Program
Offering

SH20-6477-0

LISP/VM
User’s Guide

Program Number: 5798-DQZ

LISP/VM is a general purpose, high-level language ap-
propriate for use in artificial intelligence, expert sys-
tems, symbolic and natural language processing, and
other advanced applications. It includes a unified, inter-
active, and user-friendly development environment with
tools for the creation and maintenance of LISP/VM pro-
grams and data. This development environment in-
cludes both a LISP/VM interpreter and a semantically
equivalent LISP/VM compiler.

This manual describes the function, language, and use
of the LISP/VM program.

..llil

PROGRAM SERVICES

During a specified number of months immediately following initial availability of each licensed program,
the customer may submit documentation to the designated IBM location below when he/she encounters
a problem which his/her diagnosis indicates is caused by a defect in the licensed program. During this
period only, IBM through the program sponsor(s), will, without additional charge, respond to an error
in the current unaltered release of the licensed program by issuing known error correction information
to the customer reporting the problem and/or issuing corrected or notice of availability of corrected
code. However, IBM does not guarantee service results or represent or warrant that all errors will be
corrected. Any onsite program services or assistance may be provided at a charge.

WARRANTY

THE LICENSED PROGRAM DESCRIBED IN THIS MANUAL IS DISTRIBUTED ON AN “AS IS”
BASIS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED.

Central Service Location: IBM Corporation
B/O 205
Two Riverway
Houston, TX 77056
Attn: Chris Bosman-Clark
IBM Tieline: 8/345-2523
Telephone: (713) 940-2523

Note: Non-US customers should contact their designated support group in their country.

Information concerning Program Services for this Program Offerin‘g
can be found in Availability Notice G320-0349.

First Edition (July 1984)

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available outside the United States.

A form for readers’ comments has been provided at the back of this publication. If
this form has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1984

»

CONTENTS

INTRODUCTION .. .itiittiittenesestsssossossssatoesssnssssnsessssassessssnnsos 1
1.0 Learning About LISP/VM ttitiniitiititiietitoesencnssnsenossnssnnnns 3
1.1 Manual DesCriptionttt e e e 3
1.1.1 Formal and Informal Descriptions i, 3
1.1.2 Formal DesCriptioniiiiuttiinit ittt innaeeennn 3
1.1.3 HowtoRead ThisManual ittt iiiiietinnennnnnenns 5
1.2 External RequUirementsttt it 5
1.3 Other SOUICES . vttt ittt ittt ettt ettt ettt e e e e e 5
1.3.1 Online Documentationttt iiiiinieeenns 5
1.3.2 Other Documentsccviuimuneniunn.. e e e 5
1.4 Demonstrationsiiiiinimiiii ittt e ...6
ISP/ VM it iiittiiientaaenotassstsosnasssesstsnesssossssssssesssssssannas 7
2.0 Gettinginandout of LISP/VM ittt ianentnoenssneanansensnnnss 9
2.1 Starting OUl e e et 9
2.2 Ending LISP/VM SESSIONS oovuietiinetiieeeiieeien [9
2.2.1 Losing The SessionResultso, e 9
2.2.2 Continuing SessiOnSttt e 10
2.2.3 Being Extra Conservativettt e 10
2.2.4 Other Useful Information iy 10
3.0 LISP/VM OVeIVIEW ... cuvuunvnneneneoroeneosaenaasnsnansssnsasosesnsosanns 11
3.1 List ProcesSingottt e e e e e 11
3.2 READ-EVAL-PRINTt e e ettt i 11
3.3 BXPIESSIONS . ..ottt it et e e 11
3.4 List NOtationot e et e e e e 12
3.5 Expression Forms, QUOTE,and SETQ iiiriiiiiinnnnanannn. 13
3.6 Constructing and Dissecting Expressionsot 13
3T BV AL o e e 15
3.8 Three Kinds of Equality i it iienenann 15
3.9 Predicates and Conditionals i i e 16
310 Arthmetic i e e e 17
3.11 Function Definition e e e e e 18
3.12 TheProgram Featureiiiuiiiintiitni i iineannns 19
3.13 Applyinga Function e e e 19
3,14 Data Ty DS .. vttt ettt e e e e e 21
3.15 Vectors P 21
3.16 Structured Data Definitions ittt i, 21
3.17 Associative Memory Operations..uutetiireeennnenenneeeeninnenns 22
3.18 Inputand OUtPULt e e e 23
3.19 Entering, Editing, and Observing Programs 0iiuiveeennn... 23
3.20 Saving,and Loading Programs i, 24
3.21 Running Programs e e e e e 24
322 Examplesccc0iiin.n. P 25
40 DataTypes s e e e s e aeteeaaseearatarnestsesct et tteasnnranns 29
4.1 Identifier i, e e e e 29
4.1.1 Stored Identifiers i e e e 30
4.1.1.1 Identifiers with Special Meaning 30
4.1.2 Non-stored Identifiers, Gensymsttt 30

Contents 111

4.2 NUIMDEIS .ot e e e e et e e 31
4.3 Binary Program Imagesttt e e 32
4.4 FUNAIES ..ttt ittt ettt ettt e e e e e e 32
4.5 State DesSCIiPlOrttt e e 32
4.6 PaITS ... e e e 32
46,1 LStS .ttt e e e e 33
4.6.1.1 Circular Lists, .. e e e e 34
4.6.2 SUIBAIMSttt ittt ettt ettt e e e 36
4.6.2.1 Character StrEamSttt ittt ettt et et e 36
4.6.2.2 Key-Addressed Streamsttt e e 37

N B - 1<3 o . 38
4.7.1 INteger VECIOTttt ettt ettt ittt et e 38
4.7.2 Real VeCtOr ..ottt e e e e e e e 39
4.7.3 Character VECIOISt vieene e P 39
4.7.4 Bit VECIOIS ..ottt ittt ittt e e e e 40
4.8 Hashtablesttt e e e e 41
49 Readtablescoiiiiiieiiniii.. e 42
4.10 Miscellaneous Typescoiininininnnnnn TR e 42
5.0 Evalugtionccuiiiiineeionesossossessossssassssossansssssesssnnnos 43
5.1 Object Evaluationttt it e e e 43
5.2 Environment and Control Chain i, 44
S5.2.1 INVOCAION . ..ottt ittt e e et e e 44
5.2.2 Invocation in Non-standard Environmentso iiiiue. .. 45
5.2.3 Invocation Termination ittt anaennnnnn, 45
5.2.4 Changing the Environment and Control Chain 45
5.3 Identifier ResOIUtionttt ettt e e e 45
5.4 Evaluation Operatorsottt ettt e ettt e 46
5.5 Creating Funargsottt ittt e it ittt 49
5.6 USINg FUNArgsttt it e e e e 49
5.7 Effectof Compilation i e e 50
5.7.1 EXaMPIES . ..ottt 50
6.0 FunmCHONSottiiiiiinnnnennnoesesneneanesstocassosnennnssnssssssns 53
6.1 Creating Function EXpressionsc.....tintinitinie it nenneenneenn, 53
6.2 Naming Functions i 55
6.3 UsingFunctionscoovvrernin... e e 56
6.4 Special Ways of Creating and Using Functions c.... 56
T T {1 59
7.1 Compilation of Macros i e 59
7.2 Creating Macro EXpressionsuiiiiiitiie i, 59
7.3 Naming Macros DO 62
T4 UsiNg MacroSttt et e e e e ... 62
8.0 Operator Definition and Transformation e eeeteeer et 63
8.1 Definition and Transformation Operations0 iiiiiirennrnnn.. 63
B Ll EXF ..ot e e e e 65
8.2 The Option Listttt i it et et e 67
8.3 Properties of the Option List e e e e 67
8.4 Operationsonthe Option List i, 70
9.0 Predicatesouutiiiitionitienentsetttsenttttrttaotestoosastsnenens 73
9.1 General e 73
9.2 NILandTruth Value ittt et e i iiee e 73

iv

0.3 Pairs @nd LiStSt i ittt e e e e e e e e, 73

9.4 Vectors and Bpisttt it e e 73
0.5 Identifiersv ittt e et e e e 74
9.6 Place HolAersttt ittt ittt ettt et et 75
0.7 NUIMDEIS ..ottt ittt ettt ettt e e e 75
0.8 FUNAIES ... itvitttt ettt et ettt ittt e e e 76
0.9 State DESCIIPLOIS . o\ttt vttt e et e te et et e te et e e 76
0.10 Hashtablesciinuiiiiiiit ittt ettt reanaeeraanaraeeenan 76
9.11 Readtablesiiiiiinii ittt e e 76
0.12 SHICAMS ... ittt ittt ettt et e 76
0.13 Other Predicatesc.outiiiitttnnttemneeenneeenennereaneaneeennnns 77
10.0 Control SIFUCIUFESo v v iv ittt oeenessenenosssssssssssssassssssssosssaes 79
10.1 Specification of Values ittt 79
10.2 ASSIZNMENLttt e et e e e 79
10.3 ExXpression GroUpiNgcuuttittnnenuneneeenuenntneerneenasoeansnans 81

