

Revised Internal Design of Spice Lisp

Skef Wholey
Scott E. Fahlman
Joseph Ginder

DRAFT

Spice Document S026 [Revised]

Keywords and index categories: Lisp
Location of machine-readable file: CMUC::<Wholey.Australia>Revguts.Mss

 i

 Table of Contents

1. Introduction 2

 1.1. Scope and Purpose 2
 1.2. Notational Conventions 2

2. Data Types and Object Formats 3

 2.1. Lisp Objects 3
 2.2. Table of Type Codes 3
 2.3. Table of Space Codes 4
 2.4. Immediate Data Type Descriptions 4
 2.5. Pointer-Type Objects and Spaces 6
 2.6. Forwarding Pointers 8
 2.7. System and Stack Spaces 9
 2.8. Vectors and Arrays 10
 2.8.1. General Vectors 10
 2.8.2. Integer Vectors 11
 2.8.3. Arrays 12
 2.9. Symbols Known to the Microcode 13

3. Runtime Environment 15

 3.1. Control Registers 15
 3.2. Function Object Format 16
 3.3. Control-Stack Format 17
 3.3.1. Call Frames 17
 3.3.2. Catch Frames 17
 3.4. Binding-Stack Format 18

4. Storage Management 19

 4.1. The Transporter 19
 4.2. The Scavenger 20
 4.3. Purification 20

5. Macro Instruction Set 22

 5.1. Macro-Instruction Formats 22
 5.2. Instructions 24
 5.2.1. Allocation 24
 5.2.2. Stack Manipulation 26
 5.2.3. List Manipulation 28
 5.2.4. Symbol Manipulation 30
 5.2.5. Array Manipulation 31
 5.2.6. Type Predicates 35
 5.2.7. Arithmetic and Logic 37
 5.2.8. Branching and Dispatching 41
 5.2.9. Function Call and Return 42
 5.2.10. Miscellaneous 44
 5.2.11. System Hacking 46

 ii

6. Control Conventions 49

 6.1. Function Calls 49
 6.1.1. Starting a Function Call 49
 6.1.2. Finishing a Function Call 50
 6.1.3. Returning from a Function Call 51
 6.1.4. Returning Multiple-Values 52
 6.2. Non-Local Exits 52
 6.3. Escaping to Macrocode 54
 6.4. Errors 56
 6.5. Trapping to the Accent Kernel 60
 6.6. Interrupts 60

I. Fasload File Format 62

 I.1. General 62
 I.2. Strategy 62
 I.3. Fasload Language 63

II. The Opcode Definition File 72

Index 73

 1

 Acknowledgments

 The following people have been contributors to this and earlier versions of
the design of the Spice Lisp instruction set: Guy L. Steele Jr., Gail
E. Kaiser, Walter van Roggen, Neal Feinberg, Jim Large, and Rob MacLachlan.
The original instruction set was loosely based on the MIT Lisp Machine
instruction set.

 The FASL file format was designed by Guy L. Steele Jr. and Walter van Roggen,
and the appendix on this subject is their document with very few modifications.

 2

1. Introduction

1.1. Scope and Purpose
 NOTE: This document describes a new implementation of Spice Lisp as it is to
be implemented on the PERQ, running the Spice operating system, Accent. This
new design is undergoing rapid change, and for the present is not guaranteed to
accurately describe any past, present, or future implementation of Spice Lisp.
All questions and comments on this material should be directed to Skef Wholey
(Wholey@CMU-CS-C).

 This document specifies the instruction set and virtual memory architecture
of the PERQ Spice Lisp system. This is a working document, and it will change
frequently as the system is developed and maintained. If some detail of the
system does not agree with what is specified here, it is to be considered a
bug.

 Spice Lisp will be implemented on other microcodable machines, and
implementations of Common Lisp based on Spice Lisp exist for conventional
machines with fixed instructions sets. These other implementations are very
different internally and are described in other documents.

1.2. Notational Conventions
 Spice Lisp objects are 32 bits long. The low-order bit of each word is
numbered 0; the high-order bit is numbered 31. If a word is broken into
smaller units, these are packed into the word from right to left. For example,
if we break a word into bytes, byte 0 would occupy bits 0-7, byte 1 would
occupy 8-15, byte 2 would occupy 16-23, and byte 3 would occupy 24-31. In
these conventions we follow the conventions of the VAX; the PDP-10 family
follows the opposite convention, packing and numbering left to right.

 All Spice Lisp documentation uses decimal as the default radix; other radices
will be indicated by a subscript (as in 77) or by a clear statement of what
 8
radix is in use.

 3

2. Data Types and Object Formats

2.1. Lisp Objects
 Lisp objects are 32 bits long. They come in 32 basic types, divided into
three classes: immediate data types, pointer types, and forwarding pointer
types. The storage formats are as follows:

Immediate Data Types:
 31 27 26 0
--
| Type Code (5) | Immediate Data (27) |
--

Pointer and Forwarding Types:
 31 27 26 25 24 1 0
--
| Type Code (5) | Space Code (2) | Pointer (24) | Unused (1) |
--

2.2. Table of Type Codes

Code Type Class Explanation
---- ---- ----- -----------
0 Misc Immediate Trap object, stacks, system tables
1 Bit-Vector Pointer Vector of bits
2 Integer-Vector Pointer Vector of integers
3 String Pointer Character string
4 Bignum Pointer Bignum
5 Long-Float Pointer Long float
6 Complex Pointer Complex number
7 Ratio Pointer Ratio
8 General-Vector Pointer Vector of Lisp objects
9 Function Pointer Compiled function header
10 Array Pointer Array header
11 Symbol Pointer Symbol
12 List Pointer Cons cell
13-15 Unused
16 + Fixnum Immediate Fixnum >= 0
17 - Fixnum Immediate Fixnum < 0
18 + Short-Float Immediate Short float >= 0
19 - Short-Float Immediate Short float < 0
20 Character Immediate Character object
21 Values-Marker Immediate Multiple values marker
22 Call-Header Immediate Control stack call frame header
23 Catch-Header Immediate Control stack catch frame header
24 Catch-All Immediate Catch-All object
25 GC-Forward Forward Object in newspace of same type
26-31 Unused

 4

2.3. Table of Space Codes

Code Space Explanation
---- ----- -----------
0 Dynamic-0 Storage normally garbage collected, space 0.
1 Dynamic-1 Storage normally garbage collected, space 1.
2 Static Permanent objects, never moved or reclaimed.
3 Read-Only Objects never moved, reclaimed, or altered.

2.4. Immediate Data Type Descriptions

Misc Reserved for assorted internal values. Bits 25-26 specify a
 sub-type code.

 0 Trap Illegal object trap. If you fetch one of
 these, it's an error except under very
 specialized conditions. Note that a word of
 all zeros is of this type, so this is useful
 for trapping references to uninitialized
 memory. This value also is used in symbols to
 flag an undefined value or definition.

 1 Control-Stack-Pointer
 The low 25 bits are a pointer into the control
 stack. This is a word pointer that points to
 the proper virtual memory address. Pointers of
 this form are returned by certain system
 routines for use by debugging programs.

 2 Binding-Stack-Pointer
 The low 25 bits are a pointer into the binding
 stack. This is a word pointer that points to
 the proper virtual memory address. Pointers of
 this form are returned by certain system
 routines for use by debugging programs.

 3 System-Table-Pointer
 The low 25 bits are a pointer into an area of
 memory used for system tables. This is a word
 pointer into an area of the address space
 reserved for data sent and received in Accent
 messages.

Fixnum A 28-bit two's complement integer. The sign bit is stored as
 part of the type code.

Short-Float As with fixnums, the sign bit is stored as part of the type
 code. The format of short floating point number can be viewed
 as follows:

 5

 31 28 27 26 19 18 0
 --
 | Type code (4) | Sign (1) | Expt (8) | Mantissa (19) |
 --

 The sign of the mantissa is moved to the left so that these
 flonums can be compared just like fixnums. The exponent is the
 binary two's complement exponent of the number, plus 128; then,
 if the mantissa is negative, the bits of the exponent field are
 inverted. The mantissa is a 21-bit two's complement number
 with the sign moved to bit 27 and the leading significant bit
 (which is always the complement of the sign bit and hence
 carries no information) stripped off. The short flonum
 representing 0.0 has 0's in bits 0 - 27. It is illegal for the
 sign bit to be 1 with all the other bits equal to 0. This
 -38 +38
 encoding gives a range of about 10 to 10 and about 6
 digits of accuracy. Note that long-flonums are available for
 those wanting more accuracy, but they are less efficient to use
 because they generate garbage that must be collected later.

Character A character object holding a character code, control bits, and
 font in the following format:

 31 27 26 24 23 16 15 8 7 0

 | Type code (5) | Unused (3) | Font (8) | Bits (8) | Code (8) |

Values-Marker Used to mark the presence of multiple values on the stack. The
 low 16 bits indicate how many values are being returned. Note
 then, that only 65535 values can be returned from a
 multiple-values producing form. These are pushed in order,
 then the Values-Marker is pushed.

Call-Header Marks the start of each call frame on the control stack. The
 low-order 27 bits are used as a place to stash information for
 certain special kinds of calls.

 For a normal function call, as created by the CALL or CALL-0
 instruction, the low 27 bits are always 0.

 Bit 22, if 1, indicates an ``escape to macro'' call frame,
 created when a macro-instruction cannot be completed entirely
 within the microcode. In this case, bits 16-17 indicate where
 the result is supposed to go (see section 6.3).

 Bit 21, if 1, indicates a call frame that will accept multiple
 values to be returned. Such frames are created by
 Call-Multiple, and cause Return to take certain special
 actions. See section 6.1.3 for details.

 6

 Bits 22 and 21 are mutually exclusive. It is undefined what
 happens when both of these are on at once.

Catch-Header Marks a catch frame on the control stack. If bit 21 is on,
 this indicates that the catching form will accept multiple
 values. See section 6.2 for details.

Catch-All Object used as the catch tag for unwind-protects. Special
 things happen when a catch frame with this as its tag is
 encountered during a throw. See section 6.2 for details.

2.5. Pointer-Type Objects and Spaces
 Each of the pointer-type lisp objects points into a different space in
virtual memory. There are separate spaces for Bit-Vectors, Symbols, Lists, and
so on. The 5-bit type-code provides the high-order virtual address bits for
the object, followed by the 2-bit space code, followed by the 25-bit pointer
address. This gives a 31-bit virtual address to a 32-bit word; since the PERQ
is a word-addressed machine, the low-order bit will be 0, and under Accent, the
high order bit will be 0 (because the operating system lives in the upper half
of the address space). This leaves us with a 30-bit virtual address. In
effect we have carved a 30-bit space into a fixed set of 24-bit subspaces, not
all of which are used.

 The space code divides each of the type spaces into four sub-spaces, as shown
in the table above. At any given time, one of the dynamic spaces is considered
newspace, while the other is oldspace. The garbage collector continuously
moves accessible objects from oldspace into newspace. When oldspace contains
no more accessible objects it is considered empty. A ``flip'' can then be
done, turning the old newspace into the new oldspace. All type-spaces are
flipped at once. Allocation of new dynamic objects always occurs in newspace.

 Optionally, the user (or system functions) may allocate objects in static or
read-only space. Such objects are never reclaimed once they are allocated --
they occupy the space in which they were initially allocated for the lifetime
of the Lisp process. The advantage of static allocation is that the GC never
has to move these objects, thereby saving a significant amount of work,
especially if the objects are large. Objects in read-only space are static, in
that they are never moved or reclaimed; in addition, they cannot be altered
once they are set up. Pointers in read-only space may only point to read-only
or static space, never to dynamic space. This saves even more work, since
read-only space does not need to be scavenged, and pages of read-only material
do not need to be written back onto the disk during paging.

 Objects in a particular type-space will contain either pointers to
garbage-collectable objects or words of raw non-garbage-collectable bits, but
not both. Similarly, a space will contain either fixed-length objects or
variable-length objects, but not both. A variable-length object always
contains a 24-bit length field right-justified in the first word, with the
fixnum type-code in the high-order four bits. The remaining four bits can be
used for sub-type information. The length field gives the size of the object
in 32-bit words, including the header word. The garbage collector needs this
information when the object is moved, and it is also useful for bounds

 7

checking.

 The format of objects in each space are as follows:

Symbol Each symbol is represented as a fixed-length block of boxed
 Lisp cells. The number of cells per symbol is 5, in the
 following order:

 0 Value cell for shallow binding.
 1 Definition cell: a function or list.
 2 Property list: a list of attribute-value pairs.
 3 Print name: a string.
 4 Package: the obarray holding this symbol.

List A fixed-length block of two boxed Lisp cells, the CAR and the
 CDR.

General-Vector Vector of lisp objects, any length. The first word is a fixnum
 giving the number of words allocated for the vector (up to 24
 bits). The highest legal index is this number minus 2. The
 second word is vector entry 0, and additional entries are
 allocated contiguously in virtual memory. General vectors are
 sometimes called G-Vectors. (See section 2.8 for further
 details.)

Integer-Vector Vector of integers, any length. The 24 low bits of the first
 word give the allocated length in 32-bit words. The low-order
 28 bits of the second word gives the length of the vector in
 entries, whatever the length of the individual entries may be.
 The high-order 4 bits of the second word contain access-type
 information that yields, among other things, the number of bits
 per entry. Entry 0 is right-justified in the third word of the
 vector. Bits per entry will normally be powers of 2, so they
 will fit neatly into 32-bit words, but if necessary some empty
 space may be left at the high-order end of each word. Integer
 vectors are sometimes called I-Vectors. (See section 2.8 for
 details.)

Bit-Vector Vector of bits, any length. Bit-Vectors are represented in a
 form identical to I-Vectors, but live in a different space for
 efficiency reasons.

Bignum Bignums are infinite-precision integers, represented in a
 format identical to I-Vectors. Each bignum is stored as a
 series of 8-bit bytes, with the low-order byte stored first.
 The representation is two's complement, but the sign of the
 number is redundantly encoded in the subtype field of the
 bignum: positive bignums are sub-type 0, negative bignums
 sub-type 1. The access-type code is always 8-Bit.

Long-Float Long floats are stored as two consecutive words of bits, in the
 following format:

 8

 31 30 20 19 0

 | Sign (1) | Exponent (11) | Fraction (20) |

 | Fraction (32) |

 The exponent is biased by 1023. Exponents of 0 and 2047 are
 reserved. The most significant bit of the fraction is stripped
 off since it is always the complement of the sign bit, and
 carries no information.

Ratio Ratios are stored as two consecutive words of Lisp objects,
 which should both be integers.

Complex Complex numbers are stored as two consecutive words of Lisp
 objects, which should both be numbers.

Array This is actually a header which holds the accessing information
 and other information about the array. The actual array
 contents are held in a vector (either an I-Vector or G-Vector)
 pointed to by an entry in the header. The header is identical
 in format to a G-Vector. For details on what the array header
 contains, see section 2.8.3.

String A vector of bytes. Identical in form to I-Vectors with the
 access type always 8-Bit. However, instead of accepting and
 returning fixnums, string accesses accept and return character
 objects. Only the 8-bit code field is actually stored, and the
 returned character object always has bit and font values of 0.

Function A compiled Spice Lisp function consists of both lisp objects
 and raw bits for the code. The Lisp objects are stored in the
 Function space in a format identical to that used for general
 vectors, with a 24-bit length field in the first word. This
 object contains assorted parameters needed by the calling
 machinery, a pointer to an 8-bit I-Vector containing the
 compiled byte codes, a number of pointers to symbols used as
 special variables within the function, and a number of lisp
 objects used as constants by the function. For details of the
 code format and definitions of the byte codes, see section 5.1.

2.6. Forwarding Pointers

GC-Forward When a data structure is transported into newspace, a
 GC-Forward pointer is left behind in the first word of the
 oldspace object. This points to the same type-space in which
 it is found. For example, a GC-Forward in G-Vector space
 points to a structure in the G-Vector newspace. GC-Forward
 pointers are only found in oldspace.

