.

The alternation operator, j , has the following behavior,

fail I E = E

(x/isstring) | "def"

will be X i f X is a string, but will be "def" otherwise.

The operator > is a conditional value operator with the following behavior

V I ^ E = V if V is not fail (E is not evaluated at all.)

Thus

V > E = E
fail > E =: fail (E is not evaluated at all.)

if V is not fail

Thus

((x / { " a b c " }) > "xyz") | "def" |

will be "xyz" i f x is "abc", but will be "def" otherwise. -

The not operator ~ maps fail into the empty string and everything else into fail

~ fail = ""
~ "" = fail

. ~ "abc" = fail

A>e. I G K->><?.-. le,.
Iteration on Lists

All the binary string operations may be applied to lists. I f one of the operands is not a list then it is
combined with every element of the other list.

U 4 + [-2, 3, 8] = [2, 7, 12]
- *

"foo." ["bed", "mesa"] = ["foo.bcd", "foo.mesa"]

"<fred>" ["form", "eval", "comp"] ".mesa"
= ["< fred > form.mesa", "< fred > eval.mesa", "< fred > comp.mesa"]

I f both operands are lists then they must be tlie same length and the operations is applied element
by element.

["abc", "def"] ["xyz", "123"] = ["abcxyz", "def123"]

[5, 6] + [7, 8] = [12, 14]

[5, 6] + [7, 8, 14] is an error

' The operator / / (maplist) will apply the following function to every member of the preceeding list
and create a new list of the results.

["a", "bed", ""]//length = [1 , 3, 0]

[]//length = [] ' .

I f the value of an application is fail it is omitted from the result list.

["a", ["x"] , "b", ["t", "c"]]// isstring = ["a", "b"]

The operation / / may be used in conjunction with - to produce sublists.

3-6 / / [10, 20, 30, 40, 50, 60, 70] = [30, 40, 50, 60]

It is often useful to process all the items in a list while accumulating some information. This can be
accomplished using the operator / / / (gobble).

[x 1 , ... , xn] / / / f.

which applies f to pairs of items. It starts with x1 and x2 to produce y 1 ; then it combines y1 with
x3 and so on.

[1 , 4, 9, 2 0] / / / p l u s = 34

[2, 4, 8] / / / m i n u s = -10

[" T h e " , "qu ick ", "brown ", " fox "] / / / c o n c = " T h e quick brown fox "

More generally, .

[x 1 , x2 , x 3 , x4] / / / f = [[[x1 , x 2] / f , x3] / f , x4] / f

[x] / / / f = X

[] / / / f = []

Variables, Assignment, and Sequencing

A variable is either a single letter or a sequence of letters including one capital letter. Thus variables
can always be distinguished from special Poplar names, like cone. One can assign values to
variables with the assignment operator

X " A long string I would rather not type repeatedly"

B lankL ine = " t M t M "

The value of x + e is e. Subsequently evaluated expressions containing the variable will use the
value in place of t̂he variable.

X B lankL ine x =

" A long string I would rather not type repeatedly

A long string I would rather not type repeatedly"

Expressions may be evaluated solely for their side effects. When this occurs it is often desirable to
combine them into sequences and ignore the values they produce. The semi-colon is used to
separate such items.

(x 1 ; y 3; x + y) = 4

Forms i -

A form is a variable or list of variables followed by a colon followed by any expression,

x: X + 1

[x, y, z] : (x / length) + (y / length) z

Forms may be applied to values or lists of values and the effect is to substitute the values for the
corresponding names.

[" a " , " b e " , "ttt"] / ([x, y, z] : (z / length) + (y / length) x x)

yields

(" t t t 'Vlength) + ("bc 'V length) " a " " a "

which eventually yields

" 3 2 a a " /
0

The operators / / and / / / may be used as well
A

[" a " , " b e " , "ttt"] / / (x; x " @ " x) = [" a @ a " , " b c @ b c " , "t t t@ttt"]

[[1 , 2] , [3, 8] , [5, 2]] / / ([x, y] : [x + y, x -y] / t imes) = [-3, -55, 21]

[" a " , " b " , " c " , " d] / / / ([x , y] : y x) = " d c b a "

A form may be assigned to a variable and then that variable may be referenced like a built-in
function.

Patterns and Matching

Patterns are used to analyze strings. In general, a pattern is any expression enclosed in braces { } .
Applying a pattern to a string is called matching. The result is equal to the string if the match
succeeds otherwise it is equal to fail.

Any string can become a pattern. The match succeeds if the strings are equal. Upper- and lower
case characters are always differaent.

" a b G " / { " a b c " } = " a b c "

• • a b c " / { " a b " } = fail

9
Patterns may be combined with the operator "\" {alternation) to form ^ n e w pattern which matches
either the first or second component.

" a b " / { " a b ' T ' c ") = " a b "

" c d " / { " a ' T ' c d ") = " c d "

" c d " / { " a ' T ' b ' T ' d " } = fail

Patterns may be juxtaposed to form a new pattern which matches strings formed by concatenation of
strings which match the individuar patterns.

" a d " / { (" a ' T ' c ") (" b " | " d ") } = " a d "

" x c d " / {"X" (" a ' T ' c d ") } = " x c d "

The pattern

P!

matches an arbitrarily long sequence of (one or more) P's. For e.xample,

" a a a " / { " a " ! } = " a a a "

The pattern

P?
matches an optional P; i f the match succeeds, fine, i f not fine too.