10.3.1 Other Expression Groupings S 83
104 Tterationccccen... e e i e e e 83
10.5 Transfer of Controlttt ittt ettt 84
10.6 Conditional Evaluation0ttt iinneniernnrenneenneennnens 85
10.7 Multiple Level Returns, CATCHand THROW iiiiiiininnnnnnn. 86
10.8 Iteration over Lists and Vectors, the Mapping Operators O 90

10.8.1 List Mapping Operatorsuueuttteetntteeeenenanenaeannnaennnn. 90

10.8.2 Vector Mapping Operators ... 93

10.8.3 MisCellaneouscouiirninttnn ettt e 95

10.8.4 Auxiliary Operatorscciueiiteint it enneenneeanrrnieanieennns 95
11.0 Operations on Identifiers eeeesesa Ceeeaseneestaseentasctansetscenrrann 97
11,1 Creationttt ittt ittt et treanaeeananeeseanaeeeennnnns 97
11,2 ACCESSIMEttt ittt e et e e 98
11.3 Searchingand Updating ittt iiiiiee .. 98
11,4 Updating. ittt ittt ittt et ina e 99
11.5 ObjeCt AITaY ...ttt ittt ettt ietnetneneraeeneananernenneneniennnn 99
12.0 Operationson Numbersc.cctitiiitrereeossceenstssassssccssassaons 101
12,1 Conversioniiiiiit ittt e e e 101
12,2 Predicatesttt e e e e e 101
12.3 Computationttt i et et e 103
13.0 Operationson Pairsiuiiiitiiteroueeronerssossosesansonssasonns 109
T B) - 4 T) + L 109
13,2 ACCESSIME ...ttt e e e e e e e e 109
13.3 Updating e e e e e e e e 111
14.0 Operations on Lists et e e e s s e e s ecteceestee et ecetase s ctae et aesae 113
14.1 Creationttt i i e e et e e 113
14.2 Accessing @ e e e e e e e e 116
14.3 Searching ittt i it e e e e e 117
14.4 Searchingand Updatingttt iitmin it iinnannnn. 118
14.5 UPAatingvii ittt ettt e 119
14.6 Miscellaneous e e e e 121
15,0 Operations on VeCIOrScuiitiutusaronsonsrssssossssssssasssoasanss 123
15.1 Creation ...ttt e e e e 123
15,2 ACCESS I . .ttt i ittt e e e e e e 124

Contents v

153 SearChingottt i i e e e 126
15.4: UPAating vttt ittt e e e e e e 126
16.0 Operations on Characterand Bit Vectorsccciiiiiiiiieiieenncennns 129
16,1 Creationcciviiiiiinina.y e e e e e e 129
16.2 ACCESSIMEttt e e e e 131
16.3 SearChing e i e it e e 133
16.4 Updating OPeratorsoutntit ittt ettt 134
16.5 COomPparing OPEratorscouetuen et tennennt i eneennernneneenns 136
17.0 Operationson Hashtablesc.ciititiiiitriiireincecenncecsoncsaons 137
B T O -7 5 1o+ P 137
17.2 ACCESSIME . ..ttt t ettt et e e e e e 137
17.3 Accessing or Updatingitiniiitinititnntinreenneeanennnenans 138
17.4 Searchingand Updatingt iittiiiiiiiiieeeneneenrans 138
17.5 Updatingttt ittt ettt ettt et e e 139
17.6 MISCEllaneouso vttt e ettt te et ee et a et et 139
18.0 Operations on Arbitrary Objectsccieitroneseensoosssosssssonsssssse 141
18.1 Creation e e e 141
18,2 ACCESSIM g ...ttt e e e 142
18.3 SearChingiitiittt ittt e e e e 144
18.4 Updating o e e e e e 145
185 Miscellaneous i, P 146
19.0 Structured AccesstoData Objectscciuiitrneiineineeiarnnnennrennne 147
19.1 Syntax of Structured Definitions i 147
19.1.1 Field Definitions ittt eiiiiennneennns 147
19.1.2 Defining the Structureof aField i i, 148
19.1.3 Attributes of Field Definitions ittt rnnnneennnn. 149
19.1.4 A Note on the Syntax of Structured Definitions 149
19.2 Operations With Defined Structuresottt iniennernnrnns 149
19.3 Cross-Reference Facility e e 150
THE LISP/VMEDITOR iitiiiitiiitiineerotececssosssessnsnnanss .. 153
20,0 Introductionc.oiiiuttineectaettasescnaensatonatocnnsactonsanns 155
21.0 The Lispedit User Interfacecoteeereeeeenoeeessccccsosocnnssonnas 157
21.1 Lispedit Screen Formatt ttiiiiteeti e aiiinnann 157
21.1.1 The Top Display Area0ttt ittt 157
21.1.2 TheFence Linec.tintiiiiitin ittt ittt eainaneanns 157
21.1.3 The Message AI€acouuenirterneeneneeenneeennnnneeenneeas 157
21.1.4 The PF-Key Areaciiniuiiniiiiii ittt ettt e 157
21.1.5 The Command Areac.uouiuitenmueneemnenneeneeenennneaneenns 157
21.1.6 Condensed Display Formatsc.otiittnniirnneenneenneanns 157
21.2 Lispedit Input Statesciittitiitit it et e 158
21.2.1 Command Modeiiniiitiiiiiiii et e e e 158
21.2.2 Input/Replace Modec.oiiniiiiiiiinin ittt 158
21.2.3 Interactive Interpreter Mode e e 158
21.2.4 Message Review Modeottt i, 159 .
21.2.5 NullandBlank Linesc.o.tiiiitiitni ittt ieiennennn, 159
21.3 The Lispedit Command Interfacettt 159
21.3.1 Command Lines ittt ittt ittt 159
21.3.2 Special Lines ittt e e e e e 160

i

"