 9

2.7. System and Stack Spaces
 The virtual addresses below 08000000 are not occupied by Lisp objects,
 16
since Lisp objects with type code 0 are immediate objects. Some of this space
is used for other purposes by Lisp. The current allocations are as follows:

Address (base 16) Use
------------------- ---
00000000 - 01FFFFFF Microcode tables
02000000 - 03FFFFFF Control Stack
04000000 - 05FFFFFF Binding Stack
06000000 - 07FFFFFF System tables

 Microcode tables for a given process are never accessed by Lisp-level code
from that process (the SAVE function looks at the allocation table of another
Lisp process). These tables contain allocation information for the various
spaces and pointers to functions that are called when escapes to macrocode are
done. There are currently two microcode tables:

Address (base 16) Use
------------------- ---
00010000 - 00010100 Allocation table
00020000 - 00020100 Escape function table

The format of the allocation table is described in chapter 4, and the format of
the escape function table is described in section 6.3.

 The control stack grows upward (toward higher addresses) in memory, and is a
framed stack. It contains only general Lisp objects (with some random things
encoded as fixnums or Misc codes). Every object pointed to by an entry on this
stack is kept alive. The frame for a function call contains an area for the
function's arguments, an area for local variables, a pointer to the caller's
frame, and a pointer into the binding stack. The frame for a Catch form
contains similar information. The precise stack format can be found in chapter
3.

 The special binding stack also grows upward. This stack is used to hold
previous values of special variables that have been bound. It grows and
shrinks with the depth of the binding environment, as reflected in the control
stack. This stack contains symbol-value pairs, with only boxed Lisp objects
present.

 System table space is used to interface Lisp to the operating system. This
is the only part of the address space that contains invalid memory, so all
Accent messages received will appear in this space. Since files are sent and
received in messages, all files will be mapped into this space. Data in system
table space may be accessed and altered by the instructions described in
section 5.2.11.

 There are significant performance advantages to be gained by aligning all
objects on the PERQ's ``quad-word'' (64-bit) boundaries. This happens
automatically for conses, long-floats, complex numbers, and ratios, which are

 10

all two Lisp-words long. For all other pointer-type objects, the allocator
makes sure that the object starts on a quad-word boundary, wasting a word with
a Misc-Trap code if necessary. Thus, every pointer (except possibly for stack
and system area pointers) will have its two low-order bits 0. User-level code
should never have to notice this distinction.

2.8. Vectors and Arrays
 Common Lisp arrays can be represented in a few different ways in Spice Lisp
-- different representations have different performance advantages. Simple
general vectors, simple vectors of integers, and simple strings are basic Spice
Lisp data types, and access to these structures is quicker than access to
non-simple (or ``complex'') arrays. However, all multi-dimensional arrays in
Spice Lisp are complex arrays, so references to these is always through a
header structure.

2.8.1. General Vectors
 G-Vectors contain Lisp objects. The format is as follows:

--
| Fixnum code (4) | Subtype (4) | Allocated length (24) |
--
Vector entry 0 (Additional entries in subsequent words)

 Note that the subtype field overlaps the type field -- this means that the
subtype can change the sign bit of the fixnum. The first word of the vector is
a header indicating its length; the remaining words hold the boxed entries of
the vector, one entry per 32-bit word. The header word is of type fixnum. It
contains a 3-bit subtype field, which is used to indicate several special types
of general vectors. At present, the following subtype codes are defined:

0 Normal. Used for assorted things.

1 Named structure created by DEFSTRUCT, with type name in entry
 0.

2 EQ Hash Table, last rehashed in dynamic-0 space.

3 EQ Hash Table, last rehashed in dynamic-1 space.

4 EQ Hash Table, must be rehashed.

 Following the subtype is a 24-bit field indicating how many 32-bit words are
allocated for this vector, including the header word. Legal indices into the
vector range from zero to the number in the allocated length field minus 2,
inclusive. The index is checked on every access to the vector. Entry 0 is
stored in the second word of the vector, and subsequent entries follow
contiguously in virtual memory.

 Once a vector has been allocated, it is possible to reduce its length by

 11

using the Shrink-Vector instruction, but never to increase its length, even
back to the original size, since the space freed by the reduction may have been
reclaimed. This reduction simply stores a new smaller value in the length
field of the header word.

 It is not an error to create a vector of length 0, though it will always be
an out-of-bounds error to access such an object. The maximum possible length
 24
for a general vector is 2 -2 entries, and that is only possible if no other
general vectors are present in the space.

 Objects of type Function and Array are identical in format to general
vectors, though they have their own spaces. In both cases, only 0 is currently
used in the sub-type field of the header word.

2.8.2. Integer Vectors
 I-Vectors contain unboxed items of data, and their format is more complex.
The data items come in a variety of lengths, but are of constant length within
a given vector. Data going to and from an I-Vector are passed as Fixnums,
right justified. Internally these integers are stored in packed form, filling
32-bit words without any type-codes or other overhead. The format is as
follows:

--
| Fixnum code (4) | Subtype (4) | Allocated length (24) |
--
| Access type (4) | Number of entries (28) |
--
Entry 0 right justified

 Note that the subtype field overlaps the type field -- this means that the
subtype can change the sign bit of the fixnum. The first word of an I-Vector
contains the Fixnum type-code in the top 4 bits, a 4-bit subtype code in the
next four bits, and the total allocated length of the vector (in 32-bit words)
in the low-order 24 bits. At present, the following subtype codes are defined:

0 Normal. Used for assorted things.

1 Code. This is the code-vector for a function object.

 The second word of the vector is the one that is looked at every time the
vector is accessed. The low-order 28 bits of this word contain the number of
valid entries in the vector, regardless of how long each entry is. The lowest
legal index into the vector is always 0; the highest legal index is one less
than this number-of-entries field from the second word. These bounds are
checked on every access. Once a vector is allocated, it can be reduced in size
but not increased. The Shrink-Vector instruction changes both the allocated
length field and the number-of-entries field of an integer vector.

 12

 The high-order 4 bits of the second word contain an access-type code which
indicates how many bits are occupied by each item (and therefore how many items
are packed into a 32-bit word). The encoding is as follows:

0 1-Bit 8 Unused
1 2-Bit 9 Unused
2 4-Bit 10 Unused
3 8-Bit 11 Unused
4 16-Bit 12 Unused
5 Unused 13 Unused
6 Unused 14 Unused
7 Unused 15 Unused

 In I-Vectors, the data items are packed into the third and subsequent words
of the vector. Item 0 is right justified in the third word, item 1 is to its
left, and so on until the allocated number of items has been accommodated. All
of the currently-defined access types happen to pack neatly into 32-bit words,
but if this should not be the case, some unused bits would remain at the left
side of each word. No attempt will be made to split items between words to use
up these odd bits. When allocated, an I-Vector is initialized to all 0's.

 As with G-Vectors, it is not an error to create an I-Vector of length 0, but
it will always be an error to access such a vector. The maximum possible
 28 24
length of an I-Vector is 2 -1 entries or 2 -3 words, whichever is smaller.

 Objects of type String are identical in format to I-Vectors, though they have
their own space. Strings always have subtype 0 and access-type 3 (8-Bit).
Strings differ from normal I-Vectors in that the accessing instructions accept
and return objects of type Character rather than Fixnum.

 Bignums are also identical in format and operation to I-Vectors, though they
may also be operated on directly by microcoded routines. For details of the
currently-defined sub-types and their access-codes, see section 2.5.

2.8.3. Arrays
 An array header is identical in form to a G-Vector. Like any G-Vector, its
first word contains a fixnum type-code, a 4-bit subtype code, and a 24-bit
total length field (this is the length of the array header, not of the vector
that holds the data). At present, the subtype code is always 0. The entries
in the header-vector are interpreted as follows:

0 Data Vector This is a pointer to the I-Vector, G-Vector, or string that
 contains the actual data of the array. In a multi-dimensional
 array, the supplied indices are converted into a single 1-D
 index which is used to access the data vector in the usual way.

1 Number of Elements
 This is a fixnum indicating the number of elements for which
 there is space in the data vector.

 13

2 Fill Pointer This is a fixnum indicating how many elements of the data
 vector are actually considered to be in use. Normally this is
 initialized to the same value as the Number of Elements field,
 but in some array applications it will be given a smaller
 value. Any access beyond the fill pointer is illegal.

3 Displacement This fixnum value is added to the final code-vector index after
 the index arithmetic is done but before the access occurs.
 Used for mapping a portion of one array into another. For most
 arrays, this is 0.

4 Range of First Index
 This is the number of index values along the first dimension,
 or one greater than the largest legal value of this index
 (since the arrays are always zero-based). A fixnum in the
 24
 range 0 to 2 -1. If any of the indices has a range of 0, the
 array is legal but will contain no data and accesses to it will
 always be out of range. In a 0-dimension array, this entry
 will not be present.

5 - N Ranges of Subsequent Dimensions

 The number of dimensions of an array can be determined by looking at the
length of the array header. The rank will be this number minus 6. The maximum
array rank is 65535 - 6, or 65529.

 The ranges of all indices are checked on every access, during the conversion
to a single data-vector index. In this conversion, each index is added to the
accumulating total, then the total is multiplied by the range of the following
dimension, the next index is added in, and so on. In other words, if the data
vector is scanned linearly, the last array index is the one that varies most
rapidly, then the index before it, and so on.

2.9. Symbols Known to the Microcode
 A large number of symbols will be pre-defined when a Spice Lisp system is
fired up. A few of these are so fundamental to the operation of the system
that their addresses have to be assembled into the microcode. These symbols
are listed here. All of these symbols are in static space, so they will not be
moving around.

NIL 5C000000 The value of NIL is always NIL; it is an error to
 16
 alter it. NIL is unique among symbols in that you can take its
 CAR and CDR, yielding NIL in either case.

T 5C00000C The value of T is always T; it is an error to alter
 16
 it.

%SP-Internal-Apply
 5C000018 The function stored in the definition cell of this
 16

 14

 symbol is called by the microcode whenever compiled code calls
 an interpreted function. See section 6.1.2 for details.

%SP-Internal-Error
 5C000024 The function stored in the definition cell of this
 16
 symbol is called whenever an error is detected during the
 execution of a byte instruction. See section 6.4 for details.

%SP-Software-Interrupt-Handler
 5C000030 The function stored in the definition cell of this
 16
 symbol is called whenever a software interrupt occurs. See
 section 6.6 for details.

%SP-Internal-Throw-Tag
 5C00003C This symbol is bound to the tag being thrown when a
 16
 Catch-All frame is encountered on the stack. See section 6.2
 for details.

 15

3. Runtime Environment

3.1. Control Registers
 To describe the instructions in chapter 5 and the complicated control
conventions in chapter 6 requires that we talk about a number of ``machine
registers.'' All of these registers will be treated as if they contain 32-bit
Lisp objects.

Control-Stack-Pointer
 The stack pointer for the control stack, an object of type
 Misc-Control-Stack-Pointer. Points to the first unused word in
 Control-Stack space; this upward growing stack uses a
 write-increment/decrement-read discipline.

TOS The top entry of the control stack, which is kept in a register
 for efficiency. References to local variables are faster if
 they can assume that the local in question is on the stack in
 main memory and that it has not popped up into the TOS
 register. To ensure this, the compiler adds an extra local
 variable to each function, so that none of the locals that are
 actually used can ever pop into TOS.

Binding-Stack-Pointer
 The stack pointer for the special variable binding stack, an
 object of type Misc-Binding-Stack-Pointer. The binding stack
 follows the same write-increment/decrement-read discipline as
 the control stack.

Active-Frame An object of type Misc-Control-Stack-Pointer which points to
 the first word of the call frame for the currently executing
 function. The virtual address of the start of the arguments
 and locals area of the active frame is this pointer plus a
 constant (see section 3.3).

Open-Frame An object of type Misc-Control-Stack-Pointer which points to
 the first word of the call frame currently being built (i.e.
 whose arguments are being evaluated).

Active-Catch An object of type Misc-Control-Stack-Pointer which points to
 the first word of the most recent catch frame built.

Active-Function The compiled function object for the function that is currently
 being executed. The virtual address of the start of the
 symbols and constants area of the current function is this
 pointer plus a constant (see section 3.2).

Active-Code The I-Vector of instructions for the currently executing
 function.

PC A pointer into I-Vector space that indicates the next quadword
 from which the instruction buffer will be filled. This and the
 hardware BPC determine the next instruction to be executed.

 16

 When a PC is pushed on the stack by a Call or Catch
 instruction, it is stored in the form of a 16-bit offset from
 the base of the Active-Code vector and the BPC:

 31 27 26 20 19 16 15 0

 | Trap type code (5) | Unused (7) | BPC (4) | Offset (16) |

3.2. Function Object Format
 Each compiled function is represented in the machine as a Function Object.
This is identical in form to a G-Vector of lisp objects, and is treated as such
by the garbage collector, but it exists in a special function space. (There is
no particular reason for this distinction. We may decide later to store these
things in G-Vector space, if we become short on spaces or have some reason to
believe that this would improve paging behavior.) Usually, the function
objects and code vectors will be kept in read-only space, but nothing should
depend on this; some applications may create, compile, and destroy functions
often enough to make dynamic allocation of function objects worthwhile.

 The function object contains a vector of header information needed by the
function-calling mechanism: a pointer to the I-Vector that holds the actual
code. Following this is the so-called ``symbols and constants'' area. The
first few entries in this area are fixnums that give the offsets into the code
vector for various numbers of supplied arguments. Following this begin the
true symbols and constants used by the function. Any symbol used by the code
as a special variable or the name of another function will appear here. Fixnum
constants in the range of -256 to +255 can be generated within the byte code,
and so do not need to be stored in the constants area as full-word constants.

 After the one-word G-Vector header, the entries of the function object are as
follows:

0 A fixnum with bit fields as follows:
 0 - 14: Number of symbols/constants in this fn object (0 to 32K-1).
 This number includes the optional-arg offsets.
 15 - 26: Not used.
 27: 0 => All args evaled. 1 => This is a FEXPR.
1 Pointer to the unboxed Code vector holding the macro-instructions.
2 A fixnum with bit fields as follows:
 0 - 7: The minimum legal number of args (0 to 255).
 8 - 15: The maximum number of args, not counting &rest (0 to 255).
 16 - 26: Number of local variables allocated on stack (0 to 2047).
 27: 0 => No &rest arg. 1 => One &rest arg.
3 Name of this function (a symbol).
4 Vector of argument names, in order, for debugging use.
5 The symbols and constants area starts here.
 This word is entry 0 of the symbol/constant area.
 The first few entries in this area are fixnums representing
 the code-vector entry points for various numbers of
 optional arguments. See section 6.1.2.

 17

3.3. Control-Stack Format
 The Spice Lisp control stack is a framed stack. Call frames, which hold
information for function calls, are intermixed with catch frames, which hold
information used for non-local exits. In addition, the control stack is used
as a scratchpad for random computations.

3.3.1. Call Frames
 At any given time, the machine contains pointers to the current top of the
control stack, the start of the current active frame (in which the current
function is executing), and the start of the most recent open frame. In
addition, there is a pointer to the current top of the special binding stack.
An open frame is one which has been partially built, but which is still having
arguments for it computed. When all the arguments have been computed and saved
on the frame, the function is then started. This means that the call frame is
completed, becomes the current active frame, and the function is executed. At
this time, special variables may be bound and the old values are saved on the
binding stack. Upon return, the active frame is popped away and the result is
either sent as an argument to some previously opened frame or goes to some
other destination. The binding stack is popped and old values are restored.

 The active frame contains pointers to the previously-active frame, to the
most recent open frame, and to the point to which the binding stack will be
popped on exit, among other things. Following this is a vector of storage
locations for the function's arguments and local variables. Space is allocated
for the maximum number of arguments that the function can take, regardless of
how many are actually supplied.

 In an open frame, the structure is built up to the point where the arguments
are stored. Thus, as arguments are computed, they can simply be pushed on the
stack. When the function is finally started, the remainder of the frame is
built. A call frame looks like this:

0 Header word. Type Call-Frame-Header.
1 Function object or EXPR for this call.
2 Pointer to previous active frame. Type Misc-Control-Stack-Ptr.
3 Pointer to previous open frame. Type Misc-Control-Stack-Ptr.
4 Pointer to previous binding stack. Type Misc-Binding-Stack-Ptr.
5 Saved PC of caller. A fixnum.
6 Args-and-locals area starts here. This is entry 0.

