LISP for NOS/VE b}

- Language Definition CONTROL
DATA

-+
&
=

1

lcon

- Usage Supplement

Preliminary 60486213

OO

O O

OO

LISP for NOS/VE
Language Definition

Usage Supplement

Preliminary

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60486213

Related Manuals

Background Material (Access as Needed):

SCL SCL SCL

Language System Quick

Definition 3| Interface. Reference
“Usage Usage <2

60464013 U 60464014 60464018

LISP Manual Set:

Common
LISP
The
Language

60486201

Additional References:

Fuli
Screen
Editor
Tutorial/
Usage

60464015

—»indicates the recommended reading sequence

!;;l means available online

Manual History

This manual is revision 01, printed March 1985.
Version 1.1.2 at PSR level 630,

©;985 by Control Data Corporation. All rights reserved. Printed in the United States of America.

2 LISP Language Definition Usage Supplement

It reflects the release of LISP under NOS/VE

Revision 01

O

C
O

OO

OO

Contents
About This Manualieeeeesesesesoccosssones 5 Control StrUCEUIrE.csssscacssossasscsnass 7-1
IntroducCtioNeeseesceesesssssssossssasanne 1-1 Constant and Variable

Reference (86)ceecessssssccccces

7-1

Errors (5)eeeeecscocccccccscsssssnsse 1-1 Generalized Variables (93).ccececcss 7-1

Overview of Syntax (9)eeeececscecncsce 1-1 Function Invocation (107)..ecccccces 7-1
Entering LISP.cecesccccascsccsosscne 1-1 Establishing New Variable

Using SCL or Other Software From Bindings (110).eeececscccccacesse 7-1

Multiple Values (133).eceveeccscesss 7-1

Within LISP.cesecccscsceosssnses 1-
1

Leaving LISPiceceoocsvoscscessenonns
MACTOSsesoeensessncccsossssosoncsossssssans 8-1

Data TypPeSeseeeessssssnssscnscssssssssss 2-1

Macro Support (143).ceecescscssssses 81
Data Type Support (ll)..eeeecesscess 2-1 Macro Definitions (l44)eesceccocnces 8-1
Integers (13)eeeesecscesossccanssses 2-1
Ratios (15)ceesececsvecccscccccssnss 2-1 DeclarationS.eeeecevescscesscscssscscsas 9-1
Floating—-Point Numbers (16)eesecsnes 2-1
Characters (20).ceecosevecsscnsconss 2-2 Declaration Syntax (153)cecececsccsss 9-1
Lists and Conses (26)sceescssoaseses 22
Vectors (29)ceesecesscesssssaassonss 2-2 SYymMbO1lSsseessssesasssssssssssascssonnsss 10-1
Hash Tables (31).eecseesncccnsacnses 2-3
Packages (31)eeceeecccsoccssccsscoss 2-3 The Property List (163)cccccecceesss 10-1
Pathnames (31)eeescssssscescsasesses 23 Creating Symbols (168)eesescessacses 10-1
Random States (3l)eseecsoccccsecansas 2-3
Structures (32)sececsccsscescsscscss 2-3 PackageSesescocssssncsscsssescannsecscass 11-1
Overlap, Inclusion, and
Disjointedness of Types (33).... 2-3 Package Support (171)seeceecccsecssss 11-1
Translating Strings to Symbols (174) 11-1
Scope and EXtent.sceescecsscossssoscecnes 3-1 Package System Functions, Macros,
and Variables (182)..seeeesseses 1l-1
Support of Extent (36)c.ceescsccacss 3-1 Modules (188)eeseccscssecossacssscees 11-2
Type SpecifierSceececeecssnsssccccccsscsss 4-1 NUMDETIrSeseeecssessscsosscsssscassosnsssss 12-1
Type Specifiers That Precision, Contagion, and
Specialize (45)eecevescscnccanae 4-1 Coercion (193)ccecvcsesccssacess 12-1
Type Specifiers That Comparisons on Numbers (196)........ 12-1
Abbreviate (48)ceeeeccacsascccsnns 4-1 Arithmetic Operations (199).ecesesse 12-1
Defining New Type Irrational and Transcendental
Identifiers (50)ceecosecsscsssss 4-1 Functions (203).ceeeeeesscssasss 12-1
Determining the Type of an Type Conversions and Component
Object (52)ceessscsassocscccncns 4-1 Extractions on Numbers (214).... 12-1
Logical Operations on Numbers (220). 12-2
Program StruCtUr€essscsccscscccscescsnasa 5-1 Byte Manipulation Functions (225)... 12-3

Random Numbers (228)ceceessecscecsces 12-3

FOrms (54)ceececcscososscvsssssnseas 5—1 Implementation Parameters (231)..... 12-3
Functions (59)ceececccscsccccncccsns 5-1
5-1

Top-Level Forms (66)ceecscccancscess CharacterSessssesscesocsssssessesenssese 131

PredicateSeeececssssccsssocasascsssscnsas 6-1 Character Attributes (233).ceeseeees 13-1

Predicates on Characters (234)...... 13-1

Data Type Predicates (72)cececccnces 6-1 Character Conversions (241).¢eeessss 13-1
Equality Predicates (77)veeececssccs 6-1 Character Control-Bit

Functions (243).ccececcccsacesees 13-1

Revision Ol Contents 3

SEqUENCES.eeescosssssscosssssccocscsassss

Simple Sequence Functions (247).....
Concatenating, Mapping, and
Reducing Sequences (249).ccecess
Modifying Sequences (252)..cccecesss
Searching Sequences for Items (256).
Sorting and Merging (258).cecscecses

LiStS eeesssescecscssnoscssasssscssosascns

Lists (264)cececeoscsnscccsossssncne
Using Lists as Sets (275)cesccccasss

Hash TableSeeesvseassscsssoscssssncsonnns

Hash Table Support (282)..eeeecssces
Hash Table Functions (283).seccecses
Primitive Hash Function (285)..e0s.e

ArTaySecesseececssasssssesssssssassonsns

Array Creation (286).ceeiessccccsces
Array Information (291)..ceceececcse
Functions on Arrays of Bits (293)...
Fill Pointers (295)cecesccccsssscsce

SEriNgS.eivecooscescacscossssssssssssone
String Access (299)ceeceescesscssnne
SErUCEUTES eeeseccossossssassssssoncssonns
Structure Support (305)ciececessscns

The Evaluatoreeeecscscesssessssascsscnne

Run—-Time Evaluation of Forms (321)..
The Top-Level Loop (324).eeccecasses

StreaAmMS sessessesosssssscssssssesssssscsnes

Standard Streams (327).ceccececccacsas
Creating New Streams (329).cccvecses
Operations on Streams (332).ececcvsee

21-1
21-1
21-1

4 LISP Language Definition Usage Supplement

Input/OUtPUteeeesccossosoncsssssssssooas 22~1
Printed Representation of LISP
Objects (333)eeesesccescnsessees 22-1
Input Functions (374).cceveeccecenes 22-2
Output Functions (382).ssscecccccess 22-2
Querying the User (407)ccecsccsscsss 22-3
File System Interfacee.eecceescscessseces 23-1
File Names (409)ececcescoscoscscssss 23-1
Opening and Closing Files (418)..... 23-1
Renaming, Deleting, and Other
File Operations (423).ieescceess 23-2
Loading Files (426)ceevcosescccsssss 23-3
Accessing Directories (427).eese0ees 23-3
EIrTOTSeeecessesossssonssssessessassasses 24-1
General Error-Signalling
Functions (429)c.essecscsccssess 24-1
Specialized Error-Signalling
Forms and Macros (433).eseececss 24-1
Special Forms for Exhaustive
Case Analysis (435).eecssccsssss 24-1
Miscellaneous FeatureSeeeececessvsoasesss 25-1
The Compiler (438)ceccceccscccceseees 25-1
Documentation (445)ccesecsessescesee 25-1
Debugging Tools (440).ccceeececcssees 25-1
Environment Inquiries (443)cceccesss 25-2
GlOSSATYeeessseccecessssssessssssnasccse A-1
Character Seteeesecssesssscescssssosoces B-1
Diagnostic MessageS.ceeeccsescecscescnns Cc-1
Index of LISP SymbolS.ssececccsssossoses D-1
Tautology Proving Examplececeececoccceses E-1
IndeXeeosssosssssassssssnescssssssess ILndex—l

Revision 01

O

)

—.
—~—

(

O

O
O

O O

About This Manual

List Processing (LISP) for NOS/VE is a partial implementation of the Common LISP language dialect
defined by the Carnegie—Mellon University Spice LISP project. CONTROL DATA® LISP is implemented
from the description of the Spice project results given in the commercial textbook Common LISP,
The Language. CDC® LISP uses this manual (referred to throughout this book as Common LISP) as
the basis for its usage manual with permission of Digital Press.

Acknowledgments

This document is based on Common LISP, The Language, written by Guy L. Steele, Jr., published by

Digital Press (Billerica, Massachusetts), copyright© 1984 by Digital Equipment Corporation. The
original work constitutes the sole specification for the Common LISP language, and any departures
from that specification are the responsibility of CDC.

We gratefully acknowledge the work of the Carnegie-Mellon University implementation team,
especially Scott E. Fahlman, who has allowed Control Data to use their resources.

Audience
This manual and Common LISP constitute the reference text for application programmers familiar

with Common LISP or anmother LISP dialect. We presume you have read Common LISP and are familiar
with the NOS/VE operating system.

LISP for NOS/VE is a subset of Common LISP that provides you with a working base to write typical
applications,

Organization
This manual is organized for use as a reference supplement to Common LISP. The chapters in this
manual have the same numbers and the section titles are the same as in Common LISP when

possible. The page number where each corresponding discussion in Common LISP begins is indicated
in parentheses next to the titles in this manual.

Conventions

This manual uses the same notational conventions as Common LISP, except for the use of typefaces
to define syntax. The following notational conventions are unique to this manual.

UPPERCASE
For consistency with other NOS/VE manuals, terms other than those in LISP forms appear in
uppercase to depict names of commands, functions, parameters, and their abbreviations.
Names of nonLISP variables, files, and system constants also are shown in uppercase
within- text.

lowercase

For consistency with Common LISP, required terms (function names and so forth) in forms
appear in lowercase.

Revision 01 About This Manual 5

(abbreviations)

Recognized abbreviations for parameter keyword names in NOS/VE command parameter

descriptions are indicated in parentheses.
numbers

All numbers are base 10 unless otherwise noted.

Additional Related Manuals

The related manuals diagram on page 2 shows you which manuals you should be familiar with, and
which manuals you might want to read following this one. 1In addition, several commercial

tutorials on LISP are available, including:

- LISP, A Gentle Introduction to Symbolic Computation (David S. Touretsky, copyright 1984 by
Harper & Row Publishers, 10 East 53rd Street, New York, New York 10022.) This book uses a

version of the MacLISP dialect.

- LISP (Second Edition by Patrick Henry Winston and Berthold Klause Paul Horn, copyright 1984
by Addison-Wesley Publishing Company, Reading, Massachusetts.) This book uses the Common

LISP dialect.

Ordering Manuals

Control Data printed manuals are available through Control Data sales offices or by sending an

order to:

Control Data Corporation

Literature and Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your opinion of this
manual”s usability, to suggest specific improvements, and to report technical or typographical

errors. If the comment sheet has already been used, you can mail your comments to:
Control Data Corporation
Publications and Graphics Division
P.0. Box 3492
Sunnyvale, California 94088-3492

Please indicate whether you would like a written response.

6 LISP Language Definition Usage Supplement

Revision 01

O
O

Q Introduction

-

U

O O

This chapter supplements chapter 1 of Common LISP. The LISP command and ve-command function

unique to LISP are introduced.

ETTOrsS (5) ceeececessosasesssesssessssassesssosssosesseasesasnsssssnssscasosnasesosscsscsosse
Overview of Syntax (9) ceeeeecescssscroosssseccsossssseccsssssesssosscsscsssscssscsscssscsssnssss
Entering LISP cecscecscccecscsscsosscssssesscccssocsesassasnsssssscessoosssscscsancsncssnssnssces

Using SCL or Other Software From Within LISP seeeeecsvcesssoscsccccsssccccscccsacscsssansosns

Leaving LISP ceeeseocsccescccesessscsscsosssscesssccscsssossososrsssccsssosccssscscssssosasncns

1-1

1-1

1-2

1-2

AT AT YT T T Yy e A TR T e e e er—m—m——mm—m T oy e

LISP Command Summary

Command

LISP

INPUT=input file reference
OUTPUT=output file reference
STATUS=status variable

(Optional)

5

OO

O Introduction 1

Errors (5)

LISP signals all errors that Common LISP requires to be signalled. All detectable errors are
also signalled. Most signalled errors are fatal to current evaluation (none are fatal to
execution of LISP.) An error is signalled with a diagnostic message, beginning with the
characters

--LISP ERROR--

If you try to use partially implemented LISP features, LISP produces additional informative
messages in a different format.
Overview of Syntax (9)

(:::) Colons can be used in keywords but cannot be used to indicate membership in a package.

Entering LISP

Use the following NOS/VE System Command Language (SCL) command to enter LISP:

LISP
INPUT=input file reference
OUTPUT=output file reference
STATUS=status variable (Optional)

(:::) Parameters:

INPUT (I)

NOS/VE file containing valid LISP input statements. If you omit this parameter, the
local file $INPUT is used and you are prompted for input at your terminal.

OUTPUT (0)
NOS/VE file to receive LISP output values or diagnostic messages. If you omit this
<:::> parameter, the local file $OUTPUT is used and output appears at your terminal.
STATUS

See the SCL Language Definition Usage manual for a description of the use of this
optional parameter.

LISP responds to the LISP command with the message:
Welcome to LISP. lisp-implementation-version
and the currently defined NOS/VE input prompt (usually a question mark.) The string

lisp-implementation-version is the value of the function by that name, as defined when LISP was
installed on your system.

O
O

Revision 01 Introduction 1-1

Using SCL or Other Software From Within LISP

You can use any SCL command or NOS/VE software that can be started with an SCL command from
within LISP. To start and use other software or issue an SCL command, use the following function:

(ve-command string)
Parameters:
string
Any string containing a valid SCL command and its parameters, enclosed in quotation marks
("), or any valid form that evaluates to such a string. The LISP syntax for strings
requires quotation marks, rather than the apostrophes used within an SCL command.
Example:
(ve-command "ATTACH FILE FILE=$USER.theorem prover")
or
(setq a "ATTACH FILE FILE=$USER.theorem prover')
(ve-command a)
When you use this function, LISP submits the string to the SCL command interpreter. If the
command executes other software, LISP is pushed down on the job stack and subsequent dialog
occurs with the executed software, such as an editor. When you leave that software, the job
stack is pushed back up and execution of LISP resumes.
LISP returns a NIL value after a normal return from ve—command execution, including any command

that detaches the job; an abnormal return produces a value other than NIL and an informative
message as a side effect.

Leaving LISP

Use either of the following functions to leave LISP:
(exit)
or
(quit)
If you omit the parentheses when you type QUIT, the message:
"To exit LISP/VE, type (QUIT) or (EXIT)."
appears.
If you use the NAM (255x Network Processing Unit) network user-break-2 character or the NOS/VE

terminate_break character, you abort LISP execution. The NAM user-break-l character or the
NOS/VE pause_break character can be used to interrupt and discard unwanted output.

