
Artificial Intelligence Project~--RLE and MIT Computation C~nter
Symbol Manipu.lating Language---Memo 3---Revisions of the Language

John McCarthy

This memo supersedes the earlier memol"'anda of the same

title in almost all matters of detail, but some of the general

remarks in the first n~mo are not repeated here and should be

read for an explar4tion of the motivation for the development d

the language.

L. Representation of Symbolic Expressions by List StI'LlCtUl"9S
The kinds of elcpres'sion the language is designed to manlpu

late include functional expressions as in elementary cal'culus,
calculator programs either in machine language or in an algebraic

language such as this one or Fortran, and the express tons for

propositions as they occur in the propositional calculus, the

functional calculi, and other formal languages of mathematical

logic. It should be emphasized that t'le are presently concerned

~'lith a langu.aga of imperative statements for describing processe15

for manipulating such expressions and not l,iiith a declarative

language for making assel.,tions about the expressions. The

problEn~l of ei::pr8ssing assel.,tions about expressions l.oJill be stu~

died later in connection t-lith the advice taker.

The expressions to be manipulated are represented in the
machine in a special 'Way ItJhich facilitates the description of

their manipulation. The translation bGtween the internal repre
sentation and mo:;."Ic or less conventional Nays of representing

the expressions outside the machine is handled by the reaq and

print programs. The preliminary version of these programs which

is presently being debugged (Oct" 21, 1958) translates betlfJeen

the internal notation and a r(;s~c~~lcted 8peci..ili~ed axternal r!C'tc:tlon.
The direction in \'Jhich the allowed external notation \11111 be

generalized in later versions will be described in connection
,(:lith the descriptions of the read and print programs; at present
it seems that very little compromise will be required with the

conventional notations beyond that required by the need to write

expressions linearly ~lith a limited set of characters.

1 .. 1 External form of expl"essions

tie shall first des~pibe the restricted external

r

r

-·2-

notation by the follo\'Jing recursive rules. Fil"'st we define
tl sytnbol as one of the fol.1o:/Jing:

1. A sequence of letters and dlgi ts cont;aining at leas·i:; O~1G

letter , The length of the expression is limited. to 120 cha~Qcters
thou~h if there should be any reason to do so there is no diffi

culty about extending this simply by j.nc1"easing the length of an
array in the read routine from its present length of 20 words.

2. A sequence of digits tl1hlch may con·tain at most one
decimal point in the interior. These symbols represent nutnbers
and their length is not limited by the ~~? rou'cine 01" p'.!1nl

routine; but will be limited by the kinds of number arithmetic
included in the program and by the conversion routines which are
not part of the read and print package. - _--

We can now define the external expressions allowed:
1.

2.

that is,

A symbol j.S an expl'esslon.
If e l ,e2 , .•. ,en are expressions, so 1s (e1 ,c21 •• o,en);
a sequence of exp~t'cssions is ai1 expression. The special

case:; of a sequ.ence of one element ls allo~;j'ed and the resulting
exp~ession 1s considered to be dlfferent from the element ~tself,
:l..e. we distinguish bettl/cen e and (e).

P.s an example I t-ie shall describe hOt'J elementary functional
exppessions ai"e represented in this nota:i;ion. The rule is simply

that a functional form is represented by a sequence co~sisting

fiJ.:' fjt of the name of the function follo~>Jed by the list of its

arguments. Thus the expression that is represen'~ed in ordinary
mathema tical nota'cion by

x(x+;_) sin(y)

is represented in cur notation by

(times,xl(plus,x~l),(sin,y».

This resembles the Polish notation used in mathematical logic
except that parentheses are explicitly included .~!1i.: perm1ts

s~~bols of varying numbers of characters and functions of varying

numbers of arguments.

(Note: this supersedes the notatIon given in the descriptions
of eIther of the previous ver'sions of the differentiation routineo
In partIcular the symbols £onst and ~ of these nO'(iat:l.ons are no
longer needed or rather may be reh=)gated to the proper-i;y lists)

-3-

1~2 Inte~nal form of expressions.
f E.."'t.pl"~ssions are represented internally by lists. A list

is f.'. sequ~nce of 7Q!~ words arb1 trarily oy'dered 1n memory except

that register zero 1s excluded. Each word contains 1.n its 15
'~l

bit decrement part the location of -the tl\lord containing J~he next
element of the list. The decrerr.ei1t part· of the last element of
a list contains O. The 15 bit address part of the word contains . * 2
the dat'l1m of the element of the list.

