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ective capabilities. Wediscuss some example applications which use these facilities to experiment with someadvanced and powerful concepts, namely, �nalization, virtual shared memory and persis-tence. A secondary goal is to attempt to illustrate the additional possibilities of metaob-ject programming over non-metalevel techniques.1. IntroductionEULISP [24] provides an object system (called Telos [4]) which is fully inte-grated with the rest of the language, and includes a meta-object protocol(MOP) [19] which allows programs to re
ect on the structure and inheri-tance relationships between classes. Re
ection here is the process of takinga system object, such as a class and transforming it into a user-level objectwhich a program can read and perhaps modify. Using this structure, a pro-gram is free to change the representation and computation of these aspectsto obtain new behaviour by subclassing existing classes and metaclasses.These new classes have the same status as the system-de�ned classes, sothe extensions become a part of the original language|no special code isneeded to use them.This paper comes in �ve parts. First we introduce the Telos MOP froma user's point of view, with a particular emphasis on the slot access pro-tocol. After this we look at a fairly simple extension of the slot accessprotocol to add �nalization (section 3). Two larger scale applications arevirtual shared memory model (section 4) and persistent objects (section 5).The last section (6) di�ers from the earlier ones in that instead of beingillustrative fragments of meta-object programming, it describes a completeapplication written using EULISP and Telos which depends heavily on Telosin order to create an interface into an object store for simulation programs.A secondary aspect of this last part is that the system in question wasoriginally written in CLOS and had �rst to be ported to EULISP before the



2 BROADBERY AND BURDORFextensions described here were made.2. Meta-object protocols and TelosA detailed description and rationale for the design of Telos appears in [4].Two principles of the design are: (i) a program should not pay for the cost ofa feature that it does not use (also known as \don't use, don't lose"), (ii) aslarge a proportion as possible of the meta-object level operations should bedone when classes are created rather then when they are used|in e�ect, aform of compile-time versus run-time tradeo�. A consequence of this secondproperty is that the creation and access routines can be extended withoutimposing overheads on other programs and with minimal overheads on theclient program.There are four components to the Telos MOP:� Class de�nition and inheritance;� Slot accessor creation and invocation;� Generic function dispatch;� Object allocation and initialization.Each of these consists of a number of generic functions which have de�nedsemantics, and are guaranteed to be called at speci�c points in the protocol.Of course, these protocols are not entirely separate|each relies on theexistence of the other three to function, but the actual details of eachprotocol are largely independent of one another. New behaviour is obtainedby subclassing the classes speci�ed in the de�nition, and specializing theappropriate parts of the MOP for the new classes.2.1. Specializing slot accessThe Telos slot creation and access protocol [4] di�ers from the CLOS [19]protocol in a number of important ways, but primarily, the balance of workis shifted from the access protocol to the creation protocol.The slot accessor creation routine has four phases (Figure 1):� Create slot-description objects;� Finalize the details of the object representation;� Create the slot accessor functions;� Create specialized slot accessors.



APPLICATIONS OF TELOS 3compute-inherited-slot-descriptionscompute-slot-descriptionscompute-and-ensure-slot-accessorsensure-slot-readercompute-primitive-reader-using-classcompute-primitive-reader-using-slot-descriptionensure-slot-writercompute-primitive-writer-using-classcompute-primitive-writer-using-slot-descriptionFigure 1: slot access protocolEach phase allows the programmer to specialize the slot in di�erent ways:add extra slots to the class in the �rst and move slots and allocate spacefor hidden slots in the second. However, the last two are probably the mostcommonly used: one can change the function used to dispatch slot accessin the third phase, whilst the last enables arbitrary functions to be calledat slot access time.Where the slot description is an instance of <local-slot-description>(the default case), accessing a slot is just an indexed reference or updateoperation. However, this can be specialized at will. The 
exibility of thisapproach can be used to build complex systems from the primitive functionsprovided by EULISP. In the following sections we describe some applicationsthat use this technique.3. FinalizationIn many applications it is required to do some post-processing when it canbe established that an object will no longer be needed. This process isknown as �nalization [17]. For example, many systems require that closeshould be called on a �le object before a program is exited, otherwisethe stored version of the �le may be inconsistent with the version heldby the program due to bu�ering by either the operating system or theapplication program. The problem is that a program may lose a pointerto such an object and never be able to run the �nalization code on itbefore the object is recycled by garbage collection, after which �nalizationis impossible. To circumvent this situation, we need to be able to to notewhen an object becomes inaccessible, recover its slots from some \hidden"storage and invoke a tidying operation on the object.The Bath implementation of EULISP provides two extensions to the lan-guage that simpli�ed the implementation: the system allows the user to



