THE FUNARG PROBLEM EXPLAINED

by

Joseph Weizenbaum

Massachusetts Institute of Technology
Cambridge, Massachusetts

March, 1968

P

Abstract

The FUNARG problem arises in languages that permit functions to
produce functions as their values where the produced functions have
free variables. This paper shows that a symbol table tree (in place
of a stack) serves to avoid identifier collisions appropriately. The
paper develops a lambda calculus argument as a tutorial for the problem

- and its solution.

Work reported herein was supported by Project MAC, an M.I.T. resea=ch
progran sponsored by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Resear:zh Contract Number Nonr-4102(01).

+

- In an important sense, this paper is about a single problem -- the

sé?called.FUNARG problem ghg; first arose in LIS?.;,The original LISP
‘implementation solved that proBlem. Still,;yeérs afterA:ha; imple&enta-
tiqn,.the problem“remaigs ill understood. Bobrow,. for examéle; published
a faﬁ}ty soluticn for it qniy ;ecentiy.. (See Bobrow,. 1967.)... .

| Fundamentally thé pfablem is this: suppose we have an interpreter.
that alléws the definition of fudctioqs. Some functions are executed..
(i.e., aéplied to arguments), for their effect and othersvfor the va}ue
they leave’in an iptérmediaCe result‘register'o;.perhaps on an intermédi-
ate result 115;; We normally think of functions as leaving numbers,
strings,'lists, or arrays és_Cheir values. But it is possible to define
‘functions that leave functions as their values. We may, for ‘example, write

¥ F(X) = G where G(y) = X° + y°
"in‘ordinary mathematical notation. If Qe.then defined ..
| lP = F(3). .- . | |

1and computed -

P4) .

we would exfect.;oxget 25 as~atresu}t. To define the same function in.a
program, a programmer might write: |
 DEFINE F(X) T0 BE
| LET G(¥) BE
RETURN X t 2 + Yt 2
Eﬁé :
RETURN G

END

and at some subsequént point in the program -

P~ F‘(J').

e

After this assignment to P, P designates a function, namely the function
returned by F. Qur system must somehow'femember that P 15 the value:of_F
applied to an argument that evaluated to 3. Or, to put it énOther wa;,
the function designated by P, i.e. x2 + yz,,contains Xbas a free varisble:
. but, because of the way P was formed, X is aiready bound (to 3) on a

higher level. This biﬁding must be remembered. Furthermore, the program=

- S mer uéing the function F should not have.to know what identifiers werc
‘ , ‘used in. its construction. The outcome of F should. be unchanged'if, féf
| example, every "X" in it has been replaced by an "S" and every "Y" by a
~ "T". We must therefore allow for the possibility that the programmer"used
~identifiers in his program .that also appear in the body of F. Hence pro-
tection against identifier collisions, that is confusion between two
distinct variaBles having the same name, must be built into the system.

We show that the solution to the problem iiés-iﬂ ébandoning the usual
symbol table g&ég& for a symbol table Eggg.k‘

We unfold ourbargument by the incrementgl development of a programming
language. We initiélly assume.that the iﬁterpreter for that language
operates with a stack like symbol table étrugture. When, as we add the

— ' ’ faéility co,definevfunc;ion producing fuﬁc;ions where the produced functions

have free variables, the stack mechanism proves inadequate, we generalize

J . it to a tree structured symbol table. Along the way, we must develop a
' fairly careful statement of what a function in our system is. We appeal
i to relevant parts of the N calculus to give us a canonical notation.

The - idea. that should finally stick with the reader is that functions

are applied to their arguments in specific contexts -- here called environ-

L Ll

ments. In a way, functions are prosrams and the environments in which

-
.

they may be exercised their data. Most programming syscéms hide this fac:

(1,

b}‘

-’

in that they permit functions defined within them to have no free vs viables

and to be applled onlv in. impllcltly generated envxronments. Thc aystem

shown here permlts the appllcation of functions in arbxtrary environments.
Suppose the system accumulates s;atements typed by the programmer

and forms them into a program. When the statement “EXECUTL" is”entéred,

the system executes the program acéumulated up to that time. Suppose alsé“ e

;hat programs, once exeédted, disappear, but that variables and the values

they have been assigned are not ordinarily erased.

1f, for ekample, a programmer were to type:

A5
X-Aa+3
TYPE X * X

EXECUTE

the external response of ‘the $ysteh would be to type

X *X = 64
“and internally a symbol table would have been augmented with the identifier
'A' having the value '5' and an identifier 'X' having the value '8'.. If-
the programmer were'then to write

TYPE A, X

EXECUTE -) .
the méchihe response Yould be‘
A aas

‘o .o xgs

B

- thus démbnSCraﬁing that A and X and their values had been remembered.

. The component éxpressions of every individual statement of a program

~are evaluated (if at all) in an environment, i.e. with respect to a data

structure that provides'places for identifiers and the values associated

~single empty symbol table S°

with the variables the identifiers represent. In the simplest case an

eﬂvironment is a single symbol table. More genérally, it is a chain of

~symbol tables that, in a certain sense, appear and disappear during the

execution of a program. One member of such a chain must always beAexcep-
tional in that it is the symbol table into which new variables and cheir
values ére placed and that in which the search (table lbok'up) for'Qalues
of variables begigs. We shall refer to that exceptional symbol table as
‘the regnant symbol table, or RST fo:Asﬁort. It will prove convenient to
assign a mame to each symbol table we have accasion to méﬁtion. We QiIL

use a subscripted "S" to denote such names. '

For the program shown above the initital environment consisted of a

.

When the assignment statement

A- 5
is encounce:cd and recognized as an assignment statement, the environmeﬁc
is searched for the identifier "A". Since it caﬁnpt be found, it is added
to the RST with tine vaiue "w" (to be read "undefined") and, in effect, the
locaﬁion of the newly placed "w" p. ced on an interﬁédiate result'iiStJ

(IRL). So is then;

.

After the right-hand side of the assignment statement has been evaluated

‘(and 5 pushed unto IRL), the assigpment is coméleted by suitably pbpping

IRL and modifying S° to be

Had "A" already existed on S0 the. machine address of its value would have
been placéd on IRL at the appropriate time and the same assignment ﬁeéhan-
ism invoked in all other respects. Details of the'evaluq;ion of expression
are not relevant to the present discussion.

But the fac£ that identifiers (or some token for them, the dis:inction
isﬁ't important here) aﬁpear in expressions to be evaiuated calls for a
word about acéess.mechaniéﬁé?io valueé of variables.. Clearly, when in the
simple system so far discusséa, the v51ue of a variable is required, a
~simple table iook up is sufficient. Tﬁings will get more interesting soon.
A fuﬁttion‘definition facility is now added to the system. The‘form

DEFINE F(X) TO BE |
RETURN X + 1

END : - -

is intended tb defiﬁe the successor function an& add it to the system.
Wﬁag is aesired is that a variable F be given 'somé structure as a value, .
a structure that contains the information

1) thatbit represents a function

2) that the formal parameter of the function is X

and 3) that the body of the function is "X + 1"

This information.could be packaged in a list as follows:
(the functioa of X that is X + 1))
and that list (or, more precisely, its name) given as a value to F. ' But

that notation is rather long winded. It is‘shorter as well as more con-

. ventional to make the substitutions

"\'" for "The functioﬁ of"
and
"." for "that is'.
The value of F then becomes
. ™ X. X+ 1)

In general, the form of a lambda expression (as the above is nbrmally}’

-

called) is

a left parenthesis

followed by "A'" '
followed by the formal parameters of the function being defined
followed by a period - o ,_ . '
followed by the Sody of the function |
followed by a right parenthesis i

—~ . . Let us now follow what happens when we try to evaluate, say F(&),

starting with an So that is

o X >
o]

The interpreter encounters the term F(A)'andTmQSt prepare itself to

-

apply the function F to the currcsi valee ol A, We may assume that: the
PpPLy _ ¥

‘evaluation of A has left 3 on IRL and that the interpretor will execute -

the program "X + 1". Since X is the formal parameter of F, an association

between that X and 3 must be established. On the other hand, the value

associated with the X already in the symbol table must not be dist&rbed.