There are two kinds of l1st element. Namely an element

may either be a sublist or it may be a s~~bol. When the elemGnt

1s a aub11st the addl"'G5S part of the word contains the location

of' the .first word of the subllst. bihen the element 1s a symbol

the address part of the \'JOrd contaim1 the location of the proD-...............
£!'3?.:Y lis~ of the Q.bsject the s~rmbol represents. This property list

trJhOS0 rncanlne and format will be described in the next section

hz s zero in the address part of 1 ts first \fvord. Thus the routines

which m,smipulate list structures can tell tr.;hen they have reached

tho bottom of an exp:ression s since the property liat of the

objGct I"'ep!'esented by a symbol :l.s not considered part of an

-::'1 rrhe locat1.on is represented by the 2' s complement of the
address of tl'le l"egister containing the address of the next
element;. This use of the t'1lord location conflicts \'Jith the
usual one in which the loqation of a \l-JOrd is the address of its
reg:i.ster , but it does not seem desirable to choose another
word. The 2'8 complement notation which is made convenient by
the subtractive nature of indexing on the 704 need be consider
ed only in connection with machine language programs. The
user of the system need only consider that each word contains
'che location of the next; word and need not worry about how this
location is represented.
-::-2 The tag and prefix pal.,ts of the t'1ord are not used and are
presumed to be zero. rrhus the use of an indicator field a.s 1n
the earlier versions of the system 1s abolished. This is done
by r~moving -cy-pe I words from list S't:;l"uctures and relegating
them to propel"-ty lists. The distinction bett-leei1 what t.~ere
formerly called type 0 and type 2 ~'Jords i8 accomplished in a
manner presently to be described.

f '

r

-4-
expression in the sense that it is no·" el"'ased l'"Jhen t he ex-

pression is erased; it ia not copied ~·;hen the expl~esslon is

cop1ed~ end it 1s not pr1nted when the expression is printed.

We shall use the terms list and llst structv.re in --.......-... ..
slightly different senses. When we say list structure we are

referring to the entire expressions down to the object symbols

composing it, ~Jh11e when we say list tt'le are l"eferring to the

top level.

As an example, we shall describe the list str'ucture

corresponding to the functional expl"es.slon

x(x+l)sin(y)

which ~JaS repr2sented in our restric~~ed ex.ternal notation by

l-le use a p:lc-corial notation tn which a word is represented by

a rectangular box divided 1nto . a left and right sub-box in

~hich Dre put the address and decrement parts of the contents

of the reglster represented by the box. (Note that the address
occurs to the left of the decra~ent in this notation as in SAP
which is the reverse of their positions 1n the 704 word.) An
arrO~1 from a sub-box to a box means 'chat tl~e corresponding
field of the word contains the location of the word represented
by the box to t'1hich the arl"OW POil'"ltS. \'I1hen a box is left blank
and no arrow issues fr.om it the corresponding field contains
zero. If the reader is puzzled by this descriptlon perhaps a
picture will be T.'1orth 10,000 words. Here is the !.'icture of the
above expression.

It1me3 J---?\,-~ -,---,hLJ I I-) '--I-X[
~;Sr= r""-, x--r-~[~---,----,-",XJ. ~1 . .&iiLl [y~? ---,-~}:.:.!:I

The s;ymbols tlmes, plus, x, y~ sin represent the locations of
the property lists of the ob.1ects l"epresen·ted by these symbols.
It is important to note in the case of the constant 1 1n
the expression that; the number 1 is EE! in the list atrl,wture

:
itself. The fact that a given symbol represents a cons tant

-5-

which has the numerical value I \>Ji11 be found on the prop
el.,ty list of· the object associated i'lith tha'i; symbol.

