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Abstract 

The FUNARG problem arises in languages that permit functions to 
produce functions as their values where the produced functions hav'c 
free variables. This paper shows that a symbol table tree (in place 
of a stack) serves to avoid identifier collisions appropriately. Th~ 
paper develops a lambda calculus argument as, a tutorial for the probl~m 
and its solution. 
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In an important s,~ns~,. this paper 1s llbouta s ingle problem -- th.e 
. " 

so~called FUNARG problem t~~~ Jir;;t. ~rose. in. LISP.;., The original LISP .. 

implementation solved that problem. Still,., years aftet' that implementa-

tion, the problem remains ill understood. Bobrow., .. for example', published 

a fau!ty ~oluti('n f~r it only recently., (See Bobrow" 1967 .r,,, ' 

Fundamentally the pro~lem is this: suppose we have an interpreter . 

. 
that allows the definition of functions. Some functions are executed,. 

(i.e., applied to arguments), for their effect and othet"s for the value 

they leave in an intermediate result t'egister or perhaps on 3n intermedi-

ate result list. We normally think 'of functions as leaving numbers, 

strings, l~sts, or ,arrays as their values. But it is possible to define 

'functions that leave functions a's their values. We ·may, for 'example, write 

F(X) ~ G. where G(y) .·X2 + y2 

, in\ordinarymath~atica~ ,notation. If we . then d.~fined , . 

P =- F(3),. " 

and co~~uted 

P(4) " 

" 

we would expect t9.get 25 as ·a~result. To define the same function in a 

p~ogram,. a programmer might write: 

DEFINE F (X) !Q.~ 

LET G (Y) BE 

RETURN xt 2 + Y t 2 

END 

RETURN G 

and at some su~sequent point in the program 

p ... F(J). 
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• 
After this assignment to P,:P designates a function, ~am~ly the fun~tion 

returned by F. Our system must somehow remember that P i ~ the value of F 

applied to an argument that evaluated to 3. Or, to put it another way, 

h f - d - db . 2 2 f t e unct~on es~gnate y P, ,l..e. X + y , contains X as a ,ree var:;;jble' 

but, because of the way P was formed, X is aiready bound (to 3) on a 

higher leve 1. This binding must be remembered. Furthermore, the p·rogram-

mer using the function F should not have to know what identifiers \verc 

used in· its construction. The outcome of F should be unchanged if, for 

example, every "X" in it has been replaced by an "S" and every "Y" by a 

"T". We must therefore allow for the possibility that the programmer used 

identifiers in his program ,that also appear in the body 'of F. Hence pro-

tection against identifier collisions, that is confusion between two 

distinct variables haVing the same name, must be built into the system. 

We show that the solution to the problem lies -in abandoning the usual 

symbol table stack for a symbol table tree. 

We unfold our a,rgument by the incremental development of a program.-nir.g 
I 

language. We initially a.ssume that the interpreter for that language 
. 

operates with a stack like symbol table structure. When, as we add the 

facility to define function producing functions where the produced functions 

have free variables, the stack mechanism proves inadequate, we generalize 

it to a tree structured symbol table. Along the way, we must develop .;1 

fairly careful statement of what a function in our system is. We appeal' 

to relevant parts of the A calculus to give us a canonical notation. 

The idea that should finaLly stick with the re~der is that functions 

are applie~ to their arguments in specific contexts -- here called environ-

ments. Ina way ,functions are pr<lf' '-nms and the· environments in which 

they ,may be exercised their data. xost p.rogramming systems hide this fac: 
.... 
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in that they permit functi.ons defined within them to hav.! no free V~ r-iables 

and to be applied only in,implicitl~ generated environments. Ti.~ system 

shown here permits the applicat~on'of functions in arbitrary environments. 

Suppose the ,system accumulates statements typed by the programmer 

and forms' them into a 'program. When the statement "EXECU'I'l::" is entered, 

the system executes the program accumulated up to that time. Suppose also 

that programsj once executed·, disappear, but that variables and the values 

they have been assigned are not ordinarily erased. 

If, for example, a programmer were to type: 

A - 5 

TYPE X * X 

EXECUTE 

,t~e external response of'the system would'be to type 

x *X = 64 

and internally a symbol table would have been augmented with the identifier' 

'A' having the value '5' and an identifier 'X' having the value '8'_- If. 

the programmer were then to write 

TYFEA, X 

EXECUTE 

the machine response would be 

'A = 5 
; . .. 

x = 8 

~thus demonstrating that A 'and X and their values had been remembered. 

The component ~xpressions of every individual statement of a pr9g~am 
I 

~ . 
are evaluated (if at all) in an environment, i.e. with respect to a data . , 

structure that provides· places for identifiers and the values associated 
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with the variables the 'identifiers represent. In the simI'lest case an 

environment is a singl~ symbol table. More generally, it is a chai'n of 

symbol tables that, in a certain sense, appear and disappear during the 

execution of a program. One member of ~uch a chain must always be excep-

tional in that it is the symbol table into which new variables and their 

values are placed and that in which the search (table look' up) for values 

of variables begins. We shall refer to that exceptional symbol table as 

the regnant symbol table, or RST for short. It wj.11 p'rove convenient to 

a:,ssign a name to each symbol table we have accasi.on to mention. \~e \"i11 

use a subscripted "5" to denote.such names. 

For.the program shown above the initit;al environment consisted of a 

. single empty symbol table So 

5 o 

+ 
When the assignment statement 

A -- 5 

is encountered and recognized as an assignment statement, the ~nvironmQnt 

is searched for the identifier "A". Since.it ca~not be found, it is added 

to the RST with tne VCJ. iUl! "~" (to O\! r~.ad "undefined") a.nd, in effect, the 

location of the newly placelo! "wit p.l. C\!U on an intermediate result list 

(IRL) • 5 is then: 
o 
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.. 
After the right-hand ,side of,'the assignment statement;has bee.n evaluated 

(and 5 pushed unto IRL), the .assig'pment is completed by suitably popping 

IRLand modifying S to be o 

s . 

* 
Had "A" already existed on 5 , the. machine address, of its value would have 

o 

been placed on IRL at the appropriate time and the same assignment mechan-

ism invoked in all other respects. Details of the e,valuation of expression 

are not relevant t~ the 'present discussion. 

But the fact that identifiers (or some token for them, the dis~inction 

isn't important here) appear in expressions' to be evaluated calls for a 

word about access mechanisms to values of variables. Clearly, when in the 

simple system so far discussed, the value of a variable is required, a 

simple table look uP. is sufficient.' Things will ge't more interesting soon. 

A function'definition facility is now added' to the system. The form 

DEFrnE F(X) !Q. g 

RETURN X + 1 

.... 

is intended to define the successo'r function and add it to the system. 

What is desired is that a variable F be given 'some structure as a value,. 

a' structure that contains the information 

1) that it represents a function 

2) that the formal parameter of the function is X 

and 3) that the body of the function is "X + I" 



.' 
-6-

This information could be packaged in a list as 'follow~: 

(the functio~ of X that is X + 1) 

and that list (or, more precisely, its name) given as 3 valu~ t~ F. But 

that notatiort is rather long winded. It is shorter as well as more con-

ventio"nal to mal~e the substitutions 

""-" for "The function of" 

and 

"." for "tha tis". 