An identifier collision is avoided by the following steps jnitiated after

A has been evaluated and the value of F, in this case the lambda expreséion

TN X X+ 1), found:

1) The name of the éurrently regnant-symbol table (in this case So)
is stored.
2) A new symbol table S, 1s created and the name of the'formerly

regnant symbol table placed in a speéial place on it;

- 3) The parameter ‘list of the function about to be invoked is copied
into the new symbol table and values suitably popped off IRL
assigned to these variables.

The finding and placing rules for values of variables must,ﬁow be

enhanced. Recall that just before F is applied to 3, in our examp .., the

symbol table is:

So . ‘
A 3
8
F A X. X+1) '

~

~ -

..8-‘

Sl is now the regnant symbol table. When an identifier is now sought, the:
search begins in the RST. 1If it is not found there, the next level (aé
giQen by the datum stored in the NW quadraﬁt in our regresgntatign) is“
vsearched, then the next, and’so on. A search may be initiaﬁed'eiﬁhér'for"‘
purposes of subsequent value assignment or simply for the reﬁrieva} oi.éhe‘
Qaiue of a Qariéble. If, in thé latter case, the appropriate identifier
is~not'fouqd, an error has occurred and the case is not longer of intéresc'_
here. We choose, whgﬁ making assignments, to place the idenfifier tq be

paired with "w" in the regnant environment in the manner already described

in case of failure to find the identifier.

The applicétiqn of F to A may now proceed without fear of identifier

S B

collision. Upon completion of the application, i.e., once'F(A) has been

computed, 4 will have beén left on IRL. Now the symbol table situation

Iy .

must be restored.

_ “Qe may ask Qhethe; the currentiRST is the one that wésAregnaht when
£he‘function F was girst invoked. I1f yes, then the situation is restoted,
otherwise we resﬁore the symbol table antecedent ca.the current ST, throw=

ing away the then regnant symbol table, then enter the restoration process

again, and so on. Finally, the original enviromment will have been’

restored.

Lst's take another look ét the general form
DEFINE ndme of function (parametér 1ist5 TO BE
body of function
END

w‘ éée that, when viewed operationally, it is really a fancy form of
assignment statemenc. For the name of the function is really notiing more
»hor less than an ordinary identifier. . The remaiping'information tontent
of the DEFINE statement is ultimately encoded in the form of a A expression.
‘fThe‘programmer may; in other words, just as well have written

“ F- A\X. X+ 1)

in place of the definition shown earlier. Perhaps the-languaée we aré
developing here should have an explicit DEFINE statement. If so, the only
justification for its exis;encg can be that that' form is somehow prettier
‘than the straightforward assignment of a A expressidn to é vari#ble.

Landin calls that sort of thing "syntactic sugar'.

An important conééquence of the fact that a function can be defined
by ﬁeans of a simple assignment statement is that the variable 15 which the
function is‘assigned as a value is an ordinary variable. It is, 5of
example, subject to reassignment. The N expression itself is an ordinary .
- datum, e.g., it is subject to being passed arouhd, say as a parameter cb
.a functicn, or left as the value of another function, just as in.any othe{.
dafum, say a number. |

‘The body of a function defined by the programmer is, of éourse, a
‘block nested within the block in which the function definition iﬁself is.

made. One operational function of blocks is to resolve identifier scope

. questions ofithe kind that arose in the above example. There, care had

S
-

" to be taken that the bound variable X be given

scope within the block, but

~

noﬁ outside 'it, ife., that no confusion be permi;ted to arise between. the
X with scope ipside the block and any X that might have e:isted‘befbre the
call to the function F(X).

Of course, the function N X. X+ 1) is verf simple. A somewhat'mdre.
complicated one that will serve to raise some additional points is defined
oy ‘ | - R o :
DEFINE G(Z) LI_Q-.I}E

Q- P /(1-P)
RETURN (Z + Q) / 2

Thé only variable that appeared in the function F shown earlier wasag.
But in ﬁhe bbdy of G shown above, the variables P, Q and Zvocéu: ahd, of
these, only Z is bound and can therefore be handled by the techniq?es
already discussgd.

Let us assﬁme that P is inténded to be.a variable that,'froﬁ the
point of view of G,bhas global scope, i.e., that by the time G is called
some envi;énment containing P and its value will exist.‘bQ may simila:ly
exist in some higher symbol table at that time but the programmer méy‘héve
intended Q to be local to G. Let's suppose so: Then clearly, ‘he did not
intend for the value of ;ny previously existing Q to be disturbed by any
assignment of the local Q. The mechanism we have already seen éléarly
makes the choice of names for the bound Qariaﬁlés of functions (in Ehe
present case '"Z") irrelevant. The function G would work just as well had
the programmer written "S" where ever he in fact wrote "Z". The same

circumstance should pertain to "Q". There should, in other words, exist

a mechanism that can declare a variable (or variables) local to a specific

block and (although this is not logically necessary) give it an‘initial

value.

y

.

. - -11-

' Recall now that when an assignment is ta be made the system searches

the environment, beginning with the regnant symbol table, for (essentially)

the position of the then existing value of the most recently established

variable bearing the name of the variable that is the object of the currenc(_

assignment. If it finds one such, then its value is replaced, o:herwisev

a new position for the felevant identifier is found in the regnant éymbol

table. What we require now is a notation that will inform the system that

‘an assignment statement so denoted should simply add the relevant identi=

fiér and the value of the variable it represents to then regnant symbol

table, skipping the otherwise usual search. We will indicate that this

" kind of assignment is meant when we write

"LET Q@ ~ éxpreséion". '
We-#gain'supply'a little syntactic sugar when we allow
LET F(X) BE
body of function

END

_to be written in place of

LET F = (A X. body of function).

Put most simply, the difference between an ordinary and a LET assignment

" 'is that the first may reassign the value of a variable originally established

in an earlier environment while the latter always modifies the environment
regnant at the time of its execution. That is, of course, also the only

difference between DEFINE and LET as applied to function definitions.

We now rewrite the definition of the function shown above as follows:

LET G(z) BE

¥

‘I».EIQ-'-P/(l-PS S

RETURN (Z + Q) / 2
1

- END

1 .
Si-1
.25 _
.5
G "N Z. Z+Q)

Now "the statement 'T * G(1)" is encountered. Just before the éyscém exigcs

from G, the environment will be

S,
1 ‘.
Si1 | :
P .25
Q .S
G nNz.2+Q
T W
Si+1

s. i '

1

'33

and after the assignment to T is completed:

.

