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2 KIND, FRIEDRICH� static type information can be used to improve storage management,� enhanced program documentation is achieved.On the other hand, required declarations lead to a loss in 
exibility and ex-pressiveness, because program structures are di�cult to reuse and extend|depending on the limitations and 
exibility of the type scheme.Lisp as a dynamically typed programming language o�ers 
exibility andexpressiveness. This quality comes with potentially expensive run-timetype checking, much of which is unnecessary. The polymorphism of a func-tion may be limited in the context of another function. For example, +is generally de�ned on all number types. Consider a call to + where botharguments are the results of a function that computes the length of lists,then the result of + can be inferred to be a positive integer.Steenkiste and Hennessy [13] point out that type computations for Lispapplications increase the execution time by 25%, on average. For individualapplications this value may lie between 6% and 88%. The checking of listoperators, in particular, can constitute a major part of the execution time.These drawbacks in e�ciency, apparent in Lisp as a dynamically typedprogramming language, can be reduced by using suitable approaches totype inference without sacri�cing Lisp's 
exibility and expressiveness.The results presented here were obtained as part of the APPLY project.The aim of the project is to develop a modern and practical Lisp system [3].E�ciency and integration can only be reached in line with correspondingdemands on language. These include the following features, that are com-plied with by the Lisp dialect EuLisp [11].� separately compiled modules,� clear separation between compile-time and run-time,� far-reaching static analysis,� separation of language from development environment.Hence, we decided to build a module and application compiler for Eu-Lisp_In order to achieve compiled modules and applications with e�cientrun-time behaviour a practicable type inference system is integrated in thecompiler. The advantages of static type inference are:� reduction of dynamic type checks,� increased use of machine data types instead of program data types,



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 3� greater chances for further optimizations (e.g. inlining, dead codeelimination).The combination of EuLisp and generic type schemes with re�ned typesallows us to improve on previous work on type inference for Common-Lisp. TICL a type inference system developed by Ma and Kessler [8]generally achieves 20% speed improvement. However, reanalysis slows theinference process when recursive functions must be handled, or when ade�ned function is analysed before those functions that use it are analysed.A type inference approach proposed by Baker [1] inspired us to use re�nedtypes. But the need to use the costly Kaplan/Ullman �xed-point algorithmmakes this approach less attractive. Neither TICL nor Baker's approachhandle the notion of typed lists.A global tagging optimization for Scheme, proposed by Henglein [5],eliminates 60{95% of tag handling operations in non-numerical code bycompile-time inference. This approach to type inference does not concernitself with re�ned types or module compilation.2. General Approaches to Type InferenceThe general approaches to data type inference depend on the type dis-cipline of the programming language in question. Lexical monomorphiclanguages (e.g., Pascal) enable the direct derivation of types for all ex-pressions. Types have to be explicitly assigned to all constants, variablesand functions. A simple recursive algorithm can then be used to determinethe type of an expression from the types of its subexpressions.Programming languages with polymorphic type disciplines allow the in-troduction of type variables into type expressions in order to achieve greater
exibility. The types of expressions can be derived statically in these lan-guages from:� available type declarations,� type descriptions of the standard functions,� contextual type information.There are two main approaches to static type inference: Milner-style uni�-cation and Kaplan/Ullman �xed-point iteration. We discuss each of thesein turn.