21.3.3 Selecting the Focus withthe Cursor i i, 160

21.3.4 EXPIeSSIONSttt e 160
21.3.4.1 GensymsinLispedit 160

22.0 Where Things Are Stored: Lisp, Lispeditand Fileso, 163
22.1 LispeditIndexed Files i 163
22.1.1.1 Specifying Indexed File Objects, 163
22.1.2 DHSPOSIIONS ...ttt t et e e e 164
22.1.3 Disposing of an Entire Indexed File 164
22.1.4 Disposing of Individual Members i i 165
22.1.5 Options in Disposition Commands i, 165
22.1.6 Some Noteson Filed Objectsttt 167
22.1.6.1 GeNSYIMS ..ttt e e e e 167
22.1.6.2 The FORMAT Property and the Format of VALUEs 167
23.0 Lispedit Commands by Various Categoriesccviurieeeiervreencsnnnnnn 169
23.1 Frequentlyused commands.tiuittiinittrnneea., . 169
23.2 Commands that shift the focus. i i 170
23.3 Commands that modify the current expression. vt ... 171
23.4 Debugging and interactive evaluationcommands.0 i, 172
23.5 Commands that create or use known identifiers., 173
23.6 Descriptions of concepts and parameters.cetteter e 174
23.7 Commands that search the top expression. i, 174
23.8 Commands that affect the edit environment. 174
23.9 Commands that affect the indexed file environment. 176
23.10 Commands that interact with the operatingsystem. 177
23.11 Commands that affect the Lisp environment. o.... 178
23.12 Commands that affect or describe the screen format. 179
24.0 Lispedit Command Descriptionsc. ittt rierecesncnsnnennnns 181
24.1 How to Read Command Descriptionso uuututeereenneeneenns 181
242 Alphabetic Listof Commands ittt iiinnnnnnnnn. 181
DEBUGGING AIDSiitiitiiitnneantonssosesesssssnssosssssssssasnsasanss 223
25.0 Interactive Evaluation et teseieessaas et 225
25.1 Using Heval to Evaluate a Single Expressionciiiiiunvnn.. 225
25.1.1 Starting Evaluation it e e 225
25.1.2 Coarse Control of Evaluation 0 it iitiinennnennnann. 225
25.1.3 How to Skip Uninteresting Sections of Evaluation e 226
25.1.4 How to Modify the Course of Evaluationccvuiun. .. 226
25.2 Miscellaneous ISSUESttt e e 227
25.2.1 Immediate Evaluation it tintiinti e 227
25.2.2 Imterrupting Heval i e 227
25.2.3 Detailed Control of Evaluation iiiiuiennnnnn.in...227
25.2.4 What Happens When there is an Error in the Source Program 227
25.2.5 Some Fine Points i e 227
25.3 Using Heval to Evaluate Defined Functions 228
25.3.1 Trapping Compiled Functions it iiinnnnnnn.. 228
25.3.2 Trapped Functions and Continuous Evaluation 228
26.0 Break-Loop Facilities0 .ttt uiiiiieinneeennoaenneaanenns 229
27.0 CallTracingvovviiuvineeneennssnsossestonsssssonsonsoossosasannes 237

Contents V1ii

28.0 Performance Monitoring and Measurementsccoeeeevoeneroonncaonns 241
INPUT/OU T PUT . iiiiitiitinetitnteeeanseetoasossssssssssnsosssasssascsnsons 243
29.0 Internaland External Formscciitnitrenenrseerotossoncanacsssnns 245
29.1 Standard SYntaxt e 245
29.1.1 Syntax Common to Input and Output [245
29.1.2 Syntax Seen OnlyinInput e 247
29.1.3 Syntax Seen Only in QUtputttt e 247
29.1.4 Some Differences Between Input and Output Syntax 247
30,0 Readingiitiniuiinrenrsoroaroossescsssansonssnssnncsnsonnsss 249
31,0 PrHDtINE .. .ooiiintnninreeinonsseoosasssatosastocsssasasassasonsneansas 253
320 Readtables0iitireueritesnneenssetacesossesssscsssasassasannaes 257
32.1 User-Defined Syntaxttt i i i e e 257
32.1.1 Readtable and Character Attributesoiuirutrneenneennennn. 257
32.1.1.1 Readtable Style Attributesottt 257
32.1.1.2 Character Classestt ittt ittt e 257
32.1.2 Built-in Character Roles ittt it 258
32.1.3 Manipulating Readtables e 259
32.1.3.1 Creating Pre-defined Readtables 259
32.1.3.2 Testing and Copying Readtables 260
32.1.3.3 Modifying Readtables ittt 260
32.1.3.4 Non-lambda Variables and Named Readtables 262

32.2 Howto Write Input Macrost i 264
32.2.1 Imput Utilities e e e 265
32.2.1.1 Sub-expressions Utilities e 265
32.2.1.2 Character Utilitiesttt it ie e, 266
32.2.1.3 ThelInput Environmentiiiiinininniieeneenen.s 267
32.2.1.4 CONStIUCIOTS . .. ittt it et ettt ettt e e e e 268
32.2.2 Built-in Character Macro Functions, 268
32.2.2.1 Dual Purpose Functions PP 268
32.2.22 ReadMacro Functionsc..iiiiiriiiiiiiiiiiiienenenen.. 269
32.2.2.3 Dispatch Macro Functions ittt nnnennnnnn 269

32.3 . Pre-Defined Readtables i, 270
32.3.1 TheRaw Readtable it 270-
32.3.2 Standard LISP/VM Readtable0uririiiriininnininnn.. 271
32.3.3 Lisp/370Readtable e 271
32.3.4 Common LispReadtable 272
33.0 FileConsiderationscouceiiueioerroesosasnssstsssstosscnssanannss 273
340 StreamI/Ot i e e i it e ittt e et e e 277
34.1 Creationttt e e e e e 277
34.2 Accessing COMPONENTSttt ittt ittt ettt et e et 280
34.3 Updating COMPONENLSo\ttt et ettt ettt ettt enaneennnnens 281
35.0 Keyaddressed I/Oiuiiiuninenrneneoereeesusosncensanatssasneasans 283
35,1 CrBatiON . ..ot e e 283
35,2 InPUL .. e e e e 283
353 DU PUL ..ttt e e e e e 284
35.4 Library Managementttt e 284
35.5 Libraries as TXTLIBSttt ittt ettt et e et e 285

viii

S~

36.0 Miscellaneous CMS INteractionsceteeeeeeeeocsesascoaacassocasnaoss
SYSTEM CAPABILITIES ...t iiiittttttttttnneeeseseennsnneeeeannnnna e

37.0 CALLBELOW, The Operating System Interfacecciiiitieevnnnnens
37.1 INQUITY ... e e e
37.2 Comsole I/O .. i
373 File I/ O .. e
37.4 Memory Managementuuuunnemmiuae e
37.5 Miscellaneouso . e e e e

. A0 MACLISP Compatibility Packagec0 ittt

B.0 GeneralizedIterationccituitiieneeeeennanssnecsonncssssnnnenns
B.l Declarations e e e
B.2 Iteration-ControlSttt e e e
B.3 PrOCESSO S . ittt ittt e [
B.4 Miscellaneousiiiiiiiii i e e
B.5 Modifiers e
B.6 Fine controlt e e e
B.7 Defaulls e e e e
B.8 PeCUlaIItIES ... it e
B.9 Semantics of Complex Iteratorsttt

TABLE OF SYSTEM FUNCTIONS, VARIABLES AND COMMANDS

GLOSSARY .. it i i ittt ittt ittetenesassssnentsnssassasaacnss

Contents

ix

INTRODUCTION

INTRODUCTION 1

S~

1.0 Learning About LISP/VM

This manual is intended as a guide to the facilities and capabilities of LISP/VM. It contains reference
material describing the functions available in that system, as well as material comprising a system
programmer’s guide. It also contains a certain amount of tutorial material that provides some moti-
vation or explanation for why certain operations are performed in the way they are. The chapters
describe the major components of the LISP/VM system, the compiler/interpreter, the editor, the
debugger, and the file system. Appendices include an alphabetized summary list of functions and a
glossary of terms.

1.1 Manual Description

1.1.1 Formal and Informal Descriptions

This document contains an overview of LISP/VM. An overview by its nature is high-level and in-
complete. As such, it constitutes an informal description of LISP/VM and is intended to give the
reader some background with which to read the complete, formal description which follows.

1.1.2 Formal Description
In describing LISP/ VM features, the following conventions are used:

e { and } are used for meta-linguistic grouping.

° | is used to separate alternatives.

e [and] are used to indicate optional argum-ents.

o The ellipsis "..." is used to denote zero or more instances of the preceding object.
e Function names are written in upper case.

® To avoid multiple definitions, when an operator takes operands of different types, all definitions
of the operator appear in one section of ""Operations on Data Types"', separated by "OR", and
cross-references to the definitions appear in other relevant sections.

LISP/VM features (special forms, built-in functions, functions, function + compiler macros, macros,
funargs, structures, jaunts, keywords, variables and system commands) will be described in the format
shown by the following example:

GO

special form
(GO id)
id must be associated with a label in an enclosing label-scope. The GO expression

transfers control to the associated label. Control may not transfer out of an enclosing
" contour or label-scope or an error is signalled.

Learning About LISP/VM 3

Operand descriptions will be abbreviated as follows:

Abbreviation Data type

item object of any type

id identifier

pair pair .

list any object interpreted as a list

- any atom is an empty list
- a pair is a list of at least one

element
vec vector of arbitrary objects
cvec character vector
bvec bit vector
bORcvec bit vector or character vector
num : any number
sint small integer
int integer (fixed point number), including
integers of arbitrary precision
rmum real (floating point number)
hashtable h hashtable
readtable readtable
app-ob applicable object
pred any app-ob treated as a predicate
exp expression, any object in the context
of evaluation
sd state descriptor
bpi compiled function or macro
label identifier, interpreted 'as a label
bv-list bound variable list
a-list association list
boolean any ob ject treated as a truth value
stream stream (1/0 data structure)
rstrm key-addressed stream
filespec CMS file description

- an identifier
- a list of 1, 2, or 3 identifiers
filearg CMS file description that may appear
as 1, 2, or 3 separate arguments.