Sy
Si.1
P .25
Q .5
G O Zo Z+1) -
T .66

LIS

i.e., the "Q" local to G is goné‘élong with the "Z" that was a formal

parameter of G.

We remarked earlier -that the choice of the name "Q" for the local
variable we had in mind in the above example was completeiy arbitrary. In
mathematics we might write, for example

G@Z) = Z+0Q) /2 where Q =P / (1-P) °

€x -

and in that notati&n as well, éhe choice of names for what are essencially
dummy vafiable;, i.e., 2 and Q, i;.arbitrary. (We could, by the way,

have introduced a Hgggg_notation that would be entirely equivalégc‘to the
LET notation we have. WHERE statements would aiways be written at.the
Bottom of blocks to which they apply. The interpreter would have go in-
speét each block, as the block is entered, for the presence of a WHERE
statement and execute it if one were found. There is, of course, no reason
.that either a LET or a ggggg-sca:ement Eould not make multiple assignménts.)‘
Considervthen how we mighcrwriCe

H(X) = F(X) + F(X+1) where F@Z) = 22w

_ in our language.

We write:
LET HOO BE
LET F(z) BE
RETURN Z t 2
m .
'_Bg'g_l_fgg F(X) + F(X+1) C N

END

Nothing unusual has been introduced here and the reader shpuldvthéréforé
have no trouble in simulating the machine when, say, H(3) is cailedly Let's

introduce a small éhange in H now and follow what happens. We rcdefine;_f

the above function as follows: v Lot

H(X) = F where F(z) = 22,

H ié thus a functioﬁ which produces a'function as‘iCS value.' Letis,,for
the moment, be tolerant of the fact that the wholé exercise appears
“trivial and follow the course of the program shown below_nevértheless.
A~ 2
LET H(X) BE

LET F(z) BE

RETURN Z t 2

)

"~ initial stage

after the assignment to A

H | (R LELF~ (2.2t 2);F)

H hgs been defined. vt is a

separation between statements in H. =~ .

QO mo»
"
e
.
.
.
o’
r

-16-

O - >

v o x >

0
Nz, 21 2)

.

H has been entered (a new environment node is :herefo:é
created) and the LET statement within H executed. = -
“NZ.2Z1t2) is now on IRL but we have not yet exited

from He.

2 | - . i
N Xe oel) . : B G
N zZ.21t2) ’ '

The assignment to C has beénymadeg

2
(h X. ooo)
nz.2z212)

(N

"D" has been placed én so prebératory

to assignment.

S. . .
0
A 2 .
H | Xe eed)
c NzZ.212)
D w '
S2
S
o
Z 3 B i o PRI R G .
- C(3) has been éalled, the value of C,
f.e., (\Z. 21 2), found and the
. . * formal parameter Z bound to 3 in a
" newly established RST.
. _
o
A 2
H . . (l x-. io.)
D 9

The application of C to 3 is éompleted.

we have.here seen the application of a function (H) to a parameter

_(0) in which the function produced another function N 2Z.212)as lts

alue. That latter function was assigned (to C) and subsequently applled

to a specific argument (3). What made the entire exercise appear crxvxal

wull o

. was that the argument ngen to H was entirely irrelevant to thejouAtCOme

of H, in this case to the function produced by H. Had we written ,' e

LET H(X) BE

IF X < O THEN O ELSE
LET F(z) BE
RETUR& zZt2
END
RETURN F
mp
Then the outcome of the application of H to an argumenﬁ woeld have'been
- different depending en-che sign of the argument. 'But that's still not
very intereeting. |
A more realistic situation is one in which the function producec oy a-
function somehow exhibits consequences of the- clrcumstances that pertained .
when, so to speak, ;t was brought into exxstence.v Consider, for eXample;'
LET G(X) BE -
LET F(2) BE
RETURN 2 t 2 + o
END
RETURN F

END

We would now expect
FA — G(l)

FB+~ G(2)

to produce two different functions, for we would expect FA(3) to yield 10
and FB(3) to yield 11. :

We have crossed a crucial threshold here in that we permitted the

function F to have a free variable. Observe that value X is certainly

&
=
¥
*

1‘,

IR

———

-

o s

B

© =19~

"bound in G, but that G is an outet bldck with respect to the block

corresponding to F, Wlthln the F block no blndlng of X can be found.

To brlng strong light to bear oa this fact, We can recreate the example

- we've already treated in detail Just above,

the symbol table was

A X.o ..0)

™ z.z1t 2) » .

UO:I::b,.
N

Had we defined F(Z) to be Az.2124 X) instead of ANz, 2z 2) the
value of ¢ would have been
ANz.z1t2 + X)

When now C is applied to 3 (as dictated by che step "D = C(3)") the

environment becomes

o
A 2

H (xx. ...)

c Q2.2f2+m
D w '

»

The‘interpre;er then has the cagk of eValuating théuexpression
in the context provided by that envirohﬁeht. But t&at is impossible’fdf
no X cén be»found in it! Had an X been present in the table (suppoée the
first stateméntvof the entire program had been "X - 100"),‘ic.wogld;§ure1§v
‘nOt have been the one iﬁtended in the present contéxt. | | |
To make the situation quite’clear, let's anaiyzg‘a complete prdgtam..f.
DEFINE G(X) TO BE . | |
(LET F(z) BE
RETURN 2 1 2 + X
END , | o o s
RETURN F
END
FA = G(1)
FB = G(2)
'QQEFAG),FBG)

EXECUTE

We would, as stated earlier, expect the program to produce the output
CFA(3) =10 .

FB(3) = 11

The job of the function G is to delivef the’functioﬁ G\.Z; Z t 2-+ X)
as its valpe,’ The §ariab1e F plays no role whatever in G other thanbbeing{
é handle on what G is to ultimately deliver. It is, in other word$, pure |
syncactictsugar. We can write G somewhac more clearly and compac£iy as
DEFINE G(X) TO BE |

RETURN (M 2. 21 2+ X))

END

(An even more compact’ way to write it, by the way, would be

"G - AX.NZ. 2 1 2 + X)") When ‘the G(l) 1is called ¢ will have :o’

deliver (A Z. Zt 24+ X) but with the additional information that, in

_ this. instance, X iSlbound to 1. When G(2) is called subsequently, G muSt‘

e e

again deliver (A Z. Z ' 2 + X) but then X is to be bound to 2. The two
functions are therefore not the same.k

£

t A It might occur to the reader that a good way of dealing &itﬁvthe'
B . p»roblem_here.raised is to replace all the free variables in the function
to be delivered by their values jusl before delivery. That solution would
impose a considerable Bookkeeping burden on thelsystem. Apart from'that;
it fails to work in all eeses. Consider, for example; the following
slight modification of the above bfogram. ' |
| DEFINE F(X) I0 BE .
RETURN (A Z. 2 1 2 + X + A)
FA -~ G(1)
v © . A~ 10
:g o o ' etc.

 Now both X and A are free within the function produced by G but A is not

given a §a1ue.until after G has been called. what is required therefore,

is that a function be made to remember where, i.e. in what environment, values

of its free variables are to be found when the function is applied -- not
what their values were at the time the function is constructed. '
"-The environment structure we have so far described consists of a

number of nodes each of which, except for the topmosc node, has a poxntet

to the just previous node. Each of these pointers serves the dual functlons

of

-22-

1) indicating where the séarch for a particular;variable'ig-co
bgvcontinuea if it hasn'é yét been located in the S;:ﬁcﬁure
so far intetrogacad |

and . ' S

2) specifying what environment is to be restored upon the

completion of the application of some function.