1-2 LISP Language Definition Usage Supplement Revision Ol

>0

C

®

O

CO

O O

Data Types

This chapter supplements chapter 2 of Common LISP. LISP implementation of data types is
described.
Data Type Support (11) 00 0 0000000000000 0000000000000000000s08000000000000000 0000000000000
Integers (13) 9 0 0 0000000 0000000000000 00000000000000000060006000080060000000600000000000000OCOCIGES
Ratios (15) 000 000000000000 000000000060 060600000606000000000000800060060000006060060000000O0O0GCGCIIEOLES
Floating—Point Numbers (16) ceececescsensesscsossensssossssssnsssosssasnsasssssssssoacssnss
Characters (20) © 00 000 008 0000000000000 00000000000000000000000600060000000000000O0GOGS
Standard Characters (20) ceceeoescvacssescsssscsscsacsasessossesscsnssssscsssssossssss
Line Divisions (21) ceeececesscoassvasennscesosascsssceosssesasscascscessosssscssssasscss
Non-standard Characters (23) seececeoecossassscrossosssrssossseoscscoscssnncscssscsascs
Character Attributes (23) seeeeceesocecacssssssssoesosssrsssssssvossssssssssssssnsssens
Lists and ConsesS (26) ceeeeesscesanssssosscsasssssssssssscotosssssasssssccsnnssossssassnoss
VeCtOrsS (29) tececsessassoscensssoaasososssassosanssesscesssssassssesssescsosossscasssnsss
Hash TablesS (31) seeveecesssasssscrssssccessssssassssssceossascseosassccenssssnnssssssonnassse
Packages (31) ceeceescoasesoeseosseseasossssassassesesssossossssanescscsassasenscsassasacns
Pathnames (31) o.o..o...l.‘l..0...-!.Q'n...C-'i..Ovnooooo.o.o‘o‘ooooo..ol.o---...0....0.0.0
Random States (31) 0 5 0 000000000000 P00 0000000000000 0000000000600600000000000000000000

Structures (32) seserecessseoscccsasecsosscrsoossnssenosssoscssssossessssscasssssssssssscnsss

Overlap, Inclusion, and Disjointedness of TypesS (33) seeecesscosscessecsssccscsasessonssacca

2-1

2-1

OO

O
@

O O

Data Types 2

LISP stores every data object as a LISP-object. A LISP-object contains:
the type of the data (such as integer, character, or array)

the actual data or a pointer to the location of the actual data

Data Type Support (11)

LISP does not support the quotient of two integers as a ratio or support Cartesian complex
numbers.

LISP supports the following four array data types, specified through the :element-type keyword of
the make—-array function:

general (arrays of LISP-objects created without a keyword argument, or with the :element-type
keyword of T)

character (character string arrays created with a keyword argument of CHARACTER)
short-float (floating—point number arrays created with a keyword argument of FLOAT)
bit (single-bit boolean variable arrays created with a keyword argument of BIT)

LISP does not support hash tables or user—defined packages.

Integers (13)

LISP uses two“s—~complement for internal representation. The internal radix used is 2; the
external radix used is 10. Integers are stored in LISP-objects and accessed directly; integer
use is faster than use of floating-point numbers.

LISP supports fixnum integers between -80000000 hexadecimal (-2147483648 decimal) and 7FFFFFFF
hexadecimal (2147483647 decimal), inclusive. This restricted range permits a fixnum integer to
fit into a LISP-object. The integer -0 does not exist as an entity distinect from +0.

LISP does not have a bignum infinite-magnitude integer.

Ratios (15)

LISP does not support rational numbers in ratio form.

Floating-Point Numbers (16)

Short—format (short-float) floating-point numbers use the immediate representation of a
signed-magnitude fraction. These 64-bit floating-point numbers consist of a l-bit sign, a l-bit
exponent sign, a 48-bit mantissa and a l4-bit exponment. The binary point is implied to the left
of the mantissa. Approximate precision is 14 decimal digits. The number -0.0 is not
distinguished from +0.0.

LISP supports short-float numbers between B0O0O080000000 hexadecimal (-0.47874887304761 x 10-1233
decimal) and 4FFFFFFFFFFF hexadecimal (0.52219444070657 x 101233 decimal), inclusive. The
smallest positive value is 3000800000000000 hexadecimal (0.47874887304761 x 10-1233

decimal). The smallest negative value is CFFFFFFFFFFFFFFF hexadecimal (-0.52219444070657 x
101233 decimal).

Revision 01 Data Types 2-1

Floating—-point numbers are stored as LISP-objects with pointers to the actual numbers;
floating-point use is slower than integer use. (r\\)

LISP single-format (single-float) numbers are not identical to short-float numbers. LISP does N~

not support single-format (single—-float), long-format (long-float), and double-format
(double-float) floating-point numbers.

Characters (20)

LISP supports the Common LISP definition of character data types, except as noted in the
following subsections and in chapter 13.

Standard Characters (20)

LISP uses the following definitions for semi-standard Common LISP characters:

Common LISP Character ASCII Character

#\backspace BS .
#\linefeed LF <:::
#\page FF

#\return CR

#\rubout DEL

#\space space

#\tab HT

Line Divisions (21)

LISP uses the ASCII US character for the Common LISP #\newline character. This is compatible (:::>
with CDC network software and allows use of that software”s terminal-dependent output formatting

features. The sequences #\newline #\return or #\return #\newline produce output effects

dependent on the terminal you use and on the network”s definition of that terminal.

Non-standard Characters (23)

LISP does not support these characters.

Character Attributes (23) G

LISP does not support the font or bits attributes. It does not have the char-bits-limit
constant, and the char-font-limit constant is always 1.

Lists and Conses (26)

LISP does not use the equivalent of endp to test for the end of a 1ist. LISP does not signal an
error when a list is terminated by a non-NIL atom.

Vectors (29)

No significant difference in efficiency exists between using a vector and using a one—-dimensional
array in LISP., 1In LISP, a vector is a one-dimensional array.

O
O

2-2 LISP Language Definition Usage Supplement Revision 01

OO0

O

Hash Tables (31)

LISP does not support hash tables.

Packages (31)

LISP does not support packages. See chapter 11,

Pathnames (31)

LISP does not support pathnames.

Random States (31)

LISP does not support random states.

Structures (31)

LISP does not support structures.

Overlap, Inclusion, and Disjointedness of Types (33)

In LISP, the types short-float and single-float are not identical. The types single-float,
double-float, and long-float do not exist.

LISP has no extensions to the types number or array that exclude them as subtypes of type common.

Revision 01 Data Types 2-3

OO

OO

Scope and Extent

OO

This chapter supplements chapter 3 of Common LISP.
extent are described.
chapter.

LISP support of the concepts of scope and
The Glossary appendix contains definitions useful when reading this

Support of Extent (36) © 0 00 00000 000000000000 00000000000000000000C0OCRCIIIEEOIOORIROIOEOIOIOIOOIOIEOIOEOIROIEOEES 3-1

OO

l

OO

OO

O
QO

Support of Extent (36)

Scope and Extemnt

If an entity has indefinite extent, LISP destroys the entity when reference is no longer possible.

LISP does not support multiprogramming or multiprocessing. LISP does not support lexical
closures, so a function does not save the binding of lexically scoped variables. For this
reason, the compose function on page 37 of Common LISP does not work properly.

O O

Revision 01 Scope and Extent 3-1

Type Specifiers 4

O
-

This chapter supplements chapter 4 of Common LISP. LISP support of type specifiers is described.

Type Specifiers That Specialize (45) eceveecececcsoeoansesossersvssassnsesnsesssesossanense 4—l
Type Specifiers That Abbreviate (48) seeeecesecocscscsessssossssosscccsssssssscasscseancsoe 4-1
Defining New Type Identifiers (50) ceeececescossescscsscscrscsssescoscescocsssnscsssncsscnse 41

Determining the Type of an Object (52) cveveecescessscassosscssssesssnssensssesssesscossae 44—l

OO

Type Specifiers 4

O
O

Type Specifiers That Specialize (45)

LISP supports only array specializations. You can specify the following specialized data types
through the :element-type keyword of the make-array function:

character (created with a keyword argument of CHARACTER); this is a specialized
representation of arrays of characters of the data type CHARACTER.

floating-point (created with a keyword argument of FLOAT); this is a specialized
representation of arrays of short-float numbers of the data type FLOAT.

boolean (created with a keyword argument of BIT); this is a specialized representation of
arrays of boolean variables of the data type BIT.

General arrays are created by omitting the :element-type keyword or by specifying the
(:::> telement-type keyword with an argument of T. Such arrays are nonspecialized and have the data
type T.

LISP does not use the list-format name complex. The complex data type is not supported.

Type Specifiers That Abbreviate (48)

LISP does not use the following list—format names:

single-float

double-float
long-float

rational

The single-float, double-float, long-float, and rational data types are not supported.

Defining New Type Identifiers (50)

You cannot define new type identifiers. LISP does not have the deftype macro.

O Determining the Type of an Object (52)

The LISP type—of function does not return the list-format name for any data type.

O

Revision 01 Type Specifiers 4-1

OO

O
)

O

O O

Program Structure

This chapter supplements chapter 5 of Common LISP. LISP support of program structures is
described.

Forms (54) #0000 0006000000000 00000000000C00000R00C0CO0GCC0COCCCOCC0I00ICC000C00C0C0C0C0C0C0CCIO0COICIOCEOCOEIEOCTIHOEGOEIOIEOSES
Special Forms (56) cceceesscessesscessacsssccassssssasssasssssscsssnsssesssssenssssnsses

MacCTOS (57) eeeecesoesossesecesssssesossssocssensasssosesossesssssssccceossnsssssscess

Functions (59) seeecececesosescecsosssssessassssscoannssssssscsssssocsssssccsonsassssssssnssss

Lambda-ExXpressions (59) ceeeececccscccossscsassrossscsacesssosassssssssessscsasssenssanss

Top-Level FOrms (66) ceeeeeesccssseescssscsaasonsssnsssnsssascsscsssscsssesssssssssosssssnse
Defining Named Functions (67) .seeeeececececscocesssscssscosessscscscscsosssnssssssoacnse
Control of Time of Evaluation (69) ceeeecescseessssscoosssssssosssssscecsssssssssosssnsna

U\\{IUl
—

Ty
——

U'\\{'Ul
—

OO

OO

O O

Program Structure 5

[Forms (54)

The LISP evaluator has no extensions. Anything other than a valid form signals an error.

Special Forms (56)

LISP does not have the following special forms:

compiler-let

eval-when

function

macrolet

progv
Appendix D lists all predefined special forms that LISP supports. Some special forms are
implemented as macros within LISP, as indicated in the appendix.

Macros (57)

No LISP macros contain data objects not considered to be forms in Common LISP. Some LISP macros
have expansions that contain LISP-defined special forms.

Appendix D lists all predefined macros that LISP supports.

Functions (59)

Appendix D lists all predefined functions that LISP supports.

Lambda-Expressions (59)
LISP does not have the following constants.

lambda-list~keywords
lambda-parameters-limit

Top-Level Forms (66)

LISP does not have a compiler. There are no forms which LISP does not recognize at levels other
than the top level.

Defining Named Functions (67)

LISP does not have the defconstant macro.

Control of Time of Evaluation (69)
You cannot control the time of evaluation. Immediate evaluation occurs for all forms entered

through the input file (forms entered through the load function are evaluated when encountered.)
LISP does not have the eval-when special form.

Revision 01 Program Structure 5-1

’\

-

O

OO

OO

O O

Predicates

This chapter supplements chapter 6 of Common LISP. LISP support of predicates is described.

Data Type Predicates (72) ceeeececesoecoccscocacsacossssrssssasescsnsosnsnsnssassessscssnse

General Type Predicates (72) ceesecessescssesssscsasossscosonsanssossessnsscoassssssonses
Specific Data Type Predicates (73) seeeescescesscassssssessssssscososssscsccnsnssassss

Equality Predicates (77) © 0 0 00 00 0000 P I00 0000000000000 0000000000000000000C0CCEGCOIIOGROIOGOIEOGIES

O'\CI7\°\
——

Predicates @

OO

Data Type Predicates (72)
LISP is a subset of Common LISP in all three categories of data type predicates:
General

Specific
Equality

General Type Predicates (72)

LISP does not have the subtypep function.

Specific Data Type Predicates (73)

<:::) LISP does not have the following functions:
bit-vector-p
commonp
compiled-function-p
complexp
packagep
rationalp
simple-bit-vector-p
simple-vector-p
(:::) simple-string-p

Equality Predicates (77)

> For the eq function, fixnum and character instances can be true. LISP does not have a compiler,
so no collapsed constants can exist. The following statement evaluations occur:

Statement Value Returned

(eq 3 3) T (true)
<::> (eql 3.0 3.0) NIL (false)
(eq #c(3 -4) #c(3 -4)) NIL (false) and a diagnostic; complex numbers are not supported
(eq “(a . b) “(a . b)) NIL (false)
(eq #\A #\A) T (true)
(eql "Foo" "Foo') NIL (false)

For the eql function, the following statement evaluations occur:

Statement Value Returned

(eql “(a « b) “(a . b)) NIL (false)
(eql 0.0 -0.0) T (true)
(eql "Foo" "Foo'") NIL (false)

O

Revision 01 Predicates 6-1

OO

OO

OO

O

O O

Control Structure

This chapter supplements chapter 7 of Common LISP. LISP support of control structures is
described.

Constant and Variable Reference (86) ceeeecovsssscccssosssoosssssccscsnsssssssconssssonssas
Generalized Variables (93) seeeeesseceeesesccsccscsssssecsssasscsesoossssssscssssscossassss
Function Invocation (107) .ucececececoccecsoccacasesasrasacsssoscssosascassssssssaasasacssns
Establishing New Variable Bindings (110) ...ceececcesccosecssasscccnscessscsscasscssssnnos

Multiple Values (133) cuccuicncncococcanonsoosososnssssasssasessssssacscscoccssasancanasnse
Constructs for Handling Multiple Values (133) tivssescacecescessesscsssasssoscssascnse

7-1

7-1

7-1

C

OO

I L |

Q Control Structure 7

Constant and Variable Reference (86)

LISP does not have the function special-form-p or the special form function.

Generalized Variables (93)

The LISP setf macro does not recognize place parameter function call forms with the following
function names as the first element:

apply

bit

char

char-bit
documentation

O u
fill-pointer

gethash

1db
mask-field
sbit

schar
string—char
subseq

svref
<:::> The LISP setf macro does not support Common LISP structures.

Function Invocation (107)

LISP does not have the call-arguments—-limit constant.

Establishing RNew Variable Bindings (110)
(:::) LISP does not have the following special forms:

compiler-let
macrolet
progv

Multiple Values (133)

LISP does not limit the number of multiple values that can be received by a special form.

Constructs for Handling Multiple Values (133)

LISP does not have the multiple-value-setq macro or the multiple-values-limit constant.

Revision Ol Control Structure 7-1

OO

OO

O
O

O O

Macros

This chapter supplements chapter 8 of Common LISP. LISP support of macros is described.

Macro Support (143) © 0 000 06000000000000000000000000006000000000000000000000000600000 00000000

Macro Definitions (144) 0 0 8 0 00 000000000000t Ee0000000000000000000000060000000000000c0000000

8-1

8-1

OO0

OO

OO

O

Macros 8

Macro Support (143)

LISP must encounter a macro definition before that macro is first used. A macro is expanded each
time it is encountered.

Macro Definition (144)

LISP does not support the macro call for lexical environments; lexically scoped entities are seen
within the body of the expansion function.

LISP does not allow the optional env parameter in the macroexpand or macroexpand-1 functions;
lexical closures are not supported.

LISP does not have the *macroexpand-hook* special variable.

Revision 01 Macros 8-1

OO

OO

_O Declarations

Q.

This chapter supplements chapter 9 of Common LISP. LISP support of declarations is described.

Declaration Syntax (153) cececosessescsecccsassscossssccssscscasssecssssssscennssassssconsss 9—1
Declaration Specifiers (157) © 8 0 000000000000 000080000000060006000000000000000c60006000000040c0 9-1

O O

OU

o

O O

Q Declarations 9
O

Declaration Syntax (153)

LISP allows only a subset of Common LISP declarations in the declare special form. The only
valid declaration specifier is special. (The car portion of the decl-spec parameter can only
contain special.)

Declaration Specifiers (157)

LISP does not have the following declaration specifiers:
declaration
ftype

function
ignore

(:::) inline
notinline

optimize
type

LISP provides no additional declaration specifiers.