4 KIND, FRIEDRICH2.1. Milner-Style Uni�cationDue to the type discipline of ML [10, 4] a static typing of polymorphicfunctions is possible. This approach to type inference tries to relate thetypes of all language expressions to each other via type variables. Therelations of program structures are re
ected in equations of type expressionswhich, as suggested by Milner [9], can be resolved by uni�cation [12]. Fullstatic typing is achievable by the constraints on the ML type discipline:variables and structure components are each limited to single types (noside-e�ects of types) and explicit type declarations are sometimes required.2.2. Kaplan/Ullman Fixed-Point IterationThe second approach to static inference of data types is attributable toa proposal by Jones and Muchnick [6]. Kaplan and Ullman [7] re�ned thisidea to obtain more exact type information for given program statements.In the approach suggested by Kaplan and Ullman, programs are mod-elled as directed graphs, with nodes representing assignments and edgesrepresenting direct control 
ow relations between assignments. The pos-sible links between program variables (x1; � � � ; xk; y) are considered beforeand after the execution of an assignment (Q).� � �#Q : y  op(x1; � � � ; xk)#� � �Forward and backward analyses are iterated over the program nodes todetermine as precise a type as possible for each program variable. Forwardanalysis infers type information after execution of an assignment from typeinformation on program variables available before the execution of assign-ment. For example, this may imply that the result type is inferred fromargument types of a function application. Backward analysis makes infer-ences against the direction of control 
ow. Type information on programvariables before execution of an assignment is inferred from informationavailable after execution of an assignment due to applications of functionswhose possible argument and result types are known.For forward and backward analyses, type descriptions of the standardfunctions are used together with a type lattice adapted to the type systemof the programming language. Type descriptions of standard functions arerealized in the Kaplan/Ullman approach as so-called T-functions, whereargument types are associated with the corresponding result types, andcombinations of argument and result types are associated with the typesof selected arguments. In order to determine sharp type information on



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 5program expressions a �xed-point algorithm is applied. Alternating forwardand backward analyses are applied until no further re�nement is obtained.The result of the forward analysis is used as upper bound for the backwardanalysis, and vice versa on successive iterations.3. Characteristics of the new ApproachAs an integral part of the compiler, the type inference system receives as in-put the source modules processed into an annotated abstract syntax graphtogether with type information about the imports. The type inference sys-tem adds inferred type information to the abstract syntax graph and gen-erates type descriptions for export. Figure 1 illustrates the organization ofthe type inference system. Type InferenceSystem��� @@@@ ���HHH��@@@@@@���AAA
��� @@@@-- ? --6

type schemes of standardfunctions and constants
type latticesyntax graphannotated abstractimporttype schemes exporttype schemessyntax graphannotated abstract

Figure 1: Type inference as integral part of the compilerThe approach follows that of Beer [2] in doing practical type inferenceby separating the realistic inferences from the unrealistic ones. This is thereason why for recursive functions we do not attempt to achieve as precisetypes as possible such as by use of Kaplan/Ullman �xed-point iteration.Milner-style uni�cation cannot be used for languages with side-e�ects ontypes [8]. Unlike ML, EuLisp provides polymorphic reference types (i.e.values of di�erent types can be assigned to structure components) and hasno need of lexical typing declarations. Nevertheless, the approach presented