The value of F then becomes 

("- x. X + 1) 

In general; the form of a lambda e~pression (as the above is nOl·mally' 

called) is 

a left parenthes is, 

fo llowed by ""-If' 

followed by the formal parameters' of the function being defined 

followed by a pe~iod 

followed by the body of the function 

followed by a right parenthesis 

Let us now follow what happens when we try tc;>evaluate) say F(A), 

starting with an S that is 
o 

s 
( 

A 3 

X 8 

F (A.. X. X + 1) 

The interpreter encounters the term F(A)'und'must prepare itself to 

apply the functio'n F to the cun·;:',:~" .,'alue of A. "'le may ~ssmTlC th:lt t.he 
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evaluation of A has left 3 on IRL and that the interprett!r will execute 

the program "X + 1". Since X is the formal paramet~r of F, an association 

between that X and 3 must be established. On the other hand, the value 

associated with the X already in the symbol table must not be disturb~d • 

An identifier collision is avoided by the following Steps initiated after 

·A has been evaluated and the value of F, in this case the lambda expression 

"(A X. X + 1)", found: 

:," 

1) The name of the currently regnant· symbol table (in this case S ) 
o 

is stored. 

2) A new symbol table 81 is. created and the name of the formerly 

regnant symbol table placed in a special pl.ace on it: 

3) The parameter·list of the function about to be invoked is copied 

in~o the new symbol table and values· suitably popped off IRL 

assigned to these variables. 

the finding alld placing rules for values of variables must now be 

enhanced. Recall'that just before F is applied to 3, in our examp~..;, the 

symbol table is: 

s 
,~ 

A 3 

X 8 

F <"- x. x+ 1) 
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S 1 is now the regnant symbol table. When an identifier is now sought, the 

search begins in the RST. If it is not found there, the next l~v~l (as 

given by the datum stored in the NW quadrant in our repres.entati~n) is 

searched, then 'the next, and so on. A search may be initiat.ed either for 

purposes of subsequent value ass ignment or simply. for th~ retrieva,l of, the' 

value of a variable. If, in the latter cas,e,' the app'ropriate identifier 

is not fou~d, an error has occurred and the case is not longer of int~rest' 

here. We choose, wh!!n making assigrunants, to place the identifier to be 

paired with "w" in the regnant environment in the manner already described 

in case of failure to find the identifier. 

The applicati~n of p'to A may now proceed without fear of identifier 

collision. Upon completion of the application, i.e., once f(A) has been' 
, , 

,computed, 4 will have been left on IRL.. Now the symbol tablp- situation 

must be restored. 
",', 

We may ask whether the current RST is the one that was, regna'nt when 

the function F was first invoked. If yes, then the situation is restored, 

otherwise we restore the symbol table antecedent to the current ST, throw-

ing away the then regnant sYmbol table, then enter the restoration process 

again, and so on. F~nally, the original environment will have been 

restored. ", 

~ ... 
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Lst's take another look at the general form 

DEFINE name of'function (parameter list) TO BE 

body of function 

END 

We see that, when viewed operationally, i~ is r~ally a fancy form of 

assignment statement. For the name of the function is really nothing more 

nor less than an ordinary identifier. ,The remai~ing information content 

)v of the DEFINE statement is ultimately encoded in the form of a A. expression., 

,The progr.ammer may ~ in other words, jus t as we 11 have writ ten 

F.... (A. x. X + 1) 
, \ 

in place of the definitio~ shown earlier. Perhaps the' language we are 

developing here should have an explicit DEFINE statement. 'If so, the only 

justification for its existence can be that that'form is somehow prettier 

than the straig~tforward assignment of a A. expression to a variable. 

Landin calls that sort of thing "syntactic sugar". 

An important consequence of the fact that a function can be defined 

,by means of a simple assignment statement is that the variabll2 ':,) \vilich the 

function is assigned as a value is an ordinary variable. It is, for 

example, subject to reassignment. The A. expression itself is an ordinary. 

datum, e.g., it is subject. to being passed around, say as a parameter to 

a funciion, or left as the v~lue of another function, just as in any ~the~ 

datum, say a number. 

The body of' a function d'efined by the programmer is, of course, a 

block nested within the block in which the function definition itself is 

made~ One operational function of blocks is to resolve identifier scope 

questions of the kind that ~rose in the above example. There, care had 

to be taken thai the bound variable X be given scope within the block; but 

.,!@I6!il'+'l.X,l 6 4 ' 
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not outside 'it, i.e., that no confusion be permitted to arise between, the 

X with scope inside th~ block and any X that might have e::isted befo~e the 

call to the function F(X). 

Of course, the ,function ~ X. X + 1)' is very simple. A somewhat'more 

complicated one that will serve to raise some ~dditional points is defined 

by 

DEFINE G(Z) 12 ]! 

EI',:D 

Q - P / (l-P) 

RETUIU-l (Z + Q) / 2 

The only variable that appeared in the function F shown earlier was .... 

But in the body of G shown above, the variables P, Q and Z occur and, ot 

these, only Z is bound and can therefore be handled by the techniques 

already discussed. 

Let us assume that P is intended to be a variable that, from the 

point of view of G, has global scope, i.e., that by the tIme G is called 

some environment containing P and its value will exist. Q may similarly 

exis t in some higher symbol table at that· time but the programmer may have 

intended Q to be local to G. Let's suppose so. Then clearly, .he did not 

intend for the value of any previously existing Q to be disturbed by any 

assignment of the 10c~1 Q. The mechanism we have already seen cfearly 

makes the choice of names for thl! bound variables of functio.ns (in the 

present cas'e "Zlt) irrelevant. The function G would work just as well had 

the programmer written "s" where ever he in fact wrote "Z". The same 

circumstance should pertain to "Q". There should, in other words, -exist 

a mechanism that can declare a variable (or variables) local to a specific 

block and (although this is not 'logically necessary) give it an ihitial 

value. 
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Recall now that when an assignment·is to be made the system searche~ 

tne environment, beginning with the regnant synlbol table, for (essentially) 

the position o~ the then existing value of the most recently established 

~~riable ~earing the name of the variable that is the object of the current 

assignment. If it finds one such" then its value is replaced, othen.,ise 

a new position for the relevant identifier is found in the regnant symbol 

table. What we require now is a notation that will inform the system that 

an assignment statement· so denoted should simply add the relevant identi­

fier and the value of the variable it represents to then regnant symbol 

table, skipping the otherwise usual search. We will indicate that this 

kind of assignment is meant when we write 

"LET.O: - express ion". 

We· again supply 'a little syntactic sugar when we allow 

1[!. F (X) ~.! 

body of function 

~ 

to he written in place of 

LET F - 0-. X. body o'f function). 