.

We now see that these two functions must be separated. We therefore -

introduce two pointers, the first (restoration poinCer) pointing to the

' environment to be restored at the appropriate time, and the second
(search pointer) indicating the search path to be.pursuéd.
We then represent a typicél symbol table as follows: .,: f'; '
' .
name of T s : :
this . i P . L ‘
symbol s ‘ o
table 1 *k ‘2"—_~“‘~\\Name of symbol table in which
"table 1ookup is to continue
! —
Name of
symbol table |
to be v ; R :
o . restored iwiual binding information
S when this. ' . o .
?rﬂ\ : one ‘is
abandoned

We must now add to each function a pointer to.the environment in

which it is to be evaluated. We call such a pointer an enviromment knot,

or simply knot, and write a A expression with its associated knot as in

the following example:’

m

(7\- X, Yo ...);:S

VAN Tt it wirll B N IINRB e OSBRSS

RReNF

(* 2
)

e I -

=23~

This may be read aénﬁthé function of x and y that is such and such and is

to be applied (to some afguments) in the environment Sm"r

B

' The idea that:needs to be understood at this point is.that'qf the

evaluation of a A expression. .It is clear thg;,'when the assignment

_ statement

Y-A+ B
is executed, i.e. when the replacement operator " «~ " is applied to
(Y, A + B), both its operands must be evaluated. The evaluation of Y-“
yields a location (sometimes called the "left hand value" of Y) and that
oéﬁk + B a sum, i.e. preSumably a number« What then'shduld the evaluACidh
of ;%e A expression that'is ;Pe right hand side of the assignment stétement

. Fe(NZ. 212 +X) .

yield? More generally, what do we mean by the value of such a A expression?

We mean by it a A expression (presumably a copy of the given one)‘kpoﬁted

to its environment; i.e. to the environment in which the values of its
free variables are to be found. A A expression not knotted to any-envirén~
ment is called an open A and one that is, knotted a closure (following :

Landin). The result of evaluating an open A is .thus-a closure.

Let's now simulate the execution of, the program.shown above.

N ’

Step 1

DEFINE G(X) TO BE
RETURN (v 7. 21 2 + X)
- .
This sééé is equiv-.ent to
G- MNX.NZ.2Z1t2+X)

The ayébol table grows as’foliows;

N 3]

-24-

i) : S

[
’J.
~’

~ ~
(ii ,
iii) So .
(\Xe NZ.Z12+X): S,
_Note that the value of G is a closure. Its knot is to the
environment that was regnant at the time the closure was
formed, in this case the only environment around. .
rm ‘

| Step 2
FA - G(1)

After the statement is recognized as an asgignment statement

G NXeN2Z.o 2 1t 2+ X):: S°
FA w

A new node is created because a function is about to be:appiied.'

Note that<s° ig both»the'environment to be restored wheu'the"

- -

B) . > .
function application is completed and that into which table’

lookup is to propogate. .

"The open X "(A 2. 2 t 2 + x)"'@s now evaluated and the resulting

closure'assigned to FA.

1ii) S,
G “NXeAZoZt24X)::S
FA ™ 2. 212+X)::8,
Step 3
FB - G(2)

, ; : .% id '
The development is essentially the same as in the previous step.

0

i) So
G (?\.X.)\.Z.Z?Z ‘!TX)::.SO
FA (N2z.2Z1t2+X)::8, | T
FB w ; R e T
. ii)
e
S2
s 'S .
[O
X 2 .
N ,)
iii) So
v.(—ﬁ . : 9 o x.ix Ze Z 1 2 + X)s: So
FA (KZ.212+X)::SI
FB NZoZ1 2+ X):: S, -
Step &
: " TYPE FA(3), FB(3)

First FA(3) is called. The closure

nNz.2t24+X):: S1

is found to be the value of FA. Because a function is to be - *
applied, a new symbol table is created and tied to the curréﬂi‘i

RST by means of the first pointer.

The knot on the closure provides the pointer to the sesvci:

‘gontinuétion environment o . .
So S1

"and the bound variable is placed as usual

g Y11) T S, . .
. : SO S«‘l
zZ 3

The entire environment is .now

iv) S f .

(o]
S S
G (xx.-)\z.ztz-e-x)::s‘j
_FA (yz. zt;2+x)::slp
" FB '(xz.z,r2+x)::sz'

5, :
S S
[o] (o]
X 1
Sy
s 5
z 3 .

It is now easy to see that the evaluation of

-~ 21 2+X
i.e. the body of FA, will yield 10. We asgume that value is ty?ed~by the
ﬁachine. :?he application of FB to 3 now proceeds just as above-e*cept
that’whéﬁ the body of FB, which'is the same as that of'EA, is évélua;ed,”

. . . . Lt

the environment is

9 s, B _ | o .
G (NiXe N Zo 2t 24+ X))z S '
FA ()éz,;zt2+x);;‘sl’ ‘
FB ®NZ.212+X)::8,
Sy
S S
[+] (o) .

R giad

2énd, of_coufse, FB(3) jields 1.

" simulation just analyzed. Sketched in starkest terms it was:

‘** We have seen that the introduction of free variables in functions

. that are produced as values of functions tequxred us to abandon a 81mple

stack structured environment in favor of a tree structured envstcnment.

»
“

.To imbed that idea flrmly, consider the growth of the euvzronment in the

.

1
-~

-

"Notice that in step ,ii the symbol table S

-3 1-

L Where, in the above picture: - K

* indicates the regnant symbol table,

a solid urrow is the table look up path,

‘and

a broken arrow is the environment restoration path.

| appeared as the RST. That's

: . i :
when G was being applied to 1, In step iii So is again the RST but Sl has

‘not disappeared. The vitally important point here is that S. continues

1

to be known to the system by virtue of the appearance of a pointer to Sl‘

as part of the closure

.
LY

(N Z.212+X):: s,

On the other hand, in step vi 5, is the RST =-- there FA(3) is being
computed -~ but’'disappears again in the next step vii. This is because
no pointers'to S3 survive the restoration of the environment S, as the RST.

Analogous arguments apply to S, and Sa respectively.

2

The general rule operative here is that any structure survives as

long as and only as long as a pointer to it exists anywhere in the system.

There is assumed to be a permanent variable CURRENTE that has a pointer

to the RST as its vg}ue. Since every symbol table eventually poin:s.Back
to So,‘eveg if by a long chain of indirection, s° is‘perménengly safg..
The appearance of an open A or of a closure on either the intermediate .
result list IRLvor.Op any symbol table constitutes a pointing to that o?gn

.

N\ or closure. And, of course, the knociof any closure is always a pointef

1

" to some symbol tablé, kgeping that symbol table and all its ancestors safe’

'as long as the closure itself survives.

"
%

We have implicitly introduced a distinction between what are ordinarily

" called operators, e.g. the arithmetic gperators + and t, and functions.