The first slot is pointed to by the Active-Frame register if this frame is
currently active, and by the Open-Frame register if this frame is the currently
opened frame.

3.3.2. Catch Frames
 Catch frames contain much of the same information that call frames do, and
have a very similar format. A catch frame holds the function object for the
current function, a stack pointer to the current active and open frames, a

 18

pointer to the current top of the binding stack, and a pointer to the previous
catch frame. When a Throw occurs, an operation equivalent to returning from
this catch frame (as if it were a call frame) is performed, and the stacks are
unwound to the proper place for continued execution in the current function. A
catch frame looks like this:

0 Header word. Type Catch-Frame-Header.
1 Function object for this call.
2 Pointer to current active frame.
3 Pointer to current open frame.
4 Pointer to current binding stack.
5 Destination PC for a Throw.
6 Tag caught by this catch frame.
7 Pointer to previous catch frame.

The conventions used to manipulate call and catch frames are described in
chapter 6.

3.4. Binding-Stack Format
 Each entry of the binding-stack consists of two boxed (32-bit) words. Pushed
first is a pointer to the symbol being bound. Pushed second is the symbol's
old value (any boxed item) that is to be restored when the binding is popped.

 19

4. Storage Management
 New objects are allocated from the lowest unused addresses within the
specified space. Each allocation call specifies how many words are wanted, and
a Free-Storage pointer is incremented by that amount. There is one of these
Free-Storage pointers for each space, and it points to the lowest free address
in the space. There is also a Clean-Space pointer associated with each space
that is used during garbage collection. These pointers are stored in a table
in the microcode table area which is indexed by type and space code. The
address of the Free-Storage pointer for a given space is

 (+ alloc-table-base (lsh type 4) (lsh space 2)).

The address of the Clean-Space pointer is

 (+ alloc-table-base (lsh type 4) (lsh space 2) 2).

 PERQ Spice Lisp uses a stop-and-copy garbage collector to reclaim storage.
The Collect-Garbage instruction performs a full GC. The algorithm used is a
degenerate form of Baker's incremental garbage collection scheme. When the
Collect-Garbage instruction is executed, the following happens:

 1. The current newspace becomes oldspace, and the current oldspace
 becomes newspace.

 2. The newspace Free-Storage and Clean-Space pointers are initialized
 to point to the beginning of their spaces.

 3. The contents of the ``registers inside the barrier'' are
 transported. There are only three such registers: Active-Function,
 Active-Code, and TOS. However, the PC is stored internally as an
 absolute address, so it must be recomputed if the code vector in
 Active-Code is transported. This is easily done by subtracting
 Active-Code from PC before it is transported, and adding it back in
 afterwards. Because the Active-Code vector will be transported from
 a quadword boundary to a quadword boundary, the PERQ's internal BPC
 needn't be modified.

 4. The control stack and binding stack are scavenged.

 5. Each static pointer space is scavenged.

 6. Each new dynamic space is scavenged. The scavenging of the dynamic
 spaces is done until an entire pass through all of them does not
 result in anything being transported. At this point, every live
 object is in newspace.

A Lisp-level GC function must return the oldspace pages to Accent.

4.1. The Transporter
 The transporter moves objects from oldspace to newspace. It is given an
address A, which contains the object to be transported, B. If B is an
immediate object, a pointer into static space, a pointer into read-only space,

 20

or a pointer into newspace, the transporter does nothing.

 If B is a pointer into oldspace, the object it points to must be moved. It
may, however, already have been moved. Fetch the first word of B, and call it
C. If C is a GC-forwarding pointer, we form a new pointer with the type code
of B and the low 27 bits of C. Write this into A.

 If C is not a GC-forwarding pointer, we must copy the object the B points to.
Allocate a new object of the same size in newspace, and copy the contents.
Replace C with a GC-forwarding pointer to the new structure, and write the
address of the new structure back into A.

 Hash tables maintained with an EQ relation need special treatment by the
transporter. Whenever a G-Vector with subtype 2 or 3 is transported to
newspace, its subtype code is changed to 4. The Lisp-level hash-table
functions will see that the subtype code has changed, and re-hash the entries
before any access is made.

4.2. The Scavenger
 The scavenger looks through an area of pointers for pointers into oldspace,
transporting the objects they point to into newspace. The stacks and static
spaces need to be scavenged once, but the new dynamic spaces need to be
scavenged repeatedly, since new objects will be allocated while garbage
collection is in progress. To keep track of how much a dynamic space has been
scavenged, a Clean-Space pointer is maintained. The Clean-Space pointer points
to the next word to be scavenged. Each call to the scavenger scavenges the
area between the Clean-Space pointer and the Free-Storage pointer. The
Clean-Space pointer is then set to the Free-Storage pointer. When all
Clean-Space pointers are equal to their Free-Storage pointers, GC is complete.

 To maintain (and create) locality of list structures, list space is treated
specially. Two separate Clean-Space pointers are maintained for list space:
one for cars and one for cdrs. The scavenger works on the Clean-Cdr pointer
unless it is at the Free-Storage pointer, in which case it works on the
Clean-Car pointer. When Clean-Car, Clean-Cdr, and the Free-Storage pointer for
list space coincide, list space has been completely scavenged.

4.3. Purification
 Garbage is created when the files that make up a Spice Lisp system are
loaded. Many functions are needed only for initialization and bootstrapping
(e.g. the ``one-shot'' functions produced by the compiled for random forms
between function definition), and these can be thrown away once a full system
is built. Most of the functions in the system, however, will be used after
initialization. Rather than bend over backwards to make the compiler dump some
functions in read-only space and others in dynamic space (which involves
dumping their constants in the proper spaces, also), we will dump everything
into dynamic space, and use the following storage allocation feature to move
what we need after initialization into read-only and static space.

 The Set-Newspace-For-Type instruction lets us set the free pointer of the
next newspace to dynamic or read-only space instead of the corresponding
dynamic space. When the next GC happens, objects in newspace will be

 21

transported to this other space (static or read-only) instead of dynamic space.
Care must be taken, of course, to ensure that objects in read-only space point
only to static or read-only space. Probably the following should be used for
``purifying'' a system:

 (set-newspace-for-type 1 2) ; bit-vectors to static
 (set-newspace-for-type 2 2) ; likewise for i-vectors
 (set-newspace-for-type 3 2) ; and strings
 (set-newspace-for-type 4 2) ; and bignums
 (set-newspace-for-type 5 2) ; and long-floats
 (set-newspace-for-type 6 3) ; complexes can be read-only
 (set-newspace-for-type 7 3) ; as can ratios
 (set-newspace-for-type 8 2) ; g-vectors should be static
 (set-newspace-for-type 9 3) ; functions should be read-only
 (set-newspace-for-type 10 3) ; arrays can be, also
 (set-newspace-for-type 11 2) ; symbols should be static
 (set-newspace-for-type 12 2) ; as should conses.

 22

5. Macro Instruction Set
 The intent is that this instruction set should be a very direct mapping from
the S-expression source it is derived from. There should therefore never be
any temptation for users to write macrocode by hand; all of the system that is
not in microcode should be written in Lisp. Since the compiler will run both
in Spice Lisp and in Maclisp, we need not hand-code things even for
bootstrapping.

5.1. Macro-Instruction Formats
 There are three ways in which instructions fetch their arguments and store
their results.

 1. Most instructions pop all of their operands off of the stack and
 push a result back onto the stack, behaving like little Lisp
 functions. There are some instructions that will take their last
 operand from a place other than the stack (an immediate constant, a
 local variable, etc).

 2. Some instructions modify a value in place. This value is sometimes
 the top of the stack, but could be a local variable, argument, or
 special variable. In the descriptions of the instructions below,
 these instructions operate on a pseudo-operand E, the effective
 address, which is specified as part of the opcode.

 3. Finally, a few instructions pop the top of the stack but leave no
 result. The Pop, Branch, and Dispatch instructions do this.

 All non-branching Spice Lisp instructions are made up of 1 or 2 opcode bytes,
that contain an implicit effective address, and 0 to 2 bytes following the
opcode that are used as part of the effective address. Branching instructions
have 1 or 2 bytes of opcode followed by a 1 or 2 byte branch offset. The
possible effective addresses (and their use of additional effective address
bytes) are these:

Stack The operand is taken from the stack. Then the operation takes
 place, in some cases pushing a result onto the stack. No
 effective address bytes are fetched. The names of instructions
 that take all stack operands are not suffixed with an effective
 address specifier, as others are. These instructions are
 called ``basic'' instructions. In most cases, the
 compiler-writer need concern himself with only these forms of
 an instruction. The peephole optimizer will replace sequences
 of stack referencing instructions with instructions with
 differerent addressing modes if the resulting sequence is
 faster.

Positive Short Integer Constant
 A byte is fetched and is converted to a positive fixnum in the
 range 0 to 255. This is used as the operand. The ``-PSIC''
 suffix on an instruction name is used for instructions with
 positive short integer constant operands. Some instructions
 imply a particular short integer without a second byte. These

 23

 are suffixed with ``-PSICn'' where n is the short integer. A
 short integer constant may never be used as a result effective
 address, of course.

Negative Short Integer Constant
 A byte is fetched and is converted to a negative fixnum in the
 range -1 to -256. This is used as the operand. The ``-NSIC''
 suffix on an instruction name is used for instructions with
 negative short integer constant operands.

Arguments & Locals
 In most cases, one byte is fetched and used as an unsigned
 offset (0 - 255) into the arguments and local variables area of
 the currently active call frame (``-AL'' suffix). The contents
 of this cell are used as the operand. For a few instructions,
 two bytes are fetched to form a 16-bit offset (0 - 65535). In
 fetching this double offset, the low-order byte comes in first
 (``-LongAL'' suffix). Some instructions imply a particular
 offset without the need for another offset byte. These
 instructions are those that are suffixed with ``-ALn'' where n
 is an integer which denotes the implied offset. When used as a
 result effective address, the result is stored in the specified
 slot of the call frame.

Constants In most cases, one byte is fetched and used as an unsigned
 offset (0 - 255) into the vector of symbols and constants in
 the code object of the current function. The constant in this
 cell is used directly (``-C'' suffix). For a few instructions,
 the next two bytes are fetched to form a 16-bit unsigned offset
 (0 - 65535) (``-LongC'' suffix). In fetching this double
 offset, the low-order byte comes in first. Sometimes an
 instruction implies an offset into the symbols and constants
 vector without the need of another byte for the offset. In
 these instances when the offset is implied, the instruction
 will have the suffix ``-Cn'' where n is an integer denoting the
 offset. Constants may not be used as a result effective
 address.

Symbols In most cases, one byte is fetched and used as an unsigned
 offset (0 - 255) into the vector of symbols and constants in
 the code object of the current function. The constant in this
 cell is supposed to be a symbol pointer, and the operand is
 fetched from its value cell (``-S'' suffix). If the value is
 Misc-Trap, an unbound variable error is signalled. For some
 instructions, the next two bytes are fetched to form a 16-bit
 offset (``-LongS'' suffix). In fetching this double offset,
 the low-order byte comes in first. Sometimes an instruction
 implies an offset into the symbols and constants vector without
 the need of another byte for the offset. In these instances
 when the offset is implied, the instruction will have the
 suffix ``-Sn'' where n is an integer denoting the offset. When
 a symbol is used as a result effective address, its value cell

 24

 is set to the result.

Ignore Specified with a ``-Ignore'' suffix. This may be used only as
 a result effective address.

 In the following listing, the effective address is called ``E'' and its
contents are called ``CE''. The opcodes for these instructions are defined in
a file read by the microassembler, compiler, error system, and disassembler.
This file lives on CMU-CS-C as
PRVA:<Slisp.Compiler.New-And-Improved>Instrdefs.Slisp and CMU-Badger as
>Slisp>Instrdefs.Lisp. It is included in this document as an appendix.

5.2. Instructions
 There are 11 classes of instructions: allocation, stack manipulation, list
manipulation, symbol manipulation, array manipulation, type predicate,
arithmetic and logical, branching and dispatching, function call and return,
miscellaneous, and system hacking. A number of the instructions below combine
the effect of two or more simpler instructions, and are part of the instruction
set for efficiency reasons. It is envisioned that the compiler will generate
code using the stack forms of most instructions, with lots of Push and Pop
instructions to get operands and store results. An optimizing assembler will
then collapse sequences of these simple instructions into the faster, more
compact complex instructions. Each basic instruction is flagged with an
 *
asterisk ().

5.2.1. Allocation
 All non-immediate objects are allocated in the ``current allocation space,''
which is dynamic space, static space, or read-only space. The current
allocation space is initially dynamic space, but can be changed by using the
Set-Allocation-Space instruction below. The current allocation space can be
determined by using the Get-Allocation-Space instruction. One usually wants to
change the allocation space around some section of code; an unwind protect
should be used to insure that the allocation space is restored to some safe
value.

 Get-Allocation-Space () pushes 0, 2, or 3 if the current allocation space is
dynamic, static, or read-only respectively.
 *
 Get-Allocation-Space

 Set-Allocation-Space (X) sets the current allocation space to dynamic,
static, or read-only if X is 0, 2, or 3 respectively. Pushes X.
 *
 Set-Allocation-Space

 Alloc-Bit-Vector (Length) pushes a new bit-vector Length bits long, which is
allocated in the current allocation space. Length must be a positive fixnum.
 *
 Alloc-Bit-Vector

 25

 Alloc-I-Vector (Length A) pushes a new I-Vector Length bytes long, with the
access code specified by A. Length and A must be positive fixnums.
 *
 Alloc-I-Vector

 Alloc-String (Length) pushes a new string Length characters long. Length
must be a fixnum.
 *
 Alloc-String

 Alloc-Bignum (Length) pushes a new bignum Length 8-bit bytes long. Length
must be a fixnum.
 *
 Alloc-Bignum

 Make-Complex (Realpart Imagpart) pushes a new complex number with the
specified Realpart and Imagpart. Realpart and Imagpart should be the same type
of non-complex number.
 *
 Make-Complex

 Make-Ratio (Numerator Denominator) pushes a new ratio with the specified
Numerator and Denominator. Numerator and Denominator should be integers.
 *
 Make-Ratio

 Alloc-G-Vector (Length Initial-Element) pushes a new G-Vector with Length
elements initialized to Initial-Element. Length should be a fixnum.
 *
 Alloc-G-Vector

 Vector (Elt Elt ... Elt Length) pushes a new G-Vector containing
 0 1 Length - 1
the specified Length elements. Length should be a fixnum.
 *
 Vector
 Vector-PSIC

 Alloc-Function (Length) pushes a new function with Length elements. Length
should be a fixnum.
 *
 Alloc-Function

 Alloc-Array (Length) pushes a new array with Length elements. Length should
be a fixnum.
 *
 Alloc-Array

 Alloc-Symbol (Print-Name) pushes a new symbol with the print-name as
Print-Name. The value is initially Misc-Trap, the definition is Misc-Trap, the
property list and the package are initially NIL. The symbol is not interned by
this operation -- that is done in macrocode. Print-Name should be a

 26

simple-string.
 *
 Alloc-Symbol

 Cons (Car Cdr) pushes a new cons with the specified Car and Cdr.
 *
 Cons

 Set-LPush (Car E) pushes a new cons with the specified Car and CE as the cdr,
and stores the cons back into E.

 Set-LPush-AL
 Set-LPush-S

 List (Elt Elt ... Elt Length) pushes a new list containing the Length
 0 1 CE - 1
elements. Length should be fixnum.

 *
 List
 List-PSIC

 List* (Elt Elt ... Elt Length) pushes a list* formed by the CE
 0 1 CE - 1
elements onto the stack. Length should be a fixnum.

 *
 List*
 List*-PSIC

5.2.2. Stack Manipulation
 Push (E) pushes CE onto the stack.

 *
 Push-PSIC
 Push-PSIC0
 Push-PSIC1
 Push-PSIC2
 Push-PSIC3
 *
 Psuh-NSIC
 *
 Push-AL
 Push-AL0
 Push-AL1
 Push-AL2
 Push-AL3
 Push-AL4
 Push-AL5
 Push-AL6

 27

 Push-AL7
 *
 Push-LongAL
 *
 Push-C
 *
 Push-LongC
 *
 Push-S
 *
 Push-LongS

 Pop (E) pops the stack into E.