O

O
O

Revision Ol Declarations 9-1

OO

@,

O O

Symbols

10

This chapter supplements chapter 10 of Common LISP. LISP support of symbols is described.

The Property List (163) ©0 0000000600000 0000000000600000000000000060000000600000000000000000O0SH

Creating Symbols (168) seeseescscsesoacscesssscuscssssersoressoscsccctssasosacsssssssasaasa

10-1

10-1

O

OO

O O

Symbols 10

The Preoperty List (163)

The LISP getf and remf macros and get-properties function do not recognize place parameter
function call forms with the following function names as the first element:

apply

bit

char

char-bit
documentation

elt
fill-pointer
gethash

1db
mask-field

sbit

schar
string—char
subseq
svref

The LISP getf and remf macros and get—properties function do not support Common LISP structures.

Creating Symbols (168)

The LISP make-symbol function installs a string in a symbol”s print-name component that is the
given print-name string. The string is not copied to a read-only area.

LISP does not have the following functioms:

copy-symbol
gentemp

Revision 01 Symbols 10-1

OO

OO

Packages

11

This chapter supplements chapter 11 of Common LISP. LISP support of packages is described.

Package Support (171) © 0 0 0000000000000 000600000000000000000000000POCOCICOIOIAIEOIOIOEOGIROGOOIEOIEOIOIOOITVIIOIEOOIOIGOEOGES
Translating Strings to Symbols (174) cececescsecsssesscesssssccssccssacsssssssscassanssnsns
Package System Functions, Macros, and Variables (182) .ecececssesssosssesoscasssscnssnssae

Modules (188) © 0 0 00 0000 000000000000 000000000000000000000000000C0CC0CQCROCEGCOCICEOIOCOIEOIOSOIOOOIIOIEOTIEOTOTccOcTES

intern Function (184) ceeeeeecscsesccocccsoccscsssssssssssnassssssssscsssssssssssssnsoce

00

11-1

11-1

11-2
11-2

77N\

O OO

. |

O

——
N

O

O
O

Packages 11

L]

Package Support (171)

Ignore all of chapter 11 of Common LISP, except as noted in this chapter of this manual. LISP
does not support user-defined packages and system—-defined packages do not yet exist.

Translating Strings to Symbols (174)

The LISP reader accepts symbol names that start with a colon; package-name:symbol-name is the
standard notation for symbols within packages. You can use EQ to find symbol names beginning
with a colon. You can create code using keywords (which are symbol names beginning with a colon)
and use it with little change when LISP supports packages.

Package System Functions, Macros, and Variables (182)
LISP does not have the following special variable:

package
LISP does not have the following functions:

export
find-package
find-all-symbols
find-symbol
import

in-package
list—all-packages
make—-package
rename—-package
package—-name

package—nicknames
package-shadowing-symbols
package-use-list
package-used-by-list
shadow

shadowing-import
unexport
unintern
unuse-package
use-package

LISP does not have the following macros:
do—-all-symbols

do-external-symbols
do—-symbols

Revision 01 Packages 11-1

Modules (188) Q

LISP does not support modules. It does not have the special variable *modules* or the provide <:~;\
and require functions.

intern Function (184)

The LISP intern function has the form:
intern string

The optional package name parameter is not supported.

O
O

11-2 LISP Language Definition Usage Supplement Revision Ol

O
O

O O

Numbers

12

This chapter supplements chapter 12 of Common LISP. LISP support of numbers is described.

Precision, Contagion, and Coercion (193) .eseececcocesossssscssosscsssscsccssesssssesscscs
Comparisons on Numbers (196) ceeveesooccsscocssnsosesscnsessosssosssccsssssocsassssssssssas
Arithmetic Operations (199) ceeeeocessessccscacossorssosscocscsssssssssssssassasscsscoscsssssss

Irrational and Transcendental Functions (203) ceeeccecccccccsssosesoscesocsssssssssssssssss
Trigonometric and Related Functions (205) cuieeecceecsesecssscccesssssscacssssssssssaes

Type Conversions and Component Extractions on Numbers (214) .cieeveccesocsssessscocsccnsas
Logical Operations on Numbers (220) .useseescvesssscccossosssscccooosssssconssscscscsoossos
Byte Manipulation Functions (225) cueeescssccsssscccosssssccsssososssssscassssssccsasnsssss
Random Numbers (228) c.veseecescessscsscseessessssasosssssasssssssssssosssrsssessssssnsesnae

Implementation ParametersS (231) seeeessessosssssscsesssssnssossossssesscssssessessnssncasns

12-1

12-1

12-1

12-1

12-2

12-3

12-3

12-3

5

O
O

Q Numbers 12

Precision, Contagion, and Coercion (193)

LISP processes numerical expressions from left to right.

Comparisons on Numbers (196)

For the max and min functions, LISP returns the argument in its current format (there is only one
LISP floating-point format, and LISP does not support rational numbers.)

Arithmetic Operations (199)
The following forms are equivalent in LISP:
(l1+ x) and (+ x 1)
(:::) (1- x) and (- x 1)
LISP does not have the following macros:

decf
incf

LISP does not have the conjugate function.

O Irrational and Tramscendental Functions (203)

LISP uses the NOS/VE Common Math Library for these functions.

Trigonometric and Related Functions (205)
LISP does not have the following functions:

asin cis
asinh cos

acos cosh
<:::> acosh sinh
atan tan
atanh tanh
abs phase

LISP does not have the constant pi.

Type Comnversions and Component Extractions on Numbers (214)
LISP does not have the following functions:

complex
decode-float
denominator
float-digits
float-precision

O
O

Revision 01 Numbers 12-1

float-radix
imagpart
integer—decode-float
numerator

rational

rationalize
realpart
scale-float

Logical Operations on Numbers (220)

LISP uses two“s-complement for representation when performing the integer-length computation.

LISP does not have the following functions:

ash
boole
logand
logandcl
logandc2

logbitp
logcount
logeqv
logior
lognand

lognor
lognot
logorcl
logorc2
logtest

logxor
LISP does not have the following constants:

boole—and
boole-andcl
boole-andc2
boole-clr
boole-cl

boole-c2
boole-eqv
boole-ior
boole-nand
boole-nor

boole—-orcl
boole-orc2
boole-set
boole-xor
boole-1

boole-2

12-2 LISP Language Definition Usage Supplement

Revision 01

O

O

O

O

O

N

O
O

Byte Manipulation Functions (225)
LISP does not support byte manipulation. It does not have the following functions:

byte
byte-position
byte-size
deposit-field
dpb

1db
1db-test
mask-field

Random Numbers (228)

LISP does not support random numbers. It does not have the *random-state* special variable or
the following functions:

make-random-state
random
random—-state-p

Implementation Parameters (231)
LISP does not support these parameters. It does not have the following constants:

double-float-epsilon
double-float-negative-epsilon
least—negative—double-float
least-negative—-long-float
least-negative-short-float

least-negative-single-float
least—-positive-double-float
least-positive—long-float
least—-positive—-short-float
least-positive-single-float

long-float-epsilon
long-float-negative—epsilon
most-negative-fixnum
most-negative—-double-float
most-negative—long-float

most—-negative-short-float
most-negative-single—float
most-positive—fixnum
most-positive~double-float
most-positive-long-float

most-positive-short-float
most—positive-single~float
short-float—epsilon-
short-float-negative—-epsilon
single—-float—epsilon

single-float-negative-epsilon

Revision 01 Numbers 12-3

OO

ofe

O
O

O O

Characters

13

This chapter supplements chapter 13 of Common LISP. LISP support of characters is described.

Character Attributes (233) ceeeeesscesacsasscescsscsosssnoasssssoosoosssccosssenssonsssnsse
Predicates on Characters (234) ciieeesocssceessssscsscosscsseasosssssssnnssosssssssssscsscsss
Character Conversions (241) ceeeecscssccsssnsscecssccssccnosssossesssocssccensossnssossosssss

Character Control-=Bit Functions (243) ceeeeeseocccccosssscccoosssssscasnnsssssscsessosscnne

ole

OO

i

OO

O
O

Characters 13

LISP characters use standard 7-bit ASCII character codes. Characters are held directly in
LISP-objects. In some Common LISP implementations, character-objects hold special attributes
(such as font, bits, graphic, meta, super, or hyper) in addition to the ASCII.code for the
character. LISP does not support these special attributes.

Character Attributes (233)

LISP does not support the font or bits attributes. It does not have the char-bits-limit
constant, and the char-font-limit constant is always 1.

Predicates on Characters (234)

LISP does not have the following functions:
graphic-char-p
standard—-char-p

Character Conversions (241)

LISP does not have the following function:

name—char

Character Control-Bit Functions (243)

All of the following LISP constants are zero:

char-control-bit
char-hyper-bit
char-meta-bit
char-super-bit

Revision 01 Characters 13-1

OO

OO

CO

O O

Sequences

14

This chapter supplements chapter 14 of Common LISP. LISP support of sequences is described.

Simple Sequence Functions (247) cueeeeseesesssssosssocssesscssssccasessnssnscssosssanasensse
Concatenating, Mapping, and Reducing Sequences (249) sueesseesvccssosssssccssssscssscsscne

Modifying Sequences (252) ceesesseossesrescesesscscssossossssososssessvsassssssnsssnasnssnsse
Searching Sequences for Items (256) eoeeeeesescossessosscssescasanssasasacessssasscsssosnssas

Sorting and Merging (258) cessecsoesessessoacssssesssacnscnsensencrssscssasassoasnssnssosas

14-1
14-1
14-1
14-1

14-2

OO

OO

O

O

O
O

Sequences

14

Simple Sequence Functions (247)

LISP does not have the following functions:

elt
make-sequence
subseq

Concatenating, Mapping, and Reducing Sequences (249)

LISP does not have the following functions:

concatenate
every
notany

notevery
reduce

some

Modifying Sequences (252)
LISP does not have the following functions:

delete
delete—duplicates
delete-if
delete-if-not
fill

remove
remove—duplicates
remove—if
remove-if-not
substitute

substitute-if
substitute-if-not

Searching Sequences for Items (256)

LISP does not have the following functions:

count
count-if
count-if-not
find

find-if

find-if-not
mismatch
position-if
position-if-not
search

Revision 01

Sequences

14-1

Sorting and Merging (258)

LISP does not support the sorting or merging of sequences.
functions:

merge

sort
stable-sort

14-2 LISP Language Definition Usage Supplement

It does not have the following

Revision Ol

D0

(

O

O

O
O

OO0

O O

Lists 15

This chapter supplements chapter 15 of Common LISP. LISP support of lists is described.
LiSts (264) ceveeessosssesscassssrsascsossonscscessessenssnssososssossccosscsoscsssssosseess 15-1

Using Lists as Sets (275) eeeeececesssosssasesssssasscsscssessssssssocsccansssascssossnaseass 151

C

OO

e
O

O
O

Lists

15

Lists (264)
LISP does not have the following functiomn:
endp

The LISP push and pop macros do not recognize place parameter function call forms with the
following function names as the first element:

apply
aref
bit

char
char-bit

documentation
elt
fill-pointer

gethash
1db

mask—-field
sbit
schar

string-char
subseq

svref
The LISP push and pop macros do not support Common LISP structures.

LISP does not have the pushnew macro.

Usimg Lists as Sets (275)
LISP does not have the following functions:

nset—-difference
nset—-exclusive—-or
set-difference
set—-exclusive—-or

The following LISP functions do not recognize the :key parameter:
intersection
nintersection

nunion
union

Revision 01 Lists

15-1

@

OO

>
5

OO0

Hash Tables 16

This chapter supplements chapter 16 of Common LISP. LISP support of hash tables is described.

Hash Table Support (282) seceesecescesesosasnnsscsnsssssscsssoasosssassscessccnssocsscsnssse 16-1
Hash Table Functions (283) .ceeeeescrsccsscessscnassosscsossssssosscssssnsossscscsccssssoscass 16-1

Primitive Hash Function (285) © 00 0000 0000000000000 000000000000s00R0s0IERCOROOIIOOIOGIOGGS 16-1

O

OO

-

O

O

Hash Tables

16

Hash Table Support (282)

Ignore all of chapter 16 of Common LISP. LISP does not support hash tables.

Hash Table Functions (283)

LISP does not have the following functions:
clrhash
gethash
hash-table-count
hash-table-p
make—hash—-table

maphash
remhash

Primitive Hash Function (285)

LISP does not have the following function:

sxhash

Revision 01

Hash Tables

16-1

OO

@

O O

Arrays

17

This chapter supplements chapter 17 of Common LISP. LISP support of arrays is described.

Array Creation (286) seveecoccssesssssasssssoscssssessassossssssssssscssscssasssoossssosse
Array Information (291) ceeeeecsssescencscssscosssasccoosssssecsssssasscsssssssasasssssssscs
Functions on Arrays of Bits (293) ceeeesecnsscscssossssssossasssonssssssecsssnsssccasssnsss

Fill Pointers (295) ceeeocenscssvscoscocsssessssssenssnssssesssessscssssssasssssssensssonas

17-1
17-1
17-1

17-2

O

OO

O
O

O

Arrays

17

LISP supports arrays of up to 65,000 dimensions.

Array Creation (286)

LISP supports the following four array data types, specified through the :element-type keyword of

the make—array function:

- general (arrays of LISP-objects created without a keyword argument; the :element-type
parameter cannot have a value of T for general arrays)

- character (character string arrays created with a keyword argument of CHARACTER)
~ short-float (floating-point number arrays created with a keyword argument of FLOAT)

~ bit (single-bit boolean variable arrays created with a keyword argument of BIT)

The LISP make-array function does not recognize the :displaced-to or :displaced-index-offset
parameters. Displaced arrays are not supported.

LISP does not have the following constants:

array-rank-limit
array-total-size-limit
array-dimension-limit

LISP does not have the vector function.

Array Information (291)
LISP does not have the following functions:

adjustable-array-p
array—element-type
array-row-major-index

Functions on Arrays of Bits (293)
LISP does not support arrays of bits. It does not have the following functions:

bit
bit—-and
sbit
bit-andcl
bit—-andc2

bit-eqv
bit-ior
bit-nand
bit-nor
bit-not

bit-orcl

bitorc2
bit-xor

Revision 01 Arrays

17-1

Fill Pointers (295)

LISP strings only have active portioms.
following functions:

There are no fill pointers. LISP does not have the

array-has-fill-pointer-p
fill-pointer

vector—pop

vector—-push
vector—-push-extend

17-2 LISP Language Definition Usage Supplement Revision 01

OO

C

Q Strings

18

O . .

This chapter supplements chapter 18 of Common LISP. LISP support of strings is described.

String Access (299) ceueeecectscersscsscesssesssenasssssacsssssscssssscsssccssssconssnssons

O O

18-1

O

Q Strings 18

String Access (299)

The LISP char and schar functions execute at the same speed. All strings are simple strings in
LISP.

O
O

Revision 0l Strings 18-1

@

O O

Q Structures

19

O

This chapter supplements chapter 19 of Common LISP. LISP support of structures is described.

Structure Support (305) seeeessessoscssessesscescssssosesscsscacsssasscssesssscsasssnsanas

O O

19-1

@

N

O
O

Structures

QO

19

Structure Support (305)

Ignore all of chapter 19 of Common LISP.

LISP does not support structures. .It does not have the
defstruct macro.

Revision 01

Structures 19-1

O
C

O

OO

Q The Evaluator 20

Py

N

This chapter supplements chapter 20 of Common LISP. The LISP evaluator is described.

Run-Time Evaluation of Forms (321) cveeseveescecscscesccesosnssnsosssosscssscssssacsssssssesss 20-1

The TOp"'LeVel LOOp (324) @ 6 000000 000000000060000060000606000000000060608000600600000600606006000s000000S0 20_1

O O

N

O

OO

O
O

The Evaluator 20

The LISP evaluator is a recursive interpreter, performing each step as encountered. Forms are
evaluated from left to right. Macros are expanded each time encountered.