4 BROADBERY AND BURDORF(defclass <file> ();;create a class with a slot to be used in the �nalization method((file initarg fileaccessor file-internalslot-class <finalizable-sd>))class <finalizable-class>initargs (open-args)constructor (open-safe-file open-args));;open a �le and set the actual handle(defmethod initialize ((x <file>) lst)(let ((new (call-next-method)))((setter file-internal) new(apply open (find-key 'open-args lst)))new));;tidy up the �le(defmethod finalize ((x <file>))(close (file-internal x)))Figure 2: Finalization of a �le handleinstall a function which is called directly after each garbage collection (apost-GC hook) and secondly a new class of object|weak wrappers. It isguaranteed that the post garbage collection function is never called duringthe execution of a previous �nalize, and always runs on the thread which in-voked the garbage collection process. The purpose of these rules is to avoidproblems with in�nite loops and concurrency, respectively. Weak wrappersare objects with a single slot which initially contains some object, but isset to nil if the object is garbage collected (during a garbage collection,references from weak pointers are not followed, therefore the referenced ob-ject may be garbage collected). These two extensions1, and the facilities ofTelos allow the implementation of a simple �nalization scheme.The idea is to store the slot values of an object that are needed for �-nalization somewhere safe, so that when the space occupied by the objectis recovered by garbage collection, the values that were stored in the �nal-ization slots are still available. Under the protocol for this implementationof �nalization, each class which needs this facility is required to nominatea proxy-class with similarly named slots for the values needed for the �-nalization method. The proxy class defaults to the class itself. When the1One does not absolutely need the post GC callback as one could use the wait prim-itive with a timeout, but the GC callback is more e�cient.



APPLICATIONS OF TELOS 5(defclass <finalizable-class> (<class>)((count accessor finalizable-slot-count)(proxy accessor proxy-class))initargs (proxy));;class initialization(defmethod initialize ((cl <finalizable-class>) lst)(let ((cl (call-next-method)))(let ((slot-posn (class-instance-size cl)))((setter class-instance-size) cl (+ slot-posn 1))((setter finalizable-handle-posn) cl slot-posn)...)cl));;instance allocation(defmethod allocate ((cl <finalizable-class>) lst)(let ((handle (make-vector (finalizable-slot-count cl)))(obj (call-next-method)))((setter primitive-slot-ref) cl(finalizable-handle-posn cl)handle)obj));;Constructing new proxy objects(defun make-proxy-object (class values)(let ((new-cl (proxy-class class)))(let ((obj (allocate new-cl 'proxy t)))(do (lambda (sd)((slot-description-slot-writer(find-slot-description new-cl(slot-description-name sd)))obj(vector-ref values (slot-description-position sd))))(class-slot-descriptions class))obj))) Figure 3: Fragment of �nalization codeoriginal instance is garbage collected, the change of status can be detectedin the weak wrapper and the slot values can be recovered. The �naliza-tion method is then executed on an instance of the proxy-class, with theproviso that this particular instance cannot be �nalized. From the code inFigure 3, you will see that a slot is added to the instance to be �nalizedwhen it is allocated. This slot is initialized with a vector in which the slot