" a b c " / { " a " " b " ? " c " } = " a b c "

" a c ' V { " a " " b " ? " c ") = " a c "

The idiom Pi? can be used to indicate zero or more repetitions of P.

The pattern # (wild card) matches any single character.

" a b c " / { " a " # " c ") = " a b c "

The pattern ... (ellipsis) matches any sequence of zero or more characters whatsoever. The matcher
endeavors to make the substring that it matches as short as possible, subject to the item following
the ... matching sucesshiUy. A ... at the end of a pattern matches everything to tire end of tlie
string.

" a b c " / { . . . " c ") = " a b c "

10

"abc,def ,ghi ,bbb," / { (. . . " , ") ! } = "abc,def,ghi ,bbb," |

" a b c x y z s s s " / { . . . " x y z " . . . } = " a b c x y z s s s "

1 6 / { - . . . } = fail

- 1 6 / { - . . . } = -16

The operator ~ (not) changes fail into the empty string and anything else into fail.

" a b c " / { - " a b c " } = fail i

" a b c " / { - " x " " a b c " } = " a b c "

The idiom { ~ P . . . } matches anything which does not begin with a P .

The following are some useful, pre-defined patterns: , • ,
i

digit = {0|1|2131415|6|7|8|9}

integer = { " - " ? digit!}

number = { " . " integer | (integer ("." integer?)?)}

smallletter = (" a " | " b " | " c " | " d " | " e " | "f" | " g " | " h " | " i " | " j " | "k" | " I " I " m " |

" n " I " o " I "p" I " q " I " r " | " s " | " t" | " u " I " v " | " w " | " x " | " y " | " z " }

bigletter - { " A " | " B " | " C " | " D " | " E " | " F " | " G " | " H " | " I " | " J " | " K " | " L " | " M "
I M , ^ . , I M Q . . I .,p,. I .,Q., I „p„ I ,.5., I . . j M I „^J„ I „y . , I I I " Y " I " Z " }

letter = {smal l let ter 1 bigletter} v - A
word = { let ter!}

item = {word | number }

thing = {(letterldigit)!}

s p a c e = { " " I " t l " }

A few other patterns can be modified by a number

blanks 5 = " T t t t t "

len 3 = # # . ^-v-

The number is called the pattern's parameter.

Matching Combined with Evaluation

It is usually desirable to extract more information from the matching process. This can be
accomplished by adding structure to patterns witli the normal set of operations available for strings,
lists, and forms. The strings that match individual components of a pattern are then recombined
under control of those operations.

For example, the expression

"How many t i m e s " / { [word, (" " word), (" " word)] }

evaluates to become

["How", " many" , " t imes"]

Operationally, the string was broken into five pieces by the pattern: " H o w " , " ", " m a n y " , " ", and
" t imes" - Then the concatenation of the spaces onto "many " and " t imes" was performed, and then
the three pieces were made into a list.

The deletion operator • when suffixed to an expression forces it to evaluate to be the empty string
Unless it is fail. It is useful for discarding portions of a matched string.

"How many t i m e s " / { [w o r d (" " word)* , (" " word)] } = ["How" , " t imes"]

" 5 6 , 8 9 " / {number " , " * + number} = 145

The pattern

P.!
with a comma just before the ! behaves just like P! except that the individual items that match P are
combined into a list rather than being re-concatenated into a string.

" a a a " / { " a " , ! } = [" a " , " a " , " a "]

" T h e quick brown fox" / { (word " " ? *) , ! } = [" T h e " , " qu i ck " , " b r o w n " , " f o x "]

Like any other operator the application operator may appear inside a pattern. Tlie function that
follows it is applied to whatever matches the subpattem before it.

"abe-def -h i j k -n- " / { (word " - " * / length),!} = [3, 3, 4, 1] ,

Operationally, this could have happened in two stages. First the matching process yields

[(" a b c " " - " * / l eng th) , ("def" " - " * / length) , ("hijk " - " * " / l e n g t h) , (" n " " - " * / l eng th)]

Then the evaluation process throws away the "-'"s and computes the lengths.

" a b e d " / { (" a b " / (x: x x x)) . . . } = " a b a b a b c d "

" 2 3 - J a n - 7 8 " / {(integer, " - " * word, " - " * integer)

/ ([d, m, y] : m " " d " , 1 9 " y) }

= " J a n 23, 1978"

The conditional operator > can be used to replace a (non-fail) value with something else.

Month + { (" J a n " > 1) | ("Feb" > 2) I ("Mar " > 3) i ("Apr " > 4) | ("May" >

5) I (" J u n " > 6) I (" J u l " > 7) I (" A u g " > 8) | ("Sep" > 9) | ("Oct" > 10) |
("Nov" > 11) 1 ("Dec" > 12)}

"23-Jan-78" / { (integer, " - " * Month, " - " * integer)

/ ([d, m, y] : m " / " d " / " y) }

= "1/23/78"
y

The idiom {...(P > S) . . .} means replace the first occurence of P with 8.

The idiom {(. . . (P > S))!. . .} means replace all occurences of P with S.

The Matching Process

In simple situations the matcher usually does the expected thing. Occasionally, however, it will
surprise you by failing to match something you thought it should. That is because the matcher
follows a rather simple, left-to-right, matching rule and doesn't back up in the string it is trying to
match. Specifically, given a pattern like

s / { P 1 P2}

it finds a prefix of s which matches P I , then tries to match P2 against the remainder of the string.
I f P2 fails to match the remainder the entire match fails. There might be a different way to match
P I against s that consumes greater or fewer characters so that P2 would match the remainder.
Nevertheless, the matcher does not bother trying new ways to match P I .