 *
 Pop-AL
 Pop-AL0
 Pop-AL1
 Pop-AL2
 Pop-AL3
 Pop-AL4
 Pop-AL5
 Pop-AL6
 Pop-AL7
 *
 Pop-LongAL
 *
 Pop-S
 *
 Pop-LongS
 *
 Pop-Ignore

 Exchange () exchanges the top two elements of the stack.
 *
 Exchange

 Copy (E) copies the top of stack to E.

 *
 Copy
 Copy-AL

 NPop (N). If N is positive, N items are popped off of the stack. If N is
negative, NIL is pushed onto the stack -N times. N must be a fixnum.

 *
 NPop-Stack
 NPop-PSIC
 NPop-NSIC

 Bind-Null (E) pushes CE (which must be a symbol) and its current value onto

 28

the binding stack, and sets the value cell of CE to NIL.

 *
 Bind-Null
 Bind-Null-C

 Bind (Value Symbol) pushes Symbol (which must be a symbol) and its current
value onto the binding stack, and sets the value cell of Symbol to Value.

 *
 Bind
 Bind-C

 Unbind (N) undoes the top N bindings on the binding stack.

 *
 Unbind
 Unbind-PSIC

5.2.3. List Manipulation
 Cxxr (L). The cxxr of L is pushed onto the stack. L should be a list or
NIL.

 *
 Car
 Car-AL
 *
 Cdr
 Cdr-AL
 *
 Cadr
 Cadr-AL
 *
 Cddr
 Cddr-AL
 *
 Cdar
 Cdar-AL
 *
 Caar
 Caar-AL

 Set-Cxxr (E). The cxxr of CE is stored in E. CE should be either a list or
NIL.

 Set-Cdr-AL
 Set-Cdr-S
 Set-Cddr-AL
 Set-Cddr-S

 29

 Set-Lpop (E). The car of CE is pushed onto the stack; the cdr of CE is stored
in E. CE should be a list or NIL.

 Set-Lpop-AL
 Set-Lpop-S

 Spread (E) pushes the elements of the list CE onto the stack in left-to-right
order.

 *
 Spread
 Spread-AL

 Replace-Cxr (List Value) sets the cxr of the List to Value and pushes Value
on the stack.

 *
 Replace-Car
 Replace-Car-AL
 *
 Replace-Cdr
 Replace-Cdr-Al

 Endp (X) pushes T if X is NIL, or NIL if X is a cons. Otherwise an error is
signalled.

 *
 Endp
 Endp-AL

 Assoc (List Item) pushes the first cons in the association-list List whose
car is EQL to Item. If the = part of the EQL comparison bugs out (and it can
if the numbers are too complicated), a Lisp-level Assoc function is called with
the current cdr of the List. Assq pushes the first cons in the
association-list List whose car is EQ to Item.
 *
 Assoc
 *
 Assq

 Member (List Item) pushes the first cons in the list List whose car is EQL to
Item. If the = part of the EQL comparison bugs out, a Lisp-level Member
function is called with the current cdr of the List. Memq pushes the first
cons in List whose car is EQ to the Item.
 *
 Member
 *
 Memq

 GetF (List Indicator Default) searches for the Indicator in the list List,
cddring down as the Common Lisp form GetF would. If Indicator is found, its
associated value is pushed, otherwise Default is pushed.

 30

 *
 GetF

5.2.4. Symbol Manipulation
 Get-Value (Symbol) pushes the value of Symbol (which must be a symbol) onto
the stack. An error is signalled if CE is unbound.
 *
 Get-Value

 Set-Value (Symbol Value) sets the value cell of the symbol Symbol to Value.
Value is left on the top of the stack.
 *
 Set-Value

 Get-Definition (Symbol) pushes the definition of the symbol Symbol onto the
stack. If Symbol is undefined, an error is signalled.

 *
 Get-Definition
 Get-Definition-C

 Set-Definition (Symbol Definition) sets the definition of the symbol Symbol
to Definition. Definition is left on the top of the stack.

 *
 Set-Definition
 Set-Definition-C

 Get-Plist (Symbol) pushes the property list of the symbol Symbol onto the
stack.

 *
 Get-Plist
 Get-Plist-C

 Set-Plist (Symbol Plist) sets the property list of the symbol Symbol to
Plist. Plist is left on the top of the stack.

 *
 Set-Plist
 Set-Plist-C

 Get-Pname (Symbol) pushes the print name of the symbol Symbol onto the stack.
 *
 Get-Pname

 Get-Package (Symbol) pushes the package cell of the symbol Symbol onto the
stack.
 *
 Get-Package

 31

 Set-Package (Symbol Package) sets the package cell of the symbol Symbol to
Package. Package is left on the top of the stack.
 *
 Set-Package

 Boundp (Symbol) pushes T if the symbol Symbol is bound; NIL otherwise.

 *
 Boundp
 Boundp-C

 FBoundp (Symbol) pushes T if the symbol Symbol is defined; NIL otherwise.

 *
 FBoundp
 FBoundp-C

5.2.5. Array Manipulation
 Common Lisp arrays have many manifestations in Spice Lisp. The Spice Lisp
data types Bit-Vector, Integer-Vector, String, General-Vector, and Array are
used to implement the collection of data types the Common Lisp manual calls
``arrays.''

 In the following instruction descriptions, ``simple-array'' means an array
implemented in Spice Lisp as a Bit-Vector, I-Vector, String, or G-Vector.
``Complex-array'' means an array implemented as a Spice Lisp Array object.
``Complex-bit-vector'' means a bit-vector implemented as a Spice Lisp array;
similar remarks apply for ``complex-string'' and so forth.

 Vector-Length (Vector) pushes the length of the one-dimensional Common Lisp
array Vector. G-Vector-Length, Simple-String-Length, and Simple-Bit-Vector-
Length push the lengths of G-Vectors, Spice Lisp strings, and Spice Lisp
Bit-Vectors respectively. Vector should be a vector of the appropriate type.

 *
 Vector-Length
 *
 G-Vector-Length
 *
 Simple-String-Length
 *
 Simple-Bit-Vector-Length

 Get-Vector-Subtype (Vector) pushes the subtype field of the vector Vector as
an integer. Vector should be a vector of some sort.
 *
 Get-Vector-Subtype

 Set-Vector-Subtype (Vector A) sets the subtype field of the vector Vector to
A, which must be an fixnum.

 32

 *
 Set-Vector-Subtype

 Get-Vector-Access-Code (Vector) pushes the access code of the I-Vector (or
Bit-Vector) Vector as an integer.
 *
 Get-Vector-Access-Code

 Shrink-Vector (Vector Length) sets the length field and the number-of-entries
field of the vector Vector to Length. If the vector contains Lisp objects,
entries beyond the new end are set to Misc-Trap. Pushes the shortened vector.
Length should be a fixnum. One cannot shrink array headers or function
headers.
 *
 Shrink-Vector

 Typed-Vref (A Vector I) pushes the I'th element of the I-Vector Vector by
indexing into it as if its access-code were A. A and I should be fixnums.
 *
 Typed-Vref

 Typed-Vset (A Vector I Value) sets the I'th element of the I-Vector Vector to
Value indexing into Vector as if its access-code were A. A, I, and Value
should be fixnums. Value is pushed onto the stack.
 *
 Typed-Vset

 Header-Length (Object) pushes the number of Lisp objects in the header of the
function or array Object. This is used to find the number of dimensions of an
array or the number of constants in a function.
 *
 Header-Length

 Header-Ref (Object I) pushes the I'th element of the function or array header
Object. I must be a fixnum.
 *
 Header-Ref

 Header-Set (Object I Value) sets the I'th element of the function of array
header Object to Value, and pushes Value. I must be a fixnum.
 *
 Header-Set

 The names of the instructions used to reference and set elements of arrays
are somewhat based on the Common Lisp function names. The SVref, SBit, and
SChar instructions perform the same operation as their Common Lisp namesakes --
referencing elements of simple-vectors, simple-bit-vectors, and simple-strings
respectively. Aref1 references any kind of one dimensional array. The names
of setting functions are derived by replacing ``ref'' with ``set'', ``char''
with ``charset'', and ``bit'' with ``bitset.''

 Aref1 (Array I) pushes the I'th element of the one-dimensional array Array.

 33

SVref pushes an element of a G-Vector; SChar an element of a string; Sbit an
element of a Bit-Vector. I should be a fixnum.

 *
 Aref1
 Aref1-AL
 *
 SVref
 SVref-PSIC
 SVref-AL
 SVref-PSIC0
 SVref-PSIC1
 SVref-PSIC2
 SVref-PSIC3
 SVref-PSIC4
 SVref-PSIC5
 *
 SChar
 SChar-AL
 *
 SBit

 Aset1 (Array I Value) sets the I'th element of the one-dimensional array
Array to Value. SVset sets an element of a G-Vector; SCharset an element of a
string; SBitset an element of a Bit-Vector. I should be a fixnum and Value is
pushed on the stack.

 *
 Aset1
 Aset1-AL
 *
 SVset
 SVset-AL
 *
 SCharset
 SCharset-AL
 *
 SBitset

 SVset* (Array Value I) sets the I'th element of the G-Vector Array to Value.
The operands to the instruction are arranged so that the index can be specified
as part of the effective address. This could not be done in general, of
course, because order of evaluation must be preserved, but for constant indices
(as used in structure accesses) this problem does not come up.

 SVset*-PSIC
 SVset*-PSIC0
 SVset*-PSIC1
 SVset*-PSIC2
 SVset*-PSIC3
 SVset*-PSIC4
 SVset*-PSIC5

 34

 CAref2 (Array I1 I2) pushes the element (I1, I2) of the two-dimensional array
Array onto the stack. I1 and I2 should be fixnums. CAref3 pushes the element
(I1, I2, I3).

 CAref2
 CAref3

 CAset2 (Array I1 I2 Value) sets the element (I1, I2) of the two-dimensional
array Array to Value and pushes Value on the stack. I1 and I2 should be
fixnums. CAset3 sets the element (I1, I2, I3).

 CAset2
 CAset3

 Bit-Bash (V1 V2 V3 Op). V1, V2, and V3 should be bit-vectors and Op should
be a fixnum. The elements of the bit vector V3 are filled with the result of
Op'ing the corresponding elements of V1 and V2. Op should be a Boole-style
number (see the Boole instruction in section 5.2.7).
 *
 Bit-Bash

 The rest of the instructions in this section implement special cases of
sequence or string operations. Where an operand is referred to as a string, it
may actually be an 8-bit I-Vector or system area pointer.

 Byte-BLT (Src-String Src-Start Dst-String Dst-Start Dst-End) moves bytes from
Src-String into Dst-String between Dst-Start (inclusive) and Dst-End
(exclusive). Dst-Start - Dst-End bytes are moved. If the substrings specified
overlap, ``the right thing happens,'' i.e. all the characters are moved to the
right place. This instruction corresponds to the Common Lisp function REPLACE
when the sequences are simple-strings.
 *
 Byte-BLT

 Find-Character (String Start End Character) searches String for the Character
from Start to End. If the character is found, the corresponding index into
String is returned, otherwise NIL is returned. This instruction corresponds to
the Common Lisp function FIND when the sequence is a simple-string.
 *
 Find-Character

 Find-Character-With-Attribute (String Start End Table Mask) The codes of the
characters of String from Start to End are used as indices into the Table,
which is an I-Vector of 8-bit bytes. When the number picked up from the table
bitwise ANDed with Mask is non-zero, the current index into the String is
returned.
 *
 Find-Character-With-Attribute

 SXHash-Simple-String (String Length) Computes the hash code of the first
Length characters of String and pushes it on the stack. This corresponds to
the Common Lisp function SXHASH when the object is a simple-string. The Length

 35

operand can be Nil, in which case the length of the string is calculated in
microcode.
 *
 SXHash-Simple-String

5.2.6. Type Predicates
 Bit-Vector-P (Object) pushes T if Object is a Common Lisp bit-vector or NIL
if it is not.
 *
 Bit-Vector-P

 Simple-Bit-Vector-P (Object) pushes T if Object is a Spice Lisp bit-vector or
NIL if it is not.
 *
 Simple-Bit-Vector-P

 Simple-Integer-Vector-P (Object) pushes T if Object is a Spice Lisp I-Vector
or NIL if it is not.
 *
 Simple-Integer-Vector-P

 StringP (Object) pushes T if Object is a Common Lisp string or NIL if it is
not.
 *
 StringP

 Simple-String-P (Object) pushes T if Object is a Spice Lisp string or NIL if
it is not.
 *
 Simple-String-P

 BignumP (Object) pushes T if Object is a bignum or NIL if it is not.
 *
 BignumP

 Long-Float-P (Object) pushes T if Object is a long-float or NIL if it is not.
 *
 Long-Float-P

 ComplexP (Object) pushes T if Object is a complex number or NIL if it is not.
 *
 ComplexP

 RatioP (Object) pushes T if Object is a ratio or NIL if it is not.
 *
 RatioP

 IntegerP (Object) pushes T if Object is a fixnum or bignum or NIL if it is
not.

 36

 *
 IntegerP

 RationalP (Object) pushes T if Object is a fixnum, bignum, or ratio.
 *
 RationalP

 FloatP (Object) pushes T if Object is a short-float or long-float.
 *
 FloatP

 NumberP (Object) pushes T if Object is a number or NIL if it is not.
 *
 NumberP

 General-Vector-P (Object) pushes T if Object is a Common Lisp general vector
or NIL if it is not.
 *
 General-Vector-P

 Simple-Vector-P (Object) pushes T if Object is a Spice Lisp G-Vector or NIL
if it is not.
 *
 Simple-Vector-P

 Compiled-Function-P (Object) pushes T if Object is a compiled function or NIL
if it is not.
 *
 Compiled-Function-P

 ArrayP (Object) pushes T if Object is a Common Lisp array or NIL if it is
not.
 *
 ArrayP

 VectorP (Object) pushes T if Object is a Common Lisp vector of NIL if it is
not.
 *
 VectorP

 Complex-Array-P (Object) pushes T if Object is a Spice Lisp array or NIL if
it is not.
 *
 Complex-Array-P

 SymbolP (Object) pushes T if Object is a symbol or NIL if it is not.
 *
 SymbolP

 ListP (Object) pushes T if Object is a cons or NIL or NIL if it is not.
 *
 ListP

 37

 ConsP (Object) pushes T if Object is a cons or NIL if it is not.
 *
 ConsP

 FixnumP (Object) pushes T if Object is a fixnum or NIL if it is not.
 *
 FixnumP

 Short-Float-P (Object) pushes T if Object is a short-float or NIL if it is
not.
 *
 Short-Float-P

 CharacterP (Object) pushes T if Object is a character or NIL if it is not.
 *
 CharacterP

5.2.7. Arithmetic and Logic
 Integer-Length (Object) pushes the integer-length (as defined in the Common
Lisp manual) of the integer Object onto the stack.

 *
 Integer-Length
 Integer-Length-AL

 Float-Short (Object) pushes a short-float corresponding to the number Object.
 *
 Float-Short

 Float-Long (Number) pushes a long float formed by coercing Number to a long
float. This corresponds to the Common Lisp function Float when given a long
float as its second argument.
 *
 Float-Long

 Realpart (Number) pushes the realpart of the Number.
 *
 Realpart

 Imagpart (Number) pushes the imagpart of the Number.
 *
 Imagpart

 Numerator (Number) pushes the numerator of the rational Number.
 *
 Numerator

 Denominator (Number) pushes the denominator of the rational Number.
 *
 Denominator

 38

 Decode-Float (Number) performs the Common Lisp Decode-Float function, leaving
3 values and a Values-Marker on the stack.
 *
 Decode-Float

 Scale-Float (Number X) performs the Common Lisp Scale-Float function, pushing
the result on the stack.
 *
 Scale-Float

 = (X Y) pushes T if X and Y are numerically equal, or NIL if they are not.
If an integer is compared with a flonum, the integer is floated first; if a
short flonum is compared with a long flonum, the short one is first extended.
Flonums must be exactly identical (after conversion) for a non-null comparison.
< and > are similar.