\

B g T AR e N TR a}o‘,deyﬁvﬂm@k‘_

=32~

We should recognize, BOwever, that we write "A+B" in preference{to,ﬂ+(A,£
E only for historical reasons. It is, in fact, useful to think of‘the‘"F"
~in the form "F(«)'"' as being fundamgntally no different from the’ﬁ+" in th
form "+(A,B)", i.e. to think of both "+" and "F" as being éimply‘two
instances'of operators. We hypothesize that our sysfem’has only one func
tion, the function APPLY, and that it is purely internal to thefsysteﬁ. .
We may_imagine, for example, that the expression "F(A+E)" written b&vche
. érogrémm§r i$, befﬁre evaluation, translated to the internal form “APPLY
U (F,(APPLY (+,(A,B))".. APPLY is thus a function that alvays takes two
arguments, an operator and an operand. -«
The evaluation‘of such an expression chen'broceeds as follows:
1) Evaluate operator part and call the result rator (again
. following 'Landin). St
2’) Evaluate operand part and_call Ehe result rand. (Thé_raﬁd is
. - - generaily a set of values left on thé IRL,) | !
| 3) Bind the formal parameters of the rator to the values given by
‘% L o o the rand.

é)-Execute the body of the program of the rator.

H . « ¢

1If the‘ratgr is a built in operator, such as 6ne‘of the arithme£;§ oéera£<
then execution of its body means eésencially going to the sqbroucine to

:_which the'rator péintg. 1f, however, the rator is a closure, Chén a new
symbol tablé‘is created, its restoration pointer set to poinﬁ to the then

existing RST and its search pointer set to point to the symbolltable‘

knotted to the closure. The formal pafameter binding then takeS‘plaée in
this new RST. If the rator is an open A, then the prdcedure is as juéf%

‘stated except that the search pointer is also set to point to the old RST.

Application of the rator to the rand then consists of executing the progr:

" 3

-33-

- ‘,fthat is the body of either the open K or the closure. The result if left
on the IRL. If a‘new_RST was created i.e. 1f the rator was not a bullt

in Operator, the old RST is, of course, restored upon completion of the

application. This is'shown in the flow diagram below.

.

" RATOR *~ Evaluate_opeiator; .
, - | .
RAND *~ Evaluate operand

{
Is rator an open A or a closure

.m0 . . yes
. J\ ‘ v ‘
. Suitable pop - Create new- RST
_/ " ' "IRL and bind
' ' -~ formal parameter ‘ :
.- ~ of RATOR Set restofation pointer to old RST
Execute o open A _ o
appropriate , ' , .
subroutine - ‘ *\ .o :
‘ o no yes g
leave result Set search Set search pointer:
on IRL pointer to to old RST
KNOT of n oo
‘ closure

Bind variables in new RST
suitably popping IRL

S | A Execute body of A expression
leaving result on IRL,

. -L

. L | - ‘- » ~ Restore oid RSIQ

Wwith the above. in mind we caninow work through an example ingolving;t

the recursive operator factorial. Recursive operators are important - in our-

',‘.céntext because'they always involve the free occurrence in their bodies of

R \

‘the name of an operator.

. .
-

" Suppose then that the fdctorial function is produced as the value of

a function. Thg‘function defined by
' DEFINE H(U TO BE
©IF X< 0 THEN
4&E.'LQR_1E(KZ.'2+1)

EISE

LET F~ (\'N. IF N = 0 THEN 1 ELSE N*F (N-1))
" RETURN F |

END

will produce the succeéso: function if given a nggative argument, othgrwisé

the factorial function.
; : i

Suppose now that that function H had been defined as shown and we now

come to a section of program ' ' : o

.
.

? F-.HA(-f)
P~ H(0) |
X = P(F(1))

etc.

-

‘where the RST is S, and, apart from H, has nothing of interest to show us.
One might think the programmer is béing foolish in using "F" for an identi-

fier in his situation since H defines another function F. But the whole

idea is that fhe'behavior of H should ih no wéy hinge on the nafies chosen

for its local variables.

|

We may now follow the growth and shrxnkage of the envxronment in a
somewhat abbrev1ated representation. Again a "*" will mark the RST, a aolid

n

arfow'the table look up path, and a broken atrow the environment restoraci
path. In addition, we show any particular symbol table in detail wheneyet~
‘ite content‘changes. | ‘ |

Nothing very lnteresting happens until after "X - F(r(l))" has been

reorganized as an assignment statement with X as the subJect varzable. The .

symbol table situation then is

/'\
) S *
o .
! 52 .
where sA~
o
S
o
ff*. AL .
& ﬁ-’
"H' The H function
F 1 (2. 2z+l):: Sy
P‘. | (N IF N=0 THEN 1 ELSE N*?(uq))::
X | w
d
an s1 |
5y
S° ‘ So

«37-

‘and 82

S,
Sg | S
. 1 o _ o
F | (M N. IF N=0 THEN 1 ELSE.N*F(N-I)):: S,

We then co¢§;to the evaluation of
T ran
Recali that the internallreptesencatiOn of_that is
'APPLQF(P; APPLY (F,l))

evaluation of the rator (1.e. P) yields

(X N.‘IF N=0 THEN 1 EISE N*F(N-l))

We may think of that as being pushed unto a rator’s:ack.. Evaluation of ﬁhe
rand is, of éourse; evaluation of | |

APPLY (F, 1)
Evalu&tion of the rator of that yields the closure

n Z. ZH1):: 5,

and 6£,1ts’tand 1. The,valug.of the original rand is thus the result of

applying N Z. 2+1):: 1 to 1. Because the rator is a closure we cons;ruct“

a new symbol table ‘and tie it up as perscribed above

-38-

and bind the variable 2 in it

.The environment in which 2+l is then evaluated is

[y

'

~ - . /‘% ;. v | | - -
/E 4 ™ S, | T -
(1\1 2 ‘ -t
\\ S. *
3

kfter z+1 has been computed and 2 left on IRL the_gnvirohment~is'again

' Sb x - - Do _

1 52

The rand of APPLY (?, APPLY (F,1)) has now been évaluéted_and the system
set to apply the rator ‘

(N N. IF N=0 THEN 1 ELSE N*F(N-1)):: 82
to 2. A new éymbbl table is formed according to the rules stated above 8o

.

that the new environment becomes

: S(—"‘\ .

/NN

S, . = .S,

1

‘where>54 is

The body of the relevant closure dictates that F(N-1) is to be evaluated‘next

so that later the result of that. evaluation méy be multiplied by N. Notice
that F is a free variable in the body of the X expression here under con-

sideration. - There ié'no problem in evaluating the rand of APPLY (F,(N-l))

'fotjthe Valna of N is tp be found in the current RST, namely SA' But there

are nbw two F's .in the system. The search pointer leads to 82 where the

value bf F is found to be the closure

© (\N. IF N=0 THEN 1 ELSE N*F(N-1)):: S,

‘AFollbwing the rules of environment structuring repeatedly, will then :eSdlt

in the environment history shown below.

»
.

'S ¢

7 O
a . |
S, 5, | S5
T/ S, s,
S/
4“1' N 1
| R
s *

At this stage N=0 is left on the IRL. One restoratjon process is carried

out and the environment returns to S

st~
/R |

S1 52 - Ss
/

T/ 5, s,

!