For example,

"abc" / { (" a " I "ab") " c " } = fail

because the first alternative, "a", was chosen to m.atch the "a" in the subject string, and the matcher

did not back up to try the "ab" alternative when "c" fails to match "b". On the other hand

"abc" / { ("ab" | "a") " c " } = "abc"

This suggests that i f one alternative is a prefix of another you should put the longer one first.

Another example: the matcher finds the longest sequences it can so

"aaabc" / {"a"! "abc"} = fail

because the third "a" was used up by the "a"!. Thus the elipsis pattern ... is quite different from

the apparently similar pattern #!?. The second one is fairly useless (except for signifying expletives)

since it uses up the entire string it is applied to.

"aaaab"/{.. . "b"} = "aaaab" -
"aaaab" /{# !? "b"} = fail

The use of elipsis can be surprisingly expensive occaisionally. For example,

"abed def wddf: x " / { . . . (word " : ") . . . }

will cause the pattern word to match seven different substrings ("abed", "bed", "cd", "d", "def",
"ef", " f") before coming to rest on "wddf".

General Iteration and Recursion

I f you want to do something repeatedly and it doesn't correspond to marching down a list you can
use the operator %.

E % f

applies f to E repeatedly, calling the result the new E , until E is fail, then returns the previous value
for E .

-10 % (x: x + 4/{"-" . . .» = -6 % (x: x + 4/{"-" . . .»

= -2 % (x: x + 4/{"-" . . .»

= -2

You can write recursive functions, i f you like.

Blares ^ (n: (n/{0}) > "" 1 ("t " ((n-1)/Blanks)))

which generates a string of n blanks.

You can also write recursive patterns U ' '

AE ^ {number | (" (" AE (" + " | " - ") AE ") ") }

should match something like "(5-(6 + 2))".

One can write a fairly succint evaluator for arithmetic expressions

Eval {number |
([" (" • Eval " + "*, Eval ") " *]/plus) I

([" (" • Eva l , E v a l ") " *] / m i n u s) } ;

"(5-(6 + 2)) ' V E v a l = -3

File, Display, and Keyboard Operations

The expression

" com.cm 'V f i l e

evaluates to a string which is the contents of the file name com.cm. I f the file does not exist the
value is fail.

The operation write can be used to write a string onto a file.

"Hel lo there . tM" / write " commen t . cm"

stores the string on the file. The value is the input string.

The expression •

"f .pI 'Vl ist in

reads in the file f.pl and evaluates it as a Poplar expression. The file should have been created with

tlie listout operation.

The operation listout can be used to store any Poplar value (not just a string) on a file.

["a", "b"] / listout "f.pl"

stores [" a " , "b"] bn the file, including quote marks. • • •

The operation display allows one to display a string.

" H I . " / display

Displays " H I . " on the screen. The value is tlie input string.

The name key evaluates to a string which is the sequence of characters typed on the keyboard up to

an ESC. Thus

key / display

L i / A ' . •

15

echoes lines. Typing D E L to key will return fail.

The name dir evaluates to be a list of the file names currently in the system's directory.

The special name exec may be used to cause a command to be executed by the resident operating
system command processor.

causes the command to be executed. Control might eventually return to the Poplar evaluator. The

value of the expression is the input.

There is a complete list of built-in operations in Poplar in Appendix B.

Precedence and Scope

A program is one or more statements, separated by semicolons. A statement is eitlier an assignment
statement, whose right hand side is an expression, or simply an expression. Expressions come in
three types: binary, unary, and simple. A simple expression is, for example, a string, a list or a
parenthesized expression. Unary (one-argument) expressions are often used in patterns, for example,
"a"! is a unary expression composed of the single expression "a" and the operator " I " . Binary
(two-argument) expressions look like 1+2, or "a" > "b".

With all the different operators, it might be hard to determine which operation comes first in a
complicated expression. Poplar has the following rules:

Parentheses, brackets and braces control the order of evaluation regardless of the precedence of
operators.

It is never \e and often a good idea to add extra parentheses.

Unary operations are performed sooner than binary operations.

There are two levels of precedence for binary opertors.

The operators / , / / , / / / , and % are performed after all the other binary operations. They
are viewed as "control" operations, not "expression" operators.

I I ftp ivy s t / c * . m e s a " / e x e c

Between binary operators of the same precedence, the leftmost is executed first.

S / { " a b " | " x Y " } I " a " = S / ({ " a b ' T ' x Y " } | " a ")

1-2-3 = (1-2)-3

" a " > " b " 1 " c " > " d " = ((" a " > " b ") | " c ") > " d "

x / y / / z = (x / y) / / z

The symbol ':' encompasses everything that follows.

This is so the variables introduced on its left have a scope limited only by closing
parentheses.

x: t x / c o n c ; x + 1 = x: (t <- x / c o n c ; x + 1)

S u c c e s s o r + x: x + 1;

Predecessor + x: x - 1 ;

is the same as

S u c c e s o r <- (x: x + 1; P redecessor + (x: x-1));

1

Thus one will usually enclose forms by parentlieses. '

The Poplar Executive

The executive has two display windows. It executes commands typed into the lower window, and
prints the results in the upper window. As in Bravo, ESC, not carriage return, terminates all input.
For example,

" a b c "

followed by hitting the ESC key is a valid (though trivial) program. Its value, " a b c " , will print in
the upper window. As you proceed, the cursor, which is in the shape of a square, will fill up to
indicate how much memory space has been consumed. When it is mostly black, there will be a
slight pause as the system "garbage collects" space not used any more.