1.3 Objects and Their Property Lists.
In the paper on the !idvice taker an object was defined

as an entity about which l'1e 1-116h to record something that~
cannot be deduced from the form in which it is represented
or at least do not \ll1sh to deduce from this form. Although
the system being described here is not; as ambitious as the
proposed advice takel" system" i t ~~urns out that the concepts
of object and property list are qutto useful. The first use
of the property list :1.13 to represent 'I;;he correspondence

bet~'7een the symbol used i'or an object inside the computer
and the symbol u'3ed in externaJ. media. In this respect i'i; is
a generalization of the symbol table of SAP with the added
fea'Gure that it is designed to be used by the program HJ~ running
time as well as during compllat1on. Conceptually, Iile should
not; identify the object either \'.11th the external symbol or

with 'che location used to represent it in list structv.res. In
fact, it may be worth while to consider an object which w~
refer to as sin or x as a "thing in it~elf" which is not
identical \>jith any representatioti of it. In the present
system ~:e shall include the following kinds of information
about objects in their property lists whenever it is ~ppro
priate to do so.

1. The interna l name of the object is the location of its
propel"ty list.

2. The external name of the object (if it has one, and
until routines are created which invent objects all objects
~Jill be introdt~cGd from the outside and therefore will have
extel"nal names).

3. Whether the object represents a number l and if so
;,!hethel ... the number is a constant or is changed by the program
and ulso what the current value of the number is.

L!.. If the object is a function this fact ttlj.ll be noted
and such facts as the location and calling seQ.uence of p:;:'ogram
for evaluating the function will be given. If: it is appl"opri
ate~formulas for differentiating or integrating the function

-6-

may be given.
5. Adjectives which are applicable to the object may

"be noted on its property list.
Except for the fact that the address field of its flrs'c

\.'lord contains 0, the information on a property list is not;
stored in a fixed order. It 1s a list of items each of which
1s identified by an object symbol in the list itself. The
order in which items will be repl"esented has been determined
only in the case of the external name. We shall give the re
presentation of the external name of the term DIFFERENTIATION
as an example of the convGntion adoptedo

In the above diagram the address field of the first word on the
property list 1s left blank indicating that this field contains
Z~rOG8, the fields with dashes may contain any locations; the
sy;nbol pname repi"esents the location of the property list
of the concept of exte:{'nal name" and the t~ords containing
capital letters contain 6 characters 1n standard 704 nqtat10n
except that ? represents the illegal character whose octal form
is 77. 'I'he print l"out1ne recognizes the illegal characters as
terminating the ttJord.

Fl"om the way external names are represented it should be
clear that prope1'ty lists do not meet all the conditions for
lists prescribed in the previous section. This is ine\ritable
s:tnce they must be able to refer to non-list quantities such
as external names, numbers in integer or floaJ~ing point form
and also progl"ams. This means that not all the routines to be
described in subsequent sections of this report can be "a.ppJ,ied
to property lists without disaster. However I because the
conventions are preserved on the top line at least" some of these
routines and in particular ~0he search routj.ne is applicable
to property lists.

r

r

-7-
l.~ The Free Storage List

One of ~Ghe main advantages of a syst;em of representing
expressions by list structuras is that the structures can be
extellflsd 01'" collapsed at any pOint. This:i.s accomplished
with the aid of a certain list called the free storage list
which ~ontains those registers which do not contain infor
mation at any given "elms. Initially, this list may have

~O,OOO registers and as list structures are extended they
grO-;"J at the expense of the free storage lis";;. \'lhen an express
ion :18 no longer needed the erase routine returns its
registers to the free storage list. N"e shall illustrate the 1.1se
of the free stora.ge list by giving dlagrams showing the situ
ations before and after an item x is inserted 1n a list by

putting it in a word taken from, the free storage list.

Befol"'e
free) I.---..I._I~ I I I--? o=J-~:> ·

.t\ft~r the basic rou'Gines have been defined which ta.ke words
from the free storage list and put them back there, it will
not be necessary to mention the free storage list; ex.plicitly
any more. Hm'lever, tts existence is one of the main reasons
for the flexibility of the system.

'rhe use of list structures for representing symbolic
expressions t<las first put; to extensive use by Newell, ~:amon,

IE '
and Shaw in their Information Processing Languages:

2. Changes in the Elementary Functio11S of the System.
This section refers to the fIrst memorandum of this title.

The revisions in the system described in the previous section
and some experience in programming in the system and hand-

compiling the resulting programs suggest some changes in the

r

-8-

set of elementary functions.
1. The functions tJhich refer JGO parts of the 1:.J01'1d other

than the address and the decr2metyi; can be omItted. . .