6 KIND, FRIEDRICHhere uses a modi�ed uni�cation algorithm to infer type schemes for de�nedfunctions without the need for expensive iterative analysis. In order notto give up the optimization of list operations, we distinguish monomorphiclists from polymorphic lists. Inference can be extended to the elements ofmonomorphic lists, but no other higher order data types are supported.The following features characterize our approach:re�ned type lattice: The success of type inference depends critically ongetting sharp type information from standard functions and con-stants. That is why the re�ned lattice type contains more than justthe standard and de�ned types. Re�ned types allow us to describestandard functions and constants more precisely. The type latticeis complementary, i.e. besides the lattice operations of union andintersection the complement of each lattice type is also de�ned.generic type schemes: To describe the potential argument and resulttypes of polymorphic functions, generic type schemes are used. Theschemes contain lattice types and bounded type variables. Generictype schemes of standard functions are prede�ned; for de�ned func-tions they are inferred by a modi�ed uni�cation algorithm.bounded type variables: Dependencies between argument types and re-sult types are expressed in type schemes with type variables. Thevalues that may be assigned to a type variable can be limited to asubset of all lattice types.singleton types: The type lattice allows us to handle types with onlyone value (singleton types) specially. By means of singleton types,equality predicates, in particular, can be described more precisely.control 
ow inference: Generic type schemes assist with control 
ow in-ferencing. Particular lines of the type scheme are assigned to eachprogram branch at if or cond.global inference: The language design of EuLisp assists in the problemof inferring global type information by providing encapsulation withmodules1. Type information of functions, variables and constants isassociated with de�nite parts of a program determined by the im-port and export interfaces. This reduces the computational cost ofstatically inferring global type information. For example, knowing allcalls to a de�ned function enables us to infer the type scheme of thefunction. This global inference can be �nalized with the analysis of1Although we note that objects can also escape from modules by means of the classhierarchy and, in particular, methods on generic functions de�ned elsewhere.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 7the module, if the function is not named in the export interface. Inthis case, there can be no calls from outside the module, so that itis generally not necessary to keep track of all function calls over theentire application.persistent type information: Compilation of EuLisp means the com-pilation of individual EuLisp modules by using import and exportinterfaces of already compiled modules. In order to reuse inferredtype information of a compiled module, type descriptions of exportedfunctions, variables and constants are added to the export interface.3.1. The Type LatticeThis type inference approach makes use of a complementary lattice:L := (T;t;u; )with a non-empty set of types T and operations t and u. The operationsare commutative, associative and satisfy�1 t (�1 u �2) = �1 and �1 u (�1 t �2) = �1 for �1; �2 2 T .The lattice is complementary, meaning that for every � 2 T there is at leastone complement type � 2 T . The set of types can be divided into subsets:T := Standard-Type [ Defined-Type [ Strategic-Type.Standard-Type := f<object>, <character>, <null>, <number>, � � �g.Defined-Type := de�ned EuLisp structures and classes.Strategic-Type := fsingleton, zero, one, list, sy-list, fpi-list, � � �g.The lattice types t�i and u�i for all lattice types �i are designated > and?, respectively. Instead of formally de�ning an order relation on all latticetypes, we use Figures 2 and 3 to illustrate the lattice structure.All primitive types handled inside a module can be determined at thestart of the inference. Together with all types which can be constructedby the lattice operations they form a �nite set L of lattice types. Thetype lattice thus has a �nite number of elements. Bit codes are assignedto every element in order to implement the operations t, u and as fastlow-level bit operations (and, ior, xor). Expensive traversal of the latticeto compute union, intersection and complements of lattice types can thusbe avoided.3.2. Generic Type SchemesFollowing Milner's theory of type polymorphism [9] type variables (�) areused to express constraints between argument types or between argumenttypes and the result type of a function. In general, type variables stand for
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� � �<integer> � � �<number>
fpi-not-zero<fixed-precision-integer><null>singleton fpi-zerozero

<object>list
Figure 2: Standard and strategic types as part of the type lattice (a)any lattice type, but they can be restricted to a subset of them, which isdenoted by writing the upper bound type as a superscript. For example,the type variable �<number> denotes all <number> types. This restrictionof a type variable can be interpreted as if the variable was bound to thespeci�ed type. �� may thus be written as � = � with � 2 LAlthough the notion of equations is more common in connection with uni-�cation, superscripts are used to provide more readable type descriptions.To track the full polymorphic capacity of functions and constants, thecommonly used one-line type schemes are extended to generic type schemes:�arg11 � � � � � �arg1k ! �result1... ... ... ...�argn1 � � � � � �argnk ! �resultnA generic type scheme contains n � 1 lines each with fresh copies of typevariables and � := � j �� , � 2 L. By using these generic type schemes with
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� � �<object>singleton list <cons><symbol><null> mono-list poly-listsy-list fpi-list� � �Figure 3: Standard and strategic types as part of the type lattice (b)bounded type variables, dependencies between argument types and resulttypes can be expressed more precisely. For functions, k designates the arity;constants are described by schemes with k = 0.In the lattice shown in Figure 2, zero is extracted from all numericalsubtypes and combined into the singleton type zero. The following generictype scheme is used for the standard predicate zerop:zeropzero ! <null>zerou <number> ! <null>The �rst line means that if the function zerop is applied to an argument oftype zero the result will not be (), i.e. the complement type of <null>.The other descriptor means that if it is applied to an argument of type<number>, but which is not zero, the result will be () of type <null>.Separating the two cases enables us to perform control 
ow inferencingwhen zerop is used as the predicate function at a branch. Consider the