. , . . .

oo 8§ /% ot
. 5 .
-~

so that when the computation N*F(N-1) is carried out the correct value of N,
"i.e. 1 in this case, is found in the environment. The process continues

until, obviously, the environment state

s . . - ‘: . X .“1

' simula:ing the followi.ng program

“41n

'rhe reader may test his unders:andi.ng of the entire mechanism by hand

: LET TWICE (F) BE

RETURN ™ X. F(F(X)))

END
| LET THRICE (F) BE
RETURN (\ Z. F(F(F(X))))

"END

LET 'SUCCESSOR (N) BE
| RETURN N+1
"END -
"":'rwm'- TWICE (THRICE)
'mm = THRICE (m:cs) ‘
| TWICE - 0.
THRICE- O -
'§9 ~ 'rwm (SUCCESSOR) :
| Sa_..fmm’i's,uccassoa)
SUCCESSOR — 0

| A ~58(0)
i B-s9(0)

o

A should finally have 8 .as i.ts value and B 9.

-'.himself that, gwen the above.definitions, TWICE (THRICE (SUC)) is a different

function: t:han $9. and that:' TWICE (THRICE (SUC (O))) doesn t make any sense at

We made the point ‘earlier that a variable that has a funct{on, ‘or more

- . . - .. '
precisely an open A or a closure, as its value behaves no differently {rom

The reader should also s‘atis'fy '

would not change the value of the arithmetic expressien

42 -

any other varlable. That remains true. 'When we, remembering thatjfact,v
note that in any ordlnary arithmetlc expression any variable may always be

replaced by its value we are led to believe that that must»also hold for

funetion designeting variables. If, for example, the value of A is 3, we

Ce

A+ FQA) - _ f
be rewriting it |
3+ F(3) ' _b | ‘ T
S1m11ar1y, if the value of F were the open A (K X. x+1), we would replace
A+ F(A) by A+ O\ X. X+1) (A). The expresslon
(IWICE (SUCCESSOR)))
(agein appealing to the definitions developed above) could, to give stillv,u

another example, be written -

(N F. N X, F(F(X>)) (™~ N. N+1)) (0). °

"Such substituions are indeed permitted in our system.

The main practical significance of the fact that all variables are
treated alike is that a system built to incorporate that principle is simpler
and cleaner, i.e. more nearly free of ad hoc mechanlsms than one that

distinguishes among several classes of vaniables.‘ However, the theoretlcal

1mp11cat10ns of a language so constructed are far reaching. In the'main,

they lead to the possibility of arriving at a canonical language in terms of

which many 1anguages may be compared and their semantics clarlfxed. . Landin

in paritulcar has pushed this idea very hard and has succeeded in analyzzng

ALGOL 60 in such terms. (See Landin - 1965.)
While it may not be obvious, it is nevertheless true,,that any

algorithm that can be expressed at all can be expressed in the fprm-of the

kind of operatet-operand pairs shown above where either or both members of

.

the"pair may be open Ns. One may, in other words, write any program as a

.43-

‘(possiblyllarge) nest of Opénlkfa #nd constants. But there is a difficgitybv
Qi;h conditional éxpressions. Suppose, for examplé, that wé wish_tovexéreSS‘

IF A = 0 THEN 1 EISE 1/A | |
in the form of A gxpressiéns.

Let's assume we have a built in operator "IF'" with the following

. characteristics:

i) IF.opérateé‘on a boole#n_expression ' l. .
2) If thé value of the operand iSITRUE, then the value of>the:
IF eXpréésion is the operator FIRST,»OCherwise its valQe ié
.the operator SECOND | |
v - 3) Thé operator FIRST has-as ifs Qaiue'the?value of the first
exprgssipn of tﬁe twé.that are'i:s érguments |
4)"The.oper§t§r SECOND has as its valAe the vélu; of the secqnd'
expressign of,tﬁe two that gre its argumentg.. -

v
.

Then | |
C(aF@=0)) (B X- 1), @ 2. 1/A)) @)

has the exﬁécted value.' In the picture shown we decomﬁosé’thisvexpfessiqn

“.into its :aCOr-rénd components and their values for the cases A=0 and A#0

| RATOR | : " ' ~;L§5no -

RATOR {— _ > | RAND .
| RATOR | ==+ RAND' ‘ | o o
IF a=0y - {7 X 1), A X. 1/4)) A)
o ' o PP Y ' . n : R
A=0 FIRST TRUE G 1)::Si, N\ X. 1/A):: i 0

. 1 i o
AfO SECOND , FALSE . 1)::‘1. \ X. 1/A).::Si non-zero

A

The point 1is that all»ﬁhe‘tip‘nodea of the rator-rand tfec ;ould'havé been
évaluacaé éimulcaneouSIy.v The evaluation of the’rand - b;.‘ |
(2, Oz 1A | |
produced the‘two closures
™ X. 1):: Si

and
N X. 1/A):: Si

but did not result in an evaluatién'ofAeither, henée avoiding fhe évéluétion
of l/Alfor'Asd.' The value of .

| (IF (a=0))
then selects thevapprépriate closure whiéh is then applied to the'finélv
argument A. |

The resson we needed all this elabérate trickery is that we assumed
that all rators and rénds of a gi?en expression-are always evalﬁaﬁed -- inde¢
that they may be evaluated simultanepuély, once the expreSsion is sgitably
decomposed. One conséquence of this assumption is that we cannot 100k'at a
function, 56 to speak, and ask whethef or not it wants its Arguments'evaluat
at all, or evaluated in some specialzway.

Supposerchen that we impose an order of evaluation, namely one that
requires that rators be evaluated befﬁrenrands. We could théﬁ design at
least built in functions such that they take unevaluated rands andﬁao whaﬁ&
ever isva?p;opriate with them under the circumstances. ‘The subroutine
' associ&ted with IF,IEOr example, could be éonstructed to aésuﬁe‘th:eg'argﬁnm
IF (Alf Az, A3) |
* which afe handed to it unevaluated. The first is then subjectedﬁcb
evaluation under control of the IF program itself and subsequently either,

A, or A

2 3

evaluated depending on the outcome of the evaluation of A

1"

~45=

The préssu?evto impose an order of evaluation doesﬁ't geally come frém ,
Aconsiderations such as those just discussed. For difficulties ariéiﬁg out -
..;6f conditional expre;sions can usually be resolved by‘ékpression pre-
1ﬂprocessors whose maiﬁ functions are syntactic checking and syntactic sugar
femovél._ The-assigﬁment_Operator imposes a reab'diffiéulty.b'So,much so,
“that a systeﬁ permitting assignment must necessafily lose some putity.: Tﬁisf'
is because the assignmeﬁt operator requires that thebfirSC of its two>opérand§‘
be gvaluated in a special way, i.e. for a left hand value (loosely speakiﬁé

an add;ess). :Thisbmeans that tﬂat operator, hencelgll'operators, mus £ be:‘.”
'inspeéied'befdre_argumebt evaluation can pgoceed.:'BuE there is another
"1operator we:would,dearly»iikehto.haye. This is fhe QUOTE operatof. We gball
.write it as-a single apoétrophe. I;¢ fuqctiod is simply to preventvthe
eValuatiqn of the expfegsion it quotes. ' |

Recallvthaévthe asgignment.statemenc
. ‘I-‘h,(h’x.;...)'

',pahses a closuré,to be‘§Ssigned to F, not an.openyk, vThe effect of that ig
:éwo fold. .One that thé;environmentethaﬁ is regnant at the time of assignment
bis autoﬁética11y~secured against erasure, gn& the othétlth5t the appi{cacibn :
 of F to‘its‘arguments i§ carried out in fhg context_pf that‘envirohmekt.