I

:2. The functions referring to whole \"iol"'ds al"le retained
but will be used only inside property lists.

3. The distinction between coneel and cons'ls is
abolished 50 we will call the new function cons.

4. The storage and pointer functions have hot been ueed
80 far and hence are tentatively d~opped~~.

The runctlons which operate on whole structures all
have had to be completely revised and are described in the

following sections, along with the present versions of the
elementary functions.

,

-9-

Descript.ions of Subrot1ti~

The followj.ng subroutines have been adopted for use in
the system.
1. add (w) ~ dec (w) •

These extract the 15 bit address and decrement parts
respectively of a 36 bit quantity. They are coded as open
subroutin~s.

2. comb{a,d) combines tNO 15 bit quantities to make a 36
bit quantity. It 1s coded ae an open subroutine.

3. cwr(n).
The value of CNl"'(n) is the 36 bit con"i.:;ents of the

reglster in location n. (Remember that the location is the
2~s complement of the address of the register). ~ is
coded as an open subroutine.
4. car(n), cdr(n).

The values of ~(n) and cdr(n) are the 15 bit conten'cs
of the address and dec~enent parts respectively of the
register in locat:!.on n. They are coded as open subroutines.
They ara rel~ted to previously defined routines by the
foriTIulas

car(n) = add{cwr(n» and
cdr(n) = dec(c~r(n»

5. conslfl(t1).
This function takes the fil"st word in the free storage

list~ puts w in it and returns with the location of the word
as the value of consw(~). The situations before and after
the execution of' a program step

A ~ COllSW('t'J)

al"e sho~·m in 'che figure.

A
free

Before

After

~~ is available as a debugged SAP language routine.

.-

"

.r--.
I

-10-

6. cons(a"d)

r.chis puts comb(a"d) into a l"egister taken from free
storage and l"eturns \,lith the location of the register. t'Je

have the r~lation.
cons(a1d) - consw(comb(a/d)

c~hn8 been debugged.

7. erase (L)

Execution of erase (L) returns the word in location
L to the free storage list. Its value is the former
contents of the erased word.

This concludes the ~iat of functions dealing with single

\'10rCiI3. The l"emaining functions deal \'J1t11 whole lists and

list structures

8. copy (L)

The list structure startlo3 in L is copied into free
stol'age ui.1d the value of cOPii" (f...,) is the location of' the
lel:'.d l;Wl"d of the copied structure.> The program for copy

is copy (L) == (L=O-i O"car(L) :;:O-:L;l~cons(copy{car(L)L

cop'Y (cdr{L»)))

9. equal (LJ.,L2)
The list structul'es starting in Ll and 1.2 al"e compared

and the l"~HJult is 1 if the structv.res agree both as to form
and as to ttm identtties of the objects in corresponding

places. The program is
equal(.Ll,X;2) = (Ll=L2-}1,t CLU->{Ll) :;: 0 \I car(L2) -= 0..,0,

l--}eq1.1nl(car(Ll).. car(L2»/\ equal (cdr(Ll)/cdr(L2»)
10. e:talls (L)

This routine erases the list structure starting in Lo
Its program is

subroutine (eralis(L»

I II == OV c a r(L) = 0 ~ return
fii == el"llSe (1.)

e t 'D ." J,S (add (til »
:" 1' •• 119 (~ec, (M »

' \ -;:-·cturn

11. mapl:i.s ·;; (L;r)

maplist constructs a list in free . storage whose elements
are in 1-1 correspondence with the elements of the list Lo

r

-11-

'rhe element corresponding to the element of L in loca:cion

J 1s f(J). .tpaplist is described more fully elsewhere 1n the

memorandu.m.
map11st is debugged (Oct. 29)

12 print (L)
grint (L) prints the list structure L in the restricted

external notation. 119 character lines are used. Location
of output is controlled by the sense switches as in UASPH2.
~rint is debugged (Oct. 29)
13 read

The value of read is the location of a list read from
cards or off-line tape according to the sense switch controls
of UICS H2. The list is Nrit.ten in the restricted external
notation. If the external name read is not found on any
property list a net'l object with that name is created.

The afore-mentioned routines a~e sufficient for the
dlfferentiation program. The descriptions of additional
routines rollct'1-