Common editing characters work during type-in. Backspace erases the previous character, and D E L
cancels the input. Hitting ESC followed by ESC will execute the previous command.

To the executive, most binary operators can omit their first operand and they will use the value
displayed in their upper window. For example

; 1 .

followed by ESC, prints the value " 1 " in the upper window. Then

+ 2

followed by ESC, prints "3" in the upper window.

Often, the previous value is wanted:

un
i • • '

followed by ESC throws away the value in the upper window and replaces it with the one that was
there before. Only one value is saved. In the example above, the " 1" would be displayed again.

The value displayed in the upper window may be designated by @. For example.

Wind *- @

will assign the displayed value to Wind.

When tlie value in the upper window won't fit the message "... more ..." is typed at the bottom. I f
you want to see more type

more J-L

and then type 'y' when subsequently prompted with "More? " . I f you type '&' to the More?
question, it will print the entire string with no more pauses.

Quite possibly, you 'will find yourself in the Mesa debugger. I f you type q, carriage return, you
should get back to Poplar. Please notify us of the "PBug" error message.

I f you type

reset } S c

everything is reinitialized, as if you had just entered Poplar. .

I f you've had enough type

quit

Often, Poplar programs ivill be prepared using Bravo. The approved e.xtension for such files is ".pi".
Typing

$MyProgram

followed by E S C will read in the filename and run it. It is shorthand for

"MyProgram.p rV f i i e / run

The built-in function run takes a string, analyzes it and evaluates it as a Poplar expression.

"1 + 2 " / r u n = 3

" x + t " a t " ; X x ' V r u n = " a a "

and X assumes the value " a " .

Often one says

MP *- "MyProgram.pl 'Vf i le

M P / r u n

because it is useful to keep the program around as a string so that it can be editted using Poplar.
This is slightly less painful than going back to Bravo, and a lot more fun. The most frequent kind
of thing one types is

M P / { . . . (" b a d , old c o d e " > "good, new code") . . . }

or you may use the built-in function subst : .

M P / s u b s t

which will prompt you for the new code and the old code (terminate by ESC, as usual).

When you forget the above options, type

?

followed by E S C to print out the user commands.

During type-in, the single ASCII quote (') can be used to enter strings:

' name/ f i l e means "name 'V f i le

The string is terminated by any character not a letter, digit, period, or t.

Errors

There are three kinds of errors - syntax errors, runtime errors, and unforeseen errors (PBugs). A
syntax error will give the line and character on that line near (but always after) where the error
occurred, and will print the line involved. Lines are counted by counting carriage returns. The
statement count is the number of semicolons passed in the entire program being compiled.

Runtime errors occur during the execution of programs and will print out the smallest expression
being evaluated. The question "Bigger context?" will be asked. Typing 'y ' will print the
containing expression.

Poplar maintains various fixed-size storage areas which may overflow. Errors from storage overflow
can be programmed around by breaking the Poplar program or its input into smaller pieces. These
errors may be due to Poplar internal bugs.

The third type of error, a PBug, is a "can't happen" error message which indicates some internal
inconsistency. The Mesa Debugger will be invoked (if it is on your disk). The best thing to do is
record the message, quit out of the debugger, and report the error to us.

Odds and Ends

Poplar will create some temporary files beginning with "Poplar ..." and ending with "$". They may
be removed and they will reappear when Poplar runs.

Because scrolling does not work in the rather primitive Poplar windows, strings may or may not
expand and print in full, depending on the situation. Strings which are abbreviated on the screen
have seven dots () between the beginning and ending substrings. Routines like print and uniq
can be used to print the entire string.

All transactions in the lower window are recorded on the "Mesa.TypeScript" file.

Appendix A: Examples

The following examples are biased towards the kind of tasks Mesa programmers find themselves

doing.

Example 1. A program to eliminate Bravo fonnat trailers

To transform old.bravo into new.text one types '

"old.bravo"/file/P/write"new.text"

Example 2. Find all the mesa files for which a bed file does not exist.

RelevantFiles *- dir//tolo\A 'er//{... (".bed" | ".mesa")};

Produces something like

["a.bed", "foo.bcd", "ajax.mesa", "foo.mesa", "ed.mesa", "al.bcd", "zug.bcd", "al.mesa"]

The tolower maplist is required since Poplar considers "bed" and "Bed" distinct.

MesaPiles + RelevantFiles//}. . . ".mesa"*};

produces

P + {(...("tZ" ...)* "tM")! ...}

P says: Find all occurences of "tZ" ... "tM" and delete the "tZ" part.

["ajax". foo". tl ed". I I al"]

BcdPattern RelevantFiles//}. . . ".bed"*} / / / ([x, y]: {y | x }) ;

produces something like

(" a " I ("too" I ("a l " I " z u g " } } } j[Ay J

Finally

MesaFiles//{~BcdPattern . . . } = ["ajax", "ed"]

Example 3. : Finding substrings in files. , , ^ , , 0 [i j qf . .JM,. /(; ' ' jL.

Find ^ (Pat: f: [f] „ (f / f i l e / l i n e s / / { . . . Pat . . . }))

Find produces a list of all the lines in file f which contains Pat. The list starts with the file name.

