
CARNEGIE~MELLON UNIVERSITY'

DEPARTl\'IENT 'OF COMPUTER"SCIENCE

SPICE'PROJECT

Common Lisp Reference Manual

GUY L. Steele Jr.

29 July 1982

-¥

~p. -.. ,.,

Colander Edition
Even More Hol~s Than Before """"ljptTbey're Smaller.!'

Spice DOCtiffient S061

Keywords and indexcatcll~nics: PE Lisp & DSExternal

Location of machine-:-fcadablefile:, chn.mss,@ eMU

Copyright @. 1982 GllY L. Steele Jr.

Supported by the Defense Adyanced Re&~arch Projects Agency~Department of I~fense.,;ARPA Ord~r,;;·
3597. monitored by the Air ForqJ::Ay.ionic~:Lab()ratory under con~ru<;tF33615"78-C"lSSL; Thc views and
conclusions contained in this docuine,nt:.a.r~, ttwse of thc,authors and&hould not be interpreted'as representing,
the official policies, either expresscd or implic9,;",of the Dcfc.nscAdvanced Rescarch.projccts Agcnc;y. or the'
U.S. Govcrnment

PJ

\'''' ...

t£

INDEX

1. Introduction

1.1. Purpos~
1.2. Notational Conventions

2. Scope and Extent

3. Data Types

3.1. Numbers
3.1.1. Integers
3.l.2. Ratios
3.1.3. Floating-point Numbers
3.1.4. Complex Numbers

3.2. Characters
3.3. Symbols
3.4. Lists and Conses
3.5. Arrays
3.6. Structures
3.7. Functions
3.8. Randoms

4. Type Specifiers

4.1. Type Specifier Symbols

Table of Contents

4.2. Type Specifiers That Combine
4.3. Type Specifiers That Specialize .
4.4. Type Specifiers That Abbreviate
4.5. Defining New Type Specifiers

5. Program Structure

5.1. Foons
5.1.1. Self-Evaluating Forms
5.1.2. Variables
5.1.3. Special Forms
5.1.4. Matros
5.15. Function Calls

5.2. Functions
5.2.1. Named Functions
5.2.2. Lambda-Expressions
5.2.3. Select-Expressions

5.3. Top-Level Forms
5.3.1. Defining Named Functions
5.3.2. Defining Macros
5.3.3. Declaring Global Variables and Named Constants