10 KIND, FRIEDRICHde�ned function foo using the predicate function integerp:(defun foo (x y)(if (integerp x)(if (integerp y)xnil)nil))Dependencies between argument and result types can be found where typevariables occur inside the inferred generic type scheme.foo�<integer> � <integer> ! �<integer><integer> � <integer> ! <null><integer> � > ! <null>The type scheme for integerp is given in the appendix together with thosefor some other standard functions.4. The Inference RoutineThe inference routine begins analyzing function bodies by �rst doing localinferences, and second doing global inference by reducing locally inferredfunction schemes to type schemes that match for all known function callsof an application. A function has unknown calls if it is either exported orassigned to a variable (i.e. the function has to be translated into a closure).During the analyses of function bodies, a type scheme must be availablefor every function application. If a called function does not have a typescheme, the analysis of the function being processed is suspended until atype scheme for the called function has been inferred.When processing a function body, the incoming type information con-cerning argument types and the constraints de�ned by the type scheme ofthe function are uni�ed for each function call in the body. The resultingtype information is passed to later function calls. The incoming type infor-mation of a function call is called the actual type constraints of the calledfunction. After uni�cation of actual type constraints and each line of theformal type scheme, new actual type constraints are available, and theseare used for uni�cation with other function calls.In general, the incoming type information consists of a set of actual typeconstraints, because for every line of the type scheme of the previously



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 11called function new constraints can arise. The type scheme of each calledfunction has to be uni�ed with all the actual type constraints, but not allcombinations of actual type constraints and lines of the type scheme can beuni�ed successfully. That is to say, a function is not necessarily applicableto all incoming argument and result types. The number of new actual typeconstraints depends on the polymorphism of the called function and is atmost the product of the number of actual type constraints and the numberof lines in the type scheme.Returning to the function foo given in section 3.2, we de�ne a new func-tion bar to illustrate the steps of uni�cation.(defun bar (x y)(let ((u (foo x y))(v (foo y x)))(if u v nil)))The process of local inference starts unifying the initial type constraintswith the generic type scheme of foo to a set of new type constraints.�x � �y ! �u�x = >�y = >�u = > foo�<integer>1 � <integer> ! �<integer>1<integer> � <integer> ! <null><integer> � > ! <null>�x � �y ! �u�x = �1�y = <integer>�u = �1�1 = <integer>�x = <integer>�y = <integer>�u = <null>�x = <integer>�y = >�u = <null>The function foo is applied once again but with arguments exchanged.The actual type constraints are those re�ned by the �rst call.



12 KIND, FRIEDRICH�y � �x ! �v�x = �1�y = <integer>�u = �1�v = >�1 = <integer>�x = <integer>�y = <integer>�u = <null>�v = >�x = <integer>�y = >�u = <null>�v = >
foo�<integer>2 � <integer> ! �<integer>2<integer> � <integer> ! <null><integer> � > ! <null>

�x � �y ! �u�x = �1�y = �2�u = �1�v = �2�1 = <integer>�2 = <integer>
�x � �y ! �u�x = <integer>�y = <integer>�u = <null>�v = <null>�x = <integer>�y = <integer>�u = <null>�v = <null>�x = <integer>�y = <integer>�u = <null>�v = <null>Afterwards, control 
ow inference selects the type constraints with�u = <null> to pass into the then-case and those with �u = <null> topass into the else-case. The result type can be determined in the then-caseas <null> and in the else-case as the type of �u. The type scheme of barcan now be given, after all unnecessary variables have been eliminated.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 13bar<integer> � �<integer> ! �<integer><integer> � <integer> ! <null><integer> � <integer> ! <null><integer> � <integer> ! <null>The type scheme di�erentiates between di�erent argument and resulttype ranges for bar. The �rst line re
ects that when bar is called withtwo integer values, the result value is of the same type as the type ofthe second argument. If bar is called with a second argument of type<fixed-precision-integer> then the result is also of this type, providedthat the �rst argument is an arbitrary integer value.5. Monomorphic and Polymorphic ListsType information on global variables and structure components has to betreated carefully, because side e�ects on these components cannot be de-tected in general. However, redundant type checks in list operations arereduced for special kinds of lists. Thus, we distinguish monomorphic lists(mono-list) and polymorphic lists (poly-list)|see Figure 3. Monomor-phic lists contain elements with the same type, for example <symbol>,<number> or <cons>. Figure 3 shows two kinds of monomorphic list typesand their use in type schemes is shown in the appendix. When cons is usedto add an item to a list, a monomorphic list may change to a polymorphiclist if the new item is not of the same class as the rest of the list.In some cases, type information inferred earlier on compound types maybecome invalid, because it is di�cult to track all structure updates. Toreduce the side e�ects that arise from update functions, all monomorphiclists are given a time stamp. If a function is called which is known to modifylists, all previously inferred polymorphic lists are subsequently treated as<cons> types.Monomorphic numeric list types can be subdivided further into lists con-taining elements of type <fixed-precision-integer> t <single-float>or <fixed-precision-integer> t <single-float> t <double-float>.Generic arithmetic operations can thus be optimized much better, becausethey often operate on lists of number lists using coercions to view the listsas monomorphic.