 *
 =
 =-AL
 =-PSIC
 *
 <
 <-AL
 <-PSIC
 *
 >
 >-AL
 >-PSIC

 Truncate (N X) performs the Common Lisp TRUNCATE operation. There are 3
cases depending on X:

 - If X is fixnum 1, push three items: a fixnum or bignum representing
 the integer part of N (rounded toward 0), then either 0 if N was
 already an integer or the fractional part of N represented as a
 flonum or ratio with the same type as N, then Values-Marker 2 to
 mimic a multiple return of two values.

 - If X and N are both fixnums or bignums and X is not 1, divide N by X.
 Push three items: the integer quotient (a fixnum or bignum), the
 integer remainder, and Values-Marker 2.

 - If either X or N is a flonum or ratio, push a fixnum or bignum
 quotient (the true quotient rounded toward 0), then a flonum or ratio
 remainder, then push Values-Marker 2. The type of the remainder is
 determined by the same type-coercion rules as for +. The value of
 the remainder is equal to N - X * Quotient.

If Truncate uses the escape-to-macro mechanism (see section 6.3), it builds a
multiple-value frame header rather than an escape header.

 39

 *
 Truncate
 Truncate-AL
 Truncate-PSIC

 + (N X) pushes N + X. -, *, and / are similar.

 *
 +
 +-AL
 +-PSIC
 +-PSIC1
 *
 -
 --AL
 --PSIC
 --PSIC1
 *
 *
 *-AL
 *-PSIC
 *
 /
 /-AL
 /-PSIC

 1+ (E) stores CE + 1 into E.
 1+-AL

 1- (E) stores CE - 1 into E.
 1--AL

 Negate (N) pushes -N.

 *
 Negate
 Negate-AL

 Abs (N) pushes |N|.

 *
 Abs
 Abs-AL

 Logand (N X) pushes the bitwise and of the integers N and X. Logior and
Logxor are analagous.

 *
 Logand
 *
 Logior

 40

 *
 Logxor

 Lognot (N) pushes the bitwise complement of N.

 *
 Lognot

 Boole (Op X Y) performs the Common Lisp Boole operation Op on X, and Y. The
Boole constants for Spice Lisp are these:

 boole-clr 0
 boole-set 1
 boole-1 2
 boole-2 3
 boole-c1 4
 boole-c2 5
 boole-and 6
 boole-ior 7
 boole-xor 8
 boole-eqv 9
 boole-nand 10
 boole-nor 11
 boole-andc1 12
 boole-andc2 13
 boole-orc1 14
 boole-orc2 15

 *
 Boole

 Ash (N X) performs the Common Lisp ASH operation on N and X.

 *
 Ash
 Ash-PSIC

 Ldb (S P N). All args are integers; S and P are non-negative. Performs the
Common Lisp LDB operation with S and P being the size and position of the byte
specifier.
 *
 Ldb

 Mask-Field (S P N) performs the Common Lisp Mask-Field operation with S and P
being the size and position of the byte specifier.
 *
 Mask-Field

 Dpb (V S P N) performs the Common Lisp DPB operation with S and P being the
size and position of the byte specifier.
 *
 Dpb

 41

 Deposit-Field (V S P N) performs the Common Lisp Deposit-Field operation with
S and P as the size and position of the byte specifier.
 *
 Deposit-Field

 Lsh (N X) pushes a fixnum that is N shifted left by X bits, with 0's shifted
in on the right. If X is negative, N is shifted to the right with 0's coming
in on the left. Both N and X should be fixnums.

 *
 Lsh
 Lsh-PSIC

 Logldb (S P N). All args are fixnums. S and P specify a ``byte'' or
bit-field of any length within N. This is extracted and is pushed
right-justified as a fixnum. S is the length of the field in bits; P is the
number of bits from the right of N to the beginning of the specified field. P
= 0 means that the field starts at bit 0 of N, and so on. It is an error if
the specified field is not entirely within the 28 bits of N
 *
 Logldb

 Logdpb (V S P N). All args are fixnums. Pushes a number equal to N, but
with the field specified by P and S replaced by the S low-order bits of V. It
is an error if the field does not fit into the 28 bits of N.
 *
 Logdpb

5.2.8. Branching and Dispatching
 Branch instructions add or subtract a 1 or 2 byte a relative offset to the PC
after the branch instruction and the offset bytes have been fetched. The
opcode determines the direction of the branch and the number of offset bytes to
be fetched.

 Branch-Forward (Offset) adds the 1 byte Offset to the PC. Long-Branch-
Forward adds a 2 byte Offset. Branch-Backward and Long-Branch-Backward
subtract 1 or 2 byte Offsets.

 *
 Branch-Forward
 *
 Long-Branch-Forward
 *
 Branch-Backward
 *
 Long-Branch-Backward

 Branch-Null (Offset) pops the top item off the stack and branches if it is
NIL; Branch-Not-Null branches if it is not null.

 42

 *
 Branch-Null-Forward
 *
 Long-Branch-Null-Forward
 *
 Branch-Not-Null-Forward
 *
 Long-Branch-Not-Null-Forward
 *
 Branch-Null-Backward
 *
 Long-Branch-Null-Backward
 *
 Branch-Not-Null-Backward
 *
 Long-Branch-Not-Null-Backward

 Branch-Save-Not-Null (Offset) looks at the value in TOS. If it is Nil, the
stack it is popped off the stack and we fall through. Otherwise the stack is
left as is and we take the branch.

 *
 Branch-Save-Not-Null-Forward
 *
 Long-Branch-Save-Not-Null-Forward
 *
 Branch-Save-Not-Null-Backward
 *
 Long-Branch-Save-Not-Null-Backward

 Dispatch (). The top of stack (TOS) is used as an index into a dispatch
table located in the current code vector. The next byte in the instruction is
a limit. If TOS is not a fixnum, a fixnum less than 0, or a fixnum greater
than or equal to the limit, no branch happens and we fall through, continuing
with the next instruction. If TOS is within the specified bounds, however, it
is added to a 16-bit number formed by fetching the next 1 or 2 bytes from the
instruction stream. This result is used as an index into the code vector, and
a 16-bit word is fetched from that memory location. The offset into the
current code vector is set to this word. The stack is popped whether or not we
branch.

 *
 Dispatch
 *
 Long-Dispatch

5.2.9. Function Call and Return
 Call (F). F must be some sort of executable function: a function object, a
lambda-expression, or a symbol with one of these stored in its function cell.
A call frame for this function is opened. This is explained in more detail in

 43

the next chapter.

 *
 Call
 Call-C
 Call-AL

 Call-0 (F). F must be an executable function, as above, but is a function of
0 arguments. Thus, there is no need to collect arguments. The call frame is
opened and activated in a single instruction.

 *
 Call-0
 Call-0-C
 Call-0-AL

 Call-Multiple (F). Just like a Call instruction, but it sets bit 21 of the
frame header word to indicate that multiple values will be accepted. See
section 6.1.4.

 *
 Call-Multiple
 Call-Multiple-C
 Call-Multiple-AL

 Start-Call () closes the currently open call frame, and initiates a function
call. See section 6.1.2 for details.
 *
 Start-Call

 Push-Last (X) pushes X as an argument, closes the currently open call frame,
and initiates a function call. See section 6.1.2 for details.

 Push-Last-AL
 Push-Last-C
 Push-Last-S
 Push-Last-PSIC

 Return (X). Return from the current function call. After the current frame
is popped off the stack, X is pushed as the result being returned. See section
6.1.3 for more details.

 *
 Return
 Return-C
 Return-AL

 Escape-Return (X). If the current call frame has an escape frame header,
this works like a normal return, but the value X is put in the destination
indicated in the header rather than just being returned on the stack. If the
current frame is not an escape frame, just return the single value on the stack
as a normal return would.

 44

 *
 Escape-Return

 Break-Return (). If the header of the current call frame indicates a break
frame, do a Return, but push no return value on the stack. If the current
frame is not an escape frame, return NIL.
 *
 Break-Return

 Catch () builds a catch frame. The top of stack should hold the tag caught
by this catch frame, and the next entry on the stack should be a saved-format
PC (which will come from the constants vector of the function). See section
6.2 for details.
 *
 Catch

 Catch-Multiple () builds a multiple-value catch frame. The top of stack
should hold the tag caught by this catch frame, and the next entry on the stack
should be a saved-format PC. See section 6.2 for details.
 *
 Catch-Multiple

 Catch-All () builds a catch frame whose tag is the special Catch-All object.
The top of stack should hold the saved-format PC, which is the address to
branch to if this frame is thrown through. See section 6.2 for details.
 *
 Catch-All

 Throw (X). X is the throw-tag, normally a symbol. The value to be returned,
either single or multiple, is on the top of the stack. See section 6.2 for a
description of how this instruction works.

 *
 Throw
 Throw-C

5.2.10. Miscellaneous
 Eq (X Y) pushes T if X and Y are the same object, NIL otherwise.

 *
 Eq
 Eq-AL
 Eq-C

 Eql (X Y) pushes T if X and Y are the same object or if X and Y are numbers
of the same type with the same value, NIL otherwise.

 *
 Eql
 Eql-AL

 45

 Eql-C

 Set-Null (E) sets CE to NIL.

 *
 Set-Null
 Set-Null-AL

 Set-T (E) sets CE to T.

 *
 Set-T
 Set-T-AL

 Set-0 (E) sets CE to 0.

 *
 Set-0
 Set-0-AL

 Make-Predicate (X) pushes NIL if X is NIL or T if it is not.

 *
 Make-Predicate
 Make-Predicate-AL

 Not-Predicate (X) pushes T if X is NIL or NIL if it is not.

 *
 Not-Predicate
 Not-Predicate-AL

 Values-To-N (V). V must be a Values-Marker. Returns the number of values
indicated in the low 24 bits of V as a fixnum.
 Values-To-N

 N-To-Values (N). N is a fixnum. Returns a Values-Marker with the same
low-order 24 bits as N.
 N-To-Values

 Force-Values (). If the top of the stack is a Values-Marker, do nothing; if
not, push Values-Marker 1.
 Force-Values

 Flush-Values (). If the top of the stack is a Values-Marker, remove this
marker; if not, do nothing.
 Flush-Values

 46

5.2.11. System Hacking
 Get-Type (Object) pushes the five type bits of the Object as a fixnum.

 *
 Get-Type
 Get-Type-AL

 Get-Space (Object) pushes the two space bits of Object as a fixnum.
 *
 Get-Space

 Make-Immediate-Type (X A) pushes an object whose type bits are the integer A
and whose other bits come from the immediate object or pointer X. A should be
an immediate type code.
 *
 Make-Immediate-Type

 8bit-System-Ref (X I). If X is an I-Vector, pushes the I'th byte of X,
indexing into X as an 8-bit I-Vector. If X is a system area pointer, pushes
the I'th byte beyond X as a fixnum. I must be a fixnum.
 8bit-System-Ref

 8bit-System-Set (X I V). If X is an I-Vector, sets the I'th element of X to
V, indexing into X as an 8-bit I-Vector. If X is a system area pointer, sets
the I'th byte beyond X to V.
 8bit-System-Set

 16bit-System-Ref (X I). If X is an I-Vector, pushes the I'th 16-bit word of
X, indexing into X as a 16-bit I-Vector. If X is a system area pointer, pushes
the I'th word beyond X as a fixnum. I must be a fixnum.
 16bit-System-Ref

 16bit-System-Set (X I V). If X is an I-Vector, sets the I'th element of X to
V, indexing into X as a 16-bit I-Vector. If X is a system area pointer, sets
the I'th word beyond X to V.
 16bit-System-Set

 Collect-Garbage () causes a stop-and-copy GC to be performed.
 Collect-Garbage

 Newspace-Bit () pushes 0 if newspace is currently space 0 or 1 if it is 1.
 Newspace-Bit

 Set-Newspace-For-Type (type space) sets the next newspace free pointer for
the type corresponding to the type number to the space corresponding to the
space number. There is about one useful thing that you can do with this
instruction; see section 4.3. There are a number of not-so-useful but very fun
things that you can do with this instruction that are not documented here.
 Set-Newspace-For-Type

 Kernel-Trap (Argblock Code) is for communication with the Accent Kernel.
Code is the type of trap desired (a fixnum), and Argblock is an I-Vector

 47

containing assorted argument information. See section 6.5 for details.
 Kernel-Trap

 Halt () stops the execution of Lisp. If continued, T is pushed on the stack.
 Halt

 Arg-In-Frame (N F). N is a fixnum, F is a control stack pointer as returned
by the Active-Call-Frame and Open-Call-Frame instructions. Pushes the item in
slot N of the args-and-locals area of call frame F.
 Arg-In-Frame

 Active-Call-Frame () pushes a control-stack pointer to the start of the
currently active call frame. This will be of type Misc-Control-Stack-Pointer.
 Active-Call-Frame

 Active-Catch-Frame () pushes the control-stack pointer to the start of the
currently active catch frame. This is Nil if there is no active catch.
 Active-Catch-Frame

 Set-Call-Frame (P). P must be a control stack pointer. This becomes the
current active call frame pointer.
 Set-Call-Frame

 Current-Open-Frame () pushes a control-stack pointer to the start of the
currently open call frame. This will be of type Misc-Control-Stack-Pointer.
 Current-Open-Frame

 Set-Open-Frame (P). P must be a control stack pointer. This becomes the
current open frame pointer.
 Set-Open-Frame

 Current-Stack-Pointer () pushes the Misc-Control-Stack-Pointer that points to
the current top of the stack (before the result of this operation is pushed).
Note: by definition, this points to the first unused word of the stack, not to
the last thing pushed. The stack manipulation instructions make it appear as
if the stack is all in contiguous virtual memory, despite the fact that the TOS
register will be holding the top word of the stack.
 Current-Stack-Pointer

 Current-Binding-Pointer () pushes a Misc-Binding-Stack-Pointer that points to
the first word above the current top of the binding stack.
 Current-Binding-Pointer

 Read-Control-Stack (F). F must be a control stack pointer. Pushes the Lisp
object that resides at this location. If the addressed object is totally
outside the current stack, this is an error.
 Read-Control-Stack

 Write-Control-Stack (F V). F is a stack pointer, V is any Lisp object.
Writes V into the location addressed. If the addressed cell is totally outside
the current stack, this is an error. Obviously, this should only be used by
carefully written and debugged system code, since you can destroy the world by

 48

using this instruction.
 Write-Control-Stack

 Read-Binding-Stack (B). B must be a binding stack pointer. Reads and
returns the Lisp object at this location. An error if the location specified
is outside the current binding stack.
 Read-Binding-Stack

 Write-Binding-Stack (B V). B must be a binding stack pointer. Writes V into
the specified location. An error if the location specified is outside the
current binding stack.
 Write-Binding-Stack

 49

6. Control Conventions

6.1. Function Calls

6.1.1. Starting a Function Call
 The Call and Call-Multiple instructions open a call frame on the control
stack, but do not transfer control to the called function. The arguments for
the function are then evaluated and pushed on the stack, and the call is
started by a Push-Last instruction. Call-Multiple sets bit 21, the
multiple-values-accepted bit, of the call frame to indicate that it will accept
multiple-values. Call-0 opens the call frame and does the equivalent of a
Start-Call instruction (see below) to start the called function. All these
instructions take the function to be called as CE.

 If CE is a symbol, we fetch the contents of the symbol's definition cell. If
it is a Misc-Trap or another symbol, we signal an error. Otherwise, we go on
with this definition as the function. We do not allow chains of symbols
defined as other symbols. If CE is a compiled function, we perform the
following steps:

 1. Note the current value of the Control-Stack-Pointer register.

 2. Push a Call-Frame-Header on control stack (with bit 21 set if this
 is a Call-Multiple).

 3. Push CE (the function being called).

 4. Push the Active-Frame register.

 5. Push the Open-Frame register.

 6. Push Binding-Stack-Pointer.

 7. Push Fixnum -1 or some other easy-to-generate value. This will
 later be filled with caller's PC.

 8. Open-Frame <== Stack frame pointer saved in step 1.

The open frame is now ready to have arguments pushed.

 If CE is a list, it is probably a lambda-expression or interpreted lexical
closure. The call proceeds as above, with the list stored in the function slot
of the new frame. The arguments are pushed normally, and %SP-Internal-Apply
will be called when the Push-Last is executed. %SP-Internal-Apply verifies
that this function is a lambda or lexical closure.

 If CE is anything else, an Illegal-Function error is signalled.