Put most simply, the difference between an ordinary and a ~ assignment 

,is that the first may ~assign the value of a variable originally established 

in an earlier environment while the latter always modifies the environment 

r~gnant at the time of its execution. rhat is, of course, also the only 

difference between DEFINE and 1[!. as applied to function definitions. 

We now rewrite t~e definition of the function shown above as follows~ 

1B. G(Z) M 

. .!:[!. Q- P I (l-P) 

RETURN (Z + Q) I 2 

IDill. 
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Let's assume that, when G is called the regnant symbol table is 

S. 1 1-

S. 
1. 

p .• 25 

Q .5 

G . (A. z. Z + Q) 

Now -the; s ta temen t liT .- G (l)" is encoun tered. 

from G, the environment will be 

. . 
S. 

1. 

S. 1 1-

P. .25 

Q .5 

G (A. z. Z + Q) . 

T w 

Si.+l 

S., .. 
Z 1 

Q .. 33 

and after the assignment to T is completed: 

Just before the system exiJts 
. J 
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p 

Q 

G 

T 

• 

.25 

.5· 

(~ Z. Z+l) 
; "!.': 

.6~ 
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. i.e., the "Q" local to G is gone along with the "z" that was a forma 1 

parameter of G. 

We remarked earlie.r ·that the choice of the nam~ "Q" for the loca 1 

variable we,had in mind in the above example was completely arbitrary. In 

mathematics we might write, f~r example 

G(Z) = (Z + Q) / 2 whete-Q • P I (l-P) • 

and in that notation as-'well, the choice of names for what are essentially 

dummy variab les, i.e., ·z and Q, issrbitrary. (We could J by the way J 

have introduced Ii WHERE notation that would be entirely equivalent to the 

LET notation' we have. WHERE statemen~s would always be written at the 

bottom of blocks to which they apply. The interpreter would have to in-

spect each blocl,<, as the block is entered, for the presence of a WHERE 

statement and execute it if one were found. There is, of course, no r~ason 

,that either a LET or a WHERE 'statement could not make multiple assignments.) 

Consider t~en how we might write 
. 2 . 

H(X) .. F(X) + F(X+l) where F(Z) a Z, 

in our langua ge • 
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.!!! H(X) BE 

1:[[ F (Z) BE 

RETURN z t 2 

END 
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RETURN F(X) + F(X+l) 

r ~ . 

Nothing unusual has been introduced'here and the reader should therefore 

have no trouble in simulating the machine when, say, H(3) is called~ Let's 

introduce a small change in H'now and follow what happens. We redefine 

the above function as follows: 

H.(X) = F where F(Z) ~ Z2 • 

H is thus a function which produces a function as its value. Let's, for 

the moment, be tolerant of the fact that the whole exercise appears, 

trivial and follow the course of the p'rogram shown below neve'rtheless. 

A - 2 

1&1 H(X)' BE 

LET F (Z) BE 

RETUIU~ Z t 2 

RETUR.,\ F 

E~D 

C - H(O) 

D - C (3) • 
! ' 



We display the symbol table at each stage 

, " 

+ initial stage 

" 

after the assignment to A 

5 
~o 

I 
A 2 

0' 

H ~ ,X. ~F- ~ z. Z t 2) ; F) 

V H has been defined. n.tt is a , 

) separation between statements in, H. 

, 5': 
0 

A ,2 . 

H ~ x. ... ) i,:" 

c W 
; .. , 

" -.. 
,.:, . ; : :." :.~;~.: .. : ':.~.' ' 



. j 

I. 

.. 

s 
o 
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o 
0- Z. Z' f 2) 

H has been entered (a new environment node is therefore 

created) and the ~ statement within H executed. 

II (A. z. Z t 2)" is now on IRL but we have ~ot yet .exited 

from H. 

s 
o 

A 2 

H 0- x. . .. ) 
c 0- z. Z t 2) 

s 
0 

I 
I 

A 2 

H (A. x. ... ) 
C (A. z. Z T 2) 

D w 

The assignment. to C has been made • 

"D" han been placed on Spreparatory 
.0 

to assignment. 
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S'M 
0 

A 2 

H .~ x. ... ) 
C ~ z. Z t 2") 

D w 

",,' 

I' 

S2 

S 
0 

Z 3 
. . lj . ··r . ; .~.: .. :' .,f ':i(-~r, ': . 

., 

e(l) has been called, the value of C, 

i.e., (At z. Z t 2) , found ~nd the· 

formal parameter Z bound to l in a 

newly established RST • 
.. 

5 
0 

A 2 

H ~ x. ... ) 
C ~. z. Z t 2-) 

D 9 

The application ~f C to l is completed • 

We have. here seen the application of a function (H) to a parameter 

.(0) in which the function produced another function (>.. z. Z t 2) as i t~ 

value. That latter function was assigned (to C) and subsequently appl'ied 

to a specific argument (3). What made the entire exercise appear trivia 1 . 
. . 

•. \,1-' •. 
was that the argument given to H was el\tirely irrelevant to the;out~ome 

of H, in this case to the ·function produced by H. Had we written 
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.!&I H (X) BE 

llX< o~o!!§!. 

y.! F(Z) M 

RETURN z t 2 

END 

RETURN F 

~ . 

• 

Then the outcome of the application of H to an argument would have been 

different depending on the sign of the argument. But that's still not 

very interesting. 

A more realistic situation is one in which the function produced by a 

function somehow exhibits consequences'of the circumstances that pertained 

when,'so to speak, it was brought into existence. Consider, for example, 
, \ 

1§! G(X) BE 

LET F(Z) BE - -
RETURN zt 2 of f' 

END -
RETU&~ F 

We would now expect 

FA - G (1) 

FB - G (2) 

to produce two different functions, for we w.ould expect FA (3) to yield 10 

and FB(l) to yieldll. 

We have crossed a crucial threshold here in that we pennitted the 

function F to have a free variable. Observe that value X is cert&1inly -----
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. bound in G, but ~at G is an Outer block with respect to the block 

corresponding to F. Within the F block no binding of X can be found. 

we've already treAted in detail just above. 

To bring strong light to bear on this fact, we can recreate the example 

~call that,at one stage of· the ,execution of the ~~gram sh~n above. 
the symbol table was 

s 
o 

A 2 

H (A. X •••• ) 

c (A. z. Z t 2) 

D w 

Had we defined F(Z) to be (A Z. Z t 2 + X) instead of (A Z. Z t 2) the 

value of C would have been 

(A. z. . Z f 2 + X) 

When nowc::_ is a pp li eq to 3 (as d Ic ta ted by the Hep "0 _ C (3 ) ") the 

environ~nt becomes 

z 

s 
o 

A 2 

H (A. X •••• ) 
I 

C CA., 'Z. Z f 2 + X) 
! 

D w 

3 

".·4Gt· $:;;; 

.. 
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The interpreter then has the task of evaluating the expre$sion 

Z t 2 + X 

in the context provided by that environment. But that is impossible for 
~ 

no X can be found in it! Had an X been prese~t in th~ table (suppose the 

first statement of the entire program had been "X- 100"), it ,would 'surely 

not have been the one intended in the present context. 