14 KIND, FRIEDRICH6. Recursive FunctionsDuring local inference, a type scheme should be available for every functioncall, but if there is not, analysis continues with the rest of the body. Thisstrategy does not work for recursive calls. When a type scheme is neededfor a function that is being analysed, the default type scheme:> � � � � � > ! >is used. After �nishing all pending local inferences, the functions involvedin the recursion are analysed once again to specialize the type schemes.In order to achieve a practical type inference system we are able to dothe analysis of recursion without a �xed-point iteration. An analysis with,for example, the Kaplan/Ullman algorithm, would be very expensive andwould not be acceptable in a practical compiler for large applications.The inferred generic type scheme of length, a function to compute thelength of arbitrary lists, shows that sharp type schemes can also be inferredfor recursive functions: length<null> ! fpi-zero<cons> ! <number>In comparison, the one-line type scheme inferred in ML for an equivalentfunction is: length : 8�:(list �)! integer7. Special InferencesWe deviate from the uni�cation process described so far when certain spe-cial functions are called and speci�c inference techniques must be applied:equality predicates: The equality of values implies the equality of types,but the knowledge that two values are not equal does not allow any-thing to be inferred about the types of the values. This fact can not beexpressed in type schemes for the standard equality predicates. Con-trol 
ow inferencing is extended when standard equality predicates(e.g. eq, neq) occur to take advantage of these dependencies.slot reader/writer: Access to a structure component uses a generic func-tion, but the combination of the class of the structure and the nameof the accessor identi�es the slot concerned. In consequence, the typeof the contents can be determined.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 15function arguments: In general, function types are not handled, butstandard functions (like apply, funcall, map) are treated specially;argument and result types can easily be uni�ed because the seman-tics of these functions are known.8. ConclusionsA practical approach to type inference has been presented. The approachis realized in a module and application compiler for EuLisp and is basedon uni�cation over generic type schemes, which extend the expressivenessof common one-line type schemes. Using generic type schemes and throughthe use of a re�ned type lattice with singleton types we are able to retainand deduce more information about de�ned functions and constants.The module structure of EuLisp aids greatly in improving both the e�-ciency of the type inferencing, and the detail of the information thus gained,particularly in the case of unexported functions by global inferencing.References1. Baker, H. G. The Nimble type inferencer for Common Lisp-84. (April1990). Pre-puplication version.2. Beer, R. D. Preliminary report on a practical type inference system forCommon Lisp. Lisp Pointers, 1, 4 (1987) 5{11.3. Bretthauer, H., Christaller, Th., Friedrich, H., Goerigk, W., Heicking,W., Ho�mann, U., Hovekamp, D., Knutzen, H., Kopp, J., Kriegel, E. U.,Mohr, I., Rosenm�uller, R., and Simon, F. Das Verbundvorhaben AP-PLY: Ein modernes und bedarfsgerechtes Lisp. KI, 2 (June 1992) 50{54.4. Harper, R. Introduction to Standard ML. Report ECS-LFCS-86-14,University of Edinburgh (November 1986). Laboratory for Foundationsof Computer Science.5. Henglein, F. Global tagging optimization by type inference. In Sym-posium on Lisp and Functional Programming, ACM (1992) 205{215.6. Jones, N. D. and Muchnick, S. Binding time optimization in program-ming languages. In Third Symposium on Principles of ProgrammingLanguages (1976) 77{94.7. Kaplan, M. A. and Ullman, J. D. A scheme for the automatic inferenceof variable types. Journal of the ACM, 27, 1 (January 1980) 128{145.
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A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 17carpoly-list ! <object>fpi-list ! <fixed-precision-integer>sy-list ! <symbol>cdrpoly-list ! <object>�mono-list ! <null> t �mono-list+poly-list ! <number>fpi-list ! <fpi>