6. Predicates

6.1. Logical Values
6.2. Data Type Predicates

1

1
3

9

13

15
15
16
17
19
19
20
22
23
25
26
26

27

27
27
28
30
31

33

33
33
33
34
35
36
36
36
37
40
41
42
43
43

45

45
46

L

f,':: r 6.2.1. General Type Predicate
I,:~; 6.2.2~ Specific Data Type Predicates
~~~. Equality Predicates 
L~:t. Logical Operators 

7. <£:QQtrol Structure 

~j. Constants and Variables 
H< 7.1.1. Reference 
""'. r-
... +-.l 7.1.2. Assignment 
e1c2. Generalized Variables 
~7.3. Function Invocation 
f)·;" ; 

~~1~. Simple Sequencing 
i:'t:S. Environment Manipulation 
~~6. Conditionals 
'7.7. Blocks and Exits 
~8. Iteration 
reI 7.8.1. General iteration 
&~ •. t 7.8.2. Simple Iteration Constructs 
051 7.8.3. Mapping 
~::(H 7.8.4~ The Program Fea!Ure 
r"7.~~.Multiple Values 
; 0'-7.9.1. Constructs for Handling Multiple Values 
\;)J 7.9.2. Rules for Tail-Recursive Situations 
8l.!0. Dynamic Non-local Exits 
;.':' r 7.10.1. Catch Forms 
!:~ J 7.10.2. Throw Forms 
'j'" 

8.~~cros 
O'·J. 

;,~.~. Defining Macros 

9. 1ieclarations 
f"g r . 
~9~1. Declaration Syntax 
t~.2. Declaration Forms 
.~2.:3. Type Declaration for Fonns 
)Ji,tr 10;-.·aymbols 

~~6.L The Property List 
~ XQ.2. The Print Name 
~;t2.3. Creating Symbols 

11~r.llckages 

I?¥i.l. Built-in Packages 
!t1.2. Package System Functions and Variables 

12i:Numbers 

Sl~.1. Predicates on Numbers . 
'::~2.2. Comparisons on Numbers 
(~2.3. Arithmetic Operations 

CO\1\IO~ LI~P RElTI~F'\CE ]\IANUAL 

46 
46 
49 
51 

55 

56 
56 
58 
59 
63 
64 
65 
68 
71 
72 
72 
75 
77 
78 
81 
81 
83 
85 
85 
87 

89 

89 

95 

95 
96 
98 

101 

101 
105 
105 

i09 

III 
III 

117 

118 
118 
121 

• 



TABLE OF CO~TENTS 

12.4. Irrational and Transccndental Functions 
12.4.1. Exponential and Logarithmic Functions 

. 12.4.2. Trigonomctric and Related Functions 
12.4.3. Branch Cuts, Principal Values. and Boundary Conditions in the Complex Plane. 

12.5. Type Conversions and Component Extractions on Numbers 
12.6. Logical Operations on Numbers 
12.7. Byte Manipulation Functions 
12.8. Random Numbers' 
12.9. Implementation Parameters 

13. Characters . . 

13.1. Predicates on Characters 
13.2. Character Construction and Selection 
13.3. Character Conversions 
13.4. Character Control-Bit Functions 

14. Sequences 

14.1. Simple Sequence Functions 
14.2. Converting, Catenating, and Mapping Seque'ilces 
14.3. Modifying Sequences 

iii 

123 
124 
124 ,., 127 

: '13b 

. ~: 

: , .' ;CiuiB4\,: 

;,'. J~9 
141 
142 

: .. l' 145 

14.4. Searching Sequences for Items 
'. ,.:,;' ,,'f>". 

157 
158 
160 
163 

15. Manipulating List Structure 

15.1. Conses 
15.2. Lists 
15.3. Alteration of List Structure 
15.4. Substitution of Expressions 
15.5. Using Lists as Sets 
15.6. Association Lists 
15.7. Hash Tables 

15.7.1. Hash Table Functions . 
15.7.2. Primitive Hash Function 

16. Arrays 

16.1. Array Creation 
16.2. Array Access 
16.3. Array Information 
16.4. Functions on Vectors 
16.5. Functions on General Vectors (Vectors of LISP Objects) 
16.6. Functions on Bit-vectors 
16.7. Fill Pointers 
16.8. Changing the Size of an Array 

17. Strings 

17.1. String Access and Modification 
17.2. String Comparison 

. 17.3. String Construction and Manipulation 
17.4. Type Conversions on Strings 

'1~7 
167 

)'1. Himu}91: t 

'\ tJ~2 
,::" (193 

.'T"; ;.,: i / ~~]~5 

J 



IV 

.1S;.Structures 

.~'~~ 18.1. Introduction to Structures 
.: ~·:18.2. How to Usc Defstruct 

.).8.3. Using the Automatically Defined Macros 
. 18.3.1. Constructor Functions 

. '.. 18.3.2. Alterant Macros 
:~·18.4~' de f s t rue t Slot-Options 

*:~·J18:5. Options to defstruct 
" .. \,!J8.6. By-position Constructor Functions 
t"t.:· 

! 19.' The Evaluator 

19.1. Run-Time Evaluation of Forms 
19.2. The Top-Level Loop 

,.~p. Streams 

20.1. Standard Streams 
20.2. Creating New Streams 
20.3. Operations on Streams 

21. Input/Output 

21.1. Printed Representation of LISP Objects 
21.1.1. What the read Function Accepts 
21.1.2. Parsing of Numbers and Symbols 
21.1.3. Macro Characters 
il.1.4. Sharp-Sign Abbreviations 
21.1.5. The Readtable 
21.1.6. What the p r i n t Function Produces 

21.2. input Functions 
212.1. Input from ASCII Streams 
21.2.2~ Input from Binary Streams 

.21.3. Output Functions 
21.3.1. Output to ASCII Streams . 
21.3.2. Output to Binary Streams 

21.4. Formatted Output 
.41.5. Querying the User 

. ~2. File System Interface 

72.1. File Names 
22.1.1. Pathnames 
22.1.2. Pathname Functions 
22.1.3. Defaults and Merging 
22.1.4. Logical Pathnames 

'222. Opening and Closing Files 
~2.3. Renaming,. Deleting, and Other Operations 
·~7.4. Loading Files 
.4.2~5. Accessing Directories 

------------------------

CO;\,1:\10:'; LISP REFER ENCE ;\L\NUAL 

197 

197 
199 
200 
200 
201 
202 
202 
207 

209 

209 
209 

211 

211 
212 
214 

215 

- 215 
216 
217 
220 
224 
229 
232 
235 
235 
240 
241 
241 
242 
243 
252 

257 

257 
258 
260 
264 
265 
267 
269 
270 
270 

• 

• 



• 

TABLE Of CO:-';TENTS 

23. Errors 

23.1. Signalling Conditions 
23.2. Establishing Handlers 

. , 23.3. Error Handlers 
23.4. Signalling Errors 
23.5. Break-points 
23.6. Standard Condition Names 

24. The Compiler 

Index 

.!, . 

": .. J.' 

,:;~<'271! 

271 
,:272 
274 

-275 
277 

/'277 
:."~,279 

c'299 
: .~ • ~> J l~~ r;; (~,_.!). ~ 

'71 

""i<'. 
~;. ".! .• ; ... ' 

..: ~ ~' : . :' 



iivti CO\'1\IO\J LISP REFERE;-\CE MANUAL 

rJ 

i,j 

• 

b 



• 

TABLE OF CO\TEKTS 

List of TallIes 
Table 1-1: Sample Function Description 
Table 1-2: Sample Variable Description 
Table 1-3: Sample Constant Description 
Table 1-4: Sample Special Form Description 
Table 1-5: Sample Macro Description 
Table 3-1: Hierarchy of Numeric Types 
Table 3-2: Minimum Floating-Point Precision and Exponent Size Requirements 
Table 4-1: Standard Type Specifier Symbols 
Table 5-1: Names of All COMMON LISP Special Forms 
Table 21 .. 1: Standard Character Syntax Attributes 
Table 21 .. 2: Syntax of Numbers 
Table 21-3: Standard Constituent Character Attributes 
Table 21 .. 4: Standard Sharp-Sign Macro Character Syntax 

vii 

5 
5 
5 
6 
6 

15 
18 
27 
35 

217 
218 
219 
224 



ACK ;\OWI,EDGE'vIE;-.iTS 

Acknowledgements 

The many people who have contributed to the design of COMl'vl0N LISP are hereby gratefully 

acknowledged: 

Alan Bawdcn2 

Rodney A. Brooks3 

Richard L. Bry~m2 
Glenn S. Burke3 

Howard I. Cannon2 

George J. Carrette3 

David DiII1 
.. Scott E. Fahlman1 

~Richard J. Fateman4 

. !.) 'Neal Feinberg1 

John Foderaro4 

Richard P. Gabriel5.6 

Joseph Ginderl 

Rich:trd Greenblatt7 

Martin L. Griss8 

Charles L. Hcdrick9 

Earl A. Killian6 

John L. Kulp2 
Larry M. lVlasintcr10 

John l\tlcCarthy5 

Don Morrison8 

David A. Moon2 

\ViJlimn L. Scherlisl 
Richard 1\1. St~1llman3 

Barbara K. Steele l 

Guy L. Steele Jr. 1, editor 
. \Villiam vanMellelO 

Walter van Roggen1 

Allan C. Wechsler2 

Daniel L. Weinreb2 

Jon L WhitelO 

Richard Zippel3 

Leonard Zubkoff1 

1. Computer Science Department, Carnegie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania 15213 
2. Symbolics, Inc .• Cambridge, Massachusetts 02139 . 

3. Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Massachusetts 02139 
4. Computer Science Division, Department ofEECS, University of California. Berkeley, California 94720 

!~; (JL5..C~~puter Science Department, Stanford University, Stanford, California 94305 
f. • ~ ~ ~ ; 

.- - 6. University of California, Lawrence Livennore National Laboratory, Livennore, California 94550 
i"l i 1~ r: .,., . 
'-.1 ,2· I;-isp Machines Incorporated (LMI). Cambridge, Massachusetts 02139 
:)S;. ::i~·~Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 

9.,},;;tboratory for Computer Science Research, Rutgers University, New Brunswick, New Jersey 08903 
f i.;i, 10.: Xerox: Palo Alto Research Center, Palo Alto, California 94306 

As can be seen from the list of affiliations, COMMON LISP was designed by a diverse group of people 
, ,-,·c_ --, . 

representing many institutions. 
J'(: ',.J . ~ , 

1}le;o£g~ization, typography, and content of this document were inspired in large part by the MacLISP 

Reje[,(3,nce:,flr1anuai by David A. Moon and others [6]. and by the LISP Machine Manual by Daniel Weinreb 

and David Moon [11], which in ~rn acknowledges the efforts of Richard Stallman. Mike McMahon. Alan 

Bawtien: Glenn Burke, and "many people too numerous to list". 

fi-h~icdition is still in draft form. Please send remarks, corrections, and criticisms to: -f ~. "')' ~~ 

:)i L .• 

Guy L. Steele Jr. 
Computer Science Department 
Carnegie-Mellon University 
Schenley Park 
Pittsburgh, Pennsylvania 15213 

• 



• 

·.t; 

Cl1apter 1 

Introduction 

This manual documents a dialect of LISP called "COMMON LISP", whi~h is a successor to MA¢LI~P [6], 

influenced strongly by Lisp Machine LISP [II} ~nd also to some extent by SCHEME [9] and INTERLISP"[rol. 

1.1. Purpose 

COMMON LISP is intended to meet these goals: 

Commonality. 'COMMON LISP originated in an attempt to focus the work of several imp~~mentation 
groups each of which was constructing successor implementations of MACLISP for'different 
computers. These implementations had begun to diverge because of the differences!n the 
implementation environments: microcoded' personal computers (Lisp Machine'Ltsp, SPICE 

LISP). commercial timeshared computers (NIL), and supercomputers (S-l LISP):' While the 
differences among the several implementation environments will of necessity ',force 
incompatibilities among the implementations, nevertheless COMMON LISP can)serve- as a 
common dialect of which each implementation can be an upward-compatible superset 

Portability. 

Consistency. 

COMMON LISP intentionally excludes features that cannot easily be implemente(ton."~'i<Y! 
broad class of machines. On the one hand, features that are difficult or expensi~e 'to'''' 
implement on hardware without special microcode are avoided or provided in a mo~~ 
abstract and efficiently implementable form. (Examples of this are the forwardirig 
(invisible) pointers.and locatives of Lisp Machine LIsp. Some of the problems'thatthey,.'~\ 
solve are addressed in different ways in COMMON LISP.) On the other hand. featuresLtltatnl~ 
are useful only on certain "ordinary" or '''commercial'' processors are avoidedQf ~~4~kd 
optional. (An example of this is the type declaration facility, which is useful in some 
implementations and completely ignored in others~ type declarations are ,c;ompJeteJy, 
optional and for correct programs affect only efficiency, never semantics.) 'M()r~ovei, 
attention has been paid to making it easy to write programs in such a way as to depend as 
little as possible on machine-specific characteristics such as word length, while allowing 
some variety of implementation techniques. 

Most I -IS}> implementations are internally inconsistent in that by default the interpreter and 
compiler may assign different semantics to correct programs~ this stems primarily from the 
fact that the interpreter assumes all variables to be dynamically scoped. while the compiler 
assumes all variables to be iocal unless forced to assume otherwise. '111is has been done for 
the sake of convenience and efflcicncy, but can lead to very subtle bugs. The definition of 

-1-



2 CO~I\ION LISP RITERE\CF MANUAL 

COM1\10N LISP avoids such anomalies by explicitly requiring the interpreter and compHer 
to impose identical semantics on correct programs. 

Power. COMMON LISP is a descendant of j\,1ACLISP, which has always placed emphasis on 
providing system-building tools. Such tools may in turn be used to build the user-level 
packages such as 11'TFRLISP provides; these packages arc not. however, part of the 
COMMON LISP core specification. It is expected such packages will be built on top of the 
COMMON LISP core. 

Expressiveness. 

Compatibility. 

Effltien'cy~ 

'. ~ 
f ... ' 

StabiiUy.· . 
'., 
\.~ I • 

COMMON LISP culls not only from MACLISP but from INTERLISP, other LISP dialects, and 
other programming languages what we believe from experience to be the most useful and 
understandable constructs. Constructs that have proved to be awkward or less useful are 
being eliminated (an example is the s tore construct of MACLISP). 

Unless there is a good reason to the contrary, COMMON LISP strives to be compatible with 
Lisp Machine LISP, MACLISP, and INTERLISP, roughly in that ,?rder. 

COMMON LISP has a number of features designed to facilitate the production of high
quality compiled code in those implementations that care to invest effort in an optimizing 
compiler. One implementation of COMMON LISP (namely S-l LISP) already has a compiler 
that produces code for numerical computations that is competitive in execution speed to 
that produced by a FORTRAN compiler [1]. (This extends the work done in MACLISP to 
produce extremely efficient numerical code [4].) 

It is intended that COMMON LISP, once defined and agreed upon, will change only slowly 
and with due deliberation. The various dialects that are supersets of COMMON LISP may 
serve as laboratories within which to test language extensions, but such extensions will be 
added to COMMON LISP only after careful examination and ·experimentation. 

The COMMON LISP documentation is divicied into four parts, known for now as the white pages, the yellow 

pages, the red pages, and the blue pages. (This document is the white pages.) 

• The while pages (this document) is a language specification rather than an implementation 
<specification. It defines a set of standard language concepts and constructs that may be used for 

':i communication of data structures and algorithms in the COMMON LISP dialect. This is sometimes 
G ,r-efcrred to as the "core COMMON LISP language", because it contains conceptually necessary or 

)tnp<?;rtant features .. It is not necessarily implementationally minimal. While some features could 
. be defined in terms of others by writing LISP code (and indeed may be implemented that way), it 
was felt that these features should be conceptually primitive so that there might be agreement 
among all users as to their usage. (For example, bignums and rational numbers could be 

. irhplemented as LISP code given operations on fixnums. However, it is important to the 
conceptual integrity of the language that they be regarded by the user as primitive, and they are 

,~,:,useful enough to warrant a standard definition.) 

:J.~. d~ , .• ; .' 

• The yellow pages is a program library document. containing documentation for assorted and 
relatively independent packages of code. While the white pages are to be relatively stable, the 
yellow pages are extensible; new programs of sufficient usefulness and quality will routinely be 
added from time to time. The primary advantage of the division into white and yellow pages is 
this relative stahi1ity~ a package written solely in the white-pages language should not break if 



Il\TP.ODUCTION 

changes are made to the yellow-pages library . 

• The red pages is implementation-dependent documentation; there will be one set for each 
implementation. Here arc specified such implementation-dependent parameters as word size, 
maximum array size, sizes of fioating-poin t exponents ami fractions, and so on, as well as 
implementation-dependent functions such as input/output primitives . 

• The blue pages constitutcs an implcmentation guide in the spirit of the INTERLlsP virtual machine 
specification [7]. It specifics a subset of the white pages that an implementor must construct, and 
indicates a quantity of LISP code written in that subset that implements the remainder of the white 
pages. In principlc there could be more than one set of blue pages, each with a companion file of 
LISP codc.(For examplc, onc might assume if to bc primitive and define cond as a macro in 
terms of if, while another might do it the other way around.} 

1.2. Notational Conventions 

In COMMON LISP, as in most LISP dialects, the symbol n i' (pa:ge 45) is used to represent both the e1D:pty,:",\ 

list and the "false" value for Boolean tests. An empty list may, of course, also be written" ( )"; this normally 

denotes the same object as "n i , ". (It is possible, by extremely perverse manipulation of the package system, 

to cause the sequence ofletters "n i'" to be recognizcd not as the symbol that represents the empty list but as 

anothcr symbol with the same name. However, ,. ( )" always denotes the empty list. This obscurc possibility 

will be ignored in this document.) Thesc two notations may be used interchangeably as far as the LISP system 

is concerned. Howevcr, as a matter of style, this document will prefer the notation •• ( ),. when it is desirable .. ·.) 
~, .. - ,'.' .!, ~ 

to emphasize its usc as an empty list, and will prefer the notation "n i'" when it is desirablc to emphasize its 

use as the Boolean "false" or as a symbol. Morcover, an explicit quote mark is uscd to emphasize its use as a 

symbol rather than as Boolean "false". 

For example: 

(append '() '()) => () 
(not n; 1) => t 
(get 'nil 'color) 

; Emphasize use of empty lists. 
; Emphasize usc as Boolean "false". 
; Emphasize usc as a symbol. 

Any data object other than n i' is construed to bc Boolcan "not falsc", that is. "truc". The symbol t is 

conventionally used to mean "truc" when no other value is more appropriate. When a function is said to 

"return false" or to "be false" in some circumstancc, this means that it returns n;'. However, when a 

function is said to "return true" or to "be true" in some circumstance, this means that it returns some~~:llue 
:' ... ' 

other than nil, but not necessarily t. . . ." 

All numbers in this document arc in decimal notation unless there is an explicit indication to the cot;ltrary. 

Execution of code in LISP is called evaluation, because exccuting a piece of code normally rcsults in a data 

object cal1~d the value produced by the code. The symbol "=>" will be used in examples to in~icatc 

evaluation. For example: 
'I' 

(+ 4 5) => 9 

. means "the result of evaluating the code (+ 4 5) is (or would be, or would have becn) 9". 

J 



4 ('0:\1\10;\ LISP RE1·'FP .. F:';CE :\JA~UAL 

'nle··SYlnbol "= = >" will be used in examples to indicate macro expansion. For example: 

(push x v) ==> (setf v (cons x v» 

mC'an.~ "the result of expanding the macro-call form (p us h x v) is (s e t f v (c on s x v»". 'lJlis 

implies that the two pieces of code do the same thing; the second piece of code is the definition of what the 

first:does. 

The symbol '" <=>" will be used in examples to indicate code equivalence. For example: 

(- x y) <=> (+ x (- y» 

means "the value and effects of (- x y) is, always the same as the value and effects of (+ x (- y» for 

any values of the variables x and y". This implies that the two pieces of code do the same thing; however, 

neither directly defines the other in the way macro-expansion does. 

When this document specifies that it "is an error" for some situation to occur, this means that: 

"~'No valid 'COMMON LISP program should cause this situation to occur . 

. •. If this situation occurs, the effects and results are completely undefined as far as adherence to the 
COMMON LISP specification is concerned. 

• No COMMON LISP implementation is required to detect such an error. 

This is not to say that some particular implementation might not define the effects and results for such a 

sit~ation; it is merely that no program confonning to the COMMON LISP specification may correctly depend 

on 'sUGb.. effects or results. 

On the other hand, if it is specified' in this document that in some situation "an error is signalled', this 

meatisthat: 

.'1fthis situation occurs, an error (see error (page ERROR-FUN»will be signalled .. 

• Valid COMMON LISP programs may rely on the fact that an error will be signalled. 

• Every COMMON LISP implementation is required to detect such an error. 

f,unctions, variables, named constants, special forms, and macros are described using a distinctive 

typ.~iraphical fonnat. Table 1-1 illustrates the manner in which COMMON LISP functions are documented. 

The first line specifics the name of the function. the manner i"n which it accepts arguments, and the fact that it 

is a,Junction. Following indented paragraphs explain the definition and uses of the function and often 
~_ '. f. c~ 

present examples or related functions. 

In general. actual code (including actual names of functions) appears in this typeface: (con s a b). 

N~,mes that stand fbrpieces of code (meta-variables) are written in italics. In a function description. the 

names of the parameters appear in italics for expository purposes. The word "&opt i ana 1" in the list of 

parameters indicates that all arguments past that point are optional: the default values for the parameters are • 

described in the t.ext. .Parameter lists may also contain ""&rest". indicating that an indefinite number of 



• 

INTI{ODL;CTION 5 

sample-function argJ arg2 &optional arg3 arg4 [Function]-';; 

The function sample-funct ion adds together argJ and arg2, and then multiplies the result,by 
arg3. If arg3 is not provided or is nil, the multiplication isn't done. sample-functiontl1eQ-;:' 
returns a list whose first clement is this result and whose second clement is arg4 (which defaults to 
the symbol foo). 

For example: 

(function-name 3 4) => (7 fool 
(function-name 1 22 'bar) => (6 bar) 

Asamle, (sample-function x y) <=> (list (+ x y) 'fool. 

Table I-I: Sample Function Description 

samp 1 e -var; ab 1 e [Variable] 
The variable s amp 1 e - va r ; a b 1 e specifies how many times the special form 
s amp 1 e - s p e cia 1 - form should iterate. The value should always be a non-negative integer or 
n; 1 (which means iterate indefinitely many times). The initial value is o. 

Table 1-2: Sample Variable Description 

sample-constant [Conslq:nll .. , 
The named constant sample-constant };las as its value the height of the tenninal screen'ili' 
furlongs times the base-2 logarithm of the implementation's total disk capacity in bytes, ,as, a 
floating-point number. 

Tahle 1-3: Sample Constant Description 

arguments may appear, or "&key", indicating that keyword arguments are accepted. (th~ 
&opt ional I&rest/&key syntax is actually used in COMMON LISP function definitions forthese purposes.)'" 

Table 1-2 illustrates tlle manner in which a global variable is documented. The first line specifics the name ,', 
;"" I r; 1 ¢'<! 

of the variable and the fact that it is a variable. ' , 

Table 1-3 illustrates the manner in which a named constant is documented. The first line specifics the 
name of the constant and the fact that it is a constant. (A constant is just like a global variable. except that j't is" 
an error ever to alter its value or to bind it to a new value.) 

io' 

. . ~ . 



6 CO\t\fOi\ LI~,p REH~RE\CE \1ANCAL 

s amp 1 e - spec i a 1 -f 0 rm [name] ({ var} * ) {{onn} + [Special jbnn] 
This evaluates each fonn in sequence as an implicit pro 9 n. and docs this as many times as 
specified by the global variable samp 1 e-variabl e. Each variable varis bound and initialized to 
43 before the first iteration, and unbound after the last iteration. The name name, if supplied, nlay 
be used in a return-from (page 72) fonn t6 exit from the loop prematurely. If the loop ends 
nonnally, sampl e-speci al-form returns ni l. 

For example: 

(setq sample-variable 3) 
(sample-special-form () form] form2) 

This evaluatesforml,jorm2,jorml,form2,forml,jOrm2 in that order. 

Table 1-4: Sample Special Form Description 

salJlp 1 e-macro var {tag I statement}* [Macro] 
This evaluates the statements as a prog body, with the variable varbound to 43. 

{sample-macro x (+ x x» => 86 
(sampl e-macro var . body) ==> {prog ({ var 43» . body) 

Table 1-5: Sample Macro Description 

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are·closely related in 
purpose). These are very different from functions. Functions are called according to a single, specific, 

consistent syntax; the &opt i ona 1 /&res t/&key syntax specifics how the function uses its arguments 

internally, but does not affect the syntax of a call. In contrast, each special fonn or macro can have its own 

idi6sy'ncratic syntax. It is by special forms and macros that the syntax of COMMON lJSP is defined and 

extended. 

t,:.;i{ 

IQ, ,the description of a special fonn or macro, an italicized word names a corresponding part of the form 

that· invokes the special form or macro. Parentheses (" (" and .• )") stand for themselves, and should be 

wri~ten as such when invoking the special· form or macro. Square brackets CT' and 'T') indicate that what 

they enclose is optional (may appear zero times or one time in that place); the square brackets should not be 

written in code. Curly braces (" {" and H}") simply parenthesize what they enclose, but may be fol1owed by a 

star ("*") or a plus sign ( .. + "); a star indicates that what the braces enclose may appear any number of times 

(including zero, that is. not at a11), while a plus sign indicates that what the braces enclose may appear any 

non-zero number of times (that is, must appear at least once). Within braces or brackets, vertical bars CT') 
separate mutually exclusive choices. 



IXl"RODLCTION 7 

In the last example in Table 1-5, notice the use of "dot notation". The"." appearing in the expression"'" 

( s amp 1 e -mac ro var . body) means that the name body stands for a list of f()I111S, not just a single fonn, at 

the end of a list. This notation is often used in examples. 

The term "LISP reader" refers not to you, the reader of this document, nor to some person reading LISP 

code, but specifically to a LISP program (the function read (page 237» that reads characters from an input 

stream and interprets them by parsing as representations of LISP objects. 

Certain characters are used in special ways in the syntax of COMMON LISP. The complete syntax is 

explained in detail in Chapter 21, but a quick summary here may be useful: . 

" 
\ 

# 

An accent acute ("single quote") followed by an expression fonn is an abbreviation for ( quo te form). 
Thus ·foo means (quote fool and '(cons 'a 'b) means {quote (cons (quote a) 
(quote b»). 

Semicolon is the comment character. It and all characters up to the end of the line are discarded. 

Double quotes surround character strings: "Thi sis a thi rty-n i ne character stri n9. ". 

Backslash is an escape character. As a rule, it causes the next character to be treated as a letter rather 
than for its usual syntactic purpose. For example, A \ (B denotes a symbol whose name is "A( B", and 
"\ "" denotes a character string containing one character, a double-quote. 

The number sign begins a more complex syntax. The next character designates the precise syntax to 
follow. For example, #0105 means 1058 (105 in octal notation); #\ L denotes a character object for the 
character "L"; and #( abc) denotes a vector of three elements a, b, and c. A particularly important 
case is that # ' fn means (f un c t ion fn), in a manner analogous to 'form meaning { quo te fonn}. 

Vertical bars surround the name of a symbol that has special characters in it. 

Accent grave ("backquote") signals that the next expression is a template that may contain commas. The 
backquotc syntax represents a program that will construct a data structure according to the template. 

Commas are used within the bac~quote syntax. 

Colon is used to indicate which package a symbol belongs to. For example, chaos: reset denotes the , 
symbol named reset in the package named chaos. A leading colon indicates a keyword, a symbol thai 
always evaluates to itself.' ~) 

All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which 

code is written. Internally, names of symbols are ordinarily converted to and stored in upper-case fonn. 

There are ways to force case conversion on output if .desired. In this document, wherever an interactive 

exchange between a user and the LISP system is shown, the input is exhibited in lower case and the outpufin.' 

uppercase. 

Some symbols are written with the colon ( : ) character apparently in their names. In particular, all keyword~'~ 

symbols have names starting with a colon. The colon character is not actually part of the print name. but is a 

package prefix indicating that the symbol belongs to the keyword package. '('his is all explained in Chapter 

11: until you read that, just make believe that the colons are part of the names of the symbols. 

J 



8 CO\1\10\.; LISP IUTERFNCE '\!A.NUAL 

• 



CI1311ter 2 

Scope and Extent 

In describing various features of the COMMON LISP language, the notions of scope and extent are 

frequently useful. These arise when some object or construct must be referred to from some distant part of a 

program. Scope refers to the spatial or textual region of the program within which references may occur. 

Extent refers to the interval of time within which references may occur. 

As a simple example, co~sider this program: 

(defun copycell (x) (cons (car x) (cdr x») 

The scope of the parameter named x is the body of the de fun form. There is no way to refer to this 

parameter from any other place but within the body of the defun. Similarly, the extent of the parameter x 

(for any particular can to copycell) is the interval from the time the function is invoked to the time it is 

exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that 

cannot occur in this simple case.) 

Within COMMON LISP, a referenceable entity is established by the execution of some language construct, 

and the scope and extent of the entity are described relative to the construct and the time (during execution of 

the construct) at which the entity is established. There are a few kinds of scope and extent that are 

particularly useful in describing COMMON LISP: 

• Lexical scope. Here references to the established entity can occur only within certain program 
portions that are lexically (that is. textually) contained within the establishing construct Typically 
the construct will have a part designated the body, and the scope of all entities established will be 
(or include) the body. 

Example: the names of paral!'eters to a function normally are lexically scoped . 

• Local scope. Here references to the established entity can occur only within certain program 
portions that are lexically (that is. textually) contained within the establishing construct, but 
moreover may not occur nested within certain other construct'). namely funct i on (page 56), the 
definition portions of fl et (page 67) and 1 abe 1 s (page 67), and such function-defining 
constnlcts as defun (page 42), deftype (page 31), defmacro (page 91), and defstruct 
(page ]99). 

e · Indefillite scope. References may occur anywhere. in any program. 

-9-



10 CO\I\10:--; LISP REFERE:\CE MA\TUAL 

• Dynamic ex/en/. Refercnces may occur at any time in the interval between establishment of the 
entity and the explicit Jisestablishment of the entity. Asa mle. the entity is disestablished when 
execution of the establishing construct completes or is otherwise terminated. Therefore entities 
with dynamic extent obey a stack-like discipline, paralleling the nested executions of their 
establishing constructs. 

Example: the wi th-open-fi le (page 267) creates opens a connection to a file and creates a 
stream object to represent the connection. The stream object has indefinite extent, but the 
connection to the open file has dynamic extent: when control exits the wit h - 0 pen - f ; 1 e 
construct, either normally or abnonnally, the file is automatically closed. 

Example: the binding of a '''special'' variable has dynamic extent. 

• Indefinite extent. The entity continues to exist so long as the possibility of reference remains. (An 
implementation is free to destory the entity if it can prove that reference to it is no longer 
possible.) 

Example: most COMMON LISP data objects have indefinite extent. (By contrast, the list produced 
for a &res t parameter in Lisp Machine LISP has dynamic extent [11].) 

Example: the names of lexically scoped parameters to a function have indefinite extent. (By 
contrast, in ALGOL the names of lexically scoped parameters to a procedure have dynamic extent) . 
This function definition: 

(defun compose (f g) 
#'(lambda (x) '{f (9 x»» 

when given two arguments, immediately returns a function as its value. The parameter bindings 
for f and 9 do not disappear, because the returned function, when called, could still refer to those 
bindings. Therefore . 

(funcall (compose #t~qrt #'abs) -9.0) 

produces the value 3. O. (An analogous procedure would not work correctly in typical 
ALGOL implementations.) 

In addition, to the above tenns, it is convenient to define dynamic scope to mean indefinite scope and 

dynamic extent. Thus we speak of "·speciaF variables as having dynamic scope, or being dynamically scoped, 

because they have indefinite scope and dynamic extent: a special variable can be referred to anywhere as long 

as its binding is currently in effect 

The above definitions do not take into account the possibility of shadowing. Remote reference of entities is 

accomplished by using names of one kind or another. I f two entities have the same name, then the second 

(say) may shadow the first, in which case an occurrence of the name will refer to ,the second and cannot refer 

to the first. 

In the case of lexical or local scope, if two constructs that establish entities with the same name are textually 

nested, then references within the inner construct refer to the' entity established by the inner one~ the inner 

. one shadows the outer one. Outside the inner one but inside the outcr one, references refer to the entity 

established by the outer construct. For cxample: • 



SCOPE :\~~D EXTENT 

(defun test (x z) 
(let «z (* x 2») (print z» 
z) 

11 

111e binding of the variable z by the 1 et (page 65) construct shadows the parameter binding for the function 

te s t. The reference to the variable z in the p r i n t form refers to the 1 e t binding. The reference to z at 

the end of the function refers to the parameter named z. 

In the case of dynamic extent. if the time intervals of two entities with the same name overlap, then one 

interval will necessarily be nested within the other one (this is a property of the design of COMMON LISP). A 

reference will always refer to the entity that has been most recently established that has not yet been 

disestablished. For example: 

(defun fun1 (x) 
(catch 'trap (+ 3 (fun2 x»» 

(defun fun2 (y) 
(catch 'trap (* 5 (fun3 y»» 

(defun fun3 (z) 
(throw 'trap z» 

Consider the call (fun 1 7). The result will be 10. At the time the th row (page 87) is executed, there are 

two outstanding catchers with the name trap: one established within procedure fun1, and the other within 

procedure fun 2. The latter is the more recent, and so the value 7 is returned from the cat c h form in fun 2. 

Viewed from within fun3, the catch in fun2 shadows the one in fun1. (Had fun2 been defined as 

(defun fun2 (y) 
(catch 'snare (* 5 (fun3 y»» 

then the two catchers would have different names, and therefore the one in funl would not be shadowed. 

The result would then have been 7.) 

As a rule this document will simply speak of the scope or extent of an entity; the possibility is shadowing 

will be left implici.t. 

A list of the important scope and extent rules in COMMON LISP: 

• Variable bindings nonnally have lexical scope and indefinite extent 

• Variable bindings that are declared to be s p e cia 1 have dynamic scope (indefinite scope and 
dynamic extent) . 

• A catcher established by a catch (page 85), catch-all (page 85), unwind-all (page 85), 
or unwi nd-protect (page 86) special fonn has dynamic-scope. 

• An exit point established bya bloc k (page 71) construct has lexical scope and dynamic extent. 
(Such exit points are also established by do (page 73), prog (page 78), and other iteration 
constructs.} 

• • The tags established by a prog (page 78) and referenced by go (page 80) have lexical scope and 



12 ~O\l\tON IJ~;P REFFREI\CF MANUAL 

dynamic extent. 

Constnlct'i that use lexical scope effectively generate a new name for each established entity on each 

execution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular 

importance when dynamic extent is involved. For example: 

(defun contorted-example (f 9 x) 
(if (= x 0) 

(funcall f) 
(block here 

(+ 5 (contorted-example 9 
#'(lambda () (return-from here 4» 
(- x 1»»» 

Consider the call (contorted-example nil nil 2). This produces the result 4. At the time the 

funcall is executed there are three block (page 71) exit points outstanding, each apparently named 

here. However, the return-from (page 72) form executed refers to the outermost of the outstanding exit 

points, not the innermost, as a consequence of the rules of lexical scoping: it refers to that exit point textually 

visible at the point the fun c t ion (page 56) construct (here abbreviated by the #' syntax) was executed . 

• 



• 
I 

Chapter 3 

Data Types 

COMMON LISP provides a variety of types of data objects. It is important to note that in LISP it is data 

objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to 

make an explicit declaration that a variable will in fact take on one of only a limited set of values. However, 

such a declaration may always be omitted, and the program will still run correctly. Such a dec1aratiqn merely 

consititutes advice from the user that may be useful in gaining efficiency. See dec 1 are (page 95).) 

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many LISP objects belong to more 

than one such set, and so it doesn't always make sense to ask what the type of an object is; instead, one usually 

asks only whether an object belongs to a given type. The predicate typep (page 46) may be used to ask 

either of these questions. 

, The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hierarchy with shared 

subtrees) defined by the subset .relationship. Certain sets of objects are interesting enough to deserve labels 

(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout 

this document, the word symbol refers to atomic symbols, one kind of LISP object). See Chapter 4 for a 

complete description of type specifiers. 

The root of the hierarchy, which is the set of all objects,is specified by the symbol t. The empty data type, 

which contains no objects, is denoted by ,n; 1 . 

COMMON LISP objects may be roughly divided into the following categories: numbers, characters, 

symbols, lists, arrays, structures, functions, and "random" objects. Some of these categories have many 

subdivisions. There are also standard types that are the union of two or more of these categories. The 

categories listed above, while they are data types, are neither more nor less "real" than other data types; they 

simply constitute a particularly useful slice across the type hierarchy for expository purposes. 

Each of these categories is described briefly below. Then one section of this chapter is devoted to each. 

going into more detail, and briefly describing notations for objects of each type. Descriptions of LISP 

functions that operate on data objects are in later chapters . 

• Numbers are provided in various forms and representations. COMMON LISP provides a true 
integer data type: any integer. positive or negative. has in principle a representation as a COMMON 

-13 -



14 (,0\1\'10>'; LISP RFH::RE\CE \1A:\L:AL 

LIsp data object. subject only to total memory limitations (rather than machine word width). A 
true rational data type is provided: the quotient of two integers, if not an integer, is a ratio. 
Floating-point numbers of various ranges and precisions are also provided. Some 
implementations may choose to provide Cartesian complex numbers. 

• Characters represent printed glyphs such as letters or text formatting operations. Strings are 
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set, 
including ways to represent characters of various type styles. 

• Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects. LISP 

provides machinery for locating a symbol object, given its name (in the form of a string). Symbols 
have properly liSIS, which in effect allow symbols to be treated as record structl:lres with an 
extensible set of named components, each of which may be any LISP object. 

• Lists are sequences represented in the fonn of linked cells called conses. There is a special object 
(the symbol nil) that is the empty list. All other lists are built recursively by adding a new 
element to the front of an existing list This is done by creating a new cons, which is an object 
having two components called the car and the cdr. The car may hold anything, and the cdr is 
made to point to the previously existing list. (Conses may actually be used completely generally as 
two-element record structures, but their most important use is to represent lists.) 

• Arrays are dimensioned collections of objects. An array can have any non-negative number of 
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as . 
a component; others are specialized for efficiency, and can hold only certain types of LISP objects. 
It is possible for two arrays, possibly with differing dimension information, to share the same set 
of elements (such that modifying one array modifies the other also). 

• Vectors are a special class of arrays. They have exactly one dimension, and two vectors cannot 
have shared data. For critical applications in some implementations, vectors may be significantly 
more efficient than arrays~ Two important special cases are strings, which are one-dimensional 
vectors of characters. and bit-vectors, which are vectors .that can contain only the integers 0 and 1. 

• Structures arc user-defined record structures, objects that have named components. The 
defstruct (page 199) facility is used to define new structure types. Some COMMON LISP 

implementations maychoose to implement certain system-supplied data types as structures; these 
might include bignums, readtables, streams, hashtables, and pathnames. 

• Functions are objects that can be invoked as procedures~ these may take arguments, and return 
. values. (AU LISP procedures can be construed to return a value, and therefore treated as 

functions. Those that have nothing better to return usually return nil.) Such objects include 
c/osures(functions that have retained bindings from some environment) and subrs (compiled code 
objects). Some functions are represented as a list whose car is a particular symbol such as 
1 ambda. Symbols may also be used.as functions. 

• Random objects are those that do not fit into any other category. This is a catch-all data type that 
primarily covers implementation-dependent objects for internal use. 

These. categories are not always mutually exclusive. As noted above, an implementation may choose to 

implement certain kinds of objects (such as the more arcane numerical types) as structures. Every vector is an 

• 

• 



• 

DATA TYPES 

array, though not every array is a vector. 

3.1. Numbers 

number 
rational 

integer 
fixnum 
bignum 

ratio 
float 

short-float 
single-float 
double-float 
long-float 

complex 

Table 3-1: Hierarchy of Numeric Types 

15 

There are several kinds of numbers defined in COMMON LISP. Table 3-1 shows the hierarchy of number 

types. 

3.1.1. Integers 

The integer data type is intended to represent mathematical integers. Unlike most programming languages, 

COMMON LISP in principle imposes no limit on the magnitude of an integer; storage is automatically allocated 

as necessary to represent large integers. 

In every COMMON LISP implementation there is a range of integers that are represented more efficiently 

than othe~; each such integer is called a fixnum, and an integer that is not a fixnum is called a bignum. The 

distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of 

representation is important: in particular, it is guaranteed that the rank of an array, as well as any dimension 

of an array (and therefore any index into an array), can be represented as a fixnum. Exactly which integers 

are fixnums is implementation-dependent; typically they will be those integers in the range - 2n to 2n-l, 
inclusive, for some n not less than 15. See most-positive-fixnum (page 142) and 

most-negative-fixnum (page 142). 

Integers are ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by 

a sign and optionally followed by a decimal point. 

For example: 



16 

o 
-0 
+6 
28 

1024. 
-1 

15511210043330985984000000. 

CO\1\\O;\l LISP REI TRE:\CE MANUAL 

; Zero. 
; This all-vays means the same as O. 
; The first perfect number. 
; The SCCOi;d pcri':ct number. 
; T~o to the kntL power. 
; e'TTl 

; 25 factorial (25!). Probably a bignum. 

Compatibility note: MACLIsp and Lisp Machine LISP normally a<isume that integers are written in octal (radix-8) notation 
unless a decimal point is present INTERLisp assumes integers arc written in decimal notation, and uses a trailing Q to 
indicate octal radix: however, a decimal point, even in trailing position, always indicates a floating-point number. This is of 
course consistent with FORTRAN: ADA does not permit trailing decimal points, but instead requires them to be embedded. In 
COMMON LISP, integers written as described above are always construed to be in decimal notation, whether or not the 
decimal point is present: allowing the decimal point to be present permits compatibility with MACLISP. 

Integers may be notated in radices other than ten. The notation 

#nnrddddd or #nnRddddd 

means the integer in radix-nn notation denoted by the digits ddddd. More precisely, one may write "#", a 

non-empty sequence of decimal digits representing an unsigned decimal integer n, "r" (or "R"), an optional 

sign, and a sequence of radix-n digits, to indicate an integer written in radix n (which must be between 2 and 

36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may 

contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits 

above 9. Binary, octal, and hexadecimal radices are useful enough to warrant the special abbreviations "fib" 
for "#2r", "#0" for "#8r", and "#x" for "#16r". 

For example: 

3.1.2. Ratios 

#2rl1010101 
#bl1010101 

#b+l1010101 
#0325 

#xD5 
#16r+D5 

#0-300 
#3r-12010 

#25R-7H 

; Another way of writing 213 decimal. 
; Ditto. 
; Ditto. 
; Ditto, in octal radix. 
; Ditto, in hexadecimal radix. 
; Ditto. 
; Decimal -192, written in base 8. 
; Same thing in base 3. 
; Same thing in base 25. 

A ratio is a number representing the mathematical ratio of two integers. Integers and ratios are collectively 

caned rationals. The canonical printed representation of a rational number is as an integer if its value is 

integral, and otherwise as the ratio of two integers, the numerator and denominator, whose greatest common 

divisor is one, and of which the denominator is positive (and ·in fact greater than 1. or else the value would be 

integral), written with "I" as a separator thus: "3/5". It is possible to notate ratios in non-canonical 

(unreduced) forms, such as" 416", but the LISP functio"n pr i n 1 (page 242) always prints the canonical fonn 

for a ratio. 
Implcmcntati(ln notc: While each implementation of COMMON LISP will probably choose to maintain all ratios in reduced 
form. there is no requirement for this ac; long a<i its effects arenotvisiblc to the uscr. Note that while it may at first gJance 
appear to save computation for the reader and various arithmetic operations not to have to produce reduced fonns. this 
savings is likely to be counteracted by the increased cost of operating on larger numerators and denominators. 



DATA TYPES 17 

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign 

followed by two non-empty sequences of digits separated by a .. I", The second sequence may not consist 

entirely of zeros, 

For example: 

2/3 
4/6 
-17/23 
-30517578125/32768 
10/5 

; This is in canonical form. 
; A non-canonical form for the same number. 

; This is (- 5/2)15. 
; The canonical form for this is 2. 

To notate rational numbers in radices other than ten, one uses the same radix specifiers (one of #nnR, #0, 

#B. or #X) as for integers. 

For example: 

#0-101/75 
#3r120/21 
#Xbc/ad 

3.1.3. Floating-point Numbers 

; Octal notation for - 6 5 1 61 .. 
; Ternary notation for 15/7. 
; Hexadecimal notation for 188/173. 

Generally speaking, a floating-point number is a (mathematical) rational number of the form (-l)s*f 

* be- P, where s is a bit (0 or 1), the sign; b is an integer greater than 1, -the base or radix of the representation; p 

is a positive integer, the precision (in base-b digits) of the floating-point number; f is a positive integer 

between 1f'-1 and If' -1 (inclusive), the fraction (properly speaking, the fraction is actually P lJP); and e is an 

integer, the exponent. In addition, there is a floating-point zero. (Depending on the implementation, there 

may also be a "minus z~ro".) The value of p and the range of e depends on the implementation and on the 

type of floating-point number within that implementation. 

Implementation note: The form of the above description should notbe construed to require the internal representation to ~ 
in sign-magnitude form. Two's-compiement and other representations are also acceptable. Note that the radix of the 
internal representation may be other than 2, as on the IBM 360 and 370. which use radix 16; see short-fl oat-radix 
(page 143) and friends. 

Floating-point numbers may be provided in a variety of precisions and sizes, depending on the 

implementation. High-quality floating-point software tends to depend critically on the precise nature of the 

floating-point arithmetic. and so may not always be completely portable. To aid in writing programs that are 

moderately portable. however, certain definitions arc made here: 

e A short floating-point number is of the representation of smallest fixed precision provided by an 
implementation. 

eAlong floating-point numberis of the representation of the largest fixed precision provided by an 
implementation. 

e Intenncdiate between short and long fonnats are two others. arbitrarily called single and double. 

The precise definition of these categories is implementation-dependent However. the rough intent is that 

short floating-point numbers be precise at least to about five decimal places~ single floating-point numbers. at 

least to about seven decimal places: and double floating-point numbers, at least to about fourteen decimal 



18 CO~1\10N LISP REFER Er\CE MA:\CAL 

places. Therefore the following minimum requirelncnts aie suggested for these formats: the precision 
(measured in "bits", computed as p*log2b) and the exponent size (also measured in "bits", computed as the 

base-2 logarithm of one plus the maximum exponent value) must be at least as great as the values in Table 
3-2. 

Format 
Short 
Single 
Double 

l\1inimum Precision 
20 bits 
24 bits 
50 bits 

Minimum Exponent Size 
7 bits 
8 bits 
8 bits 

Table 3-2: Minimum Floating-Point Precision and Exponent Size Requirements 

In any given implementation the categories may overlap or coincide. For example, short might mean the 

same as single, and long might mean the same as double. 

Implementation note: Where it is feasible, it is recommended that an implementation provide at least two types of 
floating-point number, and preferably three. Ideally, short-format floating-point numbers should have an "immediate" 
representation that does not require consing, single-format floating-point numbers should approximate IEEE proposed 
standard single-format floating-point numbers, and, double-format floating-point numbers should approximate IEEE 

proposed standard double-format floating-point numbers [5, 2,3]. 

Floating point numbers are written in either decimal fraction or "computerized scientific" notation: an 

optional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal 

exponent specification. The decimal point is required, and there must be digits either before or after it; 

moreover, digits are required after the decimal point if there is no exponent spe~itier. The exponent specifier 

consists of an exponent marker, an optional sign, and a non-empty sequence of digits. For preciseness, here is 

a modified-BNF decriptionof floating-point notation. The notation "{x}*" means zero or more occurrences 

of "x", the notation "{x} + " means one or more occurrences of "x", and the notation "[x]" means zero or one 

occurrences of "x". 

floating-point-number:: = [sign] {digit}* . {digit}+ [exponent] I [sign] {digit} + . {digit}* exponent 
sign :: = + 1-
digit :: = 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 
exponent ::= exponent-marker [sign] {digit} + 
exponellt-marker:: = e 1 s 1 f 1 d 11 1 b 1 ElF lOIS I LIB 

Ifno exponent specifier is present, or if the exponent marker "e" (or hE") is used, then the precise format to 

be used is not specified. When such a floating-point, number represeIltation is read and converted to, an 

internal floating-point data object, the. fonnat specified by the variable read-defaul t-fl oat-format 

(page 237) is used; the in itial value of this variable is sin 9 1 e. 

The letters "s", ur', "d n
, and '·1" (or their respective upper-case equivalents) specify explicitly th'euse of 

short, single. double, and long format. respectively. The letters '·b" and "B" are reserved for future definition. 

For example: 



DATA TYPES 

0.0 
-.0 
O. 
O.OsO 
3. 1415926535897932384dO 
6.02E+23 
3.1010299957f-1 
-0.000000001s9 

. 3.1.4. Complex Numbers 

; Floating-point zero in default fonnat. 
; I\lso a finJting-point zero. 
; The integer zero, not a floating-point number! 
; A floating-poin t zero in short fonnat. 
; A double-fonnat approximation to w. 
; Avogadro's number, in default fom1at. 
; loglO 2, in single format. 
; e7r1 m short format, the hard way. 

19 

Complex numbers mayor may not be supported by a COMMON LISP implementation. They are 

represented in Cartesian fonn, with a real part and an imaginary part each of which is a non-complex number 

(integer, floating-point number, or ratio). It should be emphasized that the parts of a complex number are 

not necessarily floating-point numbers; in this COMMON LISP is like PL/I and differ~ from FORTRAN. In 

general, these identities hold: 

(eql (realpart (complex x y» x) 
(eql (imagpaEt (complex x y» y) 

Complex numbers may be notated by writing the characters "#C" followed by a list of the real and 

imaginary parts. (Indeed, "#C (a b)" is equivalent to "#, ( comp 1 ex a b)"; see the description of the 

function comp 1 e x (page 134).) 

For example: 

#C(3.0s1 2.0s-1) 
#C(5 -3) 
#C ( 5/3 7. 0 ). 
#C{O 1) 

; A Gaussian integer. 

; The imaginary unit 

??? Query: This notation is truly bletcherous. What would people think of adopting the notation suggested for API., namely 
to write the real and imaginary parts separated by .oJ" (or "j")? The above examples would then be written as 
.. 3 . 0 s 1 j 2 . 0 s -1 ", .. 5 j - 3", .. 5/3 J 7 . 0", and "0 J 1". N'ote particularly that the latter is a concise (three-character) 
notation for the imaginary unit i, much easier to type than .. #C (0 1)". 

Some implementations furthennore provide specialized representations of complex numbers for efficiency. 

In such representations the real part and imaginary part are of the same specialized numeric type. The "HC" 

construct will produce the most specialized representation that will correctly represent the two notated parts. 

The type of a specialized complex number is indicated by a list of the word comp' ex and the type of the 

components; for example, a specialized representation for complex numbers with short floating-point parts 

would be of type (complex short-float). The type complex encompasses all complex 

representations; the particular representcition that allows parts of any numeric' type is referred to as type 

(complex t). 

3.2. Characters 

Every character object has three attributes: code, bits, and fOllt. The code attribute is intended to 

distinguish among the printed glyphs and formatting functions for characters. The bit~ attribute allows extra 

flags to be associated with a character. The font attribute permits a specification of the style of the glyphs 



20 CO!vli'v10)\ LISP REFERF:\CE MA:\UAL 

(such as italics). Each of these attributes may be understood tc> be a non-negative integer. 

A character object can be notated by writing H#\" fol1owed by the character itself. For example, "#\ g" 

means the character object for a lower-case "g". 111is works weU enough for "printing characters". Non

printing characters have names, and can be notated by writing H#\ " and then the name; for example, 

"#\return" (or "#\RETURN" or "#\Return", for example) means the <return> character. The syntax for 

character names after H#\ " is the same as that for symbols, 

The font attribute may be notated in unsigned decimal notation between the "#" and the "\"," For 

example, #3 \A means the letter HA" in font 3. Note that not all COMMON LISP implementations provide for 

non-zero font attributes; see c h a r - f 0 n t - 1 i mit (page 145). 

The bits attribute may be notated by preceding the name of the character by the names or initials of the 

bits, separated by hyphens. The character itself may be written instead of the name, preceded if necessary by 

"\,'. For example: 

#\Control-Meta-Return 
#\Hyper-Space 
#\Control-A 
#\Meta-\{3 
#\C-M-Return 

Note that not all COMMON LISP implementations provide for non-zero' bits attributes; see 

c h a r - f 0 n t - 1 i mit (page 145). 

Any character whose bits and font attributes are zer9 may be contained in strings. All such characters 

together constitute a subtype of the characters; this subtype is called s tr i ng-char. 

3.3. Symbols 

Symbols are LISP data objects that serve several purposes and have several interesting characteristics. 

Every symbol has a name. called its prinL name, or pname. Given a symbol. one can obtain its name in the 

form of a string. More interesting, given the name of a symbol as a string one can obtain the symbol itself. 

(More precisely, symbols are organized into packages, and all the symbols in a package are uniquely identified 

by name.) 

Symbols have a component called the property list. or pUst. By convention this is always a list whose 

even-numbered component\) (calling the initial one component zero) are symbols, here functioning as 

property names, and whose odd~numbered components are associated property values.. Functions are 

provided for manipulating this property list;· in effect. these allow a symbol to be treated as an extensible 

record structure. 

Symbols are also used to represent certain kinds of variables in LISP programs. and there arc functions for 

dealing with the values associated with symbols in this role. r 

• 

• 

• 



D:\TA TYPFS 21 

A symbol can be notated simply by writing its name. If its name is not empty, and if the name consists only 

of upper-case alphabetic, numeric, or certain "pseudo-alphJbetic" special characters (but not delimiter 

characters such as parentheses or space), and if the name of the symbol cannot be mistaken for a number, 

then the symbol can be notated by the sequence of characters in its name. 

For example: 

FROBBOZ 
frobboz 
fRObBoz 
unwind-protect 
+$ " 

1+ 
+1 
pascal_style 
b .... Z-4·a·c 

;The symbol whose name is "FROBBOZ". 
; Another way to notate the same symbol. 
; Y ct another way to notatc it. 
; A symbol with a "-" in its name. 
;The symbol named "+$". 
; The symbol named "1+". 
; This is the integer 1, not a symbol. 
; This symbol has an underscore "in its name. 
; This is a single symbol! 

It has several special characters in its name. 
f; 1 e . r e 1 . 43 ; This symbol has periods in its name. 
/ us r / 9 arne s / z 0 r k ; This symbol has slashes in its name. 

Besides letters and numbers, the following characters are nonnally considered to be "alphabetic" for the 

purposes of notating symbols: 

+ - * / ! @ $ % .... & - = < > ? - . 

Some of these characters have conventional purposes for naming things; for example, symbols that name 

functions having extremely implementation-dependent semantics generally have names beginning with "%". 

The last character, " . ", is considered alphabetic provided that it does not stand alone. By itself, it has a role in 

the notation of conses. (It also serves as the decimal point.) 

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the LISP 

reader nonnally converts lower-case letters to the corresponding upper-case letters when reading symbols. 

The net effect is that most of the time case makes no difference when notating symbols. However, case does 
make a differencc internally and when printing. a symbol. Intcmal1y the symbols that name all standard 

COMMON LISP functions. variables, and keywords have upper-case names; their names appear in lower case 

in this document for readability. Typing such names in lower case works because the function read will 
convert them to upper case. 

If a symbol cannot be notated simply by the characters of its name, because the (internal) name contains 

special characters or lower-case letters. then there are two "escape" conventions for notating them. Writing a 

•• \" character before any character causes the charaCter to be treated itsel f as an ordinary character for use in a 

symbol name. If any character in a notation is preceded by \, then that notation can never be interpreted as a 

. number. 

For example: 



\( 
\+1 
+\1 
\frobboz 
3.14159265\sO 

- 3.14159265\SO 
3.1415926550 
APL\\360 
ap1\\360 
\(b ..... 2\)\ -\ 4*a*c 

CO\1:'vl0N LISP REFERF:\CE MANUAL 

; The symbol whose name is .. (". 
; The symbol whose name is "+ 1". 
; Also the symbol whose name is "+1". 
;The symbol whose name is "fROBBOZ". 
;The symbol whose name is "3.1415926550". 
; The symbol whose name is "3. 14159265S0". 
; A short-fonnat floating-point approximation to 'IT. 

; The symbol whose name is "APL \360". 
; Also the symbol whose name is "APL \360". 
; The name is "(B ..... 2) - 4*A*C". 

It has parentheses and two spaces in it. 

It may be tedious to insert a "\" before every delimiter character in the name of a symbol if there are many 

of them. An alternative convention is to surround the name of a symbol with vertical bars; these cause every 

character between them to be taken as part of the symbol's name, as if "\" had been written before each one, 

excepting only I itself and \, which must nevertheless be preceded by \. 

For example: 

I" I 
l(b ..... 2) - 4*a*cl 
Ifrobbozl 
IAPL\3601 

IAPL\\3601 
lapl\\3601 
1\ 1\ II 

3.4. Lists and Conses 

; The same as writing \ " . 
; The name is H( bA2) - 4*a*c". 
; The name is "frobboz", not "FROBBOZ". 
; The name is "APl360", because. 

the "\" quotes the "3". 
; The name is "APl \360". 
; The name is Hap 1 \360". 
; ~ame as \ I \ I : the name is "I I". 

A cons is a little record structure containing two components, called the car and the cdr. Conses are used 

primarily to represent lists. 

A list is recursively defined to be either the empty list (which is represented by the symbol nil, but can 

also be written as" ( )") or a cons whose cdr component is a list. A list is therefore a chain of conses linked by 

their cdr components and tenninated by nil. The car components of the conses are called the elements of 

the list For each clement of the list there is a cons. The empty list has no elements at all. 

A list is notated by writing the clements of the list in order, separated by blank space (space, tab, or return 

characters) and surrounded by parentheses. 

For example: 

(a b c) 
(2.0s0 (a 1) #\*) 

; A list of three symbols. 
; A list of three things: a short floating-point number, 

another list, and a character object 

This is why the empty list can be written as H ( )"; it is a list with no clements. 

A dOlled list is one whose last cons does not have ni 1 for its cdr, but some other data object (which is also 

not a cons, or the first-mentioned cons would not be the ·]ast cons of the list). Such a list is callcd"dotted" 



DATA.TYPES 23 

because of the special notation used for it: the clements of the list are written between parentheses as before, 

but after the last clement and before the right parenthesis are written a dot (surrounded by blank space) and 

then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between 

parentheses and separated by a space-surrounded dot. 

For example: 

(a . 4) 

(a be. d) 

; A cons whose car is a symbol 
and whose cdr is an integer. 

; A list with three elements whose last cons 
has the symbol d in its cdr. 

Compatibility note: In MACLISP, the dot in dotted-list notation needed not be surrounded by white space or other delimiters. 
The dot is required to be delimited in Lisp Machine LIsp. 

It is legitimate to write something like (a b . (c d ) ); this means the same as (a bed). The 

standard LISP output routines will never print a list in the first form, however; they will avoid dot notation 

wherever possible. 

Often the term list is used to refer either to true lists or to dotted lists. The term ·'true list" will be used to 

refer to a list terminated by nil, when the distinction is important. Most functions advertised to operate on 

lists will work on dotted lists and ignore the non-n i 1 cdr at the end. 

Sometimes the term tree is used to refer to some cons and all the other conses transitively accessible to it 

through car and cdr links until non-conses are reached; thesenon-conses are called the leaves of the tree. 

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply useful points of view 

about structures of conses. There are yet other terms, such as association list. None of these are true LISP data 

types. Conses are a data type, and n i' is the sole object of type n u' ,. The LISP data type 1 ; s t is taken to 

mean the union of the cons and null data types, and therefore encompasses both true lists and dotted lists. 

3.5. Arrays 

An array is an object with components arranged according to a rectilinear coordinate system. In general, 

these components may be any LISP data objects. 

The number of dimensions of an array is called its rank (this terminology is borrowed from APL). This is a 

non-negative integer; for convenj(;~nce. it is in fact required to be a fixnum (an integer of limited magnitude). 

Likewise. each dimension has a length that is a non-negative fixnum. The total number of clements in the 

array is the product of all the dimensions. 

It is permissible for a dimension to be zero. In this case, the array has no clements. and any attempt. to 

access an clement in in error. However. other properties of the array (such as the dimensions thennselves) 

may be used. If the rank is zero, then there arc no dimensions, and the product of the dimensions is then by 

definition 1. A zero-rank array therefore has a single clement 



24 CO\1\IO:,\ LISP REIERE)\;CE·l\fANUAL 

An array clement is specified by a sequence of indices. The length of the sequence must equal the rank of 

the array. Each index must be a non-negative integer strictly less than the corresponding array dimension. 

Array indcxing is therefore zero-origin. not one-origin as in (the default case of) FORTRAN. 

As an example. suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2, 

and then second index may be 0, 1, 2, 3, or 4. One may refcr to array clements using the function aref 

(page 185): 

(aref foo 2 1) 

refers to element (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as 

many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would 

take such an array and no indices, and retum the sole element of the array. 

One-dimensional arrays and lists are collectively considered to be sequences. They differ in that any 

component of a one-dimensional array can be accessed in constant time, while the average component access 

time for a list is linear in the length of the list; on the other hand, adding a new element to the front of a list 

takes constant time, while the same operation on an array takes time linear in the length of the array. 

In general, arrays can be multi-dimensional, can have jill pointers, can share their contents with other array 

objects, and can have their size altered dynamically after creation. 

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional 

array is stored as a one-dimensional array, with the multidimensional index sets ordered lexicographically, last 

index varying fastest This is important in two situations: (1) when arrays with different dimensions share 

their contents, and (2) when accessing very large arrays in virtual-memory implementation. (The first 

situation is semantic, the second pragmatic.) 

If for some purpose an array is needed that is one-dimensional, unshared with any other array, and is not to 

have its size increased later, one may request that a vector be created. A vector is a limited kind of array. 

Some implementations can handle vectors in an especially efficient manner. Any operation that works for an 

array works on a vector, but certain opera~ions such as vref (page 187) operate only on vectors and may 

therefore be made more efficient Moreover. vectors may have a more compact representation than typical 

arrays. 

A general vector (a one-dimensional array of S-expressions with no additional paraphernalia) can be 

notated by notating the components in order, separated by whitespace and surrounded by '"#(" and")". 

For example: 

#( abc) ; Avectof of length 3. 
#(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47) 

; A vector containing the primes below 50. 
#( ) ; An empty vector. 

Rationale: Numerc)Us people have !I'Uggested that square hrackets he used to notate vectors: "[ abc]" instead of "N (a b 
c) n. This would he shorter, perhaps more readahle. and certainly in accord with cultural conventions in other parts of 
computer scicnce and mathcmatics. Ilowever. to preserve lhc usefulness of the user-definahle macro-character feature of 



DATA TYPES 

the function read (page 237), il is necessary to leave some characlers to the user for this purpose. Experience in 
\1ACLlsP has shown that users. especially implcmentors of AI languages. often want to define special kinds of brackets. 
Therefore CO~MO)\; LIsP avoids using these characters in its syntax so that the user may frecly redefine their syntax: 
"[J{} ! 1". 

25 

Implementations may provide certain specialized representations of arrays for efficiency in the case where 

all the components are of the same specialized (typically numeric) type. /\11 implementations provide 

specialized arrays for the cases when the components are characters or when the components are always 0 or 

1; the one-dimensional instances of these specializations are respectively called strings and bit-vectors. Special 

. notations are provided for the further restriction of these types to the vector case. A string vector can be 

written as the sequence of characters contained in the string, preceded and followed by a """ ( double-quote) 

character. Any""" or .. \" character in the sequence must additionally have a "\" character before it. 

For example: 

" F 00 " ; A string with three characters in it. 
" " ; An empty string. 
"\ "APL \ \360?\" he cr; ed. " ; A string with twenty characters. 
" 1 x 1 = 1-x I " ; A ten-character string. 

Notice that any vertical bar" I" in a string need not be preceded by a"\". Similarly, any double-quote in 

the name of a symbol written using vertical· bar notation need not be preceded by a "\". The double-quote 

and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the 

sequence of characters, while vertical bars indicate a symbol whose name -is the contained sequence of 

characters. 

A bit-vector is written much like a string, using double-quotes; however, a "#" is written before it, and the 

elements of the bit vector must be 0 or 1. 

For example: 

#"10110" 
#"" 
#"110101000101000101" 

3.6. Structures 

; A bit vector with five bits. Bit 0 is 1. 
; A null bit vector. 
; Bit n of this bit vector is 1 iff n + 2 is prime. 

Different structures may print out in different ways~ the definition of a structure type may specify a print 

procedure to use for objects of that type (see the : pr; nter (page DEFSTRUCT-PRINTER-KWD) option 

to def s truct (page 199). The default notation for structures is: 

#S ( structure-name 
slot-name-I slot- value-l 
slut-name-2 slot- value-2 

... ) 
where "#S" indicates structure syntax, structure-name is the name (a symbol) of the structure type, each 

slot-name is the name (also a symbol) of a component, and each corresponding slol-value is the representation 

of the LISP object in that slot. 



----------------------------------------

26 CO\:EvIO:\ LISP REFERF;\CE :\1ANCAL 

3.7. Functions 

A junction is anything that may be correctly given to the funcall (page 64) or apply (page 

63) function, to be executed as code when arguments arc supplied. 

A subr (pronounced "subber") is a compiled code object. A closure is an object that represents an inner 

function together with environmental information about variable bindings of i~definite extent to which the 

. function may refer. 

A list whose car is 1 amb d a or s e 1 e c t may serve as a function; see Chapter 5. 

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the 

symbol's function cell to be used. See f symev a 1 (page 57). 

3.8. Randoms 

Objects of type random tend to have implementation-dependent semantics, and so may print in 
implementation-dependent ways. As a rule, such objects cannot reliably be reconstructed from a printed 

representation, and so they are printed usually in a format informative to the user but not acceptable to the 

rea d function: 

#<useful infonnation> 

A hypothetical example might be: 

#<stack-pointer si:rename-within-n~w-definition-maybe 311037552> 

The LISP reader will signal an error on encountering "#<". 

It is not necessarily the case that all objects that are printed in the form "#< ... >" are of type random; 
however, any object of type ran d om will be printed in that form. 

• 



Chapter 4 

Type Specifiers 

In COMMON LISP, types are named by LISP objects, specifically symbols and lists, called type specifiers. 
Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of 

simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways. 

4.1. Type Specifier Symbols 

The type symbols defined by the system include those shown in Table 4-l. In addition, when a ,structure 

type is defined using defstruct (page 199), the name of the structure type becomes a valid type symbol. 

Ifa type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type information. 

As a general convention, any subsidiary item may be replaced by *, or simply omitted if it is the last item of 

the list; in any of these cases the item is said to be unspecified. 

??? Query: Formerly ? was used to indicate an unspecified item, but that conflicted with the convention that the characters 
.. ! ? [J {}" should be reserved to the user for possible use as macro characters. Is this change satisfactory? 

4.2. Type Specifiers That Combine 

The fonowing type specifier lists define a data type in terms of other types or objects. 

null 
vector 
function 
number 
integer 
short-float 
complex 
subr 

(oneof object! objecl2 ... ) 

cons 
string 
sequence 
stream 
fixnum 
single-float 
ratio 
closure 

list 
bit-string 
random 
float 
bignum 
double-float 
readtable 

Table 4-1: Standard Type Specifier Symbols 

- 27-

symbol' 
array 
character 
string-char 
bit 
long-float 
package 



28 CO~I\10N LISP RlTERENCE \;IA~UAL 

This denotes the set containing precisely those objects named. An object is of this type if 
and only if it is eq 1 (page 49) to one of the specified objects. 

Compalihility note: This is approximately equivalent to what the INTERLISP DECL package caBs 
memq. What INTERUSP calls oneof, COMMON LIsp calls or (see below). 

( not type) This denotes the set of all those objects that are flot of the specified type. 

(or type/ type2 ... ) 
This denotes the union of the specified types. For example, the type 1 i s t by definition is 
the same as (or null cons). Also, the value returned by the function pos it; on· 
(page 163) is always of type (or null .(integer 0*» (either nil or a non-negative 
integer). 

Compatibility note: This is equivalent to what the INTER LISP DECL package calls oneof. 

(and type/ type2 ... ) 
This denotes the intersection of the specified types. 

Compatibility note: This is equivalent to what the INTERUSP DECL package calls a 11 of. 

4.3. Type Specifiers That Specialize 

Some type specifier lists denote specializations of data types named by symbols. These specializations may 

be reflected by more efficient representations in the underlying implementation. As an example, consider the 

type (a r r ay s h 0 r t - flo at) . Implementation A may choose to provide a specialized representation for 

arrays of short floating-point numbers, and implementation B may choose not to. 

If you should want to create a array for the express purpose of holding only short-float objects, you may 

optionally specify to make-array (page 183) the element type short-float. This does not require 

make-array to create an object of type (array short-float); it merely permilsit. The request is 

construed to mean "Produce the most specialized array representation capable of holding short-floats that the 

implementation can provide." Implementation A will then produce a specialized short-float array (of type 

( a r r ay s h 0 r t -; flo at», and implementation B will produce an ordinary array (one of type (a r ray 

t». 

If one were then to ask whether the array were actually of type ( a r r ay s h 0 r t - flo at), implementation 

A would say "yes", but implementation B would say "no", This is a property of make-array and similar 

functions: what you ask for is not necessarily what you get. 

Types can therefore be used for two different purposes: declaration and discrimination~ Declaring to 

make-array that clements will always be of type short-float permits optimization. Similarly. declaring 

that a variable takes on values of type (array short-float) amounts to saying that the variable will take 

on values that might be produced by specifying clement type short-float to make-array. On the other 

hand, if the predicate typep is used to test whethe~ an object is of type (array short-float),only 

object\) actual1y of that specialized type can satisfy the test: in implementation B no object can pass that test. 



TYPE SPECll'IERS 29 

The valid list- fOlmat names for data types are: 

(array type dimensions) 
This denotes the set of specialized arrays whose clements are all members of the type type 
and whose dimensions match dimensions. For declaration purpO::ies, this type encompasses 
those arrays that can result by specifying type as the clement type to the function 
make-array (page 183); this may be different from what the type means for 
discrimination purposes. type must be a valid type specifier or unspecified. dimensions 
may be a non-negative integer, which is the number of dimensions, or it may be a list of 
non-negative integers representing the length of each dimension (any dimension may be 
unspecified instead), or it may be unspecified. 

For example: 

(vector type size) 

(array integer 3) 
(array integer (* * *» 
(array * (4 5 6» 
(array character (3 *» 

(array short-float (» 

; Three-dimensional arrays of integers. 
; Three-dimensional arrays of integers. 
; 4-by-5-by-6 arrays. 
; Two-dimensional arrays of characters 
; that have exactly three rows. 
; Zero-rank arrays of short floating-point numb 

This denotes the set of specialized vectors whose elements are all members of the type type 
and whose lengths match size.· For declaration purposes, this type encompasses those 
vectors that can result by specifying type as the element type to the function 
make-vector (page 185): this may be different from 'what the type means for 
discrimination purposes. type must be a valid type specifier or unspecified. size may be a 
non-negative integer or unspecified. 

For example: 

(vector double-float) 
(vector * 5) 
(vector. t 5) 
(vector (mod 32) *) 

; Vectors of double-format floating-point numb 
; Vectors of length 5. 
; General vectors oflength 5. 
; Vectors of integers between 0 and 31. 

Note that (vector t 5) is a subset of {vector * 5). 

The specialized types (vector s tr i ng - ch ar) and ( vee to r bit) are so useful that 
they have the special names s t r i n g and bit - s t r i n g; every COMMON LISP 

implementation must provide distinct representations for these as distinct specialized data 
types. 

(eompl ex rtype i/ype) 

Rationale: NIL had been using the name b its for a bit vector. This tended to lead to awkward 
prose: one had to speak of "a bits". lbc ~ingular noun bit-vector is easier to discuss. 

Every clement of this type is a complex number whose real part is of type rtype and whose 
imaginary part is of type itype~ For declaration purposes, this type encompasses those 
complex numbers that can result by giving numbers of the specified type to the function 
comp 1 ex (page 134); this may be different from 'what the type means for discrimination 
purposes. 

In a break with the usual convention on omitted items. if il),peis omitted (but not if it is 
explicitly unspecified) then it is taken to be the same as rtype. As examples. Gaussian 



30 

integers might be described as (compl ex integer), and the result of the complex 
logarithm function might be described as being of type (complex float (float 
#.(- pi) #.pi}}. 

(funct i on (argl-fype arg2-lype ... ) valuel-type value2-1ype ... } 
This type may be used only for declaration and not for discrimination; typep (page 
46) will signal an error if it encounters a specifier of this form. Every element of this type is 
a function that accepts arguments at least of the types specified by the argj-type forms, and 
returns values that are members of the types specified by the va!uej-type forms. The 
&op~ i on a 1, &r est, and &k ey keywords may appear in either list of types; in the list of 
values, they indicate the parameter list of another function that, when given to mvca 11 
(page 82) along with the values, woiuld be suitable for receiving those values. As an 
example, the function cons (page 168) is of type (functi0n (t t) cons), because 
it can accept any two arguments and always returns a cons. It is also of type (funct ion 
( flo at s t r i n g) 1 i s t ), because it can certainly accept a floating-point number and a 
string (among other things), and its result is always of type 1 i st (in fact a cons and never 
null, but that does not matter for this type declaration). 

4.4. Type Specifiers That Abbreviate 

The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far 

too verbose to write out explicitly (using, for example, oneof). 

(i nteger low high) 
This denotes the in tegers between low and high. The limits low and high must each be an 
integer, a list of an integer, or unspecified. An integer is an inclusive limit, a list of an 
integer is an exclusive limit, and * means that a limit does not exist and so effectively 
denotes minus or plus infinity, respectively. The type f i xnum is simply a name for 
( i n t e g e r smallest largest) for implementation-dependent values of smallest and 
largest. The type ( i n t e g e r 0 1) is so useful that it has the special name bit. 

( rna d n) The set of non-negative integers less than n. This is equivalent to ( in t e g e rOn -J) or 
to (integer 0 (n». 

(s i gned-byte s) 
The set of integers that can be represented in two's-complement form in a byte of s bits~ 
This is equivalent to (integer _28

-
1 28

-
1_1). 

(unSigned-byte s) 
The set of non-negative integers that can be represented in a byte' of s bits. This is 
equivalent to· (mod, 28

), that.js, ( i ntege r O . . 2s,,:,"," 1). 

(rat iona1 low high) 
This denotes the' rationals between low and high.' l11e limits low and high must each be a 
rational. a list of a rational, or unspecified. A rational is an inclusive limit, a list of a 
rational is an exclusive limit, and * means that a limit docs not exist and so effective1y • 
denotes minus or plus infinity, respectively. 



T'{PE SPECIFIERS 31 

(float low high) 
The set of floating-point numbers between low and high. The limits low and high must 
each be a floating-point number, a list of a floating-point number, or unspecified; a 
floating-point number is an inclusive limit, a list of a floating-point number is an exclusive 
limit and * means that a limit does not exist and so effectively denotes minus or plus 
infinity, respectively. 

In a similar manner onc may use: 

(s hort -f1 oa t low high) 
(s; ng1 e-fl oat low high) 
(doub1 e-fl oat low high) 
(1 ong-f1 oat low high) 

In this case, if a limit is a floating-point number (or a list of one), it must be one of the 
appropriate format. 

(string size) This means the same as (vector string-char size): the set of strings of the 
indicated size. 

(b it-vector size) 
This means the same as (v e c tor b; t size): the set of bit-vectors of the indicated size. 

4.5. Derming. New Type Specifier~ 

New type specifiers can come into existence in two ways. First, defining a new structure type with 

defstruct (page 199) automatically causes the name of the structure to be a new type specifier symbol. 

Second, the deftype special form can be used to declare new abbreviations. 

deftype name varUst {form}* [Special form] 

This is very similar to a defmacro (page 91) form: name is the symbol that identifies the type 

specifier being defined, varUs! is similar in form to a lambda-list (and may contain&optional 

and &r est tokens), and body is the body of the expander function. If we view a type specifier list 

as a list containing the type specifier name and some argument forms,· the argument forms 

(unevaluatcd) are bound to the corrcsponding paramctcrs in varlisl. Thcn the body forms are 

evaluated as an implicitprogn, and the value of the last form is interpreted as a new type specifier 

for which the original specifier was an abbreviation. 

deftype differs from defmacro in that ifno illilform is specified foran &opt iona1 parameter, 

the default value is *, not nil. 

For example: 



----------------------c-----------------------------______ _ 

( de f ty perno d (n) (i n t e 9 e r 0 (, n ) ) ) 
(deftype list () '(or null cons» 

CO\1:\10N LISP REFEREi'iCE ~lANUAL 

(deftype square-matrix (&optional type size) 
(array ,type (,size ,size») 

(square-matrix short-float 7) means (array short-float (7 7») 
(square-matrix bit) means (array bit (* *» 

If the type name defined by deftype is used simply as a.type specifier symbol, it is interpreted as 

a type specifier listwith no argument forms. Thus, in the example above, square-matri x would 

mean (a r r ay * (* *», the set of two-dimensional arrays. This would unfortunately fail to 

convey the constraint that the two dimensions be the same; (square-matr i x bit) has the 
same problem. This is an inherent limitation of the type definition system in COMMON LISP. 

? ?? Query: Can this be fixed without too much hair? Should we have the INTERLISP sat; sf i e s clause? 



Chapter 5 

Program Structure 

In the previous chapter the syntax was sketched for notating data objects in COMMON LISP. The same 

syntax is used for notating programs, because all COMMON LISP programs have a representation as COMMON 

LISP data objects. 

5.1. Forms 

The standard unit of interaction with a COMMON LISP implementation is the form, which is s~ply an 

S-expression meant to be evaluated as a program to produce one or more values (which are also data objects). 

One may request evaluation of any data object, but only certain ones (such as symbols and lists) are 

meaningful fonns, while others (such as most arrays) are not Examples of meaningful forms are 3, whose 

value is 3, and (+ 3 4), whose value is 7. We write "3 => 3" and" (+ 3 4) => 7" to indicate these facts 

("=>" means "evaluates to"). 

Meaningful forms may be divided into three categories: self-evaluating forms. such as numbers; symbols, 

which stand for variables; and lists,. The lists in tum may be divided into three categories: special forms, 

macro calls, and function calls. 

5.1.1. Self-Evaluating Forms 

All numbers, strings, and bit-vectors are self-evaluating forms. When such an object is evaluated form. that 

object itself (or possibly a copy in the case of numbers) is returned as the value of the form. The empty list 

( ), which is also the false value n; 1, is also a self-evaluating form: the value of n; 1 is n; 1. Keywords 

(symbols written with a leading colon) also evaluate totryemselves: the value of : s tart is : start. 

5.1.2. Variables 

Symbols are used as names of variables in COMMON LISP programs. When a symbol is evaluated as a form, 

the value Of the variable it riames is produced. For example, after doing (s etq items 3). which assigns 

the value 3 to the variable named; terns, then; t,ems => 3. Variables can be assigned to (as by setq (page 

58» or bound. Anyp'rogram construct that binds a variable effectively saves the old value of the variable and 

causesit to have a new value. and on exit from the construct the old value is reinstated. 

- 33-



34 CO;\1.\10:\ IISP REFERENCE !vfANUAL 

There are actually two kinds of variables in COMMON LISP. called lexical (or stalic) variables and special (or 

dynamic) variables. At any given time either Of both kinds of variable with the same name may have a current • 

value. Which of the two kinds of variable is referred to when a symbol is evaluated depends on the context of 

the evaluation. The general rule is that if the sYlnbol occurs textually within a program construct that creates 

a binding for a variable of the same name, then the reference is to the kind of variable specified by the 

binding; if no such program construct textually contains the reference, then it is taken to refer to the special 

variable of that name. 

The distinction between the two kinds of variable is one of scope and access. A lexically bound variable 

can be referred to only by forms occurring at any place textually within the program construct that binds the 

variable. A dynamically bound (special) variable can be referred to at any time from the time the binding is 

made until the time evaluation of th'e construct that binds the variable terminates. Therefore lexical binding 

imposes spatial limitations on occurrences of references, whereas dynamic binding imposes temporal 

limitations. 

The value a special variable has when there are currently no bindings of that variable is called the global 

value of the variable. A global value can be given to a variable only by assignment, because a value given by 

binding by definition is not global. 

The symbols t and n ;, are reserved. One may not assign a value to t or n; , , and one may not bind t or 

n i 1. The global value of t is always t, and tbeglobal value of n i1 is always n i'. Constant symbols defined 

by de f con s t (page 44) also become reserved and may not be further assigned to or bound. 

Rationale: It would seem appropriate for the compiler to be justified in issuing a warning if one does a setq on a constant 
defined by defcons t. If one cannot assign, one should not be able to bind, either. 

5.1.3. Special Forms 

If a list is to be evaluated as a form, the first step is to examine the first element of the list. If'the first 

element is one of the ~ymbols appearing in Table 5-1, then the list is called a special fonn. (This use of the 

word "special" is unrelated to its use in the phrase "special variable".) 

Special fonns are generally environment and control constructs. Every special form has its own 

idiosyncratic syntax. An. example is the if special form: "( i f P (+ x 4) 5)" in COMMON LISP means 

what ""if p then x+4 else 5" would mean in ALGOL. 

The evaluation ora special form normally produces a value (but it may instead can for a non-local exit (see 

throw (page 87» or produce no values or more than one value (sec val ues (page 82)). 

The set of special forms is fixed in COMMON LISP: no way is provided· for the user to define morc. The 

user can create new syntactic constructe;, however, by defining macros. 

An implementation is free to implement as a macro any construct described herein as being a special fonn. 

Conversely, an implementation is free'to implement as a special form any construct described herein as being 



PROGR.\\t STRCCTURE 

defun (page 42) 
defvar (page 43) 
defconst (page44) 
an d (page 52) 
or (page 52) 
quote (page 56) 
funct i on (page 56) 
setq (page 58) 
ps etq (page 58) 
progn (page 64) 
prog 1 (page 65) 
prog2 (page 65) 
1 e t * (page 66) 
progv (page 67) 
cond (page 68) 
if (page 69) 
when (page 69) 
un 1 ess (page 70) 
case (page 70) 
typecase (page 70) 
do (page 73) . 
do* (page 75) 
do 1 i st (page 76) 
dot imes (page 76) 
prog (page 78) 
prog* (page 80) 

go (page 80) 
return (page 72) 
retu rn -from (page 72) 
mul tip 1 e-va 1 ue-l i st (page 82) 

mvca 11 (page 82) 
mvprog 1 (page 82) 

mul tip 1 e-va 1 ue-b i nd (page 82) 
multiple-value (page83) 
catch (page 85) . 
catch-all (page 85) 
unwi nd - a 11 (page 85) 
unwi nd-protect (page 86) 
throw (page 87) 
decl are (page 95) 
1 oca 11 y (page 96) 
the (page 99) 

do-symbol s (page 116) 
do-external-symbol s (page 116) 
do-internal-symbols (page 116) 
do-a ll-symbol s (page 116) 
wi th -open -f i 1 e (page 267) 
cond i t i on-b i nd (page 272) 

(The page numbers indicate where the definitions of these special forms appear.) 

Table 5-1: Names of All COMMON LISP Special Forms 

a macro, provided that an equivalent macro definition is also provided. 

5.1.4. Macros 

35 

If a fonn is a list and the first clement is not the name of a special form, it may be the name of a macro;if so, 

the form is said to bea macro call. A macro is essentially a function from forms to forms that will, given a call 

to that macro, compute a new form to be evaluated in place of the macro· call. (This computation is 

sometimes referred to as macro expansion.) For example, the macro named push (page 172) will take a form 

such as (p us h x s t a c k) and from that form compute a new form { set f s t a c k (c 0 n s x s t a c k) ) . 

We say that the old form expands into the new form. The new form is then evaluated in place of the original 

form; the value of the new form is returned as the value of the original form. 

There are a number of standard macros in COMMON LISP, and the user can define more by using 

defmacro (page 91). 

Macros provided by a COMMON LISP implementation as described herein may expand into code that is not 

portable among differing implementations. That is. a macro call may be implementation-independent by 



36 COM~'10N LISP REFEREI\CE MANUAL 

virtue ofbcing so defined in this document, but the expansion need not be. 

5.1.5. Function Calls 

If a list is to be evaluated as a form and the first element is not a symbol that names a spedal fonn or 

macro. then the list is assumed to be a junction call. The first element of the list is taken to name a function. 

Any and all remaining clements of the list are forms to be evaluated: one value is obtained from each fonn, 

and these values become the arguments to the function. 1be function is t.Qen applied to the arguments. The 

functional computation normally produces a value (but it may instead call for a non-local exit (see th row 

(page 87» or produce n.o values or more than one value (see va 1 ues (page 82»). If and when the function 

returns, whatever value(s) it returns becomes the value(s) of the function-call fOIm. 

For example, consider the evaluation of the form (+ 3 (* 4. 5». The symbol + names the addition 

function, not a special form or macro. Therefore the two forms 3 and (* 4 5) are evaluated to produce 

arguments. The form 3 evaluates to 3, and the form ( * 4 .5) is a function call (to the multiplication 

function). Therefore the forms 4 and 5 are evaluated,· producing arguments 4 and 5 for the multiplication. 

The multiplication function calculates the number 20 and returns it. The values 3 and 20 are then given as 

arguments to the addition function, which calculates and returns the number 23. Theerfore we say (+ 3 (. 

4 5» => 23. 

5.2. Functions 

There are two ways to indicate a function to be used in a function call fonn. One is to use a symbol that 

names the function. This use of symbols to name functions is completely independent of their use in naming 

special and lexical variables. The other way is to use a lambda-expression, which is a list whose first element is 

the symbol 1 amb d a. A lambda-expression is not a form; it cannot be meaningfully evaluated. Lambda

expressions and symbols as names of functions can appear only as the first element of a function-call form, or 

as the second element of the fun c t ; 0 n (page 56) special form. 

5.2.1. Named Functions 

A name can be given to a function in one of two ways. A global name can be given to a function by using 

the defun (page· 42) special form .. A local name can be given to a function by using the 1 abe 1 s (page 

67) special form. If a symbol appears as the first clement of a function-call fonn. then it refers to the 

definition established by the innermost 1 abe 1 s construct that textually contains the reference. or if to the 

global definition(if any) if there is no such containing 1 abe ls construct 

When a function is named. a lambda-expression is associated with that name (in effect). See defun (page 

42) and 1 a be 1 s (page 67) for an explanation of these lambda-expressions. 

• 



PROGI{:\\1 STRuCTliRE 37 

5.2.2. Lanlbda-Expressions 

1\ lambda-expression is a list with the following syntax: 

(1 ambda lambda-list . body) 

The first clement must be the symbol 1 ambda. 1be second element must be a list. It is called the lambda-list, 

and specifics names for the parameters of the function. When the function denoted by the lambda-expression 

is applied to arguments, the arguments are matched with the parameters specified by the lambda-list. The 

body may then refer to the arguments by I using the parameter names. The body consists of any number of 

forms (possibly zero). These forms are evaluated in sequence, and the value(s) of the last form only are 

returned as the value(s) of the application (the value nil is returned if there are zero forms in the body). 

The complete syntax of a lambda-expression is: 

{l ambda {{ var} * 
{[&opt ional {var I (var [init/onn [svar]])}*] [&rest var] 
I [&key {var I {{var I (keyword var)} [init/orm [svar]])}*]} 

[&aux {var I (var [init/orm])}*]) 
{( dec 1 are {declaration}*)}* 
lfonn}*) 

Each element of a lambda-list is either a parameter specifier or a separator token; separator tokens Begin with 

"&". In all cases var must be a symbol, the name of a variable, and similarly for svar also; each keyword must 

be a keyword symbol. An init/orm may be any form. 

A lambda-list has three parts, any or all of which may be empty: 

• Specifiers for the. required parameters. These are all the parameter specifiers up to the first 
separator token; if there is no such token, then all the specifiers are for required parameters. 

• Either optional and rest parameters or keyword parameters (but not both). 

o If the token &0 p t ion a 1 is present. the optional parameter specifiers arc those following the 
token· &op t i on a 1 up to the next separator token or the end of the list Following or 
instead of the &optional token and its following specifiers may be the token &rest 
followed by a single rest parameter specifier. 

o If the token &key is present, all specifiers up to the next separator token (which in this case 
must be '&a u x) or the end of the list are keyword parameter specifiers. 

• If the token &aux is present. all specifiers after it arc auxiliary variable specifiers. 

CompaHhility notc: What is provided here iii a subset of the func.tionality currently provided in Lisp Machine LISP. lne 
principal restrictions here are: 

• Keyword parameters may not be mixed with (positional) optional and rest parameters. lne rationale for not mixing 
keyword parameters and positional optionals is that it would be very awkward to define a function in such a way that 
one could nol specify any keyword parameters unless all positional optionals were specified. If the positional oncs 
are to be non-trivially optional. then all the keyword parameters should also be optional. and a'i a maller of style it 
would he better for all the optional parameters to havckeywords. (Wc know how to makc intcrlcavcd required and 
oplional positional parametcrs work. too. but as a maller of style we only allow optionals to follow required.) 'Inc 
rationale for not mixing kcyword and rcst parameters is less strong. and motivated primarily by a feeling of 



38 CO\:J:\IOr\ LISP REl·TRE:\CE I\'fANUAL 

awkwardness in letting more than one paramder receive the sari1C argument. If we allow that. then why not (&r es t 
x a b &0 P t i on ale d)? There may be aliasing problems: can we gllaranll'C, if a parameter is set q'd, that the 
corresponding pan of a &res t list will or will not bc correspondingly changed? 

• No keyword argument may be provided for which there is no matching keyword parameter. This is a logical 
consequence of not mixing keyword and rest parameters, and also greatly improves program readability: the 
lambda-list enumerates all relevant keywords. Is non-trivial usc made of &allow-extra-keywords in Lisp 
Machine LISP? 

How do people fecI about this? Lisp Machine LISP will run correct programs constructed according to the above 
specifications; it is a superset 

When the function represented by the lambda-expression is applied to arguments. the arguments and 

parameters are processed in order from left to right. In the simplest case, only required parameters are 

present in the lambda-list; each is specified simply by a name var for the parameter variable. When the 

function is applied, there must be exactly as many arguments as there are parameters. and each parameter is 

bound to one argument. Here, and in general, the parameter is bound as a lexical variable unless a 

declaration has been made that it should be a special binding (see decl are (page 95». 

In the more general case, if there are n required parameters (n may be zero), there must be at least n 

arguments, and the required parameters are bound to. the first n arguments. The other parameters are then 

processed using any remaining arguments. 

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments 

remain, then the parameter variable var is bound to the next remaining argument, just as for a required 

parameter. If no arguments remain, however, the initform part of the parameter specifier is evaluated, and the 

parameter variable is bound to the resulting value (or to n; 1 if no initform appears in the parameter 

. specifier). If another variable name svar appears· in the specifier, it is bound to true if an· argument was 

available, and to false if no argument remained (and therefore initfonn had to be evaluated). The variable 

svaris called a supplied-p parameter; it is not bound to an argument, but to a value indic.ating whether or not 

an argument had been supplied for another parameter. 

After all optional parameter specifiers have been processed. then there mayor may not be a rest parameter. 