- filespec
, - idl id2 [id3]
sysdep-area cvec or ivec (data vector expected by
system-dependent interface)
arg an argument described in more detail
in subsequent text

Figure 1. Abbreviations for operands.

When an operator is designated as a function, built-in function, or CMS interface function, the op-
erand descriptions always refer to the values of the operands in an invocation of the operator. The
designation "function and compile-time macro" indicates a function that may be replaced by in-line
code or by some other function in compiled programs.

When an operator is designated as a special form or macro, the operand descriptions will normally
indicate which operands are evaluated and which ones are not.

Examples will show an expression to be evaluated followed on the next line by the result of evalu-
ation. Some examples show the value prefixed by Value =. Other examples, show the value prefixed
by exp = where exp is the expression being evaluated.

()

1.1.3 How to Read This Manual

The manual is composed of six main sections: Introduction, LISP/VM, The LISP/VM Editor, De-
bugging Aids, Input/Output, and System Capabilities. The Introduction describes this manual and
points the reader to additional document and demonstration sources. LISP/VM includes an informal
description of using the system and an overview of the language. It also includes a formal description
of data types, evaluation, functions, macros, operator definition, predicates, control structures, and
operations on data types. LISP/VM Editor includes a description of the user interface and files. An
alphabetic listing of all editor commands is prefaced by lists of commands organized by function.
Debugging Aids describes interactive evaluation, debugger facilities, call tracing, and performance
monitoring and measurements. Input/Output describes the internal and external forms of data types,
the Reader, Printer, readtables which define the syntax rules used by the Reader, and files. System
Capabilities describes CALLBEL OW, the operating system interface.

Appendices include MACLISP Compatibility Package, Generalized Iteration, Table of System
Functions, Variables and Commands, Glossary, and Index.

If you are a new user of the system, it will probably be easiest for you to read the first chapter of the
LISP/VM section which will show you how to get on and off the system within the system editor.
You could also create and save expressions using your own favorite editor. The second chapter of the
LISP/VM section gives an informal overview to give you a feeling for the system. The extensive
glossary appendix is a useful place to start. It can be just read through to gain familiarity with terms
or it can be used for finer detail by first examining one definition which will probably contain un-
known terms and then using the glossary again to track down those terms.

As a more experienced user, you will probably want to concentrate on the formal descriptions in the
manual and appendices, especially the lists of editor commands, table of system functions, and glos-

sary.

1.2 External Requirements

LISP/VM runs under the CP/CMS system using a screen display console such as the IBM 3270
series.

1.3 Other Sources

1.3.1 Online Documentation
Once the LISP/VM system has been started, online documentation is available by typing:
help

The HELP documentation system will guide you through its use. It can be used directly by typing
HELP followed by the function name in which you are interested. If you are not certain what func-
tion will be most useful, it is possible to ask for a list of topics: '

help key

This will show the list of topics on which help is available. Typing HELP followed by one of the listed
topics will cause a list of function names associated with t_hat topic to be shown.

1.3.2 Other Documents

This manual is not intended as a basic primer for LISP. For that purpose, the reader should consult
another publication such as Let’s Talk LISP by Laurent Siklossy (Prentice-Hall, 1976), The Pro-
grammer’s Introduction to LISP by W. D. Maurer (Elsevier, 1972), or LISP by P. H. Winston and
B. K. P. Horn (Addison Wesley, 1981), all of which are textbooks presenting an introduction to LISP
for the beginning LISP programmer. Other books, such as Artificial Intelligence by Patrick Winston
(Addison-Wesley, 1977) and Computational Semantics by E. Charniak and Y. Wilks (Elsevier, 1976)
contain chapters introducing LISP in the course of examining some of the application areas where
LISP programs have been significant.

Learning About LISP/VM 5

1.4 Demonstrations D

A demonstration program is provided with the system, and may be run (on those installation sites
which install it) by typing from CMS the command "LISPDEMO". The demonstration program will
show how to initially input a program to compute Pig Latin, declare a variable, complete the program,
run the program, examine the way the program runs, store the program on disk, compile the stored

program, and run the compiled program.

LISP/VM

LISP/VM ¥

\\
\\

a

2.0 Getting in and out of LISP/VM

2.1 Starting Out

LISP/VM is a system which allows you to create, run and debug LISP/VM programs. It exists in the
CMS environment under CP. This document assumes that you understand how to log into CP/CMS.
You will probably be using a screen display console, such as the IBM 3270 series, for developing your
programs since their rapid display capability makes working with an interactive system like LISP/VM
more rewarding.

To bring the system up, first type
LISP

The system will respond with the initial screen display: the word ""NIL" in the upper left hand corner,
and a brightened line near the bottom of the screen which starts with the word "LISPEDIT". The
area above the brightened line will show the results of your latest instructions. The lines starting with
the brightened line will give you useful system information. The last line is the input area into which
you will type.

We’ll be going into greater detail on creating programs later in this chapter but, for now, let’s look
at a few fundamentals which will let us try out some small examples. Whatever you type will be input
to the READ-EVAL-PRINT loop. A name, for example, will be read, evaluated, and its value
printed. Typing INTEGER in the input area, when no value has been assigned to INTEGER, will
cause

INTEGER = INTEGER

to appear in the area above the brightened line. Typing
(SETQ INTEGER 45)
in the input area will cause
(SETQ INTEGER 45) = 45
to appear. In this case, the variable INTEGER was assigned the value 45 and the entire input ex-
pression was evaluated and its value, the value of the object named by the last operand of the ex-

pression, was printed as the value of the input expression. Now, if you type INTEGER, you will see
that

INTEGER = 45

2.2 Ending LISP/VM Sessions
2.2.1 Losing The Session Results

In the example above, you have created a variable, INTEGER, which has the value 45. If you were
not interested in keeping any of this work, you would now type

EXITLISP

which takes you back to CMS. The next time you bring up LISP/VM, you would begin with an
empty new screen. It would be most common to EXITLISP when one is just experimenting with
LISP/VM but not creating any code which would be used again.

Getting in and out of LISP/VM 9

2.2.2 Continuing Sessions

If, rather than being willing to lose the variable INTEGER, you wanted to be able to save your work
for later reuse, you could type

FILELISP file-name [= file-mode]
This takes a snapshot of the system at the moment you typed the command and places it in file-name.

(The optional = says to use the standard file-type and file-mode allows an explicit file-mode to be
specified.) The next time you want to continue your work, you can type

LISP file-name
and you will pick up from exactly where you stopped with INTEGER equal to 45. The next time you
want to stop, you can just type

FILELISP

and the new snapshot will be saved in place of the last. This is the easiest way for the naive user to
work. Eventually you will learn about indexed files, which require less disk storage, and can be given
easily to other LISP programmers for incorporation into their programs.

2.2.3 Being Extra Conservative :

Changes to a program can also be made tentatively without losing the original. It’s possible to take
a snapshot of the system before you make changes and keep it under another name. You can then
continue with the more successful snapshot. To make a snapshot and then continue, type

SAVELISP [file-name [= file-mode]]
If the file-name is not specified, then the snapshot is saved under the current file-name.

2.2.4 Other Useful Information
If you have started up the system and want immediately to name the file which will be used to hold
the snapshot, you can type
NAMEL ISP file~-name [= file-mode]
This means you don’t have to include the file-name when you FILELISP or SAVELISP.

Since FILELISP and SAVELISP can cause a new snapshot to be stored in place of a previous snap-
shot, it is useful to be able to query the system to remind yourself what file-name a snapshot will be
filed under if no file-name is specified. This is done by typing

NAMEL | SP

3.0 LISP/VM Overview

3.1 List Processing

Every successful programming language has some principal area of strength where it is more con-
venient or more powerful than other languages. The principal strength of APL is in its powerful op-
erators for handling arrays. The principal strength of COBOL is in handling files and records, sorting
them, and printing reports. The principal strength of SNOBOL is in handling character strings and
searching for patterns. For LISP, the principal strength is in handling irregular data structures, which
are typically stored as lists whose elements are lists of lists of lists of.... The name LISP comes from
its principal application as a LISt Processing language.