6 BROADBERY AND BURDORFvalues needed for �nalization are stored. The vector is also reachable viaan association-list indexed by a weak pointer referencing the object to be�nalized.When an object becomes unreachable, the post-GC function instantiatesthe proxy-class (make-proxy-object) with the slot values from the vec-tor and calls the �nalization routine with the `resurrected' object. If theproxy class is (by coincidence) subject to the �nalization scheme, then anargument is passed to the allocate method to ensure that the resurrectedobject is not added to the �nalization list. See Figure 3.This technique is adequate in most circumstances, but cannot �nalizea cyclic structure as the values of the slots are accessible via non-weakpointers. It should be noted that it is hard to de�ne an algorithm for�nalizing circular structures which picks the `correct' point in the cycle tobreak|more likely, this indicates that the structure of the objects needsto be re-thought, although an extra level of indirection can generally beused to achieve a similar e�ect! To handle cyclic structures properly, moreinformation must be given to the processor about how the objects interact.Networks without cycles take n cycles to be completely �nalized, wheren is the diameter of the network. To do better than this the garbagecollector would have to be modi�ed to make another pass over the weakpointers after the �nalization phase is complete, which could seriously a�ectthe performance of the system when no �nalization is required. Includingsuch extra routines would complicate the garbage collection su�ciently thatstock algorithms would not be able to handle it, whereas it was desiredto make the system reasonably portable|every implementation of Telosso far has been on a system with some kind of weak pointer (generallyprovided as an extension). The other advantage of this approach is itsrelative simplicity|the code itself is quite short (< 150 lines), and quitereadily comprehensible.4. Virtual Shared MemoryVirtual Shared Memory (VSM) is a software technique for simulating theshared memory of many parallel architectures on a network of processorswith local memory only | giving objects a form of spatial persistency.It can also be viewed as an abstraction for passing data between multiplephysically disjoint processes, without message passing. It involves inventinga virtual `arena' in which objects are stored, and some interface to dealwith an object's allocation and slot access. The idea is to add a mechanismwhereby objects can be passed between processes without the expense ofcopying the objects at each communication. Such a system is useful for avariety of reasons:



APPLICATIONS OF TELOS 7distributed data structures: The processors can co-operate to form alarge data structure which is accessible equally from all processors;hides message passing: Client programs do not need to know that otherprocesses will be asking for data in their space|so message handlingcode does not need to be written explicitly;more familiar programming model: The concept of a number of ob-jects interacting via shared memory is more familiar to the program-mer than disjoint memory spaces.On the other hand, such a system does have its drawbacks|the relativesloth of a network is hidden by the abstraction, so it is easy to write slowcode su�ering from the delusion of uniform access cost. Consistency modelsmay add even more ine�ciency to this protocol.The abstraction of VSM should be capable of expansion in several ways:memory consistency: For some applications updates to objects neverhappen (for example if the program is totally functional), or, at theother extreme, updates must be atomic and no object must copiedwithout an invalidation protocol. Both should be accommodated.garbage collection: It should be possible to write a garbage collector ontop of the abstraction so that deallocation is handled by the system,rather than by some ad-hoc method.object naming: One should be able to retrieve objects by indirect mech-anisms, such as pattern matching. This would provide Linda-likefunctionality.e�ciency: The default mechanism should not have an excessive overheadfor the most common cases. For example, multiple reads of the sameslot, and additional classes can override parts of the protocol so thatthey may be yet more e�cient.The current version of VSM consists of a number of classes of object whichinteract with Telos to provide a simple virtual memory system and supportfor protocols such the system could be extended to support more of theother mechanisms listed.4.1. Layout of memoryThe allocation of memory closely mirrors that of the underlying Lispsystem|objects are allocated from pages (a �xed-size group of slots orobjects) which are in turn allocated by a distributed allocator which tracks