If there is none. then there should be no unprocessed arguments (it is an error if there are). If there is a rest 
parameter, it is bound to a list of all as-yet-unprocessed arguments. (If no unprocessed arguments remain, the 

rest parameter is bound to the empty list) 

Instead of optional and rest parameters. keyword parameters may be specified instead. In that case. after an 

required parameters (and an equal number of arguments) have been processed, there must remain an even 

number of argumentc;; these are processed in pairs. the first argument in each pair being interpreted as a 

keyword name and the second as the corresponding value. No two argument pairs should have the same 

keyword name. 

In each keyword parameter specifier must be a name var for the parameter variable. If an explicit keyword 

is specified. that is the keyword name for the parameter. Otherwise the name var serves also as the keyword _ 

name, not of itself, but in that a keyword with the same name (in the keyword package) is used as the -



• 

PROGIC\\:I STRLCTLRE 39 

keyword. Thus 

(defun foo (&key radi x (type 'i nteger) ... ) 

means exactly the same as 

(defun foo (&key ((:radix radix» ((:type type) 'integer» ... ) 

For each keyword parameter specifier, if there is an argument pair whose keyword name matches that 

specifier's. keyword name, then the parameter variable for that specifier is bound to the second item (the 

value) of that argument pair. If no such argument pair exists, then the init/onn for that specifier is evaluated 

and the paramet~r variable is bound to that value (or to nil ifno init/onn was spec.ified). The variable svaris 
treated as for ordinary optional parame~ers: it is bound to true if there was a matching argument pair, and to 

false otherwise. It is an error if an argument pair has a keyword name not matched by any parameter 

specifier. 

After all parameter specifiers have been processed, the auxiliary variable specifiers (those following the 

token &aux) are processed from left to right. For each one the init/orm is evaluated and the variable var 
bound to that value (or to nil if no init/onn was specified). (Nothing can be done with &aux variables that 

cannot be done with the special form 1 e t (page 65). Which to use is purely a matter of style.)· 

As a rule, whenever any initform is evaluated for any parameter specifier, that form may refer to any 

parameter variable to the left of the specifier in which the initform appears, including any supplied-p 

variables, and may rely· on no other parameter variable having yet been bound (including. its own parameter 

variable). 

Compatibility note: At present, one cannot depend on this in Lisp Machine LISP for keyword parameters. It is the "obvious" 
generalization of the current state of affairs for optional parameters and aux variables. Opinions? 

Once the lambda-list has been processed, the forms in .the body of the lambda-expression are executed. 

These forms may refer to the arguments to the function by using the names of the parameters. On exit from 

the function. either by a normal return of the function's value(s) or by a non-local exit, the parameter 

bindings, whether lexical or special, are no longer in effect (but are not necessarily permanently discarded, for 

any such binding can later be reinstated only if a closure over that binding was created and saved before the 

exit occurrcd). 

Examplcs of &0 p t ion a 1 and &r est parameters: 



40 CO~1l\ION LISP REFERENCE \L\l\'UAL 

«lambda (a b) (+ a (* b 3») 4 5) => 19 
«lambda (a &optional (b 2» (+ a (* b 3») 4 5) => 19 
( ( 1 amb d a (a &0 p t ion a 1 (b 2» (+ a (* b 3») 4) => 10 
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list abc d x») 

=> (2 nil 3 nil nil) 
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 6) 

=> (6 t 3 nil nil) 
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 6 3) 

=> (6 t 3 ,t nil) 
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 

6 3 8) 
=> (6 t 3 t (8» 

«lambda (&optional (a 2 b) (c 3, d) &rest x) (list abc d x» 
6 3 8 9 10 11) 

=> (6 t 3 t (8 9 10 11» 

Examples of &key parameters: 

«lambda (a b &key c d) (list a b cd) ) 1 2) => (1 2 nil nil) 
«lambda (a b &key c d) (1 is t a b cd» 1 2 : c 6) => (1 2 6 nil) 
«lambda (a b &key c d) (list a b c d» 1 2 : d 8) => (1 2 ni 1 8) 
«lambda (a b &key c d) (list a b c d» 1 2 :c 6 :d 8) => (1 2 6 8) 
«lambda (a b &key c d) (list a b cd) ) 1 2 :d 8 :c 6) => (1 2 6 8) 
«lambda (a b &key c d) (1; s t a b cd) ) : a 1 :d 8 : c 6) => (: a 1 6 -8) 
«lambda (a b &key c d) (1 ist a b cd» : a :b : c : d) . 

=> (: a : b :d nil) 

The &opt ional, &res t, and &key paraineter specifiers are permitted. but not terribly useful, in lambda

expressions appearing explicitly as the first element of a function-call fonn. They are extremely useful, 

however. in functions given g~obal names by defun. 

5.2.3. Select-Expressions 

A select-expression is a list with the following syntax: 

(select {(keys lambda-list {(declare {declaration}*)}* lform}*)}*) 

This is a function computationally equivalent to a lambda-expression containing a cas e (page 70) form 

(assuming the variables key and args to be names not used in any specified lambda-list, declaration, or 

form): 

(lambda (key &rest args) 
(case key 

{( keys 
(app 1 y # t (1 ambda lambda-list 

{( dec 1 are {declaralion} * )}* 
(fonn}*) 

args) )}*» 

The function takes its first argument and dispatches on it to one of a set of sub-functions that can accept the 

remaining arguments. 

Actually, there is another type of clause that may appear (that would have made the above description too 

complicated had it been included in the syntacica] formula): if a s e 1 e c t clause is simply (keys symbol), 



PROGiC\\1 STRLCTCRE 41 

then symbo 1 is taken to be the name (that may be glo"baL or lexically bound by a 1 abe 1 s (page 67) or 

f 1 e t (page 67) constnlct) for a function to be called. In this case the natTIt~d function is given all the 

arguments giYcn to the select-function, not merely the arguments after the first onc. 

What makes s e 1 e c t so useful is· that the different sub-functions can accept the rest of the arguments in 

different ways, and that a good COMMON LISP compiler can easily produce better code for a s e 1 e c t -defined 

function than indicated by the usage of a p ply above. 

Compatibility note: This use of se 1 ect as a 1 ambda-iike keyword does not conflict with its use in Lisp Machine LIsp as the 
name of a special form. 

de f s e 1 e c t (page 42) is a convenient way of defining a globally named select-function. 

Select-functions are handy for defining message-passing protocols. For example, here is an "actor" 

implementation of cons (page 168): 

(defun qons (the-car the-cdr) 
#'(select (:car () the-car) 

(:cdr () the-cdr) 
(:rplaca (newvalue) (setq the-car newvalue» 
(:rplacd (newvalue) (setq the~cdr newvalue» 
(:consp () t») 

The result of the call ( q 0 n s 'a 5) is a functional object; call it x. Then 

(funcall x :cdr) => 5 
(funcall x :rplacd "Hello") => "Hello" 
(funcall x :cdr) => "Hello" 

One could then define 

(defun qar (x) (funcall x :car» 
(defun qdr (x) (funcall x :cdr» 
(defun rplaqa (x y) (funcall x :rplaca y» 
(defun rplaqd (x y) (funcall x :rplacd y» 
(defun qonsp (x) (funcall x :consp» 

to complete the "actor" simulation of the properties of a cons cell. 

5.3. Top-Level Forms 

The standard way for the user to interact with a COMMON LISP implementation is via what is 'called a 

read-evai-print loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk 

file), evaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk 

file). As a rule any fonn (evaluable S-expression) is acceptable. However. certain special forms are 

specifically designed to be convenient for use as top-level forms, as opposed to form embedded within other 

forms, as (+3 4) is embedded within ( ; f p (+ 3 4) 6). These top-level special forms may be used to 

define globally named functions, to define macros, to make declarations, and to define global values for 

special variables. 



42 CO\1\10' LISP RFrERI~:NCF \IANCAL 

5.3.1. Defining Named Functions 

defun name lambda-list {(declare {declaration}*)}* [doc-string] {jonn}* [Special 10 mz] 
Evaluating this special fonn causes the symbol name to be a global name for the function specified 

by the lambda-expression 

(1 ambda lambda-list {( decl are {declaration}*)}* (fonn}*) 

defined in the lexical environment in which the defun form was executed (because defun fonns 

normally app~ar at top level, this is nonna1ly the null lexical environment). 

If the optional documentation stririg doc-string is present (it may be present only if at least onefonn 

is also specified, as it is otherwise taken to be a !onn), then it is put on the property list of the 

symbol name under the indicator documentat i on (see putpr). By convention, if the string 

contains multiple lines then the first line should be a complete summarizing sentence on which the 

remainder expands. 

The body of the defined function is implicitly enclosed in a block (page 71) construct whose 

name is the same as the name of the function. Therefore return (page 72) and return-from 

(page 72) may be used to exit from the function. 

Other implementation-dependent bookkeeping actions may betaken as well by defun. The name 

is returned as the value of the de fun form. 

For example: 

(defun discriminant (a b c) 
(declare (number a be» 
"Compute the discriminant for a quadratic equation. 
Given a, b, and c, the value bA2-4*a*c is calculated. 
The quadratic ~quation a*xA2+b*x+c=O has real. multiple, 
or complex roots depending on whether this calculated 
value is positive, zero. or negative. respectively." 

(- (* b b) (* 4 a c») 
=> discriminant 
andnow ("discriminant 12/3 -2) => 76/9 

It is permissible to redefine a function (for example, to install a corrected version of an incorrect 

definition!). It is not permissible to define as a function any symbol in use as the name of a special 

fonn or, macro. To redefine a macro name as the name of a function, fmakunbound (page 

59) must first be applied to the symbol. 

??? Query: What do people think of this safety "feature? The error handler could offer to do the 
fmakunbound for you and rctry~ 

defselect name [doc-string] {(keys lambda-list {(declare {dec/aration}*)}* {jonn}*)}*[Special 

Evaluating this special form causes the symbol name to be a global name for a function, as for 

defun (page 42). The function is defined in the lexical envIronment in which the defsel eet 

. form was executed (becauscdefsel ect forms nonnally appear at top level. this is normally the 

null lexical environment). 



PROGRAM STRLCTLHE . 

The function defined is the result of evaluating a s e 1 e c t form 

(select {(keys lambda-list {(declare {declaraliofl}*)}* lform}*)}*) 

See Section SELECT-FUNCTIONS. 

Compatibility note: As defined here, this is incompatible with Lisp Machine LISP. 1be reason is the desire to 
define it in terms of case (page 70). This means that the default. fall-through case can always be specified by 
using tor otherwi se as the key, and that one can ac;sociate several keys with one sub-function by using a list 
ofkcys. Also, I haven't allowed for an automatic: wh; ch-oper at; ons method. Finally, here a doc-string is 
allowed. Is this all right. or should we revert to the Lisp Machine LIsp definition? 

5.3.2. Defining Macros 

43. 

Macros are usually defined by using the special form defmacro (page 91) .. This facility is fairly 

complicated, and is described in Chapter 8. 

5.3.3. Declaring Global Variables and Named Constants 

defvar name [initial-value [documentation]] [Special/onn] 
defvar is the recommended way to declare the use of a special variable in a progr;un. It is 
nonnally used only as a top-level form. 

(defvar vari.able) 

declares var i ab 1 e to be spec i a 1 (see decl are (page 95», and may perfonn other system

dependent bookkeeping actions. If a second "argument" is supplied: 

(defvar variable initial-value) 

then v ar i ab i e is initialized to the result of evaluating the fonn initial-value unless it already has a 
value. initial-value is not eyal\Jated unless it is used; this is useful if it does something expensive 

like creating a large data structurc. Thc initialization is performed by assignment, and so assigns 

the variable a global value unless there are currently special bindings of that variable. 

defvar should be used only at top level, never in function definitions. 

defvar also provides a good place to put a comment describing the meaning of the variable 
(whereas an ordinary spec; a 1 declaration offers the temptation to declare several variables at 

once and not have room to describe them all). This can be a simple LISP comment: 

(defvar tv-height 768) ;Height of TV screen in pixels. 

or. better yet. a third "argument" to defy ar, in which case various programs can access the 

docum entation: 

(defvar tv-height 768 "Height of TV screen in pixels") 

The documentation should be a string. 



44 COi\1\'ION LISP REFERENCE \'1:\NUAL 

de f can s t name initial-value [documentation] [Special fonn] 

defconst is similar to defvar, but declares a global variable whose value is "constant". An 

initial value is ahvays given to the variable. It is an error if there are currently any special bindings 

of the variable (but implementations mayor may not check for this). 

If the variable is already has a value, an error occurs unless the existing value is e qua 1 (page 

50) to the specified initial-value. 
Implementation note: Actually, a specific interaction should occur in which the user is asked whether it is 
permissible to alter the constant. Perhaps there should be some mechanism to discover who uses the constant. 

Rationale: defconst declares a constant, whose value will "never" be changed. Other code may depend on 
this fact On the other hand,defvar declares a global variable, whose value is initialized to something but will 
then be changed by the functions that use it to maintain some state. 

Once a symbol has been declared by defconst to be constant, any further assignment to or 

binding of that variable is an error. This is the case for such system~supplied constants as t (page 

45) and mos t-pos; t; ve-f i xnum (page 142). 



Chapter 6 

Predicates 

A predicate is a function that tests for some condition involving its arguments and returns n; 1 if the 

condition is false, or some non-n; 1 value if the condition is true. One may think of a predicate as producing 

a Boolean value, where nil stands for false and anything else stands for true. Conditional control structures 

such as cond (page 68), if (page 69), when (page 69), and unl ess (page 70) test such Boolean values. 

We say that a predicate is true when it returns a non-n i 1 value, and is false when it returns n; 1; that is, it is 

true or false according to whether the condition being tested is true or false. 

By convention, the names of predicates usually end in the letter "p" (which stands for "predicate"). 

The control structures that test Boolean values only test for whether or not the value is n; l, which is 

considered to be false. Any other value is considered to be true. A function that returns nil if it "fails" and 

some useful value when it "succeeds" is called a pseudo-predicate, because it can be used not only as a test but 

also for the useful value provided in case of success. An example of a pseudo-predicate is memb e r (page 

176). 

If no better non-n ; 1 value is available for the purpose of indicating success, by convention the symbol t is 

used as the "standard" non-false value. 

6.1. Logical Values 

n; 1 [Constant] 
The value ofn; 1 is always nil. This object represents the logical folse value and also the empty 

list It can also be written" ( )". 

[Constant] 
The value of t is always t. 

-45-



46 CO;\1:\fON LISP REFERE;\JCE :\1ANUAL 

6.2. Data Type Predicates 

Perhaps the most important predicates in LISP are those that deal with data types; that is, given a data 

object one can determine whether or not it belongs to a given type, or one can compare two type specifiers. 

6.2.1. General Type Predicate 

typep object &opt iona1 type [Function) 
(typep object type) is a predicate that is true if object is of type type, and is false otherwise. 

Note that an object can be "of' more than one type, since one type can include another. The type 
may be any of the type specifiers mentioned in Chapter 4 except that it may not be or contain a 

type specifier list whose first element is fun c t ion. 

(typep object) returns an implementation-dependent result: some type of which the object is a 

member. Implementations are encouraged to return the most specific type that can be 

conveniently computed and is likely to be useful to the user. It is required that if the argument is a 

named· structure created by defstruct then typep will return the name of that structure and 
not the symbol structure. Because the result is implementation-dependent, it is usually-better 

to use typep of one argument primarily for debugging purposes, and to use typep of two 

arguments or the typecase (page.70) special form in programs. 
111 Query: One-argument typep remains as a hangover fromMAcLISP. Unfortunately, any use of it in 
CoMMON LISP is unlikely to be ponable because COMMON LISP has many more data types than MAcusp. 
Moreover, the results of one-argument typep must be somewhat implementation-dependent even among 
CoMMON LISP implementations. Finally, it is not really a predicate. Perhaps the one-argument case should be 
split off and renamed to, say, type-of or %data-type? 

subtypep type/ type2 [Function) 
The two type specifiers are compared; this predicate is true iff type/ is a (not necessarily proper) 

subtype of type2. The arguments must be type specifiers that are acceptable to typep (page 46). 

6.2.2. Specific Data Type Predicates 

The following predicates arc for testing for individual data types. 

null object [Function] 
null is true if its argument is ( ) ~ and otherwise is false. This is the same operation perfonned by 

the function not (page 51); however, not is normally used to invert a Boolean value, while null 
is normally used to tcst for an empty list The programmer can therefore. express intent by the 

choice of function name. 

(null x) <=> (typep X· 'null) <=> (eq x '(» 



• 

PREDICATES 47 

symbo 1 P object [Function] 
symb 0 1 P is true if its argument is ,l symbol. and otherwise is false. 

(symbolp x) <=> (typep x 'symbol) 

atom object [Function] 
The predicate a t om is true if its argument is not a cons, and otherwise is false. It is the in verse of 

consp. Note that (atom '(» is true, because ( ) 5n;'. 

(atom x) <=> (typep x 'atom) <=> (not (typep x 'cons» 

consp object [Function] 
The predicate con s p is true if its argument is a cons, and otherwise is false. It is the in verse of 

atom. Note that (consp '(» <=> (consp 'n i 1) => ni 1. 

1 is tp object 

(consp x) <=> (typep x 'cons) <=> (not (typep x 'atom» 

Compatibility note: Some LISP imp lementations call this function p a ; r p or 1 ; s t p . The name p a ; r p was 
rejected for COMMON LISP because it emphasizes too strongly the dotted-pair notion rather than the usual 
usage of conses in lists. On the other hand, 1; s tp too strongly implies that the cons is in fact part of a list. 
which afte! all it might not be: moreover, ( ) is a list, though not a cons. The name consp seems to be the 
appropriate compromise. 

[Function] 
, i s t P is true if its argument is a cons or the empty list ( ), and otherwise is false. It does not check 

for whether the list is a "true list" (one terminated by n; l) or a "dotted list" (one terminated by a 

non-null atom). 

(listp x) <=> (typep x 'list) <=> (typep x '(cons nUll» 

Compatibility note: Usp Machine LISP defines 1; s t p to mean the same as p a ; r p, but this is under review. 
The definition given here is that adopted by NIL. . "..: ;'::'~. 

numberp object 
numb e r p is true if its argument is any kind of number. and otherwise is false. 

(numberp x) <=> (typep x 'number) 

i ntegerp object 
i ntegerp is true if it') argument is an integer, and otherwise is false. 

(i ntegerp 'x) <=> (typep x '; nteger) 

[Function] 

[Function] 

Compatibility notc: In MACLISP this is called f; x p. Users have been confused as to whether this meant 
";ntegerp" or "f; xnump", and so these names have been adopted here. 

rat i ona 1 p object [Function] 
rational p is true if its argument is a rational number (a ratio or an integer). and otherwise is 

false . 

(rationalp x) <=> (typep x 'rational) 

) 



--- -------~--------------,----------------------

48 COi\1.\10N LISP REFERENCE MANUAL 

floatp object [Function] 

fl oatp is talC ifits argument is a floating-point number, and otherwise is false. 

(floatp x) <=> (typep x 'float) 

complexp object [Function] 

. c omp 1 ex p is true if its argument is a complex number, and otherwise is false. 

(complexp x) <=> (typep x 'complex) 

characterp object [Function] 
characterp is true ifits argument is a character, and otherwise is false. 

(characterp x) <=> (typep x 'character) 

stri ngp object [Function] 
s t r i n 9 p . is true if its argument is a string, and otherwise is false. 

(stringp x) <=> (typep x 'string) 

vectorp object [~unction] 

vee tor p is true if its argument is a- vector, and otherwise is false. 

(vectorp x) <=> (typep x 'vector) 

arrayp object [Function] 
arrayp is true if its argument is an array, and otherwise is false. 

(arrayp x) <=> (typep x 'array) 

funct ionp object [Functiqn) 
fun c ti 0 n p is true if its argument is suitable for applying to arguments, using for example the 

fu n c a" or ap p' y function. Otherwise f unc t ion p is false. 

subrp object [Fullction] 
sub r p is true if its argument is any compiled code object, and otherwise is false. 

(subrp x) <=> (typep x 'subr) 

closurep object [Function] 
c los u rep. is true i fits argument is a closure, an d otherwise is false. 



PREDICATES 49 

6.3. Eq uality Pred icates 

COMMON LISP provides a spectrum of predicates for testing for equality of two objects: eq (the most 

specific), eql, equal, and equalp (the most general). eq and equal have the meanings traditional in 

LISP. eq 1 was added because it is frequently needed, and eq ua 1 p was added primarily to have a version of 

equa 1 that would ignore type differences when comparing numbers and case differences when comparing 

characters. If two objects satisfy anyone of these equality predicates, then they also satisfy all those that are 

more general. 

eq x y 

eql x y 

[Function] 
( e q x y) is true if and only if x and yare the same identical object. (Jrnplementationally, x and y 

are usually e q if and only if they address the same identical memory location.) 

It should be noted that things that print the same are not necessarily eq to each other. Symbols 

with the same print name usually are e q to each other, because of the use of the i n t ern (page 

112) function. However, numbers with the same value need not be e q, and two similar lists are 

usually not eq. 

For example: 

(eq 'a 'b) isfalse 
(eq 'a 'a) is true 
( e q 3 3) might be true or false, depending on the implementation 
( e q 3 3. O) is false 
(eq (cons 'a 'b) (cons 'a 'c)} isfalse 
( e q (c 0 n s 'a 'b) (c 0 n s 'a 'b)} is false 
(setq x '( a . b» (eq x x) is true 
(eq #\A #\A) might be true or false. depending on the implementation 
( e q "F 0 0 " " F 0 a ") is false 
(eq "FDD" "faa") is false 

Implementation note: eq simply compares the two pointers given it, so any kind of object that is represented in 
an "immediate" fashion will indeed have like-valued instances satisfy eq. On the PERQ, for example, fixnums 
and characters happen to "work". However, no program should depend on this, as other implementations of 
COMMON LISP might not use an immediate representation for these data types. 

[Function] 
111e eq 1 predicate is true if its arguments are eq, or if they are numbers of the same type with the 

same value (that is, they are = (page 118», or if they are character objects that represent the same 

character (that is. they are char= (page 148». 

For example: 



--------------~----------------------------------~--------------------------------------------

...... f 

50 

( e q 1 'a 'b) is false 
( e q 1 'a 'a) is true 
( ·e q 1 3 3) is true 
( e q 1 3 3. 0) is false 
( e q 1 (c 0 n s 'a 'b) (c 0 n s 'a 'c» is fal se 
( e q 1 (c 0 n s 'a 'b) (c 0 n s 'a 'b» is false 
( set q x '( a . b» (e q 1 x x) is true 
(eql #\A #\A) istrue 
( e q 1 " F 0 0 " "F 0 0 ") is false 
( e q 1 " F 00" "f 0 0 ") is false 

CO\I\100i LI~;P RFH:r~F;':CE \L\;--';UAL 

equal x y [Function] 
The e qua 1 predicate is true if its arguments are similar (isomorphic) objects. A rough rule of 

thumb is that two objects are e qua 1 if and only if ,their printed representations are the same. 

Numbers and characters are compared as for eq1. Symbols are compared as for eq. This can 

violate the rule of thumb about printed representations, but only in the case of two distinct symbols 

with the same print name, and this does not ordinarily occur. ' 

Objects that have components are e qua 1 if they are of the same type and corresponding 

components are e qua 1. This test is implemented in a recursive manner, and will fail to terminate 

for circular structures. For conses, equa 1 is defined recursively as the two cars being equa 1 and 

the two cdr's being equa 1. 

Two arrays are e qua 1 if and only if they have the same number of dimensions, the dimensions 

match, the element types match, and the corresponding components are equa 1. 

Compatibility note: In Lisp Machine LISP, equa·' ignores the difference between upper and lower case in 
strings. This violates the rule of thumb about printed representations, however, which is very useful, especially 
to novices. It is also inconsistent with the treatment of single characters, which are represerited as fixnums. 

Two pathnames are equa 1 iff corresponding components (host, device, and so on) are equivalent 

Whether or not case is considered equivalent in strings depends on the file name conventions of the 

. file system. The intent is that pathnames that are equa 1 should be functionally equivalent 

For example: 

(equal 'a 'b) is false 
( e qua 1 'a 'a) is true 
(equal 3 3) is true 
( e qua 1 3 3. 0) is false 
( e qua 1 (c 0 n s '~ 'b) (c 0 n s . 'a 'c» is false 
( e qua 1 (c 0 n s 'a 'b) (c 0 n s 'a 'b» is true 
( set q x '( a . b» (e qua 1 x x) is true 

. (equa 1 #\A #\A) is true 
(equal "Foo" "Foo") istrue 
(equal "FOC" "foo") is false 

To recursively compare only conses, and compare all atoms using eq, usc tree -equa 1 (page 

168). 



PRl J)IC-\ TES 51 

equalp x y &optional fuzz [Fullction] 
Two objects arc equa 1 p if they are eql, if they are characters and differ only in alphabetic case 

(that is, they are char-equal (page 148», if they arc numbers and have the same numerical 

value, even if they arc of different types, or if they have components that are all equa 1 p. When 

comparing floating-point numbers, or comparing a floating-point number to any other kind of 

number, the optional argument/uzz is used; in effect the function fuzzy= (page 120) is used to 

perform such comparisons. 

Objects that have components are e qua 1 p if they are of the same type and corresponding 

components are e qua 1 p. T~is test is implemented in a recursive manner, and will fail to terminate 

for circular structures. For conses, equalp is defined recursively as the two cars being equal p 

and the two cdr's being equa 1 p. 

Two arrays are equa 1 p if and only if they have the same number of dimensions, the dimensions 

match, the element types match, and the corresponding components are e qua 1 p. 
??? Query: How about eliminating the clause .. the element types match" from the above specification? This 
would allow a string and a general array that happens to contain characters to be e qua 1 P. for example. 

For example: 

( e qua 1 p 'a 'b) is false 
( e qua 1 p 'a t a) is true 
( e qua 1 p 3 3) is true 
( e qua 1 p 3 3. 0) is true 
( e qua 1 p (c 0 n s 'a 'b) ( con s 'a 'c » is false 
( e qua 1 p (c 0 n s 'a 'b) (c 0 n s 'a • b» is· true 
( set q x t (a . b» (e qua 1 p x x) is true 
(equa1p #\A #\A) istrue 
(equal p "'Foo" "Foo") is true 
( e qua 1 p " F 00" "f 0 0 ") is true 

6.4. Logical Operators 

COMMON LISP provides three operators on Boolean values: and, or, and not. Of these, and and or are 

also control structures, because their' arguments are evaluated conditionally. not necessarily examines its 

single argument, and so is a simple function. 

not x [Function] 
not returns t if x is nil, and otherwise returns nil. It therefore inverts its argument, interpreted 

as a Boolean value. 

null (page 46) is the same as not: both functions are included for the sake of clarity. As a matter 

of sty Ie, it is customary to use n u 11 to check whether something is the empty list. and to use not 

to invert the sense of a logical value. 



52 CO\1:\10:\ LISP RrTl]U',~(T \1A;\L';\L 

an d {fonn}* [Specialfarm] 

(and fo111l1 form2 ... ) evaluates each form, one at a time, from left to right. If any form 

evaluates to nil, an d immediately is false without evaluating the remaining .forms. If every form 

but the last evaluates to a non-n i 1 value, and returns whetever the last form returns. Therefore in 

general and can be used both for logical operations, where nil stands for false and non-n i 1 

values stand for true, and as a conditional expression. 

For example: 

(if (and (>= n 0) 
(lessp n (length a-vector» 
(eq (vref a-vector n) 'fool) 

(prine "Foo!"» 

The above expression prints "Foo!" if element n of a-vector is the symbol foo, provided also 

that n is indeed a valid index for a - vee tor. Because and guarantees left-to-right testing of its 
parts, vref is not perfonned if n is out of range. (In this example writing 

(and (>= n 0) 
(lessp n (length a-vector» 
(eq (vref a-vector n) 'fool 
(prine "Foo!"» 

would accomplish the same thing; the difference is purely stylistic.) - Because of the guaranteed 
left-to-right ordering, an d is like the and then operator in ADA, or what in some PASCAL-like 
languages is called cand, rather than the and operator. 

See also if (page 69) and when (page 69), which are sometimes stylistically more appropriate 
than and for conditional purposes. 

From the general definition, one can deduce that (and x) <=> x. Also, (and) is true, which is 

an identity for this operation. 

and can be defined in tenns of cond (page 68) as follows: 

(and x y z .~. w) <=> (cond «not x) nil) 
( ( no t y) nil) 
«not z) nil) 

(t w» 

or lfonn}* 

(or forml fonn2 
[Special fonn] 

) evaluates each form, one at a time, from left to right. If any fonn 

evaluates to something other than, nil, 0 r immediately returns it without evaluating the remaining 

forms. If every form but the last evaluates to nil, 0 r returns whatever evaluation of the last of the 

forms returns. Therefore in general or can be used both for logical operations, where nil stands 
for false and non-n i 1 values stand for true, and as a conditional expression. Because of the 

guaranteed left-to-right ordering. or is like the or else operator in ADA, or what in some 
PASCAl,-like languages is called cor, rather than the or operator. 

See also if {page 69} and un 1 ess (page 70), which are sometimes stylistically more appropriate 



PREDICATES 53 

than 0 r for conditional purposes. 

From the general definition, one can deduce that (or x) <=> x. Also, (or) is false, which is the 

identity for this operation. 

or can be defined in tenns of cond (page 68) as follows: 

(or x y z ... w) <=> (cond (x) (y) (z) ... (t w» 



54 CO\C\10!\ LISP RHTJ,E:';Cl: ;v1A:"LAL 

• 



. Chapter 7 

Control Structure 

LISP provides a variety of special structures for organizing programs. Some have to do with flow of control 

(control structures), while others control access to variables (environment structures). Most of these features 

are implemented either as special forms or as macros (which typically expand into complex program 

fragments involving special forms). 

Function application is the primary method for construction of LISP programs. Operations are written as 

the application of a function to its arguments. Usually, LISP programs are written as a large collection of small 

functions, each of which implements a simple operation. These functions operate by calling one another, and 

so larger operations are defined in terms of smaller ones. LISP functions may call upon themselves 

recursively, either directly or indirectly. ' 

LISP, while more applicative in style than statement-oriented, nevertheless provides many operations which 

produce side-effects, and consequently requires constructs for controlling the sequencing of side-effects. The 

construct progn (page 64), which is roughly equivalent to an ALGOL begin-end block with all its semicolons, 

executes a number of fOlms sequentially, discarding the values of all but the last Many LISP control 

constructs include sequencing implicitly, in which case 'they are said to provide an "implicit progn". Other 

sequencing constructs include progl (page 65) and prog2 (page 65). 

For looping, COMMON LISP provides the general iteration facility do (page 73), as well as a variety. of 

special-purpose iteration facilities for iterating or mapping over various data structures. 

COMMON LISP provides the simple one-way conditjonals when and un 1 ess, the simple two-way 

conditional if. and the more general multi-way conditionals such as con d and s e 1 e c t q. l11e choice of 

. which form to use in ~ny particular situation is a ma~ter of taste and style. 

Construcl() for performing non-local exits with various scoping discipJines arc provided:· b lock (page 71), 

return (page 72). catch (page 85). and throw (page 87). 

The multiple-value constructs provide an efficient way fora function to return more than one value; see 

va 1 ues (page 82). 

- 55-



56 CO\1\100i LI~;P REFERF\CE \L':\LAL 

7.1. Constants and Variables 

7.1.1. Reference 

quote object [Specialfonn] 
(quote x) simply returns x. The argument is not evaluated. and may be any LISP object. This 

construct allows any LISP object to be written as a constant value in a program. 

For example: 

(setq a 43) 
(list a (cons a 3» => (43 (43.3» 
(list (quote a) (quote (cons a 3» => (a (cons a 3» 

Since quote forms are so frequently useful but somewhat cumbersome to type, a standard 

abbreviation is defined for them: any form preceded by a single quote ( , ) character is assumed to 

have " ( quo t e ) ~' wrapped around it. 

For example: 

function fn 

(setq x '(the magic quote hack» 
is normally interpreted when read to mean 

(setq x (quote (the magic quote hack») 

[Special fonn] 
The value of funct ion is always the functional interpretation of fn; fn is interpreted as if it had 

appeared in the functional position of a function invocation. In particular, if fn is a symbol, the 

functional value of the variable whose name is that symbol is returned. If fn is a lambda expression 

or select expression, then a lexical closure is returned. 

Since funct i on forms are so frequently useful (for passing functions as arguments to other 

function) but somewhat cumbersome to type, a standard abbreviation is defined for them: any 

form preceded by a sharp sign and then a single quote (#' .) is assumed to have "( funct ion )" 

wrapped around it. 

For example: 

(remove~if U'numberp '(1 a b 3» 
is normally interpreted when read to mean 

(remove-if (function numberp) '(1 a b 3» 

c los ure varUst function [Function] 
The function closure creates and returns a closure of the junction over the special variables 

mentioned in the varUsl. 

The varUst must be a list of symbols. The function may be any functional object. The current 

bindings of the special (not lexical) variables named by the symbols are collected into a closure 

. object along with the function. When the closure is invoked as a function. the saved bindings are 

fe-established. and then fUf1cliOll is invoked. The saved binding of a special variable is "shared" • 



· CO~~TROL STRCCTLRE 57 

with the current binding and with any other closures over the same variable binding; by "shared" it 

is meant that an assignment to one (via setq (page 58) or set (page 58» is reflected in the 

others. 

syrneva 1 symbol [Function] 
symeva 1 returns the current value of the dynamic (special) variable named by symbol. An error 

occurs if the symbol has no value: see boundp (page 57) and makunbound (page 59). 

syme va.l cannot access the value of a local (lexically bound) variable. 

This function is particularly useful for implementing interpreters for languages embedded in LIsp. 

The corresponding assignment primitive is se t (page 58). 

fsymeval symbol [Function] 
f s yme val returns the current global function definition named by symbol. An error occurs if the 

symbol has no function definition; see fboundp (page 57). Note that the definition may be a 

function, or may be an object representing a special form or macro. See rna c r 0 - p (page 57) and 

s pee i a 1 - for m - p (page 57). 

f s yme val cannot access the value of a local function name (lexically bound as by f 1 e t (page 

67) or 1 abe 1 s (page 67». 

This function is particularly useful for implementing interpreters for languages embedded in LISP. 

The corresponding assignment primitive is f set (page 59). 

boundp symbol 
fboundp symbol 

[Function] 
[Function] 

boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns 

nil. f b 0 u n dp is the analogous predicate for the global function definition named by symbol. 

See also set (page 58), fset (page 59), makunbound (page 59), and frnakunbound (page 

59). 

macro-p symbol [Function] 
special-form-p symbol [Function] 

The function rnacro-p takes a symbol. If the symbol globally names a macro, then the expansion 

function (a function of one argument, a macro-call form) is returned: otherwise nil is returned. 

rlne function spec i a l-Jorm-p also takes a symbol. If the symbol globally names a special fonn 

(example: quote (page 56», then a non-n i 1 value is returned, typically a function of 

implementation-dependent nature that can be used to interpret a special form: otherwise nil is 

returned. 

It is possible filr both macro-p and special-form-p to he true ofa symbol. This can arise 

because an implementation is free lo implement any macro also as a special form for speed. On the 



58 ('0\11\10:'\ USP RU:F1U::-:CI: \lANCAL 

other hand. the macro definition must also be available for usc by programs that understand only 
the standard special fonns listed in Tahle 5-1. . 

7.1.2. Assignment 

setq {var form}* [Special fom1] 
The special form (setq var! form! var2 form2 ... ) is the "simple variable assignment 
statement" of l..,isp. First forml is evaluated and the result is assigned to var!, then form2 is 

evaluated and the result is assigned to var2, and so forth. The variables are represented as symbols, 
of course, and are interpreted as referring to static or dynamic instances according to the usual 
rules. set q returns the last value assigned, that is, the result of the evaluation of its last argument. 
As a boundary case, the form (s e t q) is legal and returns nil. As a rule there must be an even 
number of argument forms. 

For example: 

(setq x (+ 3 2 1) Y (cons x nil» 

x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment was 
performed before the second form was evaluated, allowing that form to use the new value of x: 

See also the description of setf (page 60), which is the "general assignment statement", capable of 
assigning to variables, array elements, and other locations. 

psetq. {var form}* [Special form] 
A psetq form is just like a setq fonn, except that the assignments happen in parallel; first all of 
the forms are evaluated, and then the variables are set to the resulting values. The value of the 
psetq form is n; 1. 

For example: 

(setq a 1) 
(setq b 2) 
(psetq a b b a) 
a => 2 
b => 1 

In this example, the values of a and b are exchanged by using parallel assignment (Note that the 
do (page 73) iteration construct performs a very similar thing when stepping iteration variables.) 

set symbol value [Function] 
set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable 
named by symbol to take on value as itc; value. Only the value of the curreflt dynamic binding is 
altered; if there arc no bindings in effect, the most global value is altered. 

For example: 

( set (i f (e q a b) 'c 'd) , f 00 ) 



CO:\TROL STl~CCTLRr: 59 

\vill either set c to foo or set d to f 00, depending on the outcome of the test (eq a b). 

Both functions return value as the result value. 

scI cannot alter the value ofa local (lexically bound) variable. 'n1e special form setq (page 58) is 

usually used for altering the values of variables (lexical or dynamic) in programs. set is 

particularly useful for implementing interpreters for languages embedded in LISP. See also progv 

(page 67), a construct which perfonns binding rather than assignment of dynamic variables. 

fs et symbol value [Fullction] 
f set allows alteration of the global function definition named by symbol to be value. f set 

returns value. 

fset cannot alter the value of a local (lexically bound) function definition, as made by fl et (page 

67) or 1 abe 1 s (page 67). f set is particularly useful for implementing interpreters for languages 

embedded in LISP. 

rnakunbound symbol 
frnakunbound symbol 

[Function] 
[Function] 

rna k u n b a u n d causes the dynamic (special) variable named by symbol to become unbound (have 

no value). frnakunbound does the analogous thing for the global function definition named by 

symbol. 

For example: 

·(setq a 1) 
a => 1 
(makunbound 'a) 
a => causes an error 
(defun foo (x) (+ x 1» 
(foo 4) => 5 
(fmakunbound 'faa) 
( f 00 4) => causes an error 

Both functions return symbol as the result value. 

7.2. Generalized Variables 

In LISP, a variable can remember one piece 9f data. a I JSP object. The main operations on a variable are to 

recover that piece of data, and to alter the variable to remember a new object; these operations are often 

called access and update operations. The concept of variables named by symbols can be generalized to any 

storage location that can remember one piece of data. no matter how that location is named. Examples of 

such storage locations are the car and cdr of a cons, clements of an array,and components of a structure. 

For each kind of generalized variable, there are typically two functions which implement the conceptual 

access and update operations. For a variable. merely mentioning the name of the variable accesses it, while 

the setq (page 58) special form can be used to update it. The function car (page 167) accesses the carofa 



60 CO\l\100i LISP JZITI"RL\CE !'\,tANUAL 

cons, and the function r p 1 a c a (page 174) updates it. The function are f (page 185) accesses an array 

clement, and the function as et (page 185) updates it. 

Rather than thinking about two distinct functions that respectively access and update a storage location 

somehow deduced from their arguments, we can instead simply think of a call to the access function with 

given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage 

location (a variable), so (c ar x) is a name for the car of some cons (which is in turn named by x), and 

(aref a 105) is a name for element 105 of the array named a. Now, rather than having to remember two 

functions for each kind.of generalized variable (having to remember, for example, that aset corresponds to 

are f), we adopt a uniform syntax for updating storage locations named in this way, using the set f special 

form. This is analogous to the way we use the setq special form to convert the name ofa variable (which is 

also a form which accesses it) into a fonn which updates it. The uniformity of this approach may be seen 

from the following table: 

Access function Update function Update using set f 
x (setf x newvalue) 
(car x) 
(aref a 105) 
(nth n x) 

(setq x newvalue) 
(rplaca x newvalue) 
(a~et newvalue a 105) 
(setnth n x newvalue) 

(setf (car x) newvalue) 
(setf (aref a 105) newvalue) 
(setf (nth n x) new~alue) 

set f is actually a macro that examines an access fonn and expands into the appropriate update function. 

set f place newvalue [Macro] 
setf takes a fonn place that when evaluated accesses a data object in some location, and "inverts" 

it to produce a corresponding form to update the location. A call to the set f macro therefore 

expands into an update fO,rm that stores the result of evaluating the" form newvalue into the place 

referred to by the access-form. 

For example: 

(setf a 3) ==> (setq a 3) 
( set f (p 1 i s t 'a).' ( f 0 0 ba r » = = > (s e t p 1 ; s t 'a '( f 0 0 bar» 
(setf (aref q 2) 56) ==> (aset 56 q 2) 
(setf (cadr w) x) ==> (rplaca (cdr w) x) 

The form place may be anyone ef the fonowing: 

• The name of a variable (either lexical or dynamic)~ 

.A function call form whose first element is the name of anyone of the following 
functions: 

"car (page 167) 
cdr (page 167) 
caar (page 167) 
cdar (page 167) 
cadr (page 167) 
cddr (page 167) 
caaar (page 167) 
cdaar (page 167) 

caaaar (page 167) 
cdaaar (page 167) 
cadaar (page 167) 
cddaar (page 167) 
caadar (page 167) 
cdadar (page 167) 
caddar (page 167) 
cdddar (page 167) 

cadddr (page 167) 
cddddr (page 167) 
e 1 t (page 157) 
nth (page 169) 
vref (page 187) 
are! (page 185) 
symeval (pageS7) 
f symev a 1 (page 57) • 



CO:\THOL STRCCTLRE 

cadar (page 167) 
cd da r (page 167) 
caadr (page 167) 
cdadr (page 167) 
caddr (page 167) 
cdddr (page 167) 

caaadr (page 167) 
cdaadr (page 167) 
cadadr (page 167) 
cddadr (page 167) 
caaddr (page 167) 
cdaddr (page 167) 

getpr (pagel02) 
gethash (p3ge 182) 
p 1 is t (page 103) 

• A function call form whose first clement is the name of a selector function constructed 
by defs truct (page 199). 

• A function call form whose first element is the name of anyone of the following 
functions, provided that the new value is of the specified type so that it can be used to 
replace the specified ·'location" (which is in each of these cases not really a truly 
generalized variable): 

Function name 
char (page 191) 
bit (page 187) 
sub s eq (page 157) 

Required type 
string-char 
(mod 2) 
sequence 

Update function used 
rp 1 ach ar (page 192) 
rp 1 acb it (page 187) 
rep 1 ace (page 160) 

• A function call form whose first element is the name of anyone of the following 
functions, provided that the specified argument to that function is in turn a place form; 
in this case the new place has stored back into it the result of applying the specified 
"update" function (which is in each of these cases not a true update function): 

Function name Argument that is a place 
char-b it (page 152) First 
1 db (page 139) Second 
mask -f i e 1 d(page 140) Second 

Update function used 
set - ch ar-b it (page 152) 
dp b (page 140) 
deposit-fiel d (page 140) 

• A call on ge t f (page 103), in which. case (set f (get f x y) z) expands into 
(putf x Y z). 

• A the (page 99) type declaration form. in which case the declaration is transferred to 
the newvalue form. and the resulting setf form is analyzed. For example, 

(setf (the integer (cadr x» (+ y 3» 

is processed as if it were 

(setf (cadr x) (the integer (+ y 3») 

• A macro call, in which case the macro can is expanded and set f then analyzes the 
resulting form. 

61 

setf carefullyarrahges to preserve.the usualleft-to-right order in wAich. the varK>Us subforms arc 

evaluated. For example, 

(setf (aref (compute-an-array) 105) (compute-newvalue» 

docs not expand precisely into 

(aset (compute-newvalue) (compute-an-array) 105) 

lest side crrcct~ in the computations ( compute- an - ar ray) and (compu te- newv a 1 ue) occur 



62 COl\1\IO~ LISP RHTRE\CT \1Al'\LJAL 

in the wrong order. Instead this example will expand into something more like 

(let «Gl (compute-an-array» 
(G2 105) 
(G3 (compute-newvalue)}) 

(aset G3 Gl G2» 

The exact expansion for any particular form is not guaranteed and may even be implementation

dependent: all that is guarantecd is that the expansion of a set f-form will be an update form that 

works for that particular implementation, and that the left-to-right evaluation of subforms is 

preserved. 

CompaHbility note: Lisp Machine LISP, at least, officially docs not preserve the order of evaluation, but also 
seems to regard this as a bug to be fixed. What shall COMMON LISP do? 

The ultimate result of evaluating a setf form is the value of newvalue. (Therefore (setf (car 

x) y) does not expand into precisely (r p 1 a c a x y), but into something more like 

(let ({G1x) (G2 y» (rplaea x y) y) 

the precise expansion being implementation-dependent) 

The user can define new setf expansions by using defsetf (page DEFSETF-FUN). 

swapf place newvalue [Macro] 
The datum in place is replaced by newvalue, and then the old value of place_is returned. The form 

place.may be any form acceptable as a generalized variable to setf (page 60). 

For example: 

(setq x '(a be» 
(swapf (cadr x) 'z) => b 

and now x => (a z e) 

The effect of (swapf place newvalue) is roughly equivalent to 

(p rog 1 place (set f place newvalue» 

except that the latter would evaluate any subfonns of place twicc, while swapf takes care to 

evaluate them only once. 

For c"ample: 

(setq n 0) 

but 

(setq x '(a bed» 
(swapf {nth (setq n (+ n 1» x) 'z) => b 

and now x => (a i e d) 

(setq n 0) 
(setq x t(a bed» 
(progl (nth (setq n (+ n 1» x) . 

(setf (nth (setq n (+ n 1») x) 'z» => b 
and now· x => (a b z d) 

Moreover, for certain place forms swapf may be significantly more efficient than the prog 1 

version. 



• 

CO'TROL STRLCTl:RE 63 

ex eh f place} place2 [j\lacro] 

. The data in placel and place2 is exchanged. and then the old value of place2 (which has become the 

new value of placel) is returned. The forms place! and place2 may be any forms acceptable as 

generalized variables to set f (page (0). If place! and place2 refer to the same generalized 

variable, then the effect is to leave it unchanged and return its value. 

For example: 

(setq x '(a be» 
(exehf (car x) (cadr x» => b 

and now x = > (b a c) 

The effect of (exchf placet place2) is roughly equivalent to 

(setf place) (progl place2 (setf place2 place/.» 

except that the latter would evaluate any subfonns of place1 and place2 twice, while exchf takes 

care to evaluate them only once. Moreover, for certain place forms ex e h f may be significantly 

more efficient than the pro 9 1 version. 

Other macros that manipulate generalized variables include getf (page 103), putf (page 103), remf 

(page 104), i nef (page 122), deef (page 122), push (page 172), and pop (page 173).· 

7.3. Function Invocation 

The most primitive form for function invocation in LISP of course has no name; any list which which has 

no other interpretation as a macro call or special form is taken to be a function call. Other constructs are 

provided for less common but nevertheless frequently useful situations. 

app 1 Y jUnction arglist [Function] 

This applies function to th~ list of arguments argUs!. arglist should be a list; function can be a 

compiled-code object. or it may be a "lambda expression", that is, a list whose car is the symbol 

1 ambda, or it maya symbol, in which case the dynamic functional value of that symbol is used 

(but it is illegal in this case for that symbol to be the name of a macro or special form). 

For example: 

(setq f '+) (apply f '(1 2» => 3 
(setq f '-) (apply f '(12» => -1 
(apply 'cons '«(+ 2 3) 4») => 

( (+ 2 3) . 4) not (5 . 4) 

Of course, arglist may be ( ) (in which case the function is given no arguments.) Note that if the 

function takes keyword arguments. the keywords as well as the corresponding values -must appear 

in the argUst: 

(apply #'(lambda (&key a b) (list a b) '(:b 3» => (nil 3) 

Compatihility note: m 

See eva 1 (page 209) . 



64 

funcall fiz &rest arguments 

( fun call fn al a2 

[Function] 
an) applies the function fn to the arguments aI, a2, ... , an. fil may 

not be a special form nor a macro; this would not be meaningful. 

For example: 

(cons 1 2) ;> (1 . 2) 
{setq cons (fsymeval '+» 
(funcall cons 1 2) ;> 3 

The difference between fun c a 11 and an ordinary function call is that the function is obtained by 

or4inary LISP evaluation rather than by the special interpretation of the function position that 

normally occurs. 

Compatibility note: This corresponds roughly to the INTERLISP primitive ap ply * . 

funcall· f&rest args [Function] 
funcall· is like a cross between apply and funcall. (funcall * al a2 an list) 

applies the function fto the arguments al through an followed by the clements of list. Thus we 

have: 

( fun cal 1 f al ... an ) <; > (f un cal 1 * f al ... an '(» 
(app 1 y f list) <=> (funca 11· f list) 

However, when ap ply orf u n c a'l fits the situation at hand, it m~y be stylistically clearer to· use 

that than to use fun cal' *, whose use implies that something more complicated is going on. 

(funcal'· #'+ 1 1 1 '(1 1 1) => 6 

(defun report-error (&rest args) 
{funcal'* (function format) error-output args» 

Compatibility note: m 

7.4. Simple Sequencing 

progn {{onn}* [Special fonn] 

The progn construct takes a number of forms and evaluates them sequentially, in order, from left 

to right The values of all the forms but the last are discarded; whatever the last form returns is 

returned by the p r og n form. One says that all the forms but the last are evaluated for effect. 

because their execution is useful only for the side effects caused. but the last fonn is executed for 

value. 

progn is the primitive control structure construct for "compound statements"; it is analogous to 

begin-cnd blocks in ALGOL-like languages. Many LISP constructs are "implicit progn"fonns. -in 

that as part of their syntax each allows many forms to be written which are evaluated sequentially. 

the results of only the last of which are used for anything. 

If the last form of the progn returns multiple values. then those multiple values are returned by 

the progn form. If there are no forms for the progn, then the result is n i'. These rules generally 



CO:\TROL S-l RCCTLRE 65 

hold for implicit progn forms as well. 

progl firsl {form}* [Specia/jbrm] 

progl is similar to progn, but it returns the value of its firs I form. All the argument forms are 

executed sequentially: the value the first form produces is saved while all the others are executed, 

and is then returned. 

progl is most commonly used to evaluate an expression with side effects, and return a value which 

must be computed before the side effects happen. 

For example: 

(progl (car x) (rplaca x tfoo» 

alters the car of x to be f 0 0 and returns the old car of x. 

pro 9 1 always returns a single value, even if the first form tries to return multiple values. A 

consequence of this is that (p r 0 9 1 x) and ( pro 9 n x) may behave differently if x can produce 

multiple values. See mvprog 1 (page 82). 

prog2 first second {{onn}* [Special form] 

pro 9 2 is similar to pro 9 1, but it returns the value of its second form. All the argument forms are 

executed sequentially; the value of the second form is saved while all the other forms are executed, 

and is then returned. 

prog2 is provided mostly for historical compatibility. 

(prog2 abc ... z) <=> -( progn a (progl b c ... z» 

Occasionally it is desirable to perfonn one side effect, then a value-producing operation, then 

another side effect; in such a peculiar case pro 9 2 is fairly perspicuous. 

For example: 

(prog2 (open-a-file) (compute~on-file) (close-the-file» 
; value is that of compute-on-f i 1 e -

prog2, like prog 1, always returns a single value, even if the second fonn tries to return multiple 

values. A consequence of this is that (prog2 x y) and (progn x y) may behave differently if 

y can produce multiple values. 

7.5. Environment Manipulatr~n 

1 e t ({ var I (var value) }*-) {fonn}* [Macro] 

A 1 et form can be used to execute a series of forms with specified variables bound to specified 

values. 

For example: 



66 

(1 et « varl value1) 
(var2 \'alue2) 

(vann valuem» 
bodyl 
body2 

bodyn) 

C'O.\I\{O:\ LISP lZElTREl\CE ~1:\:.iUAL 

first evaluates the expressions value], value2. and so ·on. in that order, saving the resulting values. 

Then all of the variables var} are bound to the corresponding values in paranel; each binding will 

be a local bin'ding unless there is a. : spec i a 1 (page DECLARE-SPECIAL-KWD) declaration to 

the contrary. The expressions body} are then evaluated in order; the values of all but the last are 

discarded (that is, the body of a 1 et form is an implicit progn). The 1 et form returns what 

evaluating bodyn produces (if the body is empty, which is fairly useless, 1 a t returns nil as its 

value). The bindings of the variables disappear when the 1 e t form is exited. 

Instead of a list (varj value}) one may write simplyvarj. In this case varj is initialized to nil. As a 

matter of style, it is recommended that varj be written only when that variable will be stored into 

(such as by setq (page 58» before its first use. If it is important that the initial value is n; 1 

rather than some undefined value, then it is clearer to write out (var) nil) (if the initial value is 

intended to mean "false") or (var) '(» (if the initial value is intended to be an empty list). 

Declarations may appear at the beginning of the body ofa 1 et; they apply to the code in the body 

and to the bindings made by 1 a t, but not to the code which produces values for the bindings. 

The 1 et form shown above is entirely equivalent to: 

«lambda (var! var2 ... vamt) 
body! body2 ... bodyn) 

value] valueZ ... valuem) 

but 1 e t allows each variable to be textually close to the expression which produces the 

corresponding value, thereby improving program readability. 

let* ({var I (varvalue)}*) {fbnn}*. [Special fonn] 

1 e t * is sim itar to 1 e t (page 65), but the bindings of variables are performed sequentially rather 

than in paranel. This allows the expression for the value of a variable to refer to variables 

previously bound in the 1 e t * form. 

More precisely. the form: 

(1 at * « var/. value!) 
(var2 value2) 

(vann valuem» 
bodyl 
body2 

bodyn) 

tirst evuluates the expression valuel, then binds the variable varl to that value~ then its eva1uates • 



CO r\ TR 0 L STR celL RE 67 

value2 and binds var2; and so on. The expressions bodXi are then evaluated in order; the values of 

all but the last arc discarded (that is, the body ofa let* form is an implicit progn). The 1et* 

f()nn returns the results of evaluating bO(~l'n (if the body is empty, which is fairly useless, 1 e t * 
returns nil as its value). The bindings of the variables disappear when the 1 e t * form is exited. 

Instead of a list (varj valuej) one may write simply vaJ]. In this case valj is initialized to nil. As a 

matter of style, it is recommended that varj be written only when that variable will be stored into 

(such as by se tq (page 58» before its first usc. If it is important that the initial value is nil 

rather than some undefined value, then it is clearer to write out ( varj nil) (if the initial value is 
intended to mean "false") or (varj '(» (if the initial value is intended to be an empty list). 

Declarations may appear at the beginning of the body of ale t; they apply to the code in the body 

and to the bindings made by 1 e t, but not to the code which produces values for the bindings. 

progv symbols values {fonn}* [Special Jonn] 

pro 9 v is a special form which allows binding one or more dynamic variables whose names may be 

determined at run time. The sequence of forms (an implicit progn) is evaluated with the dynamic 

variables whose names are in the list symbols bound to corresponding values from the list values. 

(If too few values are supplied, the remaining symbols are bound to nil. If too many values are 

supplied, the excess values are ignored.) The results of the pro 9 v form are those of the last Jonn. 

The bindings of the dynamic variables are undone on exit from the pro 9 v form. The lists of 

symbols and values are computed quantities; this is what makes progv different from, for 

example, 1 e t (page 65), where the variable names are stated explicitly in the program text. 

progv is particularly useful for writing interpreters for languages embedded in LISP; it provides a 

handle on the mechanism for binding dynamic variables. 

f1 et ({ (name lambda-list {declare-Jonn}* [doc-string] lfonn}*)}*) lfonn}* 

1 abe 1 s ({ (name lambda-list {declare-Jonn}* [doc-string] lfonn}*)}*) {f01W}* 

macro1et ({(name varlist (fonn}*)}*) {fonn}* 

[Special Jonn] 

[SpeciaIJorm] 

[ Special Jonn] 

f 1 e t may be used to define locally named functions. Within the body of the f 1 e t form, function 

names matching those declared by the f 1 e t refer to the locally defined functions rather than to the 

global function definitions of the same name. 

Any number of functions may be simultaneously declared. Each declaration is similar in format to 

a defun (page 42) form: first a name, then a parameter list (which may contain &opt i on a 1, 

&rest, or &key parameters), then optional declarations and documen~1tion string. and finally a 

body. 

The 1 abel s construct is identical in form to the f1 et construct. It differs in that the scope of the 

declared function names for f1 et encompasses only the body, while for 1 abe 1 s it encompasses 

the function definitions themselves. That is; 1 abe 1 s can be used to define mutually recursive 

functions, but f1 et cannot. This distinction is useful. Using f1 et one can locally redefine a 

global function name, and the new definition can refer to the global definition~ the same 



68 CO\l\IO~ LI~;P lUTERE~CE MA1\UAL 

construction using 1 abe 1 s would not have that effect 

(defun integer-power (n k) ;A highly "bummed" integer 
(declare (integer n» ; exponentiation routine. 
(declare (type (integer 0 *) k» 
(labels «exptO (x k a) 

(declare (integer x a) (type (integer 0 *) k» 
(cond «zerop k) a) 

«evenp k) (expt1 (* x x) (floor k 2) a» 
(t {exptO (* x x) (floor k 2) (* x a»») 

( e xp t 1 (x k a ) 
(declare (integer x a) (type (integer 0 *) k» 
(cond «evenp k) (expt1 (* x x) (floor k 2) a» 

(t (exptO (* x x) (floor k 2) (* x a»»» 
(exptO n k 1») 

macrol et is similar in fonn to f1 et, but defines local macros, using the same format used by 

defmacro (page 91). 

7.6. Conditionals 

cond {( test {fonn}* )}* [S peciai fonn] 

The cond special form takes a number (possibly zero) of clauses, which are lists of fonns. Each 

clause consists of a lesl followed by zero or more consequents. 

For example: 

( con d (lesl-] consequent-]-] conse.quent-J -2 ...) 
( lest-2) 
( test-3 consequent-3-J ...) 
. .. ) 

The first clause whose test evaluates to non-n; lis selected; all other clauses are ignored. and the 

consequents of the selected clause are evaluated in order (as an implicit progn). 

More specifically, cond processes its clauses in order from left to right. For each clause; the test is 
evaluated. If the result is' nil, con d advances to the next clause. Otherwise, the cdr of the clause 

is treated as a list of forms, or consequents. which are evaluated in order from left to right, as an 

implicit progn. After evaluating the consequents, cond returns without inspecting any remaining 

clauses. The cond special form returns the results of evaluating the last of the selected 

consequents; if there were n.o consequents in the selected clause, then the single (and necessarily 

non-null) value of the lest is returned. If cond runs out of clauses (every test produced n; 1, and 

therefore no clause was selected), the value of the cond form is n;' 1. 

lfit is desired to select the last clause unconditionally if all others fail. the standard convention is to 

usc t for the lest. As a matter of style. it is desirable to write a last clause •• (t nil)" if the value 

of the cond form is to be used for something. Similarly, it i:; in questionable taste to let the last 

clause of a cond be a "singleton clause'·; an explicit t should be provided. (Note moreover that 

(cond ... (x» may behave differently from (cond ... (t x» if x might produce 

multiple values: the former always returns a single value. while the latter returns whatever values x 

• 



(O\;TI~OL STR CCTLRE 

returns.) 

For example: 

(setq z (cond (a 'faa) (b 'bar») 
(setq z (cond (a 'foo) (b 'bar) (t nil») 
(cond (a b) (c d) (e» 
(cond (a b) (c d) (t e» 
(cond (a b) (c d) (t (values e») 
(cond (a b) (c» 
. (cond (a b) (t c» 
. ( ; f abc) 

; Possibly confusing. 
; Better. 
; Possibly confusing. 
; Better. 

69 

; Better (if one value needed). 
; Possibly confusing. 
; Better . 
; Also better . 

A LISP con d fonn may be 'compared to a continued if-thcn-clscif as found in many algebraic 

programming languages: 

; f pred then [else] 

(cond (p ••• ) 
(q ... ) 
(r .•. ) 

(t ... » 

roughly 
corresponds 

to 

if p thcn ... 
else if q then 
clse if r then 

else 

[Special/onn] 
The if special fonn corresponds to the if-thcn-clsc construct found in most algebraic programming 

languages. First the fonn pred is evaluated. If the result is not n ; 1, then the fonn then is selected; 

otherwise the fonn else is selected. Whichever form is selected is then evaluated, and if returns 

whatever evaluation of the selected fonn returns. 

(if pred then else) <=> (cond (pred then) (t else» 

but if is considered more readable in some situations . 

. The else fonn may be omitted, in which case if the value of pred is nil then nothing is done and 

the value of the if form is nil. If the value of the if form is important in this situation, then the 

an d (page 52) construct may be stylistically preferable, depending on the context. If the value is 

not important, but only the effect, then the wh e n (page 69) construct may be stylistically 

preferable. 

when pred lfonn}* [Special/ann] 
(when pred fonnl form2 ... ) first evaluates pred. If the result is nil, then no fonn is 

evaluated. and nil is returned. Otherwise the fonns constitute an implicit progn, and so are 

evaluated sequentially from left to right. and the value of the last one is returned. 

(when p a b c) <=> (and p (progn a b c» 
(when·p a b c) <=> (cond (p a b c» 
(when p a b c) <=> (if P (progn a b c) 'nil) 
(when p a b c) <=> (unless (not p) a b c) 

As a matter of style, when is normally used to conditionally produce some side effects, and the 

value of the when-form is normally not used. If the value is relevant, then and (page 52) or if 

(page 69) may be stylistically more appropriate. 



70 CO:\1 \10;\ LlS}> REFER E\CE MA:\UAL 

un 1 ess pred . {form} * [.S'pecialjonn] 
( un 1 e s s pred jonni jon112 ... ) first evaluates pred. If the result is not nil, then the jonns 

are not evaluated, and nil is returned. Otherwise the forms constitut.e an implicit p rogn, and so 

are evaluated sequentially from left to right, and the value of the last one is returned. 

(unless p a b c) <=> (cond «not p) a be» 
(unless p a b c) <=> (if P nil (progn a be» 
(unless p a b c) <=> (when (not p) a b c) 

As a matter of style, un 1 e s s is nonnally used to conditionally produce some side effects, and the 

value of the unl ess-fonn is normally not used. If the value is relevant, then or (page 52) or if 

(page 69) may be stylistically more appropriate. 

case keyjorm {( ({key}*) (fonn}*)}* [Specialjonn] 

cas e is a conditional that chooses one of its clauses to execute by comparing a value to various 

constants, which are typically keyword symbols, integers, or characters (but may be any objects). 

Its form is as follows: 

( cas e keyfarm 
(keylist-! consequent-1-! consequent-!-2 ... ) 
( keylist-2 consequent-2-! ...) 
( keylist-3 co nsequent-3-! ... ) 
... ) 

Structurally case is much like c~nd (page 68), and it behaves like cond in selecting one clause 

and then executing all consequents of that clause. It differs in the mechanism of clause selection. 

The first thing cas e does is to evaluate the fonn keyform to produce an object called the key 

object. Then case considers each of the clauses in tum. If key is in the keylist (that is, is eq 1 to 

any item in the keylist) of a clause, the consequents of that clause are evaluated as an implicit 

progn, and case returns what was returned by the last consequent (or nil if there are no 

consequents in that clause).· If no clause is satisfied, cas e returns nil . 

. It is an error for the same key to appear in more than one clause. 

Instead of a keylist, one may write one of the symbols t and otherwi see A clause with such a 

symbol always succeeds, and must be the last clause. 

Compatibility note: Lisp Machine LIsp uses eq for the comparison. In Lisp Machine LISP case therefore 
works for'fixnums but not bignums. In the interest of hiding the fixnum-bignum distinction, case uses eql 
in COMMON LISP. 

If there is only one key for a c1ause, then that key may .be written in place of a list of that key, 

provided that no ambiguity results (the key should not be a cons or one of nil (which is 

confusable wi~h ( ). a list of no keys), t, or otherw i se). 

typecase keyform {{ type (fonn}*)}* [Specialjorm] 

typecase is a conditional which chooses one of its clauses by examining the type of an object. Its 

form is as follows: 

• 



CO:-<TROL SlRLCTLRF. 71 

(typecase keyfonn 
( lype-J cUllsequcIlI-I-! cOllsc(jucnt-l-2 ... ) 
( type-2 cOllsequenl-2-1 ... ) 
( lype-J cOllscquelll-3-1 ... ) 
... ) 

Stnlcturally typecase is much like cond (page 68) or case (page 70). and it behaves like them 

in selecting one clause and then executing all consequents of that clause. It differs in the 

mechanism of clause selection. 

The first thing typecase does is to evaluate the form keyform to produce an object called the key 

object. ·Th.en typecase considers each of the clauses in turn. The first clause for which the key is 

of that clause's specified type is selected, the consequents of this clause are evaluated as an implicit 

progn, and typecaseq returns what was returned by the last consequent (or nil if there are no 

consequents in that clause). If no clause is satisfied, t y pee as e returns nil. 

As for cas e, the symbol t or 0 the rw i s e may be written for type to indicate that the clause 

should always be selected. 

It is permissible for more than one clause to specify a given type, particularly if one is a subtype of 

. another; the earliest applicable clause is chosen. 

For example: 

(typecase an-object 
(string ... ) 
( ( ar ray t) ... ) 
«array bit) ... ) 
(array ... ) 
«or list number) .. ~) 
(t ... » 

; This clause handles strings. 
; This clause handles general arrays. 
; This clause handles bit arrays. 
; This handles all other arrays. 
; This handles lists and numbers. 
; This handles all other objects. 

A COMMON LISP compiler may choose to issue a warning if a clause cannot be selected because it is 

completely shadowed by earlier clauses. 

7.7. Blocks and Exits 

block name {form}* [Special form] 
The bloc k construct executes each fonn from left to right, returning whatever is retume~ by the 

last form. If. however, a return or return-from form is executed during the execution of some 

form, then the results specified by the return or return-from are immediately returned as the 

value of the block construct, and execution proceeds as if the block had terminated normally. 

In this hl ock differs from progn (page 64); the latter has nothing to do with return. 

The scope of the name is lexical; only a return or return-from tcxtual1y contained in some 

fonn can exit from the block. Thc extent of the name is dynamic. Therefore it is only possible to 

exit from a given run-time incarnation of a bk>ek once, either normally or by explicit return. 

The defun (page 42) fonn implicitly puts a block around the body of the function defined; the 

block has the same name as tllC function. Therefore one may use return or return-from to 



72 ('0\1\10:-; LISP !<EFERFl\CE ~IA!\CAL 

return prelnaturcly from a function defined by defun. 

return result [Spec ial/o rm] 
return is used to return from a block, prog, do, or similar construct. Whatever the evaluation 

of result produces is returned by 

the construct being exited by return. 

{defun member (item list) 
(do «x list (cdr x») 

«null x) nil) 
{when (equal item (car x» 

(return x»» 

return is, like go, a special form that does not return a value. Instead, it causes a containing 

construct to return a value. If the evaluation of result produces multiple values, those multiple 

values are returned by the construct exited . 

.return always exits from the innermost applicable construct that textually contains it. However, 

if the symbol t is used as the name of a block, then that block will be made "invisible" to ret urn 

forms; any return inside that block will return to the next outermost level whose name is not t. 

( ret urn - from t ... ) will return from a block named t. This feature .is not intended to be 

used by user-written code; it is for macros to expand into. 

return-from blockname result [Special/ann] 

This is just like return, except that before the result form is written a symbol (not evaluated), 

which is the name of the construct from which to return. 

??? Query: Fahlman suggests a restart for'm that specifies a block and send control to the top of that block. Some kinds 
of loop can be done this way, especially error retries. Opinions? 

7.8. Iteration 

COMMON LISP provides a number of iteration constructs. The ~o (page 73) and do * (page 75) constructs 

provides a general iteration facility. For simple iterations over lists or n consecutive integers, dol i st (page 

76) and related constructs are provided. The pr og (page 78) construct is the most general, permitting· 

arbitrary go (page 80) statements within it. All of the iteration constructs pennit statically defined non-local 

exits in the form of the return (page 72) statement and its variants. 

7.8.1. General iteration 

• 



• 

CO!\TROL STRUCTURE 73 

do ({( vat [inil [s/cp]])}*) (end-lest {form}*) {tag I SlalemenL}* [.{;;peciaI fumz] 

The do special fonn provides a generalized iteration facility, with an arbitrary number of "index 

variables". These variables arc bound within the iteration and stepped in parallel in specified ways. 

They may be used both to generate successive value~ of interest (such as sliccessive integers) or to 

accumulate results. When an end condition is met, the iteration terminates with a specified value. 

In general, a do loop looks like this: 

( do « varl initl step}) 
(var2 init2 step2) 

(varn initn stepn» 
( end-test . result) 
. progbody) 

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable 

specifier is a list of the name of a variable var, an initial value init (which defaults to n i' if it is 

omitted) and a stepping form step. If step is omitted, the var is not changed by the do construct 

between repetitions (though code within the do is free to alter the value of the variable by using 

setq (page 58). 

An index-variable specifier can also be just the name of a variable. In this case, the variable has an 

initial value of n i , , and is not changed between repetitions. 

Before the first iteration, all the init forms are evaluated, and then each var is bound to the value of 

its respective init. This is a binding, not an assignment; when the loop terminates the old values of 

those variables will be restored. . Note that all of the inil fonns are evaluated before any var is 

bound; hence" in it forms may refer to old values of the variables. 

The second element of the do-form is a list of an end-testing predicate form end-test, and zero or 

more forms, called the result forms. This resembles a cond clause. At the beginning of each 

iteration, after processing' the variables, the end-test is evaluated. If the result is n i " execution 

proceeds with the body of the do. If the result is not n i', the result forms are evaluated in order as 

an implicit progn (page 64), and then do returns. do returns the results of evaluating the last 

result form. If there are no result forms, the value of do is n i'; note that this is not quite 

analogous to the treatment of clauses in a con d (page 68) special form. 

At the beginning of each iteration other than the first, the index variables are updated as follows. 

First every step form is evaluated, from left to right Then the resulting values are assigned (as with 

psetq (page 58» to the respective index variables. Any variable which has no associated step 

fonn is not affected. Because all of the step forms are evaluated before any of the variables are 

altered. when a step form is evaluated it always has access to the old values of the index variables. 

even if other step forms precede it. After this process, the end-tcst is evaluated as described abovc. 

If the end-test of a do fonn is n i " the test will never succeed. Therefore this provides an idiom 

for "do forever". The body of the do is executed repeatedly, stepping variables as usual, of course . 

The infinite loop can be terminated by the use of return (page 72)~ return-from (page 72), 

go (page 80) to an outer level, or throw (page 87). 



74 CO:'·1\JO:'~ Ll~.P Rl:TERE:\CE :v1ANUAL 

For example: 

(do «j 0 (+ j 1») 
( nil ) ; Do forever. 

(format t "-%Input -0:" j). 
(let «item (read») 

(if (null item) (return) 
(format t "-&Output -0: 

; Process items until nil seen. 
-5" j (process item»») 

The remainder of the do form constitutes a prog body. The function return (page 72) and its 
variants may be used within a do form to terminate it immediately, returning a specified result. 
Tags may appear within the body of a do loop for use by go (page 80) statements. When the end 
of a do body is reached, the next iteration cycle (beginning with the evaluation of step fonns) 

I 

occurs .. 

decl are (page 95) foons may appear at the beginning of a do body. They apply to code in the 
do body, to the bindings of the do variables, to the step forms (but not the init forms), to the 
end-test, and to the result forms. 

Compatibility note: "Old-style" MACLISP do loops, of the form (do- var init step end-test . body), are not 
supported. They are obsolete, and are eaSily converted to a new-style do with the insertion of three pairs of 
parentheses. In p~ctice the compiler can catch nearly all instances of old-style do loops because they will not 
have a legal format anyway. 

For example: 

(do « i 0 (+ i 1» ; Sets every element of an -array to empty 
(n (array-length an-array») 

«= in» 
(aset 'empty an-array i» 

The construction 

(do «x e (cdr x» 
(oldx x x» 

«null x» 
body) 

exploits parallel assignment to index variables. On the first iteration, the value of 0 1 dx is whatever 
value x had before the do was entered. On succeeding iterations~ old x contains the value that x 
had on the previous iteration. 

Very often an iterative algorithm can be most clearly expressed entirely in the step forms of a do, 
and the body is empty. 

For example: 

(do «x foo (cdr x» 
(y bar (cdr y» 
(z '() (cons (f (car x) (car y» z») 

«or (null x) (null y» 
(nreverse z») 

does the same thing as (mapcar #tf foo bar). Note that the slepcomputation for z exploits 
the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the usc 

of nrever se (page 158) to put an accumulated do loop result into the correct order is a standard 
idiom. 



• 

• 

CO'TROL STJ< LCTU<[ 

Othcr examples: 

"(defun length (list) 
(do {(x list (cdr x» 

(j 0 (+ j 1») 
«atom x) j») 

(defun reverse (list) 
(do «x list (cdr x» 

(y 'C) (cons (car x) y») 
( ( a tom x) y») 

75 

Note the use of a t om rather than null to test for the end ofa list in the above two examples. This 

results in more robust code; it will not attempt to cdr the end of a dotted list 

As an example of nested loops, suppose that en v holds a list of conses. The car of each cons is a 

list of symbols, and the cdr of each cons is a list of equal length containing corresponding values. 

Such a data structure is similar to an association list, but is divided into "frames": the overall 

structure resembles a rib-cage. A lookup function on such a data structure might be: 

(defun ribcage-lookup (sym ribcage) 
(do «r ribcage (cdr r») 

«null r) nil) 
(do «s (caar r) (cdr s» 

(v (cdar r) (cdr v») 
«null s» 

(when (eq (car s) sym) 
(return-from ribcage-lookup (car v»»» 

(Notice the use of indentation in the above example to set off the bodies of the do loops.) 

do* bindspecs endlesl {form}* [Special fonn] 
do* is exactly like do except that the bindings and steppings of the variables are perfonned 

sequentially rather than in parallel. At the beginning each variable is bound to the value of its inil 

form before the fnit form for the next variable is evaluated. Similarly, between iterations each 

variable is given the new value computed by its step fonn before the step fonn of the next variable 

is evaluated. 

7.8.2. Simple Iteration Constructs 

The constructs dolist and dotimes perfonn a body ofstatemenl'i repeatedly. On each iteration a 

specified variable is bound to an e1ement of interest ·which the body may examine. do 1 is t examines 

successive element'i ofa list, and dot imes examines integers from 0 to 11-/ for some spccified positive integer 

n. 

The value of any of these constructs may be specified by an optional result form, which if omitted defaults 

to the value ni 1 . 

The return (page 72) statement may be used to return immediately from a dol i st or dot imes form~ 

discarding any following iterations which might have been performed: in effect, a block with an inaccessible 



i6 CO:\t\10~ IJSP RFFERF\CF \L\;\UAL 

name surrounds the construct. The body of the loop is in fact a prog (page 78) body~ it may contain tags to 

serve as the targets of go (page 80) statements, and may have decl are (page 95) fonns at the beginning. • 

do lis t (var lis1jonn [resulifol7111) {lag I slalemen/}* [Special fonn] 

do lis t provides straightforward iteration over the elements of a list. The expression (do 1 is t 

(var listfomz resultfonn) . progbody) evaluates the fonn listfonn, which should produce a list 

It then perfonns progbody once for each clement in the list. in order, with the variable var bound to 

the element. Then resultfonn (a single form, not an implicit progn) is evaluated, and the result is 

the value of the dol is t fonn. If result/oml is omitted, the result is nil. 

For example: 

(do1ist (x ~(a b c d» (print x) (prine" H»~ => nil 
after printing" abc d " 

An explicit return statement may be used to terminate the loop and return a specified value. 

Compatibility note: The result/orm part of ado 1 ; s t is not currently supported in Lisp Machine LISP. It seems 
to improve the utility of the construct markedly. 

dot i mes (var count/onn [result/onn]) {tag I statement}* [Special !Om1] 
dot i me s provides straightforward iteration over a sequence of in.tegers. The expression 

(dot imes (var count/onn result/onn) progbody) evaluates the form count/onn, which should 

produce an integer. It then performs progbody once for each integer from zero (inclusive) to count 

(exclusive). in order, with the variable var bound to the integer; if the integer is zero or negative, 

then the progbody is perfonned zero times. Finally, result/onn (a single fonn, not an implicit 

progn) is evaluated, and the result is the value of the dot imes fonn. If result/onn is omitted, the 

result is nil . 

Altering the value of var in the body of the loop. (by using set q (page 58), for example) will have 

unpredictable, possibly implementation-dependent results. A COMMON LISP compiler may choose 

to issue a warning if such a variable appears in a setq. 

For example: 

(defun string-posq (char string &optional 
(start 0) 
(end (string-length string») 

(dotimes (k (- end star·t) nil) 
(when (char= char (char string (+ start k») 

(return k»» 

An explicit return statement may be used to terminate the loop and return a specified value. 

Sec also d 0 ~ s ymb 0 1 s (page 116) and related constructs. 



('0:\T1,OL STRl'CfLRE 77 

7.8.3. l\'Iapping 

M3pping is a type of iteration in which a function is successively applied to pieces of one or more 

sequences. The result of the iteration is a sequence containing the respective results of the function 

applications. There are several options for the way in which the pieces of the list arc chosen and for what is 

done with the results returned by the applications of the function. 

The function map (page 159) may be used to map over any kind of sequence. The following functions 

operate only on lists. 

mapcar function list &rest more-lists 
mapl ist function list &rest more-lists 
mapc function list &res t more-lists 
map 1 function list &res t more-lists 
rna p c an function list &r est more-lists 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

mapcon function list &rest more-lists [Function] 
For each these mapping functions, the first argument is a function and the rest must be lists. The 

function must take as many arguments as there are lists~ 

rna p car operates on successive elements of the lists. First the function is applied to the car of each 

list, then to the cadr of each list, and so on. (Ideally all the lists are the same length; if not, the 

iteration tenninates when the shortest list runs out. and excess clements in other lists are ignored.) 

The value returned by mapcar is a list of the results of the successive calls to the function. 

For example: 

(mapcar #'abs '(3 -4 2 -5 -6» => (3 4 2 5 6) 
{mapcar #'cons '(a b c) '(1 2 3» => «a. 1) (b . 2) (c . 3» 

mapl ist is like mapcar except that the function is applied to the list and successive cdr's of that 

list rather than to successive clements of the list 

For example: 

(maplist #'(lambda (x) (cons 'foo x» 
'(a b cd» 

=> «foo abc d) (foo bed) (foo c d) (foo d» 
(maplist #'(lambda (x) {if {member (car x) (cdr x» 0 1») 

'(a b a c d be» 
=> (0 0 1 0 1 1 1) 
; An entry -is 1 iff the corresponding clement of the input 

list was the last instance of that clement in the input list 

mapl and mapc are like mapl 1st and mapcar respectively, except that they do not accumulate 

the results of calling the function. 

Compatibility notc: In all LISP systems since LISP 1..5, map 1 has been called map. In the chapter on sequences 
it is explained why this was a bad choice. Here the name map is used for the far more useful generic sequence 
mapper. in closer accordance to the computer science literature. especially the growing body of papers on 
functional programming. 

These functions are used when the function is being caned merely for its side-effects, rather than its 

returned values. The value returned by map 1 or mapc is the second argument. that is. the first 



78 CO\I\10:-: LISP REFl..I<F\TE \lANUAL 

sequence argument. 

mapcan and mapcon are like mapcar and mapl ist respectively, except that they combine the 

results of the function using ncone (page 171) instead of 1 i st. That is, 

(mapeon f xl ... xn) 
<=> (apply #'ncone (maplist f xl ... xn) 

and similarly for the relationship between mapean and rnapear. Conceptually, these functions 

allow the mapped function to return a variable number of items to be put into the output list This 

is partieula~l~ useful for effectively returning zero or one item: 

(mapean #'(lambda .(x) (and (numberp x) (list x») 
'(a 1 b e 3 4 d 5» 

=> (1 3 4 5) 

In this case the function serves as a filter; this is a standard LISP idiom using mape an. (The 

function r e mo ve - if - not (page 160) might have been useful in this particular context, 

however.} Remember that ncone is a destructive operation, and therefore so are mapcan and 

rna peon; the lists returned by the jUnction are altered in order to concatenate them. 

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the 

mapping functions should be used wherever they naturally apply because this increases the clarity 

of the code. 

The functional argument to a mapping function must be acceptable to ap ply; it cannot be a macro 

or the name of a special form. Of course, there is nothing wrong with using functions which have 

&opt i ona 1 and &res t parameters. 

7.8.4. The Program Feature 

LISP implementations since LISP 1.5 have had what was originally called "the program feature", as if it were 

impossible to write programs without it! The prog construct allows one to write in an ALGOL-like or 

FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the prog. 

Modern LISP programming style tends to use prog rather infrequently. The various iteration constructs, such 

as do (page 73), have bodies with the char~cteristics of a prog . 

. prog ({ var I (var [init])}*) {tag I statement}* [Special fonn] 

prog is a. special form that provides bound temporary variables, sequential evaluation of forms, 

and a hgoto/return" facility. It is this latter chara~teristic that distinguishes prog from other LISP 

c()nstnlct'i~ 1 ambda and 1 et (page 65) also provide local. variable bindings, and progn (page 

64) also evaluates forms sequentially. 

A typical prog looks like: 



CO;\;TROI. STRCCTCRE 

(p rag (varl var2 (var3 inil3) var4 (var5 init5» 
stalementi 

tag] 

tag2 

statement2 
statement3 
slalement4 

statement5 

The list after the keyword prog is a set of specifications for binding varl, var2, etc., which are 

temporary variables, bound locally to the prog. This list is processed exactly as the list in a 1 et 

(page 65) statement: first all the inil fo.rms are evaluated from left to righto(where n i 1 is used fo.r 

any omitted init form), and then the variables are all bound in parallel to. the respective results. 

(p r 0 9 * (page 80) is the same as pro 9 except that this initializatio.n is sequential rather than 

parallel.) 

The part of a prag after the variable list is called the body. An item in the body may be a symbo.l 

or a number, in which case it is called a tag, o.r any other COMMON LISP form, in which case it is 

called a statement. 

After prog binds the temporary variables, it processes each form in"its body sequentially. tags are 

igno.red; statements are evaluated, and their returned values discarded. If the end of the bo.dy is 

reached, the prog returns n i 1. However, two. special forms may be used in prog bo.dies to. alter 

the flow o.fcontrol. If (return x) is evaluated, prog sto.PS processing its body, evaluates x, and 

returns the result. If (go lag) is evaluated. prog jumps to. the part of the body labelled with the 

tag (that is. wfth an atom e q 1 (page 49) to lag}. lag is not evaluated 
Compatibility note: The "computed go" feature of MAc LISP is not supportedo lbe syntax of a computed go is 
idiosyncratic, and the feature is not ~upported by Lisp Machine LIsp, NIL, or INTERLISPo 

go and return forms must be leXically within the scope of the prog; it is not possible for one 

function to. return to a prog that is in progress in its caller. Thus, a program that contains a go 

not contained within the body of a prog (or o.ther constructs such as do, which have prog bodies) 

is in error. /\ dynamically scoped non-local exit mechanism is provided by catch (page 85) and 

th row (page 87) and other related operations. 

Here is a ofine example of what can be do.ne with prog: 



80 

prog* 

go tag 

CO\1\lON LISP REFERENCE \1Al\UAL 

(defun king-of-confusion (w) 
(prog (x y z) ; Initia1ize x, y, z to nil 

loop 
(setq y (car w) z (cdr w» 

(cond «null y) (return x» 
«null z) (go err») 

rejoin 

err 

(setq x (cons (cons (car y) (car z» x» 
(setq y (cdr y) z (cdr z» 
(go 1 oop) 

(error "Mismatch - gleep!") 
(setq z y) 
(go rejoin» 

which is accomplished somewhat more E-erspicuously by: 

(defun prince-of-clarity (w) 
(do «y (car w) (cdr y» 

(z (cdr w) (cdr z» 
(x '() (cons (cons (car y) (car z» x») 

«null y) x) 
.(when (null z) 

(error "Mismatch - gleep!") 
(setq z y»» 

Declarations may appear at the beginning ofa prog body; see decl are (page 95). 

[Special/orm] 
The prog* special fonn is almost the same as. prog. The only difference is that the binding and 

initialization of the temporary variables is done sequentially, so that the inil fonn for each one can 

use the values of previous ones. Therefore pro 9 * is to pro g as 1 e t* (page 66) is to , e t (page 

65). 

For example: 

(prog* f(y z) (x (car y») 
(return x» 

returns the car of the value of z. 

[Special/onn] 
The (g 0 tag) special form is used to do a ··go to" within a apr a 9 body. The tag must be a 

symbol or a number: tag is n'ot evaluated. go transfers control to the point in the body labelled by 

a tag equa 1 to the one given. If there is no such tag in the body, the bodies of lexically containing 

p rag bodies (if any) arc examined as well.'lt is an error if there is no matching tag. 

The go form does not ever return a value. 1\ go form may not appear as an argument to an 

ordinary function, but only at the top level of a prog body or within certain special forms such as 

conditionals which are within a prog body. 

For example: 



CO~TROL STRUCTFRE 81· 

(prog «n (string-length a-string» (j 0» 
loop {when (= j n) (return a-string» 

{when {char= #\Space (char j a-string» 
{return (substring a-string 0 j») 

(increment j) 
(go loop» 

returns the first "word" in a - s t r i n g. where words are separated by spaces. This could of course 

have been expressed more succinctly as: 

(dotimes (j (string-length a-string) a-string) 
(when (char= #\Space (char j a-string» 

(retu~n (substring a-string 0 j»» 

As a matter of style, it is recommended that the user think twice pefore using a go. Most purposes 

of go can be accomplished with one of the iteration primitives, nested conditional fonns, or 

return -from (page 72). If the use of go seems to be unavoidable, perhaps the control structure 

implemented by go should be packaged up as a macro definition. (If the use of go is avoidable, 

and return also is not needed, then prog probably is not needed either; 1 et can be used to bind 

variables and then execute some statements.) 

7.9. Multiple Values 

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenient 

for a function to compute several quantities and return them. COMMON LISP provides a mechanism for 

handling multiple values directly. This mechanism is cleaner and more efficient than the usual tricks 

involving returning a list ofresu~ts or stashing results in global variables. 

7.9.1. Constructs for Handling Multiple Values 

Normally multiple values are not used. Special fonns are required both to produce multiple values and to 

receive them. If the caller of a function does not request multiple values, but the called function produces· 

multiple values. then the first value is given to the caller and all others are discarded (and if the caned 

function produces zero values then the caBer gets nil as a value). 

The primary primitive for producing multiple values is val ue s (page 82), which takes any number of 

arguments and returns that many values. If the last fonn in the body of a function is a va 1 ues with three 

arguments, then a call to that function will return threp values. Other special fi)rms also produce multiple 

values. but they can be described in terms of val ue s. Some built-in COMMON LISP functions (such as 

floor (page 131» return multiple values; those which do arc so documented. 

The special forms for receiving multiple values are mu It i p 1 e - val ue - b; n d (page 82), 

mu 1 t; p 1 e - val ue (page 83), and mu 1 tip 1 e - val ue -1 is t (page 82). These specify a fonn to evaluate 

and an indication of where to put the values returned by that form. 



82 CO\1\10~ LISP REFERE~CE \1ANUAL 

values &rest args [Function] 
Returns all of its arguments, in order, as values. 

For example: 

(defun polar (x y) 
(values (sqrt (+ (* x x) (* y y») (atan y x») 

(multiple-value-let (r theta) (polar 3.0 4.0) 
(list r theta» 

=> (5.0 0.9272952) 

The expression ( va 1 ue s ) returns zero values. 

val u e s - 1 i s t list· [Function] 
Returns as multiple values an the elements of list. 

For example: 

(values-list (list a be» <=> (values a b e) 

mul tip 1 e-va 1 ue-l ; st form [Specialfonn1 

mu 1 tip 1 e - val u e -1 i s t evaluates form, and returns a list of the multiple values it returned._ 

For example: 

(multiple-value-list (floor -3 4) => (-II) 

mvea 11 function {fonn}* [SpeciaZfonn) 

mv c a 11 first evaluates jUnction to obtain a function. and then evaluates all of the forms. All the 

the values of the' forms are gathered together (not just one value from each), and given as 
arguments to the function. The result of mv call is whatever is returned by the function. 

For example: 

(mvcall #t+ (floor 5 3) (floor 7 3)} <=> (+ 1 2 2 1) => 6 
(multiple-value-list form) <=> (mvcall #'list form) 

mvprogl form {fonn}* [Special fonn] 

mv pro 9 1 evaluates the first jbm1 and saves all the values produced by that form. It then evaluates 

the other fOm1f, from left to right, discarding their values. The values produced by the fIrstform are 
returned by mvprogl. See progl (page 65). which always returns a single value. 

mul tip le-va 1 ue-bi nd( {var} * ) values-fonn {fonn}* [Special fOm1] 

The values-form is evaluated. and each of the variables varis bound to the respective value returned 

. by that form. If there are more variables than values returned. extra values of nil are given to the 

remaining variables. If there are more values than variables. thecttess values are simply discarded. 

The variables are bound to the values over the execution of the forms, which make up an implicit 

progn. 

Compatibility note: This is compatible with Lisp Machine LISP. 



CO;\TROL SlRlC[ LRE 83 

For example: 

(multiple-value-bind (x) (floor 5 3) (list x» => (1) 
(multiple-value-bind (x y) (floor 5 3) (list x y» => (1 2) 
(multiple-value-bind (x y z) (floor 5 3) (list x y z» 

=> (1 2 nil) 

In general, 

(multiple-value-bind (x y z ... ) fonn . body) 
<=> 

(mvlet (&optional (x nil) (y nil) (z nil) ... &rest dummy) 
(declare (ignored dummy» 
form . body) 

mul tip 1 e-va 1 ue variables form [Special form] 

The variables must be a list of variables. The form is evaluated, and the variables are set (not 

bound) to the values returned by that form. If there are more variables than values returned, extra 

values of nil are assigned to the remaining variables. If there are more values than variables, the 

excess values are simply discarded. ' 

Compatibility note: This is compatible with Lisp Machine LIsp. 

mu 1 tip 1 e - val ue always returns a single value, which is the first value returned by form, or nil 

if form produces zero values. 

7.9.2. Rules for Tail-Recursive Situations· 

It is often the case that the value of a special fo~ is defined to be the value of one of its sub-forms. For 

example, the value of a cond is the value of the last fonn in the selected clause. In most such cases, if the 

sub-form produces multiple values, the original fonn will also produce all of those values. This passing-back 

of multiple values of course has no effect unless eventually one of the special forms for receiving multiple 

values is reached. 

To be explicit, multiple values can result from a special form under precisely these circumstances: 

• eva 1 (page 209) returns multiple values if the form given itto cvaluate produces multiple values. 

• apply (page 63), funcal 1 (page 64), funcal 1 * (page 64), mvcal 1 (pagc 82), subrcall 
(page SUBRCALL-FUN), and subrcall * (page SUBRCALL*-FUN) pass back multiple 
valu'cs from the function applied or called. 

• When a 1 ambda (page LAMBDA-FUN)-expression is invoked, the function passes back 
mul!iple values from the last form of the 1 ambda body (which is an implicit progn). 

• Indeed, progn (page 64) itself passes back multiple values from its last fonn, as does any 
construct some part of whichis defined to be an Himplicit progn"; these include progv (page 
67), let (page 65), 1 et * (page 66),when (page 69). un 1 ess (page 70). case (page 70), 
typecase (page 70), multiple-value-bind (page 82), multiple-value (page 83), 
catch (page 85). and catch-all (page 85). 



84 CO\(\10\; LISP RITE!n-:~CE \L\:\ljAL 

• mvprogl (page 82) passes back multiple values from its first fonn. However, progl (page 
65) always returns a single value. 

• un win d - pro t e c t (page 86) returns multiple values if the fonn it protcct~ does. 

• catch (page 85) returns multiple values if the result form in a throw (page 87) exiting from 
such a catch produces multiple values. 

• cond (page 68) passes back multiple values from the last fonn of the implicit progn of the 
selected clause .. If, however. the clause selected is a singleton clause, then only a single value (the 
non-n i 1 predicate value) is returned. }his is true even if the singleton clause is the last clause of 
the condo It is not permitted to treat a final clause" (x)" as being the same as "( t x)" for this 
reason; the latter passes back multiple values from the form x. 

• if (page 69) passes back multiple values from whichever form is selected (the then form or the 
else form). 

• an d (page 52) and 0 r (page 52) pass back multiple values from the last form, but not from 
forms other than the last 

• do (page 73), prog (page 78), prog* (page 80), and other constructs from which return 
(page 72) can return, each pass back the multiple values of the fonn appearing in In addition, do . 
passes back multiple values from the last fonn of the exit clause, exactly as if the exit clause were a 
con d clause. 

Among special forms which never pass back multiple values are setq (page 58), mul t ip1 e-val ue 

(page 83), and prog 1 (page 65). A good way to force only one value to be returned from a form x is to write 

(values x). 

The most important rule about multiple values, however, is: 

No matter. how many values a form produces, 
if the form is an argument form in a function call, 

then exactly ONE value (the first one) is used. 

For example. if you write (cons (foo x», then cons will receive exactly one argument (which is of 

course an error)~ even if foo returns two values. To pass both values from foo to cons. one must usc a 

special form, such as (mvc a 11 #' cons (foo x». In an ordinary function call, each argument form 

produces exactly one argument; if such a fonn returns zero values, nil is used for the argument. and if more 

than one value, all but the first are discarded. Similarly, conditional constructs which test the value of a fonn 

will use exactly one value (the first) from that fonn and discard the rest, or use nil if zero values are 

returned. 



• 

CO~TROL STR CCTLJRE 8~ 

7 . .10. Dynainic Non-local Exits 

CO:\1MON LISP provides a facility for exiting from a complex process in a non-local. dynamically scoped 

manner. There are two classes of special forms for this purpose, called catch forms and thruw fonns, or simply 

catches and throws. A catch form evaluates some subfonns in such a way that, if a throw form is executed 

during such evaluation, the evaluation is aborted at that point and the catch form immediately returns a value 