Here is a program which searches all the mesa files on a directory

("pa t t e rn ; " / p r i n t / key) /F ind /F indPa t :

dir / / tolower / / { . . . " . m e s a " } / / F i n d P a t

The first line prompts the typist and creates a function F indPat which will search for it. For
example i f he typed " F o o B a r " , F indPat would be

(f: [f] „ (f / f i l e / l i n e s / / { . . . " F o o B a r " . . . }))

Here is a program that prompts for the file names as well.

("pa t te rn : " /p r in t / key) /F indPat :

" " % (x: " f i l e : " / p r i n t / k e y / F N : FN > F N / F i n d P a t / / d i s p l a y)

The prompt " f i le:" appears on the screen, and key returns the filename, F N . I f the user types D E L ,
FN will be fail and everything stops.

Example 4. Print a set of files ending in " .p i " using Bravo, but save paper by combining them into
one file and inserting headers.

Fi les + dir / / tolower / / { . . . " . p i " } / sort;

- (F i l e s / i s n u l l) >

(Text I - F i les / / file / / (x:x " t Z t M t L t M ") ;

(("F i le : " -F i les " i -MtMtM") Text) / cone / (x: x " t Z r M ") / wri te "out .out$" ;

"Hardcopy out.out$" / exec ;

"out.out$" / delete)

Fi les is a list of the files to be printed. I f F i les is not the null list, it continues the computation.
Text is a list of the contents of each of the files, appended with some Bravo formatting information
to print each file on a new page. The third expression generates a list of headers for the beginning
of each file, with carriage returns between the header and the file. That list is concatenated into a
string, a final bit of Bravo formatting is added, and it is written on a dummy file out.out$. The
Hardcopy command is executed, and then the file out.outS is deleted.

Example 5. Automate the programming cycle.

Fi les dir / / tolower / / { . . . " . e r r l og " * } ;

- (F i l e s / i s n u l l) >

(((" B r a v o / m " F i les "; " / c o n e) " del " (F i les ".errlog " / c o n e) " ; compi le " ((F i les "

") / c o n c)) / quit)

Fi les is a list of Mesa filenames for which a .errlog file exists. I f F i les is not the null list, each Mesa
file and its .errlog are brought in with the Bravo'm' macro, each of the .errlogs is deleted, and all
those files are recompiled.

Example 6. Get a list of all the files on your disk, sorted by their size,

dirlength / / ([x,y]:[y,x]) / sort / reverse

dirlength returns a list of lists [name, size in bytes]. Switch those two and sort them in ascending
order. Reverse that list. This is a very slow program.

Example 7. Programs to add carriage returns to a paragraph i

Assume that the input, Paragraph, contains spaces but no carriage returns. The algorithm goes as
follows: I

Initialize In to be Paragraph, and Out to be the empty string. As long as In is non-empty. Jugg le

In and Out so as to put another line on Out. Finally, return Out.

A d d C r s I + (Paragraph:

[Paragraph, " "]

% ([in. Out] : (l n / { # . . .» > [In, Ou t] / Jugg le)

/ ([I n , Out] : Out)) ;

Jugg le chops 80 characters off In, producing L ine and RestOf ln . Then it breaks L ine into

everything up through the final blank. Most, and the remainder. S tub. The new value of In
becomes the Stub followed by Res tOf ln . The new Out becomes. Out followed by Most followed by

a carriage return. I f there are not 80 characters. In is set to be the empty string and Out to Out
followed by In.

Jugg le + ([In, Out]:

(In/

{ [len 80 , ...] / [L i n e , RestOf ln] :

L i n e / { [(. . . " ") ! , . . .] } / [Most, Stub] :

[Stub RestOf ln , Out Most " t M "]

»
| [" " , O u t l n]

The following recursive program is an alternative.

AddCrs2 + ^

(Paragraph:

(Pa rag raph /

{ [len 80, ...]
/ [L i n e , RestOfL ine] :

L i ne / { [(. . . " ") ! , . . .] } / [Most, S tub] :

Most " t M " (Stub Res tO fL i ne /AddCrs2)

}

>

I Paragraph

)

Example 8. A program print all the files on the JuniperX directory which were written after the 9th
of August.

"ftp/I ivy d i / c Jun iperX l i / c ' * . m e s a , c t M t i t M t M q " / e x e c ; ;

This procduces a file, ftp .log that looks something like

< Jun ipe rX > de l s >BTreeDefs .mesa !3 8-Aug-78 18:05:13

< Jun ipe rX >de fs>F i l ePageUseDe fs .mesa !3 8-Aug-78 18:05:07

< Jun ipe rX >de fs>F i IeSys temDefs .mesa !3 8-Aug-78 18:05:15

< Jun ipe rX >de fs>Jun ipe rF i i eDe fs .mesa !3 8-Aug-78 18:05:18

< Jun ipe rX > de l s >tr iconpr ivatedefs.mesa!3 11-Aug-78 11:22:49

< Jun ipe rX >hes>ne i sonenv .mesa !3 4-Aug-78 13:59:26

< Jun ipe rX > progs >CommonPineCoid .mesa!3 11-Aug-78 17:36:24

< Jun ipe rX > progs > CommonPineHot .mesa!3 11-Aug-78 17:39:58

< Jun ipe rX > progs >Contro lHeiper.mesa!3 11-Aug-78 17:41:41

< Jun ipe rX > progs > eventmanagsr .mesa!3 11-Aug-78 11:40:39 '

< Jun ipe rX > progs > H T A B L E S . m e s a ! 3 11-Aug-78 11:44:17

< Jun ipe rX > progs > Intent ions.mesa!3 11-Aug-78 16:34:13

< Jun ipe rX > progs > mach inesync .mesa!3 11 -Aug-78 16:25:44

< Jun ipe rX > progs >Vectors .mesa!3 11-Aug-78 16:38:14

< Jun ipe rX > progs > wdisk.nnesa!3 11 -Aug-78 18:01:41

The rest of the program works on this file.