8 BROADBERY AND BURDORFmemory usage to ensure that it does not swamp the rest of the system.The pages store either atomic data, such as instances of strings, symbolsand numbers, or addresses of instances of other objects stored in the VSMsystem.4.2. ImplementationThe classes used in the implementation are designed to be subclassed,and provide an extension to Telos to encompass allocation strategy, garbagecollection, and distribution of data. The implementation is made up of four(abstract) classes of object:page: Actually holds the information. These are sent atomically throughthe distribution layer.address: Contains a page pointer and an o�set. Used to reference objects.handle: The part of an object used to store its address.object: Seen by users of the VSM code.The VSM system consists of a protocol which new page and addressclasses can specialize, plus a number of implementations of these abstractclasses. Normal (application) code does not need to be aware of this pro-tocol, although if new page and address classes are de�ned, it must beobserved. One change from the de�ned semantics of EULISP is that objectsmay not appear to be eq to themselves because of caching arrangements(a page may leave the local processor and return). However, it is arguablewhether eq should be well-de�ned (or even used!) in these circumstances.The function eql, which has an appropriate method to compare VSM ad-dresses must be used instead.Pages are held in caches on local processors with a reference to the page'sowning processor, and when a page fault occurs the system then queriesthe page's owner about its location. Once found, the page is copied to theprocessor.Other page lookup mechanisms are perfectly possible|a message canbe sent to the owner of the page on every request, and the owner replieswith the appropriate object. Other mechanisms can be supported by theprotocol and work is in progress exploring the advantages of some of these.Without a means of starting remote threads, VSM is not especially useful.Currently the system uses a version of futures [16], although a paralation[28] implementation has also been developed [2]. The underlying interpro-cess communications mechanism is PVM [14], although this is transparentto the rest of the system.



APPLICATIONS OF TELOS 9The system is strictly experimental and has been designed to permitexperiments to be made on the e�ciency and interaction of various con-sistency protocols, page caching and replacement algorithms, and garbagecollection. The integration of VSM with persistence is being investigatedso that one can employ both temporal and spatial persistency in a system.5. PersistencePersistence has been explored as a topic in its own right as a means to sup-port large-scale object-oriented simulation in EULISP. This section discussesthat experience.Persistent object systems (POS) [1] aim to provide a seamless integrationbetween a programming language and a database. The POS requires acache to hold objects which have been loaded into primary memory to avoidthe need for reloading an object each time it is accessed. The persistentobject cache can be viewed as similar to the working set in a virtual memorysystem. The size of the cache has to be limited so as not to swamp theruntime system with more objects than can exist without exceeding thesize of swap space. Also, since objects may be shared with other users, itis not desirable for any one user to have control over too many objects ata given time, and therefore, caches can also be useful to limit the numberof objects owned by a user.Some of the advantages of persistent systems listed by Morrison andAtkinson [23] include:� reduced complexity;� reduced code size and time to execute;� data outlives the program.Firstly, complexity is reduced for the application builders, because withpersistent systems, there is no distraction for the programmer in dealingwith the complexity of managing the database. He or she need only con-sider the complexities involved in the mapping between the programminglanguage and the problem to be solved. Secondly, persistent systems reducecode size, because the application program need not contain code concernedwith the explicit movement of data between primary and secondary mem-ory. Also, the time to execute is reduced, because only objects required bythe system get loaded into primary memory. Finally, the data outlives theprogram, because it resides in a database.In this section we discuss the implementation of a such a persistent ob-ject system designed for use in simulation applications|The Persistent