specified by the throw. Unlike block (page 71) and re tu rn (page 72), which anow for so exiting a block 

fOlm from any point lexically within the body of the b lock, the catch/throw mechanism works even if the 

throw form is not textually within the body of the catch form. The throw need only occur within the extent 

(time span) of the evaluation of the body of the catch. This is analogous to .the distinction between 

dynamically bound (special) variables and lexically bound (local) variables. 

7.10.1. Catch Forms 

catch tag {{onn}* [Specialfonn] 

The cat c h special form is the simplest catcher. The tag is evaluated first to produce an object that 

names th~ catch; it may be any LISP object. The forms are evaluated as an implicit pro9.n, and the 

results of the last form are returned, except that if during the evaluation of the jomls a throw 

should be executed, such that the tag of the throw matches (is e q to) the tag of the cat c h, then the 

evaluation of the forms is aborted and the results specified by the throw are immediately returned 

from the cat c h expression. 

The tag is used to match up throws with catches (using eq, not eql; therefore numbers should not 

be used as catch tags). (catch 'foo form) will catch a (throw t foo form) but not a 

(throw 'bar form). It is an error if throw is done when there is no suitable catch (or one of 

its variants) ready to catch it. 

Compatibility note: This syntax for catch is not compatible with MACLISP. Lisp Machine LISP defines catch 
to be compatible with that of MAC LISP, but discourages its use. The definition here is compatible with NIL. 

catch-all catch-function {{onn}* [5'pecialform] 

unwind-all catch-function {fonn}* [Special form] 

catcha 11 behav9s roughly like catch, except that instead of a tag. a catch-function is provided. 

If no throw occurs during the evaluation of the fomls, then this behaves just as for catch: the 

catcha 11 form returns what is returned from evaluation of the last of the forms. catch-all 

will catch any throw not caught by some inner catcher, however; if such a throw occurs, then the 

function is caned. and whatever it returns is returned by catch-all. The catch-function will get 

one or more arguments; the first argument is always the throw tag, and the other arguments are the 

thrown results (there may be more than one if the result form for the throw pf()duces multiple 

values). " 

"The catch-a 11 is not in force during execution of the catch-function. If a throw occurs within" 

the catch-function, it will throw to some catch exterior to the cat c h - all. This is useful because 

the catch-func/iun can examine the tag, and if it is not of interest can relay the throw. 



86 CO\-l\IO~ LI~,P RrFnU:~CE \L\NLJAL 

(catch-all #'(lambda (tag &rest results) 
(caseq tag ; Check tag. 

(win (val ues-l ist results» ;Ifwin. return results. 
(lose (cleanup) ;lflosc.c1canup 

(ferror "Lose lose!"» ; and signal an error. 
(otherwi se ; Otherwise relay throw. 

(throw tag (values-list results»») 
(de~ermine-win-or-lose» 

unwi nd-a 11 is Just like catch-a 11 except that the catch-function is always called, even if no 

throw occurs; in that case the first argument (the "tag") to the catch-function is nil, and the other 

arguments are the results from the last of the forms. Often unwi nd-protect is more suitable for 

a given task than un win d - all, however; the choice should be weighed for any particular 

application. 

??? Query: Ooooops, there's a problem with these. What tag is supplied if what is causing the exit is a go or 
return from within the body to some tag or block outside the catcher? In MACLIsp, a go from within a 
cat c hall quietly breaks up the cat c h a1 1 frame without invoking the cat c hall function, which means 
that it catches all throws but not all exits! 

unwi nd-protect protected-form {cleanup-form}* [Specialfonn] 
Sometimes it is necessary to evaluate a form and make sure that certain side-effects take place after 

the form is evaluated; a typical example is: 
(progn (start-motor) 

(drill-hole) 
(stop-motor» 

The non-local exit facility of Lisp creates a situation in which the above code won't work, however: 

if d rill - hal e should do a throw to a catch· Which is outside of the pro 9 n form (perhaps· because 

the drill bit broke), then (stop-motor) will never be evaluated (and the motor will presumably 

be left running). This is particularly likely if d rill - h ole causes a LISP error and the user tells 

the error-handler to give up and abortthe computation. (A possibly more practical example might 

be: 

(prog2 (open-a-file) 
(process'""fi1e) 
(close-the-fi1e» 

where it is desired always to close the file when the computation is terminated for whatever reason.) 

In order to allow the above program to work, it can be rewritten using un win d - pro tee t. as 

follows: 

(unwind-protect 
(progn (start-motor) 

(drill-hole» 
(stop-motor» 

If drill-hole does a throw which attempts to quit out of the unwind-protect, then 

(stop-motor) will be executed. 

As a general rule. unwi nd-protect guarantees to execute all the c/eaflup-fonns before exiting, 

whether it tenninates normal1y Of is aborted by a throw of some kind. unwi nd-protect returns 



CO:\TROL STRUCITkE 87 

whatever results from evaluation of the protecled-jomz, and discards all the results from the 

cleanup-forms. 

7.10.2. Throw Forms 

throw tag result [Special jo rm] 
The throw special form is the only explicit thrower in COMMON LISP. (However, errors may cause 

throw~ t~ occur also.) The tag is evaluated first to produce an object called the· throw tag. The 

most recent outstanding catch whose tag matches the throw tag is exited. Some catches, such as a 

cat c h - a 11, will match any throw tag; a cat c h matches only if the catch tag is e q to the throw 

tag. 

In the process dynamic variable bindings are undone back to the point of the catch, and any 

intervening un wind - pro tee t Gleanup code is executed. The result form is evaluated before the 

unwinding process commences, and whatever results it produces are returned from the catch (or 

given to the catch-junction, if appropriate). 

If there is no outstanding catch whose tag matches the throw tag, no unwinding of the stack is 

performed, and an error is signalled. When the error is signalled, the outstanding catche~ and the 

dynamic variable bindings are those in force at the point of the throw. 

Implementation note: These requirements imply that throwing must be done by two passes over the control 
stack. In the first pass one simply searches for a matching catch. In this search every cat c h. cat c h - a 11, 
and unwi nd-a11 must be considered. but every unwi nd-protect should be ignored. On the second pass 
the stack is actually unwound. one frame at a time, undoing dynamic bindings and outstanding 
unwi nd-protect in reverse order of creation until the matching catch is reached. 



88 CO;\1i\10;\ LISP REITRFi\CE MAl\UAL 

• 



• 

Cllapter 8 

Macros 

The COMMON LISP macro facility allows the user to define arbitrary functions· that convert certain LISP 

fonns into different forms before evaluating or compiling them. This is done at the S-expression level, not at 

the character-string level as in most other languages. Macros are important in the writing of good code: they 

make it possible to write code that is clear and elegant at the user level, but. that is converted to a more 

complex or more efficient internal fonn for execution. 

When eva 1 (page 209) is given a list whose car is a symbol, it looks in the definition cell of that symbol. 

If the definition is itself an object that satisfies the pseudo-predicate ma c r 0 - p (page 57), then the original 

list is said to be a macro call. The non-n i 1 result ofmacro-p will be a function-of one argument, called the 

expansion function. This function is called with the entire macro call as its one argument: it must return some 

new LISP form, called the expansion of the macro call. This expansion is then evaluated in place of the 

original form. 

When a function is being compiled, any macros it contains are expanded at compilation time. This means 

that a macro definition must be seen by the compiler before the first use of the macro. Macros cannot be used 

as functional arguments to such thingsas app 1 y (page 63), funca 11 (page 64), or map (page 159); in such 

situations, the list representing the "original macro call" does not exist, so the expansion function would not 

know what to work on. 

8.1. Defining Macros 

macro name (var) {fonn}* [Macro] 
The primitive special form for defining a macro is macro. Note, however, that the use of macro is 

often very awkward, and it is preferable to use defmacro in almost aU circumstances. A can to 

macro has the fonowing form:· 

(macro name (var) . body) 

This is very similar in form to a defun form: name is the symbol whose macro-definition we are 

creating, var is a single required parameter name that is bound to the entire calling form, and body 
is the body of the expansion function, which is executed as an implicit progn. The last form in 

body produces, as its value. the form that will be passed back to eva 1 as the macro expansion: the 

- 89-



90 ('0\'11\1001 USP REITIZFNCI: \1A0:CAL 

expansion is then evaluated in place of the macro can. (Note that the expansion could itself bc a 

macro call, and the cycle would repeat.) 

The if (page 69) construct could be defined in tenns of co n d (page 68) as a macro: 

(macro if (call-form) 
'(cond (,(cadr call-form) ,(caddr call-form» 

(t ,(cadddr call-form»» 

If the above form is executed by the interpreter, it will set the definition of the symbol if to an object such 

that macro-p of that' object returns a one-argument function equivalent to: 

(lambda (calling-form) 
(list 'cond 

(list (cadr calling-form) (caddr calling-form» 
{list 't (cadddr calling-form»» 

(The lambda-expression is produced by the rna c r a construct The calls to 1 i stare the (hypothetical) result 

of the back quote ( , ) macro character and its associated commas.) 

Now, ifeval encounters 

(if (null fool bar (plus bar 3» 

this will be expanded into 

(cond «null faa) bar) 
(t (plus bar 3») 

and e val tries again on this new form. 

As you can see in the above example, the main disadvantage of using rna c r a to define macros is that the 

user must decompose the argument into its constituents using car and cdr. In a complex macro, this process 

is confusing and error-pronc. The use of ·defmacro (page 91) alleviates this problem. It should also be 

clear that the backquote facility (???) is very useful in writing macros, since the form to be returned is 

normally a complex list structure, mostly- constant but with a few evaluated forms scattered through the 

structure. 

Note that when rna c r 0 is encountered by the compiler. the normal action is to add the definition to the 

compilation environment and also to place a compiled version of the expander-function into the load fi)e~ so 

that the macro will be defined at runtime as well as during the current compilation. If the macro is to be used 

only during the current compilation and not at runtime. this can be achieved by using the eva 1 -wh en (page 

EVAL-WHEN-FUN) construct: 

{eval-when (compile) 
(mac ro name (var) 

body) ) 



\L\CROS 91 

de fmac ro name l'arliSl {form}* [J/acro] 

defmacro is a macro-defining macro that, unlike macro, decomposes the calling fonn in a more 

elegant and useful way. A can to defmac ro has the fol1owing form: 

(defmacro Ilame varUs! . body) 

This is very similar to a defun (page 42) form: name is the symbol whose macro-definition we are 

creating. varlist is similar in fonn to a lambda-list, and body is the body of the expander function. If 

we view the macro call as a list containing a function name and some argument forms, the 

argument forms (unevaluated) are bound to the corresponding parameters in varlisl. Then the 

body forms are evaluated as an implicit progn, and the value of the last form is returned as the 

expansion of the macro call. 

Like the lambda-list in a defun, a defmacro varlist may contain variable symbols and the 

&opt ional, &rest, and &aux tokens (but not &key). 

??? Query: Should &k e y be allowed? 

For &opt i on a 1 parameters, initialization forms and "supplied-p" parameters may be specified, 

just as for defun. Two additional tokens are allowed in defmacro variable lists only: 

&body 

&whole 

This is identical in function to &r est, but it informs certain pretty-printing and 
editing functions that the remainder of the form is a body rather than 
arguments, and should be indented accordingly. (Only one of &body or &res t 
may be used.) 

This is followed by a single variable that is bound to the entire macro call form; 
this is the same value that the single parameter in a rna c r 0 definition fonn 
would receive. 

Compatibility note: Some LIsp implementations, notably Lisp Machine LIsp, allow a "dcstructuring" pattern to 
be used instead of, or mixed with, the defun-like arglist specified here. Prior to the appearance of 
&opt; ona 1. the pattern may contain not only top-level symbols, but an arbitrary list structure built from cons 
cells and symbols; this is matched against the macro call cell by cell. producing a binding wherever the 
defmacro pattern contains a symbol. This is not supported by COMMON LISP; it docs not support 
destructuringin defun, and defmacro needs to paraliel defun as closely as possible to minimize confusion 
fu what is already a difficult area for new users .. Some COMMON LISP implementations may choose to provide 
destructuring defmacro as an extension. 

Using defstruct, the definition for three-argument if would look like this: 

{defmacro if (pred result else-result) 
. '(cond (,pred ,result) 

(t ,else-result») 

This would produce the same macro-definition for if as the definition using macro above. If if 

is to accept two or three arguments. with the e 1 s e - res u 1 t defaulting to nil. as in fact it docs in 

COMMON LISP, the definition might look like this: 

{defrnacro if {pred result &optiona1 (else-result 'nil») 
'{cond (,pred ,result) 

(t ,else-result») 

If the compiler encounters a defmacro, the normal effect is that same as for a macro form: the 

new macro· is added to the compilation environment, and a compiled form of the expansion 

function is also added to the output file so that tile new macro will be operalive at runtime. If this 



92 CO:\1\lO~ Ll~;[> REFFRE:'\CE \1A~UAL 

is not the desired effect. the defmacro fann can be wrapped in an eval-when. 

Several global variables affect the code that defmacro produces. 

defmac r 0- check -args [Variable] 
If defmacro-check-args' is true (which it initially is) when a defmacro (page 91) fonn is 

, executed or compiled, the resulting macro defined by de fmac r 0 will contain code that signals an 

error if it is caned with the wrong number of "argument" forms, that is, if the number of items 

following the function name in the calling form is inconsistent with the number of required and 

optional arguments specified in the defmacro fonn. 

defmacro-maybe-d i sp 1 ace [Variable] 
If defmacro-maybe-d i sp 1 ace is true (which it initially is) when a defmacro (page 91) fonn 

is executed or compiled, the, resulting macro defined by defmacro will contain code that checks 

the variable macro-displ ac~ment-hook at expansion time. If 
macro-displacement-hook is null, the expansion is used normally. Otherwise, the value of 

this variable must be a function of two arguments: the original macro-call form and the expansion. 

Whatever this function returns is passed back to eval as the macro expansion to use this time 

around. 

macro-expans ion-hook [Variable] 
The value of this variable is .initially n i 1. Th~ purpose of this variable is described above under 

defmacro-maybe -d i sp 1 ace (page 92). If the user wants to speed up interpreted code that 

makes lieavy use of macros, this variable can be set to (the name of) the function d i sp 1 ace (page 

92): 

(setq macro-expansion-hook 'displace) 

This will destructively replace the macro call with its expansion. Alternatively, some more complex 

function may be used. 

di sp 1 ace macro-call expansion [Function) 
d i sp 1 ace destructively replaces the macro-call with its expansion. returning the expansion. It is 

the simplest possib1e "memoizing" function. whose purpose is to speed up interpreted code by 

doing each macro expansion 'only once. rts disadvantages arc that the original form of the macro is 

not available to printing and debugging packages, and that if the macro definition is altered. the 

displaced calls will retain their o1d expansions., (tv·rore complex memoizing packages, which 

eliminate these disadvantages, will be available in the COMMON LISP library. These are not 

induded in the b'ase language because their use must be coordinated with the usc of particular 

printing. loading. and debugging facilities.) 



~L\CROS 93 

macroexpand j0171i [Function] 

macroexpand-l jonn [Function] 
If jonn is a macro call (with respect to global macro definitions, ignoring any established' by 

macrol et (page 67), then macroexpand-l will expand the macro call once and return the 

expansion. If foml is not a macro call, it is simply.returned. macroexpand is similar, but 

repeatedly expandsjarm until it is no longer a macro call. 



--- ----------~~~~~~~~-----------,.-~----------------------

94 ('0\1\10:\ US·p REFEI{ENCE MANUAL 

.e 



Cllapter 9 

Declarations 

Declarations allow you to specify extra information about your program to the LISP system. All 

declarations are completely optional and do not affect the meaning of a correct program, with one exception: 

s p e cia 1 declarations do affect the interpretation of variable bindings and references, and so must be 

specified where appropriate. All other declarations are of an advisory nature, and may be used by the LISP 

system to aid you by performing extra error checking or p'roducing more efficient compiled c·ode. 

Declarations are also a goo.d way to add documentation to a program. 

9.1. Declaration Syntax 

decl are {declaration}* [Special fonn] 
This fonn may occur only at top level, or at the beginning of the bodies of certain special forms; 

that is, a decl are form not at top level may occur only as a statement of such a form, and all 

statements preceding it (if any) must also be de c 1 are fonns. If a declaration is found anywhere 

else an error will be signalled. 

Each declaration fonn is a list whose car is a keyword specifying the kind of declaration it is. 

Declarations may be divided into two classes: those that concern the bindings of variables, and 

those that do not Those which concern. variable bindings apply only to the bindings made by the 

special form at the head of whose body they appear. For example. in 

(defun foo (x) 
(declare (type float x» ... 
( 1 et « x t a » ... ) 
... ) 

the type declaration applies only to the outer binding of x, and not to the binding made in the 1 e t. 
Compatibility notc: This is different from MACLISP, in which type declarations arc pervac;ivc. 

If a declaration that applies only to variable bindings appearsat top level, it applies to the dynamic 

value of the variable. For example, the top-level declaration 

(declare (type float tolerance» 

specifics that the dynamic value of to 1 e ran ce should always be a floating-point number. 

Declarations that do not concern themselves with variable bindings are pervasive, affecting all code· 

- 95-



96 CO\1\10~ LISP REITRE~('E \1ANUAL 

in the body of the special fonn (but not code in any initialization forms used to compute initial 

values for bound variables). 

For example: 

(defun foo (x y) (declare (notinline floor» ... ) 
-

advises that everywhere within the body of f 0 0 the function f 1 00 r should not be open-coded, 

but called as an out-of-line subroutine. Any pervasive declaration made at top level constitutes a 
universal declaration, always in force unless locally shadowed. 

For examp~e:. 

(declare (inline floor» 

advises that floor should normally be open-coded in-line by the compiler (but within foo it will 

be compiled out-of-line anyway, because of the shadowing local declaration to that effect). 

For example: 

(defun nonsense (k x) 
{declare (type integer k» 
{let ({j (foo k x» 

(x (* k k») 
{declare (inline fool (special x» 
(foo x j») 

In this rather nonsensical example, k is declared to be of type i n t e 9 e r. The i n 1 i n e declaration 

applies to the inner call to foo, but not to the one to whose value j is boun<L because that is code 
in the binding part of the 1 e t. The s p e cia 1 declaration of x causes the 1 e t fonn to make a 

special binding for x, and causes the reference to x in the body of the 1 et to be a special reference. 

However, the reference to x in the first call to f 0 0 is a local reference, not a special one. 
Compatibility note: In MAcLIsp, decl are does nothing in interpreted code,·and is defined to simply evaluate 
all the argument forms in the compilation environment. In COMMON LIsp, decl are does useful things for 
both interpreted code and compiled code, and therefore arbitrary forms are not permitted within it The tricks 
played inMAcuspwith decl are are better done using eval-when (page EVAL-WHEN-FUN). 

1 oca 11 y {decIare-fonn}* UOnn}* [Special fonn] 

This special form may be used to make local pervasive declarations where desired. It does not bind 

any variables, and so cannot be used meaningfully for declarations of variable bindings. 

For example: 

(locally (declare (inline floor») 
(declare (notinline car cdr» 

{floor (car x) (cdr y») 

9.2. Declaration Forms 

Here is a list of valid declaration fonns for use in decl are. A construct is said to be "affected" by a 

declaration if it occurs within the scope of a' declaration. 

special (s pec i a 1 varl var2 A. t. ) declares that an of the variables named are to be considered 
special. . This declaration affects variable bindings, but also pervasively affects references. 



DECLARATIO;";S 

type 

type 

ftype 

function. 

inline 

97 

All variable bindings affected arc made to be dynamic bindings, and affected variable 
references refer to the current dynamic binding rather than the current local binding. This 
declaration does not pervasively affect bindings unless it occurs at top level (this tatter 
exception arising from convenience and compatibility with MACLISP). Inner bindings of a 
variable implicitly shadow a spec i a 1 declaration, and must be explicitly fe-declared to be 
special. 

For example: 

(decl are (speci al x» ; x is always special. 
(defun example (x y) 

(declare (special y» 
(let «y 3» 

(print (+ y (locally (declare (special y» y») 
(let «y 4» (declare (special Y»'(foo x»» 

In the contorted code above, the outermost and innennost bindings of yare special, and 
therefore dynamically scoped, but the middle binding is lexically scoped. The two 
arguments to + are different, one being the value (which is 3) of the lexically bound 
variable y, and the other being the value of the special variable named y (a binding of 
which happens, coincidentally, to lexically surround it at an outer level). 

(type type var} var2 ... ) affects only variable bindings, and declares that the 
specified variables will take on values only of the specified type. 

(type var} var2 ... ) is an abbreviation for (type type var] var2 ... ) provided 
that type is one of the symbols appearing in Table 4-1 (page 27). 

(ftype type function-name-} function-name-2 ... ) declares that the named functions 
will be of the functional type type~ 

For example: 

(declare (ftype (function (integer list) t) nth) 
(ftype (function (number) float) sin cos» 

( fun c t ion name arglist result- type} result- type2 ... ) is entirely equivalent to 

(ftype (function name arglist result-type} resu/i-type2 ... ) name) 

but may be more convenient for some purposes. 

For example: 

(declare (function nth (integer list) t) 
(function sin (number) float) 
(function cos (number) float» 

The syntax mildly resembles that of defun (page 42): a function name, then an argument 
list. then a specification of results. 

( i n 1 in e junction! junction2 ... ) declares that it is desirable for the compiler to 
open-code calls to the specified functions; that is, the code for a specified function should 
be integrated into the calling routine, appearing "in line'", rather than a procedure call 
appearing there. This may achieve extra speed at the expense of debuggability (calls to 
functions compiled in-line cannot be traced, for example). This declaration is pervasive. 
Remem ber that a compiler is free to ignore this declaration. 



98 

notinline 

ignore 

optimi ze 

CO\IMON IJSPRFFFRENCEl\1AKUAL 

(notinl ine junctionl ./Unction2 .... ) declares that it is undesirable to compile the 
specified functions in-linc. This declaration is pervasive. Remember that a compiler is free 
to ignore this declaration. 

(;gnore varl var2_ ... yarn) affects only variable bindings, and declares that the 
bindings of the specifled variables are never used. It is desirable for a compiler to issue a 

. warning if a variable so declared is ever referred to or is also declared special, or if a 
variable is lexical. never referred to, and not declared to be ignored. 

1?1 Query: l11is is a new idea: what do people think? This is more mnemonic than writing ignore 
or nil for an ignored parameter because you can give a meani.ngful (and possibly conventional) 
name. It is more explicit and robust than simply mentioning the variable at the front of the 
lambda-body; the latter' convention prevents the compiler from issuing a warning about a possibly 
malformed program. 

(opt imi ze quaUlyJ qualily2 •.. ) advises the compiler that quality/ should be given 
greatest attention in producing compiled code, then quality2, and so on. TIle qualities may 
include speed (of the compiled code), space (both code size and run-time space), and 
sa f e ty (run-time error checking); any qualiti~s not mentioned are assumed to be of 
lower priority than those mentioned. The default situation is implementation-dependent, 
but imple~entors are encouraged to consider (opt imi ze safety speed space) for 
the default. This declaration is pervasive. 

For example: 

(dafun often-used-subroutine (x y) 
(error-check x y) 
(hairy-setup x) ~ 
(locally _ 

;; This inner.loop really needs to burn. -
(declare (optimize speed)} 
(do «i 0 (+ i 1» 

(z x (cdr z») 
«null z» 

(declare (fixnum i))) 

1?? Query: This is a new idea: what do people think? Actually, one. needs finer control over this, 
such as whether type declarations should be assumed by the compiler or cause explicit checking code 
to be emitted. 

An implementation is frce to support other (implementation-dependent) declarations as well. On the other 

hand~ a COMMON LISP compiler is free to ignore entire classes of declarations (for example, implementation

dependent declarations not supported by that compiler's implementation!) .. Compiler implemeniors are 

encouraged. however, to program -the compiler by default to issue a warning if the compiler finds a 

declaration of a kind it never uses (as a hedge against spc11ing errors). 

9.3. Type Declaration for Forms 

Frequently it is useful to declare that the value produced by the evaluation of somc fonnwill be of a 

particular typc. Using de clare one can declare the type of the value held by a bound variable, but there· is 

no easy way to declare the type of the value of an unnamed form. One could write something like 



DI ·:CLARA 1'10:\S 99 

« 1 ambda (x) (decl are (type type x» x) jorm) 

but that would be rather clumsy. For this purpose the the special form is defined: (the type form) means 

essentially the same as the larger expression above. 

the type jonn [Specialjonn] 

The fonn is evaluated; whatever it produces is returned by the the fmID. In addition, it is an error 

if what is produced by the fonn does not conform to the data type specified by type (which is not 

evaluated). (A given implementation mayor may not actually check for this error. 

Implementations are encouraged to make an explicit error check when running interpretively.) In 

effect, this declares that the user undertakes to guarantee that the values of the form will always be 

of the specified type. 

For example: 

(the string (concat x y» 
(the integer (+ x 3» 
(+ (the integer x) 3) 
(the (complex rational) (* z 3» 
(the (unsigned-byte 8) (logand x 

; The result of concat will be a string. 
; The result of + will be an integer. 
; The value of x will be an integer. 

mask» 
Compatibility note: This construct is borrowed from the INTERLISP DECL package: INTERLISP, however, allows 
an implicit progn after the type specifier rather than just a single form. The MACLISP f i xnum- i dent i ty 
and flonum-identity constructs can be expressed as (the fixnum x) and (the Single-float 
x). 



100 CO\1\10:\ LISP HLFFI~E~CE \lAi\l.JAL 

• 



Chapter 10 

Symbols 

A Lisp symbol is a data object which has three user-visible components: 

• The property list is a list which effectively provides each symbol with many modifiable named 
components. 

• The print name must be a string, which is the sequence of characters used to identify the symbol. 
Symbols are of gre~t use because a symbol can be located given its name (typed, say, on a 
keyboard). It is ordinarily not permitted to alter a symbol's print name. 

• The package cell must refer to a package object. A package is a data structure used to locate a 
symbol given its name. A symbol is uniquely identified by its name only when considered relative 
to a package. A symbol may be in many packages, but it can be owned by at most one package. 
The package cell points to the owner, if any. 

A symbol may actually have other components as well for use by the implementation. One of the more 

important uses of symbols is as names for program variables; it is frequently desirable for the implementor to 

usc certain components of a symbol to implement the semantics of variables. However, there are several 

possible implementation strategies, and so such possible components are not described here. 

111e three components named above and the functions related to them are described more individually and 

in more detail in the following sections. 

10.1. The Property List 

Since its inception, LISP has associated with each symbol a kind of tabular data structure caned a property 

'Iist (phst for short). A property list contains zero or more entries: each entry associates from a keyword 

symbol (called the indicator) to a Lisp object (caned the value or, sometimes, the property). There are no 

duplications among the indicators: a property-list may only have one property at a time with a given name. In 

this way, given a symbol and an indicator (another symbol), an associated value can be retrieved. 

A property list is very similar in purpose to an association list The difference is that a property list is an 

object with a unique identity: the operations for adding and removing property-li.st entries arc destructive 

operations that alter the property-list rather than making a new one. Association list.,. on the other hand, arc 

- 101 -



102 CO\l\l();\ LISP RHTRF\CE \IA:\CAL 

normally augmented non-destructively (without side effects), by adding new entries to the front (see aeons 

(page 179) and p air 1 is (page 179»). 

I\. property list is implemented as a memory cell containing a list with an even number (possibly zero) of 

elements. (Usually this memory cell is the property-list cell of a symbol, but any memory cell acceptable to 

setf(page 60) can be used if certain special forms are used.) Each pair of clements in the list constitutes an 

entry; the first item is the indicator and the second is the value. Because property-list functions are given the 

symbol and not the list itself, modifications to the property list can be recorded by storing back into the 

property-list cell of the symbol. 

When a symbol is created, its property list is initially empty. Properties are created by putpr (page 

102) and related functions. 

COMMON LISP does not use a symbol's property list as extensively as earlier LISP implementations did. 

L~ss-used data, such as compiler, debugging, and documentation infonnation, is kept on property lists in 

COMMON LISP. 

Compatibility note: In older Lisp implementations. the print name, value, and function definition of a symbol were kept on 
its property list The value cell was introduced into MAcLISP and INTER LISP to speed up access to variables: similarly for the 
print-name cell and function cell (MACLISP does not use a function cell). Recent LISP implementations such as SPICE LIsp, 
Lisp Machine LISP, and NIL have introduced a11 of these cells plus the package cell. None of the MACLISP system property 
names (expr,fexpr, macro, array, subr, 1 subr. fsubr, and in former times va 1 ue and pname) exist in CoMMON 
LISP. 

Compatibility note: In COMMON LISP, the notion of "disembodied property list" introduced in MACLISP is eliminated. It 
tended to be used for rather kludgy things, and in Lisp Machine LISP is often associated with the use of locatives (to make it 
"off by one" for searching alternating keyword lists). In COMMON LIsp special setf-like property list functions are 
introduced: getf (page 103), putf (page 103). and remf (page 104). 

getpr symbol indicator &optiona1 default [Function] 

getpr searches the property list of symbol for an indicator eq to indicator. If one is found, then the 

corresponding value is returned; otherwise default is returned. If default is not specified, then nil 

is used for default. Note that there is no way to distinguish an absent property from one whose 

value is default. 

(getpr x y) <=> (getf (p1ist x) y) 

Supposethatthepropertylistoffoois(bar t baz 3 hunoz "Huh?"). Then, for example: 

(getpr 'foo 'baz) => 3 
(getpr 'foo 'hunoz) => "Huh?" 
(getpr 'foo 'zoo) => nil 

putpr symbol indicator newvalue [Function] 

This causes symbol to have a property· whose indicator is indicator and whose value is newvalue. If 
the property Jist already already had a property with an indicator eq to indicator, then the value 

previously associated with that indicator is removed from the property list and replaced by 

newvalue. 'l'he property list is destructively altered by using side effects. ;\ fter a p u tp r is done, 

( get pr symbol indicator) will return value. pu tp r returns the new value. 

• 



SY\lBOLS 

(putpr x y z) <=> (putf (plist x) y z) 

for example: 

(putpr 'Nixon 'crook 'no) => no 
(getpr 'Nixon 'crook) => no 

103· 

? ?? Query: Should there be an analogue for de f pro p, say de f p r? 

remp·r symbol indicator [Function] 

This removes from symbol the property with an indicator e q to indicator, by splicing it out of the 

property list It returns nil if no such property was found, or non- nil if a property was found. 

(rempr x y) <=> (remf (plist x) y) 

For example: 

pl i st symbol 

If the property list of f 0 0 was 
(color blue height 6.3 near-to bar) 

then 
(rempr 'foo 'height) => t 

and foo's property list would have been altered to be 
(color blue near-to bar) 

[Function] 

This returns the list which contains the property pairs of symbol; the contents of the property list 

cell are extracted and returned. 

Note that using get on the result of p 1 i s t does not work. One must give the symbol itself to 

get. 

get f place indicator &0 p t ion a 1 default [Function] 

getfsearches the property list stored in place for an indicator eq to indicator. If one is found, then 

the cOItesponding value is returned; otherwise default is returned. If default is not specified, then 

n; 1 is used for default. Note that there is no way to distinguish an absent property from one whose 

value is default. Normally place is computed from a generalized variable acceptable to setf 

(page 60). See getpr (page 102). 

pu t f place indicator newvalue [Macro] 

This causes the property list stored in place to have a property whose indicator is indicator and. 

whose value is Ilewvalue. If the property list already already had a property with an indicator eq to 

indicator, then the value previously associated with that indicator is removed from the property list 

and replaced by newvalue. The property list is destructively altered by using side effects. After a 

putf is done, (getf place indicator) will return value. putf returns the neW value. The form 

place may be any generalized variable acceptable to setf (page 60). See putpr (page 102). 



----------------------------------------------------

104 CO\1\10N U: ... P REFFRF:"CE \L\NL'AL 

remf place indicator [i\/acro] 

This removes from the property list stored in place the property with an indicator e q to indicator, 

by splicing it out of the property list. It returns nil if no such property was found, or t if a 

propeny was found. The fonn place may be any generalized variable acceptable to set f (page 

60). See rempr (page 103). 

get-propert i es place indicator-list [Function] 

get-propert i es is like getf (page 103), except that the second argument is a list of indicators. 

get-propert i es searches the property list stored in place for any of the indicators. in 

indicator-list; until it finds a property whose indicat9r is one of the elements of indicator-list. 

Normally place is computed from a generalized variable acceptable to setf (page 60). 

get - pro per t ; e s . returns three values. The third value is t if any property was found, in which 

case the first two values are the indicator and value for some property whose indicator was in 

indicator-list; if no property was found, all three values are n; 1 . 

When more than one of the indicators in indicator-list is present in the property list, which one 

get-propert i es returns depends on the implementation. All that is guaranteed is that if there 

are orie or more properties whose indicators are in indicator-list, some onesuch property will be 

chosen and returned. 

??? Query: Should there bea do-propert ies· in addition to. or instead of, map-propert ies? 

ma p - pro per tie s function place [Function] 

The property list stored in place is accessed, and function is called once for each property in the 

property list. The function should accept two arguments: the· indicator and the value for a 

property. map-propert i es returns nil; the function is useful only for its side effects. 

The order in which properties are given to junction is implementation-dependent. Also, if side 

effects modify the property list during the ma p - pro per tie s computation, the effects are 

unpredictable. All that is guaranteed is that if no side effects occur on the property 1is~ then 

junction is applied once to each property in the property list 

For example: 

Assume array element ( are f a 105) contains n i ,. . 
(putf (aref a 105) 'color 'yellow) 
(putf (aref a 105) 'height 105) 
( put f (a ref a 105) 's hap e 'py r am i d ) 
(map-properties #'(lambda (i v) (format t "-5 <-=-> -5" i v» 

(aref a 105» 
might print: or it might print: 
color <-=-> yellow height <-=-> 105 
height <-=-> 105 shape <-=-> pyramid 
shape <-=-> pyramid color <-=-> yellow 

or it might print any of ~e other four possible permutations. 

• 



• 

SY\1BOLS 105 

10.2. The Print Nalne 

Every symbol has an associated string called the prillt-name. or pname for short. This string is used as the 

external representation of the symbol: if the characters in the string are typed in to re ad (with suitable 

escape conventions for certain characters), it is interpreted as a reference to that symbol (if it is interned); and 

ifthc symbol is printed, pr i nt types out the print-name. For more information. see the section on the reader 

(see page READER) and printer (see page PRINTER). 

get-pname sym' [Function] 
This returns the print-name o'f the symbol sym. 

For example: 

(get-pname 'XYZ) => "XYZ" 

It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a 

modification may confuse the function read (page 237) and the package system tremendously. 

sarnepnamep syml sym2 [Function] 
This predicate is true if the two symbols syml and sym2 have equa' print-names; that is, if their 

printed representation is the same. Upper and lower case letters are considered to be different. 

Compatibility notc: In Lisp Machine LISP, samepnamep normally considers upper and lower case to be the 
same. Ilowcver, in MAc LIsp, which originated this function, the cases are distinguished; Lisp Machine 
LISP introduced the incompatibility. CoMMON LISP is compatible with MACLlsP here. 

If either or both of the arguments is a string instead of a symbol. then that string is used in place of 

the print-name. 5 arne p n arne p is useful for determining if two symbols would be the same except 

that they are not in the same package. 

For example: 

(samepnarnep 'xyz (maknam '( xy z» is true 
(samepnarnep 'xyz (maknam '( w x y» is false 

10.3. Creating Symbols 

Symbols can be used in two rather different ways. An interned symbol is one which is indexed by its 

print-name in a catalog caned a package. Every time anyone asks for a symbol with that print-name, he gets 

the same (eq) symbol. Every time input is read with the function read (page 237), and that print-name 

appears, it is read as the same symbol. This property of symbols makes them appropriate to use as names for 

things and as hooks on which to hang permanent data objects (using the property list, for example; it is no 

accident that symbols are both the only LISP objects which are cataloged and the only LISP objects which have 

property lists). 

Interned symbols are normally created automatically; the first time someone (such as the function read) 

asks the package system for a symbol with a given print-name, that symbol is automatically created. The 

function to use to ask for an interned symbol is in te rn (page 112), or one of the functions related to 



106 C'O\1\{ON LISP RfTFRI·.\CE \L\~UAL 

intern. 

Although interned symbols are the most commonly used. they will not be discussed further here. For more 

infonnation. turn to the chapter on packages. 

An uninterned symbol is a symbol used simply as a data object, with no special cataloging (it belongs to no 

particular package). An unintcrned symbol prints in the saIne way as an interned symbol with the same 

print-name, but cannot be read back in. The following are some functions for creating unintemed symbols. 

make-symbol pname [Function] 
(mak e - symbo 1 pname) creates a new unintemed symbol, whose print-name is the string pname. 

The value and function bindings will be unbound and the property list will be empty . 

. The string actually installed in the symbol's print-name component may be the given string pname 

or may be a copy of it, at the implementation's discretion. The user should not assume that 

(get -pname (make- symbo 1 x.») is eq to· x, but also should not alter a string once it has been 

given as an argument to make-symbol. 

Implementation note: An implementation might choose, for example, to copy the string to some read-only area, 
in the expectation that it will never be altered. 

Compatibility note: Lisp Machine LIsp uses the second argument for an odd flag related to areas. It is unclear 
what NIL does about this. 

copysymbo 1 sym &opt; onal copy-props [Function] 
This returns a new.uninterned symbol with the same print-name as sym. If copy-props is non-n; l, 

then the initial value and function-definition of the new symbol will be the same as those of sym, 

and the property list of the new symbol will be a copy of sym's. If copy-props is n; 1 (the default), 

then the new symbol will be unbound and undefin,ed, and its property list will be empty. 

gensym &optional x [Function] 
gensym invents a print-name, and creates a new symbol with that print-name. It returns the new, 

uninterned symbol. 

The invented print-name consists of a prefix (which defaults to "Gtt).followed by the decimal 

representation ofa number. The number is increased by one every time gensym is called. 

If the argument x is present and is an integer, then x must be non-negative, and the internal 

counter is set to x for future use; otherwise the internal counter is incremented. lfx is a string, 

then that string is made the default prefix for this and future calls to gen·sym. After handling the 

argument, gensym creates a symbol as it would with no argument. 

For example: 

• 



SY\lBOLS 

(gensym) => G7 
(gensym "FOO-If) => FOQ-8 
(gensym 32) => FOO-32 
(gensym) => FOO-33 
(gensym "GARBAGE-If) => GARBAGE-34 

107 

gensym is usua11y used to create a symbol which should not normally be seen by the user, and 

whose print-name is unimportant, except to allow easy distinction by eye between two such 

symbols. The optional argument is rarely supplied. 'rhe name comes from "generate symbol", and 

the symbols produced by it are often called "gensyms". 

If it is crucial that no two generated symbols have the same print name (rather than merely being 

distinct data structures), or if it is desirable for the generated symbols to be interned, then the 

function gentemp (page 107) may be more appropriate to use. 

gentemp prefix &opt ;onal package [Function] 
gentemp, like gensym (page 106), creates and returns a new symbol. gentemp differs from 

gensym in that it interns the symbol (see intern (page 112» in the package (which defaults to 

the current pac~age; see package (page 112». gentemp guarantees the symbol will be a new 

one not already existing in the package; it does this by using a counter as gensym does, but if the 

generated symbol is not really new then the process is repeated until a new one is created. There is 

no provision for resetting the gentemp counter. Also, the prefix for gentemp is not remembered 

from one call to the next; if prefix is omitted, the default prefix T is used. 

symbol -package sym [Function] 
Given a symbol sym, s ymb 01 - pac k a ge returns the contents of the package cell of that symbol. 

This will be a package object or n ; 1 . 



108 CO\L\lO\: LIS!' RFlTREl\CE l\L\\UAL 

• 



Chapter 11 

Packages 

One problem with most LISP systems is the use of a single name space for all symbols. In large LISP 

systems, with modules written by many different programmers, accidental name collisions become a serious 

problem. In the past, this problem has been addressed by the use of a prefix on each symbol name in a 

module or by some sort of clumsy "obarray" switching to keep the names separated. 

COMMON LISP addresses this problem through the package system, derived from an earlier package system 

developed for Lisp Machine LISP [11]. The COMMON LISP package system provides an export mechanism for 

easily dividing the symbols in a package into external symbols, which are part of the package's public interface 

to other packages, and internal symbols, which are for internal use only and are normally hidden from other 

packages. 

A package is a data structure that establishes a mapping from print names (strings) to symbols. (The 

package thus replaces the "'oblist" or "obarray" of earlier LISP systems.) A symbol may appear in many 

packages, but will always have the same name. On the other hand, the same name may refer to different 

symbols in different packages. No two symbols in the same package may have the same name. 

Some of the symbols in a package may be marked as being exported by that package; these are the external 

symbols. Those symbols not exported arc said to be internal to that package. Any symbol can be added to the 

set of external symbols by using the function ex p 0 r t (page 113). 

The value of the special variable pack age (page 112) must always be a package object or the name of a 

package object; this'is referred to as the current package. f.::ach package is named by a symbol. 

When the LISP reader has, by parsing, detennined a string of characters thought to name a symbol, that 

name looked up in the current package. If the name is found, the corresponding symbol is returned. If the 

name is not found there. a new symbol is created for it· and is placed in the current package as an internal· 

symbol; if the name is seen again while this same package is current. the same symbol will then be returned. 

When a new symbol is created, a pointer to the package in which it is initially placed is stored in the package 

cell of that symbol: the package is said to be the symbol's home package. 

Often it is desirable, when typing an expression to he read by the LISP reader. to refer to a symbol in some 

package other than the current one. This is done through the use of a qualified name, which consists of the 

-109 -



110 ('0\1\10:\ I.TSP RITERF',CE :v1ANl'AL 

package name, fullowed by a colon, followed by the print name of the symbol. This causes the symbol's name 

to be looked up in the specified package. For example. "ed i tor: buffer" refers to the symbol nalned 

'"buffer" in the package named "editor", regardless of whether there is a symbol named "buffer" in 

the current package. If"buffer" does not exist in package "editor", it is created there as a new internal 

symbol. (If, on the other hand. there is no package named "ed i tor", an error is signalled.) 

The package name, ifit is not itself qualified. is looked up in the special package named "packages", but 

this default may be overridden by recursive use of the colon convention. Thus the qualified name 

"ed i tor: d i sp 1 ay : buff e r" is deciphered by first finding the symbol "ed i tor: d i sp 1 ay" in the usual 

way, then using this symbol (which must be the name" of a package) as the package in which to look up the 

symbol named "buffer". (Because theftrs! name is always looked up in the package packages, which is 

itself in the packages package, adding "packages:" to the front of an already qualified name does not 

change the meaning of the name. So, for example, "editor:d;splay:foo" and 

"packages: ed; tor: di spl ay: foo" both denote the same symbol.) 

If a symbol names a package, then the package is stored on the p"roperty list of the symbol under the 

property name: package. S~ppose the variable x has a symbol as its value; then (get s : package) 

will return the associated package. Given a package, the function package-name (page 112) will return the 

symbol that names the package. 

Symbols from another package may be added to the current package in two ways. First, an individual 

symbol may be added by use of the import function. The form (import 'edi tor: buffer) takes the 

symbol buffer in the package ad; tor (this symbol was located when the form was read by the LISP reader) 

and adds it to the current package as an internal symbol. . The imported symbol is not automatically exported 

from the current package, but if it is already present and external, that is not changed. After the call to 

import, it is possible to refer to buffer in the current package without any qualifier. The status of the 

symbol b u f far in the package narned e d ito r is unchanged, and e d ito r remains the home package of 

this symbol. If the imported symbol already exists in the current package, the import operation effectively 

does nothing. If a distinct symbol with the name buff e r already exists in the current package, a correctable 

error is signalled. The value returned from this error is the symbol that should remain in the package, the 

other being discarded. 

The second mechanism, the use function, imports into the current package all of the external symbol~ of 

another package. These symbols can then be referred to from the current package without qualification. The 

internal symbols of the used package are not imported, and" therefore cannot conflict with symbols in the 

current package. The status of the imported symbols in their original package is unchanged. Conflicts 

between symbols already in the current package and those imported by" use are handled as in import: a 

correctable error occurs. However, use provides a mechanism for suppressing this error in case a few of the 

symbols are known in advance to be in conflict. The use function imports only those symbols that are 

exported by the used package at the time use is caJled~ it is not a general inheritance mechanism and does not 

arr~nge for future changes in the used package to be imported. 

r .. ach symbol contains a package slot which is llsed to record the home package of the symbol. When the 



P:\CK:\GFS III 

symbol is printed, if it is present in the current package (either as an internaJ or an external symbol), it is 

printed without any qualification; otherwise, it is printed with the recorded package as the qualifier. 

11.1. Built-in Packages 

The following packages are built into the system and are treated as special in some way: 

lisp 

user 

keyword 

The package named 1 i s p contains the primitives of the COMMON LISP system. Its 
external symbols include all of the user-visible functions and global variables that are 
present in the basic·LISP system, such as car, cdr, package, etc. Ahnost all other 
packages will want to "use" this one so that these symbols will be available without 
qualification. 

The user package is, by default, the current package at the time a COMMON LISP system 
starts up. It includes the external symbols from the LISP package at startup time. 

This package contains, as external symbols, all of the keywords used by built-in or user
defined LISP functions. It is not recommended that these keywords be loaded into other 
packages via the use function, as conflicts may result. Instead, a spechll syntax is provided 
to make it easy to access symbols in the keyword package: a null leading package name is 
treated as being identical to keyword. Thus: foo is the same as keyword: foo. By 
special arrangement, symbols in the keyword package always evaluate to themselves. so 
the user can type: foo instead of' : foo. 

packages This is the package that contains the symbols that name the other packages. If the LISP 
reader sees "ed i tor: buff e r ", for example, it first looks up the name "ed i tor" in the 
package named packages. This must produce a symbol that names a package, which is 
then used in looking up the name "buffer" to find the desired symbo1. 

s; This package name is reserved to the implementation. (The name is an abbreviation for 
"system internals".) 

11.2. Package System Functions and Variables 

make-package packag~name &optional cop~jTom [Function] 
Creates and returns a new package with th~ specified package name. If the package name is a 

symbol. that symbol is used directly; a string is interned in the packages package to produce a 

symbol. 

If a package of this name already exists,· a correctable error is signalled. Copy-from may specify 

another package of which the new one will initially be a copy: if copy-from is t. the new package 

initially contains only the external symbols of the 1 ; sp package: if copy-from is nil (the default), 

the new package is empty. 



112 

package 

CO\,\\10:\ LISP Rt·:FERFI\CE \L\:\UAL 

[ Variable] 
The value of this variable must be either a package or a symbol that names a package; this package 

is said to be the current package. The initial value of pac k ag e is the use r package. 

package package [Function] 
This converts its argument to be a package object. If the argument is already a package, it is a 

returned. If it is a symbol, the package it names is returned (it is an error if it does not name a 

package). 

package-name package [Function] 
This returns a symbol that names a package. If the argument is a package, its name is returned. If 

the argument is a symbol. it is returned ifit names a package, but an error is signalled if it does not. 

beg in-package package-name 
end-package package-name 

The package-name must be the name of a package, in the form of a string or a symbol. 

[Function] 
[Function] 

For beg; n - pac k age, if no package currently exists with this name, one is created that imports all 

external symbols of the 1; sp package. beg; n-package rebinds the 'package variable to the 

specified package, saving the old value for restoration when the matching end-package is 

encountered. A call to beg; n - p a: c k age is nonnally placed at. the beginning of a file that is to be 

loaded into some package other than user. 

For end-package, the package specified must be the current package or else an error is signalled. 

The package current before the matching call to beg; n - pac k a ge was encountered is made 

current once again. 

If a pair of beg; n-package and end-package are nested within another pair. there is no 

hierarchical.relationship between the inner and outer pair. The inner pair merely temporarily 

shadows the outer pair. 

Rationale: This is so that one package can be loaded during the loading of another one, as by a MACLlsp-like 
autoload facility. 

11? Query: Should load (page 270) arrange to bind things so that mismat.ched begin-package and 
end-pac1<ageconstructs don't screw things up outside the loaded file? 

intern string-or-symbol &apt i ana 1 package [Function] 
The package may be a package or a symbol that names a package. and defaults to the current 

package. It is searched for a symbol with the name specified by the first argument. If one is found. 

it is returned: note partitularly that if the argument was symbol. and a different symbol with the 

same name is found in already in the package. the latter is returned and the argument is discarded. 

If one is not found. then if the first argument is a string a symbol with that name is created: then 

the given or created symbol is installed in the package as an internal symbol and returned. 

Moreover. if the symbol has no home package, then package becomes its home package. 



PACKAGES 113 

remob string-or-symbol &0 p t i on a 1 package [Futlction] 

Ir" the first argument is a string, the package is searched for a symbol of that name: if the first 

argument is a symboL that symhol is used directly. If the symbol given or found is in fact in the 

package, it is removed from the package. rv1oreover, if package is the home package for the 

symbol, the symbol is made to have no home package. The package defaults to the current 

package. r e rno b returns t if it actually removed a symbol, and nil otherwise. 

??? Query: This name is traditional, but wouldn't unintern or remove-symbol be better? 

internedp string-or-symbol &opt;onal package [Function] 

This is a predicate. If the first argument is a string, then i nternedp is true if the package contains 

a symbol whose name is the string. If the first argument is a synibol, then in t ern e d p is true if the 

package contains that very symbol. Otherwise i nternedp is false. The package may be a 

package or a symbol that names one, and defaults to the current package. 

externalp string-or-symbol &opt;onal package [Function] 
This is a predicate. If the first argument is a string, then ext ern alp is true if the package contains 

an external symbol whose name is the string. If the first argument is a symbol, then ex te r na 1 p is 

true if the package contains that very symbol as an external symbol. Otherwise ex te rna 1 p is 

false. The package may be a package or a symbol that names one, ~nd defaults to the current 

package. 

export symbols &optional package [Function] 

The argument should be a list of symbols, or possibly a single symbol. The specIfied symbols 

become external symbols of the specified package. The package may be a package or a symbol that 

names one, and defaults to the current package. Any symbol not already in the package is first 

imported (see import (page 114». If a specified symbol is already an external symbol of the 

package, it is unaffected. ex po r t returns t. 

By convention, a call to ex p 0 r t listing all exported symbols is placed near the start of a file, after a 

call tobegin-package to advertise which of the symbols used in the file are intended to be 

external. 

unexport symbols &opt ional package [Function] 

The argument should be a list of symbols. or possibly a single symbol. The specified symbols are 

made to be no longer external symbols of the specified package. The package may be a package or 

a symbol that names one, and defaults to the current package. Any specified symbol that is an 

external symbol of the package is made an internal symbol of the package. Any specified symbol 

internal to the package or not already in the package not affected (sec import (page 114». 

unexport returns t. 



114 CO\I\ION USP REFEF [7\(,E ~IANUAL 

import symbols &optional to-package [Function] 
The argument should be a list of symbols, or possibly a single symbol. The specified symbols 

become internal symbols of the specified to-package. The to-package may be a package or a 

symbol that names one, and defaults to the current package. If, for some specified symbol, the 

package already contains another symbol of the same name, a correctable error is signalled. If a 

specified symbol is already in the package, it is unaffected, and in particular remains an external 

symbol of the package if it already was one. import returns t. 

shadow symbols &optional to-package [Function] 
The argument should be a list of symbols, or possibly a single symbol. For each specified symbol, 

if the package of that symbol is not the to-package, then a new symbol with the same name and no 

properties, value, or function definition is created and interned in the to-package. The net effect is 

that the to-package ends up with symbols of its own for all the specified names, 

The to-package may be a package or a symbol that names one. and defaults to the current package. 

If, for some specified symbol not owned by the package,. the package already contains another 

symbol of the same name, nothing happens; it is not an error. 

The purpose of shadow is to provide a means for declaring that a particular symbol is to be used 

"locally" in the package, even though it might have been imported from some other package. 'For 

example, suppose one were writing an INTER LISP compatibility package for COMMON LISP. One 

difference between the two is the definition of the function nth (page 169). One might write: 

(begin-package 'interlisp) 
(provide 'interlisp) 
(export '(masterscope helpsys dwimify .,.» 
(shadow '(nth ... » 
(require 'odd-utilities) 

(defun nth (x n) 
.. , ) 

shadow returns t. 

;InterLISP NTH function. 

use from-package &opt ional to-package ignore-list force-lisl [Function] 

Each of the external symbols from the from-package is imported into the la-package, which 

defaults to the current package. The rules are the same as for import (page 114), except that if an 

imported symbol conflicts with one already present, there are three possible actions. If the 

imported symbol is on the ignore-list, it is not imported. If the imported symbol is on thcjorce-list, 

it is added to the current package after removing the conflicting symbol from the package (see 

remob (page 113»~ If the imported symbol is on neither list, a correctable error is signalled, as 

described for import. (If the symbol is on both the ignore-list and the force-list, the ignore-list 

takes precedence.) use returns t. 

• 



PACKAGES 115 

prov i de package [Functioll] 

require package &optional palhname [Func/ion] 

Calling prov i de notes the fact that a program module associated with the named package has 

been loaded or otherwise instantiated. 111is is used in conjunction with requ ire. 

Calling requ ire does nothing if the indicated package has already been "provided". If it has not, 

then the palhname is given to loa d . (page 270) in an attempt to obtain the necessary module from 

the file system. After the loading process is done, if the package still has not been provided, then 

an error is signalled. Once the package has been provided. then use is applied to it to obtain its 

exported symbols for the current package. The palhname defaults in an implementation

dependent way that may depend on the name of the package. (Typically, the name of the package 

might be used as a file name to access a directory where the yellow-pages modules are stored.) 

Here is an example of what a yellow-pages module might look like. The time stamp module exports 

three functions: timestamp, moonpr inc, and sunpri nco (The purpose of the module is to print 

timestamps to a stream; a timestamp includes the time, date, day of week, phase of the moon, and position of 

the sun. This is a whimsical module.) The time stamp module requires two other modules for its operation, 

moonphase and suncal c; one is a standard library module, and the other is private. For reasons best 

ignored here, the timestamp module has its own function named sqrt that differs from the standard sqrt 

(page 124). 

(begi.n-package 't imest.amp) 
(provide 'timestamp) 
(export '(timestamp moonprinc sunprinc» 
(require 'moonphase) 
(require 'sUncalc "/usr/gls/chutzpah/suncalc") 
(shadow 'sqrt) 

(defconst latitude 48.503) 
(defconst longitude 97.61) 

(defun·timestamp ... ) 

(defun moonprinc ... ) 

(defun sunprinc ... ) 

(defun stamp-utility ... ) 

(end-package 'timestamp) 

;Location of the University of 
; S~uthern North Dakota at Hoople 

It is important that the calls to provide and export precede the calls to require. For suppose that the 

moonphase module requires timestamp! When timestamp is loaded, if moonphase is loaded as a 

result. it had betterfind by that point that timestamp has already been provided (or will be very soonl), lest 

timestamp be recursively and redundantly loaded. causing an infinite loop. Similarly, by the time that the 

moonphase package tries to use the timestamp package. the exported symbols of the timestamp 

package must already have been declared. or else the moonphase package will not get them. 



pack age - use - conf 1 i c ts from-package &opt i on alto-package [Fullction] 
Returns a list of al1 external symbols in ji-om-package that conflict with symbols in to-package _ 

(which defaults to the current package), or n; 1 if there are none. Two symbols contlict if they are ., 

different but have the same print namc. 

do-symbol s (var [package] [resull-fonn]) {lag I slatemenl}* 
do-external-symbol s (var [package] [resull-fonn]) {lag I stalcmenl}* 

do-internal-symbols (var [package] [result-fonn]) {tag I statement}* 

[Specialfoml] 

[Special form] 

[Specialfonn] 

do 1 is t provides straightforward itcration over the symbols of a package. The body is performed 

once for each symbol in the package~ in no particular order, with the variable var bound to the 

symbol. Then resultform (a single form, not an implicit progn) is evaluated, and the result is the 

value of the do 1 is t form. If resultfonn is omitted, the result is nil. If execution of the body 

affects which symbols are contained in the package, other than possibly to remove the symbol 

currently the value of var, the effects are unpredictable. 

do-externa1-symbols is similar, ~ut provides only the external symbols of the package. 
do- i otern a 1- symbo 1 s is similar, but provides only the internal symbols of the package. 

do-a11-symbo1s (var [result-fonn]) {tag I statement}* [Special fonn] 

This executes the body once for every symbol contained in every package- whose name is in the 

packages package. (This doesn't actually get all symbols whatsoever.) It is not in general the 

case that each symbol is processed only once, since a symbol may appear in many packages. 



• 

Chapter 12 

NUlnbers 

COMMON LISP provides several different representations for numbers. These representations may be 

divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric 

functions will accept any kind of number; they are generic. Those functions which accept only certain kinds 

of numbers are so documented below. 

A COMMON LISP implementation is pennitted not to support complex numbers. If it does not, then all the 

functions defined here (such as conjugate) must be defined nevertheless, but whenever a function would 

have to construct and return a complex number, an error is signalled instead. 

??? Query: Say! This is a glitch. Can everyone agree just to go ahead and support complex numbers? Or is that really too 
hard. even given sharing of LIsp-level code? 

In general, numbers in COMMON LISP are not true objects; eq cannot be counted upon to operate on them 

reliably. In particular, it is possible that the expression 

{let {(x z) (y z» (eq x y» 

may be false rather than true, if the value of z is a number. 

Rationale: This odd breakdown of eq in the case of numbers allows the implementor enough design freedom to produce 
exceptionally efficient numerical code on conventional architectures. MACLIsp requires this freedom, for example, in order 
to produce compiled numerical code equal in speed to FORTRAN. If not for this freedom. then at least for the sake of 
compatibility, COMMON LISP makes this same restriction. 

If two objects are to be compared for ':identity", but either might be a number, then the predicate eq 1 (page 

49) is probably appropriate; if both objects are known to be numbers, then = (page 118) may be preferable. 

As a rule, computations with floating-point numbers are only approximate. The precision of a floating

point number is not necessarily correlated at all with the accuracyof that number. The precision refers to the 

number of bits retained in the representation. When an operation combines a short floating-point number 

with a long one, the result will be a long floating-point number. This rule L~ made to ensure that as much 

accuracy as possible is preserved; however, it is by no means a guarantee. COMMON LISP numerical routines 

do assume, however, that the accuracy of an argument does not exceed its precision. Therefore when two 

small floating-point numbers are combined, the result will always be a sman floating-point number. This 

assumption can be overridden by first explicitly converting a sma]] floating-point number to a larger 

representation. (COMMON LISP never converts automatically from a larger size to a smaller one in an effort to 

save space.) 

- 117-



1]8 (,0\1:v10N LISP RLTFRE\CF \tt\:"CAL 

Rational computations cannot overflow in the usual sense (though of course there may not be enough 

storage to represent one), as integers and ratios may in principle be of any magnitude. Floating-point 

computations may get exponent overflow or underflow, in which case an error is signal1ed. 

12.1. Predicates on Numbers 

zerop number [Function] 
This predicate is true if number is zero (either the integer zero, a floating-point zero, or a complex 

zero), and is false otherwise. It is an error if the argument number is not a number. 

plusp number [Function] 
This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if 
the argument numberis not a non-complex number. 

mi nusp number [Function] 
This predicate is true if number is strictly less than zero; otherwise n i' is returned. It is an error if 

the argument number is not a non-complex number. 

oddp integer [Function] 
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It 

is an error if the argument is not an integer. 

evenp integer [Function] 
This predicate is true if the argument integer is even (divisible by two), and otherwise is false. It is 
an error if the argument is not an integer. 

See also the data-type predicates integerp (page 47), rationalp (page 47) floatp (page 48), 

comp 1 exp (page 48), and numberp (page 47). 

12.2. Comparisons on Numbers 

All of the functions in this section require that their arguments be numbers, and signal an error if given a 
non-number. They work on all types of numbers, automatically performing any required coercions. 

= number &res t more-numbers 
/= number &res t more-numbers 
< number &res t more-numbers 
> number &res t more-numbers 
<= number &res t more-numbers 

[Function] 
[Function] 
[Function] 
[Function] 
[Fullction] 

• 



e 

'iC\lBLRS 119 

>= number &res t more-numbers [Fullction] 

These functions each take one or more arguments. If the sequence of arguments satisfies a certain 

condition: 

= all the same 
/= all different 
< monotonically increasing 
> monotonically decreasing 
<= monotonically nondecreasing 
>= monotonically non increasing 

then the predicate is true, and otherwise is false. Complex numbers may be compared using = and 

/=, but the others require non-complex arguments. 

For example: 

( = 3 3) is true (/= 3 3) is false 
(= 3 5) is false (/= 3 5) is true 
(= 3 3 3 3) is true (/= 3 3 3 3) is false· 
( = 3 3 5 3) is false (/= 3 3 5 3) is false 
(= 3 6 5 2) is false (/= 3 6 5 2) is true 

« 3 5) is true «= 3 5) is true 

« 3 -5) is false «= 3 -5) is false 

« 3 3) is false «= 3 3) is true 

« 0 3 4 6 7) is true «= 0 3 4 6 7) is true 

« 0 3 4 4 6) is false «= 0 3 4 4 6) is true 
(> 4 3) is true (>= 4 3) is true 
(> 4 3 2 1 0) is true (>= 4 3 2 1 0) is true 
(> 4 3 3 2 0) is false (>= 4 3 3 2 0) is true 
(> 4 3 1 2 0) is false (>= 4 3 1 2 0) is false 

With two arguments, these functions perform the usual a~ithmetic comparison tests. With three or 

more arguments, they are useful for range checks. 

For example: 

«= 0 x 9) ; true iff x is between 0 and 9, inclusive 
« O. 0 xl. 0) ; true iff x is between 0.0 and 1.0, exclusive 
« -1 j (length s» ;trueiffj isavalidindexfors 
«= 0 j k (- (length s) 1» ;trueiffjandkareeachvalid 

indices for s and also j ~k 

For two non-complex arguments x and y, the law of trichotomy holds. Exactly one of (= x y), 

« x y), and (> x y) will be true. Also: , 

(/= x y) <=> (not (= x y» <=> (or « x y) (> x y» 
«= x y) <=> (not (> x y» <=> (or « x y) (= x y» 
(>= x y) <=> (not « x y» <=> (or « x y) (= x y» 

These relationships do not generalize to more or fewer than two arguments. 

Rationale: The "uncquality" relation i" called H/=" rather than "<>" (the name used in PASCAL) for two 
reasons. First, 1= of more than two argumcnL'i is not the same as the or of < and> of those same arguments. 
Second, uncquality is meaningful for complex numbers even though < and > are not. For bOlh reasons it 
would be misleading to a~sociate unequality with the names of < and >. 

Compatibility notc: In COMMON I.lSP, the comparison operations perform "mixed-mode" comparisons: (= 3 
3.0 )is truc. In MACLISP, there must be exactly two argumenL<;, and they must be either both fixnums or both 



120 CO\l\f()~ LISP RJTEF,E~CE MA;-\UAL 

floating-point numbers. To compare two numbers for numerical equality and type equality, use eq 1 (page 
49). 

max I1wnbcr &rest more-numbers [Function] 

The arguments may be any non-complex numbers. max returns the argmTIent which is greatest 

(closest to positive infinity). 

For example: 

(max 1 3 2 -7) => 3 
(max -2 3 0 7) => 7 
(max 3) => 3 
(max 3.0 7 1) => 7 or 7.0 

If the arguments are a mixture of integers and floating-point numbers~ and the largest is a rational, 

then the implementation is free to produce either that rational or its floating-point approximation. 

min number &rest more-numbers [Function] 
The arguments may be any non-complex numbers. min returns the argument which is least 

(closest to negative infinity). 

For example: 

(max 1 3 2 -7) => -7 
(max -2 3 0 7) => -2 
(mi n 3) => 3 
(m; n 3. 0 7 1) => 1 or 1. 0 

If the arguments are a mixture of rationals and floating-point numbers. and the smallest is a 

rational, then the imple~entation is free to produce either that rational or its floating-point 

approximation. 

fuzzy= number1 number2 &op t i on a 1 jUzz [Function] 
This predicate is true if number1 and number2 are "roughly equal". The optional argument fuzz 
allows nearly-equal numbers to bc considered equal: two numbers x and yare considered to be 

equal if the absolute value of their difference is no greater than fuzz times the absolute value of the 

one with the larger absolute valuc; that is, if abi.x-y) S jUzz*max(ab!:'(x}. abs(y». If no third 

argument is supplied. then fuzz defaults to 

(max (fuzziness x) (fuzziness y» 
For example: 

( f u z z y = 2/3 O. 6666 O. 00 1) is true 

fuzziness number [Function] 
The accuracy of a number. in the absence of any context. is not really a· mathematically well

defined concept. because it depends on how the number was calculated and on the accuracy of the 

givens. Nevertheless the following arbitrary definition of Hfuzziness" is offered in it') place. for use 

by fuzzy=. 

• 

• 



• 

• 

!\Ui\IBERS 121 

111e fuzziness of a rational number is zero. The fuzziness of a floating-point number is 2- 2j13 

where f is the number of bits in the fraction of the floating-point number. The fuzziness of a 

complex number z is 

(max (fuzziness (realpart z)) (fuzziness (imagpart z))) 

12.3. Arithmetic Operations 

All of the functions in this section require that their arguments be numbers, and signal an error if given a 

non-number. They work on all types of numbers, automatically performing any required coercions. 

+ &res t numbers [Function] 
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity 

for this operation. 

Compatibility note: While + is compatible with its use in Lisp Machine LISP, it is incompatible with MACLISP, 
which uses + for fixnum-only addition. 

- number &res t more-numbers [Function] 
The function -, when given one argument, returns the negative of that argument 

The .function -, when given. more than one argument, subtracts from the first argument all the 

others, and returns the result 

Compatibility note: While - is compatible with its use in Lisp Machine LISP, it is incompatible with MACLISP, 
which us~s - for fixnum-only subtraction. Also, - differs from difference as used in most LIsp systems in 
the case of one argument. 

* &res t numbers [Function] 
Returns the product of the arguments. If there are no arguments, the result is 1, which is an 

identity for this operation. 

CompatibiJity note: While • is compatible with its use in Lisp Machine LISP, it is incompatible with MACLISP, 
. which uses * for fixnum-only multiplication. 

I number &rest .more-numbers [Function] 
The function I, when given more than one· argument, divides the first argument by all the others, 

and returns the result 

With one argument, I reciprocates the argument. 

I will produce a ratio if the mathematical quotient of two integers is not an exact integer. 

For example: 

(I 12 4) => 3 
(I 13 4) => 13/4 
(I -8) => -1/8 

To divide one integer by another producing an integer result. use one of tJ1cfunctions f 100 r, 



-- ----------------------------------------

122 CO\I\10:--; Ll~;P REFERENCE ~1;\NUAL 

ce i 1, trun c, or raun d (page 131). 

If any argument is a floating-point number, then the rules of floating-point contagion apply. 

COIllII:ltihility note: What / does is totally unlike what the usual / / or quot ient operator does. In most Lisp 
systems, quot ient behaves like / except when dividing integers. in which case it. behaves like trunc (page 
131) of two arguments; this behavior is mathematically intractable. leading to such anomalies as 

(quotient 1.0 2.0) => 0.5 but (quotient 1 2) => 0 

In practice quo t i en t is used only when one is sure that both argument arc integers, or when one is sure that 
at least one argument is a floating-point number. / is tractable for its purpose. and "works" for any numbers. 
For "integer division", trunc (page 131), floor (page 131), cei 1 (page 131). and round (page 131) are 
available in COMMON LISP. 

1+ number 
1- number 

[Function] 
[Function] 

( 1 + x) is the same as (+ x 1) . 

(1- x) is the same as (- x 1). Note that the short name may be confusing: (1 - x) does not 
mean 1- x; rather, it means x-I. 

Rationale: These are included primarily for compatibility with MAcLIsp and lisp Machine Lisp. Programmers 
may wish to avoid"the possible confusion in new code. 

hnplementation note: Compiler writers are very strongly encouraged to ensure that (1 + x) and (+ xl) 
compile into identical code. and similarly for (1- x) and (- xl), to avoid pressure on a LISP programmer 
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language 
transfonnation. 

i ncf place [delta] 
decf place [delta] 

[A/aero] 
. [A--f aero] 

The number produced by the form delta is added to (i n c f) or subtracted from (de cf) the number 

in the generalized variable named by place, and the sum is stored back into place and returned. 

The form place may be any form acceptable as a generalized variable to set f (page 60). If delta is 

not supplied, then the number in place is changed by 1. 

For, example: 

(setq n 0) 
(i ncf n) => 1 andnow n => 1 
(decf n 3) => -2 and now n => -2 
(decf n -5) => 3 and now n => 3 
(decf n) => 2 and now n => 2 

The effect of ( inc f place de/la) is roughly equivalent to 

(s et f place (+ place della) 

except that the latter would evaluate any subfonns of place twice. while in cf takes care to evaluate 

them only once. Moreover. for certain place forms i ncf may be significantly more efficient than 

the set f version. 

• 



• 
~L\1BFRS 123 

conj uga te number [Fundion] 

This returns the complex conjugate of number. The conjugate of a non-complex number is itself. 

For a complex number z, 

(conjugate z) <=> (complex (realpart z) (- (imagpart z») 

gcd &rest rationals [Function] 

Returns the greatest common divisor of all the arguments, which must be rationals or complex 

rationals (complex numbers whose components are rational). 

If the arguments are all integers, the result is always a non-negative integer. 

??? Query: I, GLS, hereby recant all this complex rational nonsense. Shall we revert to ged just supporting 
plain old integers? . 

If the arguments are all rationals, the result is ,always a non-negative rational. 

If the arguments are all Gaussian integers (complex numbers with integer components), the result 

is always a first-quadrant Gaussian integer. 

In the general case, the result is that complex rational of greatest possiblema~nitude that is in the 

first quadrant (including the positive real axis and zero, and excluding the positive imaginary axis) 

and that when divided into each argument produces a Gaussian integer. 

If no arguments are given, 9 c d returns 0, which is an identity for this operation. ' 

?? ? Query: Is 9 c d of more than two arguments ever really used? If not, is the overhead of the 
multiple-argument implementation worth the elegance? (Similarly for 1 em.) 

1 cm rational &res t more-rationals [Function] 
This returns the least common multiple of its arguments, which must be rationals or complex 

rationals. For two arguments, 

( 1 em a b) < = > . (/ (* a. b) (g e dab) ) 

For one argument, 1 em returns that argument. For three or more arguments, 

(lem abc z) <=> (lem (lem a b) c ... z) 

For example: 

(lem 14 35) => 70 
(lem 3/4 2/5) => 6 

12.4. Irrational and Transcendental Functions 

COMMON LISP provides no data type that can accurately represent irrational values. The functions in this 

section are described as if the results were mathematically accurate, but they actually all produce floating

point approximations to the true mathematical result 1n some places mathematical identities are set forth 

that are intended' to elucidate the meanings of the functions~ howev~r. two mathematically identical 

expressions may be computationally different because of errors inherent in the floating-point approximation 

process. 



124 CO\I\ION LISP REFFRE:\CE MA~UAL 

.12.4.1. Exponential and Logarithnlic Functions 

ex p /lumber [fullction] 

Returns e raised to the power numb e r, where e is the base of the natural logarithms. 

ex p t base-number power-number [Function] 
Returns base-number raised to' the power power-number. If the base-number is rational and the 

power-number is an integer, the calculation will be exact and the result will be rational; otherwise a 

floating-point approximation may result 

Implementation note: If the exponent is an integer a repeated-squaring algorithm may be-used, while if the 
exponent is a floating-point number or complex the result may be calculated as: 

(exp (* power-number (109 base-number») 

or in any other reasonable manner. 

log number &optional base [Function] 
Returns the logarithm of number in the base base~ which defaults to e, the base of the natural 

logarithms. 

For example: 

sqrt number 

(log 8.0 2) => 3.0 
(log 0.01 10) => -~.O 

Returns the principal square root of number. 
[Function] 

i sqrt integer [Function] 
Integer square-root: the argument must be a non-negative integer, and the result is the greatest 

integer less than or equal to the exact positive square root of the argument. 

12.4.2. Trigonometric and Related Functions 

abs. number [Function] 
Returns the absolute value of the argument. For a non-complex number, 

(abs x) <=> (if (minusp x) (- x) x) 

For a complex number z, the absolute value may be computed as 

(sqrt (+ (expt (real~art z 2» (expt (imagpart Z l»» 
For non-complex numbers. abs is a rational function. but it may be irrational for complex 

arguments. 

• 



);l"\lBFRS 125 

phase number [Fullc/ion] 
The phase of a number is the angle part of its polar representation as a complex number. That is, 

(phase x) <=> (atan (realpart x) (imagpart x» 

The result is in radians, in the range - 'II (exclusive) to 'TI (inclusive). The phase of zero is defined 

to be zero. 

signum number [Function] 
By definition, 

(signum x) <=> (if (zerop x) x (/ x (abs x») 

For a rational number, signum will return one of -1, 0, or 1 according to whether the number is 

negative, zero, or positive. For a floating-point number, the result will be a floating-point number 

of the same format with one of the mentioned three values. For a complex number z, (s i gnum 

z) is a complex number of the same phase but with unit magnitude. 

For non-complex numbers, signum is a rational function, but it may be irrational for complex 

arguments. 

sin radians [Function] 
cos radians [Function] 
tan radians [Function] 

sin returns the sine of the argument, cos the cosine, and tan the tangent. The argument is in 

radians. The argument may be complex. 

cis radians [Function] 
This computes /"radians. The name "c is" means "cos + i sin", because eill = cos fJ + i sin fJ. 
The argument is in radians, and may be any non-complex number. The result is a complex number 

whose real part is the cosine of the argument, and whose imaginary part is the· sine. Put another 

way, the result is a complex number whose phase is the argument and whose magnitude is unity. 

as in number 

Implementation note: Often it is cheaper to calculate the sine and cosine of a single angle together than to 
pcrfonn two disjoint calculations. 

[function] 
acos number [Function] 

as i n returns the arcsine of the argument, and co s the arccosine. The result is in radians. The 

argument may be complex. 

atan y &optional x [Function] 
An arctangent is calculated and the result is returned in radians. 

With two argument~ yand x, neither argument may be complex. The result is the arctangent of the 

quantity y/x. The signs of y and x are used to .derive quadrant infi)rmation: moreover, x may be 

zero provided y is not zero. The value of atan is always between -'iT (exclusive) and'll (inclusive). 



126 

pi 

sinh 
cosh 
tanh 
asinh 
acosh 
atanh 

CO\1MO~ LISP RFFERE0:CE \L\;\UAL 

The following table details various special cases. 

Condition Cartesian locus Range of result 
y=O x> 0 Positive x-axis 0 
y>O x> 0 Quadrant I o < result < '/T12 
y>O x=O Positive y-axis '/T12 
y>O x<O Quadrant II '/T 12 < result < 'II 
y=O x<O Negative x-axis 'II 

y<O x<O Quadrant III -'/T < result < -'1112 
y<O x=O Negative y-axis -'/T12 
y<O x> 0 Quadrant IV -'/T12 < result < 0 
y=O x=O Origin error 

Actually, the < signs in the above table ought to be ~ signs, because of rounding effects; if y is 

greater than zero but nevertheless very small, then the floating-point approximation to '/T 12 might 

be a more accurate result than any other floating-point number. (For that matter, when y = 0 the 

exact value '/T12 cannot be produced anyway, but instead only an appro~imation.) 

With only one argument y, the argument may be complex. The result is the arctangent of y. For 

non-complex arguments the result lies between -'1112 and '/T12 (both exclusive). 

Compatibility note: MACLlsP has a function called at an which range from 0 to 2'17. Every other language in 
the world (ANSI FORTRAN, IBM PL/I, InterLISP) has an arctangent function with range -'IT to 'IT. liSP 
Machine LIsp provides two functions, at an (compatible with MAcLISP) and alan2 (compatible with everyone 
else). 

COMMON LISP makes atan the standard one with range -'IT to 'IT. Observe that this makes the one-argument 
and two-argument versions of atan compatible in the sense that the branch cuts do not fall in different places, 
which is probably why most languages use this definition. (An ac;idc: the INTERLlsP one-argument function 
arctan has a range fro~ 0 to '17, while every other language in the world provides the range -'1712 to 'lT12! 
Nevertheless, since INTERLlSP uses the standard two-argument version, its branch Ctl(S arc inconsistent 
anyway.) 

[Variable] 
This global variable has as its value the best possible approximation to 'II in the largest floating

point format provided by the implementation. 

For example: 

(defun sind (x) ; The argument is in degrees. 
'(sin (* x (/ (float pi x) 180)) 

An approximation to 'II in some other precision can be obtained by writing ( flo at pix), where 

x is a floating-point number of the desired precision: see float (page 130). 

number [Fullction] 

number [Function] 

number [Function] 

number [Function] 

number [Function] 

number [Fullction] 

• 



\L\1RI·RS 127 

These functions compute the hyperbolic sine, cosine, tangent. arcsine, arccosine, and arctangent 

functions, which arc malhematically defined as follows: 

Hyperbolic sine 
Hyperbolic cosine 
Hyperbolic tangent 
Hyperbolic arcsine 
Hyperbolic arccosine 
Hyperbolic arctangent 

(eX- e~X)/2 

(ex+ e- X)/2 
(eX_e-X)/(ex+ e-X) 

log (x+ v1+'7) 
log (x+(x+ 1)V"';"'(x---l-)/-(x-+-1-) ) 

log «1 + x)v'l-l/ XL ) 

Implementation notc: These fonnulae are mathematically correct. assuming completely accurate computation. 
They may be terrible methods for floating-point computation! Implementors should consult a good text on 
numerical analysis. The fonnulas given above are not necessarily the simple:.;t ones for real-valued 
computations. either: they are chosen to define the branch cuts in desirable ways for the complex case. 

12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane 

Many of the irrational and transcendental functions are multiply-defined in the complex domain; for 

example, there are in general an infinite number of complex values for the logarithm function. In each such 

case a principal value must be chosen for the function to return. In general, such values cannot be,chosen so 

as to make the range continuous; lines of discontinuity called branch cuts must be defined. 

COMMON LISP defines the branch cuts, principal values, and boundary conditions for the complex 

functions following a proposal for complex functions in APL [8]. The contents of this section are borrowed 

largely from that proposal. 

sqrt 

phase 

log 

exp 

expt 

The branch cut for square root lies along the negative real axis, continuous with quadrant 
II. The range consists of the right half-plane, including the non-negative imaginary axis 
and excluding the negative imaginary axis. 

The branch cut for the phase function lies along the negative real axis, continuous with 
. quadrant II. The range consists of that portion of the real axis between -'IT (exclusive) and 

'IT (inclusive). 

The branch cut for the logarithm function of one argument (natural logarithm) lies along 
the negative real axis, continuous with quadrant 11. The domain excludes the origin. For a 
complex number z= x+ y l~ log z is defined to be (log Izl)+ i phase(z}. Therefore the range 
of the one-argument logarithm function is that strip of the complex plane containing 
numbers with imaginary parts between - 'IT ( exclusive) and 'IT (inclusive). 

The two-argument logarithm function is defined as 10gb z=(1og z)/(1og b). This defines the 
principal values precisely. The range of the two-argument logarithm function is the entire 
complex plane. It is an error if z is zero. If z is nonzero and b is zero, the logarithm is taken 
to be zero . 

. The simple exponential function has no branch cut. 

The two-argument exponential function is defined as bX = eX log b. 'Illis defines the 



128 

asin 

acos 

atan 

CO\L\IO:\ LISP REfTRFNCE ~1ANCAL 

principal values precisely. The range- of the two-argument exponential function is the 
entire complex plane. Regarded as a funcrion of x, with h fixed, there is no branch cut. • 
Regarded as a function of b, with x fixed, there is, in generaL a branch cut along the 
negative rcal axis, continuous with quadrant 11, and the domain excludes the origin. By 
definition, 0°=1. If b=O and the real part of x is strictly positive, then bX~O. For all other 
values of x, Ox is an error. 

The following definition for arcsine determines the range and branch cuts: 

arcsin z= -ilog'(i z+v'l'=7) 

The branch cut for the arcsine function is in two pieces: one along the negative real axis to 
the left of ,-1 (inclusive), continuous with quadrant II, and one along the positive real axis 
to the right of 1 (inch.lsive), continuous with quadrant IV. The range is that strip of the 
cOinplex plane containing numbers whose real part is between - 'IT 12 and 'IT 12. A number 
with·real part equal to - 'lT12 is in the range iff its imaginary part is non-negative; a number 
with real part equal to 'IT 12 is in the range iff its imaginary part is non-positive. 

The following definition for arccosine determines the range and branch cuts: 

arccos z= - i log (z+ i vl='7 ) 

or, which is equivalen~ 

arccos z=('lT12)- arcsin z 

The branch cut for the arccosine function is in two pieces: one along the negative real axis 
to the left of -1 (inclusive), continuous with quadrant II, and one alonp the positive real 
axis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut 
as for arcsine. The range is that strip of the complex plane containing numbers whose real 
part is between 0 and 'IT. A number wIth real part equal to 0 is in the range jffits imaginary 
part is non-negative; a number with real part equal to 'IT is in the range iff its imaginary part 
is non-positive. 

The following definition for (one-argument) arctangent determines the range and branch 
cuts: 

arctan z= - i log «1 + i z) V1/(1 +1) ) 

Beware of simplifying this formula: "obvious" simplifications are likely to alter the branch 
cuts or the values on the branch cuts incorrectly. The branch cut for the arctangent 
function is in two pieces: one along the positive imaginary axis above i(exc1usive), 
continuous with quadrant It and one along the negative imaginary axis below - i 
(exclusive). continuous with quadrant IV.. .111e points i and ~ i are excluded. from the. 
domain. The range is that strip of the complex plane containing numbers whose real part 

. is between -'lT12 and 'lT12. /\ number with real part equal to -'lT12 is in the range iff its 
imaginary part is strictly positive: a number with real part equal to 'lT12 is in the range iff its 
imaginary part is strictly negative. Thus the range of arctangent is identical to that of 
arcsine with the points - 'lT12 and 'lT/2 excluded. 



\"L:\1hERS 

~. 

asinh 

acosh 

atanh 

129 

The following definition for the inverse hyperbolic sine dctemLincs the range and branch 
cuts: 

arcsinh z= Jog (x+ v'l"+'7) 

The branch cut for the inverse hyperbo1ic sine function is in two pieces: one along the 
positive imaginary axis above i (inclusive), continuous with quadrant I, and one along the 
negative imaginary axis below - i (inclusive), continuous with quadrant Ill. The range is 
that strip of the complex plane containing numbers whose imaginary part is between - 'IT 12 
and 'IT 12. A number with imaginary part equal to - 'IT 12 is in the range iff its real part is 
non-positive; a number with imaginary part equal to 'lT12 is in the range iff its imaginary 
part is non-negative. 

The following definition for the in verse hyperbolic cosine determines the range and branch 
cuts: 

arccosh z=log (x+(x+ l)v'(x-1)/(x+ 1) ) 

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left 
of 1 (inclusive), extending indefinitely along the negative real axis, continuous with 
quadrant II and (between 0 and 1) with quadrant 1. The range is that half-strip of the 
complex plane containing numbers whose real part is non-negative and whose imaginary 
part is between -'IT (exclusive) and 'IT (inclusive). A number with real part zero is in the 
range iff its imaginary part is between zero (inclusive) and 'IT (inclusive) .. 

The following definition for the inverse hyperbolic tangent determines the range and 
branch cuts: 

arc tanh z= log «1 + x)v'I ~ II Xl ) 

Beware of simplifying this formula; '"obvious" simplifications are likely to alter the branch 
cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic 
tangent function is in two pieces: one along the negative real axis to the left of -1 
(inclusive), continuous with quadrant III. and one along the positive real axis to the right of 
1 (inclusive). continuous with quadrant I. The range is that strip of the complex plane 
containing numbers whose imaginary part is between -'11/2 and 'lT12. A number with 
imaginary part equal to - 'IT 12 is in the range iff its real part is strictly negative; a number 
with imaginary part equal to 'IT 12 is in the range iff its imaginary part is strictly positive. 
Thus the range of arctangent is identical to that of arcsine with the points - 'IT il2 and 'IT il2 
excluded. 

With these definitions. the following useful identities are obeyed throughout the applicable portion of the 

complex domain, even on the branch cuts: 

sin i z = i sinh z 
cos i z = cosh z 
tan i z = i tanh z 

sinh i z = i sin z 
cosh i z = cos z 

arcsin i z = i arcsinh z 

arctan i z == i arctanh z 
arcsinh i z = i arcsin z 
arctanh i z = i arctan z 



130 CO\'l\fO, LISP REFERENCE \t'\I\UAI. 

12.5. Type Conversions and Component Extractions on Numbers 

\Vhile most arithmetic functions wi11 operate on any kind of number. coercing types if necessary, the 

following functions are provided to allow specific conversions of data types to be forced. when desired. 

fl oa t number &opt i on a 1 other [Function] 
Converts any non-complex number to a floating-point number. With no second argument, then if 

a given fonnat of floating-point number is sufficiently precise to represent the resul~ then the 

result may be of that fonnat or of any larger format, depending on the implementation; but if no 

fixed fonnat is sufficiently precise, then the fonnat of greatest precision. provided by the 

implementation is used. 

If the argument other is" provided, then it must be a floating-point number, and number is 

converted to the same fonnat as other. 

rat i ana 1 number [Function] 
rat i ona 1 i ze number &opt ional tolerance [Function] 

Each of these functions converts any non-complex number to be a rational number. If the 

argument is already rational, that argument is returned. The two functions differ in their treatment 

of floating-point numbers. 

rat; on a 1 assumes that the floating-point number is completely accurate, and returns a rational 

number mathematically equal to the precise value of the floating-point number. This is (probably) 

much faster than r.a t i on ali ze. 

rat ion ali z e assumes that the floating-point number is accurate only to the precision of the 

floating-point representation, and may return any rational number for which the floating-point 

number is the best available approximation of its fonnat; in doing this it attempts to keep both 

numerator and denominator small. It is always the case that 

(e"ql (float (rationalize x) x) x) 

That is, rationalizing a· floating-point number and then converting it back to a floating-point 

number of the same format produces the original number. 

The optional argument tolerance may be used to alter the assumption concerning precision. If 

tolerance is a positive integer, then number is assumed to be accurate to only that many bits. Ifit is 

a negative integer. then number is assumed to be accurate only to within that many bits of the low 

end of the fraction. lfit is a positive floating-point number, then it is a relative tolerance; number is 
assumed to be precise only to an amount equal to number times tolerance. 

??? Query: (1) Should tolerance be applied even if the argument is not a floating-point number? For example, ' 
{rat i ona 1 i ze 113/355 O.01} might produce 22/7. 

(2) Should thc third argument to fuzzy= be like the second argument to rat i ona 1; ze? Then perhaps we 
could make the claim that 

(fuzzy= (float (rationalize x to1) x) x to1) 

rorall x and tol. 



\L'\!BFRS 13] 

numerator ralional 

denominator rational 

[Fullction] . 

[Fullction] 

These functions take a rational number (an integer or ratio) and return as an integer the numerator 

or denominator of the canonical reduced fonn of the rational. The numerator of an integer is that 

integer. and the denominator of an integer is 1. Note that 

(gcd (numerator x) (denominator x)) => 1 

The denominator will always be a strictly positive integer: the numerator may be any integer. 

For example: 

(numerator (/ 8 -6)) => -4 
(denominator (/ 8 -6)) => 3 

There is no fix function in COMMON LISP, because there are several interesting ways to convert non

integral values to integers. These are provided by the functions below, which perform not only type

conversion but also some non-trivial calculations. 

floor number &opt io,)al divisor 
ce i 1 number &opt i on a 1 divisor 
tr un c number &0 p t ion a 1 divisor 
round number &opt ional divisor 

??? Query: Should we. rename ceil and trunc to be ceil ing and truncate? 

[Function] 
[Function] 
[Function] 
[Function] 

In the simple, one-argument case, each of these functions converts its argument number (which 

may not be complex) to be an integer. If.the argument is already an integer, it is returned directly. 

If the argument is a ratio or floating-point number, the functions use different algorithms for the 

conversion. 

floor converts its argument by truncating towards negative infinity; that is, the result is the 

largest integer which is not larger than the argument. 

'ce; 1 converts its argument by truncating towards positive infinity; that is, the result is the smallest 

integer which is not smaller than the argument. 

trunc converts its argumentby truncating towards zero: that is, the result is the integer of the 

same sign as the argument and which has the greatest integral magnitude not greater than that of 

the argument 

round converts its argul!lent by rounding to the nea~est integer: if number is exactly halfway 

between two integers (that is, of the form integer+O.5) then it is rounded to the one which is even 

(divisible by two). 

Here is a table showing what the four functions produce when given various arguments. 