To make the situation quite;·clear, letts analyze a complete pl:ogr'sm •. 

DEFINE G(X) !Q ]! 

1[£ F (Z) M. 

RETURN Z t 2 + X 

END 

RETURN F 

END 

FA - G(l) 

FB"· G(2) 

TYP E FA (3 ), FB (3 ) 

EXECUTE 

We would, as s t'ated earlier, expect the program to produce the output' 

FA (3) = 10 

FB(3) = 11 

The Job of the function G is to deliver' the function (). .Z. Z' t 2+ X) 

as its value. The variable F plays no role whatever in G other than being 

a handle on what G is to ultimately deliver. It is,' in other words, pure 

syntactic, sugar. We can write G somewhat more clearly and compa,ctly as 

DEFINE G(X) !£ BE 

RETURN (A. Z. Z t 2 '+ X) , 

END 
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(An even more compact way to write it, by the way, would be 

"G'" Q-..x. ~ z. Z t 2 +X)".) When the G(l) is called, ~ will l,ave to 
.. 1. \ 

deliver Q\ Z. Z t 2 + X) but with the additional information that, in 

this instance, X iSl bound to 1. Wh~n G(2) is called subsequently, G must 

again deliver (>.. z. Z t 2 + X) but then X is to be bound to 2. The two 

functions are therefore not the same. 

}v. 
It might occur to the reader that a good way of dealing ~ith the 

problem here. raised is to replace aJl the free variables in the function 

to be delivered by their values jus~ before delivery. That solution would 

impose a considerable bookkeeping burden on the system. Apart from that, 

it fails to work in all cases. Consider, for example, the following' 

s light modification of the above program. ' 

DEFINE F(X) IQ BE 

RETURN Qo. Z. Z t 2 +' X + A) 

END 

FA .... G(i) 

A .... 10 

etc • 

. . Now both X and A are free within the function produced by G but A is not 

given a value. until after G has been called. What is required therefore, 

is that a function be made to remember where , i.e. in what environment ,v3lues 

of its .free variables are to be found when the func·tion is applied not 

what their values were at the time the function is constructed. 

"The environment structure we have so far described consists of a 

• number of nodes each of which, except for ·the topmost node, has a pointer . 
to the just previous node. Each of these pointers serves the dual functions 

of 
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1) indicating where the search for a particular variable is to 

be continued if it hasn't yet been located in the structure 

so far interrogated 

and 

2) specifying what environment is to be restored upon the 

completion of the application of some function. 

We now see that these two functions. must be separated. We therefore'-

introduce two pointers, the first (restoration pointer) pointing to the 

env.ironment to be res tored at the appropriate time, and the second. 
' .... 

(search pointer) indicating the se~rch path to be.pursued. 

We then represent a typical symbol table as follows: , 

name of .-~ 
this S i 
symbol . S 

table /-_.S"",,,-_+-__ .;;.;k_~Name of symbol table in which 
( , table lookup is to continue 

~'--~; ',', 

Name'of . 
symbol table 
to be 
restored 
when this 
one "is 
abandoned 

\p -

i·.·." ~.:~a.L binding, information 

We must now add to each function a pointer to. the environment in 

which it' is to be evaluated. We call such a pointer an environment~, 

or simply knot, and wr~te a A expression with its associated knot as in 

the following example:' 

~ X, Y •••• )::5 
m 
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This may be read as '''th~ function of x and y that is such and such and .is 

to be app lied (to some arguments) in the environ~ent S fI._ 
m 

The idea that:needs to be understood at this' point is that of the 

evaluation of a "- express io~ • . It is clear tha~ , when the ~ss,~gnment 

statement 

y- A + B 

is executeq, i.e. when the replacement operato~ "- If is app~ied to 

(Y, A + B), both its operands must be evaluated. The evaluation of Y 

yields a location (sometimes called the "left hand value" of Y) and that 

of A + B a sum, i'.e. presumably a numberJ; What then should the evaluation 

of the ~ expression that is the right hand side of th~ assignment statement 

F - <"- z:~ Z t 2 + X) 

yield? More generally, what do we. mean qy the value of. such a ~ expression? 

i- We mean by it a ~ expression (presumably a copy of the given one) knotted 

to its environment; i.e. to the environment in which the values of its 

free variables are to be found. A ~ expression not knotted to any environ-

ment is called an open ~ and one that iS t knotted a.closure (follow,ing 

Landin). The result of evalu.3ting a~. open ~ is.~tbus'a closure. 

Letl,s now simula-te the execution of" the program.-:Bhown above. 

Step 1 
.. 

DEFINE ~(X) !Q. M 
, , 

RETURN (A. z. Z t ? + X) 

p-

This step is equi,-"',;~,cnt to 

. r. 
G - . <"- x. ~'z. Z t 2 + X) 

,: r 
The aymllol table grows as :follows: 
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T 
.. 
G 

s 
o 

(A. X. A Z. Z t 2 + X):: So 

. Note that the va lue of G is a closure. Its. knot is to the 

environment that was regnant at the time the closure '-1as 

formed '. in this case the only environment around. 

Step 2 

i) 

FA - G(l) 

After the statement is recognized as an as~ignment statement 

S o 

~~;A.Z. zt 2+X)::,So 

FA I w 

A new node is created·because a function is about to b~.applied. 
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G ~ x. ,A z. Z t 2 + X)::. 5 
'~: 0 

FA w 

Sl 

S S 
o 0 

x .' '1 

Note that,S is both the 'environment to be restored when the 
o , 

function application is completed and that into which table' 
t; 

lookup is to propoga,te. ' 

'The open X U(A. z. Z t 2 + X)" ~s now evaluated and the resulting 

closure assigned to FA. 

s o 

G (t... X. A. z. Z t 2 + X):: So' 

;!A (A. Z.::Z t 2 + X)::,Sl t 

Step 3 

FB ... G(2) 

~ :1 
The development is essentially' the same as in the previous step. 

...... J •• ~' 
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G 

FA 

FB 

(~ x. A Z. Z t 2 + X):: 8
0 

(~ Z.. Z t 2 + X):: 51 

5 
Q 

w 

G 

FA 

FB 

as above 

52 

S . , S 
o 0 

X 2 

s 
o 

G 

FA 

FB 

Q.. X. ~ Z. 
, 

Q.. z. Z t 

(h z. Z T 

Z t 2 + X):: 8 
0 

2 + X):: 51 

2 + X):: S2 . 

'. 

Step 4 

TYPE FA(j), FB(3) 

Firs t FA (3) is ca lled. The clos.ure 

Q.. z. Z t 2 + X~:: S 1 . 

is found to be the value of FA. Because a'function is to be 
~~ ., 

applied, a new symbol table is created and tied to the current 

RST by means o,f the first pointer. 
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The knot on the closure provides the pointer to the ~er..~(:: 

~ontinuation environment 
~ 

s· o 

53 

,.' and the bound v~riable is placed as usual 

tii) 

iv) , 

53 

8 8i 0 

z 3 

The eiltl,re ~nvironment. is .now 

s 
o 

-~---J' 

. ' 

G 

FA 

FB 

(~ x. ,A. z. Z t 2 + X):: 5 ' 
o 

Q.. ~ •. Z t 2 + X):: 5 1 I~ 
Q.. z. Z t 2 + X):: 52 
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It is now easy to see that the evaluation of . 