Month *- { (" J a n " > 01) | (" F e b " > 02) | ("Mar " > 03) | ("Apr" > 04) 1 ("May" > 05) |

(" J u n " > 06) 1 (" J u l " > 07) I (" A u g " > 08) | (" S e p " > 09) | ("Oc t " > 10) | ("Nov" > 11) |

(" D e c " > 12) } ;

Date I - { [in teger " - " * , Month " - " * . in teger]

/ ([d, m, y] : y m ((d / l e n g t h / { 2 }) > d | (0 d))) } ;

Date produces numerical dates like 780809 for "9 -Aug-78"

Fi le { (. . . " < Jun iperX > ") * (word " > ") ! ? word " . m e s a " ("!" number) * } ;

L ine *- { [F i le " " I * , Date (... " T M ") *] } ;

Later + ([f, d] : ((("9 -Aug -78 " /Da te) - d) / { " - " . . . }) > f) ;

"f tp. log'Vfi le

/ { L i ne , ! . . . * }

/ / Later

/ uso r t

/ f i leList :

"ftp ivy d i / c juniperx r e t / c " (f i leList " " / cone) " t M "

(fi leList / / { (word " > ") ! ? * word } / f i leList:

" b ravo /h " f i leList "tM" / cone

)
/ e x e c

The file is read in and broken up into a list of file-date pairs. All the things after the given date are
filtered out and sorted, elinating duplicates. This produces f i leList. Then a giant Alto command is
created which fetches the files, prints them using a Bravo macro.

Example 9. A cross reference program 1

The following program produces a cross reference listing for the files a.mesa, b.mesa, c.mesa and

d.mesa. It assumes that all tlie imported references begin with the prefix "P.".

Xref + (Fi leList :

F i leL is t

/ / (F i l e N a m e :

F i leName/ f i le

/ { ((. . . " P . ") * word),! I [] ...*} •

/ uso r t

/ / (x : [x, Fi leName])

/ Imports :

F i leName/f i le

/ { ((. . . / L a s t W o r d) " P U B L I C " *) , ! 1 [] . . . * }

. / / (x : [x, Fi leName " * "])

/ E x p o r t s :

Expor ts , , Imports)

/ / / ([x , y] : x „y)

/ L i s t :

[[[" "]]] . . (L is t /sor t) / / / Merge / reverse / (x : - 1 / x)

/ / (x : X " ")

/ (x : X " t M ' V c o n c) ;

LastWord *- (s: s / r e v e r s e / { S p * " : " * word . . . * } / r e v e r s e) ;

Merge <- ([MasterList, Item]: 1 / (1 /Mas te rL i s t) / c l t em:

((1 / l t em) / { c l t em})

> ([l tem, , (-1 / (I /MasterL is t))] „ (-1 /MasterL is t))

I ([Item],, MasterList) : . -

); '* •

S p { " " ! ? } ;

[" a . m e s a " , " b . m e s a " , " c . m e s a " , " d . m e s a "] / X r e f

For every file on the list Fi leList we first produce the list Imports that looks something like

[[" 0 2 " , " a . m e s a "] , [" B l " , " a . m e s a "] , [" B 4 " , " a . m e s a "]]

for the file "a.mesa". Then we produce the list of exported names which might look like

[[" A l " , " a . m e s a * "] , ["A2", " a . m e s a "]]

All of these lists (two for each file) are then concatenated. This master list is then sorted by

procedure name, and adjacent lists with the same name are merged. For example, the master list

[[" A l " , " a . m e s a * "] , - ,

[" A 2 " , " a . m e s a * "] , ,

[" A 2 " , " c . m e s a "] , \

[" C 2 " , " a . m e s a "] ,

[" B l " , " a . m e s a "] ,

[" B l " , " b . m e s a * "] ,

[" B 4 " , " a . m e s a "]]

would Merge to

[[" A l " , " a . m e s a * "] ,

[" A 2 " , " c . m e s a " , " a . m e s a * "] ,

[" C 2 " , " a . m e s a "] ,

[" B 1 " , " b . m e s a * " , " a . m e s a "] ,

[" B 4 " , " a . m e s a "]]

Finally, the list structure is converted to a single string with carraige returns and spaces.

Appendix B: Index to Routines

The following built-in functions, called routines, can be used in Poplar programs. A routine is said
to take as input the value it is applied to. It returns a vale. Some routines take a parameter, which
follows the routine's name.

»

The general form is

input/routine = result ;
or input/routine parameter = result,

where / may also be / / , / / / , or %.

Some routines ignore their input, and some return a trivial result, such as their input. I f a routine
ignores its input it can begin a line, as i f it were a value. For example, one can type

dir/sort

rather than something silly like

""/dir/sort

Finally, some routines take only strings as input. The maplist (/ /) or gobble (/ / /) operators allow
these routines to be applied over each element of an input list.