132 ('0\1\10:\ !.lSI' RLlTRl·\CE :\,IAl\UAL 

Argument 
2.6 

floor 
2 

ceiling 
3 

trunc 
2 

round 
3 

2.5 
2.4 
0.7 
0.3 
-0.3 
-0.7 
-2.4 
-2.5 
-2.6 

2 
2 
o 
o 
-1 
-1 
-3 
-3 
-3 

3 
3 
1 
1 
o 
o 
-2 
-2 
-2 

2 
2 
o 
o 
o 
o 
-2 
-2 
-2 

2 
2 
1 
o 
o 
-1 
-2 
-2 
-3 

If a second argument divisor is supplied, then the result is the appropriate type of rounding or 

truncation applied to the result of dividing the number by the divisor. For example, (f 1 oar 5 

2) = (floor (/ 5 2», but is potentially more efficient The divisor may be any non-complex 

number. The one-argument case is exactly like the two-argument case where the second argument 

is 1. 

Each of the functions actually returns two values; the second result is the remainder, and may be 

obtained using mu 1 tip 1 e - val ue - bin d (page 82) and related constructs. If any of these 

functions is given two arguments x and y and produces results q and r, then q*y+ r= x. The 

remainder r is an integer if both arguments are integers, is rational if both arguments are ratiqnal, 

and is floating-point if either argument is floating-point (In the one-argument case the remainder 

is a number of the same type as the argument.) The first result is always an integer. 

Compatibility note: The names of the functions fl oor. cei 1. trunc, and round are more accurate than 
names like fix whichh~ve heretofore been used in various LISP systems. The names used here are compatible 
with ~1.andard mathematical terminology (and with PLiI. as it happens). In FORTRAN ifix means trunc. 
ALGOL 68 provides roun,d. and uses ent ier to mean floor. In MACLISP, fi x and i fi x both mean floor 
(one is generic, the other flonum-in/fixnum-out). In INTER LISP, fix means trunc. In Lisp Machine LIsp, 
fix means f 1 00 r and fix r means r au n d. STA,NDARD LISP provides a fix function, but docs not accurately 
specify what it does exactly. The existing usage of the name fix is so confused that it seems best to avoid it 
altogether. 

The names and definitions give,n here have recently been adopted by Lisp Machine LISP, and MACLIsp and 
NIL seem likely to follow suit 

rna d number &0 p t ion a 1 divisor tolerance [Function] 
rem number &optional divisor tolerance [Function) 

If the optional argument tolerance is omitted, mod performs the operation floor (page 131) on its 

arguments, and returns the second result of floor as its only result Similarly, rem performs the 

operation t run c (page 131) on its arguments, and returns the second result of t run c as its only 

result 

mod and rem are therefore the usual modulus and remainder functions when applied to two 

integer arguments. In general, however. the arguments may be integers or floating-point numbers. 

With one argument, these functions perfi)nn the "mod 1" or ""fractional part" operation, differing 

in the direction of rounding: the result of mod of one argument is always non-negative, while the 

result of rem of one argument always has the same sign as the argument. 



:\L\1BFRS 

(mod 13 4) => 1 
(mod -13 4) => 3 
(mod 13 -4) => -3 
(mod -13 -4) => -1 
(mod 13.4) => 0.4 
(mod -13.4) => 0.6 

(rem 13 4) => 1 
(rem -13 4) => -1 
(rem 13 -4) => 1 
(rem -13 -4) => -1 
(rem 13.4) => 0.4 
(rem -13.4) '=> -0.4 

133 

if the optional argument tolerance is given, then it is handled in the following manner. Like the 

optional argument tolerance to rat ion ali z e, it may be a positive or negative integer or a 

positive floating-point number. For expository purposes define (del ta x), for a floating-point 

number x, to be one-half the value of the smallest floating-point number y of the same format as x 
such that 

(> (+ y (float 1 x» x) 

Then define the function co mp ute - tole ran c e as follows: 

(defun compute-tolerance (x toll 
(cond «floatp tol) toll 

«minusp tol) (* (delta x) (expt 2 (- toll»~) 

(t (expt 2 (- toll»~»~ 

Now when mod or rem perfonns its computation, it is as if it called floor or trunc and returned 

the second result Let theftrst result from floor or trunc be called q; this will be an integer. If 
mo d or r em is given the optional argument tolerance, it will signal an error, rather than delivering a 

result, if number is a floating-point number and 

(> (* q (del ta ,number» (compute-tol erance number tolerance» 

The interpretation is that tolerance is a measure of the accuracy 'required of the computed 

remainder. If the quotient q is very large, then the original number must have been so large relative 

to the divisor that the remainder cannot be very accurate. 

ffloor number &optional divisor 
f c e i 1 number &0 p t ion a 1 divisor 

[Function] 
[Function] 

ftrunc number. &opt;onal divisor [Function] 
fround number &opt ;onal divisor [Function] 

These functions are just like floor, ce i 1, trun c, and roun d, except that the result (the first 

result of two) is always a floating-point number rather than an integer. It is roughly as if ff 1 oor 

gave its arguments to floor, and then applied fl oa t to the first result before passing them both 

back. In practice, however. ffl oormay be imp1emented much more efficiently. Similar remarks 

apply to the other three functions. If the first argument is a floating-point number, and the second 

agrument is not a floating-point number of shorter format, then the first result will be a floating

point number of the same type as the first argument. 

For example: 

(ffloor -4.7) => -5.0 and 0.3 
(ffloor 3.5dO) => 3.0dO and 0.5dO 



134 CO\j\10:\ LISP RITFREr\CE ;\IANUAL 

float-fraction float [Function] 

[Function] 

[Function] 

f loa t-:--e xpon ent float 

scal e-fl oat float integer 

The function fl oat-fract i on takes a floating-point number and returns a new floating-point 

number of the same format. Let b be the radix for the floating-point representation (see 

short-float-rad;x (page 143) and friends); then float-fraction divides the argument by an 

integral power of b so as to bring its value between II b (inclusive) and 1 (inclusive), and returns the 

quotient. 

The function float-exponent performs a similar operation, but then returns the integer 

exponent to which b must be raised to produce the appropriate power for the division. 

The function s cal e -f loa t takes a floating-point number f and an integer k, and returns (* f 
( ex p t (f loa t b J) k». (The use of s cal e - flo a t may be much more efficient than using 

exponentiation and multiplication.) 

Notethat(scale-float (float-fraction 1) (float-exponent 1) <=>f. 

Rationale: These functions allow the writing of machine-independent, or at least machine-parameterized, 
floating-point software of reasonable efficiency. 

c omp 1 e x rea/part &0 p t ; 0 n a 1 imagpart [Function] 
The arguments must be non-complex numbers: a complex number is returned that has rea/part as 
its real part and imagpart as its imaginary part If imagpart is not specified then (* rea/part 0) is 

effectively used (this definition has the effect that in this case the two parts wil1 be both rational or 

both floating-point numbers of the same fonnat). 

real part number [Function] 
imagpart number [Function] 

These return the real and imaginary parts of a complex number. If number is a non-complex 

number, then real part returns its argument number and imagpart returns (* number 0) 

(this has the effect that the imaginary part of a rational is 0 and that of a floating-point number is a 

floating-point zero of the same fonnat). 

??? Query: What would be the pros and cons of requiring the two parts of a complex number to be cithcr both rational or 
bolh floating-point numbers of the same format? 

12.6. Logical Operations on Numbers 

The· logical operations in this section treat integers as if they were represented in two's-complement 

notation. 

Implementation notc: Internally, of course, an impiemenlation of COMMON Lisp mayor may not use a two's-complemeni 
representation. All that is necessary is that the logical operations perform calculations so a~ to give this appearance to the 
user. 

• 

• 



• 

~Ll\lgERS 135 

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a 

conceptual vector be indexed by the non-negative integers. Then bit} is assigned a "weight" li. Assume that 

only a finite number of bits are ones. or that only a finite number of bits are zeros. A vector with only a finite 

number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with 

only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative 

integer. 

This method of using integers to represent bit vectors can in turn be used to represent sets. Suppose that 

some (possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers. 

Then a set can be represented as a bit vector: an element is in the set if the bit whose index corresponds to 

that element is a one-bit. In this way all finite sets can be represented (by positive integers), as wen as all sets 

whose complements are finite (by negative integers). The functions 109; or. 1 ogand, and 1 ogxor defined 

below then compute the union, intersection, and symmetric difference operations on sets represented in this 

way. 

log; or &res t integers [Function] 
Returns the bit-wise logical inclusive or of its arguments. If no argument is giv.en, then the result is 

zero, which is an identity for this operation. 

logxor &res t integers [Function] 
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is 

zero, which is an identity for this operation. 

logand &res t integers [Function] 
Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1, 

which is an identity for this operation. 

logeqv &rest ~t~e~ [Function] 
Returns the bit-wise l(}gic~.1 equivalence (also known as exclusive nor) of its arguments. If no 

argument is given, then the result is -1, which is an identity for this operation. 

lognand integer! integer2 
lognor integer! integer2 
1 ogandc 1 integerl integer2 
10gandc2 integeri integer2 
1 ogorc 1 integer! integer2 
logorc2 integerl integer2 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

These arc the other six non-trivial bit-wise logical operations on two arguments. Because they are 

not commutative or associative. they take exactly two arguments rather than any non-negative 

number of arguments . 



136 CO\1\10~ LISP REI E!ZL~CE MA~UAL 

(lognand III n2) <=> (lognot (log and III n2» 
(lognor nl 112) <=> (lognot ( log 0 r III 112» 

(logandcl nl 1l2) <=> (logand ( log not II I) n2 ) 
(logandc2 nl 1l2) <=> (log and nl (1 ognot 1l2» 
(logorcl nl 112) <=> (logor ( log not Ill) 112 ) 
(logorc2 nl n2) <=> (logor nl (1 ognot n2» 

The ten bit-wise logical operations on two integers are summarized in this table: 

Argument 1 0 0 1 1 
Argument 2 0 1 0 1 Ol1.eration name 

logand 0 0 0 1 and 
logi~r 0 1 1 1 inclusive or 
logxor 0 1 1 0 exclusive or 
logeqv 1 0 0 1 equivalence (exclusive nor) 
lognand 1 1 1 0 not-and 
lognor 1 0 0 0 not-or 
logandcl 0 1 0 0 and complement of argl with arg2 
logandc2 0 0 1 0 and argl with complement of arg2 
logorcl 1 1 0 1 or complement of argl with arg2 
.logorc2 1 0 1 1 or argl with complement of arg2 

boo 1 e op inleger/. integer2 [Function] 
boole-clr [Variable] 

boole-set [Variable] 
boole-l [Variable] 
boole-2 [Variable] 
boole-cl [Variable] 
boole-c2 [Variable] 
boole-and [Variable] 
boole-ior [Variable] 
boole-xor [Variable] 
boole-eqv [Variable] 
boole-nand [ Variable] 
boole-nor [Variable] 

boole-andcl [Variable) 
boole-andc2 [Variable) 

boole-orc1 [Variable) 

boole-orc2 [Variable] 
The function bool etakesanoperation op and two integers, and returns an integer produced by 
performing the logical operation specified by op on the· two integers. The precise values of the 

sixteen variables are implementation-dependent, but they arc suitable for use as the first argument 

to bool e: . 

• 



\L\lBERS 137 

integer! 0 0 1 1 
integer2 0 1 0 1 Operatioll {Jerfhrmcd 

boole-clr 0 0 0 0 always 0 
boole-set 1 1 1 1 always 1 
boole-l 0 0 1 1 illleger] 
boole-2 0 1 0 1 integer2 
boole-cl 1 1 0 0 complement of integer] 
boole-c2 1 0 1 0 complement of integer2 
boole-and 0 0 0 1 and 
boole-ior 0 1 1 1 inclusive or 
boole-xor 0 1 1 0 exclusive or 
boole-eqv 1 0 0 1 equivalence (exclusive nor) 
boole-nand 1 1 1 0 not-and 
boole-nor 1 0 0 0 not-or 
boole-andcl 0 1 0 0 and complement of integer! with integer2 
boole-andc2 0 0 1 0 and integer! with complement of integer2 
boole-orc1 1 1 0 1 or complement of integer] with integer2 
boole-orc2 1 0 1 1 or integer! with complement of integer2 

bool e can therefore compute all sixteen logical functions on two arguments. In general, 

(boole boole-and x y) <=> (logand x y) 

and the latter is more perspicuous. However, boo 1 e is useful when it is necessary to parameterize 

a procedure so that it can use one of several logical operations. 

lognot integer [Function] 
Returns the bit-wise logical not of its argument. Every bit of the result is the complement of the 

corresponding bit in the argument. 

(logbitp j (lognot x» <=> (not (logbitp j x) 

logtest integer] integer2 [Function] 

1 ogtes t is a predicate which is true if any of the bits designated by the 1's irl integer] arc 1's in 
integer2. 

(logtest x y) <=> (not (ze~op (logand x y») 

1 ogb i tp index integer [Function] 
logbitp is true if the bit in integer whose index is index (that is, its weight is 2index) is a one-bit; 

otherwise it is false. 

For example: 

( 10gb i tp 2 6) is true 
(logbitp 0 6) isfalse 
(logbitp k n) <=> (ldb-test (byte 1 k) n) 



138 CO\I\IO?\ LIS!' REFEi-U·:.\C[ Mi\?\UAl. 

as h integer count [Fullction] 
Shifts integer arithmetically left by counl bit positions if COUllt is positive, or right -count bit 

positions if COUlII is negative. The sign of the result is always the same as the sign of f1lteger. 

Arithmetically. this operation performs the computationjloor(integer*2count). 

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves 

them to the right, discarding bits. (In this context the question of what gets shifted in on the left is 

irrelevant; integers, viewed as strings of bits, are "half-infinite", that is, conceptually extend 

infinitely far to the left.) 

For example: 

(logbitp j (ash n k» 
<=> (and (>= j k) {logbitp (- j k) n» 

1 ogcoun t integer [Function] 

The number of bits in integer is determined and returned. If integer is positive, then 1 bits in its 

binary representation are counted. If integer is negative, then the 0 bits in its two's-complement 

binary representation are counted. The result is always a non-negative integer. 

For example: 

(logcount 
(logcount 
(logcount 
(logcount 

As a rule, 

13) => 3 
-13) => 2 
30) => 4 
-30) => 4 

; Binary representation is ... 0001101 
; Binary representation is ... 1110011 
; Binary representation is ... 0011110 
; Binary representation is ... 1100010 

(logcount x) '<=> (logcount (- (+ xl») 

haulong integer [Function] 
This returns the number of ~ignificant bits in the absolute value of integer. The precise 

computation performed is ceiling(1og2(abs(integer)+ 1». 

For example: 

(haulong 0) => 0 
(haulong 3) => 2 
(haulong 4) => 3 
(haulong -7) => 3 

ha; part integer count [Function] 
Returns the high count bits of the binary representation of the absolute value of integer. or the low 

-count bits if count is negative. A possible definition ofha; part: 

(defun ha;part (integer count) 
(let «x (abs integer») 

(if (minusp count) 
(ldb (byte (- count) 0) x) 
(ldb (byte count (max (- (haulong x) n) 0» 

x) ) ) ) 



~lj\1BERS 139. 

12.7. Byte IVInnipulation Functions 

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing 

anywhere in an integer. Such a contiguous set of bits is called a byte. Here the term byte docs not imply some 

fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width. 

The byte-manipulation functions use objects called byte specifiers to designate a specific byte position 

within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know 

that the function byte will construct one, and that the byte-manipulation functions will accept them. The 

function byte accepts two integers representing the position and size of the byte, and returns a byte specifier. 
Such a specifier designates a byte whose width is size, and whose right-hand bit has weight 2position, in the 

terminology of integers used as logical bit vectors. 

byte size position [Function) 
byte takes two integers representing the size and position of a byte, and returns a byte specifier 

suitable for use as an argument to byte-manipulation functions. 

byte-s i ze bytespec 
byte-pas i t ion bytespec 

[Function) 
[Function) 

Given a byte specifier, byte-size returns the size specified as an integer; byte-position 

similarly returns the position. 

For example: 

{byte-size (byte j k)} <=> j 
(byte~position (byte j k» <=> k 

1 db bytespec integer [Function) 
bytespec specifies a byte of integer to be extracted. The result is returned as a positive integer. 

For example: 

(logbitp j (ldb (byte s p) n} 
<=> (and «js) (logbitp (+jp) n)} 

The nam~ of the function •• , db" means "load byte". 

ldb-test bytespec integer [Function] 

1 db - te s t is· a predicate which is true if any of the bits designated by the byte specifier bytespec 
are ·1' s in integer, that is, it is true if the designated field is non-zero. 

(1 db-test bylespec n) <=> (not (zerop (1 db bytespec n»} 



140 CO\1\10N LISP REl·TRE1\CE \1:\ NUAL 

mas k - fie 1 d byfespec integer [Function] 

This is similar to 1 db: however, the result contains the specified byte of integer in the position 

specified by bytespec, rather than in position 0 as with 1 db. The result therefore agrees with infeger 

in the byte specified, but has zero bit') everywhere else. 

For example: 

( 1 db bs (m ask - fie 1 d bs n» < = > (1 db bs n) 
(logbitp j (mask-field (byte s p) n» 

<=> (and (>= j p) « j s) (logbitp j n» 
( ma s k - fie 1 d bs n) < = > (log and n (1 db bs - 1 ) ) 

dp b newbyte bytespec integer [Function] 
Returns a number which is the same as integer except in the bits specified by bytespec. Let s be the 

size specified by bytespec; then the low s bits of newbyte appear in the result in the byte specified by 

bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result 

ofl db. 

For example: 

(logbitp j (dpb m (byte s p) n» 
<=> (if (and (>= j p) « j (+ p s») 

(logbitp (- j p) m) 
( 10gb i tp j n» 

The name of the function "dpb" means "deposit byte". 

deposit-field newbyte bytespec integer [fullction] 
This function is to rna s k - f ie 1 d as d p b is to 1 db. The result is an integer which contains the bits 

of newbyte .within the byte specified by bylespec, and elsewhere contains the bits of integer. 

For example: 

(logbitp j (dpb m (byte s p) n» 
<=> (if (and (>= j p) « j (+ p s») 

(l ogbi tp jm) 
( 1 og bit p j n» 

Implementation note: If the bytespec is a constant, one may of course construct, at compile time, an equivalent 
mask m, for example by computing (d e p 0 sit - fie 1 d -1 bytespec 0). Given this mask m, one may then 
compute 

(depos it-f i e 1 d newbyte bytespec integer)] 

by computing 

(1 ogor' (1 ogand . newbyte m) (1 ogand integer (1 og~ot m») 

where the result of (1 ognot m) can of course also be computed at compile timc. However. the following 
expression (which I got indirectly from Knuth) may also be used, and may require fewer temporary registers in 
some situations: 

(logxor integer (logand m (1 ogxor integer newbyte») 

A related. though possibly less useful, trick is that 

(let «z (logand (logxor x y) m») 
(setq x (logxor zx» 
(setq y (logxor z y»} 

intcrchanges those bits of x and y for which the mask m is 1. and leaves alone thosebil'i of x and y for which m • 



i'\C\fBl:RS 141 

is o. 

12.8. Random Numbers 

random numberl &opt i ona 1 number2 [Function] 
( ran dom 1l) accepts a positive number n and returns a number of the same kind between zero 

(inclusive) and n (exclusive). The number n may be an integer or a floating-point number. An 

approximately unifonn choice distribution is used; If n is an integer, each of the possible results 

occurs with ( approximate) pr0bability II n. 

( ran dom low high) is equivalent to {+ low (r an dom (- high low))); it provides a choice 

from the range low (inclusi ve) to high ( exclusive). 

Compatibility note: In INTERLISP, the range limits are both inclusive. Would this be more intuitive? It is easy 
to implement for integers, but much harder for floating-point numbers. 

Compatibility note: random of zero arguments has been omitted· because its value is too implementation
dependent (limited by fixnum range). 

Implementation note: In general, it is not adequate to define (random n) for integral n to be simply (mod 
(random) n); this fails to be uniformly distributed if n is larger than the largest number produced by 
random. or even if n merely approaches this number. Assuming that the underlying mechanism produces 
"random bits" (possibly in chunks such as fixnums), the best approach is to produce enough random bits to 
construct an integer k some number d of bits larger than (hau long n) (see hau long (page 138», and then 
compute (mod k n). The quantity dshould be at least 7. and preferably IOor more. 

To produce random floating-point numbers in the range [A. B), accepted practice (as determined by a quick 
look through the Collected Algorithms from the AClvl, particularly algorithms 133, 266, 294, and 370) is to 
compute X*(B - A)+ A, where X is a floating-point number uniformly distributed over [0.0, I.O)and computed 
by calculating a random integer· N in the range [0, M) (typically by a multiplicative-congruential or 
linear-congruential method mod M) and then setting X=NIM. If one takes M = 'i, where/is the length of 
the fraction of a floating-point number (and it is in fact common to choose M to be a power of two), then this 
method is equivalent to the following assembly-language-level procedure. Assume the representation has no 
hidden bit Take a floating-point 0.5. and clobber its entire fraction with random bits. Normalize the result if 
necessary. 

For example. on the PDp:.IO, assume that accumulator T is completely random (all 36 bits are random). Then 
the code sequence 

LSH T, -9 ; Gear high 9 bits: low 27 are random. 
FSC T, 128. ; Install exponent and normalize. 

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). (Instead of the LSH, 
one could do "TLZ T, 777000; but if the 36 random bits came from a congruential random-number 
generator, the high-order bits tend to be "more random" than the low-order ones, and so the LSH would be a 
bit better for uniform distribution. Ideally all the bits would be the result of high-quality randomness.) 

With a hidden-bit representation, normalizatiofl is not a problem. but dealing with the hidden bit is. The 
method can be adapted as follows. Take a floating-point 1.0 and clobber the explicit fraction bits with random 
bits: this produces a random floating-point number in the range [1.0, 2.0). 1ben simply subtract 1.0. In effect. 
we let the hidden bit creep in and then subtract it away again. 

For example. on the VAX., ac;sume that register T is completely random (but a little less random than on the 
PDP:-IO, as it has only 32 random bits). Then the code sequence 

INSV #'" X81, #7, #9, T : Install correct sign bit and exponent. 
SUBF #'" F 1.0, T ; Subtract 1.0. 

will produce in T a random floating-point number uniformly distributed over [0.0,1.0). Again, if the low-order 
bile; are not random enough. then "ROTL In, T" should be ('>erfonned first. 



142 CO\I\10N LISP REITRENeE l\1A~UAL . 

random-state [Variable) 
This variable holds a data structure which encodes the internal state of the random-number 

generator used by random. The nature of this data structure is implementation-dependent. It may 

be printed out and successfully read back in, but mayor may not function correctly as a random

number state object in another implementation. A can to random will perfonn a side effect on this 

data structure. Lambda-binding this variable to a different random-number state object will 

correctly save and restore the old state object, of course. 

random-state &opt ;ona1 state [Function) 
This function returns a new random-number state object, suitable for use a~ the value of the 

variable random-state. If state is ni 1 or omitted, random-state returns a copy of the 

current random-number state object (the value of the variable random-state). If state is a state 

object, a copy of that state object is returned. If state is t. then a new state object is returned which 
has been "randomlyH initialized by some means (such as by a time-of-day clock). 

12.9. Implementation Parameters 

The values of the named constants defined in this section are implementation-dependent They may be 

useful for parameterizing code in some situations. 

most-positive-fixnum 
most-negat;ve-f;xnum 

The value of mo s t - po sit; v e - fix num is that fixnum closest in 

provided by the implementation. 

[Constant] 
[Constant] 

value to positive infinity 

The value of mo s t - neg at; v e - fix n um is that fixnum· closest in value to negative infinity 

provided by the implementation. 

most-positive-short-f1oat 

1east-positive-short-float 
1east-negative-short-float 

most-negative-short-f1oat 

[Constant] 
[Constant] 
[Constant] 
[Constant] 

The value of most -pos it i ve- short -float is that short-fonnat floating-point number closest 

in value to positive infinity provided by the implementation. 

The value of 1 east-pos it; ve-short-f1 oatis that positive short-format floating-point 

number closest in value to zero provided by the implementation. 

The value of 1 e as t - n eg at i ve - s h 0 r t - flo a t is that negative short-format floating-point 

number closest in value to zero pr~vided by the implementation. 

The value ofmost-negati ve- short-float is that short-format floating-point number closest 

in value to negative infinity provided by the implementation. 



:\U\1BERS 

most-posit;ve-single-float 
least-positive-single-float 
least-negative-single-float 
most-negative-single-float 
most-positive-double-float 
least-positive-double-float 
least-negative-double-float 
most-negat;ve-double-float 
most-positive-long-float 
least-positive-long-float 
least-negative-long-float 
most-negative-long-float 

143 

[Coils/ant] 
[Constan/] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 

These are analogous to the constants defined above for short-fonnat floating-point numbers. 

short-float-radix 
single-float-radix 
double-float-radix. 
long-flqat-radix 

[Constant] 
[Constant] 
[Constant] 
[Constant] 

These constants indicate, for each floating-point format, the radix used in the floating-point 

representation. (For most contemporary computers this is 2, but for the IBM 370 it is 16, for 
example.) See fl oat..:.fract i on (page 134). 

short-float-epsilon 
single-float-epsilon 
double-float-epsilon 
long-float-epsilon 

[Constant] 
[Constant] 
[Constant] 
[Constant] 

These constants indicate, for each floating-point format, the smallest positive number e of that 

format such that 

(not (= (float 1 e) (+ e (float 1 e»» 

short-float-negative-epsilon 
single-float-negative-epsilon 
double-float-negative-ep~ilon 

long-float-negative-epsilon 

[Constant] 
[(onstant] 
[Constant] 
[Constant] 

These constants indicate. for each floating-point fonnat, the smallest positive number e of that 

format such that 

(not (= (float 1 e) (- e (float 1 e»» 



144 CO\1\lON LISP RElT~IU~0:CE l'vl:\i\UAL 



Chapter 13 

Characters 

COMMON LISP provides a character data type; objects of this type represent printed symbols such as letters. 

Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish 

among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be 

associated with a character. The font attribute pennits a specification of the style of the glyphs (such as 
italics). 

char-code-l imi t [Constant] 
The value of char-code-l imi t is a non-negative integer which is the upper exclusive bound on 

values produced by the function char-code (page 149), which returns the code component of a 

given character; that is, the values returned by char-code are non-negative and strictly less than 

the value ofchar-code-l imi t. 

Implementation note: For the PERQ, the value will be 256; for the 5-1, 512. 

char-font-limit [Constant] 
The value of c h a r - f 0 n t -1 i mit is a non-negative integer which is the upper exclusive bound on 

values produced by the function c h a r - f 0 n t (page 150), which returns the font component of a 

given character; that is. the values returned by c h a r - f 0 n t are non-negative and strictly less than 

the value of char-font-l imi t. 

bnplcmentalion notc: No COMMON LISP implementation is required to support non-zero font attributes; if it 
docs not. then char-font-l imi t should be 1. ForthePERQ. the value will be 256; for the S-l, 512. 

char-bits-limit [Constant] 
The value of char-b i ts -1 imi t is a non-negative integer which is the upper exclusive bound on 

values produced by the function c h a r - bit s (page 149). which returns the bilS component of a 

given character; that is, the values returned by c h a r - bit s are non-negative and strictly less than 

the value of char-bits-l imi t. Note that the value of char-bits-l imit will be a power of 

two. 
Implementation note: No COMMON LISP implementation is required to support hon-zero bit" attributes; if it 
docs nOlo then char-b i ts-l imi t should be 1. For the PERQ. the value will be 256; for the S-l, 512. 

- 145-



146 CO~1\10N LISP REFERE;\CE ?vtANUAL 

13.1. Predicates on Characters 

The predicate characterp (page 48) may be used to detennine whether any LISP object is a character 

object. 

st'andard-charp char [Function] 
The argument char must be a character object. standard-charp is true if the argument is a 

"standard character", that is, one of the ninety-five ASCII printing characters or <return>. If the 

argument is- a non-standard character, then s tan dar d - c h a r p is false. 

Note in particular that any character with a n<?n-zero bits or font attribute is non-standard. 

graph i cp char [Function] 
The argument char must be a character object. 9 rap hie p is true if the argument is a "graphic" 

(printing) character, and false if it is a "non-graphic" (formatting or control) character. Graphic 

characters have a standard textual representation as a single glyph, such as "A" or "*" or "=". By 

convention, the spac~ character is considered to be graphic. Of the standard characters (as defined 

by stan dar d - c h a r p), all but <return> are graphic. If an implementation provides any of the 

semi-standard characters <backspace>, <tab>, <robouO, <linefeed>, and <fonn>, they are not 

graphic. 

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs 

may depend on this for purposes of columnar formatting. Non-graphic characters and characters 

of other fonts may be of varying widths. 

Any character with a non-zero bits attribute is non-graphic. 

stri ng-charp char [Function] 
The argument char must be a character object. s t r i n 9 - c h a r p is true if char can be stored into a 

. string (see the functions c h a r (page 191) and r p 1 a c h a r (page 192», and otherwise is· false. 

Any character which satisfies standard-charp and graphicp also satisfies string-charp; 

others may also. 

alphap char [Funciion] 
The argument char must be- a character object. a 1 phap is true if the argument is an alphabetic 

character, and otherwise is false. 

Of the standard characters (as defined by standard.-charp), the, letters "A" through uz" and 

"a" through "z" are alphabetic. 

.~". 

• 



ClIARACITRS 

uppercasep char 
lowercasep char 
bothcasep char 

147 

[Fullction) 
[Fullction] 
[ Fwtction) 

The argUlTIent char nlust be a character object. up per cas e p is true if the argument is an upper

case (majuscule) character, and otherwise is false. lowercasep is true if the argument is an 

lower-cas'~ (minuscule) character, and otherwise is false. 

bothcasep is true if the argument is upper-case and there is a corresponding lower-case character 

(which can be obtained using char-dowrlcase (page 150», or if the argument is lower-case and 

there is· a corresponding upper-case character (which can be obtained using c h a r - u p cas e (page 

150». 

If a character is either upper-case or lower-case, it is necessarily alphabetic. However, it is 

peIll1issible in theory for an alphabetic character to be neither uppercase nor lowercase. 

Of the standard characters (as defined by s tan dar d - c Ii a r p), the letters "A" through "Z" are 

upper-case and "a" through "z" are lower-case. 

dig i t P char &0 p t ion a 1 (radix 10.) [Function) 
The argument char must be a character object, and radix must be a non-negative integer. dig i tp 

is a pseudo-predicate: if char is not a digit of the radix specified by radix, then it is false; otherwise 

it returns a non-negative integer which is the "weight" of char in that radix. 

Digits are necessarily graphic characters. 

Of the standard cha,racters (as defined by s tan dar d - c h a r p), the characters "0" through "9", 

··AU through ··Z", and "a" through "z" are digits. The weights of"O" through "9" are the integers 0 

through 9, and of "A" through "Z" (and also "a" through "z") are 10 through 35. di gi tp returns 

the weight for one of these digits if and only if its weight is strictly less than radix. Thus, for 

example, the digits for radix 16 are '"0123456789ABCDEF". 

{defun convert-string-to-integer (str &optional (radix 10» 
"Given a digit string and optional radix, return an integer." 
(do «j 0 (+ j 1» 

alphanumericp char 

{n 0 {+ (* n radix) 
(or (digitp (Char str j) radix) 

(ferror "Bad radix--O digit: -C" 
radix 
(char str i»»» 

«= j (string-len~th str» n») 

[Function] 
The argument char must be a character object. al phanumeri cp is true if char is either 

alphabetic or numeric. By definition, 

(alphanumericp x) <=> (or (alphap x) (digitp x» 

Alphanumeric characters are therefore are necessarily graphic (as defined by gr aph i c p (page 

146». 



148· CO:\;1\10N I.ISP Rl::FUU::NCE MANLAL 

Of the standard characters (as defined by standard-charp). the characters "0" through "9", 

"A" through "Z", and "a" through "z" arc alphanumeric. 

char= . chari char2 [Function] 
The arguments charl and char2 must be character objects. char= is true if charl and char2 are 

equivalent character objects, having equivalent attributes, and otherwise is false . 

. The function CHAR= is the finest discriminator of characters available to the programmer. If 

( c h a r = c 1 c 2) is true, then any function professing to operate on a character must behave the 

same whether given cl or c2. 

For non-"funny" characters (those not satisfying funny-charp (page FUNNY-CHARP-FUN», 

(CHAR= Cl C2) <=> 
{AND (= (CHAR-CODE Cl) (CHAR-CODE C2» 

(= (CHAR-BITS Cl) (CHAR-BITS C2» 
{= (CHAR-FONT Cl) (CHAR-FONT C2») 

There is no requirement that (e q c 1 c 2) be true merely because (c h a r = c 1 c 2) is true. 

While e q may distinguish two character objects that c h a r = does not,. it is distinguishing them not 

as characters, but in some sense on the basis of a lower-level implementation characteristic. (Of 

course, if (eq cl c2) is true then one may expect (char= cl c21 to be true.) However, eql 

(page 49) and e qua 1 (page 50) compare character objects in the same way that c h a r = does. 

char-equal charI char2 

The arguments charl and char2 must be character objects. 

[Function] e 
The predicate c h a r - e qua 1 is like c h a r =, except that it ignores differences of font and bits 

attributes and case. By definition, 

(char-equal el e2) <=> 
(char= (char-upcase (character cl» 

(char-upcase (character c2») 

For example: 

(char-equal #\A 
(char= #\A #\a) 
(char-equal #\A 

ch ar< charI char2 

ch ar> charI char2 

#\a) is tnie 
is false 
(control #\A» istrue 

[Function] 
[Function] 

The arguments chari abd char2 must be character objects. The predicate char< is true if charI 

precedes char2 in the (implcmentation·dependcnt) total ordering on characters. The predicate 

char> is true if charI follows char2 in the (implementation-dependent) total ordering on 

characters. Neither is trlle if the arguments satisfy char = (page 148). 

The·total ordering on characters is guaranteed to have the fonowing properties: 



ClIAI{:\CI'l:RS 

• The alphanumeric characters obey the folluwing partial ordering: 

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z 
a<b<c<d<e<f<g<h<i<j<k<l<m<n<o~p<q<r<s<t<u<v<w<x<y<z 

0<1<2<3<4<5<6<7<8<9 
eillier 9 <A or Z < 0 
either 9<a or z<O 

This implies that alphabetic ordering holds, and that the digits as a group are not 
interleaved with letters, but that the possible interleaving of upper-case letters and 
lower-case letters is unspecified . 

• If two characters have the same bits and font attributes, then their ordering by char< is 
consistent with the numerical ordering by the predicate < (page 118) on their code 
attributes. 

149 

char-lessp charI char2 
char-greaterp charI char2 

[Function] 
[Function] 

The arguments charI and char2 must be character objects. The predicate char-l essp is like 

char<, except that it ignores differences of font and bits attributes and case; similarly 

char-greaterp is like char>. By definition, 

(char-lessp cl c2) <=> 
(char< (char-upcase (character cl» 

(char-upcase (character c2») 

13.2. Character Construction and Selection 

character object [Function] 
The function c h a r act e r coerces its argument to be a character if possible. If the argument is a ' 

character. the argument is simply returned. If the argument is a string of length 1, then the sole 

element of the string is retu'rned. If the argument is a symbol whose print name is of length 1. then 

the sole element of the print name is returned. If the argument is an integer n. then ( in t - c h a r 

n) is returned. 

??? Query: This definition is more restrictive than the ~isp Machine LISP version, Should it be loosened? 

char-code char [Function} 
The argument char must be a character object. c h a r - cod e returns the code attribute of the 

character object; this will be a non-negative integer less than the (normal) value of the variable 

char-code-l imi t (page 145). 

char-b i ts char [Function] 
The argument char must be a character object. char-bits returns the bilS attribute of the 

character object: this will be a n~)fl-negatjve integer less than the (normal) value of the variable 

'char-bits-l imit (page ]45). 



150 CO\,!\101\ LISP RUTRL\CE \1i\i'\Li:'\L 

char-font char [Fullction] 
The argument char must be a character object. char-font returns the jont attribute of the 

character object: this will be a non-negative integer less than the (normal) value of the variable 

char-font-l imit (page 145). 

code -char code &opt i on a 1 (bits 0) (font 0) [Function] 
All· three arguments must be non-negative integers. If it is possible in the implementation to 

construct a character object whose code attribute is code. whose bits attribute, is bits, and whose font 

attribute is font. then such an object is returned; otherwise nil is returned. 

Foranyintegersc,b,andf,if(code-char c b 1) isnotnil then 

(char""code (code-char c b 1) => c 
(char-b i ts (code-char c b 1) => b 
(char-font (code-char c b 1) => f 

If the font and bits attributes of a character object x are zero, then it is the case that 

(char= (code-char (char-code c» c) istrue 

make-char char &optional (bits 0) (font 0) [Function] 
The argument char must be a character, and bits and font must be non.:negative integers. If it is 

possible in the implementation to construct a character object whose code attribute is that of char, 
whose bits attribute is bits, and whose font attribute is font, then such an object is returned; 

otherwise nil is returned. 

If bits and font are.zero, then make-char cannot fail. This implies that for every character object 

one can "turn off' its bits and font attributes. 

13.3. Character Conversions 

char-up case char [Function] 
char-down case char . [Function] 

The argument char must be a character object. char-upcase attempts to convert its argument to 

an upper-case equivalent; c h a r - down cas e attempts to conven to lower case. 

char-upcase returns a character object with the same font and bits attributes as char, but with 

possibly a different code attribute. If the code is different from char's, then the predicate 

lowercasep (page 147) is true of char, and uppercasep (page. 147) is true of the result 

character. Moreover, if ( c h a r = (.c h a r - u p c as ex) x) is not true, then it is true that 

(char= (char-downcase (char-upcase x) x) 

Similarly. char-downcase returns a character object with the same font and bits attributes as 

char. but with possibly a different code attribute. If the code is different from char's. then the 

predicate uppercasep (page 147) is true of char. and lowercasep (page 147) is true of the 

result character. Moreover. if (char=( char-downcase x ) x) is nul tnle. then it is true that 

• 

• 



C1IAR\CfERS 

(char; (char-upcase (char-downcase x» x) 

digit-charp ll'eiglzl &optional (radix 10.) (bits 0) (fol71 0) 

digit-weight weight &optional (radix 10.) (bits 0) (fbnt 0) 

151 

[Fullction] 

[Fullclion] 

All arguments must be integers. digit-charp determines whether or not it is possible to 

construct a character object whose bits attribute is bilS, whose font attribute is jont, and whose code 

is such that the result character has the weight weight when considered as a digit of the radix radix 
(see the predicate dig i tp (page 147». It returns t if that is possible, and otherwise returns nil. 

dig i t - c h a r p cannot return nil if bits and font are zero, radix -is between 2 and 36 inclusive, and 

weight is non-negative and less than radix. 

dig i t - wei g h t assumes that its arguments satisfy dig i t - c h a r p, and constructs such a 

character. If more than one character object can encode such a weight in the given radix, one shall 

be chosen consistently by any given implementation; moreover, among the standard characters 

upper-case letters are preferred to lower-case letters). 

For example: 

(digit-char 7) => #\7 
(digit-char 12) => nil 
(digit-char 12 16) => #\C 
(digit-char 6 2) => nil 
(digit-char 1 2) => #\1 

; not #\c 

char-int char [Function] 
The argument char must be a character object. ch ar -; n t returns a non-negative integer encoding 

the character object. 

If the font and bits attributes of char are zero, then ch ar - in t returns the same integer 

char-code would. Also, 

(char= c1 c2) <=> (= (char-int cl) (char-int c2» 

for characters c land c2. 

This function is provided primarily for the purpose of hashing characters. Also, the function ty i 

(page 239) is defined in terms of char-; nt. 

in t - ch ar integer [Function] 
The argument must be a non-negative integer. in t - c h a r returns a character object c such that 

( char - i nt c) is equal to integer, if possible~ otherwise; n t - char is false. 

char -name char [Function] 
The argument char must be a character object. If the character has a name. then that name (a 

symbol) is returned~ otherwise nil is returned. All characters. which have zero font and bits 

attributes and which are non-graphic (do not satisfy the predicate graphicp (page 146) have 

names. Graphic characters mayor may not have names. 



]52 COYi\10N LISP H EFFRENCF \1ANUAL 

The standard characters <return> and (space> have the respective names return and space. The 

optional characters <tab>, <form>, <rubout>,<linefccd>. and <backspace> havc the respectivc 

namcs tab. form, rubout. 1 i nefeed, and back space. 

Characters which have names can be notated as "#\" followed by the name: #\Space. 

name-char sym [Function] 
The argument sym must be a symbol. If the symbol is the name of a character object, that object is 

returned; oth~rwise nil is returned. 

13.4. Character Control-Bit Functions 

COMMON LISP provides explicit names for four bits of the bits attribute: Control, Meta, Hyper, and Super. 
The following definitions are provided for manipulating these. Each COMMON LISP implementation provides 

these functions for compatibility, even if it does not support any or all of the bits named below. 

char-control-bit 

char-meta-bit 

char-super-bit 

char-hyper-bit 

[Constant] 
[Constant] 
[Constant] 
[Constant] 

The values of these named constants are the "weights" (as integers) for the four named control bits. 

The weight of the control bit is 1; of the meta bit. 2; of the super bit, 4; and of the hyper bit, 8. 

If a given implementation of COMMON LISP does not support a particular bit, then the 

corresponding variable is zero instead. 

char-bit char name [Function] 
c h a r - b ; t takes a character object char and the name of a bit, and returns non-n; 1 if the bit of 

that name is set in char. or nil if the bit is not set in char. Valid values for name are 

implementation-dependent, but typically are: control, :meta, : hyper, and: super. 

For example: 

(char-bit #\Control-X :control) => troe 

set-char-b i tchar name newvalue [Function] 
char - bit takes a character object char, the name of a bit, and a flag. A character is returned 

which is just like char except that the named bit is set or reset according to whether newvalue is 
non-n; 1 or nil. Valid values for name are implementation-dependent, but typically are 

:control, :meta, :hyper,and :super. 

For example: 



CIL\RACTERS 

(set7char-bit #\X :control t) => #\Control-X 
(set-char-bit #\Control-X :control t) => #\Control-X 
(set-char-bit #\Control-X :control nil) => #\X 

... >.' 

153 



]54 CO\!\JO~ I.ISP REFERENCE MA~LAL 

• 



Chapter 14 

Sequences 

The type sequence encompasses both lists and one-dimensional arrays, including vectors, strings, and 

bit-vectors. While these are different data structures with' different structural properties leading to different 

algorithmic uses, they do have a common property: each contains contain an ordered set of elements. 

There are some operations which are useful on both lists and arrays because they deal with ordered sets of 

elements. One may ask the number of elements, reverse the ordering, extract a subsequence, and so on. For 

such purposes COMMON LISP provides a set of generic functions on sequences: 

elt reverse map remove remove-duplicates' 
setelt nreverse 
sub seq concat 
copyseq length 
fill sort 
replace merge 

some 
every 
notany 
notevery 

delete delete-duplicates 
position find 
mismatch substitute 
maxprefix 
maxsuffix 

search 
count 

Some of these operations come ·in more than one version. Such versions are indicated by adding a suffix to 

the basic name of the operation., In addition, many operations accept one or more optional keyword 

arguments that can modify the operation in various ways. 

If the operation requires testing sequence elements according to some criterion, then the criterion may be 

specified in one of two ways. The basic operation accepts an item, and clements are tested for being e q 1 to 

that item. (A test other than eql can be specified by the : test or : test-not keyword.) 

??? Query: Should the default test be equa 1 or eq l? If eq 1. what about member, de 1 et, and assoc? 

The variants fonned by adding .• _; f" and •• - if-not" to the basic operation name do not take an item, but 

instead a one-argument predicate, and elements are tested for satisfying or not satisfying the predicate. As an 

example, 

(remove item sequence) 

returns a copy of sequence from which all elements e q 1 to item have been removed; 

(remove item sequence :test #'equal) 

returns a copy of sequence from which all clements equa 1 to item have been removed: 

(remove-; f #' numberp sequence) 

returns a copy of sequence from which all numbers have been removed: and 

(remove-if #'(lambda (x) (fuzzy= x number to/crance» sequence) 

- 155-



156 CO\I\10.\; LISP RFI rRL~(T MANU,\L 

returns a copy of sequence from which all clements fuzzily equal to number to with tolerance have been 

removed. 

If an operation tests clements of a sequence in any manner, the keyword argument : key, if not n i 1 , 

should be a function of one argument that will extract from an element the part to be tested in place of the 

whole clement. For example, the effect of the MACLISP expression (a s s q item seq) could be obtained 

by 

(find item'sequence :test "eq :key "car) 

This searches for the first element of sequence whose car is e q to item. 

For some operations it can be useful to specify the direction in which the sequence is processed. In this 

case the basic operation normally processes the sequence in the forward direction, and processing in the 

reverse direction is indicated by a non-n i 1 value for the keyword argument: from-end. 

Many operations allow the specification of a subsequence to be operated upon. Such operations have 

keyword arguments called: s tart and: end. These arguments should be integer indices into the sequence, 

with slart~end; they indicate the subsequence starting with and including element start and up to but 

excluding element end. The length of the subsequence is therefore end- start. If Slart is omitted it defauits to 

zero, and if end is omitted or n i 1 it defaults to the length of the sequence; therefore if both are omitted the 

entire sequence is processed by default. For the most part this is permitted purely for the sake of efficiency; 

one can simply call sub seq instead to extract the subsequence before operating on it. However, operations 

which produce indices return indices into the original sequence, not into the subsequence. • 

(position 'Ib "foobar" :start 2 :end 5) => 3 
(position #/b (subseq "foobar" 2 5) => 1 

If two sequences are involved, then the : s tart and: end values affect both sequences. Alternatively, the 

keyword arguments: start 1, : end1, : s tart2, and : en~2 may be used to specify separate subsequenc~s 

for each sequence. 

For some functions, notably remove and de 1 ete, the keyword argument: count is used to specify how 

many occurrences of the item should be affected. If this is n i 1 or is not supplied, all matching items are 

affected. 

In the following function descriptions, an element x of a sequence "satisfies the test" if either of the 

following holds: 

• A basic function was caned, testfn was specified by the keyword: tes t, and (funca 11 test/n 
item (keyfn x) 1 is true. 

• A basic function was called. test/n was specified by the keyword: test-not, and (funcall 
testfn item (keY/II x) is false. 

• An .• - i f" function was ca1led. and ( fun c a 11 predicate (key/n x») is truc. 

• An "-; f - no t" function was called. and ( f unca 11 predicale (keyjiz x» is false. • 



• 

srl)Lr:;-';CES 157 

In each case keyfil is the value of the: key keyword argument (the default being the identity function). See. 

'f(J[ example. remove (p~lgC 160). 

??? Query: Again, should the default ((,Still be eql or equal? 

In the following function descriptions, two clements x and y taken from sequences '"match" if eIther of the 

following holds: 

• testfn was specified by the keyword: tes t, and (funca 11 testfn (ke}fn x) (keJfn y» is 
true . 

• testfn was specified by the keyword: test-not, and (funcal1 testfn (keyfn x) (keyfn 
y) ) is false. 

See, for example, sea r c h (page 164). 

14.1. Simple Sequence Functions 

el t sequence index [Function] 
This returns the element of sequence specified by index, which must be a non-negative integer less 

than the length of the sequence. The first element of a sequence has index O. 

sete 1 t sequence index newvalue [Function] 
The object newvalue is stored into the component of the sequence specified by index, which must be 

a non-negative integer less than the length of the sequence. The first element of any 'sequence has 

index O. If sequence is a specialized array, then the newvalue must be an object which that array can 

contain. set e 1 t returns newvalue. 

subseq sequence start &optional end [Function] 
This returns the subsequence of sequence specified by start and end. subseq always allocates a 

new sequence for a result; it never shares storage with an old sequence. The result subsequence is 

always of the same type as the argument sequence. 

copyseq sequence [Function] 
A copy is made of the argument sequence; the result is equa 1 to the argument but not eq to it. 

(copyseq x) <=> (subseq x 0) 

but the name copyseq is more perspicuous when applicable. 

1 ength sequence [Function] 
The number of clement" in sequence is returned as a non-negative integer. I f the sequence has a fill 

pointer. the "active length" is returned: that is. arra-y-active-1ength (page 186) is used 

rather than array-1 ength (page ARRA Y-LENGTH-fUN). 



158 CO\1\10~ LISP REFI·.I{L:\CE \J..\NUAL 

reverse sequence [Fullction] 
The result is a new sequence of the same kind as sequence, containing the same clements but in 

reverse order. The argument is not modified. 

nreverse sequence [Funclion] 
The result is a sequence containing the same clements as sequence but in reverse order. The 

argument may be destroyed and re-used to produce the result. The result mayor may not be eq to 

the argument, so it is usually wise to say something like (s e t q x ( n rever sex) ), because 

simply( n rever se x) is not guaranteed to·leave a reversed value in x. 

14.2. Converting, Catenating, and Mapping Sequences 

to result-type sequence [Function] 
The sequence is converted to be a sequence of type result-type and returned. The result-type must 

be a subtype of type sequence. Ifitis specified as simply array, for example, then (array t) 

is assumed. If one specifies seq u e n c e, then , i s t is assumed. A specialized type such as 

s tr i ng or (vector (comp 1 ex short -fl oa t) ) may be specified; of course, the result may 

be of either that type or some more general type, as determined by the implementation (see 

Chapter 4). 

It is an error if the elements of the sequence cannot be put into a sequence of type result- type. If the 

sequence is already of the specified type, it may be returned without copying it; in this (to type 
sequence) differs from (c ate nat e type sequence), for the latter is required to copy the 

argument sequence. 

catenate result-type &res t sequences [Function] 
The result is a new sequence which contains all the elements of all the sequences in order. All of 

the sequences are copied from; the result does not share any structure with any of the argument 

sequences (in this catenate differs from append). The type of the result is specified by 

result-type, which must be a subtype of sequence, as for the function to (page 158). It must be 

possible for every element of the argument sequences to be an clement of a sequence of type 

result-type. 

The implementation must be such that catenate is associative~ in the sense that the elements of 

the result sequenc.e are not affected by reassociation (but the type of the result sequence may be 

affected). If no arguments are provided, catenate returns a new empty sequence of type 

resuf t-type. 

• 



SEQLiLNCES 159, 

map result-type jUnction sequence &res t more-sequences [Fullction] 
The jilllcliofl must t.ake as many arguments as there are sequences provided; at 1east one sequence 

must be provided. The result of map is a sequence such that element j is the result of applying 
jUllctiun to clement j of each of the argument sequences. The result sequence is as long as the 

shortest of the input sequences. 

I f the jUnction has side-effects. it can count on being called first on all the elements numbered O. 
then on all those numbered 1, and so on. 

The type of the result sequence is specified by the argument result-type, as for the function to 
(page 158). 

Compatibility note: In MACLISP,Lisp Machine LISP, INTER LISP, and indeed even LISP i.5, the function map has 
always meant a non-value-returning version. In my opinion they blew it. I suggest that for COMMON LIsp this 
should be corrected, as the names map and reduce have become quite common in the literature. map always 
meaning what in the past LISP people have called mapcar. It would simplify things in the future to make the 
standard (according to the rest of the world) name map do the standard thing. Therefore the old map function 
is here renamed map 1 (page 77). 

For example: 

(map 'list #'- '(123 4» => (-1 -2 -3 -4) 
(map 'bit-vector #'(lambda (x) (if (oddp x) 1 0» '(1 234» 

=> #"1010" 

s orne predicate sequence &r est mo~e-sequences [Function] 
every predicate sequence &rest more-sequences [Function] 
notany predicate sequence &res t more-sequences [Function] 
notevery predicate sequence &rest more-sequences [Function] 

These are all predicates. The predicate· must take as many arguments as there are sequences 
provided. The predicate is first applied to the clements with index 0 in each of the sequences, and 
possibly then to the clements with index 1, and so on. until a termination criterion is met or the end 
of the shortest of the sequences is reached. 

some returns as soon as any invocation of predicate returns a non-n i 1 value: some returns that 
value. If the end of a sequence is reached, some returns nil. Thus as a predicate ~t is true if some 
invocation of predicate is true. 

every returns nil assoon as any invocation of predicate returns nil. If the end of a sequence is 
reached. every returns a non-n i 1 value. Thus as a predicate it is true if every invocation of 
predicate is truc. 

notany returns nil as soon as any invocation of predicate returns a non-n i 1 value. If the end of 
a sequence is reached. notany returns a non-n i 1 value. Thus as a predicate it is true if no 
invocation of predicate is true. 

notevery returns a non-n i1 value as soon as any invocation of predicate returns nil. If the end 
of a sequence is reached. notevery returns nil. Thus as a predicate it is true if not every 
invocation of predicate is truc. 

Compatibilily note: The order of the argumenL" here is not compatible with IN'mRLISP and LisJl Machine LISP. 



loO CO\1\101\ I.JSP RETFRENCE MA~UAL 

This is to stress the similarity of these functions lo map. The functions are therefore extended here to fUIlctions 
of more than onc argument. and multiple sequences. 

14.3. l\Iodifying Sequences 

fill sequence item &key :start :end [Function] 
The sequence is destructively modified by replacing the elements of the subsequence specified by 

the : s tart and: end parameters with the item. The item may be any LISP object, but must be a 

suitable element for the sequence. The item is stored into all specified components of the sequence, 
beginning at the one specified by the : s tar t index (which defaults to zero), and up to but not . 

induding the one specified by the : end index (which defaults to the length of the sequence). 

f ill returns the modified sequence. 

For example: 

(setq x (vector 'a 'b 'c 'd 'e» => #(a b c d e) 
(fill x 'z :start 1 :end 3) => #(a z -z d e) 

and now x => #( a z z de) 
( f ill x ~_ p) = > # (p p p p p) 

andnow x => #( P P P P p) 

replace sequenceJ sequence2 &key :start :end :start1 :end1 :starf2 :end2 [Function] 
The sequence sequence] is destructively modified by copying successive elements into it from 

sequence2. The elements of sequence2 must be of a type that may be stored into sequencel. The 

subsequence of sequence2 specified by :.start2 and: end2 is copied into the subsequence of 

sequence1 specified by : s tar t 1 and : end 1. (The arguments : s tar t 1 and : s tar t 2 default to 

: s tar t. which defaults to zero. The arguments' : end 1 and : end 2 default to : end, which 

defaults to n; 1, meaning the end of the appropriate sequence.) If these subsequences are not of 

the same length, then the shorter length determines how many clements are copied; the extr.a 

elements near the end of the longer subsequence are not involved in the operation. The number of 

elements copied may be expressed as: 

( min (- endl startl) (- end2 start2» 

The value returned by rep 1 ace is the modified sequenceJ. 

If sequence1 and sequence2 are the same object and the region being modified overlaps with the 

region being copied from, th.en it is as if the entire source region were copied to another place and 

only then copied back into the target region. 

remove item sequence &key :from-end :test :test-not :start :end 

:count :key 

remove- if test sequence &key : from-end : start : end : count : key 

remove-if-not lest sequence &key :from-end : start : end : count : key 

[Function] 

[Function] 
[Function] 

The result is a sequence of the same kind as the argument sequence, which has the same c1ements 

except that those in the subsequence delimited by : start and: end and satisfying the test (sec 



SFQUF:--';CES 161 

above) have been rcmovcd. This is a nondestructive operation; the result is a copy of the input 

sequence. save that some e1cmcl1ls arc not copied. 

The: count argument. ifsupplied,limits the number ofe1cmcnts removed: if more than: count 

elements satisfy the test, only the leftmost: cou n t such are removed. 

A non-n i 1 : from-end specification matters only when the : count argument is provided; in 

that case only the rightmost : co u n t clements satisfying the test are removed. 

For example: 

"( remove 4 '( 1 2 4 1 3 4 5» => (1 2 1 3" 5) 
(remove 4 '( 1 2 4 1 3 4 5) : count 1) => (1 2 1 3 4 5) 
(remove 4 '(1 2 4 1 3 4 5) :count 1 :from-end" t) 

=> (1 2 4 1 3 5) 
(remove 3 '(1 2 4 1 3 4 5) :test #'» => (4 3 4 5) 
(remove-if #'oddp '(1 2 4 1 3 4 5» => (2 4 4) 
(remove-if #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t) 

=> (1 2 4 1 3 5) 

The result of r emo v e and related functions may share with the argument sequence; a list result 

may share a tail with an input list, and the result may be e q to the input sequence if no elements 

need to be removed. 

delete item sequence &key :from-end :test :test-not :start :end 

:count :key 

delete-if test sequence &key :from-end :start :end :count :key 

delete-if-not test sequence &key :from-end :start :end :count :key 

[Function] 

[Function] 
[Function] 

This is the destructive counterpart to remove. The result is a sequence of the same kind as the 

argument sequence, which has the same elements except that those in the subsequence delimited by 

: s tart and: end and satisfying the test (see above) have been deleted. This is a destructive 

operation. The argument sequence may be destroyed and used to construct the result; however, the 

result mayor may not be e q to sequence. 

The : count argument, if supplied, limits the number of elements deleted; if more than: count 

clements satisfy the test, only the leftmost: count such arc deleted. 

A non-n i 1 : from-end specification matters oniy when the : count argument is provided; in 

that case only the rightmost : co un t clements satisfying the test are deleted. 

For example: 

(delete 4 '(1 2 4 1 3 4 5» => (1 2 1 3 5) 
(de 1 ete 4 '( 1 2 4 1 3 4 5) : count 1) => (1 2 1 3 4 5) 
(delete 4 '(1241345) :count 1 :from-end t) 

=> (1 2 4 1 3 5) 
( de 1 ete 3 '( 1 2 4 1 3 4 5) : tes t #' » => (4 3 4 5) 
(delete-if #'oddp '(1 2 4 1 3 4 5» => (2 4 4) 
(delete-if #'evenp '(1 2 4 1 345) :count 1 :from-end t) 

=> (1 2 4 1 3 5) 



162 CO\I\10N LISP REFrlU:~CE ;\fANUAL 

subs t i tute newitem oldilem sequence &key : from-end : test : tes t-not 

:start :end :count :key 

subs t i tute- i f neJvilem lest sequence &key : from-end : start : end 

:count :key 

[Fullction] 

[Function] 

subs t i tute- if-not newilem lest sequence &key : f rom- end : start : end [Function] 
:count :key 

The result is a sequence of the same kind as the argument sequence, which has the same clements 

except that those in the subsequence delimited by : s tar t and : end and satisfying the test (see 

above) have been replaced by newilem. This is a nondestructive operation; the result is a copy of 

the input sequence. save that some elements are changed. 

The: count argument, if supplied, limits the number of elements altered; if more than: count 
elements satisfy the test, only the leftmost: count such are replaced. 

A non-ni 1 : from-end specification matters only when the : count argument is provided; in 
that case only the rightmost : co un t elements satisfying the test are removed. 

For example: 

(substitute 9 4 t{l 2 4 1 3 4 5» => (1 2 9 1 3 9 5) 
(substitute 9 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 9 1 3 4 5) 
(substitute 9 4 '(1 2 4 1 3 4 5) :count 1 :from-end t) 

=> (1 2 4 1 3 9 !) 
(substitute 9 3 '(1 2 4 1 3 4 5) :test I'»~· => (9 9 4 9 3 4 5) 
('substitute-if 9 #'oddp '(1 2 4 1 3 4 5» => (9 2 4 9 9 4 9) 
(substitute-if 9 #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t) • 

=> (1 2 4 1 3 9 5) 

The result of sub s tit ute and related functions may share with the argument sequence; a list 
result may share a taiJ with an input list, and the result may be e q to the input sequence if no 
elements need to be changed. 

nsubst i tute newitem olditem' sequence &key : from-end : test : fest-not 

:start :end :count :key 
nsubstitute-if newitem lest sequence &key :from-end :start :end 

:count :key 

nsubst; tute-if-not newitem test sequence &key : from-end : start : end 

:count :key 

[Function] 

[Function] 

[Function] 

This is the destructive counterpart to subs t.; tute. The result is a sequence of the same kind as 

the argument sequence, which has the' same clements except that those in the subsequence 

delimited by : s tart and: end and satisfying the test (see above) have been replaced by newilem. 
This is a destructive operation. The argument sequence may be destroyed and used to construct the 

result; however, the result mayor may not be eq to sequence. 



• 

SLVLr~CES 

14.4. Searching Sequences for Items 

find item sequence &key:from-end :test :test-not :start :end :key 

find-if lest sequence &key :from-end :start :end :key 

find-if-not test sequence &key :from-end :start :end :key 

163 

[Function] 
[Function] 
[Function] 

If the sequence contains an element satisfying the test, then the leftmost such elem.cnt is returned; 

otherwise nil is returned. 

If : S tar t and : end keyword arguments are given, only the specified subsequence of sequence is 
searched . 

. If a non- nil : f r om- end keyword argument is specified, then the result is the rightmost element 

satisfying the test. 

position item sequence &key :from-end :test :test-not :start :end :key [Function] 
position-if test sequence &key :from-end :start :end :key [Function] 
position-if-not test sequence &key :from-end :start :end :key [Function] 

If the sequence contains an element satisfying the test, then the index within the sequence of the 

leftmost such element is returned as a non-negative integer; otherwise nil is returned. 

If : S tar t and : end keyword arguments are given, only the specified· subsequence of sequence is 
searched. However, the index returned is relative to the entire sequence, not to the subsequence. 

I f a non-nil : f r om- end keyword argument is specified. then the result is the index of the 

rightmost clement satisfying the test. (The index returned, however, is an index from·the left-hand 

end. as usual.) 

count item sequence &key : from-end : test : test-not : start : end : key 

count-if test sequence &key :from-end :start :end :key 

count-if-not test sequence &key :from-end :start :end :key 

[Function] 
[Function] 
[Function] 

The result is always a non-negative integer, the number of clemente; in the specified subsequence of 

sequence satisfying the test (see above). 

mi smatch sequenceJ sequence2 &key : from-end : test : test-not [Function] 
:start :end :startl :start2 :endl :end2 

The specified subsequences of sequence! and sequence2 are compared clement-wise. If they are of 

. equal length and match in every clement, the result is nil .. Otherwise, the result is a non-negative 

integer. the index within sequence] of the· leftmost position at which they fail to match;- or, if one is 

shorter than and a matching prefix of the other, the index within sequence! beyond the last position 

tested is retu rned. 

If a non-n i 1 .: from-end keyword argument is given, then the index of the rightmost position in 

which the sequences differ is returned. The (sub)sequences are aligned at their right-hand ends; 

the last element~ are compared. the penultimate elCmenL", and so on. The index returned is again· 



164 CO\I\1<);\ I.ISP RlTERF\Cr \L\NLJAL 

an index into sequence). 

maxprefix sequence] sequence2 &key :from-end :test :test-not [Function] 
:start :end :startl :start2 :endl :end2 

maxsuffix sequence) sequence2 &key :from-end :test :test-not [Function] 
:start :end :startl :start2 :endl :end2 

The arguments sequence] and sequence2 are compared clement-wise. The result is a non-negative 
integer, which for maxpref i x is the index of the leftmost position at which they fail to match; or, 
if one is shorter than and a matching prefix of the other, the length of the shorter sequence is 
returned. If they arc of equal length and match in every clement, the result is the length of each. 

The keyword arguments : s tar t 1 and : end 1 delimit a subsequence· of sequence! to be matched, 
and : start2 and: end2 delimit a subsequence of sequence2. The comparison proceeds by first 
aligning the left-hand ends of the two subsequences; the index returned is an index into sequence/. 
rna x pre fix is therefore not commutative if : s tar t 1 and : s tar t 2 are not equal. 

The suff i x versions differ in that 1 plus the index of the rightmost position in which the 
sequences differ is returned. The (sub )sequences are aligned at their right-hand ends; the last 
element') are compared, the penultimate elements, and so on. The index returned is again an index 
into sequence]. 

The implementation may choose to match the sequences in any order; there is no guarantee on the 
number of times the test is made. For example, maxsuff i x Inight match lists from left-to-right 
instead of from right-to-left. Therefore it is a good idea for a user-supplied predicate to be free of 
side-effects. 

search sequence} sequence2 &key :fram-end :test :test-not [Function] 
:start :end :startl :start2 :endl :end2 

A search is conducted for a subsequence of sequence2 that clement-wise matches sequencel. If 
there is no such subsequence. the result is nil; if there is, the result is the index into sequence2 of 
the leftmost clement of the leftmost such matching subsequence. 

If a non-n i 1 : from-end keyword argument is given, the index of the leftmost clement of the 
rightmost matching subsequence is returned. 

The implementation may choose to search the sequence in ariy order; there is no guarantee on the 
number of times the tcst is made. For example, search-fram-end might search a list from 
left-to-right iJlstcad of from right-to-Ieft. Therefore it is a good idea for a llser-supplied predicate 

be free of side-effects .. 

s<!rt sequence predicate &key : key 
s t abl e - sa r t sequence predicale &k e y : key 

[ runc tion] 
[l1unction] 

The sequence is destructively sorted according to an ordering determined by the l'redicale. The 

predic(lle should ulkc two arguments, and return non-n i 1 if and only if the first (jrgument is strictly 



SI.'.QUE~CES 165 

less than the second (in some appropriate sense). If the first argUlTICnt is greater than or equal to 

the second (in the appropriate sense), then the predicate should return n i 1. 

The so r t function determines the relationship between two clements by giving keys extracted 

from the elements to the predicale. The function k, when applied to an element. should return the 

key for that clement; k defaults to the identity function, thereby making the element itself be the 

key. 

The selector function should not have any side effects. A useful example of a selector function 

would be a component selector function for a de f s t r u c t (page 199) structure, for sorting a 

sequence of structures. 

(sort a p :key s) 
< = > (s 0 r t a #' ( 1 am b d a (x y) (p (s x) (s y»» 

While the above two expression are equivalent, the first may be more efficient in some 

implementations for certain types of arguments. For example, an implementation may choose to 

apply k to each item just once, putting the resulting keys into a separate table, and then sort the 

parallel tables, as opposed to applying k to an item every time just before applying the predicate. 

If the k and predicate functions always return, then the sorting operation will always terminate, 

producing a sequence containing the same elements as the original sequence (that is, the result is a 

permutation of sequence). This is guaranteed even if the predicate does not really consistently 

represent a total order. If the k conSistently returns meaningful keys, and the predicate does reflect 
. . 

some total ordering criterion on those keys, then the elements of the result sequence will conform 

to that ordering. 

The sorting operation performed by sort is not guaranteed stable, however; elements considered 

equal by the predicate mayor may not stay in their original order. The function stab 1 e-sort 

guarantees stability, but may be somewhat slower. 

The sorting operation may be destructive in all cases. In the case of an array or vector argument, 

this is accomplished by permuting the elements. In the case of a list, the list is destructively 

reordered in the same manner as for n rever s e (page 158). Thus if the argument should not be 

destroyed. the user must sort a copy of the argument 

Should execution of k or predicate cause an error. the state of the list or array being sorted is 

undefined. However. if the error is corrected the sort will, of course. proceed correctly. 

Note that since sorting requires many comparisons, and thus many calls to the predicate. sorting 

will be much faster if the predicate is a compiled function rather than interpreted. 

For example: 

(defun mostcar (x) 
(if (symbolp x) x (mostcar (car x»» 

(sort fooarray #'string-lessp ~key #'mostcar) 

Iffooarr ay contained these items before the sort: 



166 

(Tokens (The lion sleeps tonight» 
(Carpenters (Close to you» 
«Rolling Stones) (Brown sugar» 
{(Beach Boys) (I get around» 
(Beatles (I want to hold your hand» 

then after the sort f 0 0 a r ray would contain: 

{(Beach Boys) (I get around» 
{Beatles (I want to hold your hand» 
{Carpenters (Close to you» 
{(Rolling Stones) (Brown sugar» 
(Tokens (The lion sleeps tonight» 

CO\l\JO:\ LlS!> REI TRF:\CF :\i:\:\L'AL 

merge sequence! sequence2 predicate &key : key [Function] 
The sequences sequencel and sequence2 are destructively merged according to an ordering 

detennined by the predicate. The predicate should take two arguments, and return non-n i 1 if and 

only if the first argument is strictly less than the second (in some appropriate sense). If the first 

argument is greater than or equal to the second (in the appropriate sense), then the predicate should 

return n i 1. 

The me r g e function determines the relationship between two elements by giving keys extracted 

from the elements to the predicate. The function k, when applied to an element, should return the 

key for that element; the k function defaults to the identity function, thereby making the element 

itself be the key. 

The : key function should not have any side effects. A useful example of a : key function would 

be a component selector function for a def s truct (page 199) structure, for merging a sequence 

of structures. 

If the k and predicate functions always return, then the merging operation will always terminate. 

The result of merging two sequences x and y is a new sequence z such that the length of z is the 

sum of the lengths of x and y, and z contains the all the elements of x and y. If xl and x2 are two 

elements of x. and xl precedes x2 in x, then xl precedes x2 in z; similarly for elements of y. In 

other words, z is an inter/eaving of x and y. 

Moreover, if x and y were correctly sorted according to the predicate, then z will also be correctly 

sorted. If x or y is not so sorted, then z will not be sorted, but will nevertheless be an interleaving of 

x andy. 

The merging operation is guaranteed stable; if two or more clements arc considered equal by the 

predicate, then· the clements from sequencel will precede those from sequence2 in the result 

For example: 

(merge t(l 3 4 6 7) '(2 5 8) #t<) => (1 2 3 4 5 6 7 8) 



Chapter 15 

Manipulating List Strccture 

A cons, or dotted pair. is a compound data object having two components. called the car and cdr. Each 

component may be any LISP object. A list is a chain of conses linked by cdr fields; the chain is terminated by 

some atom (a non-cons object). An ordinary list is terminated by nil, the empty list (also written" ( ) "). A 

list whose cdr-chain is terminated by some non-n i 1 atom is called a dolled list. 

The recommended predicate for testing for the end of a list is end p (page 168). 

15.1. Conses 

car x [Function] 
Returns the car of x, which must be a cons or ( ); that is, x must satisfy the predicate 1 i stp (page 

47). By definition, the car of ( ) is ( ). If the cons is regarded as the first cons of a list, then car 

returns the first clement of the list. 

For example: 

{car '(a be» => a 

cdr x [Function] 
Returns the cdr of x. which ·must be a cons or ( ) ; that is. x must satisfy the predicate 1 i s t p (page 

47). By definition, the cdr of ( ) is ( ). If the cons is regarded as the first cons of a list, then cdr 

returns the rest of the list, which is a list with all elements but the first of the original list 

For example: 

{cdr '(a be» => (b c) 

c ... r x [Function] 
All of the compositions of up to four car's and cdr's are defined as functions in their own right. The 

names of these functions begin with He" and end with "r", and in between is a sequence of "a" 

and "d"letters corresponding to the composition performed by the function. 

For example: 

( cd dad r x) is the same as {c d r {c d r (c a r (c d r x»» 

- 167-



168 CO\I\10\1 LISP RElTIU-:\iCE \lA;-';CAL 

If the argument is regarded as a list, then cadr returns the second clement of the list, caddr the 

third, and cad d d r the fourth. I f the first clement of a Jist is a list. then c a a r is the first clement of 

the subljst cdar is the rest of that sublist, and cadar is the second element of the sublist~ and so 

on. 

As a matter of style, it is often preferable to aefine a function or macro to access part of a 

complicated data structure, rather than to use a long car/cdr string: 

(defmacrolambda-vars (lambda-exp) '(cadr ,lam~da-exp» 

; then use 1 ambda -vars everywhere instead of cadr 

See also de f s t rue t (page 199), which will automatically declare new record data types and 

access functions for instances of them. 

cons x y [Function] 
con s is the primitive function to create a new cons, whose car is x and whose cdr is y. 

For example: . 

( con s 'a 'b) => (a . b) 
(cons 'a {cons 'b (cons 'c 'C»~»~ => (a b c) 
(cons 'a '( bed 1) => (a bed) 

con s may be thought of as creating a cons, or as adding a new element to.the front of a list 

tree-equal x y' [Function] 
This is a predicate which is true if x and yare isomorphic trees ~ith identical leaves; that is, if x and 

yare e ql, or if they are both conses and their caTS are t r e e - e qua 1 and their cdrs are 

tree-equal. Thus tree-equal recursively compares conses (but not any other objects which 

have components). See equa 1 (page 50), which does recursively compare other structured 

objects. 

15.2. Lists 

endp object [Fullction] 
The predicate endp is the recommended way to test for the end of a list It is true of conses, false 

of n ; 1, and an error for an other arguments. 

Implementation notc: Implementations are encouraged to signal an error, especially in the interpreter, for a 
non-list argumenl. The endp function is defined so a'\ to alJow compiled code to perform simply an atom 
check or a null check if ~;pecd is more important than safety. 

1; st-l ength list &opt ;onal limit [Function] 
1 ist-l ength returns, as an integer, the length of list. The length of a list is the number of 

top-level conses in it. If the argument limit is supplied, it should be an integer: if the length of the 

list is greater than limit (possibly because the list is circular!), then linlit is returned. 

For example: 

• 



• 

\L\:-~IPLT.\TI:\G I.IST S'I IZUCTURE 169 

( 1 is t -1 eng t h ' ( » :::> 0 
(list-length '(a b cd» :::> 4 
(list-length '(a (b c) d» :::> 3 
(list-length '(a b c d e f g) 4) :::> 4 

1 i st-l ength could bc implclllcntcd by: 

(defun list-length (x &optional (limit nil limitp» 
{declare (integer limit» 
{do «n 0 (+ n 1» 

{y x (cdr y») 
({endp y) n) 

(when (and limitp (>= n limit» 
(return limit»» 

See 1 ength (page 157), which will return the length of any sequence. 

nth n list [Function] 
( nth n list) returns the n'th element of list, where the zeroth element is the car of the list n 
must be a non-negative integer. If the length of the list,is not greater than n, then the result is ( ), 

that is, nil. (This is consistent with the idea that the car and cdr of ( ) are each ( ) .) 

For example: 

(nth 0 '(faa bar gaek» => foo 
(nth 1 '(faa bar gack» => bar 
(nth 3 '(faa bar gaek» => () 

Compatibility notc: This is not the same as the INTERLISP function called nth, which is similar to but not 
exactly the same as the COMMON LISP function nth cdr. Thi<; definition of nth is compatible with Lisp 
Machine LISP and NIL. Also, some people have used macros and functions called nth of their own in their old 
MACLISP programs, which may not work the same way; be careful. 

nthedr n list [Function] 

1 as t list 

(nthedr n list) performs the cdr operation n times on list, and returns the result 

For example: 

(nthedr 0 '(a be» => (a b e) 
{nthcdr 2 '(a be» => (e) 
(nthedr 4 '(a be» => () 

In other words. it returns the n'th cdr of the list 

Compatibility noec: lhis is similar to the INTERLisp function nth, except that the INTERLlsP func~on is 
one-based instead of zero-based. 

(car (nthcdr n x» <=> (nth n x) 

[Function] 

, ast returns the last cons (not the last clement!) of list. If list is ( ), it returns ( ). 

For example: 



170 CO\I \10:\ LISP j{ E! TRF\;CE .\l:\NUAL 

(setq X '(a bed» 
(last x) => (d) 
(rplacd (last x) '(e f» 
x => ' (a bed e f) 
(last '(a be. d» => (c . d) 

1 is t &r es t args [Function] 
1 i s t constructs and returns a list of its arguments. 

For example: 

(list 3 4 'a (car ,'(b. c» (+ 6 -2» => (3 4 a b 4) 

list* arg &rest others [Function] 
1; s t * is like 1 ; s t except that the last cons of the constructed list is "dotted". The last argument 

to 1 i s t * is used as the cdr of the last cons constructed; this need not be an atom. If it is not an 

atom, then the effect is to add several new elements to the front of a list 

For example: 

(list* 'a 'b 'c 'd) => (a be. d) 
This is like 
(cons 'a {cons 'b (cons 'e 'd») 
Also: 
( 1 is t * 'a 'b 'c '( d e f» => (a bed e f) 
(list* x) <=> x 

make-l i st size &opt ional value [Function] 
This creates and returns a'list containing size elements. each of which is value (which defaults to 

nil). size should be a non-negative integer. 

For example: 

(mak e -1 is t 5) =>. ( nil nil nil nil n i , ) 
(make-list 3 'rah) => (rah rah rah) 

Compatibility note: The Lisp Machine LISP function mak e-l is t takes arguments area and size. Areas are not 
relevant to CoMMON LISP. lbe ~rgument order used here is compatible with NIL 

append. &rest lists [Function] 
The arguments to append are lists. The result is a list which is the concatenation of the arguments. 

The arguments are not destroyed. 

For example: 

{append '(a b c) ·(d e f) '() '(g» => (a bed e f g) 

Note that append copies the top-level list structure of each of its arguments except the last The 

. function catenate (page 158) can perform a similar operation. but always copies all its 

arguments. See also nconc (page 171), which is like append but destroys an arguments but the 

last. 

(append x '(» is an idiom once frequently used to copy the list x, but the copyli s t 

• 



\l\\iPLLAlI;\G LIST STRLCTCR.E 171 

function is more appropriate to this task. 

copylist list [Function] 

Returns a list which is e qua 1 to list, but not e q. Only the top level of list-structure is copied~ that 

is. co py 1 is t copies in the cdr direction but not in the car direction. If the list is "dotted", that is, 

( cdr ( 1 as t fist» is a non-n i 1 atom, this will be true of the returned list also. See also 

copyseq (page 157). 

copyal ist list [Function] 
copy ali s t is for copying association lists. The top level of list structure.of list is copied, just as 

copyl i st does. In addition, each clement of list which is a cons is replaced in the copy by a new 

cons with the same car and cdr. 

copy tree object [Function] 
copy tree is for copying trees of conses. The argument object may be any LISP object. If it is not 

a cons, it is returned; otherwise the result is a new cons of the results of calling copy tree on the 

car and cdr of the argument. In other words, all conses in the tree are copied recursively, stopping 

only when non-conses are encountered. Circularities and the sharing of substructure are not 
preserved. 

rev append x y [Function] 
(revappend x y) is exactly the same as (append (reverse· x) y) except that it is more 

efficient. Both x and y should be lists. The argument x is copied, not destroyed. Compare this 

with nreconc (page 172), which destroys its first argument. 

nconc &rest lists [Function] 
nconc. takes lists as arguments. It returns a list which is the arguments concatenated together. The 

arguments are changed, rather than copied. (Compare this with append (page 170), which copies 

arguments rather than destroying them.) 

For example: 

(setq x '(a be» 
(setq y 'Cd e f» 
(nconc x y) -> (a bed e f) 
x -> (a b c d e f) 

Note, in the example.that tlle value of x is now different, since its last cons has been rp 1 acd'd to 

the value of y. If one were then to evaluate (nconc x y) again, it would yield a piece of 

"circular" list structure. whose printed representation would be (a bed e f d e f d e f 

... ), repeating forever. 



172 CO\t~lON I.lSP RfTERE\CE 1\lA;\UAL 

nreconc x y [Function] 
(nreconc x y) is exactly the same as (ncone (nreverse x) y) except that it is more 

efficient. Both x and y should be lists. The argument x is destroyed. Compare this with 

revappend (page 171). 

push item place [Alacro] 
The form place should be the name of a generalized variable containing a list item may refer to any 

LISP object. The item is consed onto the front of the list, and the augmented list is stored back into 

place and returned. The form place may be any form acceptable as a generalized variable to set f 

(page 60). If the list held in place is viewed as a push-down stack, then pus h pushes an clement 

onto the top of the stack. 

For example: 

(setq x '(a (b c) d» 
(push 5 (cadr x» => (5 b c) andnow x => (a (5 b c) d) 

The effect of ( pus h item place) is roughly equivalent to 

( set f place (c 0 n s item place» 

except that the latter would evaluate any sub forms of place twice, while pus h takes care to evaluate 

them only once. Moreover, for certain place forms push may be significantly more efficient than 

the set f version. 

pushnew item place [Macro] • 
The form place should be the name of a genera.lized variable containing a list; item may refer to any 

LISP object. If the item is already a member of the list (as determined by e q 1 comparisons), then 

the item is consed onto the front of the list, and the augmented list is stored back into place and 

returned; otherwise nil is returned. (Thus apushnew form returns a truth value saying whether 

item was new to the list or not.) The form place may be any form acceptable as a generalized 

variable to setf (page 60). If the list held in place is viewed as a set, then pushnew adjoins an 

element to the set: see ad j 0 i n (page 177). 

For example: 

(setq x '(a (b c) d» 
(pushnew 5 (cadr x» => (5 be) andnow x => (a (5 b c) d) 
(pushnew 'b (cadr x» => nil and x is unchanged 

The effect of (pushnew item place) is roughly equivalent to 

(and (not (member item place» 
(setf place (cons item place») 

except that the latter would evaluate item' twice and any subforms of place thrice, while pushnew 

takes care to evaluate them only once each. Moreover, for certain place forms pushnew may bc\ 

significantly more efficient than the setf version. 

??? Query: The other way to define pushnew is as 

(setf place (adjoin item place» 

hut that doesn'l act as a uscful pscudo-prcdicatc. Ilowcvcr, it may compilc into shorter codc. What do pcople 



• 

\lA:-" iPL'L\TI:\G LIST STR ljCTURE 173 

think? 

pop place 

The form place should be the name of a generalized variable containing a list. The result of pop is 

the car of the contents of place, and as a side-effect the cdr of the contents is stored back into 

place. The form place may be any form acceptable as a generalized variable to setf (page 60). If 

the list held in place is viewed as a push-down stack,. then pop pops an element from the top of the 

stack and returns it. 

For example: 

(setq stack tea be» 
(pop stack) => a and now stack => (b c). 

The effect of ( pop place) is roughly equivalent to 

(progl (car place) (setf place (cdr place») 

except that the latter would evaluate any sub forms of place thrice, while pop takes care to evaluate 

them only once. Moreover, for certain place forms pop may be significantly more efficient than 

the set f version. 

butl ast list &opt;onal n [Function] 
This creates and returns a list with the same elements as list, excepting the last n elements. n 
defaults to 1. The argument is not destroyed. If the list has fewer than n elements, then () is 

returned. 

For example: 

(but 1 as t ., (a bed» => (a be) 
(butlast '«a b) (c d» => «a b» 
(butlast tea»~ => () 
(but1ast nil) => () 

The name is from the phrase "all elements but the last". 

nbut1ast list &opt;onal n [ Function] 

This is the destructive version of but 1 as t: it changes the cdr of the cons n+ 1 from the end of the 

list to nil. n defaults to 1. If the list has fewer th~m n elements, then nbut 1 as t returns ( ), and 

the argument is not modified. (Therefore one normally writes (s e t q a ( n but 1 as t a» 

rather than simply (nbut 1 ast a).) 

For example: 

(setq foo '(a bed» 
(nbutlast fDa) => (a b c) 
foo => (a be) 
(nbut1ast '(a» => () 
(nbutlast ·'n;l) => () 



174 CO\1\10\J LISP RU;ERE0:CE :\L\NUAL 

but t ail list sublist [Function] 
list should be a list. and sublisl should be a sublist of list, i.e., one of the conses that make up list. 

but ta i 1 (meaning "all hut the tail") wi11 return a new list, whose clements are those clements of 

list that appcar before sublisl. If sublist is not a tail of list, then a copy of list is retun1cd. Thc 

argument lisl is not destroyed. 

For example: 

(setq x tea bed e» 
(setq y (cdddr x» => (d e) 
(buttail x y) => (a b c) 
but 
(buttail tea bed) t(c d» => (a bed) 
Since the sublistwas not eq to any part of the list 

? ?? Query: I realize we voted to change the name from 1 d iff to but t ail, but it seems senseless to be 
different from existing INTERUSP and Lisp Machine LISP usage. Can we reconsider? 

15.3. Alteration of List Structure 

The functions rp laca and rp 1 acd are used to make alterations in already-existing list structure; that is, 

to change the cars and cdrs of existing conses. . 

The structure is not copied but is physically altered; hence caution should be exercised when using these 
functions, as strange side-effects can occur If portions of list structure become shared unbeknownst to the 

programmer. The nconc (page 171), nreverse (page 158), nreconc (page 172), and nbutlast (page 

173) functions already descrit?cd, and the de 1 ete (page 161) family described later, have the same property. 
However, they are normally not used for this side-effect; rather, the list-structure modification is purely for 

efficiency and compatible non-modifying functions are provided. 

rp 1 aca x y [Function] 
(rpl aca x y) changes the car of x to y and returns (the modified) x. x should be a cons, but y 

may be anOy Lisp object. 

For example: 

(setq 9 '(a be» 
(rplaca (cdr g) 'd) => (d c) 
Now 9 => (a de) 

rp 1 acd x y [Function] 
( r p 1 a cd x y) changes the cdr of x to y and returns (the modified) x . .. x should be a cons, but y 

may be any Lisp object. 

For example: 

(setq x tea be» 
(rplacd x'd) => (a. d) 
Now x => (a . d) 

Compatibility notc: In COMMON I.lsp. a<; in MAclJSP and Lisp Machine I "SP. r p 1 ac d can nol be used to set 

• 

• 

• 



175 

the propcny lisl of a symbol. Tne set p 1 is t (page SETP LIST-FUN) funClion is provided for this purpose. 

setn th 11 list newvalue [Function] 
Alters the l1'th clement of lisl to be nel1'value, where the zeroth clement is the car of the list. 11 must 
be a non-negative number less than the length of the list setnlh returns newvalue. See nth (page 
169). 

15.4. Substitution of Expressions 

A number of functions are provided for performing substitutions within a tree. All take a tree and a 
description of old sub-expressions to be replaced by new ones. The functions form a semi-regular collection, 
according to these properties: 

• Whether comparison of items is by eq or equal. 

• Whether substitution is specified by two .arguments or by an association list 

• Whether the tree is copied or modified. 

These properties may be summarized as follows: 

Copies 
Modifies 

Accepts two arguments. old and new 
Uses equa 1 Uses eq 
subst substq 
nsubst nsubstq 

Accepts an association list 
Uses eq 
sublis 
nsublis 

subs t new old tree [Function] 

(subst new old tree) substitutes new for all occurrences of old in tree, and returns the modified 
copy of tree. The original tree is unchanged. as sub s t recursively copies all of tree replacing 
clements e qua 1 to old as it goes. 

For example: 

(subst 'Tempest 'Hurricane 
'(Shakespeare wrote (The Hurri~ane») 

=> (Shakespeare wrote (The Tempest» 

This function is not "destructivc"~ that is, it does not change the car or cdr of any already-existing 
list structure. 

( sub s t nil nil x) is an idiom once frequently used to copy all. the conses in a tree, but the . 
copy tree (page 171) function is more appropriate to the task.· 

nsubst new old tree [Function] 

nsubst is a destructive version of subst. The list structure of tree is altered by replacing each 
occurrence of o/dwith new. equal is used to decide whether a part of Iree is the same as old. 



176 CO\1\10:\ LISP REFF,RE'\CF \1A\UAL 

substq new old tree [Function] 

sub s t q is just like sub s t, except that e q, rather than e qua 1 , is used to decide whether a part of 

tree is the same as old. 

nsubstq new old t~e [Function] 

nsubstq is a destructive version of substq. nsubstq is just like nsubst, except that eq, 

rather than e qua 1, is used to decide whether a part of tree is the same as old. 

sub 1 is aUst tree [Function] 
sub 1 is makes substitutions for symbols in a tree (a structure of conses). The first argument to 

sub 1 isis an association list The car of each a-list entry should be a symbol. The second 

argument is the tree in which substitutions are to be made. sub 1 is looks at all symbols in the 

tree; if a symbol appears as a key in the association list occurrences of it are replaced by the object 

it is associated with. The argument is not modified; new conses are created where necessary and 

only where necessary, so the newly created structure shares as much of its substructure as possible 

with the old. For example, ifno substitutions are made, the result is eq to the old tree. 

For example: 

(sublis '«x. 100) (z . zprime)) 
'(plus x (minus 9 z x p) 4» 

=> (plus 100 (minus 9 zprime 100 p) 4) 

n sub 1 i s aUst tree 
n sub 1 isis like sub 1 i s ~ut changes the original list structure instead of copying. 

15.5. Using Lists as Sets 

[Function] 

COMMON Lisp includes functions which allow a list of items to be treated as a set. Some of the functions 

usefully allow the set to be ordered; others specifically support unordered sets. There are functions to add~ 

remove. and search for items in a list, based on various criteria. There are also set union. intersection. and 

difference functions. 

The naming conventions for these functions and for their keyword' arguments generally follow the 

conventions for the generic sequence functions. See Chapter .14. 

member item list &key : test : test-not : key 

member-if predicate list &key : key 

member- if-not predicate list. Keys = {[key} 

[Function] 

[Function] 

[Function] 

(member item list) returns nil if item is not eql to any clement in the list. Otherwise, it 

returns the tail of list beginning with the first occurrence of item. list is searched on the top level 

only. Because member returns nil if it doesn't tind anything, and something non-n i 1 if it finds 

something, it is often used as a predicate. 

• 



MA;\IPLLATli\G LIST STRUCTURE 177. 

For example: 

(member 'snerd '(a bed» => nil 
(member 'a '(g (a y) cad e a f») => (a d e a f) 

Note that the value returned by member is eq to the portion of the list beginning with a. Thus 

rp 1 aca on the result of member may be used, if you first check to make sure member did not 

return nil, to alter the found list element 

mem- i f is like membe·r, except that predicate, a function of one argument, is used to test elements 

of list. 

mem- i f - no t is like mem- if, ex·ccpt that the sensc of predicate is inverted; that is, a test succeeds 

if pre die ate returns nil. 

See also find (page 163) and position (page 163). 

t ail p sublist list [Function] 
This predicate is true if sublist is a sublist of list (Le. one of the conses that makes up list). 
Otherwise it is false. Another way to look at this is that t ail p is true if (n the d r n list) is 
sublist, for some value of n. See butta i 1 (page 174). 

adjoin item list &key :test :test-not [Function] 
ad j 0 in is used to add an element to a set, provided that it is not already a member. The equality 

test defaults to e q 1 . 

(adjoin item list) <=> (if (member item list) list (cons item list» 

See pushnew (page 172). 

??? Query: To make the tests consistent with the keyword proposal, I had to make union and intersect ion take only 
two list, not n. Is this acceptable? 

union listl list2 &key :test :test-not 

nunion listl list2 &key : test : test-not 

[Function] 
[Function] 

un ion takes two lists and returns anew list containing everything that is an clement of either of 

the lists . . If there is a duplication betwecn two lists, only one of the duplicate instances will be in 

the result If either of the arguments has duplicate entrics within it, the redundant entries mayor 

may not appear in the result 

For example: 

(un i on '( a. be) '( fad» => (a b c f d) 

There is no guarantee that the order of clements in the result will reflect the ordering of the 

arguments in any particu1ar way. The implementation is therefore free to usc any of a vari~ty of 

strategies. 

nun ion is the destructive version of un ion. I t performs the same operation, but may destroy the 

argument lists, using their cells to construct the result 



178 CO\1.\'10\ LISP IU] "FRF:"C[ :vlANUAL 

intersection listl list2 &key :test :test-not 
nintersection liSI/ list2 &key :test :test-not 

[Function] 

[Function] 
in t e r sec t ion takes two lists and returns a new list containing everything that is an clement of 

both argument lists. ~f either list has duplicate entries, the redundant entries mayor may not 

appear in the result. 

For example: 

(intersection '(a b c) '(f a d» => (a) 

There is no guarantee that the order of elements in the result will reflect the ordering of the 

arguments in any particular way. The implementation is therefore free to use any of a variety of 

strategies. 

n i n t e r sec t ion is the destructive version of i n t e r sec t ion. It performs the same operation, 

but may destroy listlusing its cells to construct the result (The argument list2 is not destroyed.) 

setdifferenee list! list2 &key :test :test-not 
nsetd i fference listI list2 &key : test : test-not 

[Function] 
[Function] 

setdifference returns a list of elements of listl which do n<;>t appear in list2. This operation is 

not destructive. 

n set d iff ere nee is the destructive version of set d iff ere nee. This operation may destroy 

listie 

set-exelusive-or listl list2 &key :test :test-not 
nset-exclusive-or listl list2 &key :test :test-not 

[~unction] 

[Function] 
set - ex e 1 us i v e - 0 r returns a list of elements which appear in exactly one of listl and list2 .. This 

operation is not destructive. 

nset-exel us i ve~or is the destructive version of set-exel us i ve-or. Both lists may be 

destroyed in producing the result 

subsetp listl list2 &key : test : test-not [Function] 
subsetp is a predicate that is true iff every element of list! appears in list2. 

15.6. Association Lists 

An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs 

(conses); each pair is an association. The car of a pair is called the key,' and-the cdr is called the datum. 

An advantage of the a-list representation is that an a-list can be incrementally augmented simply by adding 

new entries to the front. Moreover. because the searching function assoe (page 179) searches the a-list in 

order. new entries can "shadow" old entries. If an a-list is viewed as.amapping from keys to data. then the 

mapping can be not only augmented but also altered in a non-destructive manner by adding new entries to 

• 

• 



\1..\~iPCL\n~G I.IST SlR LCITRE 179 

the front of the a-list. 

Sometimes an a-list represents a bijective mapping. and it is desirable to retrieve a key given a datum. For 

this purpose the "reverse" searching function r a S.S oe (page 180) is provid~d. Other variants of a-list 

searches can be constructed using the function find (page 163) or member (page 176). 

It is pennissible to let nil be an element of an a-list in place of a pair. 

aeon s key datum a-list [Function] 
a con s constructs a new association list by adding the pair (key . datum) to the old a-list. 

(aeons x y a) <=> (cons (cons x y) a) 

pairl is keys data &optional a-list [Function] 
p air 1 i s takes two lists and makes an association list which associates elements of the first list to 

corresponding elements of the second list It is an error if the two lists keys and data are not of the 

same length. If the optional argument a-list is provided, then' the new pairs are added to the front 

of it 

For example: 

(pairlis '(beef clams kitty) '(roast fried yu-shiang» 
=> «beef. roast) (clams . fried) (kitty. yu-shiang» 

(pair1is '(one two) '(1 2) '«three. 3) (four. 19») 
=> «one. 1) (two. 2) (three. 3) (four. 19») 

assoc item a-list &key : test : test-not [Function] 
(assoc item aUst) looks up item in the association list a-list. The value is the first pair in the 

a-list such that item and the car of the pair satisfy the test, or nil if there is none such. (The test 

defaults to eql.) 

For example: 

(assoc 'r '«a. b) (c . d) (r . x) (s . y) (r . z») 
=> (r. x) 

(assoc 'goo '«faa. bar) (zo<? . goo») => nil 
(assoc '2 '«1 a b c) (2 bed) (-7 x y z») => (2 bed) 

It is possible to rp 1 acd the result of assoc provided that it is not ni 1, if your intention is to 