Run-Time Evaluation of Forms (321)

LISP does not have the following special variables:

applyhook
evalhook

LISP does not have the following functions:

applyhook
evalhook

The Top-Level Loop (324)

The top—level loop in LISP requires input in one or more continued lines and uses the user”s
currently specified terminal prompting character for each line. The value resulting from
evaluation of the last-entered form always appears on a separate line, before any diagnostic
message or prompting character for the next input line. LISP prints only the primary value
returned from a function; the / variable holds a list of all values returned.

You can view the top—level loop as the bottom of LISP”s binding stack. As each occurrence of a
form is encountered and evaluated, it pushes down any prior values bound to the same variables in
the stack. This is most meaningful when recursion occurs. An error in LISP is fatal, causing
the stack to be emptied and the user returned to the top-level loop =-- the bottom of the stack.

Revision Ol The Evaluator 20-1

O Streams 21

OF ,

This chapter supplements chapter 21 of Common LISP. LISP support of streams is described.

Standard Streams (327) eeeeseeassocssssacseososssosssascssessssasssossnsvsssssssosssssscssese 21—1
Creating New Streams (329) cececescccsossccscsoscsscsssssccssscssscsssssssscssossssscsnsce 21-1

Operations on Streams (332) ceeeessoocescesssosssesseassssassossssassscssccsssssssncnasaess 21=1

O O

C

™
4

C

L

)

OO

CO

Streams

21

Standard Streams (327)

LISP stream special variables have the following values:

standard-input¥ #<STREAM TO SINPUT
standard-output #<STREAM TO $OUTPUT

LISP does not support the following special variables:
debug-io

error-output®
terminal-io

*trace-output¥®
query-io

Creating New Streams (329)

LISP does not have the following macro:

with-output-to-string

Operations on Streams (332)

LISP does not have the stream—element—-type function.

Revision Ol

Streams

21-1

O

O O

Q Imput/Qutput

22

O .

This chapter supplements chapter 22 of Common LISP. LISP support of input and output is
described.

Printed Representation of LISP Objects (333) ceceecsosescsosoeossssseesoscsssscccassosssansas
Parsing of Numbers and Symbols (339) ceeeeeccecsccsscccssascsassssssssansssansasssscnns
Macro Characters (346) eeeeeeseeseeoeocsenacsaseosossossosssosssssoosneacssssssscoasss
Standard Dispatching Macro Character Syntax (351) ceeeeseecoccsascsssccnasessscannsces
The Readtable (360) ® 60 0 020 0008000000000 0000000006000000CI000C600000C0OCCOCCOCCSIOSBOEROEOGOROIOIOGOIOIEOGETES
What the Print Function Produces (365) cevececessoessccrecssssscsonssssssssscssessnsss

Input Functions (374) teeeeesseecesoesssscscsssscecsesscsssasocsosssssoooosascsssossscoccss
Input From Character StreamS (374) .eeecesesccsssosascosossscssosssssssassossanssassanes
Input From Binary Streams (382) sceeeeseessssssscacesosssscssosessscsscscccssssssosscssocs

Output Functions (382) suevecessesceseessescsscssssssssoscsassnosssssscsssosensacssassonsns
Output to Character Streams (382) sveveesacssoscccsssccsososssccosscossssasasssssasscnsne
Output to Binary Streams (385) teeeeescecscscssessssssstosesssscocsscancnssnssnasnssns
Formatted Output to Character Streams (385) cececccecccsossosssscssossscsssccscsosssscs

Querying the User (407) cueveesecoessnsarsssasecassossoscossssossnasssossssssssnsssssoscnss

O O

22-1
22-1
22-1
22-1
22-1
22-1

o~
/ N\

(O

O

ele

O
O

Imput/Qutput 22

Printed Representation of LISP Objects (333)

The LISP reader operates as described in Common LISP, with the exceptions noted below.

Parsing of Numbers and Symbols (339)

LISP does not recognize the following patterns as valid:

PPPPP : XXXXX
PPPDP ¢ : XXXXX

LISP does not have the following special variables:

read-base
read-suppress

Macro Characters (346)

LISP interprets the ~ read macro character so that a backquoted form, when evaluated, produces a
result equal to the interpretation shown in Common LISP.

Standard Dispatching Macro Character Syntax (351)

LISP supports only the dispatching macro character uses of #~ and #\. Ignore the rest of this
subsection of Common LISP.

The Readtable (360)

LISP does not have the *readtable* special variable or the following functions:

copy-readtable
get-dispatch-macro—character
readtablep

What the Print Function Produces (365)

LISP does not define the output formats of:

bit-vectors

complex numbers
pathname objects
random-state objects
ratios

symbols interned in packages

Revision 01 Input/Output 22-1

LISP does not have the following special variables:

print—-array
print-base¥
print-circle
print-escape
print-gensym¥
print-length
print-level
print-pretty
print-radix

Input Functions (374)

LISP supports only character stream input.

Input From Character Streams (374)

LISP does not have the *read-default-float-format* special variable or the following functions:

parse-integer
read—-char-no-hang
read-delimited-1list
read-preserving-whitespace

Input From Binary Streams (382)

LISP does not allow input from binary streams. It does not have the read-byte function.

Output Functions (382)

LISP supports only character stream output.

Output to Character Streams (382)

LISP does not have the finish-output function.

Output to Binary Streams (385)

LISP does not allow output to binary streams. It does not have the write-byte function.

22-2 LISP Language Definition Usage Supplement

Revision Ol

O
O

Formatted Output to Character Streams (385)

®

LISP does not support formatted output. It does not have the format function and does not
recognize the following format directives:

“A
“b
~C
“D
“E

“F
"G
"0
“P
“R

~S
~T
“mincol,colinc,minpad,padchar<{str™>

~“(str~)
(:::) ~“[str()~;strl™; . . . “j;strn”]

“{str~}

|

~{

~}

~%

&
O

~%

<

“<{new line)

~?

~a

>

o

Querying the User (407)

LISP does not have the following functions:

y—-or-n—p
yes—or-no-p

O
O

Revision 01 Input/Output 22-3

—

OO

@

OO

OO

O O

File System Interface

23

This chapter supplements chapter 23 of Common LISP. The LISP interface with the NOS/VE file

system is described.

File Names (409) © 00000006 00000000600000000000000FE0sssstssscssossrsncsosssesoesascsecssosssnsssnscsssocs
Pathnames (410) seeeeceeococosssesscosasoassesssessoseosscnasssasssssssossscasssssnsses

Pathname Functions (413) ceeececessacesescesccsonssnsscsssaccscsssososssoscncscncsnsosne
Opening and Closing Files (418) seeeeceososscceoansssssnssossssssccsnscnsssssossssssasssscone
open Function Keywords (418) ceeeceeecseccsoessosssscacnosassssccconssssosossoncsssssssss

:element—type (419) © 9 0000000000 0000000000000C00 0000600060060 0000000000000000000c000000

:if-exists (420) €0 000000000000 000000000000000000000000000060000000000OCOCOCIIOIOIOIOGEOIOEIES
Renaming, Deleting, and Other File Operations (423) cecececcscesscsccsoscosonsssconscnsons
Loading Files (4260) ceeeeesacoossesssctscscsassnassossscessacssscensensssosasensssoesossossos

Accessing Directories (427) ceeecesesesesssosssssassssscsessosasssssnsosssssssssessnsanass

23-1

23-2
23-3

23-3

OO

I |

CO

O

O
O

File System [nterface 23

File Names (409)

LISP does not support the Common LISP pathname concept. Files must be referenced by namestrings
containing valid NOS/VE file references.

Pathnames (410)

LISP does not have data objects of type pathname. Pathname components are not recognized.
Namestrings cannot be converted to pathnames.

Pathname Functions (413)

LISP does not have the special variable *default-pathname-defaults* or the following functions:

directory-namestring
enough-namestring
file-namestring
host-namestring
make—pathname

merge—pathnames
namestring
parse—namestring
pathname
pathname—-device

pathname-directory
pathname-host
pathname—name
pathname-type
pathname-version

pathnamep

truename
user—homedir-pathname

Opening and Closing Files (418)
All LISP input/output functions use standard NOS/VE files. For example:
(open "SUSER.filename'')

This statement opens the permanent NOS/VE file named filename. The open function file reference
parameter must be a namestring.

Revision 01 File System Interface 23-1

LISP does not override access modes assigned at the level of the operating system. An action or o~
assignment within LISP which violates NOS/VE access modes is not detected when LISP opens a >
file. For example: N

(ve—command "ATTACH_FILE FILE=$USER.filename ACCESS MODE=READ")
(setq an_output_stream (open "filename" :direction :output))

The named file is attached by NOS/VE as a read-only file. However, the open function gives a
conflicting file direction (:output). This error goes undetected until a LISP action invokes an
output function, such as:

(setq a_string "Please enter a form")
(print a_string an output stream)

LISP does not have the with-open-file macro.

open Function Keywords (418)

LISP supports these keywords as described in Common LISP, with the exceptions mentioned in the

following subsections. <:j\\

:element-type (419)

LISP does not recognize the following arguments for the :element-type keyword:
bit
signed-byte

(signed-byte n)
unsigned-byte

(unsigned-byte n) (/—\\
N

The :default argument specifies that the unit of transaction is a string-character.

:if-exists (420)
The following :if-exist keyword arguments are accepted but have no effect:

‘new-version

:rename—and—-delete <::>
LISP does not recognize the :supercede argument.

Renaming, Deleting, and Other File Operations (423)

LISP does not have the following functions:

delete-file
file-author
file-length
file-position
file-write-date

probe-file
rename-file

The ve—command function and corresponding NOS/VE SCL commands can be used for these functioms.

O

23-2 LISP Language Definition Usage Supplement Revision 01

ole

Loading Files (426)

The filename parameter of the LISP load function must specify a namestring. Object file types do
not exist for LISP and therefore cannot be loaded. The :verbose parameter is always NIL (no
comments are written to the output file.)

LISP does not have the special variable *load-verbose*.

Accessing Directories (427)

LISP does not have the directory function. The ve-command function and the NOS/VE SCL command
display_catalog can be used for this operation.

Revision 01 File System Interface 23-3

OO

OO

O

—.

O O

[Errors 24

This chapter supplements chapter 24 of Common LISP. LISP handling of errors is described.

General Error-Signalling Functions (429) .eceveeecessessessssosssasssssscssessonssnsonsssns

24~-]
Specialized Error-Signalling Forms and Macros (433) .ceeeeesecssesccsssccssoscsscasossonses 24-1
Special Forms for Exhaustive Case Analysis (435) ceeeseeessocecscessscessccsscnsscessscnans 24-1

OO

O

O
O

Errors 24

LISP signals an error for the first encountered incorrect argument of a form. There is no
interactive debugger.

Appendix C lists all diagnostic messages generated by LISP, LISP does not use the SCL STATUS
variable for diagnostic messages.

General Error-Signalling Functions (429)

LISP error message indentation is uniform. All errors are fatal and return the user to the
bottom of the recursion stack (the top level of the interpreter.)

The special variable *break-on-warnings* and the following functions do not exist in LISP:

break
cerror
error

The warn function advances to a new line before and after output; the name of the function
calling warn does not appear.

Specialized Error-Signalling Forms and Macros (433)

The check-type macro does not issue messages in a form dependent on the recognition of a
particular form.

LISP does not have the assert macro.

Special Forms for Exhaustive Case Analysis (435)

LISP does not have the following macros:
ctypecase

ecase
etypecase

Revision 01 Errors 24-1

,/

O
O

O O

Miscellaneous Features

25

This chapter supplements chapter 25 of Common LISP, The remaining features of LISP are described.

The Compiler (438) sevecssosseccsssoasscssscscssesssssscssonsocsssecsseosssnsssscssscasses
Documentation (445) .cuieeeeeocceccosssssssscssosesosssrsoseossasssesssssssssnsssnsoscsosseassssssnnes

Debugging To0Ols (440) ceeecevosasoosasscscsnsossscnssessssssscesoasasssscoosssscsssssssosss
SSAVE—L1ISP seeesrsvsssoscossossssssscesesscsesssassacesnansesescacasssssscosnsascssans

Substituting for the ed Function (442) .ceeeeeercssssccsososcssssscesssssasascososnnssas

Environment Inquiries (443) ceeveeseossosascosscsossaosssssssosssssasosscssessosscssessnans
Time FUnctions (443) eeeeesscesoasrosscosessacosnsensscscososnssssssccosocnssssnssscnnos
Other Environment Inquiries (447) .seeeeeecsccssncscasscscssssscssssssacaasasssssansons

25-1
25-1
25-1

25-1
25-2

CO

O O

Miscellaneous Features 25

The Compiler (438)

LISP does not support a separate compiler. It therefore does not have the following functions:

compile
compile-file
disassemble

Several features that speed up compiled code slow down interpreted code. For instance, a macro
is much more efficient when used in compiled code, where it is only expanded once at compile
time; in interpreted code, it must be expanded each time it is encountered. Do not worry about
the speed of code until the compiler is available.

Documentation (445)

LISP does not have the documentation function.

Debugging Tools (440)

LISP does not have the following functions:
appropos
appropos—list
describe

dribble
ed

inspect
room
step
time
trace

untrace

$save-lisp

This function allows you to save a LISP workspace between terminal sessions. $save-lisp has the
form

($save-lisp)

$save—lisp creates an executable NOS/VE file called $LOCAL.LISP_BASE SYSTEM SPACES, containing
the state of the LISP system. This file can be made permanent for subsequent sessions.

Please remember that $LOCAL.LISP_BASE_SYSTEM SPACES might not execute properly under future
versions of LISP. To execute this file, you must use the NOS/VE SCL commands

SET_PROGRAM ATTRIBUTES ADD LIBRARY=$SYSTEM.LISP.BOUND PRODUCT
LISP

You can include these commands in your user prologue file for convenience.

Revision Ol Miscellaneous Features 25-1

O

Substituting for the ed Function (442) .

LISP does not have an internal editor. As a substitute for the ed function, you can interrupt &\"/)
the LISP job and use the full screen editor of NOS/VE from within LISP. To do this, enter the
function:

/

(ve-command "EDIT FILE FILE=filename; INCLUDE FILE FILE=COMMAND")

LISP returns a NIL value after a normal return from ve-command execution; an abnormal return
produces a value other than NIL and an informative message.

More information about the SCL EDIT FILE command and the full screen editor can be found in the
Full Screen Editor Tutorial/Usage manual.

Files edited with the full screen editor can be subsequently read by LISP if you enter the
function:

(load "filename')

The argument filename is a NOS/VE file reference (not a Common LISP pathname) and must be a
namestring, enclosed in quotation marks. (i::\

You can debug your program the same way with any system—supplied editor available at your site.
A convenient way to work is to enter code into a text file, which you then load into the LISP
system using the load function.

Environment Inquiries (443)

You can use the LISP ve-command function with NOS/VE SCL commands as arguments to substitute for
many of the Common LISP functions listed in the following subsections.