Like sort (sde below) but uses the A S C I I collating sequence for all strings, including strings
of numbers.

Takes a string, breaks the string into single characters, and returns a list of strings of one
character each.
Example:

a s o r t

chop

a b c ' V c h o p = [" a " , " b " , " c "]

c o n e

Takes a list of strings as input and returns a string which is the concatenation of the list
elements from first to last. A string as input will be returned as is.

Example:
["a","b","c"]/conc = "abc"

conf i rm

Takes a list as input, prints each list element and a question mark afterwards. I f the letter
'y' is typed, that element will be an element in the resulting list, i f 'n ' is typed it will not.

debravo
Takes as input a string and returns a string with sequences of t Z followed by anything up to
but not including carriage returns removed. This removes Bravo formatting information. It
is equivalent to

{(...("tZ" ...)* "tM")! ...}

delete
Takes a string which is a file name on the local disk and deletes that file.
Example:

"scavengerlog "/delete
also

d i r / / { . . . "$"}/ /delete
deletes all files whose names end in "$" , equivalent to "delete *$"/exec.

differ
Takes a list of two strings and compares them character by character. It returns a list of the
two strings with any common prefix removed.
Example

["abcX","abcy"]/differ = ["X" , "y"]

dir
Returns a list of file file names in the local directory. Ignores its input.

dirlength . -
Like dir returns a list, but each list element is a list of two elements, a filename and its
length in characters. Files whose length is undeterminable have length 0. Ignores its input.

As each file must be opened to get the file's length, this command is ver>' time consuming.

display
Prints its input on the screen. The input may be any Poplar expression, e.g. a string, list,
pattern. Returns its argument. See also: print, uniq.

divide

Takes a list of two numbers [a,b] as input. Returns [a / b , a mod b] .

edit
Takes a filename as input, quits Poplar annd executes Bravo, then after the user quits from
Bravo, invokes Poplar executing tlie editted file.

e x e c
Takes any command, saves the current environment (via a Mesa checkpoint), has the Alto
Operating System execute the command, and reinvokes Poplar in its saved state, exec
returns its input.

The saved checkpoint may not work so return to Poplar is uncertain. To be certain state should be

explicitely saved with listouL

Since there is no way in Mesa to tell if this is a restart or not, the exec routine will ask the question

"Quit?" in the lower window. You should type 'n', for no. Then when the system restarts itself you

should respond to the same question 'y', for yes.

file
Its input is a string which is the name of a file. It returns a string with the contents of that
file for future processing. See also write, listin, and listout.

ident
Does nothing and simply returns its input (the identity function).

isfai l
Returns the empty string i f its input is fail, returns fail otherwise.

i s l is t

Returns its dnput i f its input is a list, returns fail otherwise.

isnul l

Returns its input if its input is the null list []. returns fail othenvise.

i ss t r ing
Returns its input if its input is a string, returns fail otherwise.

key

Waits for the user to type in a sequence of characters terminated by E S C or D E L . Returns
that string. This can be used to interact with a Poplar program. No explicit prompt is
printed, but, e.g. "prompt:"/print/key will explicitely prompt. Ignores its input.

last

Returns the last element of its input list, or its input i f it is not a list.
L / l a s t = L / l e n g t h / L

length

Its input must be a string or a list. I f its input is a string, returns the length of the string. I f
its input is a list, returns the number of list elements.

l ines

Breaks the incoming string into a list of strings, one for each "line" or sequence of
characters separated by carriage return. It is identical to

S / { (. . . "tM"),! 1 [] „ [...]}
for string S.

l ist in

Its argument is the name of a file created by "listout". Returns the parameter to listout
when the file was created, or fail i f the file can't be processed.

l istout f i lename

Takes as input a Poplar expression, such as a list or string, and writes it in a special form on
file f i lename. The expression may be recovered using l istin. This gives a primitive but
reliable checkpoint facility.

loop

Takes a string, considers it a Poplar program, and runs the program indefinitely. See also
run, step.

marry ^

Takes a list of two lists of equal length. Each element of one list is paired with its
corresponding element in the other list, and marry returns that list. See also zip.
Example:

[[" a " , " b "] , [" c " , " d "]] / m a r r y = [[" a " , " c "] , [" b " , " d "]]

max
Returns the maximum element of its input, which must be a list of numbers.

min
Like max, but the minimum.

m i n u s
Takes a list of two numbers [a,b] as input. Returns [a-b].

p lus
Takes a list of two numbers [a,b] as input. Returns [a + b] .

print
Is like display but is guaranteed only to print strings and prints them with no elipses. See

also uniq, display. ^

quit
With no input simply quits Poplar. With a string as input, executes the string as a
command. Does not return to Poplar. See also exec.

r e v e r s e
Takes a list or string and reverses the order of its elements or characters.
Example:

[" a " , " b " , " c "] / r e v e r s e = [" c " , "b " , " a "]

" a b c ' V r e v e r s e = " c b a "

run
Takes a string, thinks of it as a Poplar program, and executes it once. See also loop, step.

s tep

Takes a string, thinks of it as a Poplar program, and executes the program in a "single step"
mode, in which step prints out each statement and waits for confirmation before executing
it. See also loop, run.

s u b s t V • • •• • • •

Takes as input a string and performs substitutions for occurrences of a string (the pattern
string). The pattern and the substitution string ("new" string) are prompted from the
terminal. Typing D E L for either will abort the substitution. This routine is similar in
function to the Bravo Substitute command. It returns the input string with all occurences of
the pattern replaced by the substitution string.

sort

Takes a list and returns a sorted list. I f the list is a list of strings, they are sorted according
to the sorting rules below. I f it is a list of lists, the first element o f the sublist must be a
string and the lists will be sorted with those strings as keys. The comparison between strings
is as follows:

I f the elements being compared are strings with digits 0-9 only, they are assumend

to the numbers and are sorted according to the integer value of the number.