Bﬁt we méy wish to.assign a function to F yhich when later invokgd will
aperate in tﬁé-contektﬂpf that subsequent gnvokation. In order to achieve
that we will havg to asgign an open A to F. 'The QUOTE operator permits this
,.for with it we may 8imp4; write | |
Fe'OX).

But now supposefF had bgen assigned an open A and we then wish to assign the

%

closure of the value of F to G. Were we to execute

G- F

6=

" -
®

the open A would be communxcated to G 51nce, of course, the evaluatxﬁn of
F &ields only that open A. What we need is an operator to force an evaluatlon.
Suéh an Opefa;or‘is,usually called EVAL.
' G ~ EVAL(F)
has the effect described above. EVAL can thus seemtto<be.an aﬁti-qﬁote
operator. It follows,.fbr example, from arguments al:eadyfscated :haciwe7 "
canw;rite .
G - EVAL(' (™ X. ...)).
~ | for the above withoUt’changing its effect. What we have done by fxrsg
applying a QUOTE and later EVAL is to postpone evaluatlon. The uc111Cy of
that is thét_we may. construct a new environment in the meanwhxle and that 1:
is that new»environment that determines the values of the free va;iables
appearxng in the body of the A expressxon. | |
. We f1na11y introduce a slight generalxzatxon with ﬁhe operators CEVAL |
and CLOSE. 0bv1ously the value of EVAL is- the value of the expressxon bezng
evalﬁated. ' Thus, the value of
EVAL (' (142))
“is 3. CEVAL, on the other hand, leaves as its‘valug the envitonmehtréreacéd
° durlng the course of evaluatlng the expression (i.e. progfam)'that.is given
. : ' it as an argument. To give the simplest example, consxder

K ~ CEVAL ('(LET A~ 1, LET B* 2))

K becomes a pointer to a symbol table

-47-

The operator CLOSE takes as one of its ;rguments an open A and as its

. wther such a symbol table pointer ahd&ieaveS'as its value the closure con-

’

sisting of'fhat.open A'knotted'toithé symbol table'pointéd to.
If then F has an open A as its value, the statement
(CLOSE (F, CEVAL('¢)))) ()

given here is skeletal form will, when executed, cause F to be applied to its

~arguments (enclosed in the last parenthesis paig) in a context provided by

the environment determined by the quoted»prograh that is the argument to

- CEVAL. 1If a givén statement has a facility for reading environments from a
-secondar§ score;Vsay a READE operator reads a disk file specified by its
- arguments into core and has a pointer to :the read file as its value, then

" the statenfent

(cmsz (F, READ'E'(m ¢y o

.would cause F to be appiied in the context provided by such a read in

' environment. This would allow the experimental evaluations of functions

agaihst'préstored environments.

Any actual implementation of an interpreter incorporating the mechanisms'
here deéétibed musﬁ offer not only a guarantee that programs wficteﬁ for 1{1
have the expectéd.putcome; i.e. that the identifier collision problem is
really solved in all cases, but'thac‘ﬁhé dynamic space gllocation #roﬁlem

that must ,inevitably arise with the creation and diséppearance of elaborate ,

. symbol tabie substructyrép‘aISO be solved. We touched on that problem when

we said earlier that "any structure survives as long as and only as long ds

Y

a pointer to it exists anywhere in the sygtem'". 'Let us now expldre this

issue a little more deebly.
We consider a fairly cbmplex program in detail, this time witﬁ;sﬁécial

éttention to the appearance and disappearance of data structures.

W~ (nF. A Xe F(FQO))

TH+~ (A F. M X. F(F(F(X))))
.'rwm;— TW (TH) V
DELETE T, TH

5= (v N. WD)

P ~ (IWTH(S)

 DELETE S, TWIH

The DELETE command causes the vatxables given it as arguments to be removed
from the environment in force at the time of its encounter.
After the first two assxgnments have been made and the third statement

recognized as an assignment statement and the execution of Tw(TH) begun, we

have

,"So' .
f
A
*
\s1
where S - is
[0}
S
(o]
™ - | (N Fo N Xo F(F(X))):: S,
TH (F. N X. F(F(F(X)))):: 8y
TWITH W '

L 4

'and S

~49-

P _(x F. A X. F(F(F(X))))::

Note that Twcrﬁ)ecalls‘fqr.the applieatién of

O Fo A X. F(FX))) f o B

(M Fe A X F(F(f(x)))):::ﬂso | e

‘JIn Sl, F has been bound to the closure shown just above. We then come to

the evaluation of the body of the rator. That body is
O~ X. FF(X)))
Its‘evaluatipn in the RST results in the closure

» X-,F(F(X)i):z

and when that is left on IRL and ultimately assigned as the value of TWTH

in S _, the symbol table S, ceases to be regnant and is, in a sense) abandoned.

‘Hence the environment after the thirdAassignment of our ptogremvis simply

S

SO’ if.e.

‘™ | OF. ‘N X. FF))):: S . o |
TH O F'N Xe F(F(F(X))))::' : CoE
TWTH| O\ X. F(F(X))):: ‘ o

o o e e o T P AT WAL 5 T RS 0 e I Ao bt < o e b . A e Sy o

e , =50-

~ and after deletion of TW and TH

O X. F(F(X))):: 8,

.

.

But a pointer to ¢ has survived -- namely on the closure that. is the value

1
m . " table to which it pointed (So) was restored to regnant status. But the SP

of TWTH. Hence S, itself survives. The RP of S1 was removed when the symbol.‘

of S1 (in this case also pointing to So) is a permanent part of Si. We are

thus entitled to represent the current environment as

s * . .
i "
S , ,

1

i.e. to consider Sl and its SP as still being pfrt of the game;
,The'exécution of the statement
~ S~ (\ No M+1)
has the sole_effect of augmenting so with the idgnt;fier value paitif
s | N.o ML)z So |
By the time we come to evaluate TWTH(S) we have had to cre#te a ﬁgwbéymb61

table S We thus have

20

e

" We therefore construct §

-51-

we could set~t§e Rr»of Sz.immediately because»it‘is'aiways set to the
environment that was regnant when the new symbol table was established. To
set the SP, we must look at the closure of the function we are about CO_:

invoke. 1In this case it is

X FFEO)):e S,

as follows:

2

so sl

X (. N. N+1)ss S,

(We found the value to be éssigned to X in Sd’ of course,) The environment

now is

Having tied up the new symbol table appropriately and bound the formal
variable of the function, we are supposed to apply, we must now execuié the

program that is the body of the'. zlosure. We must, in the present example

evaluate

FFR))

o aimm—. ans

o R e i oA AW

-52-

L4 -

’

Recalling that what we are really evalﬁacing is

APPLY (F, APPLY (F X))

" we know that we first evaluate the inmer F(X). This calls for the creation

of a new symbol table 83 with RP of 82. We search.for F starting i.ns2 and
find the closure .

‘(x F. A X. F(F(F(X)))):: S, . -

.

in 5,. 1Its formal parameter is F and its knot S . We find the value of X
(remember we are doing F(X)) in 82 to be the closure
(. N. N+1):: S,

and now have sufficient informatidn to construct and attach 83 properly. -

28

/-T

o

51 | 53
\\T S2 So .
252 : P (v No N#L):it S
{ ! .
\
\g. *

The body of the closure we are currently applying is

O X. F(F(FE))N)

and its value in the current context is the closure

N X. F(F(FX)))):: S3

Once we have that in IRL we may abandonls3 and restofé the old RST accordin

to the RP of 83. We Chué have

¢

.53-

But S3 survives because a closure bearing a pointer to it is on IRL. WhenA

we now come to apply the outer F of the expression ' N . ‘ .