10 BROADBERY AND BURDORFSimulation Environment (PSE) developed at UC Berkeley, and some ofthe problems encountered in porting it from its original language, AllegroCommon Lisp, to EULISP.5.1. Persistence in PSEPSE's persistent object system supports sharing, maintaining, and in-specting of objects. Sharing of persistent objects has not been pursuedbecause it involves issues of transaction management and is not one of theprimary goals of this work. Other persistent object languages, for example,GEMSTONE and Picasso, are researching this topic and their results willcontribute to the success of persistent object systems.In general, an object which is declared to be persistent is retained in sec-ondary storage after program execution terminates. In PSE, once a classhas been declared to be persistent, instances of that class will automaticallybe made persistent. However from the programmer's perspective, persis-tent objects in PSE are referenced identically to non-persistent simulationobjects. Furthermore, fetching and instantiating of a persistent object fromsecondary storage is performed transparently by the underlying PSE kernel.The kernel implementation of PSE is based on Rowe's [27] SOH (sharedobject hierarchy) methodology.PSE is composed of the following components pictured in Figure 4: per-sistent object �les, object space, and an object directory. The object �lesstore an ascii representation of the objects in secondary storage. Objectspace denotes the area in main memory where the object structures re-side, and the object directory contains one handle per object which mapsan object identi�er into the object handle. The object handle containsmeta-information about the object and always remains in main memory. Ahandle includes information such as (i) a pointer to the object's memory lo-cation, which is \nil" if the object is not present in the object space (ii) theobject's location in the object �le (iii) whether or not the object has beenmodi�ed (iv) the object's update mode. The update mode indicates howthe object will be modi�ed on disk. If the mode is direct-update the objectwill be updated immediately upon modi�cation. If it is deferred-update,the object will be updated when the number of objects in the object spacereaches capacity thereby triggering garbage collection of the object direc-tory and updating of necessary objects. Local-copy objects only exist inmain memory and therefore are not updated on disk.The database consists of several �les. One �le stores the objects, andthere are separate �les for the caches and the classes. Each object is storedas a �xed-sized record. If an object is modi�ed to increase its size such thatit exceeds the �xed size allocated, then the object is moved to the end of the
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Figure 4: Components of PSE�le. Its size allocation is then increased to meet its new speci�cation. Thesystem also contains a routine that will garbage collect the unreferencedobjects in the database.During program execution, object handles are used as parameters torepresent simulation objects. When a slot in an object is referenced, oneof two actions is taken: if it is determined that the object is not in mainmemory, then it is fetched and instantiated before the slot value is returned.Alternatively, if the object is already in main memory, the value of the slotis simply returned. As mentioned earlier, the determination of the object'slocation, fetching, and instantiation are handled by the persistent objectsystem and is transparent to the programmer.The system provides a set of parameters that can be used to tune per-formance. For example, the total size of object space, and the size of theobject directory. It is also possible to extract infomation on the dynamicsizes of these objects, so that a program may adjust the upper limits as nec-essary. The combination of these system parameters with the three choicesof update modes, provides users with facilities for comparing performanceunder di�erent PSE system constraints.



12 BROADBERY AND BURDORF5.2. Porting PSE to EULISPConcurrency provides the possibility of reducing the real execution timeof a program through simultaneous execution of di�erent code segments.PSE was ported to EULISP because it provides a thread facility on the Star-dent Titan multiprocessor which allows the implementation of concurrentprograms. The components ported to EULISP include the persistent objectsystem (described above) and the discrete-event and process-based simu-lation utilities. Those components had previously been implemented inCommon Lisp at RAND Corporation.The port of PSE to EULISP required a signi�cant amount of e�ort, becausethe entire interface with the object system had to be rewritten, and EULISPmodules provide a more austere environment than Common Lisp packages| the EULISP language prefers to gain run-time e�ciency at the expenseof development-time aids such as binding names at runtime, and the evalconstruct. In the Common Lisp version of PSE, the object system had beenmerged with the �le system through low-level modi�cations. A new EULISPmetaclass was created for persistent classes and objects and methods wereadded at the low-level to handle access and modi�cation of these objects.Implementing persistent classes as the hardest part. In Common Lisp,when a class was input from the database, PSE would construct a callto defclass and eval to instantiate the class. This technique was notpossible in EULISP, because it does not have eval. Another problem isthat when a class is created, the accessors for the slot values need to bede�ned. In Common Lisp, defclass de�nes the accessors. However, inEuLisp, the lack of eval makes it impossible to construct and execute acall to defclass as in Common Lisp. Calling make on the metaclass is onealternative, but make does not create the accessors, so that would have tobe done manually. A problem further arises when creating the accessors inEuLisp at run time, because the accessor functions must be bound to theaccessor names, but EULISP does not allow the creation of new bindings inmodules at run time. This problem was only partially solved by havingthe accessor names de�ned at system load time. This restriction means theEULISP version of PSE does provide persistent classes seamlessly in the wayof the Common Lisp version. Additionally, we note that it required morethan twice as much code to implement persistent classes in EULISP than itdid in Common Lisp.Likewise, module restrictions made it di�cult to have applications re-side in separate modules from the PSE module. Since EULISP does notallow mutually referential modules, it was necessary to de�ne all persis-tent classes in the PSE module, because local bindings can only be done inmacro expansions and the functions to build the accessors are in the PSE