The areas of application where LISP is strongest are those areas that typically have complex or ir-
regularly structured data. Graphics, artificial intelligence, computational linguistics, theorem proving,
formula manipulation, and development of advanced systems and languages are areas where LISP is
widely used. For artificial intelligence in particular, a reading knowledge of LISP is essential to un-
derstand the literature and folklore of the field.

Besides its use in advanced applications, LISP is an important language to study for general back-
ground in computer science:

e It teaches programming techniques that can be adapted to other languages, such as PL/I, APL,
or even assembler.

o It has stimulated a great deal of research that can be applied to other languages and operating
systems.

e It contains features and concepts that have become part of the cultural milieu of computer sci-
ence.

LISP is, perhaps, the most flexible programming language ever invented. As a result, it evolves and
changes rapidly with each LISP system evolving a new variation. This document describes one vari-
ation, LISP/VM, which has been developed over a decade in a research environment. The principal
aim of the design process was to produce a design which was clean, powerful, and flexible. Com-
patibility with previous designs was given careful consideration but was not allowed to control the
design.

3.2 READ-EVAL-PRINT

A "program" is created by writing an expression which is READ by the system, EVALuated, and the
result PRINTed. The form in which the expression is typed into the system or printed by the system
is known as the external form. The form in which the expression is stored and evaluated by the sys-
tem is known as the internal form. The external forms of expressions include external characters such
as the parentheses surrounding elements which are internally lists and the angle brackets surrounding
elements which are internally vectors. The external form of numbers may include the external char-
acters +, -, and E.

3.3 Expressions

An expression is made up of atoms and pairs. Programs are built from exactly the same structures
as data, and all the operators used for constructing and analyzing data can be used for constructing
and analyzing programs. Atoms include NIL, identifiers, numbers, and vectors. They also include
the object code resulting from the compilation or interpretation of a function or macro, expressions
with the environment in which they are to be evaluated, specific environments with control,
hashtables, readtables, and the end-of-file symbol. Pairs are composite objects which have two
components, a CAR and a CDR.

LISP/VM Overview 11

3.4 List Notation

Each component of a pair can itself be a pair. The external form of a pair consists of a left paren-
thesis, the CAR component, a dot, the CDR component, and a right parenthesis.
Examples of pairs:

(A . B)
(A . (A.B))
((u.Vv) . (Xx. (Y.

Note how the recursive definition permits pairs to be nested inside other pairs to an arbitrary depth.

Although the pair notation has the advantage of simplicity, it can become tedious to write whenever
there are more than two entities to be combined. List notation is usually a more convenient way of
representing a list of arbitrary length. Like pairs, lists are defined recursively, allowing lists of lists
of lists.

Lists are a special type of expressions determined by the following recursive definition:

e The list of length zero, called the empty list, is represented by the symbol NIL.

e "If n>0, alist of length n is ;pair of an expression and a list of length n-1.

According to this definition, if A, B, C, and D are expressions, then théy may be combined to form
the following list of length 4:

(A . (B.(C.(D.NILM)

To translate from pair notation into list notation, convert every occurrence of NIL to (). Then if any
dot is followed by a left parenthesis, remove the dot, the left parenthesis, and its matching right pa-
renthesis. The above list becomes simply

(ABCD)

To translate a list back into pairs, first replace any occurrence of () with NIL,; if the list has one or
more elements, insert . ("' after the first element and add "')" at the end. Then repeat this procedure
for any remaining sublists:

((A B) C)

((AB) . (C))

((A . (B)) . (C))

((A . (B . ())) . (C)) .
((A . (B . NIL)) . (C))

((A . (B . NIL)) . (C. ()
((A . (B . NIL)) . (C . NIL))

The expressions in a list may be atoms, pairs, or other lists. Following are some lists expressed in both
list notation and pair notation.

List Notation Pair Notation

() NIL

(A) (A . NIL)

((A)) ((A . NIL) . NIL)

(A B) (A . (B . NIL))

(A B C) (A . (B . (C . NIL)))

((A B) (C D)) ((A. (B . NIL)) . ({c . (D . NIL)) . NIL))
(ABC.D) (A . (B. (c.D)))

List notation is a essentially a compact way of expressing a long series of pairs. For most applications,
list notation is used almost exclusively in preference to the pair notation. An understanding of pairs,
however, helps to explain how some of the primitive functions work. Any expression more complex
than an atom may be written as a pair, but not necessarily as a list. In fact, the basic pair (A . B) does
not have a corresponding list form.

12

./

()

3.5 Expression Forms, QUOTE, and SETQ

There are several types of lists which can act as programs. In these lists, the first element is consid-
ered to be an operator and the following elements to be operands. In LISP/VM, the operator is al-
ways evaluated. This evaluation provides information on how to evaluate the operands. If, for
example, the operator is evaluated and recognized as a function, the operands are evaluated in left to
right order and the function which is the value of the operator is applied to the list of all the values
of the operands. Operator evaluation is an important way in which LISP/VM differs from other
LISPs. In most LISPs, the operator is not evaluated: in LISP/VM it always is. If the operator is
evaluated and recognized as a special form, the evaluation of the remainder of the list follows the
special rules defined for each special form.

One special form is the operator QUOTE. The effect of QUOTE is to return the operand unevalu-
ated. If X is a variable with value 39, then (PRINT X) will cause X to be evaluated before it is passed
to the PRINT function; therefore, (PRINT X) will print "39", and (PRINT (QUOTE X)) will print
"X".
To reduce the amount of writing, (QUOTE X) may be abbreviated by a single quote:

"X is (QUOTE X)

" 'X is (QUOTE (QUOTE X))
'(AB C) is (QUOTE (A B C))

Only one quote mark is used. A closing quote must not be written. Note that the QUOTE may refer
to an entire list from the starting ''(" up to and including the ending ")"".

SETQ is the assignment operator. It takes two operands, the variable and the value to be assigned
to the variable. The definition of SETQ provides for only evaluating the value to be assigned, not the
variable. Therefore, if X has the value 10 and Y the value 20, ’

(SETQ X Y)

evaluates Y to 20 and assigns that value to X, not the value of X.

Another form of list which acts as a program is the macro. This form is used to introduce new con-
structs into the language. A macro is passed an unevaluated expression and returns an expression
which is then evaluated. Thus, the programmer can change the "syntax" of the language by defining
a macro, which transforms the program from the new form to one understood by the original system.

It is apparent that to understand how an operator works, it is necessary to understand if it follows the
rules for functions, those for macros, or has special rules of its own. For that reason, when an oper-
ator is defined in this document, the form of that operator is specified.

3.6 Constructing and Dissecting Expressions

There are three primitive functions for constructing and dissecting lists and pairs. (CONS A B) takes
two operands A and B and constructs a pair whose first element is A and whose second element is
B. If P is any pair, then (CAR P) is its first element, and (CDR P) is its second element.

The functions CAR and CDR are undefined for atoms, but they are defined for lists since lists are
defined in terms of pairs. The null list NIL is a special case since it is both an atom and a list; by
convention, (CAR NIL) and (CDR NIL) are both defined to be an error. The function CONS is
defined for all expressions, including lists, atoms, and NIL.

The following examples show how CAR and CDR operate on various lists. Note that as an ex-
pression appearing in an operand position, we would expect to have to QUOTE 5 to avoid having it
evaluated. For simplicity, however, numbers by convention are implicitly QUOTEd. Lists which are
not meant to be evaluated, even if they contain numbers, must still be QUOTEd.

