

 SPICE LISP FLAVORS

Copyright (C) 1985 Written by Steven Handerson and Jim Muller as part of the
Spice Lisp project.

1. Introduction
 Spice Lisp Flavors was written based on a textual description of version 5.0
Zetalisp. Various modifications have been made to convert Flavors into Common
Lisp, but hopefully code that does not depend on other features of Zetalisp
(such as the window system) will work in Slisp Flavors.

Basic Operation

 Spice Lisp Flavors was deisgned to never lose state. Any change that affects
other flavors first propogates notice of the change to all the affected
flavors, the "dirty" flavors. The change is them made, and then a general
"cleanup" procedure is invoked that updates all the dirty flavors.

 This has a few important implications. One useful result is that it's quite
simple to make efficient changes to large Flavors structures; all you have to
do is inhibit cleanup until the changes are finished. However, various
operations (such as using compiler-compile-flavors) use the cleanup machinery
in order to function, and so must clean up before continuing.

 Slisp Flavors also follows version 5.0 in making recompilation due to wrapper
redefinition automatic. It does this generally by storing the sxhash of the
wrapper code, and comparing this to the sxhash of the new defwrapper.
(Actually, in interpreted interactions the code is compared with equal since
that's faster, but wrapper code loaded from compiled files only includes the
sxhash). This will probably detect a change in virtually all of the cases;
however, it is conceivable that the user might enter a different wrapper that
hashes to the same value. In this case, he will probably have to detect this
himself, and use recompile-flavor to recalculate the combined method.

2. Additions to Slisp Flavors
 Wrappers and whoppers, in addition to normal methods, can have any type.
However, you must make your own method combinations in order to make use of
this.
undefined-flavor-names [Variable]
 A list of referred-to but not yet defflavored flavors.

flavor-compile-methods [Variable]
 If this is T, newly calculated combined methods are
 automatically compiled. Our machine and compiler just isn't as
 fast as for a 3600.

dirty-flavors [Variable]
 Holds an array of the dirty flavors. Please don't alter.

cleanup-all-flavors [Function]
 If you interrupt a change in progress, you can use this to
 finish it.

without-cleaning-flavors &rest forms [Function]
 This executes the forms, but recompilation and updating of
 flavors that the execution of the forms may cause is done after
 executing them all. This is useful if you want to change a
 bunch of flavors that affect the same combined methods.

continue-whopper-all [Macro]
 This form, when executed in a whopper definition, causes the
 combined method to be continued with all the arguments received

 by the whopper. This form exists because Common Lisp doesn't
 have stack &rest args, and we might save a lot of consing here.

3. Differences between Symbolics and Slisp Flavors
 - There is no variant form of defmethod (that takes a function name).
 This could be done easily, but it would probably do an extra function
 call.

 - Mixtures, and flavor-default-init-putprop, etc. are not yet
 implemented.

 - Instances cannot be funcalled. If they are, it should probably be
 object-specific; i.e., funcalling an object sends a 'funcall message
 to the object with the arguments.

 - The following things will probably never be implemented:
 instantiate-flavor, defun-method, defselect-method
 declare-flavor-instance-variables, locate-in-instance,
 describe-flavor forms; *flavor-compilations* and
 flavor-compile-trace specials; and :special-instance-variables and
 :default-handler flavor options. [To make a default handler, handle
 :unclaimed-message.]

 - In the Symbolics implementation, any method having a type not used by
 the method combination defined for that method signals an error.
 This is currently not done in Slisp Flavors.

Continue-whopper &rest args [Macro]

Lexpr-continue-whopper &rest args [Macro]
 These are macros in Slisp Flavors, so that the continuation can
 be called with extra implementation-dependent arguments.

recompile-flavor message &optional (do-dependents t) [Function]
 Message can be either nil for all messages, a single message
 name, or a list of message names. Note that the arguments are
 different.

compile-flavor flavor [Function]
 For use in the interpreter only. To do the right thing in
 compiled files, use compiler-compile-flavors, below. These are
 two forms because I couldn't think of a way to tell whether one
 was in the compiler or not.

compiler-compile-flavors &rest flavors [Macro]
 This is different in a couple of ways from compile-flavor of
 all of the named flavors. Compile-flavor doesn't recompile
 anything it can find in the current environment;
 compiler-compile-flavors does, so that it will surely be there
 in the loadtime environment. Compiler-compile-flavors
 therefore also makes sure that each combined methods calculated
 is only calculated once.

Index

 dirty-flavors 2
 flavor-compilations special 3
 flavor-compile-methods 2
 flavor-compile-trace special 3
 undefined-flavor-names 2

 :method-order flavor option 3
 :special-instance-variables flavor option 3

 Cleanup 1
 Cleanup-all-flavors 2
 Compile-flavor 3
 Compiler-compile-flavors 3
 Continue-whopper 3
 Continue-whopper-all 2

 Declare-flavor-instance-variables 3
 Defselect-method 3
 Defun-method 3
 Describe-flavor 3
 Dirty Flavors 1

 Flavor-default-init-putprop, etc. 3

 Instantiate-flavor 3

 Lexpr-continue-whopper 3
 Locate-in-instance 3

 Mixtures 3

 Recompile-flavor 1, 3

 Wrappers 1

 Table of Contents

1. Introduction 1

2. Additions to Slisp Flavors 2

3. Differences between Symbolics and Slisp Flavors 3

Index 4