Time Functions (443)

LISP does not have the following functions:

decode—universal-time
get—internal-real-time
get-internal-run—time
encode-universal-time
get-decoded-time

get—universal-time <::>

sleep

LISP does not have the following constant:

internal-time-units—-per-second

O

25~-2 LISP Language Definition Usage Supplement Revision 01

o
@

O O

Other Environment Inquiries (447)

LISP returns the following values for functions in this section:

Function
lisp-implementation-type

lisp—~implementation-version

long-site—name

machine-instance

machine-type

machine-version

short—-site—-name

Value

"LISP/VE"

'"Wersion aaaaa'"

NOVALUE

yyy

ZZ"

"CDC CYBER 800 series"

NOVALUE#

LISP does not have the following functions:

software-type
software-version

LISP does not have the following special variable:

features

Revision Ol

Obtained From

released code

aaaaa is a string supplied in the
released code

yyy is the integer CYBER 180 serial
number known to NOS/VE

zz is the string for the CYBER 180
processor type known to NOS/VE

released code

Miscellaneous Features 25-3

N u\ //,

O O

O O

Appendixes

GLOSSATY ssesecccccscsssssossoosascscosessosssssncesosssscsssssssccsosssssssssssososssssne
Character SEeL ceceseccocsccssoscssssssrssrsetstvsoscsosccsossccooscsnosssesssssasncscccssssssssssssss
Diagnostic MeSSaAgeS ceecesscsssccscssstsssscssscsssssossssssoscssssssessssssssscssoscssssasossssse
Index of LISP SymbOlS seeesccccccccccsscsscsssssosssssesssossassrsccsecsscsosscsascsscssssscsssns

Tautology Proving Example © 00 000000 eE0 000000000000 000000000000000000000000000000000000000s

CO

O

Glossary A

This appendix defines terms used in Common LISP specifications. There is no corresponding
chapter in Common LISP.

A
Array
A multidimensional collection of data elements. Each element is accessed using unique
positional descriptors called indices.
Atom
A general term for a symbol, number, string, or array. Anything that is not a cons.
B
Binding

(1) The LISP-object currently associated with a symbol. (2) The process of associating a
LISP-object with a symbol. Symbols can have static scope (be globally bound) or dynamic
scope (be locally bound only within the form currently using them).

Bound Symbol

A symbol that is associated with a LISP-object. A bound symbol that can be evaluated because
it is currently associated with a value.

C

CAR
The first portion of a cons cell. The CAR contains a LISP object. The object either
contains data or contains a pointer to data.

CDR
The portion of a cons cell not included in the CAR. The CDR portion normally contains a
pointer to the next element in the list (in effect, CDR points to the rest of the list). See
also Dotted Pair.

Cons Cell
The fundamental structure of data storage. A cons cell consists of a CAR portion and a CDR
portion.

Constant

A symbol whose binding does not change.

Revision 01 Glossary A-1

D

Dotted List

A list that is not a true list because its last CDR does not point to NIL.

Dotted Pair
A cons cell construct that is not a list. In a dotted pair cons cell, both the CAR portion
and the CDR portion either contain data or a pointer to data; no pointer to another list
element exists.

Dynamic Extent
When an entity can be referenced any time between its establishment and when it completes or
is terminated. Entities with dynamic extent obey stacking rules paralleling the nested
executions of their establishing constructs.

Dynamic Scoping

Having indefinite scope and dynamic extent.

E

Element

The basic unit of data within a list. An element can be another list (including the empty
list NIL), a cons cell, an atom, or an array. Any LISP object can be an element.

Environment

The present state of the LISP system. The environment includes all bindings of LISP-objects.
Evaluation

The process of determining the value of a LISP-object.
Event

An unexpected or erroneous state. Events are caused by errors or interrupts. Events can be
invoked by user code.

Extent

See ‘Dynamic Extent and Indefinite Extent.

F

Form

The fundamental entity of LISP syntax. A LISP-object meant to be evaluated. When evaluated,
forms produce values and side effects. There are three types of forms: self-evaluating
(such as numbers), symbols, and lists.

Function

An instance of an algorithm. Functions accept zero or more LISP-objects as arguments and
produce a LISP-object as a result.

A-2 LISP Language Definition Usage Supplement Revision 01

O

OO

O O

G

Garbage Collection

Process of reclaiming LISP-objects that have been discarded by LISP.

I

Indefinite Extent
When an entity exists as long as it is possible to reference it. Compare to
Indefinite Scoping

Scoping that is not lexical. References can occur anywhere within a program.

L

Dynamic Extent.

Lambda Notation

(1) A method of defining a function in-place. The function definition is temporary and does

not exist outside of the form in which it appears. (2) A function type withi
Lexical Scoping

When a variable must appear textually within a function. Embedded lambda exp
effect the scope of variables.

LISP-Object
A general term referring to any LISP data item.
List

The basic unit of data grouping within LISP, and the most common data type.
elements separated by blanks and enclosed within parentheses. Lists can be o

n LISP,

ressions do not

A list contains
f three types:

special forms, macro calls, and function calls. List usually refers to a true list.

M

Macro

Mechanism that replaces one list with another.

N

NIL

The empty list, designated by (). The empty list contains an infinite number
lists. NIL is used to represent logical falsehood.

Revision 0l

of empty

Glossary A-3

P 77N
Package)
Group of logically related LISP-objects. Packages provide restricted access to secure
objects and allow name hiding. In effect, a package is a subspace within a LISP workspace.
Access to objects within a package is under the control of the package.
Primitive Function
A function that is built into LISP. Primitive functions are associated with a LISP symbol.
Print Name
A string holding the external representation of a symbol; for example, the characters
displayed on a user”s terminal screen. Sometimes referred to as pname.
Property List
Traditionally, a list that holds user-defined attributes of a symbol. A globally accessible
LISP-object associated with each symbol, and sometimes referred to as plist. (:j\
Pseudo Function -
A function executed for side effects and not for the value returned.
Quote
A special form that returns its input without evaluation. Also, a syntax that allows symbols (/”\\
to be manipulated without evaluation. _/)
R
Reader

The portion of the LISP evaluator code that processes input for correct syntax, and so
forth. The reader collects input characters into a printed representation of a LISP object
builds the object, and returns its value.

Recursion <::>

The process of invoking a function from within that function. Recursion is closely related
to mathematical induction.

S

S-Expression

A synonym for symbolic expression and LISP-object.
Scope

See Indefinite-Sc¢oping or Lexical Scoping.

Semantics
The meaning of a syntactically correct statement. LISP has semantic rules which are used to
decide whether functions can be applied to arguments. <:::>

A-4 1LISP Language Definition Usage Supplement Revision 01

O

O

O
O

Side Effects
When a function causes a change in the LISP environment that remains in effect after the
function completes and the effect is not returned as an explicit result. You should not
create functions that cause side effects.

Special Form
A form that does not have its arguments automatically evaluated.

String
A finite ordered sequence of characters. Under NOS/VE, a string cannot exceed 256 characters.

Symbol

A fundamental data type. A symbol is associated with a value, a print name, a property list,
a function definition, and a package.

Syntax

* Rules defining whether a statement is well formed.

T
True List
A list that ends with an element whose CDR points to NIL., Contrast with Dotted List.
\Y%
Value
(1) The LISP-object bound to a symbol. (2) The LISP-object returned by evaluating a function.
Variable

A symbol with an associated value.

Revision 01 Glossary A-5

90,

@

O O

o
.

O O

Character Set B

L 1

This appendix defines the ASCII character set as used by NOS/VE software and LISP. There is no
corresponding chapter in Common LISP.

NOS/VE supports the American National Standards Institute (ANSI) standard ASCII character set
(ANSI X3.17-1977). NOS/VE represents each 7-bit ASCII code in an 8-bit byte. The 7 bits are
right-justified in each byte. For ASCII characters, the leftmost bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the leftmost bit in an 8-bit byte
for 256 characters. The use and interpretation of the additional 128 characters is user-defined.

LISP uses ASCII characters as described in chapter 22 of Common LISP. For your convenience, the
following table indicates implementation-dependent #\ definitionms.

Table B-1. ASCII Character Set Table

ASCII Code Graphic or ASCII LISP
Decimal Hexadecimal Octal Mnemonic Name or Meaning Definition
000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text
004 04 004 EOT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell
008 08 010 BS Backspace #\backspace
009 09 011 HT Horizontal tabulation #\tab
010 0A 012 LF Line feed #\linefeed
011 0B 013 VT Vertical tabulation
012 oc 014 FF Form feed #\page
013 ()] 015 CR Carriage return #\return
014 OE 016 SO Shift out
015 OF 017 SI Shift in
016 10 020 DLE Data link escape
017 11 021 DC1 Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3
020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block
024 18 030 CAN Cancel
025 19 031 EM End of medium
026 1A 032 SUB Substitute
027 1B 033 ESC Escape

(Continued)

Revision 01 Character Set B-1

Table B-1l.

ASCII Character Set Table (Continued)

ASCII Code Graphic or ASCII
Decimal Hexadecimal Octal Mnemonic Name or Meaning Definition
028 1C 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 1F 037 us Unit separator #\newline
032 20 040 SP Space #\space
033 21 041 ! Exclamation point
034 22 042 " Quotation marks
035 23 043 it Number sign
036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 Ampersand
030 27 047 - Apostrophe
040 28 050 (Opening parenthesis
041 29 051) Closing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus
044 2C 054 , Comma
045 2D 055 - Hyphen
046 2E 056 . Period
047 2F 057 / Slant
048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three
052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven
056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 : Colon
059 3B 073 H Semicolon
060 3C 074 < Less than
061 3D 075 = Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark
064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 C Uppercase C
068 44 104 D Uppercase D
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G
(Continued)

B-2 LISP Language Definition Usage Supplement

Revision 01

O
O

OO

O O

Table B-1. ASCII Character Set Table (Continued)

ASCII Code Graphic or ASCII LISP
Decimal Hexadecimal Octal Mnemonic Name or Meaning Definition
072 48 110 H Uppercase H
073 49 111 I Uppercase 1
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K
076 4C 114 L Uppercase L
077 4D 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase O
080 50 120 P Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 S Uppercase S
084 54 124 T Uppercase T
085 55 125 U Uppercase U
086 56 126 A Uppercase V
087 57 127 W Uppercase W
088 58 130 X Uppercase X
089 59 131 Y Uppercase Y
090 5A 132 Z Uppercase Z
091 5B 133 [Opening bracket
092 5C 134 \ Reverse slant
093 5D 135] Closing bracket
094 5E 136 ~ Circumflex
095 5F 137 _ Underline
096 60 140 h Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c
100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g
104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k
108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 o) Lowercase o
112 70 160 P Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s

Revision 01

(Continued)

Character Set B-3

Table B-1, ASCII Character Set Table (Continued)
ASCII Code Graphic or ASCII LISP
Decimal Hexadecimal Octal Mnemonic Name or Meaning Definition
116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 W Lowercase w
120 78 170 b4 Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 { Opening brace
124 7C 174 | Vertical line
125 7D 175 } Closing brace
126 7E 176 - Tilde
127 7F 177 DEL Delete #\rubout

B-4 LISP Language Definition Usage Supplement

Revision 01

O

h
./

C

@

O

Diagnostic Messages C

CO

This appendix describes all diagnostic messages issued by LISP. There is no corresponding
chapter in Common LISP,

LISP sends the diagnostic messages described in this appendix to the output (0=) file specified
in the SCL LISP command. The output file also receives information summarizing such things as
variable bindings in effect when the error was detected.

Neither the Common LISP special variable *error-output* nor the NOS/VE $ERRORS file name function
are used.

Each fatal error message is prefixed by the characters
—-LISP ERROR~~

Nonfatal (informative) error messages are not prefixed.

Q Fatal Errors

Fatal errors empty the stack but do not abort LISP.

Apply of S not understood as a location for setf.

Description: You cannot specify the directive S as the location argument symbol in a setf
macro call.
(:::) User Action: Redesign your program.

Argument is not a cons. Argument encountered is XXXxXxxxx

Description: The form being evaluated requires a cons cell for the argument indicated by
XXXXXXXX.

User Action: Correct the argument; check the argument for a syntax error or the form for
incorrect placement. If the argument is another form, check the valve it returns.

Q Argument is not a character. Argument encountered is xxxxxxxx

Description: The form being evaluated requires a character for the argument indicated by
XXXKKXXX o

User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement. If the argument is another form, check the valve it returns.

Argument is not a list. Argument encountered is xXxxxxxx

Description: The form being evaluated requires a list for the argument indicated by xxxxxxxx.

User Action: Correct the argument; check the argument for a syntax error or the form for
incorrect placement. If the argument is another form, check the valve it returmns.

O
O

Revision 01 Diagnostic Messages C-1

Argument is not a number. Argument encountered is xxxxxxxx

77N

Description: The form being evaluated requires a number for the argument indicated by xxxxxxxx. (\‘/)
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement, If the argument is another form, check the valve it returns.
Argument is not a positive number or zero. Argument encountered is XXXXXXxx
Description: The form being evaluated returns a negative number or a nonnumeric value for the

argument indicated by xxxxxxxx. The form requires a positive or zero number.
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement. If the argument is another form, check the value it returnms.
Argument is not a positive integer. Argument encountered is XXXxXxxxx
Description: The form being evaluated returns a negative number, a zero, or a nonnumeric value

for the argument indicated by xxxxxxxx. The form requires a positive number.
User Action: Correct the argument; check the argument for a syntax error or the form for <:i?

incorrect placement. If the argument is another form, check the value it returns.
Argument is not a primitive. Argument encountered is XXXXXXXxx
Description: The form being evaluated contains another form or a value as the argument

indicated by xxxxxxxx. The form requires that argument to be a Common LISP

primitive.
User Action: Correct the argument; check the argument for a syntax error or the form for (:::>

incorrect placement. If the argument is another form, check the value it returns.

Argument is not a proper list. Argument encountered is XXXXXXXX

Description: The form being evaluated requires a list for the argument indicated by XxXxXxxxX.

The argument is recognizable as a list but is improperly structured and might be
infinitely recursive. The final CDR of the list is not NIL.

User Action: Correct the argument; check the list structure pointers.

Argument is not a read table. Argument encountered is xxxxxxxx

Description: The form being evaluated requires a read table for the argument indicated by
XXXKXXXX o
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement.

Argument is not a stream. Argument encountered is XXXXxxxx

Description: The form being evaluated requires a stream name for the argument indicated by
XXXKXKKXX o
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement.

C-2 LISP Language Definition Usage Supplement Revision 01

O O

Argument is not a string. Argument encountered is XXXXXXXx

Description: The form being evaluated requires a string for the argument indicated by xXXXXxXxX.

User Action: Correct the argument; check the argument for a syntax error or the form for
incorrect placement. One or both quotation marks might be missing.

Argument is not a symbol. Argument encountered is xxxXxxxxx

Description: The form being evaluated requires a symbol for the argument indicated by xxxxxxxX.
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement. The argument might begin with an unneeded apostrophe or
might need to be quoted.

Argument is not an array. Argument encountered is XXXXxXxxx

Description: The form being evaluated requires an array for the argument indicated by XXXXXXXX.

User Action: Correct the argument; check the argument for a syntax error or the form for
incorrect placement.

Argument is not an integer. Argument encountered is XXXXXxxx

Description: The form being evaluated requires an integer for the argument indicated by
KXXXXXXX o
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement.

Argument is not real. Argument encountered is xXxXxxxxxx

Description: The form being evaluated requires a real number for the argument indicated by
XXXXXXXX o
User Action: Correct the argument; check the argument for a syntax error or the form for

incorrect placement. A decimal point might be missing.

Argument list is poorly formed. Argument list encountered is xxxxxxxx

Description: The arguments specified do not follow the rules of Common LISP.

User Action: Check the arguments specified to be sure they are within the bounds of the
function. Reenter the argument list correctly.

Arguments are contradictory.

Description: A conflict exists in the arguments specified.

User Action: Check to see if an argument is out of bounds for the function used.

Arithmetic overflow was encountered.

Description: Evaluation of the current form (usually a function from the NOS/VE Common Math
Library) stopped because the form”s value cannot be properly calculated or
returned.

User Action: Examine the data used by the form and correct it if possible.

Revision Ol Diagnostic Messages C-3

Array index not recognized. Array index encountered is nnnnn N

{
Description: The form being evaluated requires a valid integer within the array bounds for an K /)
array index. The value represented by nnnnn was found instead.

User Action: Check the index for a typographical error or transposition of index values.
Check the original definition of the array”s index for an error. Ensure that the
index specified is within bounds for the array.

Array space is full.