 50

6.1.2. Finishing a Function Call
 Push-Last pushes a final argument X and starts the function responsible for
the current open frame. Start-Call just starts the function. Call-0 opens the
frame and performs the equivalent of a Start-Call immediately, since there are
no arguments to push.

 We look at the function entry of the current open frame. If this contains a
compiled function object, proceed as follows:

 1. Insert the current PC (points to the NEXT instruction of the
 caller's code vector) in the PC slot of the open frame.

 2. Active-Function <== Called function (from slot 1 of open frame).

 3. Active-Code <== Code vector for new active function.

 4. Active-Frame <== Open-Frame

 5. Note number of args pushed by caller. Let this be K. We must now
 compute the proper entry point in the called function's code vector
 as a function of K and the number of args the called function wants.

 a. If number of args < minimum, signal an error.

 b. If number of args > maximum and no &REST arg is allowed,
 signal an error.

 c. If number of args > maximum and a &REST arg is present, pop
 excess args into a list, push this list back on stack as the
 &REST arg, and start at offset 0.

 d. If number of args is between min and max (inclusive), get the
 starting offset from the appropriate slot of the called
 function's function object. This is stored as a fixnum in
 slot K - MIN + 6 of the function object.

 6. Set up the new PC to point at the right place in the code vector and
 return to the macro-code execution loop to run the new function.
 This involves setting up PC, the BPC, and refilling the instruction
 buffer.

 If the object in the function entry is a list instead of a function object,
we must call %SP-Internal-Apply to interpret the function with the given
arguments. We proceed as follows:

 1. Note the number of args pushed in the current open frame (call this
 N) and the frame pointer for this frame (call it F). Also remember
 the lambda-expression in this frame (call it L).

 2. Perform steps 1 - 4 of the sequence above for a normal Start-Call.

 3. Perform the equivalent of a Call-Multiple instruction with the

 51

 symbol %SP-Internal-Apply as CE. (This symbol is in a fixed
 location known to the microcode. See section 2.9.)

 4. Push L, N, and F in that order as the three arguments to
 %SP-Internal-Apply.

 5. Perform the equivalent of a Push-Last-Stack to start the call.

%SP-Internal-Apply, a function of three arguments, now evaluates the call to
the lambda-expression or interpreted lexical closure L, obtaining the arguments
from the frame pointed to by F. These arguments are obtained using the
Arg-In-Frame instruction. Prior to returning %SP-Internal-Apply sets the
Active-Frame register to F, so that it returns from frame F.

6.1.3. Returning from a Function Call
 Return returns from the current function, popping the stack frame and pushing
some number of returned values. If CE is a Values-Marker but bit 21 is not on
in the current call frame, only one value is returned. If bit 21 is on, either
multiple values or a single value will be returned. The steps are as follows:

 1. Pop binding stack back to value saved in slot 5 of the active
 control frame. For each symbol/value pair popped off the binding
 stack, restore that value for the symbol.

 2. Temp <== Previous active frame from slot 3 of current frame.

 3. Open-Frame <== Saved value in current frame.

 4. PC <== Saved value in current frame. This requires setting up the
 internal PC, the BPC, and the instruction buffer.

 5. Active-Function <== Saved value from previous frame. A pointer to
 this frame is in Temp.

 6. Active-Code <== Code Vector obtained from entry in restored
 Active-Function object.

 7. Pop current frame off stack:

 Control-Stack-Pointer <== Active-Frame.
 Active-Frame <== Temp.
 Pop top of stack into TOS register. Since the active frame
 is inside the barrier, make sure the new top frame has been
 scavenged, or do it now.

 8. Push the return value onto the stack.

 9. Resume execution of function popped to.

 52

6.1.4. Returning Multiple-Values
 If bit 21 is on in the current frame and a Values-Marker indicating N values
is on the top of the stack, we proceed as follows:

 1. Note the value of the current stack pointer (after CE is popped off
 if it came from the stack) as OLDSP.

 2. Perform steps 1 - 7 of the Return procedure described above.

 3. Do a block transfer loop pushing the N words starting at (OLDSP) - N
 onto the stack as return values. Then push the original CE, which
 is Values-Marker N.

 4. Resume execution of the caller.

 To do (MULTIPLE-VALUE-LIST (FOO A B)), we could use this sequence of
instructions:

 (CALL-MULTIPLE (CONSTANT [FOO]))
 (PUSH [A])
 (PUSH-LAST [B])
 (FORCE-VALUES)
 (VALUES-TO-N STACK)
 (LIST STACK) ;Pop N from stack, then listify N things.

 To do (MULTIPLE-VALUE-SETQ (X Y Z) (FOO A B)), we could use this code:

 (CALL-MULTIPLE (CONSTANT [FOO]))
 (PUSH [A])
 (PUSH-LAST [B])
 (FORCE-VALUES)
 (VALUES-TO-N STACK)
 (- (CONSTANT [3])) ;Get number offered - number wanted.
 (NPOP STACK) ;Flush surplus returns or push NILs.
 (POP [Z]) ;Now put the three values wherever they
 (POP [Y]) ; are supposed to go.
 (POP [X])

 In tail recursive situations, such as in the last form of a PROGN, one
function, FOO, may want to call another function, BAR, and return ``whatever
BAR returns.'' Call-Multiple is used in this case. If BAR returns multiple
values, they will all be passed to FOO. If FOO's caller wants multiple values,
the values will be returned. If not, FOO's Return instruction will see that
there are multiple values on the stack, but that multiple values will not be
accepted by FOO's caller. So Return will return only the first value.

6.2. Non-Local Exits
 The Catch and Unwind-Protect special forms are implemented using catch
frames. Unwind-Protect builds a catch frame whose tag is the Catch-All object.
The Catch instruction creates a catch frame for a given tag and PC to branch to
in the current instruction. The Throw instruction looks up the stack by
following the chain of catch frames until it finds a frame with a matching tag

 53

or a frame with the Catch-All object as its tag. If it finds a frame with a
matching tag, that frame is ``returned from,'' and that function is resumed.
If it finds a frame with the Catch-All object as its tag, that frame is
``returned from,'' and in addition, %SP-Internal-Throw-Tag is set to the tag
being searched for. So that interrupted cleanup forms behave correctly,
%SP-Internal-Throw-Tag should be bound to the Catch-All object before the
Catch-All frame is built. The protected forms are then executed, and if
%SP-Internal-Throw-Tag is not the Catch-All object, its value is thrown to.
Exactly what we do is this:

 1. Put the contents of the Active-Catch register into a register,
 A. Put NIL into another register, B.

 2. If A is NIL, the tag we seek isn't on the stack. Signal an
 Unseen-Throw-Tag error.

 3. Look at the tag for the catch frame in register A. If it's the tag
 we're looking for, go to step 4. If it's the Catch-All object and B
 is NIL, copy A to B. Set A to the previous catch frame and go back
 to step 2.

 4. If B is non-NIL, we need to execute some cleanup forms. Return into
 B's frame and bind %SP-Internal-Throw-Tag to the tag we're searching
 for. When the cleanup forms are finished executing, they'll throw
 to this tag again.

 5. If B is NIL, return into this frame, pushing the return value (or
 BLTing the multiple values if this frame has bit 21 set and there
 are multiple values).

 If no form inside of a Catch results in a Throw, the catch frame needs to be
removed from the stack before execution of the function containing the throw is
resumed. For now, the value produced by the forms inside the Catch form are
thrown to the tag. Some sort of specialized instruction could be used for
this, but right now we'll just go with the throw. The branch PC specified by a
Catch instruction is part of the constants area of the function object, much
like the function's entry points. To do

 (catch 'foo
 (baz)
 (bar))

we could use this code:

 54

 (PUSH (CONSTANT [PC-FOR-TAG-1]))
 (PUSH (CONSTANT [FOO]))
 (CATCH STACK)
 (CALL-0 (CONSTANT [BAZ]))
 (POP IGNORE)
 (CALL-0 (CONSTANT [BAR]))
 (PUSH (CONSTANT [FOO]))
 (THROW STACK)
 TAG-1

 To do

 (unwind-protect
 (baz)
 (bar))

we could use this code:

 (PUSH (SYMBOL %CATCH-ALL-OBJECT))
 (PUSH (CONSTANT %SP-INTERNAL-THROW-TAG))
 (BIND STACK)
 (PUSH (CONSTANT [PC-FOR-TAG-1]))
 (CATCH-ALL STACK)
 (CALL-0 (CONSTANT [BAZ]))
 (PUSH (SYMBOL %CATCH-ALL-OBJECT))
 (THROW STACK)
 TAG-1
 (CALL-0 (CONSTANT [BAR]))
 (POP IGNORE)
 (PUSH (SYMBOL %CATCH-ALL-OBJECT))
 (EQ (SYMBOL %SP-INTERNAL-THROW-TAG))
 (BRANCH-NOT-NULL TAG-2)
 (PUSH (SYMBOL %SP-INTERNAL-THROW-TAG))
 (THROW STACK)
 TAG-2

6.3. Escaping to Macrocode
 Some instructions can be complex (e.g. * given a long-float and a bignum),
and with limited microstore (and microprogrammer time) on the PERQ, we would
like to handle these in Lisp code. Such cases could be handled by a full-scale
microcode-to-macrocode subroutine call, which upon a return comes back to the
designated return address in the microcode and restores any micro-state that
may have been clobbered. This may ultimately be needed if we ever implement a
micro-compiler for lisp, but for now we can get by with a simpler scheme. If
the microcode for any macro-instruction decides that it has a case too
difficult to handle, it can call a macrocoded function that does whatever the
original macro-instruction was supposed to do. It does this by opening an
escape-type frame on the control stack, pushing an appropriate set of
arguments, and then starting the call as though a push-last had been done in
macrocode.

 When the macrocoded escape function returns (the Escape-Return instruction

 55

must be used for this return) the single returned value goes wherever the
original macro-instruction was supposed to place its result, and the original
instruction stream continues on as if the macrocode instruction had exited
normally without an escape.

 Instructions can place their return values in any of several destinations.
The escape call must set up the frame header word to indicate which of these
locations is to get the value returned by the macro-coded escape function. An
appropriate effective-address code is stored in bits 16-17:

0 Stack The result is pushed onto the stack.

1 AL The result is put into the arguments/locals area of the current
 call frame. Bits 0-15 contain a 16-bit offset.

2 Symbol The result is put into the value cell of a symbol in the
 symbols and constants area of the current function object.
 Bits 0-15 contain a 16-bit offset.

3 Ignore The result is thrown away.

Given this information in the frame header, Escape-Return will do the right
thing to make it appear that the original instruction had exited normally.

 Some instructions, notably Truncate, may want to return multiple values from
an escape function. These values will always be returned on the stack. In
this case, the escape mechanism builds a multiple-value call frame rather than
an escape call frame, then escapes in the usual way. The escape routine for
Truncate is exited using a normal Return instruction.

 A table of pointers to the Lisp-level escape functions is stored in a fixed
location in virtual memory, and the address of the start of this table is known
to the microcode. This means that microcode routines can select the desired
function by means of a table index, and it is not necessary to assemble the
addresses of all these functions into the microcode.

 The escape mechanism is implemented by a micro-subroutine named ESCAPE, which
can be called (or rather, jumped to, since ESCAPE never returns to the caller)
by any microcode that wants to escape to macrocode. ESCAPE is passed the index
of the macro-function to be called and from 0 to 4 lisp objects as arguments on
the PERQ E-Stack. ESCAPE then performs the following steps:

 1. It is determined where the currently executing instruction is going
 to place its result, and an appropriate escape-type call header word
 is generated.

 2. A pointer to the desired function object is fetched from the table
 of escape functions, as determined by the index that was passed to
 ESCAPE.

 3. The equivalent of a Call instruction is executed for this function
 object, but the header word determined in step 1 is used instead of

 56

 the normal header word.

 4. The specified arguments, if any, are pushed onto the control stack.
 The new function is then started by executing the equivalent of a
 Push-Last instruction.

A second entry point, ESCAPE-MULTIPLE, does the same thing as ESCAPE but
creates a multiple-value frame header instead of an escape frame header.

6.4. Errors
 When an error occurs during the execution of an instruction, a call to
%SP-Internal-Error is performed. This call is a break-type call, so if the
error is proceeded (with a Break-Return instruction), no value will be pushed
on the stack.

 %SP-Internal-Error is passed a fixnum error code as its first argument. The
second argument is a fixnum offset into the current code vector that points to
the location immediately following the instruction that encountered the
trouble. From this offset, the Lisp-level error handler can reconstruct the PC
of the losing instruction, which is not readily available in the micro-machine.
Following the offset, there may be 0 - 2 additional arguments that provide
information of possible use to the error handler. For example, an
unbound-symbol error will pass the symbol in question as the third arg.

 A Lisp-Level error handler may want to provide a result for the instruction.
It can find the losing instruction in the way described above, and look at it's
opcode to find the destination. The error handler could then store the
user-supplied result in the specified place and proceed executing the errorful
function at the instruction after the losing instruction.

 The following error codes are currently defined. Unless otherwise specified,
only the error code and the code-vector offset are passed as arguments.

 The following table is pretty bogus. After the microcode is written, and I
know what errors are really generated, I'll make a newer table.

1 Control Stack Overflow
 The control stack has exceeded the allowable size, currently
 24
 2 words.

2 Control Stack Underflow
 Can only result from a compiler bug or misuse of an
 instruction.

3 Binding Stack Overflow
 The binding stack has exceeded the allowable size, currently
 24
 2 words.

4 Binding Stack Underflow
 Can only result from a compiler bug or misuse of an

 57

 instruction.

5 Virtual Memory Overflow
 Some data space has exceeded the maximum size of its segment in
 virtual memory.

6 Unbound Symbol
 Attempted access to the special value of an unbound symbol.
 Passes the symbol as the third argument to %Sp-Internal-Error.

7 Undefined Symbol
 Attempted access to the definition cell of an undefined symbol.
 Passes the symbol as the third argument to %Sp-Internal-Error.

8 Unused.

9 Altering T or NIL
 Attempt to bind or setq the special value of T or NIL.

10 Unused.

11 Write Into Read-Only Space
 Self-explanatory.

12 Object Not Character
 The object is passed as the third argument.

13 Object Not System Area Pointer
 The object is passed as the third argument.

14 Object Not Control Stack Pointer
 The object is passed as the third argument.

15 Objot Binding Stack Pointer
 The object is passed as the third argument.

16 Object Not Values Marker
 The object is passed as the third argument.

17 Object Not Fixnum
 The object is passed as the third argument.

18 Object Not Vector-Like
 The object is passed as the third argument.

19 Object Not Integer-Vector
 The object is passed as the third argument.

20 Object Not Symbol
 The object is passed as the third argument.

21 Object Not List

 58

 The object is passed as the third argument.

22 Object Not List or Nil
 The object is passed as the third argument.

23 Object Not String
 The object is passed as the third argument.

24 Object Not Number
 The object is passed as the third argument.

25 Object Not Misc Type
 The object is passed as the third argument.

26 Unused.

27 Illegal Allocation Space Value
 Self explanatory.

28 Illegal Vector Size
 Attempt to allocate a vector with negative size or size too
 large for vectors of this type. Passes the requested size as
 the third argument.

29 Illegal Immediate Type Code
 Passes the code as the third argument.

30 Illegal Control Stack Pointer
 Passes the illegal pointer as the third argument.

31 Illegal Binding Stack Pointer
 Passes the illegal pointer as the third argument.

32 Illegal Instruction
 Must be due to a compiler error or to using obsolete code that
 does not match the current microcode. No additional args.

33 Unused.

34 Illegal Divisor
 The divisor is integer or floating 0. Returns the divisor and
 dividend as the third and fourth args.

35 Illegal Vector Access Type
 The specified access type is returned as the third argument.

36 Illegal Vector Index
 The specified index is out of bounds for this vector. The bad
 index is passed as the third argument.

37 Illegal Byte Pointer
 Bad S or P value to LDB or related function. Returns S and P

 59

 as the third and fourth arguments.

38 Illegal Function
 Bad object being called as a function. The object is passed as
 the third argument.

39 Too Few Arguments
 Attempt to activate the call to a function with too few
 arguments on the stack. Returns the number of arguments passed
 as the third argument, the function being called as the fourth.