Z t 2 + X 

i.e. the body of FA, will yield 10. We assume that value is typed by r,~c 

machine. The application of FB to 3 now proceeds just as above except 

th,at when the hody of FB, which' is the same as that of FA, is eval~a~ed, 

the;~~environment is 

v) 

G 

FA 

FB 

s 
o 

x, 

s o 

()... IX. 

oJ Z.' .1 

Q-:; Z. 

2 

}... z. Z t 2, + X):: S,O 

Z t 2 + X): ~ ,S 1 

Z t 2 + X):: 52 
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z 3 

"and, of ' course, FB(3) yields 11 • 

. · . We have seen that the introduction of free variables in functions 

) U . tbat 'are produced as va lues of func tions required us to a bandon' a simp le 

stack structured environment in favor of a ~ structured en~iroument. 

-. To imbed that idea firmly, consioer the ,growth'of the environment. in the 

simulation just analyzed., Sketched in starkest te'rms itwcas: 

t 
,> 

,J& 2 £ e a:&£&i&iUiliiiL • 
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ii 

iii 

iv 

j . 

·1 ., 
I 

." i: 

I~ v 

I 
! 

5 * . 
0 

... ) 5 
. I 0 

// 
\ S * 1 

! 
5 * o 

5~ 
0 " / \'. 

I 
. 51 5' 

2 

5 * 0 

! \ 
Sl '5 

2 

* 
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vi .,.., S. 
I 0 

/ / \ 
. , 51 52 ., 

i I 

, , 
\ 5 . * 

3 

vii 

vii S ~, 

! \'.. 
51 52 : 

~ 

t 
~ 1* 
~4 

ix 5 * 
! 

0 

\ 
51 S2 

- A . 
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~ Where, in the above picture' 

- . 

* indicates the regnant symbol table, 

a solid arrow is 'the table look up path, 
- "t' 

'and' 

a broken arrow is the environment restoration path. 

Notice that in step Iii the symbol table 51 appeared as the RST~ Thaf's 

I 
when'C'was being ap'plied to I! In step iii So is again the RST but 51 has 

. , 
'not disappeared. The vitall~ important point here is that Sl continues 

to be known to the-system by virtue of the appearance of a pointer to Sl 

as part'of the closure 

(A. z. Z t 2 + 'X):: 51 

On the other hand, in step vi 53 is the RST -- there FA (3) is being 

computed -- _ but- disapp-ears again in the next step vii. This is because 

no pointers to 53 survive the restoration of the environment So as the RST. 

Analogous arguments apply to 52 and 54 respectively. 

The general rule operative here is that any 'structure survives as 
.i 

long as and only as long as a pointer to it e~ists anywhere in the system. 

There is assumed to be a permanent variable CURRENTE that has a pointer. 

to the RST as its value. Since every symbol table eventually points back 
l 

to 50' even if by a long chain of indirection, 5 is permanently safe. o _ 

The appearance of an open ~ or of a closure on either the intermediate 

,result list IRL or op any symbol table ·constitutes a pointing to that open 

~ or closure. And, ,of course, the knot, of any closure is always a pointer 
i_ 

to some sYmbol table·, keeping that symbol table and all its ancestors safe-

as long as the closure itself survives. 

We have implic~tly introduced a distinction between what are ordinarily .. . ~. 

-called operators, eog. the arithmetic qper~tors + and f, and functions. 
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We should recognize, however, that we write "A+B" in preference to "+ (A, Ii 

only for historical reasons. It is, in fact, useful to think of the "F" 

in the form "F (~'\.)" as being fundamentally no different from the"+" in th 

form u+(A,B)", i.e. to think·of both "+" and tlF" as being simply two 

instances o'f operators. We hypothesize that our system has only one func 

tion, the function APPLY, and that it is purely internal to the system. 

We may i~gine, for example, that the expression "F(A+B)" written by the 

programmer is, before evaluation, translated t;o the internal fonn "APPLY 

(F,(APPLY (+,(A,B»"., APPLY is thus a function that always takes two 

arguments, an operator and an operand. ( 

The evaluation o.f such an expression then proceeds as follows: 

1) Evaluate operator part and call the result rator (again. 

. following 'Landin). 

2·) Evaluate operand part and call the result.~. (The. rand is 

generally a set of values left on the IRL.) 

3) Bind the formal parameters of the rator to the values given by 

the rand. 

4) Execute the body of the program of the rator. 

. . 
It the rator is a built in operator, such as one' of th~ arithmetic opera~ 

then execution of its body means essentially going to the subr9utine to 

which the rator points. If, however, the rator is a closute, then a new 

symbol table is created, its restoration pointer set to point to the then 

existing RST and its sear~h pointer set to point to the symbol' table 

knotted to the closure. The'formal parameter binding then takes place in 

this new RST.· If the rator is an open t..., then the procedure is as just"" 

staLed except that the search pointer is also set ,to point to the o,ld RST. 

Application of the rator to the rand the~ consists of executing the progrl 
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e. 

0' that is the body of either the open ~ or the' closure. The· result if left 

on the IRL. If a newRST was created, i.e. if the rator was not a built 

in operator, the old RS! is, of course, restored upon completion of the 

application. This is ·shown in the flow diagram below.· 

• o • 

.,0 

...... : 



RATOR ... 

RAND ... 

Is 

v 
, . 

-\.-I 

Evaluate operator' 
~ 

Evaluat~ operand 

~ 

rator an open ),. or 

I 
no 

j 
suitable pop .' 
IRLand bind . 
formal parameter 
of RATOR 

. 1 
Execute 
appropriate 
subroutine 

1 
leave resu It 
on IRL 

a 
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t. 

closure 

\" yes 

\, 
Create new·RST 

Set resto~ation pointer to old RST 

,1 
open A 

! '" no yes 

J ~ 
Set search Set search pointer: 

pointer to to old RST 

KNOT of 

/ closure 

\ 
Bind variables in new RST 
suitably popping IRL 

1 
Execute body of ~ expression 
leaving result on IRL 

Restore old RST 
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With the above· in mind we can ,now work through an exalnp1e ~nY,olving 
, . ~ .' 

'the recursive operator factorial. Recursive operators are important .. in our 

~'c~ntext because they always involve the free occurrence in their bQdies of 

the name of an operator. 

Suppose then that th'e '''factorial function 1s produced as the value of 

a function. The functio.n defined by 

DEFINE H (X) '!Q. BE 

~! .'. 