Description: The number of arrays LISP can handle is determined by the data types used. The
space available for arrays is full and your program attempted to define or extend

an array.
User Action: Simplify your program”s data use to reduce memory usage. Check for infinite

recursion.
Attempt to replacd or replaca nil is encountered. C\
Description: You cannot perform this operation. g
User Action: Rewrite your program so that it does not use replaca or replacd om NIL.

Bad &rest or &body arg in ~ S. errloc

Description: The value indicated by errloc identifies the unrecognized argument.
User Action: Replace or remove the argument. /’\\
/
Further N
Information: See Common LISP page 60.
Comma used outside of backquote.
Description: This is incorrect syntax. Commas are allowed only within a backquoted form.
User Action: Correctly place the comma.
Complex numbers are not yet implemented. O
Description: The current version of LISP does not support complex numbers.
User Action: Change your algorithm to use a different representation for the number.
Complex numbers not supported in current implementation.
Description: The current version of LISP does not support complex numbers.
User Action: Change your algorithm to use a different representation for the number.
Cons space is full.
Description: The number of conses LISP allows depends on all of the data types used by the
program. That space is full and you attempted to define another cons. <::\)
User Action: Simplify your program”s data use to reduce memory usage. -

C-4 LISP Language Definition Usage Supplement Revision Ol

@

O O

Dotted arglist after &aux in ~S.

Description: You cannot use a dotted list as an argument in this position.

User Action: Change the list or reposition the argument.

Dotted arglist after &key in ~—S.

Description: You cannot use a dotted list as an argument in this position.

User Action: Change the list or reposition the argument.

Dotted arglist terminator after &rest arg in ~S.

Description: You cannot use a dotted list as an argument in this position.

User Action: Change the list or reposition the argument.

Dotted list is poorly formed.

Description: The reader found zero or more LISP objects after a dot.

User Action: Check for a typographical error in the list.

Dual wildcard mode not implemented for abbrev.

Description: The current version of LISP does not support more than one wildcard matching
character in an abbreviation.

User Action: Restate the abbreviation.

File cannot be found. xxxxxxxx

Description: The read function attempted to process the file identified by the namestring
xxxxxxxx. That file is not accessible to the LISP job.

User Action: If the file is another user”s, you might not have permission to read it. If
file does not exist, you must interrupt the LISP job and create the file.

Further }
Information: See chapter 25 and the NOS/VE SCL System Interface Usage manual.

File cannot be opened. xxxxxxxx

Description: The open function attempted to process the file identified by the namestring

the

xxxxxxxx., That file is not attached to the LISP job, or is attached without a

needed permission. For example, the file might be attached with only read

permission and open attempted to open the file for output or for input and output.

User Action: Use the NOS/VE ATTACH FILE SCL command to reattach the file properly.

Further
Information: See the NOS/VE SCL System Interface Usage manual.

Revision 01 Diagnostic Messages

c-5

File system resources exceeded.

PN
(
Description: The total number of files NOS/VE allows you to have at the same time has been \\‘/)
exceeded. -
User Action: See the NOS/VE SCL System Interface manual.

Function is not defined. fffff

Description: LISP has reserved the function name indicated by fffff for future implementation
of an intrinsic function.

User Action: Check to see if a typographical error occurred in entering the function”s name,

or if the defun entry that defined the function contained an error. If you are
referencing a user—-defined function, rename that function.

Function is not recognized.

Description: The form being evaluated must be a valid function; LISP found the entity N
indicated by fffff. LISP does not have an intrinsic function and cannot find a <:T\
user-defined one by that name. -

User Action: Check to see if a typographical error occurred in entering the function”s name,
or if the defun entry that defined the function contained an error.

Ill-formed defsetf for ~S.

Description: The format directive cannot be evaluated because the defsetf macro it references
is improperly defined. <:::>

User Action: Check that the body of a complex form defsetf is corectly specified. ’

Ill-formed or illegal &whole arg in ~S.

Description: The format directive cannot be evaluated because of the &whole argument.

User Action: Check the function body for the proper use of the corresponding parameter.

lllegal backquote syntax. Q

Description: Your backquoted data structure is not specified in a manner that uses the rules

allowed by Common LISP,

User Action: Check for “@form or “basic that is a list or a vector, or for a form beginning
with a period..

Further
Information: See Common LISP page 349.

Illegal character name encountered in reading a #\.

Description: A #\ construct can only contain a name of (string-upcase name) and the name must
have the syntax of a symbol.

User Action: Check that the name you specified has a defined character object.

C-6 LISP Language Definition Usage Supplement Revision 01

CO

O O

Illegal sharp-sign syntax.

Description: LISP does not support the # construct you specified.

User Action: Check that a font number does not appear after the #. Check for use of an
unimplemented feature, such as a complex number.

Illegal stuff after &rest arg in define-modify-macro.

Description: You can specify only a symbol after an &rest lambda-list keyword. You might have
omitted a subsequent lambda-list keyword.

User Action: See Common LISP page 60. Reenter the macro form without extra trailing
information.

Improper bounds for string comparison.

Description: The referenced strings cannot be compared within the bounds specified.

User Action: Check that you correctly specified the bounds.

Improper substring for comparison.

Description: The substring argument specified is not a valid substring. Comparison is not
possible.
User Action: Check the substring content,

Initial closing parenthesis encountered in stream 2z2zzzzzz

Description: This results from unbalanced parentheses. If a form with an extra closing
parenthesis is entered, then following evaluation of that form, the read function
finds an initial closing parenthesis.

User Action: Delete any extra closing ()) parentheses.

Macro ~ S cannot be called with ~S args.

Description: You cannot nest these directives.

User Action: Redesign your program.

No bits attributes in character objects.

Description: LISP character objects do not have bit attributes.

User Action: Redesign your program.

Non-symbol &rest arg in definition of ~S.

Description: You can specify only a symbol after an &rest lambda-list keyword. You might have
omitted a subsequent lambda-list keyword.

User Action: See Common LISP page 60.

Revision 01 Diagnostic Messages C-7

J

Non-symbol variable name in ~S.

7N
N

Description: Variable names referenced by these directives must be valid LISP symbols.

User Action: Check for a syntax error. Properly define the variable name as a symbol.

Odd number of args to psetf.

Description: The psetf macro requires an even number of arguments.

User Action: Check the form for a missing argument or a misplaced parenthesis.

Odd number of args to setf.

Description: The setf macro requires an even number of arguments.

User Action: Check the form for a missing argument or a misplaced parenthesis. Reenter the
macro form correctly.

Odd-list-length property list in remf.

Description: Property lists must contain an even number of elements. The one used in the remf
macro form does not meet this requirement.

User Action: Correct the list content.

Only one new-value variable allowed in defsetf.

Description: You specified more than one such variable in a defsetf macro form. Check for a _//
misplaced parenthesis.

User Action: Respecify the form without extra variables.

Poorly formed function encountered. Function is xxxxxxxx

Description: The form in the function position of the input statement is not recognized.

User Action: Ensure that the CAR of the statement is lambda and that the lambda list is
properly constructed.

O

Poorly formed plist encountered. Plist is xxxxxxxx

Description: The property list identified as xxxxxxxx does not have the correct structure for
the use made of it in the form currently being evaluated. The list might have an
odd number of elements (the number of elements must always be even.)

User Action: Count the elements in the property list. Correct the property list structure.
Check to be sure that symbol-plist is not modified by setf.

Read macro context error encountered on stream zzzzzzzz

Description: A syntax error probably occurred.

User Action: Check for a missing backquote (7).

C-8 LISP Language Definition Usage Supplement Revision 01

le

[
N

O

O O

Redundant &optional flag in varlist of ~—S.

Description: More than one &optional lambda-list keyword exists in the form. The beginning of
the next form might be missing.

User Action: Delete the extra lambda-list keyword and any related symbol. See Common LISP
page 60.

Space for real numbers is exhausted.

Description: The number of real numbers LISP can handle is determined by all the data types
used. The space available for real numbers is full and your program attempted to
define one.

User Action: Simplify your program”s data use to reduce memory usage. Reduce the number of
real numbers used. Check for infinite recursion.

Space for streams is exhausted.

Description: The number of streams LISP can handle is determined by all the data types used.
The space available for streams is full and your program attempted to define one.

User Action: Simplify your program”s data use to reduce memory usage. Reduce the number of
streams used. Check for infinite recursion.

Space for symbols is exhausted.

Description: The number of symbols LISP can handle is determined by all the data types used.
The space available for symbols is full and your program attempted to define one.

User Action: Simplify your program”s data use to reduce memory usage. Reduce the number of
symbols used. Check for infinite recursion.

Space for the stack is exhausted.

Description: The number of stack entries LISP can handle is determined by all the data types
used. The space available for entries is full and your program attempted to add
one.

User Action: Simplify your program”s data use to reduce memory usage. Reduce the number of
forms used. Check for infinite recursion.

Stray &allow-other-keys in arglist of ~S.

Description: The &allow-other—keys lambda-list keyword must follow all other symbols after the
&key lambda-list keyword and must precede subsequent lambda-list keywords.

User Action: Reorder the arguments in the form. See Common LISP page 60.

Stream is not recognized. fffff

Description: The form being evaluated requires a valid stream name where fffff was used. LISP
does not recognize fffff as the name of a defined stream.

User Action: Check for an omitted or incorrect function call to define the stream.

Revision 01 Diagnostic Messages C-9

Symbol is not defined. fffff
Description: The symbol indicated by fffff exists but has no value defined to LISP.

User Action: Check the entered form for a possible typographical error. Correct the form if
necessary, or define the symbol to LISP before reentering the form.

The lists of keys and data are of unequal length.

Description: These lists must contain the same number of elements. An element might have been
omitted or entered twice.

User Action: Correct the lists.

Too few argument forms to a shiftf.

Description: The shiftf macro requires an argument for at least one place form and for a new
value.
User Action: Check for an omitted argument or a misplaced parenthesis.

Unexpected end-of-stream encountered on stream zzzzzzzz

Description: You attempted to input an incomplete LISP object. The load function could not
match an opening parenthesis (() with a closing parenthesis before the end of
information occurred on the stream indicated as zzzzzzzzz. The file you
attempted to load is either incomplete or contains a syntax error.

User Action: Check for a missing closing parenthesis ()). Correct the file and reload it.

Unexpected go encountered.

Description: You used go outside of a tagbody.

User Action: Enclose go within a tagbody.

Unexpected return encountered.

Description: You entered the return function when you were not within the named block. The
return function can only work from within the named block.

User Action: Check for a typographical error in the block name.

Unpaired item in keyword portion of macro call.

Description: Each keyword parameter must have a correponding symbol. You might have omitted a
keyword or symbol.

User Action: Correct the macro form.

Unreadable object encountered in stream.

Description: An entity that is not a valid LISP object was found in the file being read.

User Action: Ensure that the stream is associated with the correct file. You might be reading
a binary file. Check that the file is not damaged.

C-10 LISP Language Definition Usage Supplement Revision 01

O

O

O
O

CO

O O

Use # for functional args.

Description: The #” macro character syntax can only be used to represent an abbreviation of
the function special form; for example, (#° (lambda (y) (+ x y)))) is the same as
(function (lambda (y) (+ x ¥)))). Your current usage does not conform.

User Action: Redesign your program.
Further
Information: See Common LISP page 87.

User break encountered.

Description: One of the break conditions identified to NOS/VE for your terminal was detected.

User Action: Depends on the cause of the break. This message is informative only.

Wrong number of arguments encountered in form xxxxxxxx

Description: There are too many or too few arguments in the form indicated by xxxxxxxx.

User Action: Check for misplaced parentheses.

A is not a reasonable value for *print-base*.

Description: The value referenced by the directive is outside the range permitted for the
radix currently defined as *print-base%*.

User Action: Check for a nondecimal digit (possibly a hexadecimal digit) in the value. The

default for *print-base* is 10; to use a nondecimal number, you must change
print-base.

S — Bad clause in case.

Description: One of the clauses is not a proper LISP form.

User Action: Check for an omitted or extra argument, or for a misplaced parenthesis.

7S — Bad clause in XXXXXXXX.YYYUYyyy

Description: The CDC-written form being evaluated is coded in LISP, using “S. The argument
xxxxxxxx indicates the form involved; the value yyyyyyyy indicates the clause
encountered.

User Action: Correct the clause; check for undefined variables.

~S — Illegal type specifier to typep.
Description: The type specifier found is not one defined to LISP.

User Action: Check for a typographical error.

~S — Macro too short to be legal.

Description: " The full form of the directive was used but at least one of the required
parameters cannot be found.

User Action: Check for a missing comma.

Revision 01 Diagnostic Messages C-11

~S — Macro name not a symbol.

Description: The argument found must be a valid LISP symbol.

User Action: Check the macro name for a typographical error.

~S — Illl-formed keyword arg in ~S.

Description: A required symbol is probably missing from the keyword argument found.

User Action: Check for a misplaced parenthesis.

~S — Non-symbol variable name in arglist of ~S.

Description: Variable names must be valid symbols.

User Action: Check the names in the list for a typographical error.

~S can’t be converted to type ~S.

Description: You cannot nest these forms.

User Action: Redesign your program.

~S cannot be coerced to a string.

Description: The value referenced by the directive cannot be used in a context that evaluates
to a string.

User Action: Redesign your program.

~S has an odd number of items in its property list.

Description: Property lists must contain an even number of items.

User Action: Check the property list for a missing item. Check that the correct object is
identified as the property list.

S illegal atomic form for get-setf-method.

Description: The form referenced in the get-setf-method function must be a generalized
variable (a list cons).

User Action: Check that the form is not a number, an array, or a string.

S ijllegal or unknown keyword.

Description: The form referenced by the directive contains a keyword LISP does not recognize.

User Action: Check the form for a typographical error in the keyword or for an extra colon
before a symbol.

C-12 LISP Language Definition Usage Supplement Revision 01

O

/

@

O

Ol®

O O

~S is a bad thing in a do varlist.

Description: The form referenced by the directive produces a do loop with potentially
dangerous consequences.

User Action: Check for incorrect nesting or potential binding problems. Check that setq does
not change the var argument within the loop.

~S is a bad type specifier for sequence functions.

Description: LISP does not recognize the form referenced by the directive as a valid type
specifier.
User Action: Check for a typographical error.

~S is a bad type specifier for sequences.

Description: LISP does not recognize the form referenced by the directive as a valid type
specifier.
User Action: Check for a typographical error.

~S is a malformed property list.

Description: Property lists must contain an even number of items. Each property object must
have a unique indicator symbol.

User Action: Check for a missing item. Check that the correct object is specified as a
property list. Check for an indicator symbol that is used twice.

~S is an ill-formed do.

Description: The object referenced by the directive does not conform to the requirements of a
Common LISP do macro.

User Action: Check for a missing argument or a misplaced parenthesis.

~S is an illegal n for setf of nth.

Description: The argument referenced by the directive as n is a negative integer or a
noninteger.
User Action: Correct the n argument. Check for a hexadecimal digit used in a decimal integer.

~S is an illegal size for make-list.

Description: The size argument must be a nonnegative integer.

User Action: Check for a noninteger used as the size argument.

S is not a floating point number.

Description: The argument referenced by the directive must be a floating point number when
used in its current context.

User Action: Check that the correct argument is referenced. If so, convert the number to
floating point and retry the evaluation.

Revision 01 Diagnostic Messages C-13

S is not a known location specifier for setf. ~.

VRN
/
Description: The form referenced by the directive as the setf place argument does not access a \)
LISP data object. ~
User Action: Check for a typographical error in the argument.
S is not a list.
Description: The argument referenced by the directive must be a true list.
User Action: Check that the object is not a dotted list. Check for a typographical error in
the symbol.
~S is not a sequence.
Description: The argument referenced by the directive is not recognized by LISP as a valid
sequence. A sequence must be a true list or a vector.
User Action: Check that the object is not a dotted list. Check for a typographical error in <:i\
.

the symbol.

~S is too large an index for setf of nth.

Description: The argument referenced by the directive as n is either equal to or greater than
the length of the list.