"update" the ··table" that was assoc's second argument (However, it is often better to update an 

a-list by adding new pairs to the front. rather than altering old pairs.) 

For example: 

(setq values '(x. 100) (y . 200) (z . 50») 
(assoc 'y values) => (y . 200) 
(rplacd (assoc 'y values) 201) 
(assoc 'y values) => (y . 201) now 

Atypical trick is to say (cdr (assoc x y). Becausethecdrofnil is guaranteed to be nil, 

this yields nil if no pair is found or if a pair is found whose cdr is nil. This is useful if nil serves 



180 ('U\I,\10:,\ JJSP RLFI'.RFNCE \1ANUAL 

its usual role as a "default value". 

CompaHhility noh.': This is of course not compatible with MACLISP, which uses equa 1. nOl eq 1. as the default 
comparison test 

(assoc item list : test fn) 
<=> (find item list :test fn :key #'car) 

rassoc item a-list &key : test : test-not [Function] 
rassoc is the reverse form of as soc; it compares item to the cdr of each successive pair in a-list, 

rather than to the car. 

For example: 

(rassoc 'a '«a. b) (b. c) (c . a) (z . a») => (c. a) 

(ras soc item list : tes t fn) 
<=> (find item list :test fn :key #'cdr) 

15.7. flash Tables 

A hash table is a LISP object that works something like a property list and something like an association list 

Each hash table has a set of entries, each of which associates a particular key with a particular value. The basic 

functions that deal with hash tables can create entries. delete entries, and find the value that is associated with 

a given key. Finding the value is very fast eyen if there are m~y entries, because hashing is used; this is an 

important advantage of hash tables over property lists. 

A given hash table can only associate one value with a given key: if you try to add a second value it will 

replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By 

contrast. association lists can be augmented non-destructively . 

. Hash tables come in three kinds, the difference being whether the keys are compared with eq, eq 1, or 

equa 1. In other words, there arc hash tables that hash on Lisp objects (using eq or eq l) and there are hash 

tables which hash on abstract S-expressions (using equa 1). 

,Hash tables of the first kind are created with the function ma k e - has h - tab 1 e. which takes various 

options. New entries are added to hash tables with the puthash function. To look up a key and fin~ the 

associated value. usc ge th as h; to remove an entry, use remh as h. Here is a simple example. 

(setq a (make-hash-table» 
(puthash 'color 'brown a) 
(puthash. 'name '(red a) . 
(gethash 'color a) ~> brown 
(gethash 'name a) ~> fred 
(gethash 'pointy a) => nil 

In this example. the symbols color and name are being used as keys, and the symbols brown and fred 

are being lIsed as the associated values. The hash table has two items in it. one of ~hich associates from • 

co lor to brown. and the other of which associates from name to fred. 



• 

i\1.\ \; 1j>{jI.ATl]\G UST STiZ CCTLRE 181 

Keys do not have to be symbols: they can be any LISP object. Likewise values can be any LISP object. 

Hash tables arc properly interfaced to the relocating garbage collector so that garbage collection will have no 

perceptible effect on the functionality of hash tables. 

When a hash table is first created, it has a size, which is the maximum number of entries it can hold. 

Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With 

the maximum possible bad luck, the capacity could be very much less, but this rarely happens. If so many 

entries are added that the capacity is exceeded, the hash table will automatically grow, and the .entries will be 

rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup 

still works). This is transparent to the caller: it all happens automatically. 

Compatibility note: This hash table facility is compatible with Lisp Machine LISP. It is similar to the hasharray facility of 
INTER LISP, and some of the function names are the same. However, it is not compatible with INTERLISP. The exact details 
and the order of arguments are designed to be consistent with the rest of MACLISP rather than with INTER LISP. For instance, 
the order of arguments to maphash is different, there is no "system hash table", and there is not the INTERLISP restriction 
that keys and values may not be nil. Note. however, that the order of arguments to gethash. puthash, and remhash is 
not consistent with get, put pro p, and r emp r 0 P. either. This is an unfortunate result of the haphazard historical 
development of Lisp. 

15.7.1. Hash Table Functions. 

This section documents the functions for hash tables, which use objects as keys and associate other objects 

with them. 

make-eq-hash-table &key :size :rehash-size :rehash-threshold 
make-eql-hash-table &key :size :reha~h-size :rehash-threshold 

[Function] 
[Function] 

make-equa l-hash-tabl e &key : size : rehash-s ize : rehash-threshol d [Function] 
Calling any of these creates a new hash table; depending on which one is used, the resulting table 

treats keys as equal if they are eq, eql, or equa 1, respectively. 

The : size argument sets the initial size of the hash table, in entries, as a fixnum. The default is 

64. (The actual size may be rounded up from the size you specify to the next "good" size, for 

example to make it a prime number.) You won't necessarily be able to store this many entries into 

the table before it overflows and becomes bigger: but except in the case of extreme bad luck you 

will be able to store almost this many. 

The: rehash-size argument specifies how much to increase the size of the hash table.when it 

becomes full. This can pc an integer greater than zero, which is the number of entries to add, or it 

can be a floating-point number greater than one, which is the ratio of the new size to the old size. 

The default is 1.3, which causes the table to be made 30% bigger each time it has to grow. 

The: rehash-threshol d argument specifics how fun the hash table can get before i~ must 

grow. This can be an integer greater than zero and less than the rehash-size (in which case it will be 

scaled whenever the table is grown), or it can be a floating-point number between zero and onc. 

The default is 0.8, which means the table is enlarged when it becomes over 80% full. 

For example: 



181 CO\j\10;'.i LISP RE!'ERE~CE :\l·\\:CAL 

(make-hash-table :rehash-size 1.5 
:size (* number-of-widgets 43» 

gethash key hash-table &opt ional default [Fullction] 
Find the entry in hash-table whose key is key, and return the associated value. If there is no such 

entry, return default, which is nil ifnot specified. 

get has h actually returns two values, the second being a predicate value that is true if an entry was 

found, and false if no entry was found. 

puthash key value hash-table [Function] 
Create an entry in hash-table associating key to value; if there is already an entry for key, then 

replace the value of that entry with value. Returns value. 

??? Query: Should value be the last argument? Wouldn't be compatible with Lisp Machine LIsp. 

remhash key hash-table [Function] 
Remove any entry for key in hash-table. This is a predicate that is true if there was ~n entry or false 

if there was not. 

maphash jUnction hash-table [Function] 
For each entry in hash-table, call/unction on two arguments: the key of the entry and the value of 

the entry. If entries are added to or deleted from the hash table while a maphash is in progress, 

the results are unpredictable. map has h returns nil. 

c' r h as h hash-table [Function] 
Remove all the entries from hash-table. Returns the hash table itself. 

15.7.2. Primitive Hash Function 

sxhash S-expression [Function]-

sxhash computes a hash code of an S-expression, and returns it as a non-negative fixnum. A 

property of sxhash is that (equa-l x y) implies (= (sxhash x) (sxhash y)}. 

The manner in which the hash code is computed is implementation-dependent, but is independent 

of the particular "incarnation" or "core image". Hash values may be written out to flIes, for 

example, and read in again into an instance of the same implementation. 



Chapter 16 

Arrays 

16.1. Array Creation 

make-array dimensions &key :type :initial-value :initial-contents [Function] 
:fill-pointer :displaced-to :displaced-index-offset 

This is the primitive function for making arrays. dimensions should be a list of non-negative 

integers (in fact, fixnums) that are to be the dimensions of the array; the length of the ~ist will be 

the dimensionality of the array. For convenience when making a one-dimensional array, the single 

dimension may be provided as an integer rather than a list of one integer. 

The. : type argument should be the name of the type of the elements of the array; an array is 

constructed of the most specialized type which can nevertheless accommodate elemments of the 

given type. The type t specifies a general array, one whose elements may be any LISP object; this is 

the default type. 

The : i nit; a 1 - val u e argument may be used to initialize each element of the array. The value 

must be of the type specified by the : type .option. If the : in it i a 1 - val ue option is omitted, 

the initial values of the array elements are undefined (unless the : i nit i a 1 - con ten t s or 

.: d i sp.l aced-to option is used). The : in i t i a l-va 1 ue option may not be used with the 

: i ni t i a l-contents or : d i sp 1 aced-to option. 

The: initial-contents argument may be used to initialize the contents of the array. The 

value is a nested structure of sequences. If the array is zero-dimensional, then the value specifies 

the single clement. Otherwise. the value must be a sequence whose length is equal to the first 

dimension; each element must be a nested structure for an array whose dimensions are the 

remaining dimensions, and so on. 

For example: 

(make-array: '(4.2 3):initial-contents. 
'(((a b c) (* * *» 

((d e f) (* * *» 
((9 h i) (* * *)} 
((j k l) (* * *)}» 

The numbers of levels in the structure must equal the rank of the array. (-<:ach leaf of the nested 

structure must be of the type specified by the: type option. If the : in it i a l-contents option 

.,... 183 -



184 C0\1\10K USP RITI:RE~CE l\1:\~UAL 

is omitted, the initial values of the array clements are undefined (unless the : in i t i a 1 - val ue or 

: dis P 1 aced- to option is used). The: in i t i a 1 - con ten t s option may not be used with the 

: i nit i a 1 - val u e or : dis P 1 ace d - to op ti on. 

The: fill-po inter argument specifics that the array should have a fill pointer. If this option is 

specified, the array must be one-dimensional. The value is used to initialize the fill pointer for the 

array. if the value nil is specified. the length of the array is used~ otherwise the value must be an 

integer between 0 (inclusive) and the length of the array (inclusive). 

The: dis P 1 aced- to argument, if not nil, specifies that the array will be a displaced array. The 

argument must then be an array or vector; make-array will create an indirect or shared array 

which shares its contents with the specified array. In this case the : dis P 1 aced- index -offset 

option may be useful. The: d i sp 1 aced- to option may not be used with the 

: initial-value or: initial-contents option. 

??? Query: A long, extended discussion of displaced arrays is clearly needed here. 

The :displ aced-index-offset argument may be used only in conjunction with the 

dis P 1 ace d - t 0 option. This argument should be a non-negative fixnum (it defaults to zero); it is 

made to be the index"offset of the created shared array. 

For example: 

;; Create a one-dimensional array of five elements. 
(make-array 5) 

;; Create a two-dimensional array, 3 byA, with four-bit clements. 
(make-array '(3 4) ':type '(mod 16» 

, , Create an array of single-floats. 
(make-array 5 ': type ':single-float» 

, , Making a shared array. 
(setq a (make-array '(4 3») 
(setq b (make-array 8 ':displaced-to a 

':displaced-index-offset 
; ; Now it is the case that: 

(aref b 0) <=> (aref a 0 2) 
(aref b 1) <=> (aref a 1 0) 
(aref b 2) <=> (aref a 1 1) 
(aref b 3) <=> (aref a 1 2) 
(aref b 4) <=> (aref a 2 0) 
(aref p 5) <=> (aref a 2 1) 
(aref b 6) <=> (aref a 2 2) 
(aref b 7) <=> (aref a 3 0) 

2» 

The last example depends Dn the. fact that arrays are, in effect. stored in row-major order for 

purposes of sharing. Put another way, the sequences of indices for the clements of an array are 

ordered lexicographical1y. 

CompaCihility note: Both Lisp Machine J ,1SP and FORTRAN store arrays in column-major order. 

• 

• 



• 

ARR:\ YS 185 

make-vector kng~&key :type :initial-value :initial-conten~s [Fullction] 

:fill-pointer 

make-vector is like make-array (p<lge 183). but guarantees to return a vector. Depending on 

the implementation, usc of a vector (and declaration of such usc to the compiler) may result in 

significantly more efficient code. One may not specify a list of dimensions, but only a single 

integer, the length. The :type, :initial-value, :initial-contents, and 

: fill-poi nter keyword arguments arc as for make-array. 

16.2. Array Access 

aref array &res t subscripts [Function] 
This accesses and returns the element of array specified by the subscripts. The number of 

subscripts must equal the rank of the array, and each subscript must be a non-negative integer less 

than the corresponding array dimension. 

aset new-value array &res t subscripts [Function] 
This stores new-value into the element of array specified by the subscripts. The number of 

subscripts must equal the rank of the array, and each subscript must be a non-negative integer less 

than the corresponding array dimension. The result of as e t is the value new-value . 

The argument new-value must be of a type suitable for storing into array if the array is of a 

specialized type. 

??? Query: The 11,1ore I think about it, the more atractive seems the suggestion from RMS simply to flush all 
these updator functions and use set f. 

16.3. Array Information 

array-type array [Function] 
This rcturns the type of clementI;) of the array. For a general array, this is t; for an array of 

eight-bit integers, (mod 256) might be returned .. What is returned is the actual type of the array 

clements, which may be the same as that specified to make-array, or may be more general if the 

implementatation doesn't support arrays of that specific type. 

array-allocated-length array [Function] 
array maybe any array_ This returns the total number of clements allocated in array. For a 

one-dimensional array, this is equal to the length of the single axis. (I f a fill pointer is in use for the 

array, however, the function array-act ive-l ength (page 186) may be more useful.) 



186 CO;vl\10\i LISP Rl:TERE:\CE \lANUAL 

array-active-length array [Function] 
array-act i ve-1 ength returns the fill pointer for the array. This is nonnal1y the same as the 

length of the array unless ar ray- re s et - fill -po inter (page 189) has been used. 

array-rank array [Function] 
Returns the number of dimensions (axes) of array. This will be a non-negative integer. 

Compatibility note: In Lisp Machine LISP this is called a r r ay -#- dims. lbis name causes problems in 
MACLISP because of the # character. The problem is better avoided. 

array-dimension axis-number array [Function] 
The length of dimension number axis-number of the array is returned. array may be any kind of 

array, and axis-number should be a non-negative integer less than the rank of array. 
Compatibility Dote: This is similar to the Lisp Machine LISP function a r r ay - dime n s ion - n, but is 
zero-origin for consistency instead of one-origin. Also, in Lisp Machine LISP (a r r ay - dime n s ; 0 n - nO) 
returns the length of the array leader~ 

array-dimensions array [Function] 
a r r ay - dime n s ion s returns a list whose elements are the dimensions of array. 

array-; n-bounds-p array &res t subscripts [Function] 
This predicate checks whether the ·subscripts are all legal subscripts for array, and is true if they are; 

otherwise it is false. The subscripts must be integers. 

16.4. Functions on Vectors 

The functions in this section are equivalent in operation to the corresponding more general functions, but 

require arguments to be vectors {of general or specialized type}. These functions are provided primarily for 

reasons of efficiency arid convenience. 

ve 1 t vector index [Function] 
The clement of the vector specified by the integer index is returned. The index must be non

negative and Jess than the length· of the vector. See el t (page 157), aref (page 185), and vref 
(page 187). 

vsetel t vector index newvalue [Function] 
The LISP object newvaluejs stored into· the component of the vector specified by the integer index; . 
The index must be non-negative and less than the length of the vector. See s e te 1 t (page 157), 

aset (page 185), and vset (page 187). 

• 



· ARR:\ YS 187 

16.5. Functions on General Vectors (Vectors of LIsP Objects) 

The functions in this section are equivalentin operation to the corresponding more general functions, but 

require arguments to be vectors of type (vee to r t). These functions are provided primarily for reasons of 

efficiency and convenience. 

vref vector index [Function] 
The element of the vector specified by the integer index is returned. The index must be non

negative and less than the length of the vector. See el t (page 157), aref (page 185), and vel t 

(page 186). 

vset vector index newvalue [Function] 
The LISP object newvalue is stored into the component of the vector specified by the integer index. 
The index must be non-negative and less than the length of the vector. See set e 1 t (page 157)t 
aset (page 185), and vsetel t (page 186). 

16.6. Functions on Bit-vectors 

bit bit-vector index [Function] 
The element of the bit-vector specified by the integer index is returned. The index must be 

non-negative and less than the length of the vector. The result will always be 0 or 1. See e 1 t 

(page 157). 

rp 1 acb it bit-vector index newbit [Function] 
The newbit is stored into the component of the bit-vector specified by the integer index. The index 
must be non-negative and less than the length of the vector. The newvalue must be 0 or 1. See 

sete 1 t (page 157). 

bit-and &rest bit-vectors [Function] 
bit-ior &rest bit- vectors [Function] 
bit-xor &rest bit-vectors [F.unction] 
bit-eqv &rest bit-vectors [Function] 
bit-nand bit-vector] bit-vector2 [Function] 
bit-nor bit-vector] bit-vector2 [Function] 
bit-andcl bit~·vectorl . bil-vector2 [Function] 
bit-andc2 bit-vector] bil- vector2 [Function] 
bit-orcl bit-vectorl bit-vector2 [Function] 
bit-orc2 bit- vectorl bit-vector2 [Fullction] 

These functions perform bit-wise logical operations on bit-vectors. An of the arguments to any of 

these functions must be bit-vectors or one-dimensional arrays of biL'i, all of the same length. The 

" 
, . 



188 ('0\1\10:\ LISP REFERF:\CF :\1J\~L.".L 

result is a bit-vector matching the argumcnt(s) in length, such that bit) of tile result is produced by 

operating on bit) of each of the arguments. Indeed. if the arguments are in fact bit-vectors of the 

same length. then 

(bit-xxx. arguments) <=> (map 'bit-vector #.'logxxx . arguments) 

That is. each bit - function described here is simply a mapping over bit-vectors of a log function 

which applies to integers (and therefore to the bit values 0 and 1). See logand (page 135) and 

friends. 

The following table indicates what the result bit is for each operation when two arguments are 

given. (Those operations which accept an indefinite number of arguments are commutative and 

associative, and require at least one argument.) 

argumentl 0 0 1 1 
argument2 0 1 0 1 Operation name 

bit-and 0 0 0 1 and 
bit-ior 0 1 1 1 inclusive or 
bit-xor 0 1 1 0 exclusive or 
bit-eqv 1 0 0 1 equivalence (exclusive nor) 
bit-nand 1 1 1 0 not-and 
bit-nor 1 0 0 0 not-or 
bit-andcl 0 1 0 0 and complement of argumentl with argument2 : 
bit-andc2 0 0 1 0 and argument1 with complement of argument2 
bit-orc1 1 1 0 1 or complement of argumentl with argument2 
bit-orc2 1 0 1 1 or argumentl with complement of argumellt2 

bit-not bit-vector [Function] 

The argument must be a one-dimensional array of bits .. A bit-·vector containing a copy of the 

argument with all the bits inverted is returned. That is, bit j of the result is 1 iff bit j of the 

argument is zero. . 

(bit-not bitvec) <=> (map 'bit-vector #'lognot bi/vec) 

See log not (page 137). 

16.7. Fill Pointers 

To make it.easy to incrementally fill in the contcnts of an array, a sct of functions for manipulating afi/l 

poinler arc defined. The fin pointer is a non-negativc integer no largcr than the total numbcr of clements in 

thc array (asrctumed by array-l ength (pagc ARRA Y-LENG'fH-FUN»; it is thc number of "activc"or 

.. tillcd-in"clcment'i'in thc array.'Whcn an array is crcatcd. its fiIi pointer is initialized to the numbcr of-' 

elcments in the array; thc fill pointer should be reset beforc usc. The fin pointcr constitutcs the uactive 

Icngth~' of the array. Somc functions wi11 ignore clcments beyond thc fill-pointcr index; thosc that do are so 

documentcd. 

• 

• 

Multidimensional arrays may have fill pointers; clements are filled in row-major order (last index varies e 



• 

• 

ARRAYS 189 

fastest}. 

array-reset-fill-pointer array &optional index [Function] 
The fill pointer of array is reset to index, which defaults to zero. The index must be a non-negative 

integer not greater than the old value of the fill pointer. 

array-push array new-element [Function] 
array must be a one-dimensional array that has a fill pointer, and new-element may be any object. 

a r ray - pus h attempts to store new-element in the element of the array designated by the fill 

pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the 

array (specifically, when it gets too big)~ it is unaffected and array-push returns nil. 

Otherwise, the store and increment take place and a r r ay - pus h returns the former value of the fill 

pointer (one less than the one it leaves in the array); thus the value of a r ray - pus h is the index of 

the new element pusq.ed. 

array-push-extend array x &opt i onal extension [Function] 
array-push-extend is just like array-push except that if the fill pointer gets too-large, the 

array is extended (using adjust-array-s ize (page 189» so that it can contain more elements; 

it never "fails" the way a r r ay - pus h does, and so never returns nil. The optional argument 

extension, which must be a positive integer, is the minimum number of elements to be added to the 

array if it must be extended. 

array-pop array [Function] 
array must be a one-dimensional array that has a fill pointer. The fill pointer is decreased by one, 

and the array element designated by the new value of the fill pointer is returned. If the new vahie 

docs not designate any element of the array (specifically, ifit has reached zero), an error occurs. 

16.8. Changing the Size of an Array 

adjust-array-s i ze array new-size &opt; anal new-element [Function] 
The array is adjusted so that it contains (at least). new-size elements. The argument new-size must 

be a non-negative integer. 

If array is a one-dimensional array, its size is simply changed to be new-size, by altering its single 

dimension. If array has more than one dimension. then its first dimension· is adjusted to the 

smallest possible vahle which allows the array to have no fewer than new-size clements. There are 

two degenerate cases, however: 

1. If any dimension other than the first is zero, then the array is not changed, and an error 
occurs if new-size is not o . 

2. I f the array has zero dimensions, then the array is not changed, and an error occurs if 



190 CO\F\'lOi\ LISP REFERI-:\JCE ~L\~UAL 

nev,J-size is not 0 or 1. 

If array is made smaller, the extra dements are lost. If array is made bigger, the new clements are 

initialized to new-element: if this argument is not provided, then the values of the new clements are 

undefined. 

adjust-array-size may, depending on the implementation and the arguments, simply alter 

the given array or create and return a new onc. In thc latter casc the given array will be altered so 

as to be displaced to the new array and have the given new dimensions. 

If adjust-array-size is applied to an array created with the :displaced-to (page 

MAKE-ARRA Y-DISPLACED-TO-KWD) option, or to an array used as the argument for the 

: dis P 1 ace d - to option in the creation· of another array, then the operation will be performed 

correctly with respect to the given array, but the effects on the other array will be unpredictable. 

Compatibility note: In Lisp Machine LISP, the argument new-element is not provided; it would seem useful, 
however. 

Also the Lisp Machine LISP manual is unclear on the precise metho~ of extension for multidimensional arrays. 
The above definition ties this down. 

array-grow array new-element &rest dimensions [Function] 
array-grow returns an array of the same type as array, with the specified dimensions. The 

number of dimensions given must equal the rank of array. 

Those elements of array that are still in bounds appear in the new array. The elements of the new 

array that are not in the bounds of array are initialized to new-element; if this argument is not 

provided, then the initial contents of any new elements are undefined. 

array-grow may, depending on t.}1e implementation and the arguments, simply alter the given 

array or create and return a new one. In the latter case the given array will be altered so as to be 

displaced to the new array and have the given new dimensions. 

If array-grow is applied to an array created with the :displaced-to (page 

MAKE-ARRAY-DISPLACED-TO-KWD) option, or to an' array used as the argument for the 

: d i sp 1 aced- to option in the creation of another array, then the operation will be performed 

correctly with respect to the given array, but the effects on the other array will be unpredictable. 

array-grow differs from adjust-array-s ize in that it keeps the elements of a 

multidimensional array in the same logical positions while allowing extension of any or all 

dimensions. not just the first. 

• 

• 



• 

Chapter 17 

Strings 

A string is a specialized kind of vector whose elements are characters. While, strictly speaking, only vectors 
of characters are called strings (as opposed to all arrays of characters), the string operations described here will . 
operate properly on anyone-dimensional array of characters. 

Compatibility note: Lisp Machine LISP allows a fixnum to be coerced into a one-character string whose element is a 
character whose ASCII value is the fixnum. The net effect is that a single character can be automatically 'coerced to be a 
one-character string. It would be inconsistent with adherence to the character standard, and possibly also affect efficiency 
adversely in some implementations, to remain compatible with this. 

As a rule, any string operation will accept a symbol instead of a string as an argument if the operation never 
modifies that argument; the print-name of the symbol is used. In this respect the string-specific sequence 

. operations are not Simply specializations of the generic versions; the generic sequence operations never accept 
symbols as sequences. This slight inelegance is pennitted in COMMON LISP in the name of pragmatic utility. 
Also, there is a slight non-parallelism in the names of string functions. Where the suffixes equal p and eql 
would be more appropriate, for ·historical compatibility the suffixes eq ua 1 and = are used instead to indicate 
case-insensitive and case-sensitive character comp'arison, respectively. 

Any LISP object may ~e tested for being a string by the predicate s t r i n 9 p (page 48). 

Note that strings, like all vectors, may· have fill pointers. String operations generally operate only on the 
active portion of the string (below the fill pointer). See array-reset-fi ll-pointer (page 189) and 
related functions. 

17.1. String Access and Modification 

char string index [Function] 
The given index. must be a non-negative integer less than the length of string. The character at 
position index of the string is returned as a character object. (This character will necessarily satisfy 

. the predicate string-charp (page 146).) As with all sequences in COMMON LISP, indexing is 
zero-origin. 

For example: 

- 191 -



192 CO:\1\10N LISP REFl.':RENCE \1A~CAL 

(char "Floob-Boober-Bab-Boober-Bubs" 0) => #\F 
(char "Fl oob -Boober-Bab-Boober -Bubs ", 1) => #\ 1 

See e 1 t (page 157). 

rp 1 ach ar string index newchar [Function] 
The argument string must be a string. The given index must be a non-negative integer less than the 

length of the string. The character at position index is altered to be newchar, which must be a 

character object which satisfies the predicate s t r i n 9 - c h a r p (page 146). r p 1 a c h a r returns 

newchar as its value. See s e te 1 t (page 157). 

17.2. String Comparison 

string= string1 string2 &key :start :end :start1 :end1 :start2 :end2 [Function] 
s t r i n 9 = compares two strings, and is true if they are the same (corresponding characters are 

identical) but is false if they are not. The function e qua 1 (page 50) calls s t r i n 9 = if applied to 

two strings. 

The keyword arguments : start1 and : start2 are the places in, the strings, to start the 

comparison. The arguments : end land : end 2 are _ the places in the strings to stop comparing; 

comparison stops just before the position specified by a limit The start arguments default to zero 

(beginning of string),-and the end arguments (if either omitted or nil) default to the lengths of the 

strings (end of string), so that by default the entirety of each string is examined. These arguments 

are provided so that substrings can be compared efficiently. 

s t r i n 9 = is necessarily false if the (sub )strings being compared are of unequal length; that is, if 

(not (= (- endl start1) (- end2 start2») 

is true then s t r i n g = is false. 

For example: 

(str i ng= "foo" "faa") is true 
( s t ri n 9 = " f 0 a " " Faa") is false 
( s t r i n 9 = " f a a " " bar" ) is false 
(string= "together" "frogs" :start1 1 :end1 2 :start2 3 :end2 4 

is'true 

string-equal stringl string2 &key :start :end :start1 :endl :start2 :end2 [Function] 
s t r i n 9 - e qua 1 is justlikes t r i n 9 = except that ~ifferences in case are ignored; two characters 

are considered to be the same if char -equa 1 (page 148) is true of them. 

For example: 

(string-equal "faa" "Faa") istrue 

• 



SlR!~GS 193 

string< slringi sll'ing2 &key :start :end :startl :endl :start2 :end2 
string> slringi slring2 &key ;start :end :startl :endl :start2 :end2 

string<= stringl :'itring2 &key :start :end :startl :endl :start2 :end2 
·string>= string] siring2 &key :start :end :startl :endl :start2 :end2 

string!= stringi string2 &key :start :end :startl :endl :start2 :end2 

[Fullction] 

[Fullclion] 

[Fullction] 

[Function] 

[Function] 

The two string arguments arc compared lexicographically, and the result is nil unless stringl is 

(Jess than, greater than, less than or equal to, greater than or equal to, not equal to) string2, 

respectively. If the condition is satisfied, however, then the result is the index within the strings of 

the first character position at which the strings fail to match; put another way, the result is the 

length of the longest common prefix of the strings. 

A string a is less than a string b if in the first position in which they differ the character of a is less 

than the corresponding character of b according to the function char< (page 148), or if string a is 
a proper prefix of string b (of shorter length and matching in all the characters of a). 

The optional arguments start! and start2 are the places in the strings to start the comparison. The 

optional arguments endl and end2.places in the strings· to stop comparing; comparison stops just 

before the positi:on· specified by a limit The start arguments default to zero (beginning of string), 

and the end arguments (if either omitted or nil) default to the lengths of the strings (end of string), 

so that by default the entirety of each string is examined. These arguments are provided so that 

substrings can be compared efficiently. The index returned in case ofa mismatch is an index into 

stringl. 

string-lessp stringl string2 &key : start ,:end [Function] 
:startl :endl :start2 :end2 

str i ng-greaterp stringl string2 &key :s tart : end [Function] 
:startl :endl :start2 :end2 

string-not-lessp stringi string2 &key :start :end [Function] 

:startl :endl :start2 :end2 
string-not-greaterp stringi string2 ·&key :start :end [Function] 

:startl :endl :start2 :end2 
stri ng-not-equal strillgi string2 &key : start : end [Function] 

:startl :endl :start2 :end2 

These are exactly like stri ng<, stri ng>, stri ng<=, s tri ng>=, and stri ng<>, respectively. 

except that distinctions between upper-case and lower-case letters are ignored. It is if 

char-l essp (page 149) were used instead of char<. (page 148) for comparing characters. 

17.3. String Construction and Manipulation 



194 CO\t:\10!\ LISP REFER E:--:CE ~dANl.JAL 

make-string count &optional fill-character [Fullction] 
This returns a string of length count, each of whose characters has been initialized to the 

jill-character. If fill-character is not specified, then the string will be initialized in an 

implementation-dependent way. 

Implementation note: It may be convenient to initialize the string to null characters. or to spaces, or to garbage 
("whatever was there"). 

s t r in 9 - t r i.m character-bag string 
s tr in 9 -1 eft -tr im .character-bag string 

[Function] 
[Function] 

string-right-trim character-bag string [Function]. 
s t r i n 9 - t rim returns a substring (in the sense of the fut,lction sub s t r i n g (page 

SUBSTRING-FUN» of string, with all characters in character-bag stripped off of the beginning 

and end. The function s t ri n 9 -1 eft - t rim is similar, but strips characters off only the 

beginning; s t r ; n 9 - rig h t - t r ; m strips off only the end. The argument character-bag may be a 

list of characters or a string. 

For example: 

(string~trim '(#\Space #\Tab #\Return) " garbanzo beans 
") => "garbanzo beans" 

(string-trim" (*)" " { *three (silly) words* } ") 
=> "three (silly) words" 

{string-left-trim " (*)" " ( *three (silly) words* ) ~) 

=> "three (silly) words* ) " 
(string-right-trim" (*)" " ( *th ... ee (silly) wo ... ds* ) ") • 

=> "( *th ... ee (silly) wo ... ds" 

st ... ing-upcase string &key :sta ... t :end [Function]-
stri ng-downcase string &key : start : end [Function] 
st ... i ng - cap i ta 1 i ze string &key : start : end [Function] 

st ... i ng - upcase returns a string just like string with all lower-case alphabetic characters replaced 

by the corresponding upper-case characters. More precisely, each character of the result string is 

produced by applying the function cha",-upcase (page 150) to the corresponding character of 

string. 

st ... ing-downcase is similar, except that upper-case characters are converted to lower-case 

characters (using char-downcase (page 150». 

The keyword arguments: s tart and: end delimIt the portion of the string to be affected. 

The argument is not destroyed. However, if no characters in the argument require conversion. the 

result may be either the argument or a copy of it, at the implementation's discretion. 

For example: 

(string-upcase "0 .... Livingston, I presume?") 
=> "OR. LIVINGSTON, I PRESUME?" 

(st ... ing-downcase "Dr. Livingston, I p ... esume?") 
=> "d .... livingston, i presume?" • 



• 

STRINGS 195 

s t r in g - cap ita 1 i z e produces a copy of string such that every word (subsequence of case

modifiable characters delimited by non-ease-modifiable characters) has its first character in upper

case and any other letters in lower-case. 

For example: 

(string-capitalize" hello ") => " Hello" 
(string-capitalize 

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")" 
=> "Occluded Casements Forestall Inadvertent Defenestration" 

(string-capitalize tkludgy-hash-search) => "Kludgy-Hash-Se~rch" 
(string-capitalize "DONtT!") => "DontT!" ;not "Don't!" 

17.4. Type Conversions on Strings 

string x [Function] 

s t r i n g coerces x into a string. Most of the string functions apply this to such of their arguments 

as are supposed to be strings. If x is a string, it is returned. If x is a symbol, its print-name is 

returned. If x cannot be coerced to be a string, an error occurs. 

To get the string represe~tation of a number or any other LISP obj~ct, use p r i n 1 s t r i n g (page 

242), pr i nes tri ng (page 242), or format (page 244) . 



196 CO\l:\IO;\ LlSP IUTERENCE MANUAL 

• 

• 



Clllapter 18 

Structures 

COMMON LISP provides a faci1ity for creating named record structures with named components. In effec~ 

the user can declare a new data type; every data structure of that type has components with specified names. 

Constructor, access, and assignment constructs are automatically defined when the data type is declared. 

This chapter is divided into two parts. The first part discusses the basics of the structure. facility, which is 
very simple and allows the user to take advantage of the type-checking. modularity, and convenience of 

user-defined' record data types. The second part discusses a number of speCialized features of the facility 

which have advanced applications. These features are completely optional, and you needn't even· know they 

exist in order to take advantage of the basics. 

Rationale: It is important not to scare the novice away from de f s t rue t with a mu ltiplicity of features. The basic idea is 
very simple, and we should encourage its use by providing a very simple description. The hairy stuff, including all options, 
is shoved to the end of the chapter. 

18.1. Introduction to Structures 

The structure facility is embodied in the defstruct macro, which allows the user to create and use 
aggregate datatypes with named elements. These are like "structures" in PL/I, or "records" in PASCAL. 

As an example,assume you are writing a LISP program that deals with space ships in a two-dimensional 

plane. In your program, you need to represent a space ship by a LISP object of some kind. lbe interesting 

things about a space ship. as far as your' program is concerned, are its position (represented as x and y 

coordinates). velocity (represented as components along the x and y axes), and mass. 

/\ ship might therefore be represented as a record· structure with five components: x-position, y-position, 

x-velocity, y-velocity, and mass. This structure could in turn be implemented as a LISP object in a number of 

. ways. It could, be a list of five clements: the x-position could be the car, the y-position the cadr, and so on. 

Equally well it could be a vcctor of five clements: the x~positioncould be clement 0, the y-position clement 1, 
and so on .. The problem with either of these representations is that the components occupy places in the 

. object· which are quite arbitrary and hard to remember. Someone looking at (cadddr shi pI) or 

. (vref sh i p 1 3) in a piece of code might find it difficult to detennine that this is accessing the y-velocity 

• . component of sh i p 1. Moreover. if the representation of a ship should have to be changed. it wou1d be very 

- 197-



198 C(Yv1\10!'J LISP RlTEFESCE MANUAL 

difficult top find all the places in the code to be changed to match (nol an occurrences of cadddr are 

intended to extract thc¥v-velocity from a ship). 

Ideally componenls of record structures should have names. One would like to write something like 
(s h i p-y-ve 1 oc i ty sh i P 1) instead of (cadddr sh i p 1). One would also like a more mnemonic way 

to create a ship than this: 

(list 0 0 0 0 0) 

Indeed, one would like s hip to be anew data type, just like other LISP data types, that one 'could test wi~ 

typep (page 46), for example. The defs truct facility provides all of this. 

defstructitself is a macro which defines a structure. For the space ship example one we might define 

the structure by saying: 

(defstruct ship 
x-position 
y-position 
x-velocity 
y-velocity 
mass) 

This declares that every s hip is an object with five named components. The evaluation of this fonn does 

several things: 

• It defines sh i p-x -pos it i on to .be a function of one argument, a ship, which returns its 
x-position; s h ; p - y - p 0 sit; 0 n and the other components are given similar function definitions. _. 
These functions are called the access jUnctions, as they are used to access elements of the structure. _ 

• The symbol s hip becomes the name of a data type, . of .which instances of ships are elements. 
This name becomes acceptable to typep (page 46), for example; (typep x' s hip) is true iff 
x is a ship. Moreover, all ships are instances of the type structure, because sh i p is a subtype 
of structure. 

• A function named s h ; p - p of one argument is defined; it is a predicate which is true if its 
argument is a ship, and is false otherwise. 

• A function called make-sh ip is defined which, when invoked, will create a data structure with 
five components, suitable for use with the access functions. Thus executing 

(setq ship2 (make-ship» 

sets s hip 2 to a .newly-created s hip object. One can specify the initial values of any desired 
component in the call to ma k e - s hip in this way: 

(setq sh ip2 (make-sh i p : mass· *defau 1 t-sh i p-mass* 
:x-position 0 
:y-position 0» 

This constructs a new ship and initializes three of its components. This function is called the 
constructor junction. because it constructs a new structure. 

111 Query: It seems desirable to make the defstruct-produced "make-" constructs as similar a'i possible 
to make-array. make-symbol. etc. Toward this end I here suggest that keywords be used to specify 
components. the keywords being formed simply by interning the slot names in the keyword. package. Once 



STRLCTURES 

this is done. all argumenl" arc evaluable (keywords being self-c~\'aluating), and so the constructor macro might 
as well be a keyword-accepting function. like make-ar r ay . 

• Two ways arc p roy ided to alter com ponents of ash i p. One way is to lise the macro set f (page 
60) in conjunction with an <lccess function (because defstruct effectively performs an 
appropriate def set f (page DEfSETF-FUN»: 

(setf (ship-x-position ship2) 100) 

This alters the x-position of ship2 to be 100. This works because defstruct generates an 
appropriate defset f (page DEFSETF-FUN) fonn for each access function. 

The other way is to use the special alterant macro, which allows alteration of several components 
at once in parallel: 

(a 1 ter - sh i p ente rpr i se ; Counter-clockwise inter-quadrant warp! 
:x-position (- (ship-y-position enterprise» 
:y-position (ship-x-position enterprise» 

Besides allowing parallel updating of several components, use of the alterant macro may be more 
efficient in certain cases. 

??? Query: r d really like to get rid of alterant macros. They're harder to understand than set f , and clutter 
up the language. I suspect that the gained efficiency is minuscule except in certain odd cases involving 
backed bytes. Is it worth it? 

199, 

This simple example illustrates the power of defs truct to provide abstract record structures in a 

convenient manner. defs truct has many other features as well for specialized purposes. 

18.2. How to Use D~fstruct 

defstruct name-and-options {slot-description}+ 

Defines a record-structure data type. A general call to defs truct looks like this: 

( de f s t r u c t (name option-! opt ion-2 ... ) 
slot-description-! 
slot-description-2 
... ) 

[Macro] 

name must be a symbol; it becomes the name of a new data type consisting of all instances of the 

structure .. The function typep (page 46) will accept and use this name as appropriate. 

Usually no options are needed at all. If no options are specified, then one may write simply name 

instead of (name) after the word defstruct. The syntax of options and the options provided 

are discussed in section ??? 

Each slol~descriptiim-j is of the fonn 

(slot-name default-init 
slot-optioll-name-! slot-aption- value-l 
slul-option-name-2 slOI-opl ion-value-2 
... ) 

"':ach slol-name must be a symbol; an access function is defined tor each slot. If no options and no 



\ 

200 CO\l\lON I.lSP RFFFRF:-:CE MA~UAL 

dejaull-illil are specified, then one may write simply slol-name instead of (slot-name) as the slot 

description. The d(/twlt-il1ft is a fonn which is evaluated e{leh lime a structure is to be constnlcted: 

the value is used as the initial value of the slot. If no default-fnil is specified. t.hen the initial 

contents of the slot arc undefined and implementation-dependent. The available slot-options are 

described in Section 18.4. 

Compatibility note: Slot-options are not currently provided in Lisp Machine LIsp, but this is an upward
compatible extension. 

Besides defining an access function for each slot, de f s t r u c t arranges for set f to work properly 

on such access functions, defines a predicate named name- p, and defines constructor and alterant 

macros named ma ke - name and a 1 te r - name, respectively. All names of automatically created 

functions and macros are symbols of the same package (if any) to which the structure name itself 

belongs. 

Because evaluation ofa defstruct form causes many functions and macros to be defined, one must take 

care that two defstruct forms do not define the same name Gust as one must take care not to use defun to 

define two distinct functions of the same name ). For this reason, as well as for clarity in the code, it is 

conventional to prefix the names of all of the slots with some text which identifies the structure. In the 

example above, all the slot names start with '~s hip -". The : con c - name (page 202)option can be used to 

provide such prefixes automatically. 

18.3. Using the Automatically Defined Macros 

After you have defined a new structure with defstruct, you can create instances of this structure by 

using the constructor macro, and alter the values of its slots by using the alterant macro. By default, 

de f s t r u c t defines these macros automatically, forming their names by adding prefixes to the name of the 

structure;. for a structure named foo, the respective macro names would be make-foo andal ter-foo. 

You can specify the names yourself by giving the name you want to use as the argument to the 

: constructor (page 204) and: al terant (page 204) options, or specify that you don't want a macro 

created at all by using nil as the argument. 

18.3.1. Constructor Functions 

A call to a constructor function, in general, has the form 

( name-ofconstructor-macro 
slol-keyword-! fonn- / 
SiD 1-keyword-2 fonn-2 
... ) 

All arguments are keyword arguments. Each slot-keyword should be'a keyword whose name matches the 

name of a slot of the structure (defstruct determines the possible keywords simply by interning each 

slot-name in the keyword package). All the keywords andjbmls are evaluated. 

]f slol-keyword-jnames a slot, then that clement of the created structure will be initialized to the value of • 



• 

STRlCTLRES 201 

form-j. If no ~/Ol-keYlvord-j/junl1-j pair is present for a given slot. then the slot will be initialized by evaluating 

the dcjau/l-illif form specified for that slot in the can to de f s tr' u c t. (In other words, the initialization 

spccitlcd in the defstruct defcrs to any specified in a call to thc constructor macro.) If the dcfault 

initialization form is used. it is evaluated at construction time, but in the lexical environmcnt of the 

defstruct form in which it appeared. If the defstruct itself also did not specify any initialization. the 

element's initial value is undefined. You should always specify the initialization. either in the defstruct or 

in the call to the constmctor function. if you care about the initial value of the slot. 

Compatibility note: The Lisp Machine LISP documentation is slightly unclear about when the initialization specified in the 
defstruct form gets evaluated: at defstruct evaluation time, or at constructor time? The code reveals that it is at 
constructor tirrie. which causes problems with referential transparency with respect to lexical variables (which currently 
don't exist officially in Lisp Machine Llsp'anyway). 'The above remark concerning the lexical environment in effect requires 
that the initialization form is treated as a thunk: it is evaluated at constructor time, but in the environment where it was 
written (the defstruct environment). Most of the time this makes no difference anyway, as the initialization form is 
typically a quoted constant or refers only to special variables. The requirement is imposed here for uniformity, and to 
ensure that what look like special variable references in the initialization form are in fact always treated as such. 

The order of evaluation of the initialization forms is not necessarily the same as the order in which they 

appear in the constructor call or in the de f s t rue t form; code should not depend on the order of evaluation. 

The initialization forms are re-evaluated on every constructor-macro call, so that if. for example. the fonn 

(gen sym) were used as an initialization form, either in the constructor-macro call or as the default form in 

the defstruct declaration, then every call to the constructor macro would call gensym once to generate a 

new symbol. 

18.3.2. Alterant Macros 

A call to the alterant macro. in general. has the form . 

(name-of-alterant-macro instance-form 
slol- keyword-l form-l 
slot- keyword-2 form-2 
... ) 

instance-form is evaluated. and should return an instance of the structure. Each form-j is evaluated, and the 

corresponding slot named by sio[-keyword-j is changed to have the result as its new value. The assignments 

are paranel; that is. the slots are altered after all the fonns have been evaluated. so you can exchange the 

values of two slots. as follows: 

(alter-ship enterprise 
ship-x-position (ship-y-position enterprise) 
ship-y-position (ship-x-position enterprise)) 

As with the constructor macro. the order of evaluation of the forms is undefined. 

Single slots can also be altered by using setf (page 60) .. Using the alterant macro may produce more 

efficient code than using consecutive setf forms. 



202 (,0\1\10;-'; USP RnTI~F\CF !\L\\:LAL 

18.4. defstruct Slot-Options 

Each slot-description in a defstruct fonn may specify one or more slot-options. A slot-option consists of 

a pair of a keyword and a value (which is not a form to be evaluated. but the value itsc1f). 

For example: 

(defstruct ship 
(ship-x-position 0.0 :type short-float) 
(ship-y-position 0.0 :type short-float) 
(ship-x-velocity 0.0 :type short-float) 
(ship-y-velocity 0.0 :type short-float) 
(ship-mass *defautt-ship-rnass* :type short-float :read-only t» 

This specifies that the first four slots will always contain short-format floating-point numbers, that the last 

three slots are "invisible" (will not ordinarily be shown when a ship is printed), and that the last slot may not 

be altered once a ship is constructed. 

The available slot-options are: 

: type The option (: type type) specifies that the contents of the slot will always be of the 
specified data type. This is entirely analogous to the declaration of a variable or function; 
indeed, it effectively declares the result type of the access func~ion. An implementation 
mayor may not choose to check the type of the new object when initializing or assigning to 
a slot. 

: i n vis i b 1 e The option : i n v; sib 1 e specifies that the contents of this slot should not be printed 
when an instance of the structure is printed. 

: read-only The option: read-only specifies that this slot may not be altered; it will always contain 
the value specified at construction time. The alterant macro will not accept the name of 
this slot, and set f (page 60) will not accept the access function for this slot. 

18.5. Options to defstruct 

The preceding description of defstruct is al1 that the average user will need (or want) to know in order 

\0 use structures. The remainder of this chapter discusses more complex features of the defs truct facility. 

This section explains each of the options that can be given to def s truet. As with slot-options, a 

def s truct option may be either a keyword or a list of a keyword and arguments for that keyword. 

??? Query: Suppose we could standardize on keyword-value pairs, as everywhere else? 

:cone-narne This provides for automatic prefixing of names of access functions. It is conventional to 
begin the names of all the access functions of a structure with a specific prefix, the name of 
the structure followed by a hyphen. This is the default behavior. 

The argument to the : eon e - n arne option specifics an alternate prefix to be used. (If a 
hyphen is to be lIsed as a separator. it must be specified as part of the prefix.) If nil is 

• 

• 



S"I RlTTURES 

:type 

• 

203 

specified as an argument, then no preflx is lIsed: then the names of the access functions arc 
the same as the slot names, and it is up to the user to name the sll)ts reasonably. 

Notc that no matter what is specificd for : con c - name, with constructor functions and 
alterant macros one uses slot keywords that match the slot names, with no prcfic attached. 
On the ather hand, one uses the access-function name when using setL Here is an 
example: 

(defstruct (door (:conc~name nil» 
knob-color width material) 

(setq my-door (make-door :knob-color 'red :width 5.0» 
(door-knob-color my-door) ==> red 
(alter-door my-door :knob-color 'green :material 'wood) 
(door-material my-door) => wood 
(setf (door-width my-door) 43.7) 
(door-width my-door) => 43.7 

The : type option specifies what kind of LISP object will be used to implement the 
structure. It takes one argument, which must be. o~e of the types enumerated below. If the 
: type option is not provided, the type defaults to : vector, and the : named option is 
assumed unless : un name d is explicitly specified. 

Rationale: Making a structure be : unnamed mostly just saves space. It is probably better to protect 
the novice by providing by default a named vector, since that provides maximal features, nice 
printing, reasonable use of space (better than lists or arrays in most implementations), etc. 

vector Use a general vector, storing components as vector elements. This is 
normally : name d. 

array Use a one-dimensional array, storing components in the" body of the 
array. By default this is : name d. 

( a r r ay type) A specialized array may be used, in which case every component must 
be of a type which can be stored in such an array. The array must be 
one-dimensional. 

Compatibility note: This is a suggested feature not yet in Lisp Machine LISP. 

array-l eader Make an object which is an array, and can be indexed as one, but which 
additionally has hidden defstruct components. By default this is 
: named. (See the option : make-array (page 206), described 
below.} 

list 

" integer 

??? Query: This has to be renamed. But to what? 

Use a liSlA structure of this type cannot be distinguished by typep, 
even if the : named option is used. By default this is : unnamed. 

This unusual type implements the structure as a single integer. The 
stnlcture may only have one slot. This is only useful with the byte field 
feature (sec page DEFSTRUCT-BYTE-FIEIJ): it lets you store several 
small numbers within fields of an .integer, giving the fields names. This 
cannotbe : named. 



204 

: named 

:unnamed 

CO\I\iO:\ LISP lZl]·TRL\CE \lAXUAL 

('on1llatibiJily note: The: integer option is a suggested feature not yet in 
Li~p Machine J JSP. It is similar to the fix n urn option. 

('omp:lIihility 1101e: All the "named-" types such as : named-array from Lisp Machine LIsP have 
heen omitted here. a<; they tend to multiply. An implementation may provide them. but they are not 
required here. The : named and: unnamed options may he u:-.cd separately to gel the same cffecL 

The: named option specifies that the stmcture is "named"; this option takes no argument. 
A named structure has an associated predicate for dctcnnining whether a given LISP object 
is a structure of that name. Some named structures in addition can be distinguished by the 
predi.cate typep (page 46). If neither: named nor; unnamed is specified, then the 
default depends on the : ty p e option. 

The : un name d option specifies that the structure is not named; this option takes no 
argument. 

: constructor This option takes one argument, a symbol, which specifies the name of the constructor 
function. If the argument is not provided or if the option itself is 'not provided, the name 
of the constructor is produced by concatenating the string "make- "and the name of the 
structure, putting the name in the same package as the structure name. If the argument is 
provided and is nil, no constructor function is defined. 

:alterant 

:predicate 

:include 

This option actually has a more general syntax which is explained in 711. 

This option takes one argument, which' specifics the name of the alterant macro. If the 
argument is not provided or if the option itself is not provided, the name of the alterant 
macro is made by concatenating the string "a 1 t e r -" to the name of the structure, putting 
the name in the s':llle package as the structure name. If the argument is provided and is 
nil, no alterant macro is defined. Use of the alterant macro is explained on 111. 

This option takes one argument, which specifies the name of the type predicate. If the 
argument is not provided or if the option itself is not provided, the name of the predicate is 
made by concatenating the. name of the structure to the string "- p " , putting the name in 
the same package as the structure name. If the argument is provided and is nil, no 
predicate is defined. A predicate can be defined only if the structure is : named (page 
204). 

This option is used for building a new structure definition as an extension of an old 
structure definition. As an example, suppose you have a structure called pe r s on that 
looks like this: 

(defstruct person name age sex) 

Now suppose you want to' make a new structure to represent an astronaut. Since astronauts 
are people too, you would like them to also have the attributes of name, age, and sex, and 
you would like LISP functions that operate on per son structu res to operate just as well on 
astronaut structures. You can do this by defining astronaut with the : include 
option, as follows: 

(defstruct (astronaut (:include person») 
helmet-size 
(favorite-beverage 'tang) 

• 

• 



S'I'IZLCI'URLS 205 

The: i ncl ude option causes the structure being defined to have the same slots as the 
included structure, in slich a \\'ay that the access functions and alterant macro for the 
included structure will also work on the structure being defined. In this example, an 
as tron aut wi1l therefore have five slots: the three defined in pe rson, and the two 
defined in astronaut itself. The access funclion~ defined by the person structure can 
be applied to instances of the as tron aut structure, and they will work correctly. 

??? Query: RPG asks: should astronaut-name be defined, as well as letting person-name 
operate on astronauts? 

The following examples illustrate how you can use as t ron aut structures: 

(setq x (make-astronaut name 'buzz 
age 45. 
sex t 
helmet-size 17.5» 

(person-name x) => buzz 
(favorite-beverage x) => tang 

Note that the : cone-name (page 202) option was not inherited from the included 
structure; it only' applies to the names of the access functions of per son and not to those 
of as tronaut. 

The argument to the :; n c 1 u d e option is required, and must be the name of some 
previously defined structure. The included structure must be of the same: type as this 
structure. The structure name of the including structure definition becomes the name of a 
data type, of course: moreover. it becomes a subtype of the included structure. In the 
above example, as tronaut is a subtype of person; hence 

(typep (make-astronaut) 'pe~son) 

is true, indicating that all operations on persons will work on astronauts. 

The following is an advanced feature of the :; n c 1 u d e option. Sometimes, when one 
structure includes another, the default values or slot-options for the slots that came from 

. the included structure arc not what you want. The new structure can specify default values 
or slot-options for the included slots different from those the included structure specifics, 
by giving the : inc 1 u d e option as: 

( : incl ude name s/ot-description-I s/ot-description-2 ... ) 

Each s/ot-description-j must have a slot-name or slol-keyword which is the same as that of 
some slot in the included structure. If s/ot-descriplion-j has no default-inil, then in the new 
structure the slot will have no initial value. Otherwise its initial value form will be replaced 
by the default-init in slot-description-j. A normally writable slot may be made read-only. 
and a normally visible· slot may be made invisible in the defined structure. If a slot is 
invisible or read-only in the included structure, then it must also be so in the including 
structure. If a type is specified for a slot, it must be a the same as or a SUbtype of the type 
specified in the included structure. lfit is astrict SUbtype, the implementation mayor may 
not choose to error-check assignments. 

For example. if we had wanted to define astronaut so that the default age for an 
astronaut js 45, then we could have said: 



206 CO\1\lON ] JSP REI'LRLSCE l\1ANUAL 

(defstruct (astronaut (:include person (age 45») 
helmet-size 
(favorite-bever~ge 'tang» 

:make-array Ifan array is used to represent the structure being defined (the: type (page 203) option 
is : a r r ay or : a r ray - , e ad e r), this option allows you to control those aspects of the 
array used to implement the structure that are not otherwise constrained by defstruct. 
For example, if you are creating a structure of type :array-leader, you almost 
certainly want to specify the dimensions of the array to be created, and you may want to 
specify the type of the array. 

The argument to the : make-array option should be a list of alternating keyword 
symbols to the function make-array (page 183) and fonns whose values are the 
arguments to those keywords. 

defstruct may need to specify some arguments to make-array for its own purposes. 
If these conflict with the specifications given to the : m a k e - a r r ay keyword, an error is 
signalled. 

Compatibility note: This is more robust than the current Lisp Machine LISP specification that 
def s tr-uct quietly overrides what you specify. 

Constructor macros for structures implemented as, arrays all allow the keyword 
:make-array to be supplied. Attributes supplied therein override any :make-array 
option attributes supplied in the original de f s t rue t fonn. If some attribute appears in 
neither the invocation of the constructor nor in the :make-array option to defstruct, • 
then the constructor will chose appropriate defaults. 

If a structure is of type : arr ay-' eader, you probably want to specify the dimensions of 
the array. The dimensions of an array are given to : rna k e - a r r ay as a position argument 
rather than a keyword argument, so there is no way to specify them in the above syntax. 
To solve this problem, you may use the special keyword: dimens ions or :, ength (they 
mean the same thing), with a value that is anything acceptable as make-array's first 
argument. 

:print-function 
The argument to this option should be a function of four arguments which is to be used to 
print structures of this type. When a structure of this type is to be printed, the function is 
called on the structure to be printed, a stream to print to, an integer indicating the curr~nt 
depth (to be compared against pr i n 1 eve' (page 236», and a flag which is true for 
prinl-style printout and false fi)r pri.ne-style printout. This option can be used only 
with: named structures. 

:initial-offset 

Compatibility note: This is suggested merely to provide a simple way to set up the printing function 
in a central place and in an implementation-independent manner. In Lisp Machine LISP this would 
presumably set up an invoke handler for the type. 'Iberc needs to be a good way to interface to the 
grinder, too. 

This allows you to ten defs truet to skip over a certain number of slot~ before it starts 
. allocating the slots described in the body. This option requires an argument (which must • 



•• 

STRLCTLRES 

:eval-when 

207 

_ be a non-negative integer) which is the number of slots you want defstruct to skip. To 
make use of this option requires that you have some familiarity with how defstruct is 
implementing your structure: otherwise, you will be unable to make usc of the slots that 
defstruct has left unused. 

Nonnally the macros defined by de f s t rue t are defined at eval time, compile time, and 
load time. This option allows the user to control this behavior. The argument to the 
: eval-when option is just like the list that is the first subform of an eval-when (page 
EVAL-WHEN-FUN) special form. For example, 

(:eval-when (:eval :compile) 

will cause the macros' to be defined only when the code is running interpreted or inside the 
compiler. 

18.6. By-position Constructor Functions 

If the : constructor (page 204) option is given as ( : constructor name arglist), then instead of 

making a keyword driven constructor function, de f s t r u c t defines a "positional" constructor function, 

taking arguments whose meaning is detennined by the argument's position rather than 'by a keyword. The 

arglisl is used to describe what the arguments to the constructor will be. In the simplest case somet;hing like 

( : constructor make-foo (a b c») defines make-foo to be a three-argument constructor function 

whose arguments are used to initialize the slots named a, b, and c. 

In addition, the keywords &opt i on a 1, &res t, an~ &aux are recognized in the argument list. They work 

in the way you might expect. but there are a few fine points worthy of explanation. 

For example: 

(:constructor create-foo 
(a &optional b (c 'sea) &rest d &aux e (f 'eff))) 

This defines create-foo to be a constructor of one or more arguments. The first argument is used to 

initialize the a slot. The second argument is used to initialize the b slot. If there isn't any second argumen~ 

then the default value given in the body of the defstruct (if given) is used instead. The third argument is 

used to initialize the c slot. If there" isn't any third argument, then the symbol sea is used instead. Any 

arguments following the third argument are collected into a list and used to initialize the d slot. If there are 

three or fewer arguments, then nil is placed in the d slot. The e slot is nol initialized; its initial value is 

undefined. Finally, the f slot is initialized to contain the symbol eff. 

The actions taken in the band e cases were carefully chosen to allow the user to specify all possible 

behaviors. Note that the &aux "variables" can be used to completcly.()Verride the default initializations given 

in the body. 

With this definition. one can write 

(create-foo 1 2) 

instead of 



208 CC)\l\IOr\ LISP RITTRI:\CF MA:--iUAL 

(make-foo alb 2) 

and of course create-foo provides defaulting different from that ofmake-foo. 

It is pennissiblc to use the: constructor option more than once, so that you can define several different 

constructor functions, each taking different parameters. 

If you write the keyword :make-array in place ofa variable name, then the corresponding argument will 

specify the : mak e - a r r ay option at construction time; just as for an ordinary constructor function. 

Because a constructor of this type operates By Order of Arguments, it is sometimes known as a BOA 

constructor. 



Cllapter 19 

The Evaluator 

19.1. Run-Time Evaluation of Forms 

eval 

??? 

eval hook 

??? 

evalhook 

??? 

19.2. The Top-Level Loop 

Where do describe and inspect go??? 

- 209-

[Function] 

[Variable] 

[Function] 



210 



• 

Chapter 20 

StreanlS 

Streams are objects that serve as sources or sinks of data. Character streams produce or absorb characters; 

binary streams produce or absorb integers. The normal action of a COMMON LISP system is to read characters 

from a character input stream, parse the characters into successive S-expressions, evaluate each S-expression 

in turn, and print the results to an output character stream. 

Typically streams are connected to files or to an interactive terminal. Streams, being LISP objects, serve as 

the ambassadors of external devices by which input! output is accomplished. 

A stream may be input-only, output-only, or bidirectional. What operations may be performed on a stream 

depends on which of the three types of stream it is. 

20.1. Standard Streams 

There are several variables whose values are streams used by many functions in the LISP system. These 

variables and their uses are listed here. By convention, yariables which are expected to hold a stream capable 

of input have names ending with .. - i n put", and similarly" - 0 u t put" for output streams. Those expected 

to hold a bidirectional stream have names ending with "- i 0". 

standard-input [Variable] 
In the normal LISP top-1evelloop, input is read from standard- input (that is, whatever stream 

is the value of the global variable standard- input). Many input functions, including read 

(page 237) and inch (page 239), take a stream argument which defaults to standard- input. 

standard-output [Variable] 

In the normal LISP top-Ievel1oop, output is sent to standard-output (that is. whatever stream 

is the value of the global variable standard-output). Many output functions. including print 

(page 242) anod ouch (page 243), take a stream argument which defaults to standard-output . 

- 211 -



212 CO\I\10:\ LISP RITLRF:';CE.~v1A~CAL 

error-output [Variable] 

The valuc of error-output is a strcam to which error messages shou1d he sent. Normally this is • 

the same as standard-output, but standard-output might be bound to a me and 

error-output left going to the terminal or a separate file of error messages. 

query- i 0 [Variable] 
The value of query-io is a stream to be used when asking questions of the user. The question 

should be output to this stream, and the answer read from it. When the normal input to a program 

may be coming from a file, questions such as "Do you really want to delete all of the files in your 

directory??" should be sent directly to the user, and the answer should come from the user, not 

from the data file. que r y - i 0 is used by such functions as yes - 0 r - n 0 - p (page 254). 

terminal-io [Variable] 
The value of te rm ina 1 - i 0 is ordinarily the stream which connects to the user's console. 

trace-output [Variable] 
The value of trace-output is the stream on which the trace (page TRACE-FUN) function 

prints its output 

standard- input, standard-output, error-output, trace-output, and query- i 0 are 

initially bound to synonym streams which pass all operations on to the stream which is the value of • 
terminal-io. (See make-synonym-stream (pag~ 212).) Thus any operations performed <:>n those 

streams will go to the terminal. 

No user program should ever change the value of terminal-io. A program which wants (for example) 

to divert output to a file should do so by binding the value of standard-output; that way error messages 

sent to error-output can still get to the user by going through terminal-io, which is usually what is 

desired. 

20.2. Creating New Streams 

Perhaps the most important constructs for creating new streams are those that open files; see 

wi th -open-f i 1 e (page 267) and o·pen (page 268). The following functions construct streams without 

reference to a file system. 

make-synonym-stream symbol [Function] 
make-synonym-stream creates and returns a "synonym stream". Any operations on the new 

stream will be performed on the stream which is then the value of the dynamic variable named by 

the symbol. I f the value of the variable should change or be bound, then the synonym stream will 

operate on the new stream: 



S'I RE:\\lS 

??? Query: In Lisp ~1achine LISP this is called make-syn-stream. The documentor found it necessary to 
cx.plJin that "syn" meant "synonym": it cvcrt:1inly isn't obvious. The ahbreviation "syn" could he mistaken for 
any number of other things, such as "synchronous" or "syntactic" or "synthetic" ... Here this confusion is 
eliminated. 

213 

make-broadcast-stream &rest streams . [Fullction] 
Returns a stream which only works in the output direction. Any output sent to this stream will be 

sent to all of the streams given. The set of operations which may be performed on the new stream 

is the intersection of those for the given streams. The results returned by a stream operation are the 

values returned by the last stream in streams; the results of performing the operation on all 

preceding streams are discarded. 

make-concatenated-stream &rest streams [Function] 
Returns a stream which only works in the input direction. Input is taken from the first of the 

streams until it reaches end-of-file; then that stream is discarded, and input is taken from the next 

of the streams, and so on. If no arguments' are given, the result is a stream with no content; any 

input attempt will result in end-of-file. 

make-io-stream input-stream output-stream [Function] 
Returns a bidirectional stream which gets its input from input-stream and sends its output to 

output-stream. 

make-echo-stream input-stream' output-stream [Function] 
Returns a bi~irectional stream which gets its input from input-stream and sends its output to 
output-stream. In addition, all input taken from input-stream is echoed to output-stream. 

make-string-input-stream string &opt ;onal start end [Function] 
Returns an input stream which will supply the characters the substring of string delimited by start 

. and end in order and then signal end-of-file. 

make-s tr i ng-ou tput -stream &opt i ona 1 line-length [Function] 
Returns an output stream which will accumulate all output given it for the benefit of the function 

get-output-stream-str;ng. 

get-output-stream-stri ng string-output-stream [Function] 
Given a stream produced by make-str.ing-output-stream, this returns a string containing 

all the characters output to the stream so far. The stream is then reset; thus each call to 

get-output-stream-stringget~ only the characters since the last such call (or the creation 

of the stream, ifno suchprevious call !:tas been made). 



214 ('0\1\10:\ LISP REFERI:\CF MANUAL 

20.3. Operations on Stre~ims 

s t r e amp object [Fullction] 
s t re amp is true if its argument is a stream, and otherwise is false. 

(streamp x) <=> (typep x 'stream) 

input-stream-p stream [Function] 
This predicate is true if its argument (a stream) can handle input operations, and otherwise is false .. 

output-stream-p stream [Function] 
This predicate is true if its argument (a stream) can handle output operations, and otherwise is 

false. 

close stream &opt; ona' abort-flag [Function] 
The stream is closed. No further input! output operations may be performed on it. However, 

certain inquiry operations may still be performed, and it is permissible to close an already-closed 

stream. 

If abort-flag is not n; 1 (it defaults to n;'), it indicates an abnormal termination of the use of the 

stream. An attempt is made to cl~an up any side effects of having created the stream in the first 
place. For example, if the stream performs output to a file, the file is deleted and any previously 

existing file is not superseded. 

# # # charpos, 1; nenum, and so on? 



Chapter 21 

Input/Output 

21.1. Printed Representation of LISP Objects 

LISP objects are not nonnally thought of as being text strings; they have very different properties from text 

strings as a consequence of their internal representation. However, to make it possible to get at and talk about 

LISP objects, LISP provides a representation of objects in the form of printed text; this is called the printed 
representation, which is ~sed for input! output purposes and in the examples throughout this manual. 

Functions such as p r i n t (page 242) take a LISP object and send the characters of its printed representation 

to a stream. The collection of routines that does this is known as the (LISP) printer. The read function takes 

characters from a stream, interprets them as a printed representation of a LISP object, builds a corresponding 

object, and returns it; the collection of routines that does this is called the (LISP) reader. 

Ideally, one could print a LISP object and then read the printed representation back in, and so obtain the 

same identical object. In practice this is difficult, arid for some purposes not even desirable. Instead, reading 

a printed representation produces an object that is (with obscure technical exceptions) e qua 1 (page 50) to 

the originally printed object. 

Most LISP objects have more than one possible printed representation. For example. the integer twenty

seven can be written in any of these ways: 

27 27. #033 #xlB #bll0ll #.(* 3 3 3) 

A list of two symbols A and B can be printed in many. many ways: 

(A B) (a b) a b) (\A IBI) 
(I\AI 

B 

The last example. which is spread over three lines, may be ugly. but it is legitimate. In general, wherever 

whitespace is pennissible in a printed representation, any number of spaces, tab characters. and newlines may 

appear. 

When pr fn t produces a printed representation, it must choose arbitrarily from among many possible 

printed representations. It attempts to choose one that is readable. There are a number of global variables 

that can be used to control the actions of p r i n t. and a number of different printing functions. 

- 215~ 



- ------------------------------------------------------
216 

This section describes in detail what is the standard printed representation for any Lisp object, and also 

describes how re ad operates. 

21.1J. 'Vha~ the read Function Accepts 

The purpose of the reader LISP is to accept characters. interpret them as the printed representation of a 

LISP object, and construct and return such an object. The reader cannot accept everything that the printer -

produces; for example, the printed representations of compiled code objects and closures cannot be read in. 

However, the reader has many features that are not used by the output of the printer at all, such as comments, 

alternative representations, and convenient. abbreviations for frequently-used unwieldy constructs. The 

reader is also parameterized in -such a way that -it can be used as a lexical analyzer for a more general 

user-written parser. 

When the reader is invoked, it reads a character from the input stream and dispatches according to the 

attributes of that character. Every character that can appear in-the input stream can have one of the following 

attributes: whites pace, constituent, escape character, or macro character. In addition, a macro character may 

be tenninating or non-tenninating (of tokens). 

Supposing that the first character has been read; call it x. The reader then performs the following acti0I?-s: 

• If x is a whitespace character, then discard it and start over, reading another character. 

• If x is a macro character, then execute the function associated with that character. The function 
may return zero values or one value (see values (page 82». Ifone value is returned, that object 
is returned by the reader. If zero values are returned. the reader starts anew; reading a character 
from the input stream and dispatching. The function may of course read characters from the 
input stream; if it does, it will see those characters following the macro character. 

• If x is an escape character, then read the next character and pretend it is a constituent, ignoring its 
usual syntax. Drop in to the following case. 

• If x is a constituent, then it begins an extended token, representing a symbol or a number. The 
reader reads more characters, accumulating them until a whilespace character or a macro character 
that is tenninaling is found, or until end-of-file is reached. However, whenever an escape 
character is found during the accumulation, the character after that is treated as a pure constituent 
and also accumulated, no matter what its usual syntax is. Similarly, any non-lemlinatillg macro 
character js simply accumulated as if it were a constituent. Call the eventually found whitespace 
character or macro character y. All characters beginning with x up to but not including y fonn a 
single extended token. (If end-of-fi1e was encountered, the characters beginning with x up to the 
end of the file form the extended token.) This token is then interpreted as a number if possible, 
and otherwise as a symbol. The number or symbol is then returned by the reader. 

Compatibility note: Note that characters of type single are not provided for (what MACLlsP calls a "single character object"). 
They can be viewed a~ simply a kind of macro character. 'Ill at is, 

(setsyntax '$ 'single nil) 
<=> (setsyntax '$ • macro #' (1 ambda (i gnore . ignore) • $» 

which is easy enough to do oneself. After all, one might prefer to scc a character rather than a symbol. 



• 

I~PLT/OCTPUT 217 

<tab) lvhilespace <fOlm) whilespace <return) whitespace 
<space) whilespace @ constituent terminating macro character 

cOllstilUenl A constituent a constituent 
" tenninaling macro character B constituent b COllst i luent 
# terminaling macro character C constituent c constituent 
$ constituent D constituent d constituent 
% constituent E constituent e cOllstituent 
& constituent F constituent f constituent 

tenninating macro character G constituent 9 constituent 
( tenninaling macro character H constituent h constitue!lt 
) terminating macro character I constituent ; constituent 
* constituent J constituent j constituent 
+ constituent K constituent k constituent 

tenninating macro character L constituent , constituent 
constituent M constituent m constituent 
constituent N constituent n constituent 

/ constituent 0 constituent 0 constituent 
0 constituent P constituent p constituent 
1 constituent Q constituent q constituent 
2 constituent R constituent r constituent 
3 constituent S constituent s constituent 
4 constituent T constituent t constituent 
5 constituent U constituent u constituent 
6 constituent V constituent v constituent 
7 constituent W constituent w constituent 
8 constituent X constituent x constituent 
9 constituent y constituent y constituent 

constituent Z constituent z constituent 
tenninating macro character [ constituent { constituent 

< constituent \ escape character I tenninating macro character 
= constituent ] constituent } constituent 
> constituent constituent constituent 
? constituent constituent <rubout) constituent 
<backspace> constituent <linefeed> whites pace 

Table 21-1: Standard Character Syntax Attributes 

The characters of the standard character set initially have the attributes shown in Table 21 .. 1. 

21.1.2. Parsing of Numbers and Symbols 

When an extended token is read. it is interpreted as a number or symbol. As a rule, letters not preceded by 

escape characters are converted to upper casco If the token can be interpreted as a number according to the 

BNF syntax in Table 21-2, then a numberobjcct of the appropriate type is constructed and returned. It should 

be noted that in a given implementation it may be that not all tokens conforming to the syntax for numbers 



218 

number:: = integerl ralio Ifloaling-point-nU1uber 
integer:: = [sign] {digit} + [.] 
ratio:: = [sign] {digit} + / {digit} + 

CO\Uv10i\ LISP I~Ell:RE~(,E \1ANLAL 

floating-poinl-number:: = [sign] {digi/}* . {digi/} + [exponent] I [sign] {digi/} + . {digit}* exponent 
sign :: = + I - . 
digit:: = 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 
exponent:: = exponent-marker [sign] {digit}+ 
exponenl-marker:: = e I s I f I d 11 I b I ElF I 0 I S I LIB 

The notation "{x}*" means zero or more occurrences of "x", the notation "{x}+" means one or more 
occurrences of "x", and the notation "(x)" means zero or one occurrences of "x". 

Table 21-2: Syntax of Numbers 

can actually be converted into number objects. For example, specifying· too large or too small an exponent for 

a floating-point number may ~ake the number impossible to represent in the implementation. Similarly, a 

ratio with denominator zero (such as "-3 5 / 0 0 O") cannot be represented in any implementation. The 

exponent markers "b" and "B" are undefined. but are reserved for future extension of the floating-point type. 

In any such circumstance where a token with the syntax of a number cannot be converted to an internal 
number object, an error is signalled. (On the other hand. an error cannot be signalled for specifying too many 

significant digits for a floating-point number.) 

Note that a token representing a number may not contain any escape characters. An escape character robs 

the following character of all syntactic qualities, forcing it to be strictly alphabetic. 

If the token consists solely of dots (with no escape characters), then an error is signal1ed, except in one 

circumstance: if the token is a single dot. and occurs in a situation appropriate to "dotted list" syntax, then it is 

accepted as a part of such syntax. (Signalling an error catches not only misplaced dots in dotted list syntax, 

but also lists that were truncated by p r i n 1 eng t h (page 236) cutoff.} 

In all other cases the token is construed to be the name of a symbol. If there arc any package markers 

(colons) in the token. they divide the token into pieces used to control creation of the symbol. The last co~on 

is used to divide the token into two parts. The first part specifics a package. A null first part indicates the 

keyword package; otherwise it is recursively interpreted as the name ofa symbol, and that symbol must 

name a package. The second part is the name of the symbol. except that if the second part is null (implying 

that the last colon was the last character of the token) then read is used to read the object after the token. and 

it is read in such a way that the package specified by the first part will be the default package for reading 

symbols. This allows one to combine the colon . and vertical-bar syntaxes. for example: 

"editor: IOdd(function)namel". 

??? Query: "Ibis opens up an entire pervasivc-packagc-syntax can of wonns. OK? 

If a symbol token contains no package markers, then the entire token is the name of the symbol. The 

• 

• 



!:';PlT/OlTPUT 219 

symbol is looked up relative to the default package (see package (page 112)). 

* alphabetic (tab> alphabetic { 
· * * (linefeed> alphabetIc I alphabetic 

(form) alphabetic * } alphabetic 
(return> · * . * alphabetIc alphabetic 
(space> · * @ alphabetic alphabetIc 

alphabetic A,a alphabetic, superdigit 
" alphabetic * B,b alphabetic, superdigit, reserved exponent 
# alphabetic * C, c alphabetic, supcrdigit. 
$ alphabetic D, d alphabetic, superdigit, double-float exponent 
% alphabetic E, e alphabetic, superdigit, float exponent 
& alphabetic F, f alphabetic, superdigit, single-float exponent 

alphabetic • G, g alphabetic, superdigit 
· * H, h alphabetic, superdigit ( alphabetIc 

) alphabetic * I, ; alphabetic, superdigit 

* alphabetic J, j alphabetic, superdigit 
+ alphabetic, plus sign K, k alphabetic, superdigit 

· * L, 1 alphabetic, superdigit, long-float exponent alphabetic 
alphabetic, minus sign M,m alphabetic, superdigit 
alphabetic, dot, decimal point N, n alphabetic, superdigit 

/ alphabetic, ratio marker 0,0 alphabetic, superdigit 
0 digit P,p alphabetic, superdigit 
1 digit Q,q alphabetic, superdigit 
2 digit R, r alphabetic, supcrdigit 
3 digit S, s alphabetic, supcrdigit, short-float exponent 
4 digit T, t alphabetic, superdigit 
5 digit U, u alphabetic, supcrdigit 
6 digit V,v alphabetic, supcrdigit 
7 digit W,W alphabetic, supcrdigit 
8 digit X, x alphabetic, superdigit 
9 digit Y,Y alphabetic, superdigit 

package marker Z, z alphabetic, supcrdigit 
alphabetic * [ alphabetic 

< alphabetic \ alp habctic * 
= alphabetic ] alphabetic 
> alphabetic alphabetic 
? alphabctic alphabetic 
(rubout> alphabetic alphabetic 
(backspace> alphabctic 

• The interpretations in this table apply only to characters detennincd to have the constituent attribute. 
Entries markcd with an asterisk are normally shadowed because the indicated characters have whitespace, 
macro character, or escape characlersyntax. 

Table 21-3: Standard Constituent Character Attributes 



220 CO\1\10\; LISP RITFRF:\CE ~1A;\iUAL 

The interpretation of standard characters within extended tokens is shown in Table 21-3. These 

interpretations can be used, of course, only for characters defined to be constituent characters. For characters 

of type whitespace. macro character, or escape characler, the interpretations in Table 21-3 are effectively 

shadowed. (The interpretation of "superdigits., is relevant to the reading of rational numbers in a radix 

greater than ten.) 

21.1.3. Macro Characters 

If the reader encounters a macro character, then the function associated with that macro character is called, 

and may produce an object to be returned. This function may read following characters in the stream in 

whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax. 

Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for 

strings). 

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols 

and numbers, and the collection of macro characters. Any character can be reprogrammed as a macro 

character; this is a means by which the reader can be extended. The macro characters nonnally defined are: 

The left parenthesis character initiates reading of a pair or list The function read (page 237) is caned 
recursively to read successive objects, until a right parenthesis is found to be next in the input stream. A 
list of the objects read is returned. Thus 

(a b.c) 

is read as a list of three objects (the symbols a, b,and c). The right parenthesis need not follow the 
printed representation of the last object immediately; whitespace characters may precede. it. This can be 
useful for putting one object on each line and making it easy to add new objects: 

(defun traffic-light (color) 
(caseq color 

(green) 
(red (stop» 
(amber (acce 1 erate) ) ; Insert more colors after this line. 
) ) . 

It may be that no objects precede the right parenthesis, as in "( )" or "' ( )"; this reads as a list of zero 
objects (the empty list). 

If a token is read between objects that is just a dot .'. ". not preceded by an escape character, then exactly 
one more object must follow (possibly followed by whitespace), and then the right parenthesis: 

(a be. d) 

This means that the cdr of the last pair in the list is not nil, but rather the object whose representation 
followed the dot. The above example might have been the result of evaluating 

(cons 'a (cons 'b (cons. 'c 'd») => (a be. d) 

Similarly, we have 

(cons 'znets 'wolq-zorbitan) => (znets . wolq-zorbitan) 

It is permissible for the object fi>llowing the dotto be a list: 

(a bed . (e f . (g» )is the same as (a bed e f g) 

but this is a non-standard t<'>fTTI that p r ; n t wi]) never produce. 

• 



• 

!\,PLT/OLTPCT 221 

" 

The right-parenthesis character is part of various· construct') (such as the syntax for lists) using the 
left-parenthesis character. and is invalid except when used in such a construct. 

The single-quote (accent acute) character provides an abbreviation to make it easier to put constants in 
programs. 'foo reads the same as (quote foo): a list of the symbol quote andjoo. 

Semicolon is used to write comments. The semicolon and everything up through the next newline are 
ignored. Thus a comment can be put at the end of any line without affecting the reader (except that 
semicolon, being a macro character and therefore a delimiter, will tenninate a token, and so cannot be 
put in the middle of a number or symbol). 

For example: 

" t, 
COMMENT-EXAMPLE and related nonsense. 

'" This function is useless except to demonstrate comments. 
;;; Notice that there are several kinds of comments. 

(defun comment-example (x y) ;X is anything; Y is an a-list. 
(cond «listp x) x) ;If X is a list, use that. 

;; X is now no~ a list. There are two other cases. 
«symbolp x) 

-;; Look up a symbol in the a-list. 
(cdr (assq x y») ;Remember, (cdr nil) is nil. 

Do this when all else fails: 
(t (cons x ;Add x to a default list. 

'«lisp t) ;LISP is okay. 
(fortran nil) ;FORTRAN is not. 
(pl/i -500) ;Note that you can put comments in 
(ada .001) ; "data" as well as in "programs". 
;; COBOL?? 
(teco -1.0e9»»» 

This example illustrates a few conventions for comments in common use. Comments may begin with 
one to four semicolons. 

• Single-semicolon comments are all aligned to the same column at the right; usua11y each 
comments about only the line it is on. Occasionally two or three contain a single sentence 
together; this is indicated by indenting all but the first by a space. 

• Double-semicolon comments are aligned to the level of indentation of the code. A space 
follows the two semicolons. Usually each describes the state of the program at that point, or 
describes the section that follows. 

• Triple-semicolon comments are aligned to the left margin. Usually they are not used within 
S-expressions. but precede them in large blocks. 

• Quadruple .. semicolon comments are interpreted as subheadings by some software such as the 
ATSIGN listing program .. 

The double-quote character begins the printed representation of a string. Characters are read from the 
input stream and accumulated until another double-quote is encountered. except that if an escape 
character is seen. it is discarded. the next character is accumulated. and accumulation continues. When a 
matching double-quote is seen. all the accumulated characters up to but not including the matching 



222 

double-quote are made into a string and returned. 

The venical-bar character begins one printed representation of a symbol. Characters are read from the 
input streatn and accumulated until another vertical-bar is encountered. except that if an escape 
character is seen. it is discarded. the next character is accumulated, and accmTIulation continues. When a 
matching vertical-bar is seen, all the accumulated characters up to but not including the matching 
vertical-bar are made into a symbol and returned. In this syntax, no characters are ever converted to 
upper case~ the name of the symbol is precisely those characters between the vertical bars (allowing for 
any escape characters). 

The backquote (accent grave) character makes it easier to write programs to construct complex data 
structures by using a template. As an example, writing 

(cond «numberp ,x) ,@y) (t (print ,x) ,@y» 

is roughly equivalent to writing 

(list 'cond 
(cons (list 'numberp x) y) 
(list* 't (list 'print x) y» 

The general idea is that the backquote is followed by a template, a picture of a data structure to be built 
This template is copied, except that within the template commas can appear. Where a'comma occurs, 
the form fonowing the comma is to be evaluated to produce an object to be inserted at that point. 
Assume b has the value 3, for example, then evaluating the form denoted by "( a b ,b ,( + b' 1) 
b ) ,. produces the result (a b 3 4 b) . 

If a comma is immediately followed by an at-sign ('"@"), then the fonn following the at-sign is evaluated 
to produce a list of objects. These objects are then "spliced" into place in the template. For example, if • 
x has the value (a be), then 

(x ,x ,@x faa ,(cadr x) bar ,(cdr x) baz ,@(cdr x» 
=> (x (a b c) abc faa b bar (b c) baz b c) 

The backquote synt~x can be summarized formally as follows. For each of several situations in which 
backquote can be used, a possible interpretation of that situation as an equivalent form is given. Note 
that the form is equivalent only in th~ sense that when it is evaluated it will calculate the correct result 
An implementation is quite free to interpret backquote in any way such that a backquoted form, when 
evaluated, will produce a result equa 1 to that produced by the interpretation shown here. 

• simple is the same as 'simp/e, that is, (quote simp/e), for any form simple that is not a list 
or a general vector. 

• ,@ i [ form 1· is the same as form, for any form. provided that the representation of form does 
not begin with "@" or " •. ". (A similar caveat holds for all occurrences of a form after a 
comma.) 

• ,@jbrm is an error. 

• (xl x2 x3 .".. xn . alom) may be interpreted to mean ( appen d xl x2 x3 ... X!1 
( quo te alom». where the underscore indicates a transformation of an xj as follows: 

o thrill is interpreted as ( li s t form), which contains a backquoted fonn that must then 
he further interpreted. 



1~~PFr;OLTPCT 

o , fhrm is interpreted as ( 1 i s t f01711). 

o , @riml1 is interpreted simply asfonn. 

• (xl x2 x3 ... Xll) may be interpreted to mean the same as (xl x2 x3 ... xn . 
nil) . 

• (xl x2 x3 ... xn . ,form) may be interpreted to mean (append xl x2 x3 
Xll fonn) , where the underscore indicates a transformation of an xj.as above. 

• (xl x2 x3 xn . , @form) is an error. 

• #( xl x2 x3 xn) may be interpreted to mean (make-vector nil 
:initial-contents (xl x2 x3 ... xn». 

223. 

No other uses of comma are permitted; in particular, it may not appear within the #A or #5 syntax. 

Anywhere" ,@" may be used. the syntax" , ." may be used instead to indicate that it is permissible to 
destroy the list produced by the form following the .. , . "; this may permit more efficient code, using 
nconc (page 171) instead of append (page 170), for example. 

If the backquote syntax is nested, the innermost backquoted form should be expanded first. This means 
that if several commas occur in a row, the leftmost one belongs to the innermost backquote. 

Once again, it is emphasized that an implementation is free to interpret a backquoted form as any form 
that, when evaluated. will produce a result that is e qua 1 to the result implied by the above definition. 
In particular. no guarantees are made as to whether the constructed copy of the template will or will not 
share list structure with the template itself. As an example, the above definition implies that ( ( tab) 
,c ,@d) will be interpreted as if it were 

(append·(list (append (list a) (list 'b) 'nil» (list c) d 'nil) 

but it could also be legitimately interpreted to mean any of the following: 

(append (list (append (list a) (list 'b») (list c) d) 
(append (list (append (list a) '(b») (list c) d) 
(append (list (cons a '(b») (list c) d) 
(list* (cons a '(b» c d) 
(list* (cons a (list 'b» c d) 
(list* (cons a '(b» c (copylist d» 

(There is no good reason why copyl is t should be performed. but it is not prohibited.) 

The comma character is part of the backquote syntax and is invalid if used other than inside the body of 
a backquote construction as described above. 

# . The sharp-sign character is a dispatching macro character. It reads an optional digit string and then one 
m_ore character, and uses that character to selecta function to run as a macro-character function. See the 
next section for predefined sharp-sign macro characters. 

,~ ..... 



224 CO\1:\10:\ 1.ISP IUTERF:-';CE \1ANUAL 

21.1.4. Sharp-Sign !\bbrcviations 

The standard syntax includes forms introduced by a sharp sign e#"). These take the general form of a • 

sharp sign, a second character that identifies the syntax, and following arguments in some fOnTI. If the second 

character is a letter. then case is not important; #0 and #0 are considered to be equivalent, for example. 

Certain sharp-sign forms anow an unsigned decimal number to appear between the sharp sign and the 

second character; some other forms even require it. 

#<tab> signals error 
#<space> signals error 
# ! undefined 
#" bit-vector 
## reference to label 
#$ undefined 
#% undefined 
#& undefined 
# ' fun c t ion abbreviation . 
#( general vector 
# ) signals error 
#* undefined 
#+ read-time conditional 
#, load-time evaluation 
#- read-time conditional 
# . read-time evaluation 
# / undefined 
#0 (infix argument) 
# 1 (infix argument) 
#2 (infix argument) 
#3 (infix argument) 
#4 (infix argument) 
#5 (infix argument) 
#6 (infix argument) 
#7 (infix argument) 
#8 (infix argument) 
#9 (infix argument) 
# : undefined 
# ; undefined 
#< signals error 
#= labels LISP object 
#> undefined 
#? undefined 
#<backspace> undefined 

#<fonn> signals error 
#@ undefined 
#A array 
#B binary rational 
#e complex number 
#0 undefined 
#E undefine4 
#F undefined 
#G undefined 
#H undefined 
#1 undefined 
#J undefined 
#K undefined 
#L undefined 
#M undefined 
#N undefined 
#0 octal rational 
#P undefined 
#Q undefined 
#R radix-n rational 
#S structure 
#T undefined 
#U undefined 
#V undefined 
#W undefined 
# X hexadecimal rational 
#Y undefined 
#Z undefined 
#[. undefined 
#\ named character 
#] undefined 
#A undefined 
# _ undefined 
#<backspace> signals error 

#<return> signals error 
# undefined 
#a array 
#b binary rational 
#c complex number 
#d undefined 

. #e undefined 
#f undefined 
#9 undefined 
#h undefined 
# i undefined 
# j undefined 
#k undefined 
#1 undefined 
#m undefined 
#n undefined 
#0 octal rational 
#p undefined 
#q undefined 
#r radix-n rational 
#s structure 
#t undefined 
#u undefined 
#v undefined 
#w undefined 
# x hexadecimal rational 
#y undefined 
#z undefined 
#{ undefined 
# I undefined 
#} undefined 
#- undefined 
#<rubout> undefined 

Table 21-4: Standard Sharp-Sign Macro Character Syntax 



• 
I'\;PLT/OLTPL'r 225 

The currently-defined sharp-sign construcl~ are described below and sun1marizcd in Table 21-4~ lllore arc 

likely to be added in the future. However, the constructs '"#! ", "#?", "'#[", HII]", H#{", and H#}" are 

explicit1y reserved for the user and will never be defined by the CO\11\10N LIsP standard. 

#\ #\x reads in as a character object that represents the character x. Also, #\ name reads in as the 
character object whose name is name. Note that the backslash .. \" allows this construct to be parsed 
easily by EMACS-like editors. 

In the single-character case, the character x must be followed by a non-constituent character, lest a 
name appear to follow the "#\". A good model of what happens is that after ':#\" is read, the reader 
backs up over the ,.\" and then reads an extended token, treating the initial "\" as an escape 
character (whether it reany is or not in the current readtable). 

Upper-case and lower-case letters are distinguished after H#\"; "~\A" and "#\ a" denote different 
character objects. Any character works after #\, even those that are normally special to read, such 
as parentheses. Non-printing characters may be used after #\, although for them names are 
generally preferred. 