APPLICATIONS OF TELOS 13module. Therefore, since the accessors were de�ned in the PSE module,the application must be a part of the PSE module if it wants to use theslot accessors.There are some compromises that can be made to alleviate this problem.The �rst compromise would be to store classes in their own module, thenall of the slot accessors would have to be declared in the export list of themodule. This solution is quite unsatisfactory though, because when oneimports a module of classes, it will load all of the classes in that moduleinstead of loading classes as demanded by the program. Also, it requires theapplication programmer to structure their code di�erently from how theywould if the classes were non-persistent. This requirement violates thede�nition of persistent systems as having a seamless interface between theprogram and the database. Another solution, which was implemented, wasto provide a construct called persistent-classes. This construct is used whenloading classes from an already existing database. When persistent classesare de�ned, the system stores code in the database which when loaded intoEuLisp and executed will create the accessors for a class and bind themto the slot-names listed in the call to persistent-classes. Thus, the use ofthe persistent-classes construct does create a seam of sorts between theprogram and database, but it is less of a seam than would be necessary ifthe classes were required to be in a di�erent module.On a more positive note, EULISP slot descriptions provided an elegantsolution to the problem of access and modi�cation of persistent slots. Amacro called defdbclass was de�ned which caused all slot classes to bepersistent-slot-class. Then, a slot access method was de�ned onpersistent-slot-class to handle the speci�c mechanics of access andmodi�cation of a persistent slot as described previously.The remaining work of the port was spent dealing with technical di�er-ences between EULISP and Common Lisp of which there are many but arenot of great interest, so they will not be discussed further.6. Applications of PersistenceOne of the advantages of Lisp is that it can be used as an assembly languageto build higher-level constructs using macros that are tailored for speci�cdomains such as rule-based systems, natural language processing, and evensimulation. It has been found to be advantageous to incorporate the pre-viously described persistent-object facility into higher-level constructs forPetri net and connectionist simulations, because in the case of Petri nets,they can store the simulation history for later reference, and in the caseof connectionism, they can store information, gained through the buildingand training of the network, for reuse.



14 BROADBERY AND BURDORF6.1. Concurrent Process-based SimulationThe motivation for concurrency is to improve the performance of simu-lations. However, to execute a persistent object-based simulation requiresprotocols to manage the concurrency to ensure that the simulation seman-tics are not altered from its sequential version. The choice was made toimplement concurrency at the event level rather than the database trans-action level, because if dependent events are synchronized on each object,database transactions will be sychronized as well. Event-level sychroniza-tion will allow independent events (eg. move car to station X, process �rstcar on station Y) to execute in parallel. Dependent events which act on thesame object (eg. move car A to station X, process car A at station X) willbe executed in lock-step. Since events are the parallelizable unit, if theyare synchronized based on the write sets of objects (a write-set is a groupof objects that are dependent on each other because they modify or accessthe same mutable attributes), so will the database transactions they gen-erate. If dependent events are sychronized, then all database transactionswill be serialized for each object, because events are the driving apparatusof the simulation and the only agent which produces database operations.Thus, the environment demands a protocol which will control concurrencyfor events and the transactions will follow suit.As is described in [9], conservative protocols [22] were chosen. The mainadvantage being that conservative mechanisms require less primary memorythan optimistic ones, because there is no need to save the state each timean event is processed and input queues contain no antimessages. Also, inthe case of persistent systems, there is no need to save modi�cations to thedatabase, because due to the lock step execution of events for each object,once modi�cations are made there is no need for the protocol to undo themwhich is necessary under optimistic mechanisms [18].6.2. ConnectionismConnectionist models provide a mechanism for representing knowledgethrough connections between neurons. Those connections are weighted torepresent the certainty factors between semantic relationships. Due to therecent increase in interest in the use of connectionist and neural systems,there has been active development in tools that support their development[10, 13, 12, 30].POCONS [8] [7] (Persistent Object CONnectionist Simulator) is a newcomponent added to the EULISP version of PSE which supports object-oriented connectionist simulation. With the exception of Neula [13] otherneural network tools do not support an object-oriented design methodology.Both Neula and NSL [31] have object-oriented constructs, but di�er in their