User Action: Check for a hexadecimal digit in a decimal integer.

~S is too short to be a legal do.

Description: The form referenced by the directive as a do macro does not contain enough
arguments to define a functional do loop. At least one of the optional arguments
must be present.

User Action: Redesign the loop.

~S is too short to be a legal dotimes. N
)

Description: The form referenced by the directive as a dotimes macro does not contain enough <::;

arguments to define a functional do loop. At least one of the optional arguments
must be present.

User Action: Redesign the loop.

S is too short to be a legal dolist.

Description: The form referenced by the directive as a dolist macro does not contain enough
arguments to define a functional do loop. At least one of the optional arguments
must be present.

User Action: . Check for a missing declaration or statement argument.

C-14 LISP Language Definition Usage Supplement Revision 01

CO

O
O

S not a number.

Description: The argument referenced by the directive must be a number in its current context.

User Action: Check for a typographical error.

~S: index too large.

Description: The argument referenced by the directive is out of bounds for use as an index
variable.
User Action: Check for a typographical error.

~S: index too small.

Description: The argument referenced by the directive is out of bounds for use as an index
variable.
User Action: Check for a typographical error.

S: invalid output type specification.

Description: The argument referenced by the directive cannot be used as an output type
specification.
User Action: Check for a missing argument before the argument indicated.

”S: invalid output type specifier. output-type-spec

Description: The specifier indicated as output-type—spec is not recognizable.

User Action: Check for a missing argument before the argument indicated.

Nonfatal Errors

#<array printer not implemented.>

Description: You have used a function that would normally produce a listing of an array as a
response. (This occurs when you use aref.) The LISP array printer is not
implemented and such a listing cannot be created. The function was evaluated
normally.

User Action: None. This is an informative message only.

Revision Ol Diagnostic Messages C-15

0O

9

OO

O

O O

Index of LISP Symbols

This appendix lists all functions, macros, special forms, special variables, and constants
There is no corresponding chapter in Common LISP.

supported by LISP.

This appendix lists the page in Common LISP of the primary description for each LISP symbol. The
symbols are listed alphabetically, in ASCII collating sequence order.

Symbol

*

e o

acons
adjoin
adjust—-array
alpha—-char-p
alphanumericp

and

append

apply

aref
array-dimension

Revision 01

Type

function
variable
variable

variable
function

variable
variable
variable
function
variable

function
variable
variable
variable
function

function
function
function
function
function

function
function
read macro
read macro
read macro

read macro
read macro
read macro
read macro
read macro

function
function
function
function
function

macro
function
function
function
function

Common
LISP Page Notes

199
325
325

325
199

325
325
325

199
325

200
325
325
325
196

200
200
192
196
196

196
196
347
346
355

349
347
351
347
347

279
276
297
235
236

82
268
107
290
292

Index of LISP Symbols D-1

Common

Symbol Type LISP Page Notes K\)
array—-dimensions function 292 -
array-in-bounds-p function 292

array-rank function 292

array-total-size function 292

arrayp function 76

assoc function 280

assoc—if function 280

assoc-if-not function 280

atom function 73

block special form 119

boole-xor constant 222

both—-case-p function 235

boundp function 920

butlast function 271

c——-r function 263 caaaar thru cddddr

case macro 117 (:j\\
ccase macro 437 !
catch special form 139

car function 262

cdr function 262

celling function 217

char function 300

char-bit function 243

char-bits function 243

char—-code function 239 //~\\
char-code-1imit constant 233 \\./
char—control-bit constant 243

char—-downcase function 241

char-equal function 239

char—-font function 240

char-font-1limit constant 234

char—-greaterp function 239

char-hyper-bit constant 243

char-int function 242

char-lessp function 239 <:::>
char-meta-bit constant 243

char-name function 242

char-not-equal function 239

char-not—-greaterp function 239

char-not-lessp function 239

char—-super-bit constant 241

char-upcase function 241

char/= function 237

char< function 237

char<= function 237

char= function 237

char> function 237

char>= function 237

character function 241

characterp function 75

O
O

D-2 LISP Language Definition Usage Supplement Revision Ol

CO

O O

Symbol

check-type
clear—input
clear—output

close
code—char

coerce
cond

cons
consp
constantp

copy—alist
copy-list
copy-seq
copy—tree
declare

define-modify-macro
define-setf-method
defmacro
defparameter
defsetf

defun

defvar
digit-char
digit—-char-p
do

do*
dolist
dotimes
eighth
eq

eql
equal
equalp
eval
evenp

exp

expt
fboundp
fceiling
ffloor

fifth
first

flet

float
float-sign

floatp

floor
fmakunbound
force—-output
fourth

Revision 01

Type

macro
function
function

function
function

function
macro
function

function
function

function
function
function
function
special form

macro
macro
macro
macro
macro

macro
macro
function
function
macro

macro
macro
macro
function
function

function
function
function
function
function

function
function
function
function
function

function
function
special form
function
function

function
function
function
function
function

Common
LISP Page

Notes

433
380
384
332
240

51
116
266

74
324

268
268
248
269
153

101
105
145

68
102

57
68
241
236
122

122
126
126
266

77

78
80
81
321
196

203
203

90
217
217

266
266
113
214
218

75
215
92
384
266

only declaration specifier special

implemented

lexical environments not implemented

Index of LISP Symbols

D-3

Symbol

fresh-line
fround
ftruncate
funcall
function

functionp
ged
gensym
get

get-macro—character

get—output-stream—-string

get-properties

get—-setf-method
get—-setf-method—-

multiple-value
getf

go

identity

if
input-stream-p
int-char

integer-length
integerp
intern
intersection
isqrt

keywordp
labels
last
lcm
1diff

length
let
let*

lisp-implementation-type
lisp-implementation—-version

D-4 LISP Language Definition Usage Supplement

Type

function
function
function
function
special form

function
function
function
function
function

function
function

function

function
function

special form
function
special form
function
function

function
function
function
function
function

function
special form
function
function
function

function
special form
special form
function
function

Common

LISP Page

384
217
217
108

87

76
202
169
164
362

336
167

106

107
166

133
448
115
332
242

224

74
184
277
205

170
113
267
202
272

248
110
111
447
447

Notes

not available for the following
place forms:

apply, bit, char, char-bit,
documentation, elt, fill-
pointer, gethash, 1db,
mask—-field, sbit, schar,
string-char, subseq, svref

not available for the following
place forms:

apply, bit, char, char-bit,
documentation, elt, fill-
pointer, gethash, 1db,
mask—-field, sbit, schar,
string—-char, subseq, svref

:key not implemented

Revision 01

O

O

CO

O O

Symbol

list
list*
list-length

listen
1listp

load

locally

log
long—-site—name
loop

lower-case-p
machine-instance
machine-type
machine-version
macro—function

macroexpand
macroexpand-1
make—array
make-broadcast-stream
make-char

make—concatenated—-stream
make-dispatch-macro—-character
make—echo-stream

make-list

make—-string

make—string-input-stream
make-string-output-stream
make-symbol
make—-synonym—-stream
make—-two-way—-stream

makunbound
map

mapc
mapcan
mapcar

mapcon
mapl
maplist
max
member

member-if
member-if-not
min

minusp

mod

multiple-value-bind
multiple-value-call
multiple-value—list
multiple—value-progl
nbutlast

Revision 01

Type

function
function
function

function
function

function
macro
function
function
macro

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

macro
special form
macro
special form
function

Common
LISP Page

Notes

267
267
265
380

74

426
156
204
448
121

235
447
447
447
144

151
151
286
329
240

329
363
330
268
302

330
330
168
329
329

92
249
128
128
128

128
128
128
198
275

275
275
198
196
217

136
135
135
136
269

lexical closures not implemented
lexical closures not implemented

Index of LISP Symbols

D-5

Common
Symbol Type LISP Page Notes (:_\j
nconc function 269 od
nintersection function 277 :key not implemented
nil constant 72
ninth function 266
not function 82
nreconc function 269
nreverse function 248
nstring-capitalize function 304
nstring—downcase function 304
nstring-upcase function 304
nsublis function 275
nsubst function 274
nsubst-if function 274
nsubst-if-not function 274
nsubstitute function 256
nsubstitute—if function 256 <:‘\
nsubstitute-if-not function 256 o
nth function 265
nthedr function 267
null function 73
numberp function 74
nunion function 276
oddp function 196
open function 418
or macro 83 //'\\
output-stream-p function 332 o/
pairlis function 280
peek—char function 379
plusp function 196
pop macro 271 not available for the following
place forms:
apply, aref, bit, char,
char~-bit, documentation, elt,
fill-pointer, gethash, 1db,
mask-field, sbit, schar, <:::>
string-char, subseq, svref
position function 257
pprint function 383
prinl function 383
prinl-to-string function 383
princ function 383
princ-to-string function 383
print function 383
proclaim function 156
prog macro 131
prog¥* macro 131
progl macro 109
prog2 macro 109
progn special form 109

psetf macro 97
psetq macro 92 <:::>

D-6 LISP Language Definition Usage Supplement Revision 01

O

O

Symbol
push

quote

quote

rassoc
rassoc—if
rassoc—-if-not

read

read-char
read—-from-string
read-line

rem

remf

remprop
replace
rest

return
return—-from

revappend
reverse
rotatef
round
rplaca

rplacd
$save-lisp
schar
second

set

set—char-bit
set—dispatch-macro—-character
set-macro—character
set-syntax—-from—char

setf

Revision Ol

Type

macro

character
special form
function
function
function

function
function
function
function
function

macro

function
function
function
macro
special form

function
function
macro

function
function

function
function
function
function
function

function
function
function
function
macro

Common
LISP Page Notes
269 not available for the following
place forms:
apply, aref, bit, char,
char-bit, documentation, elt,
fill-pointer, gethash, 1db,
mask-field, sbit, schar,
string-char, subseq, svref
346
86
281
281
281
375
379
380
378
217
167 not available for the following
place forms:
apply, bit, char, char-bit,
documentation, elt,
fill-pointer, gethash, 1db,
mask-field, sbit, schar,
string—-char, subseq, svref
166
252
266
120
120
269
248
99
215
272
272
N/A unique to LISP
300
266
92
244
364
362
361
94 not available for the following

place forms:

apply, bit, char, char-bit,
documentation, elt,

fill-pointer, gethash, 1db,
mask—-field, sbit, schar,
string-char, subseq, svref

Index of LISP Symbols D-7

Symbol

setq

seventh

shiftf
short—site—name
signum

sin

sixth

sqrt
standard—-input#
standard-output

streamp

string
string-capitalize
string-char-p
string-downcase

string-equal
string-greaterp
string-left-trim
string-lessp
string-not-equal

string-not-greater-p

string—not-lessp
string-right-trim
string—-trim
string-upcase

string/=
string<
string<=
string=
string>

string>=
stringp
sublis
subsetp
subst

subst-if
subst—-if-not
svref
symbol-function
symbol-name

symbol-package
symbol-value
symbolp
symbol-plist

t

tailp
tagbody
tenth
terpri
the

D-8 LISP Language Definition Usage Supplement

Type

special form
function
macro
function
function

function
function
function
variable
variable

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
function

function
function
function
function
constant

function
special form
function
function
special form

Common
LISP Page Notes

91
266
97
448
206

207
266
205
327
327

332
304
303
235
303

301
302
302
302
302

302
302
302
302
303

301
301
301
300
301

301

75
274
279
273

273
273
291

90
168

170
90
73

166
72

275
130
266
384
162

Revision Ol

O

/

VR
\

OO

O
5

(

N,

»

Symbol

third
throw
tree—equal
truncate
type-of

typecase
typep

union
unless
unread—-char

unwind-protect
upper—case-p
values
values-list
vector—p

ve—command

warn

when
with-input—-from-string
with—-open-steam

write
write—char
write—line
write-string
write—-to-string
zerop

Revision 01

Type

function
special form
function
function
function

macro
function
function
macro
function

special form
function
function
function
function

function
function
macro
macro
macro

function
function
function
function
function
function

Common
LISP Page

Notes

266
142
264
215

52

118

72
276
115
379

140
135
134
135

75

N/A
432
115
330
330

382
384
384
384
383
195

:key not implemented

unique to LISP

Index of LISP Symbols

D-9

O

N] /

N
1

o

O

®
@,

Tautology Proving Example E

This appendix contains an example of LISP use. There is no corresponding chapter in Common LISP.

The sample LISP statement file shown in figure E-1 is a tautology proving program called
theorem—prover, written to 1llustrate LISP features. It is not intended to teach a specific LISP
programming style. This program uses a Gentzen implication algorithm.

The basic data structures are the LHS (lefthand side) and the RHS
(righthand side). These represent the respective sides of an
implication.

The RHS is a list representing a disjunction of clause.
The LHS is a list representing a conjunction of clauses.
The goal is to find something on the LHS which is also on the RHS.

First, the input clause is placed on the RHS., A clause is extracted
from either the LHS or the RHS. The operator of the clause

is examined. One of several productions are applied to the RHS and
the LHS to produce an equivalent simpler form.

This process is repeated until either the intersection
of the RHS and LHS is not empty, or until all clauses are simplified.

For example:

=>P ->(-Q->-(P ->Q)) reduces to
P==>(-Q-=>-(->Q) reduces to
P~ =-Q==>-(P ->Q) reduces to
P~ (P ->Q) ==>Q split into
P==>P,Q P,Q=>0Q simplifies to
* *

The theorem-prover function is the read eval print loop.
The formula is read in from the terminal. It is then reduced
and the result is printed.

/TN Ve We W M WS We We Ue We W W WE We WE WE Ve Ve Ve WE Ve WE Ve We Ve Wws We Wws Ve we Wwe Wwe We

DEFUN THEOREM-PROVER
NIL
(LET ((FORMULA NIL))
(TAGBODY A (PRINC " TP?") (SETQ FORMULA (READ))
(IF (MEMBER FORMULA ~(END BYE QUIT STOP HALT EXIT))

(GO B))
(THEOREM-PROVER-PRINTER (REDUCE NIL (LIST FORMULA)))
(GO A)

B (PRINT "Thank you")))

(Continued)
Figure E~1. Theorem-Prover Code

Revision 01 Tautology Proving Example E-1

N

(Continued)

/

7N

The reduce function is the workhorse of the theorem prover. o
Arguments - LHS the lefthand side if the GENTZEN implication
RHS the righthand side of the GENTZEN implication

bl
H
3
H
bl
; The data (theorem) is represented as a list. The list is in prefix notation.
3 If a sublist is itself a list, then it is a candidate for simplfication.

s The algorithm used takes the first possible simplification on the left.

s If none exists on the left, it checks the righthand side. If none exists

3 there, it checks for trivial validatiom.