ITX<O~ 

RETURN Q.- Z. Z + 1) 

EISE 

LET, F'" Q.'-t{,. II N • 0 I!:!ru! 1 !!2.! N*F (N - l)} 

RETURN F 

w.ill produce the successor function if given a negative argument, otherwise 

the factorial function~ 
I 

~uppose now 'th~t that function H had been defined as shown and we now 

come to a ~ection of program 

, . 
• 

: F'" H(-1) 

P ... H(o.) 

x ... P(F(l» 

etc. 

where the RST is S and, apart from H, has nothing of interest to show us~ 
,0 

One might think the programmer is being foolish in Using "Fu for an identi-

fier in'his situation since H defines another function F. But the whole 

idea is that the behavior of H should ih noway hinge On the names chosen 

for its-local variables. 
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We may now follow the growth and shrinkage of the environment in a 

somewhat abbreviated r~presentation. Again a "*"will marltthe RS~, a solid 

arrow·the table look up path, and a broken ·arrow the environmentrestorati~.n 

path. In addition, we show any par,ticular symbol table in detail whenever 

its content changes. 

No.thingvery interesting happens until after "X -- F(F{l»" has been 

reorganized.as an assignment statement with X as the subject variable. The 

symbol table situation then is 

where S o 

and 51 

I 
5+ 

is 

5 '/( 
0 

\' 

s 
o 

,52 

-t-
H· 

F 

p 

X 

x 

The H 

(~ 

(~ 

w 

z. 

N. 

s 
o 

function 

Z+l): : 51 

IF N=O'THEN 

-1. 

1 ELSE N*F(N-l»:: S2 
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, '.' ,S2 . 

t .. $. 4· Z:r • -' .J .. w>. u 

S . S . 
o (). 

x 0 

F (~ N. IF N=O THEN 1 ELSE N*F(N-l»:: S2 

We then .come to. the evaluation of 

P (F(l» 

Recall that the internal representation of that is 

~PPLY (P, APPLY (F, 1) ) 

evaluation of the rator (i.e. p) yields 

.. (~ N., IF N=O THEN 1 ELSE N*F(N-l»:: S2 

We may think of that as being pushed unto a rator stack. Evaluation of the 

rand is, or course, evaluation of 

APPLY (F, 1) 

Evaluction of therator of .E:!.!E. yields the closure 

(i\ Z. Z+ 1);: 5 i 
and of. its rand 1. The .valu~ of the original rand is thus th.e r.esult of 

applying (i\ Z. Z+1):: 51 to 1. Because t.he. rator 1's a closure we constr·uct 

a.new symbol table -and tie it up as perscribed above 

53 

So .S1 

· .. ·w 
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and bind the variable Z in it 

The anvironrnent in which Z+l is then evaluated is 

'After Z+l has been computed and 2' le'ft 'on IRL the, environment is again 

s * 
./', 0", 

s ' S 
1 2 

The rand of APPLY (P, APPLY (F,l» has now been evaluated and the system 

set to apply the rator 

(A. N. IF 1'=0 THEN 1 ELSE N*F(N-l»:: 52 

to 2. A new symb()l table is, formed according to the rules stated above so 

that the new environment becomes 
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where 84. is 

84 

S 8
2 a 

N 2 

The body of the relevant closure dictates that F(N-l) is to be evaluated next 

so that later the result of that. evaluation may be multiplied by N. Notice 

that F is a free variable iIl the body of the X exPression here under con-

sideration. 
.. 

There is no p~oblem in evaluating the rand of APPLY' (F, (N-l» 

for the valu~ o.f N is tp be fo~nd in the current RST, namely 54 • But there 

are now two· F's .. in the sys tern. The search pointer leads to 52 \"here the 

value of F is found to be the closure 

.. ~N. IF N=O THEN 1 ELSE N*F(N-l»:: 8
2 

Following the rules of environment structuring repeatedly, will then result 

in the environment history shown be'low. 

8 ~ 

/ 
o ...... '" " 8 1 S2 1 S5 

t " 54 S2 
/ 

54l\ N 1 
I 
I 

·s ) * . 5 
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5 ~_ 

/71. 
o' "-
~ 

. ., 
\ 

51 
S \ 

56 
.. ; 

11 21 

1/' 54 52 (, 
54 \ 

N .' 1 , 
I 

5.1 r.' 
5 \ 

I 
I 

S .;,/* 
6 

At this stage N=O is left' on the lRL. One restoratj;on process is carried 

out and the environment returns to 

N 1 

so that when the· computation N*F{N-l) is carried out the correct value of N. 

i.e. 1 in this case, is found in the environment •. The process continues 

until, obviously, .the environment state 

S * o 

is again reached and 2 left on IRL. Finally the assignment to X is made in 

s . 
o 
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' ... 
:.'. ~ The ,reader 'may t~st his under$tandit\S of tne entire'J1lechanism by hand 
, .' 

."simulating· the following program 
I "~: 

'. 

" . . . f' 

., : ......... ', . 

. ':.' 

RETURN Q...X. F{F(X») 

.~ 

LET THRICE (F)M, 

RETU~ Q\ Z. F(F(F(X»)) 

~ 

.!&! ',SUCCESSOR (N) .!! 

RETURN 'N+l 

. END' 

:TWTH ... · TWICE (THRICE) 

'IHTW ... THRICE('J;W~CE) 

TWICE ... O~ 
.... 

I THRICE'- 0 

, S 9 ... TWTH (SUCCESSOR) 
.. 

S8· ... THN (~UGCESSOR) 

SUCCESSOR - 0 

A -'·58 (0) 

. B'" S9 (0)' 

" ' 

."\" 

, ~ 

1" 

A should;finally have 8.8S its yalue' and B 9. The reader should .also satisfy 

.,himsel~.~hat, given the_.aboye:.definitions, TWICE (TIUtIC~~ ($UC».~s a d~f~~rent 

function:than:,S9. and that~:rwICE (THRICE (SUC(O»);,4oesn"t; ~ke any sense at 

all. 
.l. 

We made the point earlier that a va~iable that has a function. 'or more 
, ", 

precisely an open ~ or a closure, as its value bchaves no differcntly from 
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any other variable. That remains true. ~en we, remembel·ing that '.factt 

note that in any ordinary arithmeti~ expression any variable may always be 
~ 

replaced by its value we are led to believe that that must also hold for 

function designating variables. If, for example, the value of A isJ,we 

would not change the value of the arithmetic expression 

A + F(A) 

be rewriting it 

3 + F(3) 

Si~ilarly, if the value of F were the open ~ (~ X. X+l), we would repla~e 

A + F(A) by A + (A. X. X+l) (A). The expression 

(TWICE (SUCCESSOR» (0) 

(again appealing to the definitions developed above) could, to give still 

another example, be written 

«~ F. ~ X. F (F (X) ) ) (A. N. N+ 1 ) ) (0). 

Suchsubstituions are indeed p~rmitted in our system. 

The main practical significance of the fact that all variables are 

treated alike is that a system built toincorpora~e that pri~ciplei~ simpler 

and clean~r" i.e. more nearly free of ~ hoc mechanisms, thon one that 

distinguishes among sev.eral classes of variables.' However, the theoretical 

implications of a lal'lguage so constructed are far reaching. 'In the main, 

they lead to the possibility of arriving at a canonical language in terms of 

which many languages may be compared and their semantics clarified. ,Landin 

in ,paritulcar has pushed this, idea very hard and has succeeded in analyz,ing 

ALGOL 60 in such terms. (See Landin ,- 1965.) 