LISP/VM Overview 13

(CAR 5) is undefined.
(CAR '(5)) is
(CDR 5) is undefined.
(CDR '(5)) is NIL
(CAR '(5 . 93)) is §
(CDR :(5 . 93)) is 93
(CAR '(5 93)) is 5
(CDR :(5 93)) is (93)
(CAR '(5 93 17 27)) is §
(CDR '(5 93 17 27)) is (93 17 27)
When applied to a pair, CAR extracts the first part, and CDR extracts the second part
(CONS 5 27) is (5. 27)
(CONS 5 '(27)) is (5 27)
(CONS 5 NIL) is (5 . NIL) or (5)
(CONS NIL NIL) is (NIL . NIL) or (NIL) or (())
(CONS 5 '(27 15 78)) is (5 27 15 78)
(CONS '(5 27 15) 78) is ((5 27 15) . 78)
(CONS '(5 27 15) '(78)) is ((5 27 15) 78)
(CONS '(5 27 15) NIL) is ((5 27 15)) -

Since the functions CAR, CDR, and CONS are defined in terms of pairs, their operations on lists are
not immediately obvious. In general, CAR produces the first element, or head, of a list, and CDR
produces the rest of the list, the tail. When applied to an atom A and a list L, CONS produces a new
list whose head is A and tail is L. In reading and writing LISP/VM notation, remember that paren-
theses are never optional: (((A))) is not the same as ((A)), which is not the same as (A), which is
not the same as A. '

What is amazing about LISP is its incredible simplicity. These three basic functions are all that is
necessary for a universal system that can build data structures of arbitrary complexity. A variety of
other list handling functions for convenience, but all of them ultimately reduce to the basic operations
of CAR, CDR, and CONS. There is an abbreviation for repeated application of the functions CAR
and CDR. If E is any expression, then

(CAAR E) is (CAR (CAR E))

(CDDR E) is (CDR (CDR E))

(CADR E) is (CAR (CDR E))

(CDAR E) is (CDR (CAR E))

(CADAR E) is (CAR (CDR (CAR E)))

and so on for CDADR, CAADR, etc.

Although CONS is useful for constructing pairs, it is convenient to have a function that combines two
lists to form another list. The function APPEND takes two or more lists as its operands and concat-
enates them into a single list:

(APPEND '(1 2 3 4) '(56 7)) is (1234567)
(APPEND () '(1)) _ s (1)

(APPEND '((1 2) 3) '((®))) is ((12) 3 (4))
(APPEND '(1 2 3) '(4) NIL '(56)) is (1234 56)
(APPEND '(1) ((3)) O () is (12 (3))

LIST is another useful function, which takes an arbitrary number of operands and combines them all
into a list:

(LIST 1.2 3) is (1 2 3)
(LIST) is
(LIST '"(1 2 3) '(45)) is ((1 2 3) (4 5))

Note the difference between LIST and APPEND; for this last example,
(APPEND '(1 2 3) '(4 5)) would be (12 3 4 5).

If L is a list, then (CAR L) is the first element, (CADR L) is the second, (CADDR L) is the third,
(CADDDR L) is the fourth. For long lists, the function ELT is often easier to use than counting D’s.
If N is any positive integer, (ELT N L) is the Nth element of L, that is, ELT uses zero-based indexing.

14

()

If L has fewer than N elements, then the result is NIL. For any non-empty list L, (LAST L) is a list
containing only the last element of L.

The function LENGTH gives the length of a list. If the list happens to contain sublists, LENGTH
only gives the number of elements in the topmost list. LENGTH is also defined for other expressions:
length of an atom is 0, and the length of a pair that is not also a list is 1.

(LENGTH '(1 2 3 4)) is &

(LENGTH '((1 2) (3 4))) is 2

(LENGTH '((1 2) . (3 4))) is 1

(LENGTH '((1 2 3 4)) is 1

(LENGTH NIL) is 0
3.7 EVAL

The use of the READ-EVAL-PRINT loop for expressions entered from the console has been de-
scribed above. Evaluation is actually performed by the EVAL function, which can be called explic-
itly. If X is a variable, then (EVAL ’X) is the value of the variable. If the value of F is a function,
then (EVAL ’(F A B C)) normally evaluates each of the operands A, B, and C and passes the results
to the function F, which it then evaluates as well. - “

When an expression is entered from the terminal, the system automatically passes it to EVAL.
Therefore, for the variable of our previous example with value 39, if the input is X, the output will
be (EVAL ’X) or 39. If the input is (QUOTE X), the output will be X:

Input from terminal Output to terminal
X 39

(QUOTE X) X

(QUOTE (QUOTE X)) 'X

(EVAL (QUOTE X)) 39

(EVAL (EVAL 'X)) X

(EVAL (EVAL ' 'X)) 'X

‘(A B C) (ABC)
'"(EVAL 'X) (EVAL 'X)

EVAL is like the execute operator in APL, which takes a quoted character string and executes it.
QUOTE is used to delay or prevent evaluation.

3.8 Three Kinds of Equality

Because LISP/ VM deals with complex data objects, there is a hierarchy of equality operations.

e Two objects may be identical: they overlay the same storage and a change to one is a change to
the other. This is the strongest kind of equality, and is tested by the predicate EQ.

e Two data objects may have the same shape and the same values, this is tested by the UEQUAL
predicate. If two data objects, which are UEQUAL do not share sub-structure and the same
updating operations are done to their components, then they will still be UEQUAL.

The predicate UEQUAL can be thought of as testing structural equality, although it
actually tests whether if the same update operations are done to both data objects they
will still be UEQUAL.

o The weakest kind of equality is expressed by the predicate EQUAL. If two objects are EQUAL,
then using the same series of access functions, like CAR, CDR, and ELT, will yield components
which are EQUAL. Two objects may be equal even if they do not have the same shape.

(SETQ B (CONS A 5))

(SETQ C (CONS B B))
(SETQ D (CONS (CONS A 5) (CONS A 5)))

C and D are EQUAL but not UEQUAL.

LISP/VM Overview 15

In general the stronger the equality predicate, the more efficient. EQ always takes a fixed amount
of time, UEQUAL takes time linear in the size of the object, and in the case of complex patterns of
sharing, EQUAL can take time cubic in the size of the object (it is almost always linear).

There are two kinds of functions which search data objects looking for equality with other data ob-
jects: those functions suffixed with a Q which test for EQ, and those functions which do not use a
naming convention for which EQUAL is the default.

3.9 Predicates and Conditionals

A predicate is a function whose result is either true or false. False is represented by NIL and true is
represented by any other value. The term ''non-NIL" is used in this manual to convey the multiplicity
of values which represents true.

AND takes an arbitrary number of operands, which it evaluates in order from left to right. As soon
as it finds an operand with value NIL, it stops evaluating any of the others and returns NIL. If none
of its operands evaluate to NIL, it returns the value of its last operand. With no operands, (AND)
has the value non-NIL.

OR takes an érbitrary number of operands, which it also evaluates in order from left to right. As soon
as it finds an operand with value non-NIL, it stops evaluating any of the others and returns that value.
If none of its operands evaluate to.non-NIL, it returns NIL. With no operands, (OR) has the value
NIL.

NOT changes truth to falsity and falsity to truth. (NOT NIL) is non-NIL, and (NOT "ELSE) is NIL.
When applied to anything other than NIL, NOT also produces the result NIL.

The primary use for predicates is in conditional expressions. The basic conditional has the following
form:
(COND (p1 el1) (p2 e2) ... (pn en))

The predicate p1 is evaluated first. If the value of pl is not NIL, then el is evaluated, and its value
is returned as the value of (COND ...); none of the other predicates or expressions are evaluated. If
the value of pl is NIL, then el is not evaluated, and control passes to the next pair (p2 e2). Evalu-
ation continues in this way through the entire list: the p’s are evaluated until the first non-NIL one is
reached, and then the corresponding e is evaluated and returned as the value of (COND ...). If all
p’s are NIL, then none of the e’s are evaluated, and the result of COND is NIL.

COND corresponds to a string of IF-THEN-ELSE statements:
.(COND (p1 el) ('ELSE e2))

corresponds to:

IF p1 THEN el ELSE e2;

and

(COND (p1 el) (p2 e2) (p3 e3) ... ('ELSE en))

corresponds to:

IF p1 THEN el; ELSE IF p2 THEN e2;
ELSE IF p3 THEN e3; ... ELSE en;

One of the basic predicates is ATOM, which tests to see if its operand is an atom. (ATOM op) is
non-NIL if op is an atom; otherwise, it is NIL.