APPLICATIONS OF TELOS 15(defdbneuron hobbit (middle-earth-inhabitant)((nature initform 'good)(height initform 'short)(is-fond-of initform '((birthday-parties . 1.0)(swimming . -0.7)(fighting . -1.0)))(has-enemy initform '((dragon . -1.0)))))(defdbneuron bilbo (hobbit)((is-fond-of initform '((pipeweed . 1.0) (light . 1.0)))))(defdbneuron dragon (middle-earth-inhabitant)((has-enemy initform 'dwarf)(nature initform 'evil)))(defdbopposites 'nature 'good 'evil)Figure 5: Fragment of POCONS code for a Middle Earth neural netsyntax and semantics which is unlike the widely-used object-oriented lan-guages like Smalltalk [15], C++ [29], or CLOS [3]. In addition, POCONSis close to CLOS and Telos in syntax and semantics (thus, there should bea shortened learning curve for programmers familiar with either systems)POCONS can be used to develop hybrid symbolic/connectionist systems,since it is embedded in Lisp which has been used extensively for symbolicinference. It is also extensible, because it allows a user to create new neu-rons interactively and rebuild the neural network: a feature not availablein the other object-oriented connectionist simulators like Neula and NSL.Also, unlike Neula and NSL, POCONS supports persistence, and it usesobjects to represent relationships between di�erent elements of the network.POCONS is a declarative language in that the programmer simply spec-i�es the structure of the network, enters a command to make the systembuild the network's internal structure, and initiates execution of a simula-tion.6.2.1. An Object-Oriented Connectionist ModelPOCONS is based on the object-oriented connectionist model where theuser does not specify any procedural information about the network's ex-ecution. The model only requires that the user specify the neurons whichrepresent the components of the network, their attributes, and relation-ships between them. POCONS can then be instructed to generate a neuralnetwork. Queries can be made on the network which initiate connectionist



16 BROADBERY AND BURDORFsimulations.The underlying POCONS system translates connectionist objects intosets of neurons that represent the class hierarchy and attributes. Eachclass has a neuron associated with it, and likewise the class neuron hasweighted is-a links to the neuron which represents its superclass. Also, aneuron is created for each class and slot-value pair (e.g., (nature, good))which has links to its class and the class has links to it.defdbneuron is the de�ning component for the creation of a persistentneuron and an example is given in Figure 5.The neuron-name will be used as a symbol that identi�es the neuron. Thesuperclasses specify the class or classes from which the neuron inherits. Theslots describe the explicit relationships that the neuron will have. Slots arespeci�ed as an initialization list containing slot-names and slot options.defdbopposites indicates a relationship between two neuron types andis de�ned as follows:(defdbopposites slot-name neuron-name neuron-name)defdbopposites can only take as arguments neuron-names used in callsto defdbneuron. The result of the use of defdbopposite will be a nega-tive link between the two speci�ed neurons in the network. Also, the useof defdbopposites generates a persistent object containing the speci�edinformation. Thus, to reuse a speci�c network after the �rst time it wasexecuted, one need only open the database.The algorithm which converts this representation examines each objectand a neuron is created for each neuron name and for each slot attributeand value. It then creates forward links from each subclass neuron to eachsuperclass neuron. Links are also created from class neurons to their slotneurons.For a more extensive description of POCONS including some examplessee [8], and for experiments in mapping POCONS onto SIMD and MIMDmachines see [7].6.3. Petri netsPetri nets are widely used in the simulation of concurrent systems [25].As a result of the popularity of Petri nets, a variety of tools have beendeveloped [11], including ones for the graphical editing and creation ofPetri net systems. This section describes a tool for the development ofPetri nets: a language called Per-trans [6], which features the fusion ofpersistent object technology with Petri net development. Per-trans is acomponent added to the EULISP version of PSE.