I f the elements are not all digits, they are compared using the A S C I I collating
sequence.

See also usort and asort.

s y m b o l

Returns a list of all variables referenced or defined (sans built-ins). Ignores its input.

t imes

Takes a list of two numbers [a,b] as input. Returns a * b .

to lower

Takes a string as input. Returns the string with all upper case letters [A-Z] changed to their
lower case equivalents [a-z].

toupper

Takes a string as input. Returns the string with all lower case letters [a-z] changed to their
upper case equivalents [A-Z].

uniq
Like display e.xcept all special characters and control characters are explicit. The input must
be a string. See also print and display.

usort
Uses asort tp sort the incoming list, which must be a list of strings, and returns a sorted list
with duplicate strings removed. See also asort, sort.

w r i t e f i lename
Takes the incoming string and writes it on file f i lename. I f file f i lename exists, it will be
overwritten. Returns the input string as its result. See also file, listin, and listout.

zip
Takes a list of two lists. Elements in the two lists are interleaved in the resulting list.
Example:

[[1,2],[3,4]]/zip = [1,3,2,4]

The following routines are used in debugging Poplar and are not normally useful or necessary,

c l o s e

Closes all open files. Normally unnecessary since reset and quit close all files. Ignores its
input.

g a r b a g e
Forces a garbage collection. Ignores its input.

s n a p

Gives a snapshot of the storage allocator. Ignores its input.

(}.lZ i^JS'y \^ ^ d ^ v v . d ^

35

Appendix C: Syntax Equations

(Non-terminals are in italic, literal characters are in bold)

PoplarProgram ::= Program end-of-f i le

Program ::= Statement ; Program
I Statement ;
I Statement

Statement ::= v a r i a b l e Expression | Expression

Expression ::= Expression / Factor
I Expression // Factor
I Expression /// Factor
I Expression % Factor
I Factor

Factor :: —

Term

Factor | rerm
I Factor > Ferm
I Factor : Program
I Factor + Fcmj
I Factor - Term
I Factor ,, Term
I Factor -- Term
I Factor Term
I Term

routine^ Term

e.0 ^>- ' i

i t.

I - Term
I ~ Term
I Fer/n !
I Term ,!
1 Ferm ?
I Femz *
I Primary

-q- «ru.

Primary ::= "string"
I variable
I routine

36

I @

I fail — .

I [List]

I []
I { Program }
I (Program)

List ::= List , Program
I Program

Poplar uses these graphic tokens:

; / / / / / / % 1 > : + - „ - ~ ! , ! ? " @ # . . . [] { } () ,

Appendix D

Getting Started -

Get [ivy] < morris > poplar.image (or poplar.bcd which can be fed to basicmesa) and run it (you need
a Mesa 4.1 disk).

Begin by typing in a few strings and lists to get a feel for the system. Try reading in a file:

"user.cm'Vfiie

Then break it into a list of lines using

/ l i nes

This list is easily sorted

/sort

and finally made into a string again

/cone

Typing

un

will make it back into a list.

In this way, the novice Poplar user can try a number of different Poplar commands and interactiv ely
program an algorithm. Once the commands are clear, the file Mesa.Typescript can be edited and
the relevant commands put int a .pi file for e.xecution.

On [ivy] < morris > pi > is a set of files exl.pl - ex9.pl for each of the examples in Appendix A.

Please send comments to Morris.

Hints to the Novice

1. Don't forget to type E S C after commands to the Poplar executive. Carriage return will not work.

2. Upper- and lower-case letters are ALWAYS D I F F E R E N T to Poplar, toupper and tolower are useful
in this regard.

3. Tlie workings of the alternation operator T in patterns { } are murky- best is to have longest items
first.

4. Don't forget the ' { ' and ' } ' around patterns.

5. Always put '(' and ') ' around user-defined functions (:).

k^c^^:f^^<f^^ • /-^ '̂,c 'RvvviM'j^iPi^ft.cUk.au.-f' A / P .

.'•ZZiiZZr 1 " ^ ' i s A . - * # i Q j v
)

W v-Jt^s Uc^ c U c k l '.^ ' ^ . ,, p - w i \(lOi ~ f

hesci c->̂ Kev>l cc

^kC:̂ S Is^W 0^^'' Cf

7

4^

? l ^ 4^c-Kve ^Urv^f .Uspla^ v4-t P a ss ;^K. .c^

4 ^Z\^ I d o)

5>v,bv; ^ U v . F i a A ^ W t ^ . , ^ •-^^fr . <3C...1~,C , , ,̂ , .

Co<*̂ p«̂ tlip̂ ^ co*xd, \mDK

1^ iUvU/ î Jofk -foy '1^'7)k^t*J , -|CV tut. vw ' / L b t A ' i a

/ / ^vF5.we U ; W^^I-^CL'. L A 5 . 4 A > [\\L /o - f . : ^>- i /L l t1 /Ll , r / /L /w)

A

J •

.^vsA^<.f i^wJt, A^(,.U;xA^ /A V f

4 b " ' ^