#\name reads in as a character object whose name is name (actually, whose name is 
( s t r i n 9 - u pea s e name); therefore the syntax is case-insensitive). The following names are 
standard across all implementations: 

return 

space 

The carriage return or newline character. 

The space or blank character. 

The following names are semi-standard; if an implementation supports them, they should be used for 
the described characters and no others. 

The rubout or delete character. rubout 

form 

tab 

backspace 

linefeed 

The formfeed or page-separator character. 

The tabulate character. 

The backspace character. 

The line feed character. 

The name should have the syntax of a symbol. 

When the LISP printer types. out the name of a special character, it uses the same table as the #\ 
reader: therefore any character name you see typed out is acceptable as input (in that 
implementation). Standard names are always preferred over non-standard names for printing. 

The following convention is used in implementations that support non-zero bits attributes for 
character objects. If a name after #\ is longer than one character and has a hyphen in it, then it may 
be split into the two parts preceding and fnl10wing the first hyphen: the first part (actually, 
string-upcase of the first part) may then be interpreted as the name or initial of a bit, and the 
second part as the name of the character (which may in turn contain a hyphen and be subject to 
further splitting). 

For example:. 

#\Control-Space 
#\C-M-Return 

#\Control-Meta-Tab 
#\H-S-M-C-Rubout 

Jfthe character name consists of a single character, then that character is used. Another .. \" may be 
necessary to quote the character. 



226 

#\Control-@ 
#\Control-\a 

CO\L\10N LISP REFIJtE:\CE i\fA:-<L:AL 

#\Control-Meta-\" 
#\Meta-> 

If an unsigned decimal integer appears between the "#" and "\", it is interpreted as a fimt number, 
to become the char-font (page 150) of the character object. 

Compatibility notc: f-ormcrly, Lisp 1\1achine LIsp and MACLISP used #\ to mcan only the #\name version of this 
syntax. using #1 for the #\x version. Lisp Machine LISP has recently changed to allow #1 to handle both 
syntaxes. The incompatibility is a result of the general exchange of the / and \ characters. 

Also. MACLISP and Lisp Machine LISP define #\ and #1 to be a syntax for numbers. integers that represent 
characters. Here they are a syntax for character objects. Code conforming to the "Character Standard for LISP" 

will not depend on this distinction: but non-conforming code (such as that which does arithmetic on bare 
character values) may not be compatible. 

#' # 'foo is an abbreviation for (f u n c t ion foo). foo may be the printed represen·tation of any LISP 

object. This abbreviation may be remembered by analogy with the ' macro-character, since the 
fun c t ion and quo t e special forms are similar in form. 

#( A series of representations of objects enclosed by "#(" and ")" is read as a general vector of those 
objects. This is analogous to the notation for lists. 

If an unsigned decimal integer appears between the "#" and "(", it specifies explicitly the length of 
the vector. In that case, it is an error if too many objects are specified before the closing") ", apd if 
too few are specified the last one is used to fill all remaining elements of the vector. 

For example: 

#(a b c c c c) 
#6(a bee c c) 
#6(a b c) 
#6(a bee) 

all mean the same thfng: a vector oflength 6 with elements a, b, and four instances of c. 

#" A series of binary digits (0 and 1) enclosed by "#"" and """ is read as a bit-vector of those objects. 
This is analogous to the notation· for strings. 

If an unsigned decimal integer appears between the "#" and """, it specifies explicitly the length of 
the bit-vector.· In that case, it is an errorif too many bits are specified before the closing""", and if 
too few are specified the last one is used to fill all remaining elements of the bit-vector .. 

For example: 

#"101000" 
#6"101000" 
#6"1010" 
#6"10100" 

all mean the same thing. 

#. # .foo is read as the object resulting from the evaluation of the LISP object represented by foo, which 
may be the printed representation of any LISP object. The evaluation is done during the read 
process, when the #. construct is encountered. This, therefore, performs a "'read-time" evaluation of 
100. By contrast. #, (see below) performs a "load-time" evaluation. 

This allows you, for example. to include in your code complex list-structure constants that cannot be 
written with quote. Note that the reader docs not put quote around the result of the evaluation . 
You must do this yourself jf you want it, typically by using the ' macro-character. An example of a • 



• 

J?\PCT IOl'TPUT 227 

case where you do not want quote around it is when this object is an clement ofa constant list. 

# • # ,foo is read as the object resulting from the evaluation of the LISP object represented by foo, which 
may be the printed representation of any LIsp object. The evaluation is done during the re ad 
process, unless unless the compiler is doing the reading, in which case it is arranged that foo will be 
evaluated when the file of compiled code is loaded. This, therefore, performs a "load-time" 
evaluation of foo. By contrast, #. (see above) performs a "read-time" evaluation. In a sense, #, is 
like specifying (eva 1 load) to eva l-when (page EVAL-WHEN-FUN), while #. is more like 
specifying. ( e val comp i 1 e ). It makes no difference when loading interpreted code, but when 
code is to be compiled, #. specifies compile-time evaluation and #, specifies load-time evaluation. 

#. allows you, for example, to include in your code complex list-structure constants that cannot be 
written with quote. Note that the reader does not put quote around the result of the evaluation. 
You must do this yourself if you want it, typically by using the • macro-character. An example of a 
case where you do not want quote around it is when this object is an element of a constant list. 

#B #brational reads rational in binary (radix 2). 

#0 #0 rational reads rational in octal (radix 8). 

#X #xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F 
(the lower-case letters a through f are also acceptable). 

#nR #radixrrational reads rational in radix radix. radix must consist of only digits, and it is read in 
decimal; its value must be between 2 and 36 (inclusive). 

For example. #3 r102 is another way of writing 11, and #11R32 is another way of writing 35. For 
radices larger than 10, letters of the alphabet are used in order for the digits after 9. 

#5 The syntax #5 (name slotl valuel slot2 value2 ... ) denotes a structure. This is legal only if 
name is the name of a structure already defined by de f 5 t r u c t (page 199), and if the structure has a 
standard constructor macro, which it normally will. Let em stand for the name of this constructor 
macro; then this syntax is equivalent to 

#n= 

# . (em slotl t value 1 slot2 t value2 ... ) 

That is. the constructor macro is caned, with the specified slots having the specified values (note that 
one docs not write quote-marks in the #s syntax). Whatever object the constructor macro returns is 
returned by the #5 syntax. 

If name is vector or array. however, the syntax is instead #5 (name dimension-info key~ valuel 
key2 value2 ... ). and is treated as equivalent to 

#. (ef keyl • valuel key2 t value2 ... ) 

where efis make-array or make-vector, as appropriate. 

The syntax #n=objeel reads as whatever LISP object has object as its printed representation. However~ 
that object is labelled by 11. a required unsigned decimal integer. for possible reference by the syntax 
#11# (below). The scope of the label is the S-expression being read by the outennost call to read. 
Within this S-expression the same label may not appear twice. 

??? Query: Should we require that a label occur textually before any references? 



-- .. ------~~~~~~~~------------~---------------

## The syntax #ll#, where n is a required unsigned decimal integer, serves as a reference to some object 
labelled by #11=: that is, #11# represents a pointer to the same identical (eq) object labelled by #n=. 
This permits notation of structures with shared or circular substructure. For example, a structure 
created in the variable y by this code: 

(setq x (list 'p 'q» 
( set q y (1 is t (1 is t • a 'b) x 'f 00 x» 
(rplacd (last x) (cdr x» 

could be represented in this way: 

«a b) . #1=(#2=(p q) foo #2# . #1#» 

Without this notation, but with pr inl ength (page 236) set to 10, the structure would print in this 
way: 

«a b) (p q) foo (p q) (p q) foo (p q) (p q)·foo (p q) ... ) 

#+ The #+ syntax provides a read-time conditionalization facility. The general syntax is '·#+feature 
[onn". If feature is "tnle", then this syntax represents a LISP object whose printed representation is 
fonn. IfJeature is "false", then this syntax is effectively whitespace; it is as ifit did not appear. 

The feature should be the printed representation of a symbol or list. If feature is a symbol; then it is 
true iff it is a member of the list that is the value of the global variable f eat u res (page 
FEATURES-VAR). . 

Compatibility note: MACLISP uses the s tat u s special form for this purpose, and Lisp Machine LIsp du·plicates 
status essentially only for the sake of (status features). The use of a variable allows one to bind the 
features list. for example when compiling. 

Otherwise, feature should be a boolean expression composed of and, or~ and not operators on 
(recursive) feature expressions. 

For example, suppose that in implementation A the features sp i ce and perq are true, and in 
implementation B the featute 1 i s pm is true. Then the expressions on the left below are read the 
same as those on the right in implementation A: 

(cons #+spice "Spi~e" #+lispm "Lispm" x) 
(setq a '(1 2 #+perq 43 #+(not perq) 27» 
(let «a 3) #+(or spice lispm) (b 3» 

(foo a» 

In implementation B. however, they are read in this way: 

(cons #+spice "Spi~e" #+lispm "Lispm" x) 
{setq a '(1 2 #+perq 43 #+(not perq) 27» 
(let «a 3) #+(or spice lispm) (b 3» 

(foo a» 

(cons "Spice" x) 
(setq a '(1 2 43» 
(let «a 3) (b 3» 

(foo a» 

(cons "Lispmlt x) 
(setq a '(1 2 27» 
( 1 e t « a 3)( b 3» 

(foo a» 

The #+ construction must be used judiciously if unreadable code is not to result. The user should 
make a careful choice between read-time conditionalization and run-time conditionalization. See the:,-· 
niacrosname.d if-for (page IF-FOR-FUN) and if-in (page IF-1N-FUN). 

#- I-feature fonn is equivalent to #+( not feature) fonn. 

'Ibis is not legal reader syntax. It is used in the printed representation of objects that cannot be read· 
back. in. Attempting to read a#< will cause an error. (More precisely. it is legal syntax. but the 
macro-character function for it signals an error.) 

• 

• 



l?\PUTiOUTPUT 229 

#<spacc>, #<tab>, #<rclurn>, #<form> 
1\ # fol1owcd by a standard whitcspace character is not lcgal rc~dcr syntax. This is so that 
abbrcviated forms produced via pr i n 1 evel (page 236) cutoff will not rcad in again: this serves as a 
safeguard against losing information. (More prccisely, it is legal syntax, but thc macro-character 
funclion for it signals an error.) 

#) This is not legal reader syntax. This is so that abbreviated fonns produced via p r in 1 eve 1 (page 
236) cutoff will not read in again~ this serves as a safeguard against losing infonnation. (More 
precisely, it is legal syntax, but the macro-character function for it signals an error.) 

21.1.5. The Readtable 

Previous sections have described the standard syntax accepted by the re ad function. This section 

discusses the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects 

or to aid the writing of other parsers. 

There is a data structure called the readtable that is used to control the reader. It contains information 

about the syntax of each character equivalent to that in Table 21-1. Initially it is set up exactly as in Table 

21-1 to give the standard COMMON LISP meanings to all the characters, but the user can change the. meanings 

of characters to alter and customize the syntax of characters. It is also poss~ble to have several readtables 

describing different syntaxes and to switch from one to another by binding the symbol rea d tab 1 e. 

Even if an implementation supports characters with non-zero bits and font attributes, it need not (but may) 

allow for such characters to have syntax descriptions in the readtable. However, every character of type 

str i ng-char must be.represented in the readtable. 

readtab1e [Variable] 
The value of readtab 1 e is the current readtable. The initial value of this is a readtable set up for 

standard COMMON LISP syntax. You can bind this variable to temporarily change the readtable 

being used. 

To program the reader for a different syntax, a set of functions are provided for manipulating readtables. 

Nonnally. you should bcgin with a copy of the standard COMMON LISP readtable and then customize the 

individual charactcrS within that copy. 

copy-readtable &optional from-readtable to-readtable [Function] 
A copy is made of from-read/able. which defaults to the current readtablc (the value of the global 

variable rea d tab 1 e). 1 f from- readtable is nil, then a copy of a standard COMMON LISP 

readtable is made; for example. 

(setq readtab1e (copy-readtable nil» 

will restore the input syntax to standard COMMON LISP syntax. even if the original rcadtable has 

becn clobbered (assuming it is not so badly clobbered that you cannot type in the above 

expression 0. 



230 CO\1;\,ION LISP RI:TFRE!\CE \IANUAL 

if to-readlable is unsupplicd or nil, a fresh copy is made. Otherwise lo-readlable must be a 

rcadtable, which is clobbered with the copy_ 

set - syn tax -f rom- char to-char from-char &opt i on a 1 lo-readlable from-readtable [Function] 
Makes the syntax of to-char in to-readtable be the same as the syntax of from-char in 

from-read/able. The lo-readlable defaults to the current readtable (the value of the global variable 

readtable (page 229», andfrom-readtabledefaults to nil, meaning to use the syntaxes from 

the standard LISP read table. 

Only attributes as shown in Table 21-1 are copied; moreover, if a macro character is copied, the 

macro definition function is copied also. However, attributes as shown in Table 21-3 are not 

copied; they are "hard-wired" into the extended-token parser. For example, if the definition of 

"S" is copied to "*", then .'*H will become a constituent, but will be simply alphabetic and cannot 

be used as an exponent indicator for short-format floating-point number syntax. 

It "works" to copy ~ macro definition from a character s~ch as "I" to another character; the 

standard definition for "I" looks for another character that is the same as the character that 

invoked it. It doesn't "work" to copy the definition of" (" to "{", for example; it can be done, but 

it lets one write lists in the fonn "{ abc) ", not" { abc} ", because the definition always looks 

for a closing ")". See the function rea d - del i mit e d -1 i s t (page 238), which is useful in this 

connection. 

set-macro-character char jUnction &optional non-terminating-p read table 
get-macro-character char &opt ional readtable 

[Function] 
[Function] 

set-macro-character causes char to be a macro character that when seen by read causes 

jUnction to be called. If non-terminating-p is not nil (it defaults to nil), then it will be a 

non-terminating macro character: it may . be embedded within extended tokens. 

get-macro-character returns the function associated with char, and as a second value returns 

the non-terminating-p flag; it returns nil if char does not have macro-character syntax. In each 

case, readtable defaults to the current readtable. 

jUnction is called with two arguments, stream and char. The stream is the input stream, and char is 
the macro-character itself. In the simplest case, function may return a LISP object. This object is 

taken to be that whose printed representation was the macro character and any following characters 

read by the jUnction. As an .example, a plausible definition of the standard single-quote character 

is: 

(defun sirigle-quote-reader (stream ignore) 
(list 'quote (read stream») 

(set-macro-character #\' #'single-quote-reader) 

'rhe function reads an object following the single-quote and returns a list of the symbol quote and 

that object. The char argument is ignored. 

The function may choose instead to return zero values (for example, by using (val ue s) as the 

return expression). In this case the macro character and whatever it may have read contribute 

• 

• 



I~PCT/OLTPUT 231 

nothing to the object being read. As an example, here is a plausible definition for the standard 

semicolon (comment) character: 

(defun semicolon-reader (stream ignore) 
(do () ({char= (inch stream) #\Return»)) ;Eat re~t of line. 
(values» ;Return no values. 

(set-macro-character #\; #'semicolon-reader) 

The junction should not have any side-effects other than on the stream. Front ends (such as editors 

and rubout handlers) to the reader may cause junctioll to be called repeatedly during the reading of 

a sing~e expression in which the macro character only appears once, because of backtracking and 

restarting of the rea d operat~on. 

make-dispatch-macro-character char &optional non-terminating-p readtable [Function] 

This causes the character char to be a dispatching macro character in readtable (which defaults to 

the current readtable). If non-terminating-p is not nil (it defaults to nil), then it will be a 

non-tenninating macro character: it may be embedded within extended tokens. 

Initially every character in the dispatch table has a character-macro function that signals an error. 

Use set-di spatch-macro-character to define entries in the dispatch table. 

set-di spatch-macro-character disp-char sub-char function &opt i onal readtable 

get-di spatch-macro-character disp-char sub-char &opt i onal readtable 
[Function] 
[Function] 

set-di spatch-macro-character causes function to be called when the disp-char followed 

by sub-char is read. The readtable defaults to the current readtable. The arguments and return 

values for function ~re the same as for normal macro characters, documented above_ under 

set-macro-character (page 230), except that function gets sub-char as its second argument, 

and also receives a third argument that is the non-negative integer whose decimal representation 

appeared between disp-char and sub-char, or nil if there was none. The sub-char may not be one 

of the ten decimal digits; th~y are always reserved for specifying an infix integer argument. 

get-di spatch-macro-character returns the macro-character function for sub-char under 

disp-char. 

As an example, suppose one would like #$[00 to be read as ifit were (doll ars fool. One might 

say: 
(defun sharp-dollar-reader (stream ignore ignore) 

(list 'dollars (read str.eam») 
(set-dispatch-macro-character #\#.#\$ #'sharp-dollar-reader) 

Compatihility noCc: This macro-character mechanism is different from those in MACIJSP, INTER I JSP, and I jsp Machine LISP: 

Recently LISP sy~tcms have implemented very general readers, even readers so programmable that they can parse arbitrary 
compiled BNF grammars. Unfortunately, these readers can be complicated to use. This design is an attempt to make the 
reader as simple as possible to understand. usc, and implement. Splicing macros have been eliminated: a recent informal 
poll" indicates that no one uses them to produce other than zero or one value. The ability to access parL"i of the object 
preceding the macro character have been eliminated. The single-character-object feat.ure has been eliminated, because it is 
seldom used and trivially obtainable by defining a macro. 

'lhe user is encouraged to turn off most macro characters, turn others into singlc-characler~object macros, and then use 



232 (,O\1\10~ LISP REFERE\CE MANUAL 

read purely as a lexical analyzer on top of which to build a parser. Il is unnecessary. however. to cater to more complex 
lexical analysis or parsing than that needed for CO~1MON LISP . 

. 21.1.6. What the p r i n t Function Produces 

The COMMON LISP printer is controlled by a number of special variables. Foremost among these is 

pr i nescape~ 

pr i nescape [Variable] 
, When this flag is n i 1, then escape characters are not output when an S-expression is printed. In 

particular, a symbol is printed by simply printing the characters of its print name. The function 

pr inc (page 242) effectively binds pr i nes cape to n i 1. 

When this flag is not n i 1, then an attempt is made to print an S-expression in such a way that it 

can be read again to produce an equa 1 structure. The function pr i 01 (page 242) effectively 

binds pr i nescape to t. 

Compatibility note: This flag controlkes what was called slashification in MACUSP. 

The initial value of this variable is t. 

prinpretty [Variable] 
When this flag is nil, then only a small amount of whitespace is. output when printing an 
expression, as described below. 

When this flag is not nil, then the printer will endeavor to insert extra whitespace where 

appropriate to make the expression more readable. 

p r inc i r c 1 e [ Variable] 
When this flag is n i 1 (the default), then the printing process proceeds by recursive descent; an 

attempt to print a circular structure may lead to looping behavior and failure to terminate. 

When this flag is not n; 1, then the printer will endeavor to detect cycles in the structure to be 

printed, and to use #n: and #n# syntax to indicate the circularities. 

How an expression is printed depends on its data type. 

Integers. Ifappropriate, a radix specifier may be printed; see pr i n rad i x below. ~f an integer is negative, 

a minus sign is printed and then the absolute value of the integer is printed. Non-negative integers are 

printed in the radix specified by base in the usual positional notation~ most significant digit first The 

number zero is represented by the single digit 0, and never has a sign. A decimal point may then be printed . 

• 

• 



I\PC"l/OL'TPLT 233 

base [Variable] 

The value of base detennines in what radix the printer will print rationals. ~nlis may be any 

integer from 2 to 36. inclusive~ the default value is 10 (decimal radix). For radices above 10, 

letters of the alphabet arc used to represent digits above "9". 

Compatibility note: MACLISP and Lisp Machine LISP have a default base of 8, 

Floating-point numbers are always printed in decimal, no matter what the value of base. 

pr; n rad; x [Variable] 

If the variable pr in rad i x is non-n i 1, the printer will print a radix specifier to indicate the radix 

in which it is printing a rational number. For example, if the current base is twenty-four (decimal), 

the decimal integer twenty-three would print as "#24RN". If base is 2, 8, or 16, then the radix 

specifier used is #B, #0, or #X. For integers, base ten is indicated by a trailing decimal point, 

instead of using a leading radix specifier; for ratios, "#lOR" is used. The default value of 

prinrad;x is nil. 

Ratios. If appropriate, a radix specifier may be printed; see p r i n r a d i x. If the ratio is negative, a minus 

sign is printed. Then the absolute value of the numerator is printed, as for an integer; then a •• I"; then the 

denominator. The numerator and denominator are both printed in the radix specified by bas e. 

Floating-point numbers. Floating point numbers are printed in one of two ways. If the floating point 

number is between 10-3 (inclusive) and 107 (exclusive), it may be printed as the integer part of the number, 

then a decimal point, followed by the fractional part of the number; there is always at least one digit on each 

side of the decimal point. Outside of that range, it will be printed in "computerized scientific notation", with 
the exponent character indicating the precision of the number. For example, Avogadro's number as a 

short-format floating-point number would be printed as "'6. 02S23". If the format of the number matches 

that specified by read-defaul t-fl oat-format (page 237), however, then the exponent marker "E" is 

used. 

Characters. When pr i nescape (page PRINESCAPE-FUN) is nil, a character prints as itself; it is sent 

directly to the output stream. When pr; nescape is not n i 1. then #\ syntax is used. For example. the 

printed representation afthe character #\a with control and meta bits on would be #\CONTROL -META-\a. 

Symbols. When p r i n esc ap e (page PR INESCAPE-FUN) is n; 1. the only characters of the print name 

of the symbol are output. When p'r i nescape is not n i 1, backslashes "\,. and vertical bars HI" are included 

as required. and package prefixes may be printed (using colon ": " syntax) if necessary. As a special case, nil 

may sometimes be printed as .. ( )" instead. when p r i n esc ap e and p r i n pre t ty are each not nil. 

Strings. The characters of the string are output in order. If p r i n esc ape (page 232) is not n; 1, a double 

quote u .. " is output beforehand and afterward. and all and double quotes and escape characters are preceded 
by U\". 

• Conscs. Wherever possible. list notation is preferred over dot notation. Therefore the following algorithm 



234 CO\1\IO;-" LlSP In;FFRU,CF 1'vL\\UAL 

is used: 

1. Print an open parenthesis .. (". 
2. Print the car of the cons. 
3. If the cdr is a cons, make is the current cons, print a space, and go to step 2. 
4. If the cdr is not null, print a space, a dot" . ", a space, and the cdr. 
5. Print a close parenthesis .• ( ". 

This fonn of printing is clearer than showing each individual cons cell. Although the two S-expressions 

below are equivalent,. and the reader will accept either one and produce the same data structure, the printer 

will always print such a data structure in the second form. 

(a . (b . {(c. (d . nil» . (e . nil»» 
(a' b (c d) e) 

The printing of conses is affected by the variables p r i n 1 eve 1 (page 236) and p r in 1 eng t h (page 236). 

General Vectors. The printed representation of a zero length vector is "#( )". Theprinted representation 

of a non-zero length vector begins with a # (. Following the # ( is printed the first element of the vector. If 

there are any other elements, they are printed in tum, with a space printed before each additional element A 
close parenthesis after the last element terminates the printed· representation of the vector. The printing of 

vectors is affected by the variables p r i n 1 eve 1 (page 236) and p r ; n 1 en 9 t h (page 236). 

Bit-vectors. A bit vector is printed as "#"", then all the bits in the vector as "0" and "1" characters, then a 

. closing double-quote """. The empty bit vector is therefore printed as "#" "". 

Arrays. 711 

Structures defined by defstruct (page 199) are printed under the control of the : pri nter option to 

defstruct . 

. Any other types are printed in an implementation-dependent manner. It is recommended that printed 

representations of all such objects begin with the characters "#<" and end with ">" so that the reader will 

catch such objects and not permit them to fie read under normal circumstances. 

When debugging or when frequently dealing with large or'deep objects at toplevel,the user may wish to 

restrict the printer from printing large amounts of information. The variables p r i n 1 e ve1 and 

pr i n 1 en 9th allow the user to control how deep the printer will print, and how many clements at a given 

level the printer will print Thus the user can see enough of the object to identify it without having to wade 

through the entire expression. 

prin1eve1 

prin1ength 

[Variable] 
[Variable] 

The p r ; n 1 eve 1 variable controls how many levels deep a nested data object will print If 

pr i n 1 eve 1 is nil (the initial value), then no control is exercised. Otherwise the value should be 

• 



J~PLT!OUTPUT 235, 

an integer, indicating the maXilTIUm level to be printed. An object to be printed is at level 0; its 

components (as of a list or vector) are at level 1: and so on. If an object to be recursively printed 

has components and is at a level equal or greater to the value of p r i n 1 eve 1, then the object is 

printed as simply H#". 

The p r; n 1 eng t h variable controls how many elements at a given level arc printed. A value of 

n; 1 (the initial value) Indicates that there be no limit to the number of components printcd. 

Otherwise the value of pr; n 1 ength should be an integer. Should the number of clements of a 

data object exceed the value pr; n 1 en gth, the printer will print three dots" ... " in place of those 

elements beyond the number specified by p r ; n 1 eng t h. (In the case of a dotted list, if the list 

contains exactly as many elements as the value of p r ; n 1 eng t h, and in addition has the non-null 

atom terminating it, that terminating atom is printed, rather than printing" ... ".) 

As an example, here arc the ways the object 

(if (member x items) (+ (car x) 3) '(faa. #(a bed "Baz"») 

would be printed for various values of p r ; n , eve 1 = v and p r i n 1 eng t h = n. 

v n 
0 1 # 
1 1 ( if ... ) 
1 2 (; f # ... ) 
1 3 (i f # # ... ) 
1 4 (i f # # #) 
2 1 ( if ... ) 
2 2 (; f (member x ... ) ... ) 
2 3 (i f (member x items) (+ # 3) ... ) 
3 2 ( if (member x items) ... ) 
3 3 (if (member x items) (+ (car x) 3) ... ) 
3 4 (if (member x items) (+ (car x) 3) '( foo #(a b c d ... 

21.2. Input Functions 

21.2.1. Input from ASCII Streams 

Many input functions take optional arguments called input-stream and eofvalue. The input-stream 

argument is the stream from which to obtain input: ifunsupplied or nil it defaults to the value of the special 

variable standard- input (page 211). One may also sl'cdfy"t"as'''a'stream, meaning the value of the 

special variable te rm ina 1 - i 0 (page 212). 
Rationale: Allowing the usc of t provides some semblance of MAC LIsp compatibility. 

The eofvalue argument controls what happens if input is from a file (or any other input source that has a 

definite end) and the end of the file is reached. Ifno eofvalue argument is supplied, an error will be signalled 

at end of file. If there is an eorvalue, it is the value to be returned. Note that an eofvalue of nil means to 

return n; 1 if the end of the file is reached: it is not equivalent to supplying no eofvalue. The eofvalue 

argument is always evaluated; the resulting value is used. however. only when end of file is encountered. 



236 COMMON LJSP REFERE\CE MANUAL 

Functions such as read (page 237) that read an "object" rather than a single character will always signal 

an error, regardless of eofvalue, if the file ends in the middle of an object. For exatnple, if a tile does not 

contain enough right parentheses to balance the left parentheses in it, re ad will comp1ain. If a file ends in a 

symb01 or a number immediately followed by end-of-file, re ad will read the syn1bol or number successfully 

and when called again will sec the end-of-file and return eofvalue. Similarly, the function read1 i ne (page 

239) will successfully read the last line of a file even if that line is telminated by end-of-file rather than the 

newline character. If a file contains ignorable text at the end, such as blank lines and comments, read will 

not consider it to· end in the middle of an object and will return eofvalue. 

??? Query: Should n; 1 as an eofvalue be reserved to mean the same thing as omitting the eofvalue? 

.Compatibility note: These end-of-file conventions are compatible with Lisp Machine LISP, but not completely compatible 
with Maclisl? Maclisp's deviations from this are generally considered to be bugs rather than features. 

The MAcLIsp "feature" of letting input-stream and eofvalue appear in either order is not supported 

Note that all of these functions will echo their input if used on an interactive stream. The functions that 

input more than one character ata time allow the input to be edited. The function inchpeek (page 

240) echoes all of the characters that are skipped oV,er (if any) if inc h would have echoed them; the character 

not removed from the stream is not echoed either. 

read &opt iona1 input-stream eofvalue [Function] 

read reads in the printed representation of a LISP object from input-stream, builds a 

corresponding LISP object, and returns the object. The details are explained above. 

read-defau1t-f1oat-format [ Variable] 

The value of this variable must be one of short, s i ng1 e (the initial value), daub 1 e, or long. It 

indicates the floating-point format to be used for reading floating-point numbers that have no 

exponent marker or have "e" or uE" for an exponent marker.· (Other exponent markers explicitly 

prescribe the floating-point format to be used.) The printer also uses this variable to guide the 

choice of exponent markers when printing floating-point numbers. 

read-preserving-whitespace &optional input-stream eofvalue [Function] 

Certain printed representations given to read. notably those of symbols and numbers, require a 

delimiting character after them. (Lists do not, because the close parenthesis marks the end of the 

list) Normally read wi1l throwaway the delimiting character if it is a white-space character, but 

will preserve it (using un tyi (page 239» if the character is syntactically meaningful, since it may 

be the start of the next expression. 

The function read-preserv i ng-wh i tespace is provided for some specialized situations 

where it is desirable to detennin~ precisely what character tenninated the extended token. 

As an example. consider this macro-character definition: 

• 

• 



1:--: PUT/OUTPUT 

(defun slash-reader (stream ignore) 
(do «path (list (read-preserving-whitespace stream» 

(cons (progn (inch stream) 
(read-preserving-whitespace stream» 

path») 
«not (char= (inchpeek stream) #\/» 
(cons 'pathname (nreverse path»») 

(set-macro-character #\1 #'slash-reader) 

237 

Consider now calling read on this expression: 

(zyedh lusr/games/zork lusr/games/boggle) 

The "I" macro reads objects separated by more "I" characters~ thus lusr/games/zork is 

intended to read as (p at h name us r game s z 0 r k ). The entire example expression should 

therefore be read as 

(zyedh (pathname usr games zork) (pathname usr games boggle» 

However, if read had been used instead of read-preserving-whitespace, then after the 

reading of the symbol zork, the following space would be discarded, and then the next call to 

inc h pee k would see the following "I", and the loop would continue, producing this 

interpretation: 

(zyedh (pathname usr games zork usr games boggle» 

On the other hand, there are times when whitespace should be discarded. If one has a command 

interpreter that takes single-character commands. but occasionally reads a LISP, object, then if the 

whitespace after a symbol were not discarded it might be interpreted as a command some time later 

after the symbol had been read. 

read-de 1 imi ted-l i st char &opt ional input-stream [Function] 

This reads objects from stream until the next character after an object's representation (ignoring 

whitespace characters) is char. (The char should not have whitespace syntax in the current 

readtable.) A list of the obj~cts read is returned. 

This function is particularly useful for defining new macro-characters. Suppose one were to want 

"'{ abc ... z}" to rea~ as a list of all pairs of the clements a. b. c. . ..• z; for example: 

# { P q z a} reads as ( (p q) (p z) (p a) (q z) (q a) (z a» 

This can be done by specifying a macro-character definition for "'r' that docs two things: read in 
all the items up to the "}", and construct the pairs. read-del imited-l ist performs the first 

task. 

(defun sharp-leftbrace-reader (stream ignore ignore) 
(mapcon "(lambda (x) 

{mapcar "(lambda (y)' (list x y» (cdr x») 
(read-delimited-list '\} stream») 

(set-dispatch-macro-character #\# #\{ #'sharp-leftbrace-reader) 

Note that read-del imited-l ist docs not take an eofvalue argument. The reason for this is 

that it is always an error to hit end-of-file during the operation of read -de 1 imi ted-l ist. , 



238 CO:\f\10N l.ISP REJTR ENeI: \1:\:\UAL 

re ad 1 in e &op t ion a 1 input-stream eofvalue [Function] 
read 1 i ne reads in a line of text, terminated by the implementation's usual way fi)r indicating 

end-of-line (typically a <return) character). It returns the line as a character string ( l1'it/rout the 

<return) character). This function is usual1y used to get a line of input from the user. A second 

returned value is a flag that is false if the line was terminated normally, or true if end-of-file 

terminated the (non-empty) line. 

inch &optional input-stream eofvalue 
tyi &optional input-stream eo/value 

[Function] 
[Function] 

inch inputs one character from input-stream and returns it as a character objec~. The character is 

echoed if input-stream is interactive . 

. tyi is similar to inch, but returns the character as an integer; it is as if inch were used, and 

char- i nt (page 151) applied to the result 

It is almost always preferable to use inc h rather than ty i , if only for reasons of portability. 

uninch character &optional input-stream 
un ty i integer &0 p t ion a 1 input-stream 

[Function] 
[Function] 

un inch puts the character onto the front of input-stream. The character must be the same 

character that was most recently read from the input-stream. The input-stream "backs up" over this 

character;· when a character is next read from input-stream, it will be the specified character, 

followed by the previous contents of input-stream. un inch returns ni 1. 

un ty i is similar to un inch, but takes an integer rather than a character object. It is as if un inch 

were used after applying int-char (page 151) to the first argument. It is almost always 

preferable to use un inch rather than un ty i, if only for reasons of portability. 

One may only apply un inch or untyi to the character most recently read from input-stream; 
moreover, one may not invoke un inch or unty i twice consecutively without an interVening 

inch or ty; operation. The result is that one may back up only by one character, and one may 

not insert any characters into the input stream that were not already there. 

Rationale: This is not intended to be a general mechanism, but rather an efficient mechanism for allowing the 
LISP reader and other parsers to perform one-character lookahead in the input stream. This protocol admits a 
wide variety of efficient implementations. such as·simply decrementing a buffer pointer. To have to specify the 
character in the call to un inc h is admittedly redundant, since there at any given time is only one character that 
may be legally specified. 'Ine redundancy is intentional. again to give the implementation latitude. 

inchpeek &optional peek-type input-stream eo/value [Function] 
ty i peek &opt i ona 1 peek-type input-stream eo/value [Function] 

What inch pee k does depends on the peek-type, which defaults to n i1. With a peek-type of n i 1 , 

i nchpeek returns the next character to be read from input-stream, without actually removing it 

from the input stream. The next time input is done from:illp~t~siream the character will still be 

there. It is as if one had called inch and then un inch in succession. 

• 



• 

l\PLT/OLTPUT 239 

If peek-type is t. then; n ch pee k skips over whitespace characters, and then performs the pecking 

operation on the next character. This is useful for finding the (possible) beginning of the next 

printed representation of a Lisp object. As above, the last character (the one that starts an object) is 

not removed from the input stream. 

If peek-type is a character object, then i nchpeek skips over input characters until a character that 

is char= (page 148) to that object is found; that character is left in the input stream. 

Characters passed over by inc h pee k are echoed if input-stream is interactive. 

tyipeek is similar to inchpeek, but returns an integer rather than a character object; it is as if 

i nchpeek were used, and char - i nt (page 151) applied to the result. (If, however, an eofvalue 
is provided and returned, char- i nt is not applied!) ty i peek also requires an integer instead of 

a character as the peek-type. 

It is almost always preferable to use inch peek rather than ty i pee k, if only for reasons of 

portability. 

1 i sten &opt iona1 input-stream [Function] 
The predicate 1 i s ten is true if there is a character immediately available from input-stream, and is 

false if not This is particularly useful when the stream obtains characters from an interactive 

device such as a keyboard; a call to inch (page 238) would simplY wait until a character was 

available, but 1 i sten can sense whether or not input is available and allow the program to decide 

whether or not to attempt input On a non-interactive stream, the general rule is that 1 is ten is 

true except when at end-of-file. 

inch-no-hang &optiona1 input-stream eofvalue [Function] 
tyi-no-hang &optiona1 input-stream eofvalue [Function] 

These functions are exactly like inch (page 238) and ty i (page 238), except that if it would be 

necessary to wait in order to get a character (as from a keyboard), nil is immediately returned 

without waiting. This allows one efficiently to check for input being available and get the input if it 

is. This is different from the 1 is ten (page 240) operation in two ways. First. these functions 

potentially actually read a character, while 1 i sten never inputs a character. Second, 1; sten 

docs not distinguish between end-of-file and no input being available, while these functions do 

make that distinction, returning eofvalue at end-of-file (or signalling an error if no eofvalue was 

given), but always returning nil if no input is available. 

cl ear- input &optiona1 input-stream [Function] 
This clears any buffered input associated with input-stream. It is primarily useful for clearing 

type-ahead from keyboards when some kind of asynchronous error has occurred. If this operation 

doesn't make sense for the stream involved, when c1 ear- input docs nothing. c1 ear- input 

returns nil. 



240 ('0:\1\10N LISP I~EFERE\CE M:\NCAL 

read-fram-string string &optional slart end prese11'e-white5pace-p eofvalue [Function] 
The characters of str;'7g arc given successively to the LISP reader, and the LISP object built by the • 

rcader is rctunlcd. Macro characters and so on will all take effcct. 

The arguments start and end delimit a substring of string beginning at the character indexed by 

Slarl and up to but not including the character indexed by end. By default start is 0 (the beginning 

of the string) and end is ( 1 eng t h string). This is as for other string functions. 

The flag preserve-delimiters-p, if provided and not nil, indicates that the operation should preServe 

whitespace·as for read-preserv i ng-wh i tespace (page 236). 

The eofvalue is what to return if the end of the (sub )string is reached before the operation is 

completed, as with other reading functions. 

read-from-stri ng returns two values; the first is the object read and the second is the index of 

the first character in the string not read. If the entire string was read, this will be either the length 

of the string or one greater than the length of the string. The parameter preserve-whitespace-p may 

affect this second value. 

For example: 

(read-from-string "(a be)") ::> (a b c) and 7 

parse-number string &opt ional start end radix no-junk-allowed [Function] 
This function examines the substring of string delimited by start and end (which default to the 

beginning and end of the string). It skips over whitespace characters and then attempts to parse a 

numbers in the syntax for <number> given in Table 21-2. The radix defaults to 10, and must be an 

integer between 2 and 36. If the radix is not 10, then floating-point numbers will not be pennitted 

by the parse. 

If no-junk-allowed is nil (the default), then the first value returned is the number parsed, or nil if 

no syntactically correct number was seen. The second value is the index into the string of the 

delimiter that terminated the parse, or the index beyond the substring if the parse terminated at the 

end of the substring. 

If no-junk-allowed is not nil, then the entire substring is scanned. An error is signalled if the 

substring does not consistentirely of the representation of a number, possibly surrounded on either 

side by whitespace characters. The retumedvalue is the number parsed, or 0 if no number was 

found (the substring was· blank). 

21.2.2. Input from Binary Streams 

in binary-input-slream &opt ional eofvalue [Function] 
i nreads one byte from the binary-Input-stream and returns it in the form of a non-negative integer. 

• 



I\PLT /Ot.;TPUT 241 

21.3. Output Functions 

21.3.1. Output to ASCII Streams 

These functions all take an optional argument called output-stream, which is where to send the output. If 

unsupplied or nil, output-stream defaults to the value of the variable standard-output (page 211). If it 

is t. the value of the variable term; n a 1-; 0 (page 212) is used. 

pr i n 1 object &opt ;onal output-stream [Function] 
print object &optional output-stream [Function] 
princ object &optional output-stream [Function] 

p r i n 1 outputs the printed representation of object to output-stream, using escape characters. As a 

rule, the output from pr i n 1 is suitable for input to the function read (page 236); see 11? pr i n 1 

returns object. 

p r i ntis just like p r ; n 1 except that the printed representation of object is preceded by a <return> 

character and followed by a <space>. pr i nt returns object. 

p r inc is just like p r i n 1 except that the output has no escape characters. A symbol is printed as 

simply the characters of its print-name; a string is printed without surrounding double-quotes; and 

there may be differences for other data types as well. The general rule is that output from p r inc is 

intended to look good to people, while output from pr in 1 is intended to be acceptable to the 

function read (page 236). pr i nc returns object. 

The output from these functions is affected by the values of the variables base (page 233), 
pr; n 1 eve 1 (page 234). and pr; n' ength (page 234). 

Compatibility note: In MACLIsp. these three functions return t. not the argument object. There is some old 
code that depends on the value being non-n i 1, such as in: 

(and condition (print x) (print y) (print z» 

which should have been written as 

(cond (condition (print x) (print y) (print z») 

but someone was too lazy to do it that way (when didn't t::xist in those days). Ugh. COMMON LISP does not 
support this bad style. 

pr i n 1s tr i n9 object [Function) 
pr i ncs tr i ng object [Function] 

The object is effectively printed. as by p r; n 1 or p r inc, and the characters that would be output 

are made into a string and returned. 

ouch character &optional output-stream 
tyo integer &opt i on a' output-stream 

ouch outputs the character to output-stream. 

[Function] 
[Fullction) 

tyo is similar. but takes an integer instead ofa character: it is as ifint-char were applied to the 



242 CO\1i\10N LISP REFER [!\CE MANUAL 

first argument and then ouch were called. 

It is almost always preferable to use ouch rather than tyo, ifonly for reasons of portability. 

Both functions return t. 

terp r i &opt i ona 1 output-stream 
fresh-1 ine &optiona1 output-stream 

[Function] 
[Function] 

terpri outputs a newline to output-stream; this may be simply a carriage-return character, a 

retum-linefeed sequence, or whatever else is appropriate for the stream. terpr i returns nil. 

f res h -1 i n e is similar to t e r p r i, but outputs a newline only if the stream is not already at the 

start of a line. (If for some reason this cannot be determined, then a newline is output anyway.) 

This guarantees that the stream will be on a "fresh line" while consuming as little vertical distance 

as possible. f res h -1 in e is a (side-effecting) predicate that is true if it output a newline, and 

otherwise false. 

force-output &opt iona1. output-stream [Function] 
c1 ear-output &opt i ona 1 output-stream· [Function] 

Some streams may be implemented in an asynchronous or buffered manner. The function 

force-output attempts to ensure that all output sent to output-stream has reached its 

destination, and only then returns nil. 

The function c1 ear-output, on the other hand, attempts to abort any outstanding output 
operation in progress, to allow as little outpu~ as possible to continue to the destination.· This is 

useful, for example, to abort a lengthy output to the terminal when an asynchronous error occurs. 
c1 ear-output returns ni 1. 

The function forma t (page 244) is very useful for producing nicely formatted text. It can do anything 

any of the above functions can do, and it makes it easy to produce good looking messages and such. format 

. can generate a string or output to a stream. 

The function ppri nt (page PPRINT-FUN) is useful for printing LISP objects '"prettily" in an indented 

format. Also, gr i ndef (page GRINDEF-FUN) is useful for formatting LISP programs. 

21.3.2. Output to Binary Streams 

out integer binary-output-stream [function] 
out writes OI~e byte, the value of integer (which must be non-negative and smaller than the largest 

valid byte value) to the biliary-output-stream. 
??? Query: Should this limitation on the argument be enforced? Should it quietly grab the low n bits? What 
about writing signed bylesto a file? What about writing floating-point numbers or characters to a binary file? 

• 



I:\PLiT/OUTPUT 243 

2l.4. Formatted Output 

format destinatioll control-string &rest arguments [Fullction] 

forma t is used to produce fonnatted output. format outputs the characters of contra/-sIring, 

except that a tilde ( ...... ") introduces a directive. The character after the tilde, possibly preceded by 

prefix parameters and modifiers, specifies what kind of formatting is desired. Most directives use 

one or more clements of args to create their output; the typical directive puts the next element of 

args into the output, formatted in some special way. 

The output is sent to destination. If destination is n; 1 , a string is created that contains the output; 

this string is returned as the value of the call to format. In all other cases format returns n; 1, 

performing output to destination as a side effect. If destination is a stream, the output is sent to it. 

If destination is t, the output is sent to the stream that is the value of the variable 

standard-output (page 211). 

A forma t directive consists of a tilde (" .... ;'), optional prefix parameters separated by commas, optional 

colon (" : ") and atsign ("@") modifiers, and a single character indicating what kind of directive this is. The 

alphabetic case of the directive character is ignored. The prefix parameters are generally decimal numbers. 

Examples of control strings: 

"""S" 
"""3,4:@s" 

""",4S" 

; This is an S directive with no parameters or modifiers. 
; This is an S directive with two parameters, 3 and 4, 

and both the colon and atsign flags. 
; Here the first prefix parameter is omitted and takes 

on its default value, while the second parameter is 4. 

The format function includes some extremely complicated and specialized features. It is not necessary to 

understand all or even most of its features to use forma t effectively. The beginner should skip over 

anything in the following documen~tion that is not immediately useful or clear. The more sophisticated 

features are there for the convenience of programs with complicated formatting requirements. 

Sometimes a prefix parameter is used to specify a character, for instance the padding character in a right- or 

left-justifying operation. In this case a single quote C· , ") followed by the desired character may be used as 

a prefix parameter, so that you don't have to know the decimal numeric values of characters in the character 

set For example, you can use '· ..... 5, ' Od" to print a decimal number in five columns with leading zeros. or 

...... 5 , , * d" to get leading asterisks. 

In place of a prefix parameter to a directive. you can put the letter ··V", which takes an argument from 

arguments as a parameter to the directive. Normally this should be an integer (but in general it doesn't really 

have to be). This feature allows variable column-widths and the like. Also, you can use the character "#" in 

place of a parameter; it represents the number of arguments remaining to be processed. 

Here are some relatively simple examples to give you the general flavor of how format is used. 



244 ('O\I\10~ LISP REFEREJ\CE :\lAr--;UAL 

(format nil "foo") => "foo" 
(setq x 5) 
(format nil "The answer is -D." x) => "The answer is 5." 
(format nil "The answer is -30.-" x) => "The answer is 5." 
(format nil "The answer is -3, '00." x) => "The answer is 005." 
(format nil "The answer ;s -:0." (expt 47 x» 

=> "The answer is 229,345,007." 

(setq y "elephant") 
(~ormat nil "Look at the -A!" y) => "Look at the elephant!" 
(format nil "Type -:C to -A." (control #\0) "delete all your files") 
- => "Type Control-O to delete all your files." 

(setq n 3) 
(format nil "-0 item-:P found." n) => "3 items found." 
(format nil "-R dog-:[s are-; is-] here." n (= n 1» 

=> "three dogs are here." 
(format nil "-R dog-:*-[-I; is-:;s are-] here." n) 

=> "three dogs are here." 
(format nil "Here -[-I;is-: ;are-] -:*-R pupp-:@P." n) 

=> "Here are three puppies." 

The directives will now be described. The term arg in general refers to the next item of the s~t of 

arguments to be processed. The word or phrase at the beginning of each description is a mnemonic word for 

the directive. 

--s 

Ascii. An arg, any LISP object, is printed without escape characters (as by p r i n e (page 
241». In particular, if arg is a string, its characters will be output verbatim. Normally all 
occurrences of n ; 1 in the printed object will be printed as "n i 1 ", but the colon modifier 
(- : A) will cause them to be printed as "( )". 

-mineolA inserts· spaces on the right, if necessary, to make the width at least minco/ 
columns. The @ modifier causes the spaces to be inserted on the left rather than the right 

- minco! , coline, minpad, padeharA is the full form of .... A, which allows elaborate control of 
the padding. The string is padded on the right with at least minpad copies of pad char, 
padding characters are then inserted coline characters at a time until the total width is at 
least minco!. The defaults are 0 for minco! and minpad, 1 for colinc, and the space 
character for pad char. 

S-expression. This is just like -A, but arg is printed with escape characters (as by p ri n 1 
(page 241) rather than prine). The output is therefore suitable for input to read (page 
236). -S can accept all the arguments and modifiers that -A can. 

Decimal. An argo which should be an integer, is printed in decimal radix. -0 will never 
put a decimal point after the number. 

-mineo/D uses a column width of minco!; spaces are inserted on the left if the number 
requires fewer than minco! columns for its digits and sign. _ Jf the number doesn't fit in 
minco! columns, additional columns are used as needed. 

- millcol, padehaTfJ uses padehar as the pad character instead of space. 

If arg is not an integer, it is printed in .... A format and decimal base. 

The @ modifier causes the number's sign to be printed always~ the default is only to print it 



I~PCT/OUTPUT 

-x 

• -p 

-F 

245 

if the number is negative. The: modifier causes commas to be printed between groups of 
three digits~ the third prefix parameter may be used to change the character used as the 
comma. Thus the most general fonn of-O is -mineol ,padehar, eommaeharD. 

Binary. This is just like -D but prints in binary radix (radix 2) instead of decimal. The full 
form is therefore -mineol ,padehar, eommaeharB. 

Octal. This is just like .... 0 but prints in octal radix (radix 8) instead of decimal. The full 
form is therefore - mincol ,padehar, commacha1\). 

Hexadecimal. This is just like -0 but prints in hexadecimal radix (radix 16) instead of 
decimal. The full form is therefore"" mineol ,padehar t eommaeharX. 

Radix. ,.,. nR prints arg in radix n. The modifier flags and any remaining parameters are 
used as for the -D directive. Indeed, -0 is the same as -lOR. The full form here is 
therefore - radix, mineol ,padehar t eommaeharR. 

If no arguments are given to - R, then an entirely different interpretation is given. The 
argument should be an integer; suppose it is 4 .. 

• - R prints arg as a cardinal English number: "f 0 u r " . 

• -: R prints arg as an ordinal English number: "fourth"~ 

• -@R prints arg as a Roman numeral: "IV" . 

• -: @R prints arg as an old Roman numeral: "I I I I ". 

Plural. If arg is not e q 1 to the integer 1, a lower-case "s" is printed; if arg is e q 1 to 1, 
nothing is printed. (Notice that if arg is a floating-point 1.0, the "s" is printed.) 

- : P does the same thing, after doing a -: * to back up one argument; that is, it prints a 
lower-case "s" if the last argument was not 1. This' is useful after printing a number using 
-D. 

-@P prints "y" if the argument is 1, or "ies" ifit is not -:@P does the same thing, but 
backs up first 

(format nil "-0 tr-:@P/-D win -:P" 7 1) => "7 tries/1 win" 
(format nil n-o tr-:@P/-D win -:P" 1 0) => "1 try/O wins" 
(format nil "-0 tr-:@P/-O win - :P" 1 3) => "1 try/3 wins" 

Floating-point 
? ?? Query: Is this really what we want? 

arg is printed in floating point. - nF rounds arg to a precision of 11 digits. The minimum 
value of n is 2, since a decimal point is always printed. If the magnitude of arg is too large 
or too small, it is printed in exponential notation. If arg is not a number, it is printed in -A 
fonnat. Note that the prefix. parameter n is not mineol; it is the number of digits of 
precision desired. Examples: 



246 

-, 

(format ni 1 11-2F" 5) => "5.0" 
(format nil 11-4F" 5) => "5".0" 
(format nil 11-4F" 1.5) ~> "1.5" 

CO\1\10N LISP IUTERE:\CE ~lANGAL 

(format nil "-4F" 3.14159265) => "3.142" 
(format nil 11-3F" lelD) => "1.OeIO" 

Exponential. 
??? Query: Is this the right thing Study PLII. FORTRAN. 

arg is printed in exponential notation. This is identical to - F, including the use of a prefix 
parameter to specify the number of digits, except that the number is always printed with a 
trailing exponent, even if it is within a reasonable range. 

Character. The next arg should be a character; it is printed according to the modifier flags. 

-C prints the character in an implementation-dependent abbreviated format This format 
should be culturally compatible with the host environment 

Implementation note: In Lisp Machine LISP, the following format is used. If the character has any 
control bits set, and the output stream can represent the necessary Greek characters. then the control 
bits are output as alpha (0:) for Control. beta ({3) for Meta, lambda (A) for Hyper, and pi ('IT) for 
Super. If the character itself is alpha, beta, lambda. pi. or equivalence-sign (;;;). then it is preceded by 
an equivalence-sign to quote it. After all this, the base character itself is output 

Implementations which do not have Greek characters may well choose to represent control 
characters by initials and hyphens thus: . 

C-A C-M-$ H-S-C-# 

This has the advantage of staying within the standard character set 

• 

- : C spells out the names of the control bits, and represents non-printing characters by • 
their names: "Control-Meta-F", '"Control-Return", '·Space". This is a "pretty" 
format for printing characters. 

-: @C prints what -: C would, and then if the character requires unusual shift keys on the 
keyboard to type it, this" fact is mentioned: "Control-8 (Top-Fr'. This is the format 
used for telling the user about a key he is expected to type, for instance in prompt 
messages. The precise . output may depend not only on the implementation, but on the 
particular I/O devices in use. 

-@C prints the character in a way that the LISP reader can understand. using "#\" syntax. 

Rationale: In some implementations the -5 directive would accomplish this also, but" the -C 
directive is compatible with LISP dialects which do not have a character data type. 

Outputs a newline (see terpri" (page 242)). -n% outputs n newlines. No arg is used. 
Simply putting a newline in the control string would work, but .... % is often used because it 
makes the control string look nicer in the middle of a LISP program. 

Unless the stream knows that it is already at the beginning of a line. this outputs a newline 
" (see fres h -1; ne (page 242». .....n& does a : f resh-11 ne operation and then outputs 
n-l newlines. . 

Outputs a page separator character~ if possible. - n I does this 11 times. With a : modifier, 
if the output stream supports the clear-screen (page 
CLEAR-SCREEN-FUN) operation this directive clears the screen; otherwise it outputs 



-<return> 

-. 

247 

page separator charactcr(s) as if no : modifier were present I is vertical bar. not capital 1. 

Tilde. Outputs a tild-c. ..., n- outputs II tildes. 

Tilde immediately followed· by a <return> ignores the <return> and any fonowing 
non-<return> whitespace. \Vith a :, the <return> is ignored but any following whitespace is 
left in place. With an @, the <return> is left in place but any following whitespace is 
ignored. This· directive is typically used when a format control string is too long to fit 
nicely into one line of the program: 

(defun pet-rock-warning (rock friend amount) 
(unless (equalp rock friend) 

(format t "-&Warning! Your pet rock -A just -
bit your friend -A,-% and
-:[he-;she-] is suing you for $-O!" 

rock friend (femalep friend) amount») 
(pet-rock-warning "Fred" "Susan" 500) prints: 
Warning: Your pet rock Fred just bit your friend Susan, 

and she is suing you for $5001 

Tabulate. Spaces over to a given column .. - colnum, colincT will output sufficient spaces to 
move the cursor to column colnum. If the cursor is already past column colhum, it will 
output spaces to move it to column colnum+ k*colinc, for the smallest non-negative integer 
k possible. colnum and coline default to 1. 

- : T is like -T, but c(Jlnum and coline are in units of pixels, not characters; this makes sense 
only for streams which can set the cursor position in pixel units. 

If for some reason the current column position cannot be determined or set, any -T 
operation will simply output two spaces. When format is creating a string, -T will work, 
assuming that the first character in the string is at the left margin (column 0). 

-@T performs relative tabulation. .... colrel , colinc@T . is equivalent to 
- curcol+ colrel. colinc@T where cureoI is the current output column. If the current output 
column cannot be determined, however this outputs colrel spaces, not two spaces . 

. .... : @T performs relative tabulation in units of pixels instead of columns. 

The next arg is ignored . .... n* ignores the next n arguments. 

....: * "ignores backwards"; that is, it backs up in the list of arguments so that the argument 
last processed will be processed again. - n: * backs up n arguments. 

When within a -{construct (see below), the ignoring (in either direction) is relative to the 
list of arguments being processed by the iteration. 

This is a "relative goto"; for an "absolute goto", see -G. 

Golo. Goes to the nth argo whcrc 0 mcansthe first onc. Dircctives after a - nG will take 
arguments in sequence beginning with the one.gone to. 

When within a - { construct, the '"goto" is relativc to the list of argumentsbcing processed 
by the iteration. . 

This is an "absolute goto"; for a "relativc go to", see - •. 



248 CO:\1:\10N us}> REFERENCE MANUAL 

The fi.Jollat directives after this point arc much more complicated than the foregoing; they constitute 
·'control structures" which can perfoI1n conditional selection, iteration, justification, and non-local exits. 
Used with restraint. they can perform powerful tasks. Used with wild abandon, they can produce unreadable 
and unmaintainable spaghetti with goulash on top. 

-[saO""'; slrl-; '0'-; strn-] 
Conditional expression. This is a set of control strings, called clauses, one of which is 
chosen and used. The clauses are separated by -; and the construct is tenninated by -]. 
For example, 

"-[Siamese-;Manx-;Persian-;Tortoise-She11-] Cat" 

The argth clause is selected, where the first clause is number O. If a prefix parameter is 
given (as - n[), then the parameter is used instead of an argument (this is useful only if the 
parameter is specified by '4#"). If arg is out of range then no clause is selected. After the 
selected alternative has been processed, the control string continues after the -]. 

-[ stl(T" ; strl- ; ... - ; strn-: ; defaulr] has a default case. If the last U_; " used to separate 
clauses is instead u ..... : ; n, then the last clause is an "else" clause, which is perfonned if no 
other clause is selected. For example: . 

"-[Siamese-;Manx-;Persian-;Tortoise-She11-:;A11ey-] Cat" 

-[- tagOO, tagOl, ... ; slTO-taglO, tagli , ... ; strl ... -]allows the clauses to have 
explicit tags. The parameters to each -; are numeric tags for the clause which follows it 
That clause is processed which has a tag matching' the argument. If 
- al , a2 , bl , b2, ..... : ;. (note the colon) is used. then the following clause is tagged not by 
single values but by ranges of values al through a2 (inclusive), bi through b2, etc. ""., _ 
with no parameters may be used at the end to denote a default clause. For example: _ 

"-[-'+,'-,'*, '/;operator -'A,'Z,'a,'z:;letter -
-'O,'9:;digit -:;other -]" 

-: [false-; true-] selects the false control string if arg is nil, and selects the true control 
string otherwise. 

-@[true-] tests the argument. If it is not nil, then the argument is not used up by the 
-@[ command~ but remains as the next one to be processed, and the one clause true is 
processed. If the arg is nil, then the argument is used up. and the clause is not processed. 
The clause therefore should nonnally use exactly one argument, and may expect it to be 
non-n; 1. For example: 

(setq prin1eve1 nil prin1ength 5) 
(format nil "-@[ PRINLEVEL=-O-]-@[ PRINLENGTH=-O-]" 

prin1evel prin1ength) 
=> "PRINLENGTH=5" 

The conlbination of""[ and # is useful. for example, for dealing wtth English conventions 
for printing lists: 



I~PLT/OLTPUT 

"'{str"'} 

• 

(setq faa "I tems : -#[ none· "'S-; ... S and ... 
-S-:;-@{-#["'l; and-] -S-A,-}-].") 

(format nil faa) 
=> 

(format nil 
=> 

(format nil 
=> 

(format nil 
=> 

(format nil 
=> 

"Items: none." 
faa 'fool 
"Items: FOO." 
faa 'faa 'bar) 
"Items: FOO and BAR." 
faa 'foo 'bar 'baz) 
"Items: FOO, BAR, and BAZ." 
faa 'faa 'bar 'baz 'quux) 
"Items: FOO, BAR, BAZ. and QUUX." 

Separates clauses in ... [ and -<constructions. It is undefined elsewhere. 

Tenninates a -E. It is undefined elsewhere. 

249 

Iteration. This is an iteration construct. The argument should be a list, which is used as a 
set of arguments as if for a recursive call to format. The string str is used repeatedly as 
the control string. Each iteration can absorb as many elements of the list as it likes as 
arguments; if sIr uses up two arguments by itself, then two elements of the list will get used 
up each time around the loop. If before any iteration step the list is empty, then the 
iteration is terminated. Also~ if a prefix parameter n is given, then there will be at most n 
repetitions of processing of sIr. Finally, the "" A directive can be used to tenninate the 
iteration prematurely. 

Here are some simple examples: 

(format nil "The winners are:-{ ""S"'}." '(fred harry jill) 
. => "The winners are: FRED HARRY JILL." 

(format nil "Pairs:"'{ < ... S .... S> ... }." '(a 1 b 2 c 3» 
=> ."Pairs: <A.l> <B,2> <C,3>~" 

- : {sfr-} is similar, but the argument should be a list of sub lists. At each repetition step 
. one sublist is used as the set of arguments for processing str, on the next repetition a new 
sublist is used, whether or not all of the last sub list had been processed. Example: 

(format nil "Pairs:-:{ <-S,"'S>-}." 
. '((a 1) (b 2) (c 3») 

=> "Pairs: <A.l> <~.2> <C,3>." 

-@{slr-} is similar to ... {sIr"'}, but instead of using one argument which is a list, all the 
remaining arguments are used as the list of arguments for the iteration. Example: 

(format nil "Pairs:-~{ <-S.""S>"'}." 
'a 1 'b 2 'c 3) 

=> "Pai~s: <A,l> <B,2> <C,3>." 

-: @{str-} combines the features of -: {slr-} and -@{str-}. All the remalnmg 
arguments are used, and each one must be a list On each iteration the next argument is 
used as a list of arguments to sIr. Example: 

(format nil "Pairs:-:@{ <-S,-S>-}." 
'(a 1) '(b 2) '(c 3» 

=> "Pairs: <A.1> <B,2> <C.3>." 



250 ('0\1\10;\ LISP REHJ{F~CF \1:\\:UAL 

Tenninating the repetition construct with .... :} instead of "'} forces sir to be processed at 
least once evcn if the initial list of arguments is null (however, it will not override an 
explicit prefix parameter of zero). 

If SIr is empty, then an argument is used as slr. It must be a string, and precedes any 
arguments processed by the iteration. As an exam pIc, the following are equivalent: 

(funcall* #'format stream string args) 
(format stream " .... 1{-:}" string args) 

This will use s t r i n 9 as a formatting string. The .... l { says it will be processed at most 
once, and the - :} says it will be processed at least once. Therefore it is processed exactly 
once, using a r 9 s as the arguments. 

As another (rather sophisticated) example, the format function itself uses 
format-error (a routine internal to the format package) to signal error messages, 
which in turn uses ferror, which uses format recursively. Now format-error takes 
a string and arguments, just like format, but also prints the control string to format 
(which at this point is available in the variable c t 1 - s t r i n g) and a little arrow showing 
where in the processing of the control string the error occurred. The variable c t 1 - i nd e x 
points one character after the place of the error. 

(defun format-error (string &rest args) 
(ferror nil "-I{-:}-%-VT~-%-3X\"-A\"-%" 

string args (+ ctl-index 3) c~l-string» 

This first processes the given string and arguments using -1{-:}~ then goes to a new line, 
tabs a variable amount fo~ printing the down-arrow, and prints the control string between 
double-quotes. The effect is something like this: 

(format t "The item is a -[Foo-;Bar-;Loser-]." 'quux) • 
>~ERROR: The argument to the FORMAT "-[It command 

must be a number. 
~ 

"The item is a -[Foo-;Bar-iLoser-]." 

Terminates a .... {. It is undefined elsewhere. 

- mineol, eolinc. minpad. padchar<str-> 
Justification. This justifies the text produced by processing sIr within a field at least mincol 
columns wide. sIr may be divided up into segments with -;. in which case the spacing is 
evenly divided between the text segments. 

With no modifiers. the leftmost text segment is left justified in the field, and the rightmost 
text segment right justified~ if there is only one, as a special case, it is right justified. The : 
modifier causes spacing to be introduced before the first text segment~ the @ modifier 
causes spacing to be added after the last 'rhe minpad parameter (default 0) is the 
minimum number of padding characters to be output between each segment. The padding 
character is specified by padehar, which defaults to the space character. If the total width 
needed to satisfy these constraints is greater than mincol. then the width used is 
mincol+ k*colinc for the smallest possible non-negative integer value k~ colinc defaults to 
1, and rnincol defaults to O. 

Examples: 



l.\l'LT/OLTPlJT 

• 

• 

(format nil If-l0<foo~;bar->") => 
( for mat nil If -1 0 : < f 00 - ; bar - > " ) = > 
(format nil "-lO:@<foo-;bar->If) => 
(format nil "-10<foobar->If) => 
(format nil If-10:<foobar->") => 
(format ni 1 "-10@<foobar .... >") => 
(format nil "-10:@<foobar .... >") => 
(format nil "$-10", '*<-3F .... >" 2.59023) => 

"foo bar" 
" foo bar" 
" 
" 

foo bar It 

foobar" 
" foobar" 
"foobar " 
It foobar It 

251 

"$******2.59" 

Note that sIr may include format directives. All the clauses in sIr are processed in order; 
it is the resulting pieces of text that are justified. The last example illustrates how the - < 
directive can be combined with the .... F directive to provide more advanced control over the 
formatting of numbers. 

??? Query: Unfortunately, the - F command as defined above isn't really flexible enough? 

The - A directive may be used to terminate processing of the clauses premanlrely, in which 
case only the completely processed clauses are justified. 

If the first clause of a -<is terminated with .... :; instead of"" ;, then it is used in a special 
way. All of the clauses are processed (subject to.-"", of course), but the first one is not used 
in performing the spacing and padding. When the padded result has been determined, 
then if it will fit on the current line of output, it is output, and the text for the first clause is 
discarded. If, however, the padded text will not fit on the current line, then the text 
segment for the first clause is output before the padded text. The first clause ought to 
contain a newline (such as a .... % directive). The first clause is always processed, and so any 
arguments it refers to will be used; the decision is whether to use the resulting segment of 
text, not whether to process the first clause. If the .... : ; has a prefix parameter fl, then the 
padded text must fit on the current line with n character positions to spare to avoid 
outputting the first clause's text. ~'or example, the control string 

It-% .. -{- -% .. -1" -S- -".. -} -%" 
0" < 0" ., >,. 0 

can be used to print a list of items separated by commas, without breaking items over line 
boundaries. and beginning each line with ";; ". The prefix parameter 1 in -1:; 
accounts for the width of the comma which will follow the justified item·if it is not the last 
clement in the list, or the period if it is. If - : ; has a second prefix parameter, then it is 
used as the width of the line, thus overriding the natural line width of the output stream. 
To make the preceding example usc a line width of 50, one would write 

"-%;; -{-<-%;; -1,50:; ""S->-"",-}.-%" 

If the second argument is not specified, then format uses the line width of the output 
stream. If this cannot be determined (for example, when producing a string resu.lt), then 
format uses 72 as the line length. 

Terminates a - <. ] t is undefined elsewhere. 

Up alld oul. 'Ibis is an escape construct. If there are no more arguments remaining to be 
processed. then the immediately enclosing - { or ..... < construct is terminated. If there is no 
such enclosing construct, then the entire formatting operation is terminated. In the - < 
case, the fonnatting is pertl)nned. but no more segments are processed before doing the 
justification. The - '" should appear only at the beginning of a -<clause. because it aborts 
the entire clause it appears in (as well as an following clauses). -" may appear anywhere in 
a - { construct 



252 CO.\I.\101\ LISP REITRE:.JCE MA~LAL 

(setq donestr "Oone.-'" .... 0 warning-:P.-'" -0 error-:P.") 
(format nil donestr)=> "Done." 
(format nil donestr 3) => "Done. 3 warnings." • 
(format nil donestr 1 5) => "Done. 1 warning. 5 errors. 

If a prefix parameter is given, lhen temIin~~ion occurs if the parameter is zero. (Hence - '" 
is equivalent to -#"".) If two parameters arc given, termination occurs if they are equal. If 
three are given, termination occurs if the second is between the other two in ascending 
order. Of course, this is useless if all the prefix parameters are constants: at least one of 
them should be a # or a V parameter. 

If '~,.. is used within a· - : { construct, then it merely terminates the current iteration step 
(because in the standard case it tests for remaining arguments of the current step only); the 
next iteration step commences immediately. To tenninate the entire iteration process, use 

Here are some examples of the use of ..... '" within a - < construct 

(format nil "-15<-S-;-A-S-;-A-S->" 'fool 
=> " FDD" 

(format nil "-15<-S-;-A-S-;-A-S->" 'foo 'bar) 
=> "FDD BAR" 

(format nil "-15<-S-;-A-S-;-A-S->" 'foo 'bar 'Qaz) 
=> "FDD BAR BAZ" 

Compatibility note: The -Q directive and user-defined directives have been omitted here, as well as control· lists (as opposed 
to strings), which are rumored to be changing in meaning. 

21.5. Querying the User 

The following functions provide a convenient and consistent interface for asking questions of the user. 

Questions are printed and the answers are read using the stream query- i 0, which normally is synonymous 

with term ina 1 - i 0 but can be rebound to another stream for special applications. 

We describe first two simple functions for asking yes-or-no questions, and then the general function 

fquery on which all querying is built 

y-or-n-p &optional message stream [Function] 
This predicate is for asking the user a question whose answer is either "yes" or "no". It types out 

mes.~age (if supplied and not nil), reads an ans~er in some implementation-dependent manner 

(intended to be short and simple, like reading a single character such as "Y"" or "N"), and is true if 

the answer was "yes" or false if the answer was "no". 

If the message argument is supplied and not nil, it will be printed on a fresh line (see 

fresh-l ine (page 242». Otherwise it is assumed that a message has already been printed. If 

you want a question mark and/or a space at the cnd of the message, you must put it there yourself; 

y-or-n-p will not add it. stream defaults to the valucof the global variable query- i 0 (page 

212). 

For example: 

• 

• 



J;\PLT/OCTPur 253 

(y-or-n-p "Cannot establish connection. Retry? ") 

y- or - n - p should only be used for questions which the user knows arc coming. If the u~er is 

unlikely to anticipate the question, or if the consequences of the answer might be grave and 

irreparable, then y-or-n-p should not be used, because the user might lype ahead and thereby 

accidentally answer the question. For such questions as "Shall I delete all of your files?", it is better 

to use yes-or-no-p. 

yes-or-no-p &optional message stream [Fullction] 

This predicate, like y-or-n:'p, is for asking the user a question whose answer is either "Yes" or 

"No". It types out message (if supplied and not nil), attracts the user's attention, and reads a reply 

in some implementation-dependent manner. It is intended that some thought have to go into the 

reply, such as typing the full word "yes" or "no" followed by a <return>. 

If the message argument is supplied, it will be printed on a fresh line (see f res h -1 in e (page 

242». Otherwise the caller is assumed to have printed the message a1ready~ If you want a question 

mark and/or a space at the end of the message, you must put it there yourself; yes-or-no-p will 

not add it. stream defaults to the value of the global variable query- i 0 (page 212). 

To allow the user to answer a yes-or-no question with a single character, use y-or-n-p. 

yes-or-no-p should be used for unanticipated or momentous questions; this is why it attracts 

attention and why it requires thought to answer it. 

??? Query: Maybe fquery should be developed inot a more abstract menu sort of interface function? Maybe it belongs in 
yellow pages? 

The preceding two functions allow the asking of simple yes-or-no questions. More complicated questions 

can be asked using fquery, described below. fquery is quite general and complicated. It is best to write 

some interface function for each particular kind of que~tion, using f q ue r y in the definition. In this way the 

complicated arguments to fquery need be written in only a few places. 

. fquery options format-string· &res t jOrmat-args 

This asks a question, printed by executing 

[Function] 

(format query-;o format-string format-args . .. ) 

and returns the answer. fquery takes care of checking for valid answers, reprinting the question 

when the user clears the screen, giving help, and so forth. 

options is a list of alternating keywords and values, used to select among a variety of features. Most 

callers will have a constant list to pass as options (rather than consing lip a different list each time). 

:type The expected form of the answer. The types currently defined are: 

: inch 

:ty; 

1\ single character, as read by inc h (page 238). This the 
default. 

l11is is similar to inch; the answer is a single character, but 
the result is an integer, as if read by ty i (page 238). 



254 

:choices 

:list-choices 

:readline 

CO\1\10~ I .ISt> REFEizF\CE \L\\:UAL 

A string. typed as a line tenninated by a carriage return, as 
read by readl i ne (page 238). 

Defines the allowed answers. The allowed fonns of choices are complicated and 
explained below. The def:iUlt is the same set of choices as for y - 0 r - n - p (page 
252~. if : type is : inch or : tyi, or the same as for yes-'or-no-p, if : type 
is :readl ine. Note that the :type and :choices options should be 
consistent with each other. 

Compatibility note: In Lisp Machine LIsp, : cho ices always defaults to y-or-n-p 
choices, even if : type is : read 1 i ne. This is clearly bpgus. 

If true. the allowed choices are listed (in parentheses) after the question. The 
default is true; supplying false causes the choices not to be listed unless the user 
tries to give an answer which is not one of the allowed choices. 

:help-function 
Specifies a function to be called if the user types "?". (Note that other 
implementation-dependent non-standard keyboard characters might trigger the 
help function as well, or other actions.) The default help-function simply lists 
the available choices. Specifying nil disables the special treatment of "1". 
Specifying a function of three arguments (the stream, the value of the 
:cho ices option, and the type-function) allows smarter help processing. The 
type-function is a function selected by the : type option;. it does inch, tyi, or 
rea d 1 i n e, but with additional processing. Often it can be ignored by the 
help-function. 

: f res h -1 ; n e If true (the default), que r y - i 0 is advanced to a fresh line before asking the 
question. If false, the question is printed wherever the cursor was left by 
previous typeout 

: beep If true, fQuery beeps to attract the user's attention to the question. The default 
is false, which means not to beep unless the user tries to give an answer which is 
not one of the allowed choices. 

: c 1 ear - i n put If true, f que r y throws a way type-ahead be fore reading the user's response to 
the question. Use this for unexpected questions. The default is false. which 
means not to throwaway typeahead unless the user tries to give an answer which 
is not one of the allowed choices. In that case, type-ahead is discarded since the 
user probably wasn't expecting the question. 

'The argument to the: cho ices option is a list each of whose clements is a choice. The cdr of a 

choice is a list of the user inpUL'i which correspond to that choice. These should be characters if the 

: type is : ; nch, integers corresponding to characters for: ty;. or strings for: readl i nee The 

car of a choice is either an atom which fquery should return if the user answers with that choice 

(in which case nothing is echoed), or a list whose first clement is such an atom and whose second 

element is the string to be echoed when the user selects the choice. 

COlllp~ltihiliCy nole: In Lisp Machine LISP the choice-value is spccified to be a symbol. To allow ni 1 to be 
returned. or even integers. atoms (non-lists) are specified here. 

In most cases a : type of : readl i ne would use the first fonnat, since the user's input has already 

been echoed, and : inch or: ty i would use the second format. since the input has not been • 



• 

1\ PLT/OUTPUT 255 

echoed and furthermore is a single character, which would not be mnemonic to see on the display. 

As an example, here is a definition of the function y-or-o-p in terms of fquery: 

(defun y-or-n-p (&optional message (stream query-io» 
(let «query-io stream» 

(fquery '(:fresh-line oil 
:list-choices nil 
:choices 

«(t "Yes.") #\y #\t #\Space) 
«nil "No.") #\0 #\Rubout») 

(if message II-&-a" "-*") 
message») 

As another example, here is a definition of ye s -or -oo-p: 
(defun y-or-n-p (&optiona1 message (stream query-io» 

(let «query-io stream» 
(fquery '(:fresh-line nil 

:list-choices nil 
:beep t 
:type :readline 
:choices «t "Yes") (oil "No"») 

(if message "-&-a" "-*") 
message») 

As a third example, this function allows more complex choices. One may type P, Q, R, or D, in 
which respective cases the symbol proceed, qu it, retry, or debug is returned. Space or 
rubout may be typed instead of P or Q, respectively. 

(defun i/o~error-query &optiooal message (stream query-io» 
(let «query-io stream» 

(fquery '( :fresh-line nil 
:list-choices t 
:choices 

({(proceed "Proceed") #\p #\Space) 
«quit "Quit") #\q #\Rubout) 
«retry "Retry") #\r) 
«debug "Debug") #\d») 

(if message "-&-a" "-*") 
m~ssage») 



256 ('0\1\10'\ LJSP REFFi< F\CE \JANUA!. 

• 



• 

Cllapter 22 

File System Interface 

A frequent use of streams is to communicate with afile system to which groups of data (files) can be written 

and from which files can be retrieved. 

COMMON LISP defines a standard interface for dealing with such a file system. This interface is designed to 

be simple and general enough to accommodate the facilities' provided by "typical" operating system 

environments within which COMMON LISP is likely to be implemented. The goal is to make COMMON LISP 

programs that perform only simple operations on files reasonably portable. 

To tJ:1is end COMMON LISP assumes that files are named, that given a name ·one can construct a stream 

connected to a file of that name, and that the names can be fit into a certain canonical, implementation

independent form called a pathname. 

Facilities are provided for manipulating pathnames, for creating streams connected to flIes, and for 

manipulating the file system through pathnamcs and streams. 

22.1. File Names 

COMMON LISP programs need to use names to designate fi1es. The main difficulty in dealing with names of 

files is that different file systems have different naming formats for files. For example, here is a table of 

several file systems (actua)]y, operating systems that provide file systems) and what the "same" file name 

might look like for each one: 

System 
TOPS-20 

TOPS-10 

ITS 

MULTICS 

TENPJ( 

UNIX 

File name 
<LISPIO>FORMAT.FASL.13 
FORMAT. FAS[ 1..4 ] 
LISPIO;FORMAT FASL 
>udd>LispIO>format.fasl 
<LISPIO>FORMAT.FASL;13 
lusr/lispio/format.fasl 

It would be impossible for each program that deals with file names to know about each different file name 

fonnat that exist(j: a new COMMON LIsp implementation might usc a format different from any of itc; . 
predecessors. Therefore COMMON LISP provides two ways to represent file names: names/rings, which are 

- 257-



253 CO\1~\'10;\ LISP REI'ERE.?\CE ;\lANUAL 

strings in the implementation-dependent form customary for the file system. and pallzllames. which are 

specia1 data objects th:lt represent tile namcs in an irnp1clTIentalion-indcpcndent way. Functions are providcd 

to convcrt betwecn these two representations. and all manipulations of files can be cxpressed in machine

indepcndent tenTIS by using palhnames. 

In ordcr to allow COMMON LISP programs to operate in a network environment that may have lTIOre than 

one kind of file system, the pathname facility allows a file name to specify which file system is to be used. In 

this context, each file system is callcd a host, in keeping with the usual networking tenninology. 

22.1.1. Pathnames 

All file systems dealt with by COMMON LISP are forced into a common framework, in which files are 

named by a LISP data object of type pathname. 

A pathname always has six components, described below. These components are the common interface 

that allows programs to work the same way with different file systems; the mapping of the . pathname 

components into the concepts peculiar to· each file system is taken care of by the COMMON LISP 

implementation . 

. host 

device 

directory 

name 

type 

version 

The name of the file system on which the file resides. 

Corresponds to the "device" or "file structure" concept in many host file systems: the 
name of a (logical or physical) device containing files. 

Corresponds to the "directory" concept in many host file systems: the name of a group of 
related files (typically those belonging to a single user or project). 

The name' ofa group of flIes which can be thought of as conceptually the "same" file. 

Corrcsponds to the "filctypc" or "extension" concept in many host file systems. This says 
what kind of file this is. Files with the same name but different type are usually related in 
some specific way, such as one being a source file, anothcr the compiled fonn of that 
source, and a third the liSting of errors messages from the compiler. 

Corresponds to the "version number" concept in many host file systems. typically a 
number that is incremented every time the file is modified .. 

Note that a pathname is not necessarily the name of a specific file. Rather, it is a specification (possibly 

only a partial specification) of how to access a file. i\ pathname need not correspond to any file that actually 

exists, and more than onc pathname can rcfcr to the samc file. For'cxamplc, the pathname with a version of 

··newcst" may refer to the same file as a pathname with the same components except a certain number as the 

version. Indced. a pathname with vcrsion ··newest"· may refer to diffcrent files as tilTIe passcs, because the 

mcaning of such a path name dcpends on the state of the file system. In file systems with such facilities as 

··links", multiple file names, logical devices, and so on, two pathnames that look quite different may tum out 

• 

to address the same file. To access a tile given a pathnamc one must do a file system operation such as open • 



• 

FILE SYSTE\f lXITRF:\CE 259 

(page 268). 

Two important operations involving pathnames are parsing and merging. Parsing is the conversion of a 

namcstring (which might be something supplied interactively by the user when asked to supply the name of a 

file) into a pailiname object. This operation is implementation-dependent, because the fOimat of namestrings 

is implementation-dependent Merging takes a pathname with missing components and supplies values for 

those components from a source of defaults. 

Not all of the components of a pathname need to be specified. If a component of a pathname is missing, its 

value is n i ,. Before the file system interface can do anything interesting with a file, such as opening the file, 

all the missing components of a path name must be fined in (typically from a set of defaults). Pathnames with 

missing components may used internally for various purposes; in particular, parsing a namestring that does 

not specify certain components will result in a pathname with missing components. However, the host 

component is not allowed to be missing from any pathname; since the behavior ofa pathname is host

dependent to some extent. 

? ?? Query: Is : un 5 pee i fie really needed over and above nil? 

A component of a pathname can also be the keyword : un s p e c i f i c. This means that the component has 

been explicitly determined not to be there, as opposed to being missing. One way this can occur is with 

generic pathnames, which refer not to a file but to a whole family of files. The version, and usually the type, 

of a generic pathname are : un s p e c i f.i c. Another way : un s p e c i fie is used is to represent components 

that are simply not supported by a file system. When a pathname is converted to a namestring, nil and 

: un s p e c if; c both cause the component not to appear in the string. When merging, however, ani 1 value 

for a component will be replaced with the default for that component, while :unspecific will be left 

alone. 

A component of a pathname can also be the special symbol : wi 1 d. This is only useful when the pathname 

is being used with a directory-manipulating operation, where it means that the pathname component matches 

anytlling. The printed representation of a pathname typically designates: wi' d by an asterisk; however, this 

is host-dependent 

What values arc allowed for components of a pathname depends, in general, on the pathname's host. 

However, in order for pathnames to be usable in a system-independent way certain global conventions are 

adhered to. These conventions arc stronger for the type and version than for the other components, since the 

type and version are explicitly manipulated by many programs, while the other components are usually 

treated as something supplied by the user which just needs to be remembered and copied from place to place. 

The type is always a string or n i " : un s pee i fie, or : wi 1 d. Many programs that deal with files have an 

idea of what type they want to usc. 

The version is either a positive integer or a special symbol. The meanings of ~ i 1, : unspec if; c, and 

: wi' d have been explained above. The keyword : newe s t refers to the 1argest version number that already 

exists in the file system when reading a file. or that number p1us one when writing a new me.'fhe keyword 



260 

: 01 des t refers to the smaI1est version number that exist.s: Some CO:Y1MON L1SP imp1cmentations may 

choose to define other special version symbols, such as : ins ta 11 ed, for example. if the file system for that 

implementation will support them. 

The host may be a string. indicating a file system. or a list of strings. of which the first names the file system 

and the rest may be used for such a purpose as inter-network routing. 

The device, directory. and name also can each be a simple string (with host-dependent rules on allowed 

characters and length) or a list of strings (in which case such a component is said to be structured). Structured 

components are used to handle such file system features as hierarchical directories. COMMON LISP programs 

do not need to know about structured components unless they do host-dependent operations. Specifying a 

string as a pathname component for a host that requires a structured value will cause conversion of the string 

to the appropriate form. Specifying a structured component for a host that does not provide for that 

component to be structured causes conversion to a string by the simple expedient of taking the first element 

of the list and ignoring the rest 

Some host file systems have features that do not fit into this pathname model. For instance, directories 

might be accessible as files, there might be complicated structure in the directories or names, or there might 

be relative directories, such as the .. <" syntax in MULTICS or the special .... " file name of UNIX. Such 

features are not allowed for by the standard COMMON LISP file system interface. An implementation is free to 

accommodate such features in its pathname representation and provide a parser that can process such 

• 

specifications in namestrings; such features are then likely to work within that single implementation. • 

However, note that once your program depends explicitly on any such features. it will not be portable. 

22.1.2. Pathname Functions 

These functions are what programs use to parse and default file names that have been typed in or otherwise 

supplied by the user. 

As a rule, any argument caned pathname may actually be a pathname.· a string or symbol. or a stream, and 

any argument caned defaults may be a pathname. a string or symbol. a stream, or a palhname defaults a-list. 

In the examples, it is assumed thqt the host named CMUC runs the TOPS-20 operating system, and therefore 

uses TOPS-20 file system syntax: furthermore, an explicit host name is indicated by following it with a double 

colon. Remember, however, that namestring syntax is implementation-dependent, and this syntax is used 

purely for the sake of examples. 

pathname thing [Function] 

truename thing [Fullction] 

The pathname function converts its argument to be a path name. The argument may be a 

pathnamc. a string or symbol. or a-stream. 

The truename function behaves identically to pathname, with one exception. If the argument is 



FII.L SYSTL\l INTERr;ACE 261 

a stream connected to a file in a file system, then the pathname returned by tr ue name reflects the 

"tme" name of the file according to the fi1e system. as opposed to the name originally given to the 

fi1e system to specify the file (which is what pathnarne will return). Thus the trueflame function 

may be used to account for any file-naITIc translations performed by the file system. as opposed to 

logical-path name translations performed by COrvtMON LISP (see t r an s 1 ate d - pat h n arne (page 

266». 

For example, suppose that '"DOC:" is a TOPS-20 logical device name that is u'anslated by the TOPS-20 

file system to be "PS: <DOCUMENTATION>". 

(setq file (op~n ."CMUC: :DOC:DUMPER.HLP"» 
(namestring (pathname file» => "CMUC::DOC:DUMPER.HLP" 
(namestring (truename file» . 

=> "CMUC: :PS:<DOCUMENTATION>DUMPER.HLP.13" 

parse-n ames tr i ng thing '&opt i ona 1 convention defaults break-characters start end [Function] 

This turns thing into a pathname. The thing is usually a string (that is, a namestring), but it may be 

a symbol (in which case the print name is used) or a pathname or stream (in which case no parsing 

is needed, but an error check may be made for matching hosts). 

This function does not do defaulting; it only does parsing. The convention and defaults arguments 

are present because in some implementations it may be that a namestring can only be parsed with 

reference to a particular file name syntax of several available in the implementation. If thing does 

not contain a manifest host name, then if convention is non-n i 1, it must be a string naming the file 

name syntax (using a host name will indicate that the conventions peculiar to that host should be 

used if that is meanin~ful) •. or a list of strings, of which the first is used. If host is n; 1 then the host 

name is obtained from the default pathname in defaults and used to determine the syntax 

convention. 

For a string (or symbol) argument, parse-namestring parses a file name within it in the range 

delimited by start and end'(which are integer indices into string, defaulting to the beginning and 

end of the string). Parsing is terminated upon reaching the end of the specified substring or upon 

reaching a character in breqk-characters, which may be a string or a list of characters; this defaults 

to an empty set of characters. 

Two values arc returned by par s e - names t ring. If the parsing is successful, then the first value 

. is a pathname object for the parsed file name, and otherwise the first value is nil. The second 

value is an integer. the index into string one beyond the last character processed. This will be equal. 

to end if processing was tenninated by hitting the end of the substring: it will be the index of a 

. break character if such was the reason for termination; it will be the index oran illegal character if 

that was what caused processing to (unsuccessfully) terminate. If lhing is not a string or symbol, 

then start is always returned as the second value. 

Parsing an empty string always succeeds, producing a pathname with all components (except the 

host) :unspecific. 

Note that if host is specified and not nil, and thing contains a manifest host name, an error is 



262 

signalled if they arc not the smTIe host. 

merge-pathname-defaul ts pallmame &opt ional defaults defaulL-lype .default-version [Function] 
This is the function that most programs should call to proCess a tile name supplied by the user. It 

fiUs in unspecified components of pathname from the defaults, and returns a new pathname. 

pathname can be a path name, string, or symbol. The returned value will always be a pathname. 

defaults defaults to the value of defaul t-pathname-defaul ts (page 265). default-type 
defaults to :unspecific. de/ault-versiondefaultsto :newest. 

The rules for merging can be rather complicated in some situations; they are de~cribed in detail in 

section ??? An approximate rule of thumb is simply that any components missing in the pathname 

are filled in from the defaults. 

For example: 

(merge~pathname-defaults "CMUC: : FORMAT" 
"CMUC: :PS:<LISPIO>" 
"FASL") 

=> a pathname object which re-expressed as a namestring would be 
"CMUC: :PS:<LISPIO>FORMAT.FASL.O" 

make-pathname &key :host :device :directory :name 

:type :vers;on :defaults 

[Function] 

Given some components, make-pathname constructs and returns a path name. Missing 

. components default to nil, except the host (all path names must have a host). The : de f au 1 t s 

option specifics what defaults to get the host from if the : h 0 s t option is nil or not specified; 

however, no other components are supplied from the : defaul ts. The default value of the 

: defaul ts option is the value of defaul t-pathname-defau'l ts (page 265). All other 

keywords specify components for the pathname. . 

Whenever a. pathname is constructed, whether by make-pathname or some other function, the 

components may be canonicalized if appropriate. For example. if a file system is insensitive to 

case, then alphabetic characters may be forced to upper case or lower case by the implementation. 

pathnamep object 
This predicate is true if object is a pathname, and otherwise is false. 

(pathnamep x) <=> (typep x 'pathname) 

pathname-host palhname 
pathname-dev i ce pathname 
pathname-di rectory pathname 

pa thname- namepathname 
pathname-type pathname 
pa thname- ve r s i on pathname 

[Function] 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 



• 

FILE SYSTL\1 J:\TERI ':\CE 263 

These return the components of the argumern pal/maille, which may be a patJmame, string, or 

symbol. 111C returned values can be strings, special symbols, or lists of strings in the ~ase of 

structured components. The type will always bea string or a symbol. The version will always be a 

number or a sYlnbol. 

pa thname-p 1 is t pathname [Function] 
These return the property list of the argument pathname, which may be a pathname, string, or 
symbol (see p 1 is t (page 103». 

namestring pathname 
f i 1 e - n arne s t r i n 9 pathname 
di rectory-narnestr i ng pathname 
ho s t -n arne s tr in 9 pathname 
enough-namestring pathname &opt ional defaults 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

The pathname argument may be a name list, a namestring, or a stream which is or was open to a file. 
The name represented by pathname is returned as a namelist in canonical form. 

If pathname is a stream, the name returned represents the name used to open the file, which may 
not be the actual name of the file (see truename (page 260». 

n arne s t r i n 9 returns the full form of the pathname as a string. f i 1 e - n arne s t r i n 9 returns a 