’

5

3

3

b

(

Reduce returns NIL if the statement is valid; otherwise, it returns
s a list whose CAR is the lefthand side that did not resolve
; and the list”s CDR is the righthand side.
DEFUN REDUCE
(LHS RHS)
(COND ((NOT-SIMPLIFIED LHS) (REDUCE-LHS LHS RHS))
((NOT-SIMPLIFIED RHS) (REDUCE-RHS LHS RHS)) “\
(T (CHECK-SIMPLE-CASE LHS RHS)))) (/
(DEFUN REDUCE-LHS
(LHS RHS)
(REDUCE-LHS2 (GET-REDUCTION LHS) (REMOVE-REDUCTION LHS) RHS))

(DEFUN REDUCE~LHS2
(REDUCTION LHS RHS)
(APPLY (GET “LHS (CAR REDUCTION)) (LIST (CDR REDUCTION) LHS RHS)))

REDUCE-RHS retrieves the subtheorem to be reduced, extracts the /’\\
subtheorem from the lefthand side and does the reduction \\.//

AN e e ue

DEFUN REDUCE-RHS
(LHS RHS)
(REDUCE-RHS2 (GET-REDUCTION RHS) LHS (REMOVE-REDUCTION RHS)))

(DEFUN REDUCE-RHS2
(REDUCTION LHS RHS)
(APPLY (GET “RHS (CAR REDUCTION)) (LIST (CDR REDUCTION) LHS RHS)))

(Continued) N
Figure E-1. Theorem—-Prover Code <:::)

E-2 LISP Language Definition Usage Supplement Revision 01

0

7N

C

O
O

(Continued)

The setf function stores the intelligence of the system with symbol-plist.
As each operator is detected in REDUCE-LHS, the information on how to

; process the information is retrieved from this plist. To add more

; operators, just add the code here with the operator name as the plist
indicator. See REDUCE-LHS2 for how the properties are executed.

bl
3
bl
b
H
’
; Arguments — ARG 1s a list of arguments for this operation. The operator must
5 indicate how long the list is to be.
H LHS is the lefthand side with what is being simplified removed.
; RHS is the righthand side of the implication.
3
(SETF (SYMBOL-PLIST “LHS)
“(NOT
(LAMBDA (ARG LHS RHS)
(COND ((MEMBER (CAR ARG) LHS) NIL)
(T (REDUCE LHS (CONS (CAR ARG) RHS)))))
AND
(LAMBDA (ARGS LHS RHS)
(COND ((MEMBER (CAR ARGS) RHS) NIL)
((MEMBER (CADR ARGS) RHS) NIL)
(T (REDUCE (APPEND ARGS LHS) RHS))))
IMPLIES
(LAMBDA (ARGS LHS RHS)
(COND
((MEMBER (CAR ARGS) (CONS (CADR ARGS) LHS)) NIL)
((MEMBER (CADR ARGS) (CONS (CAR ARGS) RHS)) NIL)
(T (OR (REDUCE LHS (CONS (CAR ARGS) RHS))
(REDUCE (CONS (CADR ARGS) LHS) RHS)))))
IF
(LAMBDA (ARGS LHS RHS)
(REDUCE
(CONS (LIST “AND .
(LIST “IMPLIES (CAR ARGS) (CADR ARGS))
(LIST “IMPLIES (LIST “NOT (CAR ARGS)) (CADDR ARGS)))
LHS)
RHS))
OR
(LAMBDA (ARGS LHS RHS)
(COND
((MEMBER (CAR ARGS) RHS) NIL)
((MEMBER (CADR ARGS) RHS) NIL)
(T (OR (REDUCE (CONS (CAR ARGS) LHS) RHS)
(REDUCE (CONS (CADR ARGS) LHS) RHS))))))

Revision 01

(Continued)
Figure E-1. Theorem—Prover Code

Tautology Proving Example

E-3

(Continued)

; The following code is the complement of LHS (see above.)

(SETF (SYMBOL-PLIST “RHS)
- (NOT
(LAMBDA (ARG LHS RHS)
(COND ((MEMBER (CAR ARG) RHS) NIL)
(T (REDUCE (CONS (CAR ARG) LHS) RHS))))
AND
(LAMBDA (ARGS LHS RHS)
(COND
((MEMBER (CAR ARGS) LHS) NIL)
((MEMBER (CADR ARGS) LHS) NIL)
(T (OR (REDUCE LHS (CONS (CAR ARGS) RHS))
(REDUCE LHS (CONS (CADR ARGS) RHS))))))
IMPLIES
(LAMBDA (ARGS LHS RHS)
(COND
((EQ (CAR ARGS) (CADR ARGS)) NIL)
((MEMBER (CAR ARGS) RHS) NIL)
((MEMBER (CADR ARGS) LHS) NIL)
(T (REDUCE (CONS (CAR ARGS) LHS) (CONS (CADR ARGS) RHS)))))
IF
(LAMBDA (ARGS LHS RHS)
(REDUCE
LHS
(CONS (LIST “AND
(LIST “IMPLIES (CAR ARGS) (CADR ARGS))
(LIST “IMPLIES (LIST “NOT (CAR ARGS)) (CADDR ARGS)))
RHS)))
OR
(LAMBDA (ARGS LHS RHS)
(COND ((MEMBER (CAR ARGS) LHS) NIL)
((MEMBER (CADR ARGS) LHS) NIL)
(T (REDUCE LHS (APPEND ARGS RHS))))))

The function below checks for success when no other reductions can
be made. All failures must end here. Individual
operator processing can detect success earlier, however.

DEFUN CHECK-SIMPLE-CASE
(LHS RHS)
(COND ((INTERSECT LHS RHS) NIL)
(T (CONS LHS RHS))))

A~ e we we we

(DEFUN GET-REDUCTION
(LST)
(COND ((NULL LST) NIL)
((LISTP (CAR LST)) (CAR LST))
(T (GET-REDUCTION (CDR LST)))))

Figure E-1. Theorem—-Prover Code

E-4 LISP Language Definition Usage Supplement

(Continued)

Revision

OO

01

——

@,

O

O

(Continued)

; Do a set intersection to determine if anything on the right appears
; on the left. Right represents the disjunction and left a

3 conjunction. Therefore if anything on the left is also on the

3, right, the theorem is valid.
b
(

DEFUN INTERSECT
(SET1 SET2)

(REMALL NIL
(MAPCAR
(LAMBDA (X) (COND ((MEMBER X SET2) X) (T NIL)))
SET1)))
H .
; Not-simplified returns T if there exists an expression that can be
s simplified; otherwise, it returns NIL.
; Arguments - LST is a list representing one side of the implication; any
H element that is a list can be simplified.
’
(DEFUN NOT-SIMPLIFIED

(LST)
(COND ((NULL LST) NIL)
((LISTP (CAR LST)) T)
(T (NOT-SIMPLIFIED (CDR LST)))))

(DEFUN REMALL
(ELEMENT LST)
(COND ((NULL LST) NIL)
((EQ ELEMENT (CAR LST)) (REMALL ELEMENT (CDR LST)))
(T (CONS (CAR LST) (REMALL ELEMENT (CDR LST))))))

(DEFUN REMOVE-REDUCTION
(LST)
(COND ((NULL LST) NIL)
((LISTP (CAR LST)) (CDR LST))
(T (CONS (CAR LST) (REMOVE-REDUCTION (CDR LST))))))

The following decodes the result of REDUCE and prints knowledgable
information. NIL means success. A list means failure.
The CAR is the lefthand side. The CADR is the RHS.

DEFUN THEOREM-PROVER-PRINTER

(RESULT)
(COND
((NULL RESULT) (PRINC " —-VALID--") (TERPRI))
(T (PRINC " --INVALID--")
(TERPRI)

(PRINC " LEFT-HAND-SIDE -->")
(PRINC (CAR RESULT))

(TERPRI)

(PRINC " RIGHT-HAND-SIDE —-> ")
(PRINC (CADR RESULT))

(TERPRI)

(TERPRI))))

Revision 01

Figure E-1. Theorem-Prover Code

Tautology Proving Example

E-5

Using theorem-prover
To execute theorem-prover, type:

(theorem—-prover)

Respond to each TP?? prompt with a logical function in prefix normal form. The theorem-prover

recognizes the logical operators OR, AND, IMPLIES, NOT, and IF.
clause

(a => b) => (-a OR b)
by typing

(implies (implies a b) (OR (NOT a) b))
which returns

—VALID—-
To stop the theorem-prover, type

end

E-6 LISP Language Definition Usage Supplement

For example, you can enter the

Revision Ol

OO

Indesx

A

About This Manual 5
Accessing Directories
Acknowledgments 5
Additional Related Manuals 6
Arithmetic Operations 12-1
Array A-l

Array Creation 17-1

Array Information 17-1

23-3

Arrays 17-1

Atom A-1

Audience 5

B

Binding A-1

Bound Symbol A-1

Byte Manipulation Functions 12-3
C

CAR A-1

CDR A-1

Character Attributes 2-2; 13-1

Character Control-Bit Functions 13-1
Character Conversions 13-1

Character Set B-1

Characters 2-2; 13-1

Comparisons on Numbers 12-1

Concatenating, Mapping, and Reducing
Sequences 14-1

Cons Cell A-l

Constant A-1

Constant and Variable Reference 7-1

Constructs for Handling Multiple Values

Control of Time of Evaluation 5-1

Control Structure 7-1

Conventions 5

Creating New Streams

Creating Symbols 10-1

21-1

D

Data Type Predicates 6-1
Data Type Support 2-1
Data Types 2-1
Debugging Tools 25-1
Declaration Specifiers 9-1
Declaration Syntax 9-1
Declarations 9-1

Revision 01

7-1

Defining Named Functions 5-1

Defining New Type Identifiers 4-1
Determining the Type of an Object 4-1
Diagnostic Messages C-1

Documentation 25-1

Dotted List A-2

Dotted Pair A-2

Dynamic Extent A-2

Dynamic Scoping A-2

E

Element A-2

Entering LISP 1-1

Environment A-2

Environment Inquiries 25-2

Equality Predicates 6-1

Errors 1-1; 24-1

Establishing New Variable Bindings 7-1
Evaluation A-2

Event A-2

Extent 3-1; A-2

F

File Names 23-1

File System Interface
Fill Pointers 17-2
Floating-Point Numbers 2-1
Form A-2

23-1

Formatted Output to Character Streams 22-3
Forms 5-1
Function A-2
Function Invocation 7-1
Functions 5-1
Functions on Arrays of Bits 17-1
G
Garbage Collection A-3
General Error-Signalling Functions 24-1
General Type Predicates 6-1
Generalized Variables 7-1
Glossary A-1
H
Hash Table Functions 16-1
Hash Table Support 16-1
Hash Tables 2-3; 16-1
LISP Language Definition Usage Supplement Index-l1

I

Implementation Parameters 12-3
Indefinite Extent A-3

Indefinite Scoping A-3

Index of LISP Symbols D-1

Input From Binary Streams 22-2
Input From Character Streams 22-2
Input Functions 22-2

Input/Output 22-1

Integers 2-1

intern Function 11-2

Introduction 1-1

Irrational and Transcendental Functions 12-1

L

Lambda-Expressions 5-1
Lambda Notation A-3
Leaving LISP 1-2
Lexical Scoping A-3
Line Divisions 2-2
LISP-Object A-3

List A-3

Lists 15-1

Lists and Conses 2-2
Loading Files 23-3
Logical Operations on Numbers 12-2

M

Macro A-3

Macro Characters 22-1
Macro Definitions 8-1
Macro Support 8-1

Macros 5-1; 8-1
Miscellaneous Features 25-1
Modifying Sequences 14-1
Modules 11-2

Multiple Values 7-1

N

NIL A-3
Non-standard Characters 2-2
Numbers 12-1

O

open Function Keywords 23-2

Opening and Closing Files 23-1

Operations on Streams 21-1

Ordering Manuals 6

Organization 5

Other Environment Inquiries 25-3

Output Functions 22-2

Output to Binary Streams 22-2

Output to Character Streams 22-2

Overlap, Inclusion, and Disjointedness
of Types 2-3

Overview of Syntax 1-1

Index-2 LISP Language Definition Usage Supplement

P

Package A-4

Package Support 11-1

Package System Functions, Macros, and
Variables 11-1

Packages 2-3; 11-1

Parsing of Numbers and Symbols 22-1

Pathname Functions 23-1

Pathnames 2-3; 23-1

Precision, Contagion, and Coercion 12-1

Predicates 6-1

Predicates on Characters 13-1

Primitive Function A-4

Primitive Hash Function 16-1

Print Name A-4

Printed Representation of LISP Objects 22-1

Program Structure 5-1

Property List 10-1; A-4

Pseudo Function A-4

Q

Querying the User 22-3
Quote A-4

R

Random Numbers 12-3

Random States 2-3

Ratios 2-1

Reader A-4

Readtable 22-1

Recursion A-4

Renaming, Deleting, and Other File
Operations 23-2

Run-Time Evaluation of Forms 20-1

S
S-Expression A-4
Scope A-4

Scope and Extent 3-1

Searching Sequences for Items 14-1

Semantics A-4

Sequences 14-1

Side Effects A-5

Simple Sequence Functions 14-1

Sorting and Merging 14-2

Special Form A-5

Special Forms 5-1

Special Forms for Exhaustive Case
Analysis 24-1

Specialized Error-Signalling Forms
and.Macros 24-1

Specific Data Type Predicates 6-1

Standard Characters 2-2

Standard Dispatching Macro Character
Syntax 22-1

Standard Streams 21-1

Streams 21-1

String A-5

Revision 01

N\

—.
7 N

Ve
..

(’"\\

@,

String Access 18-1
Strings 18-1

Structure Support 19-1
Structures 2-3; 19-1
Submitting Comments 6
Substituting for the ed Function 25-2
Support of Extent 3-1
Symbol A-5

Symbols 10-1

Syntax A-5

$save-lisp 25-1

T

Tautology Proving Example E-1

The Compiler 25-1

The Evaluator 20-1

The Property List

The Readtable 22-1

The Top-Level Loop 20-1

theorem—prover Code E-1

Time Functions 25-2

Top-Level Forms 5-1

Translating Strings to Symbols 1l1-1

Trigonometric and Related Functions

True List A-5

Type Conversions and Component Extractions
on Numbers 12-1

10-1

12-1

Revision 01

Type Specifiers 4-1
Type Specifiers That Abbreviate 4-1
Type Specifiers That Specialize 4-1

U

Using Lists as Sets 15-1

Using SCL or Other Software From Within
LISP 1-2

Using theorem—prover E-6

\Y%

Value A-5
Variable A-5
ve—-command 1-1
Vectors 2-2

W

What the Print Function Produces 22-1

telement-type 23-2
tif-exists 23-2
$save-lisp 25-1

LISP Language Definition Usage Supplement

Index-3

<N\

@
0

.ol
- \

LISP for NOS/VE Language vDeﬁnition Usage Supplement 60486213 01

We would like your comments on this manual. While writing it, we made some assumptions about who

would use

it and how it would be used. Your comments will help us improve this manual. Please

take a few minutes to reply.

Who Are You? How Do You Use This Manual?

Manager As an Overview

What programming languages do you use?

Systems Analyst or Programmer
Applications Programmer

Operator
Other

To learn the Product/System
For Comprehensive Reference
For Quick Look-up

How Do You Like This Manual? Check those that apply.

Yes Somewhat No

Is the manual easy to read (print size, page layout, and so on)?

Is it easy to understand?

Is the order of topics logical?

Are there enough examples?

Are the examples helpful? (Too simple Too complex)

Is the technical information accurate?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you what you need to know about the topic?
Comments? If applicable, note page number and paragraph.
Would you like a reply? Yes No Continue on other side
From:
Name Company
Address Date

Phone No.

Please send program listing and output if applicable to your comment.

TAPE TAPE
(0
-
FOLD FOLD
NO POSTAGE N
NECESSARY NS
tF MAILED
IN THE
UNITED STATES
|
BUSINESS REPLY MAIL e ——
FIRST CLASS PERMIT NO. 824) MINNEAPOLIS, MINN.] w
] -
POSTAGE WILL BE PAID BY (——— g(N
CONTROL DATA CORPORATION L 2~
Publications and Graphics Division —— 5
L |
P.0. BOX 3492 v
- T
Sunnyvale, California 94088-3492
O
.
R
N
FOLD FOLD

C O

ORY,

(GP) CONTROL DATA

	Contents

	1 Introduction

	2 Data Types

	3 Scope and Extent

	4 Type Specifiers

	5 Program Structure

	6 Predicates

	7 Control Structure

	8 Macros

	9 Declarations

	10 Symbols

	11 Packages

	12 Numbers

	13 Characters

	14 Sequences

	15 Lists

	16 Hash Tables

	17 Arrays

	18 Strings

	19 Structures

	20 Evaluator

	21 Streams

	22 Input/Output

	23 File System Interface

	24 Errors

	25 Miscellaneous Features

	Appendixes

	A Glossary

	B Character Set

	C Diagnostic Messages

	D Index of LISP Symbols

	E Tautology Proving Example

	Index