APPLICATIONS OF TELOS 17Per-trans has features that simplify the task of developing stochasticPetri net models [21]. It contains constructs that specify the places, transi-tions, and token locations in the Petri net. The underlying system handlesall the procedural execution of the simulation.6.3.1. Per-trans componentsPer-trans provides an application programmer with primitives to repre-sent and execute simulations using the stochastic Petri net model. Per-transhas the following general features:� Persistence;� Declarative;� Allows embedded Lisp code.It supports persistence, because all the various elements of the Petri netmodel (places, transitions, and tokens) can be represented as persistentobjects. The application programmer can decide whether he or she wantssome or all of the net to be persistent. It is declarative in that the pro-grammer need not specify any of the control information used to determinewhen a transition will �re and send tokens throughout the net. The Per-trans de�ning forms generate an event-based simulation that is executedby the underlying scheduler and simulator of PSE. The programmer needonly specify the places and transitions, where they are connected, and anytime delays that might exist on transitions. The internal scheduler exam-ines places and transitions to determine whether a transition is enabledand when it should �re. It also passes tokens to places that are enabledonce a transition �res. The underlying scheduler sends messages to objectsthat contain a time stamp for when they should execute. The underlyingsimulator then executes those messages at the appropriate simulation time.Finally, Per-trans allows the application programmer to embed Lisp codein the de�nition of speci�c nodes (places and transitions). The embeddedcode will be executed when a token moves to the node's location in the net-work. Such embedded code can be used to process information or producegraphical output illustrating the net's behaviour. Graphical output can beproduced in the X Window System as supported under Feel [26].Several Petri net models have been implemented using Per-trans andit has been extended to produce parallel simulations [5]. The Per-translanguage is explained in detail with examples in [6].



18 BROADBERY AND BURDORF7. Conclusions and Further WorkWe have discussed the use of the Telos object system in various program-ming problems, and shown how it can be used to construct applications.The use of an object-oriented language encourages a toolbox of useful rou-tines to be written which can then be combined to form a complete appli-cation. The addition of the metaobject protocol allows this idea to extendinto the representations of classes as well as the interface they provide.One of the strengths of Telos is that it is integrated into its host language,EULISP|to a greater degree than CLOS|and can be used to change partsof the system which are commonly not part of the object system, for in-stance arithmetic operations and threads. This power, in combination withEULISP's module system assists with both language extension and languageembedding. However, experience with supporting persistence suggests itmakes dynamic demands that are hard to reconcile with (uncharacteristi-cally) static tendencies of this Lisp, which have been motivated by a desireto be able to deliver more e�cient applications. Clearly this is an area forfurther work.References1. Atkinson, M. and Morrison, R. Persistent System Architectures. InProceedings of the Third Annual Conference on Persistent Object Sys-tems, Springer-Verlag (1989).2. Batey, D.J. DPL - A Distributed Implementation of Paralation Lisp.Bath Mathematics and Computer Science Technical Report, 92-60(June 1992).3. Bobrow, D. et al. Common Lisp Object System Speci�cation. (1988).X3J13 Document 88-002R.4. Bretthauer, H., Davis, H., Kopp, J., and Playford, K. Balancing theEULISP Metaobject Prototcol. In Re
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