While it may not be obvious, it .is nevcrtheles,s true, that any' 

I 
I. I ' 

algorithm that can be expressed at all can be expressed in the form of the 

kind of operator-operand pairs shown above where either or both members 'of 

ehe~~pa ir may be open ;"'1 s'. One may, i,n other wor~s, wri te any program as a 
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(possibly large) nest of open A's and constants. But thete 1s a difficulty 

with conditional expressions. Suppose, for example, that ,,,e wish to express 

II A = 0 !!:!IDi I gg, l/A 

in the form of A ~xpressions. 

Let's assume we have a built in operator "IF" with the following 

charac·teris t~cs : 

1) IF operates on a boolean expression 

2) If. the value of the operand is TRUE, then the value of the 

IF expr'ession is the operator FIRST, otherwise its value is 

the operator SECOND 

" 3) The oper~tor FIRST has ·as ~.tls value the ~alue of the first 

expressipn of the two that are its arguments 

4)' . The oper~tor SECOND has as its value the value of the second . 
expressiQn of. the two that llre its argum:en t~. 

Then 

«IF(A-O)1) (~x. 1)., 0- Z. Pi/A») (A) 
., . 

has the expected va1ue: ' In the picture shown we decompose this expr'ess~ori 

:·.lnto its rator-rand components and their values for the cases A=O and AiO 

• ' ••.• 71:. 

A-O 

A/:O 

I RAr
R I, 

.I~TO,~ : ~--------------~)I RAND' 

T I RATOR 1---. '/ RAND I 
r· . .' I 
IF (A =0)-

r 
FIRST TRUE 

11 

SECOND FALSE 

. 
(,. x. 1), (A X. l/A» 

p 

(A. 1)::5 i , (~·X. l/A)::Si'-
11 

~. 1):: ~,i ' ("- X. 1/ A): : 5 i 

(A) . 

O· 

non-zero 
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The point is that all the" tip nodes of the rator-rand tree could have been 

evaluated simultaneously. The evaluation of the rand 

(0- Z. 1), 0- z. l/A»·· 

produced the two closures 

o-.X. 1):: Si 

and 

0- X. 11 A) :: S i 

but did not result in an evaluation'of either, hence avoiding the evaluation 

of l/A for A-O. The value of 

(IF (A=O» 

then selects the appropriate closure which is then appl,ied to the final 

argument A. 

The r~~son we needed all this elaborate trickery is that we assumed 

that all rators and rands of a given expression·are always evaluated -- ind~ 

that they may be evaluated simultaneously, once the expression is s!-litably 

decomposed. One' consequence of thi~ assumption is that we' cannot look at a 

function, so to speak, and ask whether or not it \~ants its argumentsevaluat 

at all, or evaluated in some special way. 

Suppose then that we impose an order of evaluation, namely one that 

requires that rators be evaluated before"rands. We could then design at 

least built in functions such that they take unevaluated rands and do what~ 

ever is app.ropria te with them under ·the c ircums tances _ The s ubrou tine 

associated with IF, for example, could be constructed to assume three argunL 

IF (Al'~ A2 , A3 ) 

which are handed to it unevaluated. The first is then subjected to 

evaluation under control of the IF progr.m itself and subsequerttly either. 

A2 or A
3

evaluated depending on the outcome of the evaluation of A
l

-. 
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The pressure to impose an;order of evaluation doesn't ~eallycome from 

considerations such ,as those just discussed. For difficulties arising ~ut 

"of conditional expressions can usually be resolved by' expression pre-

processors whose main functions are syntactic checking and syntactic sugar 

removal., The' assignment operator imposes a rea~ difficulty. So much so, 
.... _. 

that a system permitting assignment must necessarily lose some purity. This 

is because the assignment operator requires ~hat the fir'st of its two operands 

be evaluated in a special way, i.e. for a left hand value (loosely speaking 

an address). ,This means that that operator, hence all operators, must be, 
, , 

inspec ted be'fore argument evaluation can proceed •. But there is another 

operator we::would dearly like to .ha'fe. This lathe QUOTE operator. We shall 

write it 8s~a single ap1)strophe. :::.~ function is simply to prevent the 

evaluation of the expre$sion it quotes. 

Recall·- that the as~igrunent statement 

F - 0- X.;:-, ••• ) 

causes a closure, to be ~ssigned to F, not ~nopen 'l\. The effect of that 1s 

two fold. One that the;environme~t': that i, regnant at ,the time of as.signment 

is 'automaticallysecure4 against erasure, ilnd the other,that the application 

'of F to its arguments ~ carried out in th~ context of that environment. 

But we may wish to,assign a function to F ~hich when later invoked will 

',closure of the value of F to G. Were _e tp execute 

G - F 
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the open "A. would be communicated to G since, of course, the evaluation of 

F yields only that open "A.. What we need is an operator to force an evaluation. 

Such an operator is usually called 'EVAL. 

G - EVAL(F) 

has the effect described above. EVAL can thus seem, to be an anti-quote 

operator. ,It follow~, .for example, from arguments already stated that we' , 

can write 

G - EVAL(' ("A. X.. .. •• » 

for' the above without changing its effect. What we have done by first 

i 
applying a QUOTE and! later EVAL is to postpone evaluation. The utility'of 

that is that ,we may· construct a new environment in the meanwhile and that it 

is that new' environment that determines the values of the free variables 

appearing in the body of the ~ expression. 

We finally, introduce a slight generaliza,tion with the operators CEVAL 

and ClOSE. Obviously ,the value' of EVAL is' the 'value of the expression being, 

evaluated. ' Thus, the value of 

EVAL (' (1+2» 

is 3. CEVAL, on the other hand, leaves as its value the environment created 

during the course 0'£ evaluating the expression (i.e. program) that is given 

it as an argument. To give the simplest exampl,e, consider 

K - CEVAL (' (LET A - 1, 1[£.' B-2») 

K becomes a pointer to a symbol table 

s 

~.·.l 
B I 2 
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,. 
Tl)e op~rato~ CIDSE .takes as one of. fts arguments an open ~ and as its 

;/f~''!r such ~ symbol table poinl:er and··ie,ves as its value the clos:ure con-. ,. 
. \ 

sisting of that open' ~ knotted to the symbol table 'pointed to. 

If then F has an. open ~ as its va:lue, the statement 

(CLOSE (F, CEVAL(' ( »» (, ) · 

given here is skeletal form will, when executed, cause F to be applied ·to its 

arguments (enclosed ~n the last parenthesis pair) in a context provided by 

the environment determined by the quoted program that ,is .theargument to 

CEVAL. If a given statement has a facility for reading environments from a 
.. 

secondary 'st:ore, say a READE operator reads a disk file specified. by its' 

~rguments into core and has a pointer to ~the read file as its value, then 

the s ta tenfen t 

(emSE (F, READ'E ( ») (! ) 

.would cause F ~obe applied in the conte~t prOVided by such a read in 

environment~ This would allow the experimental evaluations of functions 

a~airist prestored environments. 