'APPLY (F, APPLY (F X))
" We again find the F in 8, and essentially repeat what we have just done

except that we deal with S, in place of § . For a moment we have
¥P » 4 " P Tt O3

4 .
82 . So . . _
. F (N X. F(F(F(X)))):: 53
"’.and after leaving the closure
O Xo F(F(F(X)))):: S, _
on IRL .
- q so |
/
"1 |
|
45 ~ ,
I\ 1 .
\, s *

«54~ .

. * L]

where again Sa survives because a closure poin;ing t; it is bn IRL. When
we finish the second application of F, however,_we are also f_i.nished' with" _
the body of the function we were applying. We_mustbthetefore fdllow,the RP
of the currénﬁly régnant symbol table S2 and restoré So to regqant status

and there make the appropriate assignment. - When, thus, we come to the end

of the execution of the steps
‘ P~ TWTH(S)
DELETE S, TWTH

we have the .environment .

P A\ X. F(F(F(X)))):: Sa

That contains a pointer.to 34

SO

F O X. F(F(F(X)))):: S

and that a pointer to 83

[} . .

F .0\ N. N+1)3:: S,

D

o

=55~

We see thén that the structure that has survived is

I

and that is the @inimum.structure required to, for exémple, compute P(i);
The reader should test his understanding of what was said here by 31mulat1né
that computat1on.

'We have shown a way .of ﬁandling variables and .their values in a way
thaf permits functions to have functions as theirivalues, i.e. to deliver

functions to higher levels of activation. We have seen that the main

problems'that must be solved in this connection is that of preventing identi-

Vfier collisions espeéially in the case in which delivered functions have

free variables. Our solution to these problems is mainly that of préviding
a tree structured symbol table in place of the more usual stack struccufed

symboi table. That solution is, of course, not original with us, It shows

5up, for example, in some versions of LISP and in Landin's SECD méchine.

Landin, however, insists that no order of evaluation be 1mposed on xator-
rand pairs and thus excludes the QUOTE operator.~ We have shown some uses‘
of that operator == in particular, that it permits open N expressxons to be

passed around freely to be closed later by association with arbitrary and

perhaps experimental environments,’

y

REFERENCES

Bobrow., D. G. and Murphy, D. C. (1967) Structure of a LISP systém using

two level storage, Communications of the A.CQM., 10, 155-159. (Seé.

especially the footnote on p. 158.)

-

Landin, P. J. (1965) A cotrespéndence between ALGOL 60 and Church's

A notation, Communications of the A.C.M., 8, 89-101, 158-65.

Landin, P. J. (1966) A N\ calculus approach, in Advances invProgrammingv

and Non Numerical Computation, FOX, L. (ed.), Pergamon Press,

New York, 1966.

McCatthy, J. (1960) Recursive functions of symbolic expressions and

theit computation by machine, (Patt 1), Communications of the A. C M.,

3, 184-95.

McCarthy, J., etial. (1962) LISP 1.5 programmer's manual. "MeI.T,

	Weizenbaum-FUNARG_Problem_Explained-1280001_a
	Weizenbaum-FUNARG_Problem_Explained-1280002_a
	Weizenbaum-FUNARG_Problem_Explained-1280003_a
	Weizenbaum-FUNARG_Problem_Explained-1280004_a
	Weizenbaum-FUNARG_Problem_Explained-1280005_a
	Weizenbaum-FUNARG_Problem_Explained-1280006_a
	Weizenbaum-FUNARG_Problem_Explained-1280007_a
	Weizenbaum-FUNARG_Problem_Explained-1280008_a
	Weizenbaum-FUNARG_Problem_Explained-1280009_a
	Weizenbaum-FUNARG_Problem_Explained-1280010_a
	Weizenbaum-FUNARG_Problem_Explained-1280011_a
	Weizenbaum-FUNARG_Problem_Explained-1280012_a
	Weizenbaum-FUNARG_Problem_Explained-1280013_a
	Weizenbaum-FUNARG_Problem_Explained-1280014_a
	Weizenbaum-FUNARG_Problem_Explained-1280015_a
	Weizenbaum-FUNARG_Problem_Explained-1280016_a
	Weizenbaum-FUNARG_Problem_Explained-1280017_a
	Weizenbaum-FUNARG_Problem_Explained-1280018_a
	Weizenbaum-FUNARG_Problem_Explained-1280019_a
	Weizenbaum-FUNARG_Problem_Explained-1280020_a
	Weizenbaum-FUNARG_Problem_Explained-1280021_a
	Weizenbaum-FUNARG_Problem_Explained-1280022_a
	Weizenbaum-FUNARG_Problem_Explained-1280023_a
	Weizenbaum-FUNARG_Problem_Explained-1280024_a
	Weizenbaum-FUNARG_Problem_Explained-1280025_a
	Weizenbaum-FUNARG_Problem_Explained-1280026_a
	Weizenbaum-FUNARG_Problem_Explained-1280027_a
	Weizenbaum-FUNARG_Problem_Explained-1280028_a
	Weizenbaum-FUNARG_Problem_Explained-1280029_a
	Weizenbaum-FUNARG_Problem_Explained-1280030_a
	Weizenbaum-FUNARG_Problem_Explained-1280031_a
	Weizenbaum-FUNARG_Problem_Explained-1280032_a
	Weizenbaum-FUNARG_Problem_Explained-1280033_a
	Weizenbaum-FUNARG_Problem_Explained-1280034_a
	Weizenbaum-FUNARG_Problem_Explained-1280035_a
	Weizenbaum-FUNARG_Problem_Explained-1280036_a
	Weizenbaum-FUNARG_Problem_Explained-1280037_a
	Weizenbaum-FUNARG_Problem_Explained-1280038_a
	Weizenbaum-FUNARG_Problem_Explained-1280039_a
	Weizenbaum-FUNARG_Problem_Explained-1280040_a
	Weizenbaum-FUNARG_Problem_Explained-1280041_a
	Weizenbaum-FUNARG_Problem_Explained-1280042_a
	Weizenbaum-FUNARG_Problem_Explained-1280043_a
	Weizenbaum-FUNARG_Problem_Explained-1280044_a
	Weizenbaum-FUNARG_Problem_Explained-1280045_a
	Weizenbaum-FUNARG_Problem_Explained-1280046_a
	Weizenbaum-FUNARG_Problem_Explained-1280047_a
	Weizenbaum-FUNARG_Problem_Explained-1280048_a
	Weizenbaum-FUNARG_Problem_Explained-1280049_a
	Weizenbaum-FUNARG_Problem_Explained-1280050_a
	Weizenbaum-FUNARG_Problem_Explained-1280051_a
	Weizenbaum-FUNARG_Problem_Explained-1280052_a
	Weizenbaum-FUNARG_Problem_Explained-1280053_a
	Weizenbaum-FUNARG_Problem_Explained-1280054_a
	Weizenbaum-FUNARG_Problem_Explained-1280055_a
	Weizenbaum-FUNARG_Problem_Explained-1280056_a
	Weizenbaum-FUNARG_Problem_Explained-1280057_a
	Weizenbaum-FUNARG_Problem_Explained-1280058_a