40 Too Many Arguments
 Attempt to activate the call to a function with too few
 arguments on the stack. Returns the number of arguments passed
 as the third argument, the function being called as the fourth.

41 Unseen Throw Tag
 Returns the tag as the third argument.

42 Null Open Frame
 Attempt to activate a function call, but no frame has been
 opened. No additional args.

43 Undefined Type Code
 Can only result from a bug in the micro-machine. Returns the
 strange object as the third argument.

44 Return From Initial Function
 Self-explanatory.

45 GC Forward Not To Newspace
 Can only result from internal errors in the micro-machine. No
 additional args.

46 Attempt To Transport GC Forward
 Can only result from internal errors in the micro-machine. No
 additional args.

47 Object Not Integer
 The object is passed as the third argument.

48 Short-float exponent overflow, underflow
 No additional args.

49 Long-float exponent overflow, underflow
 No additional args.

50 - 63 Unused.

 In the Tops-20 virtual machine, the following codes are defined:

64 Illegal File Token

 60

 The bad token is passed as the third argument.

65 Illegal I/O Mode Specifier
 The bad mode is passed as the third argument.

6.5. Trapping to the Accent Kernel
 Most of the primitive calls to the Accent kernel are made through a single
microcode entry point, SVCall, defined in Accent file process.mic. From Lisp
level, these calls are generated by the Kernel-Trap instruction.

 Kernel-Trap takes two operands, an argument block and a trap code, in that
order. The trap code is a fixnum which specifies the sort of trap call
desired. The argument block is an I-Vector which contains the argument
information for the trap call. The size and format of the argument block
depends on which trap code is called. The return codes and values from the
trap are written into elements of the I-Vector by the kernel.

 Internally, the trap code and a pointer to the data portion of the I-Vector
are passed to Accent on the PERQ E-Stack, as follows:

ETOS The trap code.

ETOS - 1 The low order 16 bits of the virtual address.

ETOS - 2 The high order 16 bits of the virtual address.

 All of the kernel traps called by Lisp-level code use the virtual address as
a pointer to an argument block. An argument block is stored at lisp level as
an I-Vector of 16-bit quantities. The trap codes are defined in Accent file
accenttype.pas, and the arguments to these calls are described in the Accent
Kernel Interface Manual.

6.6. Interrupts
 There are three kinds of asynchronous events that the Spice Lisp system must
service: hardware interrupts, process breaks, and software interrupts.

 Hardware interrupts must be serviced every 70 microinstructions. It is
guaranteed that no process registers will be altered and no page faults will
occur, so all a microprogrammer need do is check the Intr-Pending condition
every now and then, and call the hardware interrupt service routine. Sometimes
that routine will set the process break flag, and a process break should occur.

 If there are other runnable processes on the machine, a process break will
result in the de-scheduling of the Lisp process. Process registers will be
saved by the kernel, and restored when the Lisp runs again. After a process
break, all cached virtual-to-physical memory translations may be invalid and
the instruction buffer will probably be filled with some other process's
instructions. The caches must be flushed and the instruction buffer must be
refilled after a process break.

 After a process break, it is possible that the Lisp process will have
received an ``emergency message'' from some other process. If so, the software

 61

interrupt flag will be set. To service this software interrupt, a break-type
call frame is built to %SP-Software-Interrupt-Handler, which should receive the
message and figure out what to do with it at Lisp level. The emergency message
might, for example, report that an interrupt character has been typed, and the
interrupt handler could enter a break loop or throw to the Lisp top level.

 62

I. Fasload File Format

I.1. General
 The purpose of Fasload files is to allow concise storage and rapid loading of
Lisp data, particularly function definitions. The intent is that loading a
Fasload file has the same effect as loading the ASCII file from which the
Fasload file was compiled, but accomplishes the tasks more efficiently. One
noticeable difference, of course, is that function definitions may be in
compiled form rather than S-expression form. Another is that Fasload files may
specify in what parts of memory the Lisp data should be allocated. For
example, constant lists used by compiled code may be regarded as read-only.

 In some Lisp implementations, Fasload file formats are designed to allow
sharing of code parts of the file, possibly by direct mapping of pages of the
file into the address space of a process. This technique produces great
performance improvements in a paged time-sharing system. Since the Spice
project is to produce a distributed personal-computer network system rather
than a time-sharing system, efficiencies of this type are explicitly not a goal
for the Spice Lisp Fasload file format.

 On the other hand, Spice Lisp is intended to be portable, as it will
eventually run on a variety of machines. Therefore an explicit goal is that
Fasload files shall be transportable among various implementations, to permit
efficient distribution of programs in compiled form. The representations of
data objects in Fasload files shall be relatively independent of such
considerations as word length, number of type bits, and so on. If two
implementations interpret the same macrocode (compiled code format), then
Fasload files should be completely compatible. If they do not, then files not
containing compiled code (so-called "Fasdump" data files) should still be
compatible. While this may lead to a format which is not maximally efficient
for a particular implementation, the sacrifice of a small amount of performance
is deemed a worthwhile price to pay to achieve portability.

 The primary assumption about data format compatibility is that all
implementations can support I/O on finite streams of eight-bit bytes. By
"finite" we mean that a definite end-of-file point can be detected irrespective
of the content of the data stream. A Fasload file will be regarded as such a
byte stream.

I.2. Strategy
 A Fasload file may be regarded as a human-readable prefix followed by code in
a funny little language. When interpreted, this code will cause the
construction of the encoded data structures. The virtual machine which
interprets this code has a stack and a table, both initially empty. The table
may be thought of as an expandable register file; it is used to remember
quantities which are needed more than once. The elements of both the stack and
the table are Lisp data objects. Operators of the funny language may take as
operands following bytes of the data stream, or items popped from the stack.
Results may be pushed back onto the stack or pushed onto the table. The table
is an indexable stack that is never popped; it is indexed relative to the base,
not the top, so that an item once pushed always has the same index.

 63

 More precisely, a Fasload file has the following macroscopic organization.
It is a sequence of zero or more groups concatenated together. End-of-file
must occur at the end of the last group. Each group begins with a series of
seven-bit ASCII characters terminated by one or more bytes of all ones (FF);
 16
this is called the header. Following the bytes which terminate the header is
the body, a stream of bytes in the funny binary language. The body of
necessity begins with a byte other than FF . The body is terminated by the
 16
operation FOP-END-GROUP.

 The first nine characters of the header must be "FASL FILE" in upper-case
letters. The rest may be any ASCII text, but by convention it is formatted in
a certain way. The header is divided into lines, which are grouped into
paragraphs. A paragraph begins with a line which does not begin with a space
or tab character, and contains all lines up to, but not including, the next
such line. The first word of a paragraph, defined to be all characters up to
but not including the first space, tab, or end-of-line character, is the name
of the paragraph. A Fasload file header might look something like this:

FASL FILE >SteelesPerq>User>Guy>IoHacks>Pretty-Print.Slisp
Package Pretty-Print
Compiled 31-Mar-1988 09:01:32 by some random luser
Compiler Version 1.6, Lisp Version 3.0.
Functions: INITIALIZE DRIVER HACK HACK1 MUNGE MUNGE1 GAZORCH
 MINGLE MUDDLE PERTURB OVERDRIVE GOBBLE-KEYBOARD FRY-USER
 DROP-DEAD HELP CLEAR-MICROCODE %AOS-TRIANGLE
 %HARASS-READTABLE-MAYBE
Macros: PUSH POP FROB TWIDDLE
<one or more bytes of FF >
 16
The particular paragraph names and contents shown here are only intended as
suggestions.

I.3. Fasload Language
 Each operation in the binary Fasload language is an eight-bit (one-byte)
opcode. Each has a name beginning with "FOP-". In the following descriptions,
the name is followed by operand descriptors. Each descriptor denotes operands
that follow the opcode in the input stream. A quantity in parentheses
indicates the number of bytes of data from the stream making up the operand.
Operands which implicitly come from the stack are noted in the text. The
notation "@z[@] stack" means that the result is pushed onto the stack; "@z[@]
table" similarly means that the result is added to the table. A construction
like "n(1) value(n)" means that first a single byte n is read from the input
stream, and this byte specifies how many bytes to read as the operand named
value. All numeric values are unsigned binary integers unless otherwise
specified. Values described as "signed" are in two's-complement form unless
otherwise specified. When an integer read from the stream occupies more than
one byte, the first byte read is the least significant byte, and the last byte
read is the most significant (and contains the sign bit as its high-order bit
if the entire integer is signed).

 64

 Some of the operations are not necessary, but are rather special cases of or
combinations of others. These are included to reduce the size of the file or
to speed up important cases. As an example, nearly all strings are less than
256 bytes long, and so a special form of string operation might take a one-byte
length rather than a four-byte length. As another example, some
implementations may choose to store bits in an array in a left-to-right format
within each word, rather than right-to-left. The Fasload file format may
support both formats, with one being significantly more efficient than the
other for a given implementation. The compiler for any implementation may
generate the more efficient form for that implementation, and yet compatibility
can be maintained by requiring all implementations to support both formats in
Fasload files.

 Measurements are to be made to determine which operation codes are
worthwhile; little-used operations may be discarded and new ones added. After
a point the definition will be "frozen", meaning that existing operations may
not be deleted (though new ones may be added; some operations codes will be
reserved for that purpose).

0 FOP-NOP No operation. (This is included because it is recognized that
 some implementations may benefit from alignment of operands to
 some operations, for example to 32-bit boundaries. This
 operation can be used to pad the instruction stream to a
 desired bounary.)

1 FOP-POP @z[@] table
 One item is popped from the stack and added to the table.

2 FOP-PUSH index(4) @z[@] stack
 Item number index of the table is pushed onto the stack. The
 first element of the table is item number zero.

3 FOP-BYTE-PUSH index(1) @z[@] stack
 Item number index of the table is pushed onto the stack. The
 first element of the table is item number zero.

4 FOP-EMPTY-LIST @z[@] stack
 The empty list (()) is pushed onto the stack.

5 FOP-TRUTH @z[@] stack
 The standard truth value (T) is pushed onto the stack.

6 FOP-SYMBOL-SAVE n(4) name(n) @z[@] stack & table
 The four-byte operand n specifies the length of the print name
 of a symbol. The name follows, one character per byte, with
 the first byte of the print name being the first read. The
 name is interned in the default package, and the resulting
 symbol is both pushed onto the stack and added to the table.

7 FOP-SMALL-SYMBOL-SAVE n(1) name(n) @z[@] stack & table
 The one-byte operand n specifies the length of the print name
 of a symbol. The name follows, one character per byte, with

 65

 the first byte of the print name being the first read. The
 name is interned in the default package, and the resulting
 symbol is both pushed onto the stack and added to the table.

8 FOP-SYMBOL-IN-PACKAGE-SAVE index(4) n(4) name(n) @z[@] stack &
 table
 The four-byte index specifies a package stored in the table.
 The four-byte operand n specifies the length of the print name
 of a symbol. The name follows, one character per byte, with
 the first byte of the print name being the first read. The
 name is interned in the specified package, and the resulting
 symbol is both pushed onto the stack and added to the table.

9 FOP-SMALL-SYMBOL-IN-PACKAGE-SAVE index(4) n(1) name(n) @z[@]
 stack & table
 The four-byte index specifies a package stored in the table.
 The one-byte operand n specifies the length of the print name
 of a symbol. The name follows, one character per byte, with
 the first byte of the print name being the first read. The
 name is interned in the specified package, and the resulting
 symbol is both pushed onto the stack and added to the table.

10 FOP-SYMBOL-IN-BYTE-PACKAGE-SAVE index(1) n(4) name(n) @z[@]
 stack & table
 The one-byte index specifies a package stored in the table.
 The four-byte operand n specifies the length of the print name
 of a symbol. The name follows, one character per byte, with
 the first byte of the print name being the first read. The
 name is interned in the specified package, and the resulting
 symbol is both pushed onto the stack and added to the table.

11 FOP-SMALL-SYMBOL-IN-BYTE-PACKAGE-SAVE index(1) n(1) name(n) @z[@]
 stack & table
 The one-byte index specifies a package stored in the table.
 The one-byte operand n specifies the length of the print name
 of a symbol. The name follows, one character per byte, with
 the first byte of the print name being the first read. The
 name is interned in the specified package, and the resulting
 symbol is both pushed onto the stack and added to the table.

12 Unused.

13 FOP-DEFAULT-PACKAGE index(4)
 A package stored in the table entry specified by index is made
 the default package for future FOP-SYMBOL and FOP-SMALL-SYMBOL
 interning operations. (These package FOPs may change or
 disappear as the package system is determined.)

14 FOP-PACKAGE @z[@] table
 An item is popped from the stack; it must be a symbol. The
 package of that name is located and pushed onto the table.

 66

15 FOP-LIST length(1) @z[@] stack
 The unsigned operand length specifies a number of operands to
 be popped from the stack. These are made into a list of that
 length, and the list is pushed onto the stack. The first item
 popped from the stack becomes the last element of the list, and
 so on. Hence an iterative loop can start with the empty list
 and perform "pop an item and cons it onto the list" length
 times. (Lists of length greater than 255 can be made by using
 FOP-LIST* repeatedly.)

16 FOP-LIST* length(1) @z[@] stack
 This is like FOP-LIST except that the constructed list is
 terminated not by () (the empty list), but by an item popped
 from the stack before any others are. Therefore length+1 items
 are popped in all. Hence an iterative loop can start with a
 popped item and perform "pop an item and cons it onto the list"
 length+1 times.

17-24 FOP-LIST-1, FOP-LIST-2, ..., FOP-LIST-8
 FOP-LIST-k is like FOP-LIST with a byte containing k following
 it. These exist purely to reduce the size of Fasload files.
 Measurements need to be made to determine the useful values of
 k.

25-32 FOP-LIST*-1, FOP-LIST*-2, ..., FOP-LIST*-8
 FOP-LIST*-k is like FOP-LIST* with a byte containing k
 following it. These exist purely to reduce the size of Fasload
 files. Measurements need to be made to determine the useful
 values of k.

33 FOP-INTEGER n(4) value(n) @z[@] stack
 A four-byte unsigned operand specifies the number of following
 bytes. These bytes define the value of a signed integer in
 two's-complement form. The first byte of the value is the
 least significant byte.

34 FOP-SMALL-INTEGER n(1) value(n) @z[@] stack
 A one-byte unsigned operand specifies the number of following
 bytes. These bytes define the value of a signed integer in
 two's-complement form. The first byte of the value is the
 least significant byte.

35 FOP-WORD-INTEGER value(4) @z[@] stack
 31 31
 A four-byte signed integer (in the range -2 to 2 -1) follows
 the operation code. A LISP integer (fixnum or bignum) with
 that value is constructed and pushed onto the stack.

36 FOP-BYTE-INTEGER value(1) @z[@] stack
 A one-byte signed integer (in the range -128 to 127) follows
 the operation code. A LISP integer (fixnum or bignum) with
 that value is constructed and pushed onto the stack.

 67

37 FOP-STRING n(4) name(n) @z[@] stack
 The four-byte operand n specifies the length of a string to
 construct. The characters of the string follow, one per byte.
 The constructed string is pushed onto the stack.

38 FOP-SMALL-STRING n(1) name(n) @z[@] stack
 The one-byte operand n specifies the length of a string to
 construct. The characters of the string follow, one per byte.
 The constructed string is pushed onto the stack.

39 FOP-VECTOR n(4) @z[@] stack
 The four-byte operand n specifies the length of a vector of
 LISP objects to construct. The elements of the vector are
 popped off the stack; the first one popped becomes the last
 element of the vector. The constructed vector is pushed onto
 the stack.

40 FOP-SMALL-VECTOR n(1) @z[@] stack
 The one-byte operand n specifies the length of a vector of LISP
 objects to construct. The elements of the vector are popped
 off the stack; the first one popped becomes the last element of
 the vector. The constructed vector is pushed onto the stack.

41 FOP-UNIFORM-VECTOR n(4) @z[@] stack
 The four-byte operand n specifies the length of a vector of
 LISP objects to construct. A single item is popped from the
 stack and used to initialize all elements of the vector. The
 constructed vector is pushed onto the stack.