Any actual implementation of an inte~preter incorporating the mechanisms' 

here described must offer not only a guar,antee that programs written for it 

have the expected,outcome,- i.e. that the ILdentifier collision problem is 

really solved ~n all cases, but that the Qynarnic space allocation problem 

that must ,inevitably arise with the creation and disappearance of elaborate 

symbol tab~e substruct~res also be solved. We touched on that problem when 

we said earlier tha,t "fny structure survives .as long 8S and only as long as .' 
<'l 

a pOin,ter to it exi~ ts anywhere in the 9y~ tern". 'Let u~ now explore this 

issue a little more deeply. 

We consider C\. fai..ly complex program I in detail, this time witnspecial 

-attention to the appearance and disappearance of data structures • 

• 
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TW - (~ F. ~ X. F (F (X) ) ) 

TH - . (}.. F. ~x. F(F(F(X»» 

. TWTH - TW (TH) 

DELET,E TW, TH 

S - Q.. N. N+l) 

p- (TWTH(S) 

DELETE S,. TWTH 

The DELETE .conunand causes the variables given it as arguments to be removed 

from the environment in force at the time of its encounter.' 

After the first two assignments have been made and the third statement 

recognized as an assignment statement and the execution'of TW(TH) begun, we 

have 

where S . is 
o 

"s . 
I 0 

~ 1 
\s * 1 

s 
o 

TW . 

TH 

TWT 

(~ F. >.. X. F (F (X) ) ) :: . S o 
(~ F. >.. X. F(F(F(X»»: :51" 

w 



Sl 

So So 

# . 

F (A. F. A X. F(F(F(x»»:: So . 

Note that TW(TH)call$ f~r, the appli~:ation of 

to .... 

(A F. A X. F(F(X») I 

'.' 

" 

(A F. A X. F(F(F(X»»::S 
. 0 

.• 

In S 1 j F has been bound, to the closure·, shown jus t above,. We then come to 

the evaluation of, the body of the rator. That body is 

(A X. F(F(X») 

Its evaluation in the RST results in the closure , ~' 

and when that is left on IRL and ult~ately assigned as the value of TWTH 

in So' the symbol table 51 ceases to'be regnant.~nd is, in a sense, abandoned. 

He~cc the environment after the third, assignment of our program is simply 

S , i.e. 
o 

s o 

TW 

TH 

TWTIl 

I 

(A F. A X. F(F(X»):: S o 
(A,F~~A X. F(F(F(X»»:: So 

~'X. F (F (X») :: S 1 
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and after deletion of TW and TH 

But a pointer to 51 has survived -- namely on the closure that, is the value 

of TWTH. Hence 51 itself survives. The RP of 51 was removed when the symbol 

table to which it pOinted (5 ) was restored to regnant status. aut ,the SP 
o 

of S 1 (in this case also pOinting to So) is a permanent part of 51- , We are 

thus entitled to represent th~ current environment as 

S * r " 

Sl 

i.e. to consider Sl and its SP as still being part of the ~ame. 

,The execution of the statement 

5 - Q... N. N+l) 

has the sole effect of augmenting So with the identifier value pair 

5 '\ (I\. N. N+ 1) :: S o 

By th'e time we come to evaluate TWTH(S) we have had to crea,te a new symbol' 

table 52. We thus have 
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we could set· the.RP of 52 .immediately because it is·always set to the 

environment that was regnant when the new symbol table was established~ To 

set the SP, wemus~ look at the closure of the function we are about to 

invoke. In this case it is 

(A. ·X.F (F (X»):: 51 

We therefore cons·truct 52 as follows: 

5 
o 

x Q.. N. N+ 1·) :: 5· o 

(w~ found the value to be assigned to X in 5 ., of course.) The environment 
()-

now is 

.;rS 0 

./ 1 
I 

Sl , I \ 
. \ S . 2 * 

Having tied up the new symbol table appropriately and bound the. formal 

variable of the function, we are ~upposed to apply, we must now execute the 

program that is the body of th£' .... '': iosure. We must, in the present exantple 

evaluate 

F(F(X» 
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Recalling that what we are really evaluating is 

APP LY (F, APPLY (F X» 

we know that we first evaluate the inner F(X). This calls' for the creation 

in 51. 

~ F. ..,.., X. F (F (F (X) ) ) ) : :s 0 

Its forma.l parameter is F and its knot 5. We find' the value of X o 

(remember· we are doing F(X» in 52 to be the closure 

~ N. N+l):: 5 o 

and now have sufficient information to construct and attach S3 properly. 

F 

s 
o 

The body of the closure we are currently applying is 

~ x. . F (F (F (X) ) ) ) 

and its value 'irl the current context is the closure 

Q\ X. F(F(F(X»»:: 53 

Once we have that in IRL we may abandonS3 and restore the old RST accordin 

to the RP of 5
3

- We thus have 
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But 53 survives because a closure bearing a pointer to it is on IRL. When 

we now come to apply the outer F of' the expression 

APPLY (F,' APPLY (F X» 

We again find the F in 51 and essentially repeat what we have just done 

excfWt that .we deal with 54 in place ~f 53' For' a moment we have 

. and after'leaving the c 10sure ' 

.0\ X. F(F(F(X»»:: .54 
on lRL 

F 

s o 

Q\ X. F(F(F(X»»:: S3 
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where again S4 survives because a closure pointing to it is on lRL. When 

we finish the se'cond application of F, however , .. we are also finished with -

the body of the function we were applying. We must therefore follow the RP 

of the currently regnant symbol table S2 and restore So to regnant status 

and there make the appropriate assignment. -When, thus, we come to th~ end 

of the execution of the. steps 

p ~ TWTH(S) 

DELETE S, TWTH 

we hav~ the . .environmen t 

s 
o 

p Q. X. F {F (F (X»» :: S 4 

That contains a pointer. to S4 

F Q. X. F(F(F(X»»:: 53 

and that a point~r to 53 

F 

s 
o 
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We·see then that th~ structure that has survived is 
. , 

and that is the minimum structure ~equ1red to, for example, compute P(l). 

The reader shoul4 test his understanding of what was said here by simulating 

thateomputation. 

We have shown a way.of handling vari~b,les and .their values in 'a \-Iay 

that permits functions to have functions as their values, i.e. to deliver 

futictions to higher levels of activation. We have seen that ihe main 

problems that must ~e solved in this connection is that of preventing identi-

fier collisions especially in the case in which delivered functions have 

free variables. Our solution to these problems is mainly that of providing 

a tree structured symbol table in place of the more usual stack structured 

symbol table. That solution is, of course, not.original with us. It shows 

. up, for e:xarnple, in some versions of LISP and in Landin's SEGD machine. 

Landin, however, insists that no order of evaluation be imposed on rator­

rand pairs and,thus excludes the QUOTE operator.· We have shown some uses 

of that operator .-- in particular, that it permits open ~ expressions to be 

passed .around freely to be closed later by association with arbitrary and 

perhaps experimental environments.· 
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