EQ is the predicate that tests for equality of two objects. If A and B are atoms, then (EQ A B) is true
if A and B are the same and false if they are not. If one operand is an atom and the other is com-
posite, then (EQ A B) is false. If both operands are composite, then (EQ A B) is false unless both
operands occupy the same location in storage; i.e. (EQ A A) would be true, but (EQ (CONS A B)
(CONS A B)) would be false since the two newly created objects occupy different locations. For the
same reason after (SETQ C 1) and (SETQ D 1) then (EQ C D) is true, but (EQ ’(C) ’(D)) is not.

16

(0

()

After the evaluation of (SETQ B A), the value of (EQ B A) is true. (EQ 2 2) is also true. Since the
question of when the operands occupy the same storage location is not obvious, EQ should primarily
be used to test equality of atoms.

The predicate EQUAL tests any two expressions to see if they are equal. For the types of data dis-
cussed so far, it can be defined in terms of EQ:

(EQUAL X Y)

is equivalent to

(COND
((ATOM X) (EQ X Y))
((ATOM Y) NIL)
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
('ELSE NIL))

This is an example of a recursive definition, where EQUAL is defined in terms of itself. There are
examples of data on which the above program will never finish. The EQUAL defined by the system
always does. Note that the last expression of the COND could be omitted and the semantics would
be the same. It is added for readability.

NULL is a predicate that tests for the null list. (NULL X) is equivalent to (EQ X NIL). In practice,
the predicates NOT and NULL always give identical results.

3.10 Arithmetic

Numbers are stored in three forms: reals, and large and small integers. The size of large integers is
limited by the size of memory. If all operands of an arithmetic operation are integer, the resuit is in-
teger. If any or all of them are floating, the result is floating point. Numeric literals are represented
as in FORTRAN: 29, +29, -29 and +29EQ are integers; and 29.0, +29.EQ, and -0.29E+2 are real
numbers in external forms.

FUNCTION VALUE

(PLUS op1 op2 ... opn) opl + op2 + ... + opn
(MINUS op) op with sign changed
(DIFFERENCE op1 op2) opl - op2

(TIMES op1 op2 ... opn) opl x op2 x ... x opn
(QUOTIENT opl op2) opl + op2

If both operands are integer,
the result is a truncated integer

remainder if opl and op2 are
integer, and residue if either
or both are real.

(REMAINDER op1 op2)

(DIVIDE op! op2)
(EXPT op!1 op2)

(ADD1 op) .

(SUB1 op)

(ABSVAL op)

(MAX op1 op2 ... opn)
(MIN opl op2 ... opn)
(RNUM2INT op)

(FIX op)

(INT2RNUM op)

(FLOAT op)

value of (CONS (QUOTIENT opl op2)
(REMAINDER op1 op2))
opl raised to the power of op2.
If op2 is real, opl must be positive.
op + 1
op - 1
absolute value of op
largest operand
smallest operand
op converted to integer
identical to RNUMZINT
op converted to real
identical to INT2RNUM

The following predicates perform tests on numbers and return non-NIL or NIL if the test is true or
false. NUMP and EQUAL may be applied to any operands, but all of the others are defined only for
numeric operands. EQ is used when both operands are small integers.

LISP/VM Overview 17

PRED I CATE TRUE WHEN

(NUMP op) op is a number

(GREATERP opl op2) opl > op2

(LESSP op1 op2) opl < op2

(EQUAL op1 op2) EQUAL predicate defined before
(ZEROP op) op =0

(MINUSP op) op <0

(PLUSP op‘)) : op >= 0

(INTP op op is integer

(RNUMP op) op is real

3.11 Function Definition

A function is an expression for which certain variables are specified as bound variables. A list with
LAMBDA as its operator is a function. When the variable SQUARE has as its value,

(LAMBDA (X) (TIMES X X))
this corresponds to the PL/I format:

SQUARE: PROCEDURE(X); RETURN(X*X); END
SQUARE can be given that value by evaluating:
(SETQ SQUARE '(LAMBDA (X) (TIMES X X)))

Here X is the bound variable, and the expression (TIMES X X) is the body of the function. After the
function has been defined, it can be evaluated by having its name appear as the first element after a
left parenthesis in some expression that is to be evaluated. For example, if (SQUARE 7) is typed
from the terminal, the function SQUARE is invoked, the argument 7 is bound to the bound variable
X, and the body of the function, (TIMES X X), is evaluated to produce the result 49. More generally,
a function is an expression that is composed of three parts: an identifier which evaluates to
LAMBDA, a bound variable list, and a body.

When a function is evaluated and when the bound variable list is a simple list, each bound variabile is
bound- to a value from one of the arguments in the function invocation. Then the expression in the
body of the function is evaluated, and the value of that expression is returned as the value of the
function. One of the primary differences between programming styles in LISP/VM and PL/1 is that
a single expression in PL/I is usually rather simple, but a single expression in LISP/VM can span an
entire program. More generally, when a function is invoked, all of its arguments are evaluated and a
list of the values is created. That list is passed to the function. The function matches its bound vari-
able list against that list. If the bound variable list is a single variable, then that variable matches the
entire list. Otherwise, the CAR of the bound variable list is matched against the CAR of the list
passed in and the CDRs of the lists are matched. A bound variable list is often of the form:

(X1 X2 ... Xn .Y)

X1 through Xn will match the first n arguments and Y will match all remaining (possibly zero) argu-
ments.

When a function is invoked, each operand is evaluated and only the values are associated with the
bound variables. This method of function invocation is known as call by value, and there is no way
for the function to change the values of the variables used as arguments in the calling program.

LISP/VM allows the programmer more flexibility by the use of macros. A macro (MLAMBDA) has
the same form as a function (LAMBDA), however it is passed the entire expression unevaluated. It
can then manipulate the expression and return a new expression. That expression is then evaluated.
Macros are used to extend the syntax of the language. The looping constructs are all implemented
by macros which insert GO expressions around the body of the loop. A macro which implements a
simplified version of SETQ is shown below.

18

J

(MLAMBDA (OPERATOR TARGET VALUE)
(LIST 'SET (LIST 'QUOTE TARGET) VALUE))

3.12 The Program Feature

In principle, all programs can be written as single expressions, which may become quite complex.
The program feature, in conjunction with assignment expressions, is particularly convenient. It has
the following form:

(PROG (local variables)
(expressionl)
(expression2)

&dots.
(expression))

PROG is a macro; it is followed by a list of identifiers that name variables that are local to the list of
expressions that follow. Evaluation of the PROG list causes the expressions to be evaluated in order
unless one of them contains the special forms RETURN or GO.

If the last expression on the list does not evaluate a RETURN or GO, then after that expression is
evaluated, the PROG is terminated with the value NIL. If any expression happens to be (RETURN
expression), then when the expression is evaluated, the PROG will be terminated, and the value of
the expression is returned as the value of the PROG.

The special form GO is used in conjunction with a construction known as a label: a label may precede
an expression in any PROG. After evaluation of (GO label) in a PROG, the next expression to be
evaluated is the one following that label.

The following function illustrates the use of the PROG feature for writing a function that reverses a
list; i.e. the output list contains the same elements as the input list, but in reverse order.

(LAMBDA (INLIST)
(PROG (OUTLIST)
LOOP (COND (NULL INLIST) (RETURN OUTLIST))
(SETQ OUTLIST (CONS (CAR INLIST) OUTLIST))
(SETQ INLIST (CDR INLIST))
(G0 LOOP))))

In the above example, the expressionllabeled LOOP is equivalent to the PL/I statement:

LOOP: |F INLIST=NULL THEN RETURN(OUTLIST);

If a PROG has no bound variables and no RETURN:S, it can be replaced by the simpler and more
fundamental construct SEQ, which is a PROG without bound variables. The difference between
PROG and SEQ is like the difference between a BEGIN block in PL/I, which defines local variables,
and a DO group in PL/I, which merely groups statements. SEQ is usually more efficient because it
doesn’t have to allocate space for the variables. An EXIT expression terminates a SEQ and causes
the SEQ to return a value in the same way that RETURN terminates PROGs and LAMBDASs and
causes them to have certain values.

3.13 Applying a Function

When the result of a function is another function, the new function can be evaluated immediately if
it is the first element in a list. Consider a program, DERIV, which takes the name of a function as
input and generates the derivative of the function as its result. The derivative can then be evaluated
immediately, as in the next example:

((DERIV F) 3)

First DERIV is invoked with F as its operand. Then DERIV returns the derivative of F as its result,
and that new function is invoked with 3 as its operand.