string representing just the name, type, and version components of the pathname; the result of 
d ire c tor y - n arne s t r i n 9 represents just the directory-name portion ~ and h 0 s t - name s t'f' i n 9 
returns a string for just the host-name portion. Note that a valid namestring cannot necessarily be 
constructed simply by concatenating some of the three shorter strings in some order. 

en ou 9 h -n arne s t r in 9 takes another argument, defaults. It returns an abbreviated namestring 
which is just sufficient to identify the file named by pathname when considered relative to the 
defaults (which defaults to the value of de f a u 1 t - pat h n a me - de f au 1 t s (page 265». That is, 

(merge-pathname-defaul ts (enough-namestring palhname defaults) 
defaults) 

<=> (parse-pathname pathname) 

These functions return useful information. 

user-homed i r-pathnarne &opt i ona 1 host [Function] 
Returns a pathname for the user's "home directory" on host, which defaults in some appropriate 
implementation-dependent manner. . The concept of "home directory" is itself somewhat 

implementation-dependent. but from the point of view os COMMON LISP it is the directory where 

the user keeps personal files such as initialization files and mail. This function returns a pathname 
without any name, type. or version component (thosecomponentc; arc all nil) . 



264 CO\\.\10,\ l.ISf' REITRL:\CL ;\L\r\UAL 

init-file-pathname program-name &optional host [Fullction] 
Returns the pathname of the user's init file tiJr the program program-name (a string). on the host, 

which defaults in some appropriate implementation-dependent manner. Programs that load init 

files containing user customizations can this function to det.ermine where to look for the file. so that 

they need not know the separate init file name conventions of each host operating system. 

22.1.3. Defaults and Merging 

Defaulting of pathnarne components is done by filling in components taken from another pathname; this 

filling-in is called merging. This is especially. useful for cases such as a program that has an input file and an 

output file, and asks the user for the name of both. letting the unsupplied components of one name default 

from the other. Unspecified components of the output pathname will come from the input pathname. except 

that the type should default not to the type of the input but to the appropriate default type for output from 

this program. 

The pathname merging operation takes as input a given pathname, a defaults pathname a default type, and 

a default version, and returns a new pathname. Basically. the missing components in the given pathname are 

filled in from the defaults pathname, except that if no type is specified the default. type is used, and if no 

version is specified the default version is used. By default, the default type is : un s pe c if; c. meaning that if 

the input pathname has no type, the user really wants a file with rio type. Programs that have a default type 

for the files they manipulate will supply it to the merging operation. The default version is usually: newes t; 

if no version is specified the newest version in existence should be used. The default type and version can be 

n; 1, to preserve the information that they were missing in the input pathname. 

The full details of the merging rules are as follows. First, if the given pathname explicitly specifies a host 

and does not supply a device, then the device will be the default file device for that host. Next, if the given 

pathname does not specify a host, device, directory, or name, each such component is copied from the 

defaults. 

The merging rules for the type and version are more complicated, and depend on whether. the path name 

specifics a name. If the pathname doesn't specify a name, then the type and version, if not provided, will 

come from the defaults, just like the other components. However,. if the pathname does specify a name, then 

the type andversion are not affected by the defaults. The reason for this is that the type and version "belong 

to'" some other filename, and are unlikely to have anything to do with the new one. Finally, if this process 

leaves the type or version missin'g, the default type or default version is used (these were inputs to the merging 

operation). 

The effect of all this is that if the user supplies just a name, the host, device, and directory will come from 

the defaults. but the type and version will come from the default type and default version arguments to the 

merging operation. If the user supplies nothing, or just a directory, the name, type, and version will come 

over from the defaults together. If the hoses file name syntax provides a way to input a type or version 

without a name, the user can let the name default but supply a din~rent type or version than the one in the 

defaults. 

• 

• 

• 



• 

I:II.E SYSTE\1 I~TERFACE 265, 

The following special variables are parts of the pathname interface that are relevant to defaults. 

default-pathname-defaults [Variable] 
This is the default pathname defaults pathname; if any pathname primitive that needs a set of 

defaults is not given one, it uses this one. As a general rule, however, each program should have its 

own pathname defaults a-list rather than using this one. 

load-pathname-defaults [Variable] 
This is the pathname defaults pathname for the load (page 270) and comf i 1 e (page 

280) functions. Other functions may share these defaults if they deem that to be an appropriate 

user interface. 

22.1.4. Logical Pathnames 

Logical pathnames, unlike ordinary pathnames, do not correspond to any particular file server. Like every 

pathname, however, a logical pathname must have a host, in this case called a "logical" host. Every logical 

pathname can be translated into a corresponding "actual" pathname; there is a mapping from lo~ical hosts 

into actual hosts used to effect this translation. 

The reason for having logical pathnames is to make it easy to keep bodies of software on more than one file 

system. A program may need to have a suite of files at its disposal, but different file systems may have 

different conventions about what directories may be used to store such files. Ideally. it should be easy to write 

a program in such a way that it will work correctly no matter which site it is run at. This is easily done by 

writing the program to use a logical name; this logical name can then be provided with a customized 

translation for each implementation, thereby centralizing the implementation dependency. 

Here is how translation is done. For each logical host, there is a mapping that takes a directory name and 

produces a corre,sponding actual host name, device name, and directory name. To translate a logical 

pathname, the system finds the mapping for that pathname's host and looks up that pathname's directory in 
the mapping. If the directory is found, a new path name is created whose host is the actual host, and whose 

device and directory names come from the mapping. The other components of the new path name taken from 

the old path name. !here is also, for each logical host. a "default device". If the directory is not found in the 

mapping, then the new pathname will have the same directory name as the old one, and its device will be the 

default device for the logical host. 

This means that when you invent a new logical device for a certain set of flIes, you also make up a set of 

logical directory names. one for each of the directories that the set of files is stored in. Now when you create 

the mappings at particular sites, you can choose any actual host for the files to reside on. and for each of your 

logical directory names. you can specify the actual directory name to usc on the actual host. 'l'his gives you 

flexibility in setting up your directory names~ if you used a logical directory name called f red and you want 

to move your set of files to a new file server that already has a directory called fred, being used by someone 

else, you can translate fred to some other name and so avoid getting in the way of the existing directory. 



2(i6 C"o\1\10r\ LISP i~El+RE\CE \1ANUAL 

Furthcffi10rc, you can set up your directories on each host to c'onform to the local naming conventions of that 

host. 

add-logical-pathname-host logical-host actual-host defaull-device ftanslations [Function] 

This creates a new logical host named logical-host. Its corresponding actual host (that is, the host to 

which it will forward most operations) is named by actual-host. logical-host ~nd actual-host should 

both be strings~ The default-device should be a string naming the default device for the logical host. 

The translations should be a list of translation specifications. Each translation specification should 

be a list of two items. The first should be a string naming a directory for the logical host. The 

second is a pathname (or string, symbol, or stream) whose device component and directory 

component provide the translation for the logical directory. 

Compatibility note: Lisp Machine LISP does this: "The default device for the logical host will be the device of 
the first translation specification." This seems a bit of a crock. 

transl ated-pathname pathname [Function] 

This converts a logical pathname to an actual pathname. If the pathname already refers to an actual 

host rather than to a logical host. the argument is simply returned. 

back -tr an s 1 a ted- path n arne logical-pathname actual-pathname [Function] 

This converts an actual pathname to a logical pathname. actual-pathname should be a pathname 

whose host is the actual host corresponding to the logical host of logical-pathname. This returns a 

pathname whose host is the logical host and whose translation (as by t ran s 1 ate d - pat h name 

(page 266» is palhname. 

An example of how this wQuld be used is in connection with truenames. Given a stream s that was 

obtained by opening a logical pathname, 

(pathname s) 

returns the logical path name that was opened; 

(truename s) 

returns the true name of the file that is open, which of course is a pathname on the actual host. To 

get this in the form of a logical pathname, one would do 

(back-translated-pathname (pathname s) (truename s» 

If the argument logical·palhname is actually an actual path name, then the argument 

aClual-palhname is simply returned. Thus the above example will work no matter what kind of 

pathname was opened to create the strealn. 

The namestring corresponding to a logical pathname is. like all namestrings, of implementation-dependent 

fonnat. As a rule. however. there is no way to specify a device; parsing a logical pathnamc always returns a 

pathname whose device component is : unspec if i c. 

• 

., 



• 

• 

FIl.E S'tS1T.\1 IXITRF,.\CE 267 

22.2. Opening anti Closing Files 

\Vhen a file is opened. a stre~Hn ohject is constructed to serve as the tile systcm·s ambassador to the LISP 

en vironment: operations on the stream are reflectetl by operations on the file in thc me. system. 'nlC act of 

closing the file (actually, the stream) ends the association; the transaction with the file system is tenninated, 

and input/output may no longer be pcrfonned on the stream. The stream function close (page 214) may 

be used to close a file; the functions described below maybe used to open them. 

wi th-open-fi 1 e bindspec ffonn}* [Specialjonn] 

(w it h - 0 pen - f i 1 e (slrealn filename . options) . body) evaluates the forms of body (an 

implicit progn) with the variable stream bound to a stream which reads or writes the file named by 

the value offilename. The options should evaluate to a keyword or list ofkeyword.s. 

When control leaves the body, either nOImally or abnormally (such as by use of throw (page 87», 

the file is closed. If a new output file is being written, and control leaves abnormally, the file is 

aboned and it is, so far as possible, as if it had never been opened. Because wi th -open -f i 1 e 

always closes the file, even when an error exit IS taken, it is preferred over open for most 

applications. 

filename is the name of the file to be opened; it can be a namelist or namestring. If an error occurs 

(such as "File Not Found"), the user is asked to supply an alternate pathnqrne, unless this is 

overridden by options. At that point the user can quit or enter the error handler if the error was not 

due to a misspelled path name after all. 

options is either a single keyword or a (possibly empty) list of options, where an option is either a 

keyword or a list of a keyword and arguments to that keyword. (If a keyword with an argument is 

to be used. then options must be a list of options and not a single option.) 

Compatibility note: Lisp Machine LISP uses a format where the argument to a keyword simply follows the 
keyword in the list. This is not compatible with other keyword formate;, for example that of defstruct. It 
only makes a difference nerc in the case of : byte-s; ze. It seems worthwhile to minimize the number of 
keyword formaLS in COMMON LISP. 

??? Query: Could we get this to conform to the standard keyword-pairs format? 

Valid keywords are: 

: in or : input or : read 
Open file for input This is the default. 

:out or :output or :write or :prifit 

:append 

Open file for output; a new file is to be created. 

Open an existing file for output. arranging that output to the resulting stream 
should be appended to the previous contents of the file. 

Compatihility DoCe: Not all file systems can support this operation. An implementation 
may choose to simulate it by copying the old file into a. new one and then continuing to 
write the new one. 

CompnHhilHy noCe: The Lisp Machine 1.lsP implementation appears not 10 support this, 
but MAcLIsp docs in.the open function. 



268 CO\t\10\: IJSP HHTRENCF :\1:\NUAL 

: read-al ter Open a file in read-alter mode; the result is a stream which can perform both 
input and output on a random-access file. 

Compatibility note: Not all file systems can support this opcralion, 

: character or : asc i i 
The unit of transaction is a character: the file is a text file. This is the default. 

:binary or :fixnum 
The unit of transaction is a small unsigned integer.' 'The :byte-size option 
may be used to specify the number of binary bits in the transaction unit This 
precise way in which this interacts with the file system is implementation
dependent. 

:byte-size This keyword takes an argument, an integer specifying the number of bits per 
transaction unit; this is used in conjunction with the : bin ar y option. If the 
: bin a r y keyword is specified but the : by t e - s i z e keyword is no~ then an 
implementation-dependent "natural" byte size is used. 

: echo This keyword requires an argument, an output stream, and is valid only when 
opening a stream for input The result stream will echo everything read from it 
onto the output stream. 

: probe This keyword specifies that the file is not being opened to do 110, but orily to 
find out infonnation about it. A stream is returned, 'but it cannot handle 110 
transactions; it is as if the stream were immediately closed after opening it 
: probe imp1ie~ : noerror (see below). 

:noerror 

??? Query: In Lisp Machine LISP, : probe also implies: f ixnum. Why?? 

If the file cannot be opened, then instead of returning a stream, a string 
containing the error message is returned. If: no err 0 r is not specified, then an 
error is signalled using the error message, and the user is asked to supply a 
different filename. 

open filename &optional options [Function] 
Returns a stream which is connected to the file specified by filename. The 0Plions argument is as 

for wi th -open -f i 1 e (page 267). Ifan error occurs, such as "File Not Found", the user is asked 

to supply an alternate pathname. unless the' : n oe r r 0 r (page 268) option is used, in which case 

the error message is returned as a string. 

When the caUer is finished, with the stream, it should close the file by using the c los e (page 

214) function. The wi th~open-f i 1 e (page 267) special form does this automatically, and so is 

preferred for most purposes. open should be used only when the control structure of the program 

necessitates opening and closing of a file in some way mvre complex than provided by 

with-open-file. It is suggested that any program which uses open directly'should use the 

special form unwi nd-protect (page 86) to close the file ifan abnormal exit occurs. 

Implcml!nlation note: While with-open-file tries to automatically close the stream on exit from the construct, for 
robustness it is helpful if the garbage collector can detect discarded streams and automatically close them. 

• 

• 

• 



•• 

HI E SYSTF\ll\,TLRFACE 269 

22.3. Renaming, Deleting, and Olher Operations 

Compatihilily note: 'Ihe MAcLlsp/Lisp Machine LIsp names renamef. del etef. etc .. arc explicitly avoided here because 

they are not :-.ufficienlly mnemonic and because the trailing-f convention conflicts ~;th a similar convention for forms 
related to s e tf (page 60). 

rename-fi 1 e file new-name &opt ional error-p [Function] 
file can be a filename or a stream which is open to a file. The specified file is renamed to new-name 
(a filename). If error-p is true (the default), then if a file-system error occurs it will be signalled as a 

LISP error. If error-p is false and an error occurs, the error message will be returned as a string. If 

no error occurs, r e n arne f returns nil. 

del ete-fi 1 e file &opt ional error-p [Function] 

file can be a filename or a stream which is open to a file. The specified file is deleted. If error-p is 

true (the default), then if a file-system error occurs it will be signalled as a LISP error. If error-p is 

false and an error occurs, the error message will be returned as a string. If no error occurs, 

de 1 etef returns ni 1. 

pro b e - f i 1 e filename [Function] 
This pseudo-predicate is false if there is no file named filename, and otherwise returns a filename 

which is the true name of the file (which may be different from filename because of file links, 

version numbers, or other artifacts of the file system; see t rue n arne (page 260». 

file-creation-date fik [Function] 
file can be a filename or a stream which is open to a file. This returns the creation date of the file as 

an integer in universal time format, or nil if this cannot be determined. 

file-author file [Function] 
file can be a filename or a stream which is open to a file. lbis returns the name of the author of the 

file as a string, or nil if this cannot be determined. 

f i 1 e po s file-stream &0 pt ion a 1 position [function] 
f i 1 e po s returns or se~ the current position within a random-access file. 

(f il epa s file-stream) returns a non-negative integer indicating the current position within the 

file-stream. or nil if this cannot be detcnnined. Nonnally, the position is zero when the stream is 

first created.· For a : character (page 268) stream, the position is in units of characters; for a 

: binary (page 268) file, the position isin bytes. 

(f i 1 epa s file-stream position) set') the position within file-stream to be positioll. The position 

may be an integer, or nil for the beginning of the stream, or t for the end of the stream. If the 

integer is too la rge. an error occurs (the f i 1 e -1 eng t h (page 270) fu nction retu rns the length 



270 ("0\1\10'< LISP RUTRE;\CE ;\L\~UAL 

beyond which f i 1 epos may not access). \Virh two arguments, f i 1 epos is a (side-effecting) 

predicate that is true if it actually performed the operation, or false if it could not. 

f i 1 e -1 eng th file-stream [Function] 
file-stream must be a stream which is open to a file. The length of the file is returned as a 

non-negative integer, or ni 1 if the length cannot be determined. For a : character (page 

268) stream, the position is in units of characters; for a : bin a r y (page 268) file, the position is in 

bytes. 

22.4. Loading Files 

To load a file is to read through the file, evaluating each fonn in it. Programs are typically stored in files; 

the expressions in the file are mostly special forms such as defun (page 42), defmacro (page 91), and 

defvar (page 43) which define the functions and variables of the program. 

Loading a compiled ("fasload") file is similar, except that the file does not contain tex~ but rather pre

digested expressions created by the compiler which can be loaded more quickly. 

load filename &key : package : verbose : noerror : preserve-defaul ts [Function] 
This function 10ads the file named by filename into the Lisp environment. It is assumed that a text 

(character file) can be automatically distinguished from an object (binary) file by some appropriate 

implementation-dependent means, possibly by the file type. If the filename does not explicitly 

specify a type, and both text and object types of the file are available in the file system, load 

should try to select the more appropriate file by some implementation-dependent means. 

The : package keyword argument can be used to specify the package into which to load the file; it 

can be either a package or the n~mc of a package as a string or a symbol. If: n oe r r 0 r is specified 

and not nil, loa d just returns nil if the file cannot be opened. If the file is successfully loaded, 

load always returns a non-n i 1 value. 

load maintains a default filename in the variable load-pathname-defaults (page 265), 
used to default missing components of the jilenarne argtiment~ thus ( loa d "tt) will load the same 

file previously loaded. Nonnal1y load updates the filename defaults from filename, but if 

: pre s e r v e - d e f au 1 t s is speci fled and not nil. this is suppressed. 

22.5. Accessing Directories 

*** still missing *** 

• 



Cli31)ter 23 

Errors 

***This chapter still needs a lot of work! *** 

*** right now this is completely wrong *** 

COMMON LISP handles errors through a system of conditions. One may establish handlers which gain 

control which conditions occur, and signal a condition when an error actually occurs. When the system or a 

user function detects an error it signals an appropriately named condition and some handler eS1:f1blished for 

that condition will deal with it 

The condition mechanism is completely general and could be used for purposes other than "error" 

handling. There are some functions supplied in COMMON LISP which make use of the condition mechanism 

to handle errors in a convenient way. 

23.1. Signalling Conditions 

Condition handlers are associated with conditions (see next section). Every condition is essentially a name, 

which is a symbol (possibly n; 1 ). When an unusual SItuation occurs. such as an error, a condition is 

signalled. The system (essentially) searches up the stack of nested function invocations looking for a handler 

establised to handle that condition. The handler is a function which gets caned to deal with the condition. 

signal condition-name &rest args [Function] 

This searches through all currently established condition handlers, perhaps twice, starting with the 

most recent. If it finds one which was established to handle nil or condition-name. then it cans that 

handler with a first argument of condition-name and with args as the rest of the arguments. If the 

first value returned by the handler is n; 1, s; gna 1 will continue searching for another handler; 

otherwise it will return the first two values returned by the handler. If condition-name is not t, and 

if no handler was willing to handle the condition, then a second pass of the established condition 

handlers is made. searching for any handler established to handle t. If one is found that is used in 

the same manner as in the first pass search. If there is stm no willing handler found then s; gn a 1 

returns n; 1. 

- 271 -



272 CO\1I\10:\ LISP RFFERE\CE MAr-.;UAL 

Thus a handler set up to handle condition nil will handle all conditions which are not handled by a more 

recently established handler. This is intended to make it easy to set up a debugger which intercepts all errors 

and· handk~ them itsc1f. Note that such a handler doesn't have to actually handle all conditions; it will be 

offered the chance to do so but can return nil to refuse any condition which it doesn't wish to handle. 

Conditions established to handle condition t will handle any condition for which a more specific willing 

handler can't be found. This makes it easy to set up, at any time, a handler which which will be given a chance 

to handle all conditions that no one else wants. 

23.2. Establishing Handlers 

Condition handlers are established through the con d i t ion - bin d or co nd i t ion - set q special forms. 

These have behaviors somewhat analagous to , et and setq. They make use of the ordinary variable binding 

mechanism, so that if a condi t ion -b i nd is thrown through the handlers get disestablished. It also means 

that in multiple stack group implementations of COMMON LISP the ·handlers are established only in the 

current stack group. 

condition-bind bindings lfonn}* [Specialjorm] 

This is used to establish handlers for conditions then perform the body in that established handler 

environment 

For example: 

For example: 

(condi t i on-b i nd (( cond1 hand}) 
(cond2 hand2) 

fonnl 
fonn2 

fonnn) 

(condm handm» 

Each condj is either the name of a condition or a list of names of conditions. Each handj is a form 

which is evaluated to produce a handler function. No guarantee is made on the order of evaluation 

of these forms, but the conditions are established in sequential order. so that condl will be looked 

at first. The expressions for.mj are then evaluated in order; the values of all but the last are 

discarded (that is. the body of the cond i t i on -b i nd form is an implicit progn).'rhe value of the 

condition-bind form is the value of forlllll (if the body is e.mpty, nil is the value). The 

established conditions become disestablished when the cond i t i on-b i nd form is exited. 

As an example consider: 

For example: 



ERRORS 273 

(condition-bind « :wrong-type-argument 'some-wta-handler) 
«silliness-l silliness-2) silliness-handler» 

(format msgfiles '''Yodle-eh-eh-ho!'') 
(+ 23 nil» 

This sets up the function some-wta-handler to handle the :wrong-type-argument 

condition. The value of the symbol s ill in e s s - han d 1 e r is set up to handle both the 

s ill in e s s -1 and s ill in e s s - 2 conditions. With these handlers set up, it outputs a message 

and then causes a :worng-type-argument error by trying to add 23 to nil, which is not a 

number. The condition handler some-wta-handl er will be given a chance to handle the error. 

cond i t i on -setq {spec}* [~pecial fonn] 

The condition-setq fonn is used to establish condition handlers as a side effect of some 

operation -- for instance loading a file which contains condition handlers and a cond i t ion -setq 

fonn to establish them. 

It takes the form: 

For example: 

(condit ion-setq condl hand] 
cond2 hand2 

condn handn) 

Each condj is either the name of a condition or a list of names of conditions. Each handj is a form 

which is evaluated to produce a handler function. No guarantee is made on the order of evaluation 

of these fonns, but the conditions are established in sequential order, so that condl will be looked 

at first. 

The conditions established by cond it i on - s etq remain established until execution is unwound 

(either nonnally or by being thrown) past the most recent cond i t i on-b i nd. Multiple uses of 

con d i t ion - set q cause f:he most recently established handler to be tried first when a condition is 

signalled. For example. consider: 

For example: 

(condition-setq :wrong-type-argument 'default-wta-handler) 
(+ 23 nil) 
(condition-setq :worng-type-argument 'hairy-wta-handler) 
(+ 105 nil) 

When the first : wro n 9 - type - a r gume n t error is signalled (because of the attempt to add 23 to 

ni 1) the function defaul t-wta-handl er will be given first chance at handling the error. 

When the second error is signalled (because of the attempt to add 105 to nil) the function 

h air y - w t a - han d 1 e r will be given first chance. If it declines (by returning nil as its first result) 

then defaul t-wta-handl er will be given a chance. 



274 CO\I\10:-; LISP REFEIZr~CE \V\NCAL 

23.3. Error IIandlers 

When sign a 1 (page 271) invokes a condition hand1cr it passes it the condition-name along with whatever 

other arguments were handed to sign a 1. Condition hand1crs set up to handle errors can safely assume 

certain things about those arguments for all errors signalled by the system or signalled by user code via the 

functions ferror (page 275) and cerror (page 275). 

An error handler can expect to be invoked as 

For example: 

(funca 11 * error-handler 
condition-name 
control-string 
proceedable-flag 
restartable-flag 
function 
params) 

where params may vary in length. Handlers for particular condition names may expect certain parameters 

to always be included in the params list. The parameters supplied by the system for certain standard 

conditions are given in ???section-ref"standard condition names"??? The program siganalling the condition is 

free to pass any extra parameters. All error handlers should therefore be written witli &r est arguments. 

The condition-name is the name of the condition signalled. 

control-string should be a string which when given to f 0 rrna t (page 243) as a control string, along with 

params as additional arguments, produces some reasonable explanation of the error. It is up to the handling 

function whether it makes use of that control string. 

The third and fourth arguments are flags. If the proceedable-jlag is non-n i 1 then the error is said to be 

proceed able. If the restartable-flag is non-n i 1 then the error is said to be restarlable. The values of these flags 

may be used by the sig'nallers and handlers to pass more information than a single bit. It is up to the user how 

these are used. For instance, a set of signallers and handlers may pass information concerning the values 

expected from the handler when an error is proceeded. 

junction is the name of the function which initiated the signalling of the error, or nil if the signaller can't 

determine it. 

An error handler can do some processing and then make one of four respones to the error (assuming the 

error was signalled with ferror (page 275) or cerror (page 275». It can return ni 1 to decline handling 

the error, it can proceed, it can restart or it can throw. 

Throwingsimpl¥ consists of using the function throw (page 87) to some tag outside the scope of the error . 

Procefdillg and Restarting are achieved by returning from the error handler with multiple values. The first • 



LRIZ0RS 275 

value should be one of the following: 

:return This means to proceed the crror. If the error was signalled by c err 0 r and the error was 
proceedahle then the second value rCLUrned with : return is returned as the value of 
cerror.lfthe error was not proceedablc (ahvays the case for errors signalled by ferror, 
then the system forces a b rea k (page 277). 

:error-restart 
This means to restart the error. If the error was signalled by cerror and the error was 
restartable then the second value returned with: error-restart is thrown to the catch 
tag err 0 r - res tar t. If the error was not· restartable (always the case for errors signalled 
by ferror, then the system forces a break (page 277). An error may also be simply 
restarted frOlTI the handler by throwing directly from there to a catch tag of 
err 0 r - res tar t, but that is not as bullet proof if the error wasn't in fact restartable. 

No other values are legal as the fIrst values returned by error handlers. For errors signalled by ferror or 

cerror illegal values will force a break. 

23.4. Signalling Errors-

LISP programs can signal errors by using one of the functions ferror (for fotal e"or) or cerror (for 

continuable e"or). 

ferror condition-name control-string &rest params [Function] 

fer r 0 r signals the error condition condtttion-name. The associated error message is obtainable by 
calling format (page 243) on control-string and params. The error is neither proceedable nor 

restartable. Function ferror never returns. It can be thrown through however. A usual COMMON 

LISP environment will have some sort of error handler established for condition name t. Thus the 

user can get at least minimal error handling with ferror using a null condition-name knowing that 

the error will at least be signalled to the user console. 

cerror proceedable-flag restartable-flag condition-name control-string &rest params [Function] 

cerror is similar to ferror (see above) except for proceedable-flagand restartable-flag. These 

arc passed through to the eventual error handler. If c err 0 r is called with a non- n i , 

proceedable-flag the caner should be prepared to accept the returned value of cerror and use it to 

retry the operation that failed. If c err 0 r is passed a non- n i' reSlarlable-flag then there shou1d be 

a catch for.taf error- res tart somewhere above the caller. 

error-restart {form}* [Macro] 

err 0 r - res tar t can be used to denote a section of a program that can be restarted if certain 

errors occure during its execution. The form of an er ror- res tart is: 

For examp1e: 



276 

-----------------------------------------------------------------

(error-restart 
form 1 
fonn2 

fon11n) 

('0\1\10); LISP RJTlJ~F\CF \L\'\LAL 

The cxprcssions/orny are evaluated in order: the values of all but the last are discarded (that is, the 

body of the error-restart form is an implicit progn). The value of the error-restart 

form is the value of /on1111 (if the body is empty, nil is the value). If a reslaribale error occurs 

during the evaluation of one of the /on11fs, and the handler responds by forcing a a restart, then the 

forms, beginning with form] will be re-evaluated in order. The only way a restartable error can 

occur is if cerror is called with a 'restartable-jlagwhich is non-n i 1. 

e r ro r - res ta r t is implemented as a macro which expands into: 

For example: 

(prog () 
loop (*catch 'error-restart 

(return (progn lonnI 
fonn2 

fonnn» ) 
(go 1 oop) ) 

c he c k - a r 9 var-name predicate description 
type-name [Macro] 

The check - arg macro is used to check arguments to make sure they are. valid. signal a 

: wrong- type-argumen t condition if they are not, and use the value returned by the handler to 

replace the in valid value. 

var-name is the name of the variable whose value is being checked to be of the correct type. If the 

error is proceeded this variable will be setq'ed to a replacement value. predicate is a test for 

whether the variable is of the correct type. It can either be a symbol whose function definition takes 

one argument and returns non-n i 1 if the type is correct, or it can be a non-atomic form which is' 

evaluated to check the type - .usual1y such a form would contain a reference to the variable 

var-name. description is a string which expresses predicqte in English. It is used in error messages. 

type-name gets passed to the : wrong-type-argument handler as the first required parameter of 

that class of error handlers (see section ??? «<section ref"standard condition names"»». 

Thus check -arg has what consistitutes a valid argument specified to it in three ways. predicate is 

executable, descriptioll is human understandable and type-name is program understandable. 

check - arg uses predicate to determine whether the value of the variable is of the correct type. If 

it is not a : wrong-type-argument condition is signalled with four parameters ~ type-name. the 

bad value, the symbol var-name and description. If the error is proceeded, the variable is set to the 

value returned and check-arg repeats the process. Only the first of these two parameters are· 

defined for: wrong-type-argument handlers, and so theyt should not depend on the meanin 

of more than these two. 



ERRORS 

Consider for example: 

For example: 

(check-arg foo 
(and (fixnump faa) « foo 0.» 
"a negative fixnum" 
negative-fixnum) 

277 

Iffoo is not of the right type an error will be signalled and a :wrong-type-argument which 

makes use of the control-string and parameters passed to it will print the message (at least): 

Argument faa was 33, which is not a negative fixnum. 

23.5. Break-points 

Often error handlers want to pass control to the user's terminal. The user can then examine variable 

bindings and respond to the error. or perhaps just start some new computation. Control is passed by using the 

special fonn b rea k. 

break lag [conditional-fonn] [Special fonn] 
This enters a breakpoint loop. which is similar to a LISP top level100p. (break tag) will always 

enter the loop: (break tag conditional-fonn) will evaluate conditional-form and only enter the 

break loop ifit returns non-n; 1. If the break loop is entered. break prints out 

For example: 

; bkpt tag 

and then enters a loop reading, evaluating, and printing forms. After reading a form b rea k checks 

for the following special cases. If the symbol <a 1 tmode>p is typed, break return nil. If the the 

symbol <a1tmode>r is typed, break throws to a catch tag error-restart. If the symbol 

<a 1 tmode>g is typed, break throws back to the LISP top level. If (return form) is typed, 

break" evaluates/orm and returns the result. In other respects a break loop appears very simialr to 
a top level loop. 

23.6. Standard C.ondition Names 

Some condition names are used by the COMMON LISP system itself. They are listed below along with the 

arguments they expect and the conventions followed in use of these conditions. All error condition handlers 

expect at least four arugments: condition-name, control-SIring. proceedbale-jlag, and reslarlable-jlag. In 

addition some condition names expect particular values for the fifth and subsequent arguments. These are 

included in the list below. It is always permissible to supply even more arguments than those required. 

*** this list is not yet complete *** 

:wrong-type-argument 
Requires type-flame and value. where the first is a symbol indicating what type of value is 



278 CO\t\iO!\ LISP H FFERl-.:\CE \L'\?\L~AL 

required. and the second is the bad value slipplied to the fnclion signalling the error. If the 
error is proceeded. the value returned by the handler (that is. the second vJlue returned; • 
the first would be : return) should be a new value for the argument to be used instead of 
the one which was of the wrong type. 

:inconsistent-arguments 
Requires list-of inCOl1sistent-argumelll-va!ues. This condition is signalled when the 
arguments to a function are inconsistent with each other, but the fault does not lie with any 
particular one of them. If the error is proceeded, the value returned by the handler should 
be returned by the function whose arguments were inconsistent. 

• 



ChuIlter 24 

The Conlpiler 

The compiler is a program which makes code run faster, by translating programs into an implementation

dependent form (subrs) which can be executed more efficiently by the computer. Most of the time you can 

write programs without worrying about the compiler; compiling a file of code should produce an equivalent 

but more efficient program. When doing more esoteric things, one may need to think carefully about what 

happens at "compile time" and what happens at "load time". Then the difference between the syntaxes "#. " 

and "#," becomes important, and the eval-when (page EVAL-WHEN-FUN) construct becomes 

particularly useful. 

Most declarations are not used by the COMMON LISP interpreter; they may be used to give advice to the 

compiler. The compiler may attempt to check your advice and warn you if it is inconsistent~ 

Unlike most other LISP dialects, COMMON LISP recognizes spec i a 1 declarations in interpreted code as 

well as compiled code. This potential source of incompatibility between interpreted and compiled code is 

thereby eliminaled in COMMON LISP. 

The internal workings of a compiler will of course be highly implementation-dependent The following 

functions provide a standard interface. to the compiler, however. 

c omp i 1 e name &0 p t ion a 1 defin~tion [Function] 
If definition is supplied, it should be a lambda-expression, the interpreted function to be compiled. 

If it is not supplied, then name should be a symboi with a definition that is a lambda expression or 

select expression; that definition is compiled and the resulting compiled code is put back into the 

symbol as its function definition. 

The definition is compiled and a subr object produced. If name is a symbol, then the subr object is 

installed as the global function definition of the symbol and the symbol is returned. If name is 

nil, then the subr object itself is returned. 

For examp1e: 

- 279-



280 

(defun foo ... ) ;> foo 
(compile 'faa) => faa 

; Now foo runs faster. 

CO\r\IO>~ LISP RITEi{P\CE l\1 .. '\~U:'\L 

; A function definition. 
; Compile it. 

(compile nil '(lambda (a b e) (- (* b b) (* 4 a e»» 
=> a compiled function of three arguments which computes b2-4ac 

eomfile input-filespec &optional output-filespec [Function] 
Each argument should be a valid file name specifier for wit h - ope n - f i 1 e (page 267). The file 

should be a LISP source file; its contents are compiled and written as a binary object ("F ASL") file 

to output-filespec. The output-filespec defaults in a manner appropriate to the implementation's file 

system conventions. 

disassemble name-or-subr [Function] 
The argument should be either a function object, a·lambda-expression, or a symbol with a function 

definition. If the relevant function is not a compiled function, it is first compiled. In any case, the 

compiled code is then "reverse-assembled" and printed out in a symbolic format. This is primarily 

useful for debugging the compiler, but also often of use to the novice who wishes to understand the 

workings of compiled code. 

Implementation note: Implementors are encouraged to make the output readabJe. preferably with helpful 
comments. 

• 



• 

TilE CO\fPII,ER 

Rcferclices 

[1] Brooks. Rodney 1\.: Gabriel, Richard P.: and Steele, Guy L. Jr. 
An Optimizing Compiler for Lexically Scoped LISP. 
In Proceedings of lhe 1982 Symposium 011 Compiler Construction, pages 261-275. ACM SJGPLAN, 

Boston, June, 1982. 
Proceedings published as ACId SIGPLAN Notices 17,6 (June 1982). 

[2) Coonen, Jerome T. 
An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic. 
Computer 13(1):68-79, January, 1980. 
Errata for this paper appeared as [3]. 

[3) Coonen, Jerome T. 
Errata for • An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic'. 
Computer 14(3):62, March, 1981. 
These are errata for (2). 

[4) Fateman, Richard 1. 
Reply to an Editorial. 
ACM SIGSAM Bulletin 25:9-11, March, 1973. 

[5) IEEE Computer Society Standard Committee, Microprocessor Standards Subcommittee, Floating-
Point Working Group. , 
A Proposed Standard for Binary Floating-Point Arithmetic. 
Computer 14(3):51-62, March, 1981. 

[6) Moon, David. 
MacLISP Reference Manual. Revision O. 
M.LT. Project MAC, Cambridge, Massachusetts, April 1974. 

[7) Moore, J. Strother II. 
The InlerLISP Virtual Machine Specification .. 

281 

Technical Report CSL 76-5, Xerox Palo Alto Research Center, Palo Alto, California, September, 1976. 

[8) Penfield, Paul, 1r. 
Principal Values and Branch Cuts in Complex APL. 
In APt 81 Conference Proceedings, pages 248-256. ACM SIGI\PL, San Francisco, September. 1981. 
Proceedings published as APL Quote Quad 12, 1 (September 1981). 

[9] Steele. Guy Lewis Jr., and Sussman, Gerald Jay. 
The Revised Report on SCHEA4E: A Dialect ofLISP. 
Al Memo 452, Massachusetts Institute of Technology Artificiallntcl1igence Laboratory, Cambridge, 

Massachusetts. January, 1978. 

[10) Teitelman, Warren. et al. 
IntcrLISP Reference A4a1lual 
Xerox Palo A]to Research Center, Palo Alto. California, 1978. 
Third revision . 



282 ('0\1\10:\ LISP R;:J·rRF:';CE l\l:\NL;AL 

[11] Weinreb, Daniel, and Moon, David. 
LI.)'P k/achiflc l\lallua/, Fourth Ediliol1. 
Jv1assachusctts lnstitute of Technology Artificial Intelligence Laboratory, Cambridge, l\1assachusetts, 

July 1981. • 

• 



T11E CO\lPILER 

COMMON LISP SUlnnlary 

sample-function argl arg2 &optional a~3 arg4 

sample-variable 

sample-constant 

samp1e-special-form [name] ({var}*) {form}+ 

samp 1 e-macro var {tag I statement}* 

deftype name varlist {form}* 

defun name lambda-list {( dec 1 are {declaration} * )}* [doc-string] {form}* 

defse1ect name [doc-string] {(keys lambda-list {(declare {declaration}*)}* (form}*)}· 

defvar name [initial-value [documentation]] 

defconst name initial-value [documentation] 

nil 

t 

typep object &optional type 

subtypep type1 type2 

null object 

symbol p object 

atom object 

consp object 

1 is tp object 

numberp object 

integerp object 

rat i ona 1 p object 

floatp object 

comp 1 exp object 

characterp object 

str i n9P object 

vectorp object 

arrayp object 

funct ionp object 

subrp object 

c10surep object 

eq x y 

eql x y 

equal·xy 

equal p xy &opt iona 1 fuzz 

not x 

and {fonn}* 

or {form}

quote object 

funct ion fn 

283 

[Function] 

[Variable] 

[Constant] 

[Special form] 

[Macro] 

[Special form] 

[Special form] 

[Special form] 

[Special form] 

[Special form] 

[Constant] 

[Constant] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Special form] 

[Special form] 

[Special form] 

[,~ilccial form] 



284 

c los ure varlis, Junction 

s yme val symbol 

fsymeval symbol 

boundp symbol 

fboundp symbol , 
macro-p symbol 

special-form-p symbol 

setq {var Jorm}· 

psetq {var Jorm}· 

set symbol value 

f set symbol value 

makunbound symbol 

fmakunbound symbol 

set f place newvalue 

swapf place newvalue 

ex c h f place1 place2 

a p ply function arglist 

funcall In &rest arguments 

funcal'· /&rest args 

progn {form}" 

prog 1 first {form}" 

prog2 first second {form}'" 

1 et ({var I (var value)}·) iform}'" 

let'" ({var I (var value)}"') {form}* 

·progv symbols values {form}· 

fl et ({(name lambda-list {dec/are-Jorm}· [doc-string] {form}·)}·) iform}· 

1 abe 1 s ({( name lambda-list {dec/are-form}· [doc-string] iform}*)}*) {form}* 

macrolet ({(name varlist {form}")}*) {form}" 

cond {( test {form}*)}" 

if pred then [else] 

when pred {form}* 

un 1 ess pred {form}" 

case keyJorm {( ({key}") {form}")}" 

typecasekeyform {(type {form}")}" 

b' ock name {form}" 

return result 

return-from block name relult 

. do ({ (var [init [step]])}") (end-test {form}·) {tag I statement}" 

do· bindvpecs endtest {form}" 

dolist (varlistJorm [re.\uliform]) {tag I statement}* 

dot imes (var couniform [resulljorm]) {tag I statement}· 

mapcar Junction list &rest more-lists 

mapl ist Junction list &rest more-lists 

CO\1MO:--': 1.ISP RLFFRE:\CE \IANLAL 

[Function} 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Special/orm] 

[Special/arm] 

[Function] 

[Function] 

[Function] 

[Function] 

[Macro] 

[Macro] 

(Macro] 

[Function] . 

[Function] 

[Function] 

[Special/arm] 

[Special/arm] 

[Special/arm] 

[Macro] 
-: ,t;;.. • ....... <. [Special/orm] 

[Special form] 

[Special/arm] 

[Special form] 

[Special/orm] 

[Special form] 

[Special/arm] 

[Special/orm] 

[Special form] 

[Special form] 

[Special Jorm] 

[Special form] 

[Special/arm] 

[Special/arm] 

[Special/orm] 

[Special form] 

[Special/orm] 

[Special form) 

[I'unction] -[Function] 



TilL CO\1PII.ER 

mapc junclion list &rest more-lists 

rna p 1 junction list & res t more-lists 

map can ju nClion list & res t morc-lists 

mapcon junction liSl &rest more-lists 

prog ({rar I (var [ini/l)}*) {tag I statement}* 

prog* 

go lag 

values &rest args 

values-list list. 

multiple-value-list form 

mvcall Junction {form}* 

mvprogl Jorm {form}* 

mu 1 tip 1 e-va 1 ue-b i n d ({ var}*) values-Jorm lform}* 

multiple-value variables form 

catch tag {form}-

catch-all catch-Junction {form}* 

u nw i n d - a 11 catch-Junction {form}-

unwi nd-protect protected-Jorm {cleanufrform}

throw tag result 

macro name (var) {form}* 

defmacro name varUst {form}

defmacro-check-args 

defmacro-maybe-displace 

macro-expansion-hook 

dis P 1 ace macro-call expansion 

macroexpand Jorm 

macroexpand-l Jorm 

dec 1 are {declaration}-

1 oca 11 y {declare-form}· {form}

the type form 

get p r symbol indicator &0 p t ion a 1 default 

put p r symbol indicator newvalue 

r emp r symbol indicator 

p 1 i s t symbol 

get f place indicator &0 p t ion a 1 default 

put f place indicator newvalue 

r emf place indicator 

get-propert i es place indicator-list 

map-propert ies function place 

get-pname sym 

.samepnamep syml sym2 

make~symbol pnamc 

copysymbo 1 sym &opt iona 1 copy-props 

285 

[Function] 

[Function] 

[function] 

[Function] 

[Special/arm] 

[Special }orm] 

[Special/orm] 

[Function] 

[Function] 

[Special/arm] 

[Special/arm] 

[Special/orm] 

[Special/arm] 

[Special/arm] 

[Special/arm] 

[Special/arm] 

[Special/arm] 

[Special/orm] 

[Special/orm] 

[Macro] 

[Macro] 

[Variable] 

[Variable] 

[Variable] 

[Function] 

[Function] 

[Function] 

[Special/orm] 

[Special/orm] 

[Special/orm] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Macro] 

[Macro] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[I-unction] 



286 

gensym &optional x 

gentemp prefix &opt ional package 

symbo l-pack age !l)'m 

make-package package-name &optional copy-from 

package 

pack age package 

package-name package 

begin-package package-name 

end-package package-name 

intern string-or-symbol &opt i ona 1 package 

remob string-or-symbol &opt i ona 1 package 

i nternedp string-or-symbol &opt i ona 1 package 

externa 1 p string-or-symbol &opt iona 1 package 

export symbols &opt iona 1 package 

unexport symbols &opt ional package 

import symbols &opt iona 1 to-package 

shadow symbols &opt i ona 1 to-package 

use from-package &opt i ona 1 to-package ignore-list force-list 

provide package 

requ i re package &opt i ona 1 pathname 

package-use-confl i.cts /rom-package &opt ion.al to-package 

do-symbol s (var [package] [result-fonn]) {tag I statement}* 

do-ex tern a l-symbo 1 s (var [package] [result-form]) {tag I statement}· 

do-internal-symbols (var [package] [result-form]) {tag I statement}· 

do-all-symbols (var [result-form]) {tag I statement}· 

zerop number 

p 1 us p number 

mi nusp number 

odd p integer 

evenp integer 

= number &rest more-numbers 

/= number &rest more-numbers 

< number & res t more-numbers 

> number &rest more-numbers 

<= number &rest more-numbers 

>= number &rest more-numbers 

max number &rest more-numbers 

min number &r est more-numbers 

fuzzy= number} number2 &optional fuzz 

fuzz i ness number 

+ &rest numbers 

- number &res t more-numbers 

* &rest numbers 

CO.\1\10;\ LISP R1TFRE:\CE \1A~CAL 

[Funclion] 

[FuncTion] 

[Function] 

[Function] 

[Yariable] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

{Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Special form] 

[Special form] 

[Specialform] 

[Special form] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 



• 

TIlE CO'\lPIl.ER 

/ number &res t more-numbers 

1+ number 

1- number 

in e f place [delra] 

deef place [delta] 

conjugate number 

ged &rest rationals 

1 cm rational &rest more-rationals 

exp number 

expt base-number power-number 

log number &0 p t ion a 1 base 

sqrt number 

i s q r t integer 

abs number 

phase number 

signum number 

sin radians 

cos radians 

tan radians 

cis radians 

asin number 

acos number 

atan y &optional x 

pi 

sinh numbe,r 

cosh number 

tanh number 

asinh number 

aeosh number 

atanh number 

float number &optional other 

ra tiona 1 number 

rationalize number &optional tolerance 

numerator rational 

denomi nator rational 

fl oor number &opt i ona 1 divisor 

ce i 1 number &op t ion a 1 divisor 

trune number &opt ional divisor 

round number &opt i ona 1 divisor 

mod number &opt ional divisor tolerance 

rem number &opt iona 1 divisor tolerance 

ffl oor number &opt ional divisor 

feeil number &optional dil'isor 

287 

[Function] 

[Function] 

[Function] 

[Macro] 

[Macro] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Variable] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[.Function) 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 



288 

ftrunc number &optional divisor 

fround number &opt ional divisor 

float-fraction float 

fl oat -exponent jloat 

s ca 1 e-fl oa t float integer 

complex rea/part &optional imagpart 

rea 1 part number 

imagpart number 

109 i or &res t integers. 

logxor &res t integers 

logand &rest integers 

logeqv &res t integers 

lognand integer1 integer2 

lognor integer1 integer2 

logandcl integer1 integer2 

logandc2 integer1 integer2 

logorel integer1 integer2 

logore2 integer1 integer2 

boo 1 e op integer1 integer2 

boole-elr 

boole-set 

boole-l 

boole-2 

boole-cl 

boole-e2 

boole-and 

boole-ior 

boole-xor 

boole-eqv 

boole-nand 

boole-nor 

boole-andel 

boole-ande2 

boole-orel 

boole-ore2 

lognot integer 

logtest integer1 integer2 

logbitp index integer 

ash integer count 

logeount integer 

haulong integer . 

haipart integer count 

by t e size position 

('O,\1\1U,\ IISP TCTERF\CE \1,\\C:\L 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Variable] 

[,Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] . 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable1 

[Variable] 

[Variable] 

[Variable1 

[Variable) 

[Function] 

[Function1 

[Function] 

[Function] 

[Function1 

[Function] 

[Fun"tion] 

[Function] 

• 

• 



. '1'1 IE CO\1PILER 

byte-s i ze bytes pee 

byte-pos it i on bylespee 

1 db bylespec integer 

1 db-test bytes pee integer 

rna s k - fie 1 d byrespec integer 

d p b newbyte byte~pec integer 

deposit-field newbyre bytespec integer 

random numberl &optional number2 

random-state 

random-state &opt iona 1 state 

most-positive-fixnum . 

most-negative-fixnum 

most-positive-short-float 

least-positive-short-float 

least-negative-short-float 

most-negative-short-float 

most-positive-single-float 

least-positive-single-float 

least-negative-single-float 

most-negative-single-float 

most-positive~double-float 

least-positive-double-float 

least-negative-double-float 

most-negative-double-float 

most-positive-long-float 

least-positive-long-float 

least-negative-long-float 

most-~egative-long~f:loat 

short-float-radix 

single-float-radix 

double-float-radix 

. ··long-float-radix 

short-float-epsilon 

single-float-epsilon 

double-float-epsilon 

long-float-epsilon 

short-float-negative-epsilon 

single-float-negative-epsilon 

double-float-negative-epsilon 

long-float-negative-epsilon 

char-code-limit 

char-font-limit 

char-bits-l imit 

289 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Variable] 

[Function] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

. [Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 

[Constant] 



290 

standard-charp char 

graphicp char 

string-charp char 

al phap char 

upper casep char 

lowercasep char 

bothcasep char 

digitp char &optional (radix 10.) 

alphanumericp char 

char= charI char2 

char-equa 1 charI char2 

char< charI char2 

char> charI char2 

char-l essp charI char2 

char-greaterp charI char2 

character object 

char-code char 

char-b i ts char 

char-font char 

code-char code &optional (bits 0) (font 0) 

make-char char &optional (bits 0) (font 0) 

char-upcase char 

char-down case char 

digit-charp weight &optional (radix 10.) (bits 0) (font '0) 

digit-weight weight &optional (radix 10.) (bits 0) (font 0) 

char-int char 

i nt-char integer 

char-name char 

name-char sym 

char-control-bit 

char-meta-bit 

char-super-bit 

char-hyper-bit 

char-b it char name 

set-char-b it char name newvalue 

e 1 t sequence index 

sete 1 t sequence index newvalue 

subseq sequence start &opt iona 1 end 

copyseq sequence 

1 ength sequence 

reverse sequence 

nreverse sequence 

to resull-type sequence 

CO\1\10~ LISP REFFREi\CE ;\IA~UAI. 

[Ful1uion] 

[Function] 

[Function] 

. [Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

. [Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Constant] 

[Constant] 

[Constant] 

[Constant1 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Funclion] 

[Function] 

[Function] 



TIlE CO'\1P1LFR 

catenate rcsu/r-(lpe &rest Sf<jUCr/CCS 

map re-sufl-type jU1U:tion sequence &J'es t marc-sequences 

s orne predicate sequence &r est more-sequences 

every predicate sequence &rest more-sequences 

notany predicate sequence &res t more-sequences 

notevery predicate sequence &res t more-sequences 

fi 11 sequence item &key : start : end 

replace sequence1 sequence2 &key :start :end :startl :endl :start2 ~end2 

remove item sequencf! &key :from-end :test :test-not :start :end 

: count : key' 

remove-if test sequence &key : from-end : start : end : count : key 

remove-if-not test sequence &key : from-end : start : end : count : key 

del ete item sequence &key : from-end : test : test-not : start : end 

:count :k.ey 

delete-if test sequence &key :from-end :start :end :count :key 

del ete-if-not test sequence &key : from-end : start : end : count : key 

subst itute newitem olditem sequence &key : from-end : test : test-not 

:start :end :count :key 

substitute-if newttem test sequence &key :from-end :start :end 

:count :key 

subst itute-if-not newitem test sequence &k.ey : from-end : start :end 

:count :key 

nsubst itute newitem olditem sequence &key : from-end : test : test-not 

:start :end :count :key 

nsubstitute-if newitem test sequence &key :from-end :start :end 

:count :k.ey 

nsubstitute-if-not newitem test sequence &key :from-end :start :end 

:count :key 

find item sequence &key : from-end : test : test-not : start : end : key 

find-if test sequence &key : from-end : start : end : key 

find-if-not test sequence &key : from':end : start : end : key 

position item sequence &k.ey :from-end :test :test-not :start :end :key 

position-if test sequence &key :from-end :start :end :key 

position-if-not test sequence &key : from-end : start : end : key 

count item sequence &key : from-end : test : test-not :'start : end : key 

count-if leSI sequence &key : from-end : start : end.: key 

count-if-not lest sequence &key :from-end :start :end :key 

mismatch sequence} sequence2 &key : from-end: test : test-not 

:start :end :startl :start2 :endl :end2 

maxprefix sequence} sequence2 &key : from-end : test : test-not 

:start :end :startl :start2 :endl :end2 

maxsuffix scquence1 sequrnce2 &key : from-end : test : test-not 

:start :end :startl :start2 :endl :end2 

291 

[Function] 

[Function] 

I Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

. [Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Junction] 

[Function] 

[Function] 

[Function] 

[Function] 

[function] 

[Function] 

[Function] . 

[Function] 

. [Function] 



292 (0\11\:10:--; LISP RFFFRFNCE \1ANCAL 

search sequence1 sequence2 &key : from-end : tes t : tes t-not [Function] 

:start :end :startl :start2 :endl :~nd2 

sort sequence predicate &key : key 

stable-sort sequence predicate &key :key 

merge sequence1 sequence2 predicate &key : key 

car x 

cdr x 

c ... r x 

cons x y 

tree-equa 1 x y 

endp object 

list-length list &optional limit 

nth n list 

nthcdr n list 

last list 

1 ist &rest args 

1 is t * arg &res t others 

make-l ist size &optional value 

append &rest lis~ 

copyl ist list 

copyal ist list 

copy tree object 

revappend x y 

ncone &rest lists 

nreconc x y 

push item place 

pushnew item place 

pop place 

but 1 ast list &opt i ona l n 

nbutlast list &optional n 

but ta i 1 list sublist 

rplacaxy 

rplacd x y 

setnth n list newvalue 

sub s t new old tree 

nsubst new old tree 

substq new old tree 

nsubstq new old tree 

sub 1 i s atist tree 

nsub 1 is aUst tree 

member item list &key : test : test-not : key 

member-if predicate list &key : key 

member- if-not predicate list. Keys {[key] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function1 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Macro] 

[Macro] 

[Macro] 

[Function] 

[Function] 

[Function] 

[Function) 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function1 

[Function) 

[Function} 

[Function] 

[function) • 



TJ f1: CO\IPILFR 

ta i 1 P sublisI liSI 

adjoin item list &key :test :test-not 

union lis'tl list2 &key :test :test-not 

nunion listl list2 &key : test : test-not 

intersection listl list2 &key :tes-t :test-not 

n i n t e r sec t ion listl list2 & key : t est : t est - not 

"setdifference listl list2 &key : test : test-not 

nsetdifference listl list2 &key : test : test-not 

set-exc1usive-or listllist2 &key :test :test-not 

nset-exc1usive-or listl list2 &key :test :test-not 

subsetp listl list2 &key : test : test-not 

aeons key datum a-list 

pa i r 1 is keys data &opt i ona1 a-list 

assoc item a-list &key : test : test-not 

rassoc item a-list &key : test : test-not 

make-eq-hash-table &key :size :rehash-si~e :rehash-thresho1d 

make-eql-hash-table &key :size :rehash-size :rehash-thresho1d 

make-equa1-hash-tab1e &key :size :rehash-size :rehash-thresho1d 

gethash key hash-table &opt iona 1 default 

puthash key value hash-table 

remhash key hash-table 

maphash junction hash-table 

c 1 rhash hash-table 

sxhash S-expression 

make-array dimensions &key :type :initia1-value :initia1-contents 

:fi11-pointer :disp1aced-to :displaced-index-offset 

make-vector kngm &key :type :initial-value :initial-contents 

:fill-pointer 

aref Gn'ay &rest subscripts 

aset new-value array &rest subscripts 

array-type array 

array-al10cated-length array 

array-active-length anny 

array-rank array 

array-dimens ion axis-number array 

array-dimensions array 

array- i n-bounds-p array &rest subscripts 

ve 1 t vector index 

vsetel t vector index newvalue 

vref vector index 

vset" \'ector index newvalue 

bit bil- vector index 

r p 1 a c bit bit- vector index newbit 

293 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 



294 

bit-and &rest bit-vectors 

bit-ior &rest bit-vectors 

b it- xor &rest bit-vectors 

bit-eqv &rest bit-vectOrs 

b it-nand bit-vector! bit-vector2 

b it-nor bit-vector! bit-vector2 

bit-andcl bil-vector! bit-veclor2 

b it-andc2 bit-vectorl bit-vector2 

b it - 0 r c 1 bit- vector 1 bit- v~ctor2 

b it - 0 r c 2 bit-vector 1 bit-vector2 

b it - not bit-vector 

array-reset-fill-pointer a"ay &optional index 

array-push a"ay new-element 

array-push-extend a"ay x &optional extension 

array-pop a"ay 

adjust-array-size a"ay new-size &optional new-element 

array-grow a"ay new-element &rest dimensions 

char SIring index 

rplachar string index newchar 

string= string1 slring2 &key :start :end :startl :endl 

CO\I\10)'; LISP REITRL:\CE J\1A~UAL 

lFunction] 

[Function] 

[FUn(;lion] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

:start2 :end2 [Function] 

string-equal string! string2 &key :start :end :startl :endl :start2 :endl [Function} 

string< string} string2 &key :start :end :startl :endl :start2 

string> string! string] &key :start :end :startl :endl :startl 

string<= string} string2 &key :start :end :startl :endl :startl 

string>= string1 slring2 &key :start :end :startl :endl :startl 

string/= string1 string2 &key :start :end :startl :endl :startl 

string-lessp string! string] &key : start :end 

: start 1 .: endl : startl : endl 

string-greaterp string} string2 &key :start :end 

:end2 

:end2 

:end2 

:endl 

:end2 

:startl :endl :startl :end2 

string-not-lessp ~ring} ~ring] &key :start :end 

:startl :endl :start2 :end2 

string-not-greaterp string1 string2 &key : start :end 

:startl :endl :startl :end2 

string-not-equal string1 string2 &key : start : end 

:startl :endl :start2 :end2 

make-str i ng count &opt iona 1 fill~character 

string-trim charactc,..bag SIring 

string-left-trim characte,..bag string 

string-right-trim characte,..bag string 

string-upcase SIring &key :start :end' 

s tri ng-downcase string &key : start : end 

string-capitalize string &key :start :end 

[Function1 

[Function] 

[Function} 

[Function] 

[Function1 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[function1 

[runction1 

[function] 

[funclion} 

• 



• 

• 

TI IE CO\fPILER 

string x 

defstruct name-and-oplions {siol-description}+ 

eval 

evalhook 

eva~ hook 

standard-input 

standard-output 

error-output 

query-io 

terminal-io 

trace-output 

make-synonym-stream symbol 

make-broadcast-stream &rest streams 

make-concatenated-stream &rest ~reams 

make-io-stream input-stream output-stream 

make-echo-stream input-stream output-stream 

make-string-input-stream string &optional start end 

make-str i ng-output-stream &opt i ona 1 line-length 

get -output -s tream- s tr i ng string-out put-stream 

s t r e amp object 

input-stream-p stream 

output-stream-p .stream 

close nream &optional abor~flag 

readtable 

copy-readtabl e &opt iona 1 from-readtable to-readtable 

set-syntax-from-char to-char from-char &opt iona 1 to-readtable from-readtable 

set-macro-character char junction &optional non-terminllting-p readtable 

get-macro-character char &opt i onal readtable 

make-d is pat c h -mac r 0- ch a r ac te r char &op tiona 1 non-terminating-p readtable 

set-di spatch-macro-character disp-char sub-char junction &opt i ona 1 readtable 

get-di spatch-macro-character disp-char sub-char &opt iona 1 readtable 

prinescape 

prinpretty 

princircle 

base 

prinradix 

prinlevel 

prinlength 

read &opt iona 1 input-stream eofvalue 

read-default-float-format 

read-preservi ng-wh i tespace &optional input-stream eofvalue 

read-de 1 im; ted-l is t char &opt i ona 1 input-stream 

readl i ne &opt iona 1 input-stream eofvalue 

i. 

295 

[Function] 

[Macro] 

[Function] 

[Variable] 

[Function] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function1 

- [Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Variable] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

[Function] 

[Variable] 

[Function] 

[Function} 

[Function] 



296 CO~vI\10!'\ liSP REll':RL\CE \1ANUAL 

inc h &0 P t ion a 1 input-stream cof value 

ty i &op t ion a 1 input-sTream eof value 

un inch c/zaracler &apt i ana 1 input-stream 

untyi integer &optional input-stream 

i nchpeek &opt i ona 1 peek-type input-stream eofvalue 

tyipeek &optional peek-type input-stream eofvalue 

1 isten &optional input-stream 

inch-no-hang &optional input-stream eofvalue 

tyi-no-hang &optiona1 input-stream eofvalue 

cl ear-i np ut &opti ona 1 input-stream 

read-from-str i ng string &op tiona 1 start end preserve-whitespace-p eofvalue 

parse-number string &opt iona 1 start end radix no-junk-allowed 

i n binary-input-stream &0 p t ion a 1 eof value 

p r i n 1 object &0 p t ion a 1 output-stream 

print object &optional output-stream 

prine object &optional output-stream 

p r i n 1 s t r i n 9 object 

pr i ncstr i ng object 

ouch character &opt iona 1 output-stream 

tyo integer &opt i ona 1 output-stream 

terpr i &opt ional output-stream 

f res h -1 i n e &0 p t ion a 1 output-stream 

force-output &opt iona 1 output-stream 

cl ear-output &opt iona 1 output-stream 

out integer binary-output-stream 

format destination control-sIring &rest arguments 

y-or-n-p &optiona1 message stream 

yes-or-no-p &opt iona 1 message stream 

f que r y options /onnat-string & res t /onnat-args 

pathname thing 

truen.ame thing 

parse-namestring thing &optional convention defaults break-characters start end 

merg~~pathname-def aul ts pathname &opt ional defoults default-type de/aull-version 

make-pathname &key :host :device :directory :name 

:type :version :defaults 

pathnamep object 

pathname-host pathname 

pathname- dey i ce pathname 

pathname-d i rectory pathname 

pathname-name pathname 

pathname-type pathname 

pathname-version pat/mame 

pathname-pl ist pal/marne 

[Function] 

[Function] 

[Function} 

[Funerion} 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

rFunction] 

[Function] 

[Function1 

[Function] 

[Func!/on] 

[Function1 

[Function] 

[Fu~ction] 

[Function] 

[Function] 

[Function] 

tFunction) 

[Functiop] 

[.f.unc~~on1 , 

[Function1 

[Function] 

[function1 

[FunctiQn) 

[Function] . 

[Function] . 

[Func~ion] , 

[Functiorz] 

[Function) 

[Function1 

[Function1 

[Function] 

[Function] 

[Function] 

[function] 

[function] 

• 

• 



TilE CO\WILER 

names tri ng pat/marne 

file-namestring pmJznarne 

directory-names tr i ng parhname 

host-namestring pathname 

enough.-namestring palhname &optional dejQulls 

user-homedir-pathname &optional ho~ 

in i t-file-pathname program-name &opt iona 1 host 

default-pathname-defaults 

load-pathname-defaults 

add-logical-pathname-host logical-host ·actual-host default-device translations 

trans 1 ated-pathname pathname 

back~transl ated-pathname logical-palhname actual-pathname 

wi th-open-fi 1 e bindspec ifonn}* 

open filename &opt i ona 1 options 

rename-file fik n~name &optional e~~p 

delete-file file &optional erro~p 

probe~file fik~e 

file-creation-date fire 

fil e-author file 

filepos file-stream &optional position 

fil e-l ength file-stream 

load filename &key : package : verbose : noerror : preserve-defaul ts. 

signal condition-name &rest args 

cond i t i on-b i nd bindings {{onn}* . 

condit ion-setq {spec}* 

ferror condition-name control-string &rest params 

c e r 1-0 r 'proceedable-flag restartable-flag condition-name control-string & res t par~s 

error~restart {{onn}· 

check :"'arg va~name predicate description 

type:. name 
break' -rag [conditional-fonn] 

camp i i e name &opt i ona 1 definition 

c omf' i 1 e input-filespec &0 p t ion a 1 output-filespec 

disassemb 1 e name-o~subr 

(End of COMMON LISP summary.) 

297 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Variable] 

[Variable] 

[Function] 

[Function] 

[Function] 

[Special/onn] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

. [Function] 

[Function] 

[Function] 

[Function] 

. [Function] 

[Special/onn1 

[Special/onn] 

[Function] 

[Function] 

[Macro] 

[Macro] 

[Special fonn] 

[Function] 

[Function] 

[Function] 



298 ('0\1:\10N USP RITERF!\CF r\'tA~UAL 

• 



Ti IECO\IPILER 

IItdex 

Index of Concepts 

Implementation note 16. 17, 18. 44,49. 87, 106. 
122. 124, 125. 127, 134, 140, 141, 145, 168, 
194,246,268.280 

Incompatibility 16.23.28, 37, 39,41,43,47,50, 
62,63,64,70.74.76,77,79,82,83.85,91, 
95, 96. 99, 102. 105, 106. 119, 121, 122. 
126, 132, 141, 159, 169, 170, 174. 180. 181. 
184,186,190.191,200,201,203,204,206, 
216.226,228,231.232,233,236.241.252, 
254,266.267.268,269 

Query 19.27,32,42.46, 51, 72,86. 91, 98, 103, 
104, 112, 113, 117, 123, 130. 131, 134. 149. 
155, 157, 172, 174, 177, 182. 184, 185, 198, 
199,202,203,205,212,218, 227. 23~242, 
245,246,251,253,259,267,268 

Rationale 24,29,34,44, Ill, 117, 119,122,134, 
197,203,235,238,246 

-[ (conditional) format directive 248 
" macro character 221 
# macro character 224 
• macro character 221 

macro character 220 
macro character 221 

• macro character 223 
macro character 221 

macro character 222 
-% (new line) format directive 246 
-& (fresh line) format directive 246 
-. (ignore argument) format directive 247 
- < (justification) format directive 250 
- <return> (ignore whitespacc) format 

directive 247 
-nG «('1010 argument) format directive 247 
-- (Tilde) format directive 247 
-,.. (loop escape) format directive 251 
-A (Ascii) format directive 244 
-8 (Binary) format directive 245 
-C (Character) format directive 246 
-0 (Decimal) format directive 244 
-E (Exponential) format directive 246 
-F· (Hooting-point) format directive 245 
-0 (Octal) format directive 245 
-P (Plural) format directive 245 
-R (Radix) format directive 245 
-S (S-expression) format directive 244 
-r (Tabulale) formal directive 247 
-x (heXadecimal) formal directive 245 
- { (iteration) fomlal directive 249 
-I (new page) format directive 246 
1 macro character 222 

A-list 178 

Access functions 198 
ADA 16.52 
ALGOL 10,34,78,132 
Alterant macros 201 
APL 19,127 
Array 23 

predicate 48 
Association list 75, 178 

as a substitution table 
compared to hash table 

Atom 
predicate 47 

Bignum 15 
Bit string 

in finite 134 
integer represention 

Byte 139 
Byte specifiers 139 

Car 22.167 
Catch 85 
Cdr 22,167 
Character 

predicate 48 
Character syntax 225 
Cleanup handler 86 
Closure 48 
Comments 221 
Complex number 

predicate 48 
Conditional 

and 52 
or 52 
during rea d 228 

Cons 22,167 
predicate 47 

176 
180 

134 

Constructor functiop.· 198 
Constructor functions 200 
Control structure 55 

Data type 
predicates 46 

Declaration 
function 97 
function type 97 
ignore 98 
inline 97 
notinline 98 
optimize 98 
special 96 
type . 97 

Declarations 95 

299 



300 

Dcfstruct 197 
Denominator 16 
Device (jxuhname component) 258 
Directory (p3lhnamc component) 258 
Displaced array 184 
Dotted list 167 
Dynamic exit 85 

Fmpty list 
predicate' 46 

Environment structure 55 
Extent 9 

False 
when a predicate is 45 

Fill pointer 188 
Fixnum 15 
Floating-point number 17 

predicate 48 
Flow of control 55 
Formatted output 243 
FORTRAN 2,16.]9,78,132,246 
Function declaration 97 
Function type declaration 97 

Hash table 180, 182 
Home directory 263 
Host (pathname component) 258 

Ignore declaration 98 
Implicit progn 55,66,67,68,69.70, 73 
Index offset 184 
Indicator 101 
Indirect array 184 
Init file 264 
Inline declaration 97 
Integer 15 

predicate 47 
INfER LISP 1. 2. 3. 16. 28. 32. 64. 79, 99,,102, 114. 

126,132,141; 159,169, 174,181.231 
Iteration 72 

Keywords 
for de f s t r u c t slot-descriptions 202 
for condition 277 
for defstruct 202 
for error 275 
for fquery 253 
for type 203.253 
for with-open-file 267 

LISP 1.5 77, 159 
Lisp Machine LISP ],2. ]0. 16.23.37.38.39.41. 

43. 47. 50. 62, 70. 76, 79. 82, 83, 85, 91, 
]02. 105. 106. 109, 121. 122. 126. 132. ]49. 
]59, 169, 170, 174. 181. 182. 184. 186. 190. 
191, 200. 201. 203, 204. 206.212,226,228, 
231.233. 236,246.254.266,267.268.269 

List 22. 167 
predicate 47 

CO\l\'!O~ USP REFERE;-.iCE \1ANLAL 

Sec also dotted list 
List syntax 220 
Logical operators 

on nil and non- nil values 51 
Logical path names 265 

MAC LISP 1. 2. 16. 23. 24. 46,47. 74.79. 85, 86, 
95, 96, 97. 99. ]02. 105. 112. 117, 119, 121. 
122, 126. 132. 156. 159,169, 174. 180,.181, 
186,216,226.228.231.232,233,235,236, 
241, 267,269 

Macro character 220 
Mapping 77 
Merging 

of pathnames 259 
sorted sequences 166· 

Multiple values 81 
returned by read-from-string 240 

Name (pathname component) 258 
Naming conventions 

predicates 45 
NIL 1,29,47, 79, 85, 102, 106, 132, 169, 170 
Non-local exit 85 
Notinline declaration 98 
Number 117 

floating-point 17 
predicate 47 

NUnlcrator 16 

Optinlize declaration' 98 

Package cell 101 
Parsing 220 

of pathnames 259 
PASCAL 52, 119 
put 19. 132, 246 
PHst 101 
Position 

ofa byte 139 
Predicate 45 
Predicates 

true and false 45 
Print name 101, 105. 191 
Print-name 

coercion to string 195 
Printed representation 215 
Printer 215 
Property 101 
Property list ]01 

compared to a<;sociation list 101 
compared to hac;h table 180 

Pseudo-predicate 45,147 

Querying the user 252 
Quote character 221 

Rank 23 
Reader 215.216 
Rcadtable 229 



INDEX 301 

Record struclure J97 

S-l LISP 

SCIIE\1E 

Scope 
Set 

9 

1,2 
1 

list representation 176 
Sets 

bit-vector representation 135 
infinite 135 
integer representation 135 

Shadowing 10 
Shared array 184 
Sharp-sign macro characters 224 
Size 

ofabyte 139 
Sorting 164 
Special declaration 96 
SPICE LIsp I, 102 
STANDARD LIsp 132 
String 191 

predicate 48 
String syntax 221 
Structure 197 
Structured path name components 260 
Substitution 175 
Symbol 13, 101 

coercion to a string 191 
coercion to string 195 
predi"cate 47 

Symbol syntax 222 

Throw 85 
Tree 23 
True 

when a predicate is " 45 
Type (pathname component) 258 
Type declaration 97 
Type specifiers 27 

Unspecific pathname components 259 
Unwind protection 86 

Vector 
infinite 134 
integer represention 134 

Version (pathname component) 258 

Yes-or-no functions 252 



302r 

-~~~--~-----------:--------------------------------

CO\L\lO\" LISP REFERE~CE i\IA;-';UAL 

Index of Variables and Constants 

A 

B 
base 233,241 
boo 1 e-1 136 
bool e-2 136 
boo 1 e-and 136 
boole-andc1' . 136 
boo 1 e-andc2 136 
boo 1 e-c1 136 
boo 1 e-c2 136 
boole-clr 136 
bool e-eqv 136 
boo 1 e-ior 136 
boole-nand 136 
boole-nor 136 
boole-orcl 136 
boole-orc2 136 
boole-set 136 
bool e-xor 136 

C 
145,149 
145,149 

152 
20,145,150 

152 

char-bits-l imit 
char-code-limit 
char-control-bit 
char-font-limit 
char-hyper-bit 
char-meta-bit 
char-super-bit 

152 
152 

D 
default-pathname-defaults 

265 
defmacro-check-args 92 

262,263, 

defmacro-maybe-displace 92,92 
double-float-epsilon 143 
double-float-negative-epsilon 143 
double-float-radix 143 

E 
error-output 212 
eva 1 hook 209 

F 
features 228 

G 

H 

I 

J 

K 

L 
1 eas t-neg at i ve-doub 1 e-f 1 oat . 143 
1 east-neg at i ve-long-fl oat· 143 
least-negative-short-float 142 
least-negative-single-float 143 
least-positive-double-float 143 
1 east-pos it i ve-long-fl oat 14~ 

least-positive-short-float 142 
least-positive-single-float 143 
1 oad-pathname-defaul ts 265,270 
long-float-epsilon. 143 
long-float-negative-epsilon 143 
1 ong-fl oat-radi x 143 

M 
macro-expansion-hook 92 
most-negative-double-float 143 
most-negat ive-fi xnum 15,142 
most-negative-long-float 143 
most-negative-short-float 142 
most-negative-single-float 143 
most-pos i t ive-·doub 1 e-fl oat 143 
most-positive-fixnum 15,44,142 
most-positive-long-float 143· 
most-positive-short-float 142 
most-positive-single-float 143 

N 
nil 3,45 

o 

p 

package 
pi 126 
princircle 
prinescape 
prinlength 
prinlevel 
prinpretty 
prinradix 

Q 
qu-ery-io 

R 

107,109,112,218 

232 
232,233 
218,228,234,234,241 

206,229,234,234,241 
232 

233 

212.252~253 

random-state 142 
read-default-float-format 

236 
readtable 229,230 

S 
sample-constant 4 
sample-variable 4 
short-float-epsilon 143 

J8,233, 



INDEX 303.~·; 

short-float-negative-epsilon 143 
short-float-radix 17,134,143 
single-float-epsilon 143 
single-float-negative-epsilon 143 
single-float-radix 143 
s tandard- input 211.235 
standard-output 211,241,243 

T 
t. 44,45 
terminal-io 
trace-oJtput 

u 

v 

w 

x 
y 

z 

212, 235. 241 
212 



304~ CO\i\lO;,\ LISP RrFERE~CE MANCAL 

'~ - Index of Keywords 

A 
:a 1 terant 

for defs truct 200,204 
:append 

for with-open-file 267, 
:asc i i 

for with-open-fi 1 e 268 

B 
:beep 

for fquery 254 
:binary 

for with-open-file 
:byte-s ize 

268, 269, 270 

fur with-open-file 268 

C 
:character 

for with-open-fi 1 e 
:choices 

268, 269, 270 

for fquery 254 
:cl ear-i nput 

for fquery 254 
:conc-name 

for defstruct 200,202,205 
:constructor 

for defstruct 200,204.207 
:count 

for del e t e 161 
for del ete- i f 161 
fur delete-if-not 
for nsubst itute 
fur nsubstitute-if 

161 
162 

162 
for nsubstitute-it-not 162 

. for remove 160 
for remove-if 160 
for remove-if-no;t 160 
for substitute -"162 , 
for subst itute-if .162 
for substitute-if.-not 162 

D 
:defaults 

furmake-pathname 
:device 

for make-pathname ~ 262 , 
:directory 

for make-pathnal1le .. ,26.l ': 
:displaced-~ndex~o~fset: . 

• ~', '7" r 

, fur make-a~ray . 183 . 
;" ~ : ( . 

:di spl aced-to 
Rrr make-array 183 
for make-array 190 

E 

',I 

:echo 
fur with-open-file 268 

:end 
for count 163 
for count- if 163 
for count- if-not 16~ 

for de 1 ete 161 
for delete-if 161 
for delete-if-not 161 ' 
for fi 11 160 
for find 163 
for fin d - i f 163 
for fi nd- if-not 
for maxprefix 
for maxsuffi x 
for mi smatch 
for nsubst itute 

163 
164 
164 

163 
162 

for nsubstitute-if 162 
;.' , , I I ~ 

fur nsubstitute-if-not 
for po sit ion 163 ' 
for position-if 163 
for position-if-not 163 
for remove 160 
for remove-if 160 
for remove-if-not 160 
for rep 1 ace 160 
for search 164 
for string-capital ize 194 
for string-downcase 194 
for str ing-equal 192 
for s tr i n9-g reaterp 193 
for string-lessp 193 
for string-not-equal 193' 

}:' ,,;.t ,1,",. 

~ 1 l.- ;/.',' 

for string-not-g"reaterp:. 193> -- ' 
for s tr i ng-not-l essp 193 \' '.">:.' ~ •.. ' 

~. !"t • ~ r-

for string-upcase 194 
for s tr i ng/= 193 
for string< 193 

; 1 . ( " 

, ..... , i' .. 

for str i ng<= ]93 
for s tr i n9= 192 
for s tr i ng> 193 
for string>= 193 
for sub s t it ute 162 
for subst itute- if 162 , 
for subst itute-if-noti ";::162" ",}: 

:endl ¥'" '.~':) _ ~~ .< 
for maxprefix 
for maxsuffi x 
for mi smatch 
for repl ace 

.164 
164, 

163 
160 

for search 164 
for string-equal 192...,. 
for string-greaterp. 193" 
for s tr i ng-1es sp 193 
~r string-not-equal ]93 
fur string-not-greaterp 193 

-, ';" .. ' .~~ 

• 



II\DEX 

•• 
for string-not-lessp 193 
for string/= 193 
for s tr i ng< 193 
for string<= 193 
for string= 192 
for string> 193 
for string>= 193 

:end2 
for maxprefix 164 
for maxsuffix 164 
for mi smatch 163 
for r~p 1 ace 160 
for search 164 
for s t r i n g - e qua 1 192 
for string-greaterp 193 
for s t r i n g -1 e ssp 193 
for string-not-equal 193 
for string-not-greaierp 193 
for string-not-lessp 193 
for s t r i n 9 / .. 193 . ." for string< 193" 
for string~·, 193 
for string- 192 
for string> 193 
for string>- 193 

:error-restart 
for error 275 

:eval-when 
for defstruct 207 

F 
:fill-pointer 

for make-array 
for make-vector 

:fixnum 

183 
185 

for with-open.-file 268 
:fresh-l i ne 

for fquery 254 
:from-end 

for count 163 
for count-if 163 
for count-if-not 163 
for delete 161 
for delete-if 161 
for delete-if-not 161 
for find 163 
for find-if 163 
for f i nd- if:-I\ot J, 163 
for maxprefix 164 
for maxsuffix 164 
for mi smatch 163 
for nsubst i tute 162 
for nsubstitute-if ''162 
for nsubstitute-if-not' 162 
for pos i t ion 163 
for position-if 163 
for pos i t ion- if-not' 163 
for remove 160 
for remove- if, 160 
for remove-if-not '160 

,for se,arch 164 
for substitute 162 
for substitute-if 162 
for substitute-if-not 

G 

H 
:hel p-funct ion 

for fquery 254 
:host 

fur make-pathname 262 

I 
: in 

for with-open-file 267 
:inch 

for type option to fquery 
:include 

for defs truct 204 
:inconsistent-arguments 

for condition 278 
:initial-contents 

for make-ar'ray 183 
fur make-vector 185 

:initial-offset 
for defstruct 206 

:initial-value 
for make-array, 183 
for make-vector 185 

:input 
for with-open-:fi"le 267 

:invisible 

162 

. ,\' 

253 

for de f s t r u c t slot-descriptions 202 

J 

K 
:key 

for count 163 
for count-if 163 
for count-if-not 163' 
for delete 161 
for delete-if 161 
for delete-l'f-not ,', 161" 
for find 163 
for find-if 163 
fur find-if-not 163 
for member 176' 
for member- if . 176 
for merge 166 
for nsubs t i tute 162 
for nsubst itute~:'tf 162' 
for nsubstitute";if-not <1'162' 
for position 163 
for pOSition-if ]63 
fur position-if-not 163' . 
for remove 160 . 
for remove- if 160 
for remove-it-not 160 

305' :" 



306 .. 

for sort J64 
for s tab 1 e'" s art 1641, . : 
for sub s t it ute 162 ;' ~ 
for substitute-if 162;. 
for substitute-if-not, , 162 

L 
:list-choices 

for fquery 254 

M 
:make-array 

for defstr~ct :203. ~06 

N 
:name 

for make-pathname ,262 
:named 

for defstruct 204. 204~ 
:noerror 

for load 270 
for wi th-open-fi 1 e . 2&8 •. Z68 

o 
:out 

for with-open-file 267 
:output . 

for with-open-fil~ 267' 

p 
:pack.age 

for load 270 
:predicate 

for defstruct 204 
:preserve-defaults 

for load 270 
:print 

~"f . 

for wi th-open-fi 1 e ,267 
:print-function 

for defstru.ct 206 
:printer 

for defstruct 25 
:probe 

for with-open-file 268, 

Q 

t.l 

.. ; 

l··r 

,; " 

: r '": il'- ;!t,'" f,:. 

... 
R 

:read ... ', I , .,,~ " , 

for with-open-file .. 267 
:read-al ter 

for with-open-fi 1 e ' 267 
:read-only 

for defs truct slot-descriptions 
:readl ine 

for type option to fquery 
:rehash-si ze . 

for make-eq-hash-table 
fur make-eql-hash-table 
fur make-equal-hash-table 

'! ,"., 

202 

253 

181 
18] 

181 

CO:vl\10\ LISP REITRE\CE \1A\liAL 

:rehash-threshold 
for make-eq-hash-tabl e 
~r make-eql-hash-table 
fur make-equal-hash-t~hle 

:return 
for error 275 

j' " 

s 
:size 

181 
181 

181 

for make-eq-hash-t'abJ:e . .181 
for make-eql-hash-tabJe ~81 
for make-equa l-hash!",t~'''b 1 ~ 181 

:special f" 

for decl are 66 
:start 

for count 163 
for co u n t - i f 163 1-

for count-if-not ,163 
for de 1 ete 161 ' 
for delete-if 161 'r. 

,i ._>' I '.~:' 

for delete-if-not 'l~l: 
for fi 11 160;1 " . f:·- .-.. , j"' 

for fin d 163 ; ~ Se ' 

for fin d - i f 163 
, ' 

for find-if-not 
for maxprefix 
for maxsuffi x 

163 
164 
164 

for mi smatch 163 
for n sub s tit ute 162 
for n sub s tit ute - i f 162 
for nsubstitute-if-not 
for pos it ion 163 
for position-if 163 
for pas i t ion- if-not 163 
for remove 160 
for remove-if 160 

,. , 

162 

.;: ( 

': d .. 

for remove- if-not 
'for rep 1 ace 160 

160 ,.,,' ',", 
for search 164 
for string-capitalize' , 194":.-~, ~,!j 
for str i ng-downcase 194 Jo' '.'!: 
for string-equal 192c .. : ,.i:-;i" ',;,;: : ;'\1 

for string-greaterp 193 t.>!''' ", 
for string-lessp ·193 'I t 'J: ,yv, I 

for string-not-equal "~93 -",'1'" lfJ 

for string-not-greaterp d:~~~",.· ,', 

for string-not-:::lessp.,(,1~3;., ,~: ,) lfl 

. for str i ng-,upcase'i .. , 194 " _ ' 
for string/=J93 c',;1' " ,,' 'n, 

for string< 193.11 : "'t,-". \' 

for string<= 193 \; ~;_in f' 

for string= 192 ';' fir)', l;'i,,'q r-a 
for string> 193 il' . :",,- 15', 

for string>= 193 ill' ':,'"1'''' c, " 

for sub s t it ute ] 62 
for substitute-if :- ·,1~2 I 

for substitute~if-not.\, ;.162 ,. 
:startl 

for maxprefix 164,j 
for maxsuffix 164 



I:\DEX 

for mi smatch 163 
for rep 1 ace 160 
for search 164 . 
for string-equal 192 
for string-greaterp 193 
for stri~g-lessp 193 
for string-not-equal 193 
for string-not-greaterp 193 
for string-not-lessp 193 
for strin~~= 193' 
for string< ~193L 

for stiJ'i'ng<=": '193 
for string- 192 
for string> 193 
for string>= 193 

:start2 
for maxprefix 164 
for maxsuffix 164 
for mi smatch 163 
for replace 160 
for search 164 l;G' 

for string-equal 192 
for string-greaterp 193 
for string-lessp 193 
for string-not-equal ' 193 
fur string-not-greaterp 193 
for string-not-lessp 193 
for string/= 193 
for string< 193 
for string<= 193 
for string= 192 
for string> 193 
for string>-, 193 

T 
:test 

for adjoin 177 
for assoc 179 
for count 163 
for de 1 ete t.·i 161 
for fi nd 163 ' 
for intersect ion 178 
for maxprefijj..· 164' 
for maxsuffixl64 
for member F'176 
for mi smatch ':,; 163 ' 
for ninterse~t ionl '" 178 
for nset~excl us-ive-or ' : 178 
for nsetdifference f'\ i78 
for nsubstitute 162 f 

for nunion 177 r~ 

for position 163 
t:u. 

for rassoc 180 
for remove 160 
for search 164 
for set-exclusi~e-or 178' 
for setd i ff~rence';!' 178 

e Jor subsetp 178 
for substitute 162' ,: 'I 

for union 177 .~ e 

-;, 

-,I' 

:tes t-not 
for adjoin 177 
for' assoc 179 ,j' 

for count ]63: .! 

for delete 161 
' ;) ~ 

for find 163 
for intersection 178 
for maxprefix 164 
for maxsuffix 164 1 '. ~ i 

for member 176 
for mi smatch 163 
for nintersection 178 
for nset-exclusive~or 17g 
for nsetdifference 178 
for nsubstitute 162 
for nunion 177 
for position 163 
for rassoc 180 
for remove 160 
for search 164 
for set-eiclusive-or i78 
for setd i ffera'hce ' 178 
for subsetp 178 
,for substitute 162 
for union 177 

:tyi 
for type optionto fquery 253 

:type 
for make-array 183 
for make-pathname 262 
for make-vector 185 
for de f s t r u c t slot-descriptions 202 
for defs truct 203~ 206 
for fquery 253 ' 

U 
:unnamed 

for defstruct "204 

V 
:verbose 

for load 270 
:vers ion 

for make-pathname 

W 
:wri te 

for wHh-open-fi le 267 
:wrong-type-arg,ument 

for cond i t i on" 277' 

x 
y 

z 

'" ' ~ 1 

- t,;· ", 

':.;. .I...'·,t I",';' 

307 



308 t: 

1 
.,J. :_ 

.. , ; 
\ " 

·'f 

:1); \". 

j' ..•• 

.','.\ .,' 
il 

\'" 
';,'ij\( 

J, 

. ,) 

r,', 

, ( 

'. l 

", L . 

;,1, , 

If:. . 

"i r. 

',1"; 'r 

':1; 

.1, 

CO\-1\10~ USP R EFERE:\CE MANUAL 

; i 

'·'f.J :f 

,( " 

v:. 1. 

" t 

• :t '; ,; i iii 

. "'~ f~ ," 

. f. i,:' ': '~ 1 

lif " t, 

,~ , ':; - "'H 'I 

", •. L~ " ... ' 

'j 

/',: 



INDEX 

Index of Functions, l\:Iacros, and Special Forms 

• 121 
+ 121 

121 
/ 121 
/- 118 

'1+ 122 
1- 122 
< . 118,149 
<- 118 

49.117,118 
> 118 
>,. 119 

A 
abs 124 
acons 102. 179 
acos 125 
acosh. 126 
add-logical-pathname"host 266 
adjoin 172.177 
adjust-array-size 189.189 

. alphanumericp 147 
alphap '146 
and 34.52.69.84 
append 170. 171,223 
apply' 26.63,83,89 
aref 24.59,60. 185, 186. 187 
array-active-length 157,185.186 
array-allocated-length 185 
array-dimension 186 
array-dimensions 186 
array-grow 190 
array-in-bounds-p 186 
array-length 157,188 
array-pop 189 
array-p~sh 189 
array-push-extend 189 
array-rank 186 
array-reset-fill-pointer 186, 189. 

191 
array-type 185 
arrayp 48 
aset 60,185, 186,187 
ash 138 
as in 125 
asinh 126' 
assoc 178.179 
atan 125 
atanh 126 . 
atom 47 

8 
back-translated-pathname 266 
begin-package 112 
bit 61.187 
bi t-and . 187 

bit-andc1 
bit-andc2 
bit-eqv 
bit-ior 
bit-nand 
bit-nor 
bit-not 
bit-ore! 
b it-ore2 
bit-xor 
block 
boole 

187 . 
187 

187 
187 

187 
187 
188 

187 
187 

187 
11.12,42,55,71,85 . 
136 

bothcasep 147 
boundp 57,57 
break 275.277 
butlast 173 
but ta i 1 174,177 . 
byte 139 
byte-position 139 
byte:-size 139 

C 
c ... r 
caaaar 
caaadr 
caaar 
caadar 
caaddr 
caadr 
caar 
cadaar 
cadadr 
cadar 
caddar 
cadddr 
caddr 
cadr 
car 

167 
60,167 
60,167 

60.167 
60.167 
61,167 

61,167 
60,167 

60,167 
61,167 

60.167 
60.167 
60,167 

61,167 
60,167 

·59,60,167 
34.40.43.70,.71.83 

11.34.55,79,83,84,85 
case 
catch 
catch-all 11, 34, 83,85 

158,170 catenate 
cdaaar 
cdaadr 
cdaar 
cdadar 
cdaddr 
cdadr 
cdar 
cddaar· 
cddadr 
cddar 
cdddar 
cddddr 
cdddr 
cddr 

60.167 
61. 167 

60.167 
60. 167 
61,167 

61,167 
60.167 

60.167 
61. 167 

61.167 
60,167 
60.167 

61.167 
6O.J67 

309, 



310, . 

I 

~ 

cdr 6(),167 
ceil 122.131 
cerror 274.275 
char 61,146. 191 
char-b it 61:"152 
char-bits 145.1~i 
char-code 145, 149 ~ ~ .. '~'#~~. 

char-down case 147,150,194 
char;"equa 1 . 51,i4S,"t92 . , 
char-font 145,150.226 . 
char-greaterp 149l ' • 

char-int 151,238,239 
char-l essp 149,193 
char-name 151 
char-upcase 147,150,194 
char< 148,193 
char= 49,148.148,239 
char> 148 
character 
characterp 
check-arg 
ci s 125 

149'" 
48,146 

276 

clear-input D9 
clear-output ~2 

clear-screen . 2~6 
close 214,267,268 
closure 56 
closurep 48 
cl rhash 182 
code-char ISO 
comf i 1 e 265. 280 
compi le 279 
complex 19,29,134" 
camp 1 exp 48, 118 

\ '.~ 

.< lYe \. 

\" 
"; 

.! • 

cond 34,45,52,53,68, 70, 71~ 73.84,90 
condition 

keywords 277 

'; .;.; \. ;:~ . ~ 

P! 

, (, 

.: 

condition-bind 
condition-setq 
conjugate 123 

34.272 ; , 
273 .,' i·;:' 

cons 30,41,168 
consp 47 
copy-readtable 229 
copyalist 171 

.t' 

11. , "1 :' 
copyl ist 171 
copyseq 157,171 
copysymbol 106 .. ! "'. 

copy tree 171,175 ~ (- ; ) 

cos 125 
cosh 126 
count 163 
count-if 163 il 

count-if-not 163 

D 
decf 3 122 : ·~J·:C'i:,··j! ..... ;:.rl· 

,6 " .' 
dec 1 are 13, 34. 38.43, 74; 76,8(). 95 .. ,j" I 

defconst "34.44 '.;\, :, I;· I ., >' 

defmacro "'"9: 31. 35: i43)j/i, 90. 91~~!?, 270' ~.; 
defselec;t 4/,42 ,;,h 

~ . . ~'r: .., I • 

(,O~1\10N LISP REFERENCE ~1ANllAL 

defsetf 62,199 
defstruct 9, 14:~2~~: 27. 31. 61,'}65,J66: '; 

168.199,227.134H 
keywords 202 I , 

deftype 9.31 i : 

defun 9.34,36,42,42, 67,"7i: 91,t97, 270 f' 

defvar- 34,43,270 U! t·-rllt 

delete 161, 174 i:'~\ ,,~, ,. c', ' 
del ete-fi 1 e 269'~ ':t'. '>:. \., V : r ' 

delete-:-if 161 lV~ r 

delete-if-not 161 f I " i . !:' • ; 

denominator "131t ,:1 ...... ;"'" 

deposit-field 61,140 
dig i t - c h a r p 151 " . ! ' 

dig i t-we.i ght 191 '\; 
digitp 147, lSI '." 
d i rectory-name'st';; n9: "'\'!26~;, 
disassemble ~O 

f' i. ( 

.J 

di sp 1 ace 92,92 . ,,.. :,; )'! ;,. 

do 11,34,S5,S8,72;73;7t;84 ".1:' i,', 

do* 34,72,75 
do-all-symbols 34,116 
do-ex.ternal-symbol s Z\f', ":jl"U6 . f ,!.>.':', 

do-internal-symbols 34,116 "1;.1,'/ 

do-symbol s 34,76,116 ii": 

dol ist 34,72,76 ;., " ···f·,.' , 

dot imes 34, 76 
dpb 61,140 

E 
elt 60.157,186,18~192 

end-package 112 
endp /67,168 

~ ... . 
enough-namestring 263 ... ' 
eq 49 (J\} :j . ,~" .' 9 

compared to equal 49 "'1
1 

'i,1 " 

~. ' 

eql 28,49,79: 117, 119: 148' :'''' '" , 
equa 1 ,44, 50::~j48, 168, 192;·115.1":- .. i-+ •. ~ \; . 

equalp '~"\'51 f;"~ .1.;' 

error 4 .,' 
• ". " 1 ~ 

keywords 275 .' r 1 

error-res tart 275 4 .~ r,! 

.. ..,. .. , 

eva 1 63,83,89, 209 '~' ~>' (i " 

eva l-when 90.96,207,227, '279 
evalhook 209! '.to, . \' , . 

" •• '~ >,1 'j 

. ~: - . t 

evenp liS ,;' ('; i ;~H! ! .. " ' 

every 159 ,. " } t 
exchf 63 
exp 124 
export 109,113 ~·1j. : .; /. 

expt l~ .l : 

externalp 113 '!. J ~ 1'1. I, - ~ ? ", 1 

F ,. 

fboundp 57.57 v" '.!(' , 

:," 
fceil 133 ',,':1 

·r, 

274,275 
\. ~ 

ferror 
ffloor 133 

r i . I:";' 
,. ~ ; .c·' file-author 269 

file-creation-date 269 



I~DEX 

("'.'. r (: c· T·:.'.; 

fi;l~-l~llg\lh 'c 169,~27Q, 
f i 1 e -n arne 5 t r i'n g' . ~2,63 ~, 

,. ~; L "I .... 

f i 1 epos 269 - -
fi 11 ]60 

find ) . 163, {l'Z.IJ9 . ::? .. 
find-if' "163' '. 
find-if-not 163 \-, ',-H 
fl et 9,41.57.59,67...- 1···· ; ':-c: 
float 126. 130 iol 
fl oat-exponent ~. 
float-fraction 134t113 
fl oatp 48,118 :,j:( " {", L. < '3", •. : ' ;!!..) 

fl oor ' 81.122,131. 13iti,; r. 11 r . " 

fmakunbound 42. 5745J? ,~) H j 

force-output 242 ,(' I 

format 19~/,'!42.24~? ~Z~j 2Z~jy 
fquery 253 . ',>,}. 

keywords 253 "" 
fresh-l ine •. ~ 216, 2~2~)5Jr , 
fround 133" .' '- .' J '~.r '(~. 

fset 57,59 'v t l,... .}(; 

\jfl~'l?" 60 '- r o (""i - f; fsymeval 
ftrune 
funeall 
funeall· 
function 

~ \'. ' .~ t,~, .<! ~ I 

26. 64. 83, 89, . 
64,83 ' 

9.12.34.36,56 .. 
48 funetionp 

funny-charp 148 
120 

51.120 
fuzziness 
fuzzy= ':f. 

. , ......... , ... [ 
G 

ged 123 ffi. . c ;./1 (' "'!?,.' .. , 
gensym 106,107 f' 

gentemp /07.107 . J r: r 1','.' 

get-dispateh-maApo-characteli: . 231 ;.,. 
get-macro-ch-a,l:;8'cter; 230 
get-output-st~eam-string 
get-pname 105 
get-properties 104 
getf 61. 63.102,103~104 . 
g'ethash 61.182 " 
getpr 6(),~,2,f03,,\\!" ., .. ~ 
go 11,34.72.73,74,76, 80 )II~ 
graphicp 146,147,151 

, grindef 242 

II 
haipart 138 ': 1 {,f 

haulong 138.141 
host-namestring 263 'Ul 

I 
if 
if-for 

34,45,52.69,69, 70.84, 90 ~. 
228 

if-in 
. imagpart 
import 
in 240 

228 
134 

/13, 114,114 \ 

i ncf . 63.122 

;. 

:' .. '.~ 

213 
J .... : •• , .... 

r ;: 

inch 211.238,239,253 pj. ,., 
inch-no-hang 239 ~ .. ' 
i nchpeek 236. 238 ,. .'. ,. 1 (:: 

i n it - f i1 e - pat h n arne : :264, (' 
input-stream-p 2\~.f 
i nt-char 151,238 !'L . '. I. I: 

i ntegerp 47;J!8t ,',,; 
intern 49,105, lq.!, H~ . 
internedp 113 r..'::r ,0;'1(:' .. \ j :7'')' 

intersect ion 178\~;<! (1 v '1 ~.:.. if (:~ 

isqrt 124 \~r_,'At'~ t::: 
• ~ ,/, t 

~ .', . t . " 

J i?:t 

K 

L hi, L··:;:, 

1 abe 1 s 9, 36, 40, 57,59, 67; i 
lambda 83 i. i" t: :: 

1 ast 169 . 
~ I • 

1 em 123 
1 db 61.139 
1 db-test 139 
length 157,169 , 
1 et 11,39.65,66, 67, 7~t?9. 80, ~3.-
let * 34,66,80.83 
list 170 
1 ist* 170 
list-length 168 
1 isten 239,239 
listp 47,167 
load 112.1/5,265, 27q:: 
locally 34,96 ' 

I,) \. 

l09 . ,t24',~ ,,'.lly .f..'''" .? 

1 ogand 135,188 
logandcl 135 "f,' 

logandc2 135!'"' ~ 
10gb i tp 137' "',:~ \~ .' \. j 

logcount 138 
logeqv 135 

i(, " 

logior 135 
lognand 135 . .' ': I .~. .'l'. 

lognor 135 , i 

lognot 137.188 
lo'gorel 135 
logorc2 135 {Iii'; .' '''!1\ \', v'~ "";'~ 

logtest 137 
logxor 135 
lowercasep 147.150 

macro 89 
macro-p 57,57,89 
maeroexpand 93 
macroexpand-l 93 

. ~ ~ ... 

f '.l, 
..... ,. 

."f 
~J_ ' 

macro 1 et ?f) \ .. 67,:9-t;· t, . ; 

make-arra'y ''-28,29,183:/85\'206 

make-bro~~~s,~-Sr~r,~,~,\, \,213 
make-char 150 
make-concatenated-stream 

• '.I ,', 

. ';:j., !",j, 

31i 



312 

make-dispatch-macro-charact&t 231 r 
make-echo-stream 213 .' ~ -', :-. "r 

make-eq-hash-table 181 
make-eql-hash-table 181 
make-equa l-hash-tabl e 181 ~,~, 

make-io-stream 213 
make-list 170 
make-package 111' 

1 .... 

make-pathname 262 
make-string 194 
make-stri ng-input-st'ream 213 
make-string-output-stream' ~' 213 
make-symbol 106 '~'\i 

make-synonym..;stre1am '212:tl1" 
mak e - v e c tor 29,"185' 't.1 

makunbound 57,59 
map , 77, 89, 159 
map-properties 
mapc 77 
mapcan 77 
mapear 77 
mapcon 77 
maphash 182 
mapl 77,159 i ·'t. 

104 

mapl i st 77 
mask -fi el d 61,140

1
, I 

max 120 
maxprefix 164 
maxsuffix 164 
member '45,176,179 
member-if 176 
member-if-not 176 
merge 166 

r 

If' 

':', )',\ 

merge-pathname~defaults ,:(' 262 
min 120 
minusp 118 
mi smatch 163 
mod 132 

if, 

r' 

J ' 

mul t ipl e-va 1 ue 34, 81, 83~·83 .. 84 .:., ~ 

multjp"l"e~}/aJue-bind 34, 8J; ft2, 83, 13-2:, , 
multiple-va.lue-l ist.· 34, .. 81 .. 8~· .~ (.~." .. ; ~ 
mvcall 30,34, $2. 83 <: ';; ! : tl, 

mvprogl 34,6.1:82,83: 'r!': t: - , • 

'. '. -" (:: 

N 
name-char 152 
namestring 263 
nbut 1 ast 173,174 ,. f 1 .... !. ,. 

ncone 78,170, 171,1'74,223 '> 

nintersect ion 178 ' q, 

not 40,51 
notany 159 
notevery 159 
nreconc 171. ]72,174 .' ~. ,j 

nreverse 74,158,165,174 
nset-exclus ive-or ]78 t : .. 

nsetdifference 178 '-'·i. -.: ...... 

nsubl is 176 
nsub'~t . 175',' 
nsubstitute 162 

C0l\1!\10N LISP REFERENCE MANUAL 

nsubstitute-if 
nsubstitute-if-not 
nsubstq 176 

162 

nth 60,114.169,175 
nthcdr 169 
null 46,51 
numberp 47, 118 
numerator 131 
nunion 177 

o 
oddp 118 
open 212,258, 268 
or 34, 52, 70, $4/.: \.. ", 

ouch 211,1.41 ,; "~.' l" 

out 242 {it.. ,1"1" 

output.i.tstream-p 214:" .IH v·';' 

" , , .... , ~ .... 

p 
package 112 

f", Ii 

.. '; . 

i.i 

, I 

. " ( 

... ; ~ 

..... .i 

package-name 1l0, 112 I':.'~~ S'tl ~';' 

package-use-conflicts 116 
pairlis 102.179 _,.::1' 
pa'rse-namestri'ng 261v·,;·J ~~". 

parse-number 240 
pathname 260 
pathname-device 
pathname-direetory 

262 

pathname-host 262 
pathname-name 262 
pathn~me-pl ist· ,263 
pathname-t,Y'pe 262 

262 

pathname-vers ion ~262 i r 
pathnamep 262 ./~; 

phase 125 
p 1 i st 61, 103, 263 
plusp 118 
pop 63,173 
pas i t ion 28,163, 177 ~ 

pos i t ion- if 163 

"I· . 

.~, "', i'~ " . 

,f.{ • 

.. t .. 

~'.: t .. ,. 

position-if-not 163 ~ 

ppri nt 242 () ~,:"',';;: .:' i '._ ~ 

prinl /6,232,241;244 (i J,-:-,- ' .. ; ~ ,:,~ 

prinlstring 195,241:' (' :i.>-B ,",',: 

prine 232,241,244 n" , , :,:.' ,:1". (;: 

princstring /95,241·;' 't;·.!",-, 

prinescape 233 .. < '" 
print 211;215, 241 jf:~ :,' ',:;: 

probe-fi 1 e 269;::: ' .. '''; 1;., ,~ 

. prog I I .. 34~ 12. 75'.~78 .. \84,1 f~ ,. ~ r ;.: " ~ ~ '( ~ 

prog· 34,79, 8(l, 84 ''J j. t! ;, 

progl 34; 55:it5, 82, 83, 84:-:1,:?, ;"i)"", 

prog2 34,:55; 65 ., :: .,' 'I,'" l' f." t.f,·f " -, s 

progn 34,55.64,71,":73.78,83 :>": .~~, it < 

progv 34,59,67, '8'3' {: , .... 
prb\;ide'US-\ (t., 

psetq .. 14. SR. 73 'j:" . :\\ . \~ 
push 35,63, 172 
pushnew 172,17.7 • l ~ i 

pu t f 63, i02; 103'\ ," 



INDEX 

puthash 
putpr 

182 . 'J; , : -;;'.j" .. 

102,102,'103 '1' -,?}t, ... 

.; •. ' I 

(~i ", ;;--:, 

Q 
quote 34,56.57 

R 
random 141 
random-state 142 
rassoc 179,188 
rat iona 1 130 
rationalize 130" .{<j ", 

rationalp 47,118 :ti.:. })~.' .. ~ .. ~:~ . -';L 

read 7,24,105.211, 220, 23§~ 236,,~41, -144 1" 

read-de'l imi ted-l is t 2301,237\ I' '. \ 

read-from-str i ng 240 :',~.,_' ,,'. 
read-preservi ng-wbii'tesp&.Git:r~' .:~, 24,0:; '. 
readl ine 236,238.254 
real part 134 
rem 132 ::::1 
remf 63,102,104~r.i "'\ 8."'," ,. '.' ,i l .; 

remhash J,82 :;':,:-,: 't!,r ~'"l.. .l ; !:"I i- .. r: 
remobl13, 114 f\ './ J\C 

remove 157, 160 ". " !! ' ':'1;;": '. 

remove- i f 160 ;~ , 
remove-if-not 78,160.!. 
rempr 103,104 . I- . "": 1,' t , i. 

rename-fi 1 e 269 ,; . ' ,,'fl,' i; t' ~ 

replace 61,160 H.i -''!<.J! ·f', 
require 115 ;1' , ~ i, 

return 34,42,55',72; 72,73.74, 7S, 84~;'HS '. 
return-fr,om 5,12,34;42,72, .7$, 81,'l , 
revappend 171;,}72.,' ('. :.~ > ·,·';lo ,! 
reverse 158 
round 121,122.131 
rp 1 aea 59, 174 
rpl acbi t 61,187 
rplaed 174 
rp 1 aehar 61. 146, 192 

S .~.\ 

samepnamep lOS 
samp 1 e-funct i on .. t 4 j, 

sample-macro 5 1;~ .. " 
sample-special-form ';,,~ S .. '! ,. 

seal e-f1 oat 134J~S I . ;:: 

search 
set 

157.164 
57.58 

set-char-bit 
H:. ,',. 

61. 152 "': ' 

: H r i: 

Ii", 

set-d i spatch-macro.,ctrar~cter ". 231 !1 

set-exe 1 us i ve-or liT8,! '.' . 
set-macro-chara'tet~!: (;~;.NJ 
set-syntax-from-char 1'/12$0' 

setdifference.i .~. 118:. . ( 
setelt 157.186, /87.11)2' ;: .. l. 'If 

set f 58. 60, 62. 63. 102. IOJdJ04, 122. j7.~ •.. : 
173.199,201.202.269:" f', t ",' j . 

setnth 175 
setplist 174 .,1' 

setq 33.34.57.58. 59. 6f1)\67;:73~ 1~. 84 

sha'1o:,!,/ tH:"J '·i.,I· '. "'-,;:: .,' .' 

signa 1 271.274 r:x:. i .. :. ',; .>-.J ': d, ;n! 

Signum 125 ;(:~ 'I Ii' I': "I,'. ,'<' 

sin 125 Hi ;:':'(,,[""" 
sinh 126 ir' I. ,: iT n: .-::' 'J!.'" ;' 

some 159 ~ ~ ; .~ , \' c, ~ 
sort 164 'i.., 

spec i a l-f orm-p 57, SOl '.: ; "".. ;, i', 

sqrt 115.124 :. ·1.~ •.. ,1. .. ;" :. n 
stable-sort 164 ~.~.1. ~::;; "';;:' 

standard':"c.~arp ,.,;., 1~ .:!' ',{!' C (; f.~ .-:". h,r, 

streamp' 214,,,,,;~ .:::,r,\··;,<.··\-,L"; -',>HLi 

string 195 ·)Ii '~':'Il:;:' ";, 
string-cap){t-alrze "194 7 ,, .; .•.. ;:, ",;t,\.,;!;' 

string-charp 146..,1,91,192 
string-downcase 19'. 
s tr i ng-equa 1 192 
string-greaterp :J93 
string-left-trim 194 
string-1essp 193 
string-not-equal 
string-not-greaterp 
string-not-lessp 
string-right-trim 
string-trim 194 

193 
193 

193 
194 

string-upcase 194.\. ,', 
s t r i n g I = 193 . 
string< 193 
string<= 193 
string- 192 
string> 193 
string>= 193 
stringp 48.191 

Ii. 

'G" ",i , 

. .~ 

"' .. 1 

sublis '.J:.,16 i:' jJf ~:i(\"SI",·" c" '; I.;. 

subrcall 83 
subrcal1* 83 
subrp 48 
subseq 61.157 
subsetp .,.' p8 ~ \", .,' 
sub~~ ,1.75 i ( : 

subst itut.i~ \ '., 162 .' i 

substitute-if 16Z'r". \ 
subst itute-if-not , ~J61 t 
substq 176 
substring 194 
subtypep 46 
swapf 62 
sxhash 182 
symbol-package:;' \':.1,07:: 
symbolp 47 
symev a 1 57.60 

177 
125 

126 
,(' ~"', 

..... i '. 

'. :,i 

;. j .;, 

, '" " 

... ~ " ... it' ; 

. ',0 J! I, 

,." .. ; ~ .-:, I 

T 
tai1p 
tan 
tanh 
terpri 
the 
throw 
to 

242.246 tfl': .'F·~ l;-. ; '. ~'_';' 
34.61,99 " ' .' ... .. 

11.34.36.55.73; 79.84; 87.261. iN,". :,,, 
158.158.159 .' .. ,,' .. ' 

~i~" t·.!f!·~·t~~!: .. ~ 

313 " ,,,i' 



314 ('0\1]\10N LISP R::I-FRE:-:CF l\V\NCAL 

trace 212 
translated-pathname 261,266,266 
tree-equal 50.168 
truename 260.263,269 
trunc 122.131.132 
tyi 151,238,239,2$3 . 

- tyi-no-hang 239 
tyipeek 238 . 
tyo 241 
typecase34, 46, 70.83 
typep 13,30,46,46. 198,199,204 

U 
unexport 113 
uninch 238 
union 177 
unless 34,45,52,70,83 
untyi 236,238 
unwi nd-all 11.34,85 
unwind,..protect 11,34,84,86,268 
uppercasep 1~7, 150 
use 114' 
user-homedir-pathname 263 

V 
va 1 ues 34,36,55,81,82,216 
values-list ·81 
vectorp 48 
vel t 186,187 
vref 24,60,186.187 
vset 186..187 
vsetelt 186.187 

W 
when 34, 45, 52, 69, 69, 83 
wi th-open-f i 1 e 10.34,212,267, ?68,280 

. keywords 267 

x 

y 

y-or-n-p 252,254 
yes-or-no-p 212,253 

Z 
zerop 118 