42 FOP-SMALL-UNIFORM-VECTOR n(1) @z[@] stack
 The one-byte operand n specifies the length of a vector of LISP
 objects to construct. A single item is popped from the stack
 and used to initialize all elements of the vector. The
 constructed vector is pushed onto the stack.

43 FOP-INT-VECTOR n(4) size(1) count(1)
 data(@z[T]n/count@z[U]@z[T]size*count/8@z[U]) @z[@] stack
 The four-byte operand n specifies the length of a vector of
 unsigned integers to be constructed. Each integer is size bits
 big, and are packed in the data stream in sections of count
 apiece. Each section occupies an integral number of bytes. If
 the bytes of a section are lined up in a row, with the first
 byte read at the right, and successive bytes placed to the
 left, with the bits within a byte being arranged so that the
 low-order bit is to the right, then the integers of the section
 are successive groups of size bits, starting from the right and
 running across byte boundaries. (In other words, this is a
 consistent right-to-left convention.) Any bits wasted at the
 left end of a section are ignored, and any wasted groups in the
 last section are ignored. It is permitted for the loading
 implementation to use a vector format providing more precision
 than is required by size. For example, if size were 3, it

 68

 would be permitted to use a vector of 4-bit integers, or even
 vector of general LISP objects filled with integer LISP
 objects. However, an implementation is expected to use the
 most restrictive format that will suffice, and is expected to
 reconstruct objects identical to those output if the Fasload
 file was produced by the same implementation. (For the PERQ
 U-vector formats, one would have size an element of {1, 2, 4,
 8, 16}, and count=32/size; words could be read directly into
 the U-vector. This operation provides a very general format
 whereby almost any conceivable implementation can output in its
 preferred packed format, and another can read it meaningfully;
 by checking at the beginning for good cases, loading can still
 proceed quickly.) The constructed vector is pushed onto the
 stack.

44 FOP-UNIFORM-INT-VECTOR n(4) size(1) value(@z[T]size/8@z[U]) @z[@]
 stack
 The four-byte operand n specifies the length of a vector of
 unsigned integers to construct. Each integer is size bits big,
 and is initialized to the value of the operand value. The
 constructed vector is pushed onto the stack.

45 FOP-FLOAT n(1) exponent(@z[T]n/8@z[U]) m(1)
 mantissa(@z[T]m/8@z[U]) @z[@] stack
 The first operand n is one unsigned byte, and describes the
 number of bits in the second operand exponent, which is a
 signed integer in two's-complement format. The high-order bits
 of the last (most significant) byte of exponent shall equal the
 sign bit. Similar remarks apply to m and mantissa. The value
 denoted by these four operands is
 exponent-length(mantissa
 mantissax2). A floating-point number
 shall be constructed which has this value, and then pushed onto
 the stack. That floating-point format should be used which is
 the smallest (most compact) provided by the implementation
 which nevertheless provides enough accuracy to represent both
 the exponent and the mantissa correctly.

46-51 Unused

52 FOP-ALTER index(1)
 Two items are popped from the stack; call the first newval and
 the second object. The component of object specified by index
 is altered to contain newval. The precise operation depends on
 the type of object:

 List A zero index means alter the car (perform
 RPLACA), and index=1 means alter the cdr
 (RPLACD).

 Symbol By definition these indices have the following
 meaning, and have nothing to do with the actual

 69

 representation of symbols in a given
 implementation:

 0 Alter value cell.

 1 Alter function cell.

 2 Alter property list (!).

 Vector (of any kind)
 Alter component number index of the vector.

 String Alter character number index of the string.

53 FOP-EVAL @z[@] stack
 Pop an item from the stack and evaluate it (give it to EVAL).
 Push the result back onto the stack.

54 FOP-EVAL-FOR-EFFECT
 Pop an item from the stack and evaluate it (give it to EVAL).
 The result is ignored.

55 FOP-FUNCALL nargs(1) @z[@] stack
 Pop nargs+1 items from the stack and apply the last one popped
 as a function to all the rest as arguments (the first one
 popped being the last argument). Push the result back onto the
 stack.

56 FOP-FUNCALL-FOR-EFFECT nargs(1)
 Pop nargs+1 items from the stack and apply the last one popped
 as a function to all the rest as arguments (the first one
 popped being the last argument). The result is ignored.

57 FOP-CODE-FORMAT id(1)
 The operand id is a unique identifier specifying the format for
 following code objects. The operations FOP-CODE and its
 relatives may not occur in a group until after FOP-CODE-FORMAT
 has appeared; there is no default format. This is provided so
 that several compiled code formats may co-exist in a file, and
 so that a loader can determine whether or not code was compiled
 by the correct compiler for the implementation being loaded
 into. So far the following code format identifiers are
 defined:

 0 PERQ

 1 VAX

58 FOP-CODE nitems(4) size(4) code(size) @z[@] stack
 A compiled function is constructed and pushed onto the stack.
 This object is in the format specified by the most recent
 occurrence of FOP-CODE-FORMAT. The operand nitems specifies a

 70

 number of items to pop off the stack to use in the "boxed
 storage" section. The operand code is a string of bytes
 constituting the compiled executable code.

59 FOP-SMALL-CODE nitems(1) size(2) code(size) @z[@] stack
 A compiled function is constructed and pushed onto the stack.
 This object is in the format specified by the most recent
 occurrence of FOP-CODE-FORMAT. The operand nitems specifies a
 number of items to pop off the stack to use in the "boxed
 storage" section. The operand code is a string of bytes
 constituting the compiled executable code.

60 FOP-STATIC-HEAP
 Until further notice operations which allocate data structures
 may allocate them in the static area rather than the dynamic
 area. (The default area for allocation is the dynamic area;
 this default is reset whenever a new group is begun. This
 command is of an advisory nature; implementations with no
 static heap can ignore it.)

61 FOP-DYNAMIC-HEAP
 Following storage allocation should be in the dynamic area.

62 FOP-VERIFY-TABLE-SIZE size(4)
 If the current size of the table is not equal to size, then an
 inconsistency has been detected. This operation is inserted
 into a Fasload file purely for error-checking purposes. It is
 good practice for a compiler to output this at least at the end
 of every group, if not more often.

63 FOP-VERIFY-EMPTY-STACK
 If the stack is not currently empty, then an inconsistency has
 been detected. This operation is inserted into a Fasload file
 purely for error-checking purposes. It is good practice for a
 compiler to output this at least at the end of every group, if
 not more often.

64 FOP-END-GROUP
 This is the last operation of a group. If this is not the last
 byte of the file, then a new group follows; the next nine bytes
 must be "FASL FILE".

65 FOP-POP-FOR-EFFECT stack @z[@]
 One item is popped from the stack.

66 FOP-MISC-TRAP @z[@] stack
 A trap object is pushed onto the stack.

67 FOP-READ-ONLY-HEAP
 Following storage allocation may be in a read-only heap. (For
 symbols, the symbol itself may not be in a read-only area, but
 its print name (a string) may be. This command is of an

 71

 advisory nature; implementations with no read-only heap can
 ignore it, or use a static heap.)

68 FOP-CHARACTER character(3) @z[@] stack
 The three bytes specify the 24 bits of a Spice Lisp character
 object. The bytes, lowest first, represent the code, control,
 and font bits. A character is constructed and pushed onto the
 stack.

69 FOP-SHORT-CHARACTER character(1) @z[@] stack
 The one byte specifies the lower eight bits of a spice lisp
 character object (the code). A character is constructed with
 zero control and zero font attributes and pushed onto the
 stack.

70 FOP-RATIO @z[@] stack
 Creates a ratio from two integers popped from the stack. The
 denominator is popped first, the numerator second.

71 FOP-COMPLEX @z[@] stack
 Creates a complex number from two numbers popped from the
 stack. The imaginary part is popped first, the real part
 second.

72 FOP-LINK-ADDRESS-FIXUP nargs(1) restp(1) offset(4) @z[@] stack
 Valid only for when FOP-CODE-FORMAT corresponds to the Vax.
 This operation pops a symbol and a code object from the stack
 and pushes a modified code object back onto the stack according
 to the needs of the runtime Vax code linker.

73 FOP-LINK-FUNCTION-FIXUP offset(4) @z[@] stack
 Valid only for when FOP-CODE-FORMAT corresponds to the Vax.
 This operation pops a symbol and a code object from the stack
 and pushes a modified code object back onto the stack according
 to the needs of the runtime Vax code linker.

74 FOP-FSET
 Pops the top two things off of the stack and uses them as
 arguments to FSET (i.e. SETF of SYMBOL-FUNCTION).

255 FOP-END-HEADER
 Indicates the end of a group header, as described above.

 72

II. The Opcode Definition File

 73

Index

 %SP-Internal-Apply 13, 50
 %SP-Internal-Error 14
 %SP-Internal-Throw-Tag 14
 %SP-Software-Interrupt-Handler 14

 * 39

 + 39

 - 39

 / 39

 1+ 39
 1- 39
 16bit-System-Ref 46
 16bit-System-Set 46

 8bit-System-Ref 46
 8bit-System-Set 46

 < 38

 = 38

 > 38

 Abs 39
 Accent message space 4
 Access-type codes 11
 Active frame 17
 Active-Call-Frame 47
 Active-Catch register 15
 Active-Catch-Frame 47
 Active-Code register 15
 Active-Frame register 15
 Active-Function register 15
 Alloc-Array 25
 Alloc-Bignum 25
 Alloc-Bit-Vector 24
 Alloc-Function 25
 Alloc-G-Vector 25
 Alloc-I-Vector 24
 Alloc-String 25
 Alloc-Symbol 25
 Aref1 32
 Arg-In-Frame 47
 Array format 8, 11
 Array header format 12
 ArrayP 36

 74

 Arrays 12
 Aset1 33
 Ash 40
 Assoc 29
 Assq 29

 Bignum format 7, 12
 BignumP 35
 Bind 28
 Bind-Null 27
 Binding stack format 18
 Binding stack space 9
 Binding-Stack pointer 4
 Binding-Stack-Pointer register 15
 Bit numbering 2
 Bit-Bash 34
 Bit-Vector format 7
 Bit-Vector-P 35
 Boole 40
 Boundp 31
 Branch 41
 Branch-Not-Null 41
 Branch-Null 41
 Branch-Save-Not-Null 42
 Break-Return 44
 Byte code formats 22
 Byte codes 22
 Byte numbering 2
 Byte-BLT 34

 Caar 28
 Cadr 28
 Call 42, 49
 Call Header format 5
 Call-0 43, 49, 50
 Call-Header 5
 Call-Multiple 43, 49
 Car 28
 CAref2 33
 CAref3 33
 CAset2 34
 CAset3 34
 Catch 17, 44, 52
 Catch frames 17
 Catch header format 6
 Catch-All 44
 Catch-All object 6, 52
 Catch-Frame 6
 Catch-Multiple 44
 Cdar 28
 Cddr 28
 Cdr 28

 75

 CE (contents of effective address) 24
 Character object 5
 CharacterP 37
 Clean-Space pointer 19
 Code vector 16
 Collect-Garbage 46
 Compiled-Function-P 36
 Complex number format 8
 Complex-Array-P 36
 ComplexP 35
 Cons 26
 ConsP 36
 Constants in code 16
 Control registers 15
 Control stack space 9
 Control-stack format 17
 Control-Stack pointer 4
 Control-Stack-Pointer register 15
 Copy 27
 Current-Binding-Pointer 47
 Current-Open-Frame 47
 Current-Stack-Pointer 47

 Decode-Float 37
 Definition cell 7
 DEFSTRUCT 10
 Denominator 37
 Deposit-Field 40
 Dispatch 42
 Dpb 40

 E (effective address) 24
 Effective address 22
 Endp 29
 Eq 44
 Eql 44
 Errors 56
 Escape to macrocode convention 54
 Escape-Return 43
 Exchange 27

 FBoundp 31
 Find-Character 34
 Find-Character-With-Attribute 34
 Fixnum format 4
 FixnumP 37
 Float-Long 37
 Float-Short 37
 Floating point formats 4, 7
 FloatP 36
 Flonum formats 4, 7
 Flush-Values 45

 76

 Force-Values 45
 Forwarding pointers 8
 Free-Storage pointer 19
 Function object format 8, 11

 G-Vector format 7
 G-Vector-Length 31
 Garbage Collection 19
 GC-Forward pointer 8
 General-Vector format 7, 10
 General-Vector-P 36
 Get-Allocation-Space 24
 Get-Definition 30
 Get-Package 30
 Get-Plist 30
 Get-Pname 30
 Get-Space 46
 Get-Type 46
 Get-Value 30
 Get-Vector-Access-Code 32
 Get-Vector-Subtype 31
 GetF 29

 Hairy stuff 49
 Halt 47
 Hash tables 10
 Header-Length 32
 Header-Ref 32
 Header-Set 32

 I-Vector format 7
 Imagpart 37
 Immediate object format 3
 Integer-Length 37
 Integer-Vector format 7, 11
 IntegerP 35
 Interrupts 60

 Kernel traps 60
 Kernel-Trap 46

 Ldb 40
 Lisp objects 3
 List 26
 List cell 7
 List* 26
 ListP 36
 Logand 39
 Logdpb 41
 Logior 39
 Logldb 41
 Lognot 40

 77

 Logxor 39
 Long-Float-P 35
 Long-Flonum format 7
 Lsh 41

 Macro instruction formats 22
 Macro instruction set 22
 Make-Complex 25
 Make-Immediate-Type 46
 Make-Predicate 45
 Make-Ratio 25
 Mask-Field 40
 Member 29
 Memq 29
 Misc type codes 4
 Misc-Binding-Stack-Pointer 4
 Misc-Control-Stack-Pointer 4
 Misc-System-Table-Pointer 4
 Misc-Trap 4
 Multiple values 52

 N-To-Values 45
 Negate 39
 Newspace-Bit 46
 NIL 13
 Non-Local Exits 52
 Not-Predicate 45
 NPop 27
 NumberP 36
 Numerator 37

 Open frame 17
 Open-Frame register 15

 Package cell 7
 PC register 15
 Perq quadword alignment 9
 Plist cell 7
 Pname cell 7
 Pointer object format 3, 6
 Pop 27
 Print name cell 7
 Program Counter register 15
 Property list cell 7
 Purification 20
 Push 26
 Push-Last 43, 50

 Quadword alignment 9

 Ratio format 8
 RationalP 36

 78

 RatioP 35
 Read-Binding-Stack 48
 Read-Control-Stack 47
 Read-only space 6
 Realpart 37
 Replace-Car 29
 Replace-Cdr 29
 Return 43, 51
 Runtime Environment 15

 SBit 32
 SBitset 33
 Scale-Float 38
 Scavenger 20
 SChar 32
 SCharset 33
 Set-0 45
 Set-Allocation-Space 24
 Set-Call-Frame 47
 Set-Cddr 28
 Set-Cdr 28
 Set-Definition 30
 Set-Lpop 28
 Set-LPush 26
 Set-Newspace-For-Type 46
 Set-Null 45
 Set-Open-Frame 47
 Set-Package 30
 Set-Plist 30
 Set-T 45
 Set-Value 30
 Set-Vector-Subtype 31
 Short-Float format 4
 Short-Float-P 37
 Shrink-Vector 32
 Simple-Bit-Vector-Length 31
 Simple-Bit-Vector-P 35
 Simple-Integer-Vector-P 35
 Simple-String-Length 31
 Simple-String-P 35
 Simple-Vector-P 36
 Space codes 4, 6
 Special binding stack space 9
 Spread 29
 Stack spaces 9
 Start-Call 43, 50
 Static space 6
 Storage management 19
 String format 8, 12
 StringP 35
 SVref 32
 SVset 33

 79

 SVset* 33
 SXHash-Simple-String 34
 Symbol 7
 SymbolP 36
 System table pointer 4
 System table space 4, 9

 T 13
 Throw 44, 52
 TOS register 15
 Transporter 19
 Trap code 4
 Trapping to the kernel 60
 Truncate 38, 55
 Type codes 3
 Typed-Vref 32
 Typed-Vset 32

 Unbind 28
 Unwind-Protect 52

 Value cell 7
 Values-Marker 5
 Values-To-N 45
 Vector 25
 Vector format 7
 Vector-Length 31
 VectorP 36
 Vectors 10
 Virtual memory 6

 Write-Binding-Stack 48
 Write-Control-Stack 47