LISP/VM Overview 19

In most languages, there is no way to apply a function to a list or vector without taking the list apart.
In PL/I, for example, if F is a function with 3 parameters and A is a vector of 3 elements, the ele-
ments of A must be separated when F is applied to A:

F(A(1),A(2),A(3))
In LISP/VM, however, the function APPLY will apply a function to the elements of a list:

(APPLY 'F A)

Note that F must be quoted to keep it from being evaluated before it is applied to the elements of
A. The reason for the quote is that APPLY might take an expression whose result after evaluation
is a function:

(APPLY (DERIV F) '(3))

The result of this expression is the same as

((DERIV F) 3)

When a function is applied to a list, either the function could operate on the list as a whole, or it could
be applied successively to the individual elements of the list. In LISP/VM, the default case is to apply
the function to the whole list. To apply a function successively to sub-parts of the list, the mapping
operators MAPCAR and MAPLIST may be used. If F is a function of one argument and L is a list,
then

(MAPCAR 'F L)

constructs a list whose first element is F applied to the first element of L, whose second element is F
applied to the second element of L, and so forth. For example,

(MAPCAR 'ADD1 '(2 4 6 8)) is (3 579)

MAPCAR applies F first to (CAR L), then to (CADR L), then to (CADDR L), etc. MAPLIST,
however, first applies F to L as a whole, then to (CDR L), then to (CDDR L), etc. For example,

(MAPLIST 'LENGTH '(2 4 6 8)) is (432 1)

Both MAPCAR and MAPLIST analyze only to the top level of a list; if L is a list whose elements are
also lists, neither MAPCAR nor MAPLIST analyze sub-parts of those lists. See the function SIM-
PLIFY in a later section for an application of MAPCAR.

Unlike most languages, LISP/VM supports functions that have no names. For example, the following
“expression is legal.

((LAMBDA (X) (PLUS X 5)) 7)

The unnamed function is a function that adds 5 to its operand. That function is then applied to 7 to
generate the final result 12. For this simple case, it would be easier to write

(PLUS 5 7)

The practical uses for unnamed functions occur when a function is being passed as an argument to
another function or when a function generates another function as its result. Then there is no reason
to define a function and give it a unique name just for a single use. The following expression, for
example, maps an unnamed function onto a list to add S to each element:

(MAPCAR (LAMBDA (X) (PLUS X 5)) '(2 4 6 8 10))
The result is (7 9 11 13 15).

The great flexibility in creating functions, analyzing functions, and using them as operands and resuits
is one of the major strengths of LISP/VM. In artificial intelligence, these features are used in many
creative ways. In a problem solving system, for example, a program might translate the statement of
a problem into a function and then evaluate the function to generate the answer.

20

—

'\/)

/////

3.14 Data Types

LISP/VM supports a number of data types which were not in the original Lisp 1.5 description.
Sometimes one data type can be an interpretation on another. This distinction allows different op-
erators for the same kind of functions, depending on the operand type. For example, CAR and CDR
will be used to access parts of a pair. ELT may be used if the object is viewed as a list.
(ELT FOO 0) will return the CAR of FOO. (ELT FOO 1) the CADR, (ELT FOO 2) the
CADDR, (ELT FOO 3) the CADDDR, etc.. ELT returns the ith element of a list. Note that ac-
cessing the ith element of a list takes time proportional to i. When speed of access is important,
vectors may be the more appropriate data type.

3.15 Vectors

Vectors are data objects which hold collections of data. To create the most general type of vector,
use the function MAKE-VEC. (SETQ FOO (MAKE-VEC 5)) will return a vector capable of
holding five objects. One can access them by using (ELT FOO 0) through (ELT FOO 4).
Initially, the values will be NIL. To assign values, we would input for example,

(SETELT FOO 2 5)

(SETELT FOO 3 (MAKE-VEC 2))
(SETELT FoO 4 '(A . B))

FOO would then print as
<NIL NIL 5 <NIL NIL> (A . B)>.

Conversions may be done between lists and vectors using the functions LIST2VEC and VEC2LIST.
The value of (LIST2VEC (LIST 'A 'B ’'C) is <A B C>.

There are several other types of vectors. These are all more specialized and can only hold one kind
of data. For example, bit vectors and character vectors store boolean values and characters much

more efficiently than the general vector. They are created by the functions MAKE-BVEC and
MAKE-CVEC.

A string of characters may be conveniently input as a character vector by surrounding it with double
quote marks. The ELT function extracts individual characters in a character vector as identifiers.
(ELT "Mary had a little lamb.' 0)
returns the identifier M.
(ELT "Mary had a little lamb.' 3)

returns the identifier y. Note that the identifier y is lower case and the identifier M is upper case.

Vectors can be CONCatenated by using CONC (CONC also works on lists and is synonymous with
APPEND). INDEX can be used to find one substring in another, and SUBSTRING can be used to
create a character vector which is a substring of another. Two character vectors can be compared for
lexicographical ordering using GT, LT, or GE and equality, of course, can be checked using EQUAL.

Bit vectors can be anded, ored, or xored with BITAND, BITOR, and BITXOR.

3.16 Structured Data Definitions

Structured data definitions allow complex data objects to be manipulated in uniform and mnemonic
ways. Suppose we have a data structure that contains information about an an employee in a firm.
We may think of this information as consisting of three main parts: personal information, department
information and salary information. Each of these parts may be further subdivided into employee
number and name, department name and manager, salary, deductions and tax rate. One way to store
this information in an object might be as follows:

(SETQ X '((1234 Smith) (Shipping Cosgrove) (120.34 11. 22 12)))
We can extract the current deductions with the expression
(CAR (CDR (CAR (CDR (CDR X)))))

LISP/VM Overview 21

and other information with comparable expressions. An alternative is to define a single operator that
allows structured access to any data object of this particular shape. The expression

(SETQ EMP-DATA (STRDEF EMP-DATA

(EMP (NUM , NAME) ,
DEPT (NAME , MGR) ,
ACCT (SAL , DED , TAX))))

defmes EMP-DATA as such an operator. With this operator we extract information by evaluating
expressions of the form:

(EMP-DATA DED X) is 11.22
(EMP-DATA EMP NAME X) is Smith
(EMP-DATA DEPT NAME X) is Shippin
(EMP-DATA ACCT X) is (120. 34 11.22 12)

To change information in this data object, enter
(SET-S (EMP-DATA TAX X) 14)
and to create a new instance of a data object of this kind, evaluate
(EMP-DATA) is ((NIL NIL) (NIL NIL) (NIL NIL NIL)) -

There are many more options available in the creation and use of these operators. These are de-
scribed later.

3.17 Associative Memory Operations.

In additional to the property list and association lists common in all LISP systems, LISP/VM supports
a variety of hashtables and file organizations that provide associative access to stored data.

The simplest of these objects is the association list. This is simply a list of pairs in which the CAR
of each pair is considered to be a key and the CDR a value. The functions ASSOC and ASSQ return
a key-value pair given an association list and a key. Keys may be any objects, although identifiers
are the most common example. The function ASSOC uses EQUAL when comparing keys, the
function ASSQ uses EQ. While EQ allows a faster test, it also limits the data objects that can be used
as keys, i.e. identifiers and small integers.

When the access functions return only the value, instead of the name-value pair, we call an associ-
ation list a property list. The functions GET and PUT treat association lists in this style. The internal
form of each stored identifier includes a property list. While many LISP systems use this property list
to store system information, LISP/VM reserves it exclusively for application programs.

LISP/VM also has hashtables that allow more general, and much more efficient storage represent-
ations for collections of key-value associations. Whereas access to an item in an association list is
proportional to the length of the list, access time in hashtables is typically a constant.

EQ hashing allows values to be associated with arbitrary data objects, while UEQUAL hashing allows
values to be associated with objects of a particular shape. One common use of UEQUAL hashing is
to hash on the contents of character vectors. As with most other fundamental operations, UEQUAL
hashing can deal with circular data objects.

(SETQ FOO (MAKE-HASH-TABLE 'UEQUAL))
creates a hash table with tests on UEQUAL.

(PUT FOO (CONS ''Mary'' ''had'') 5)
stores the value 5 with the key ('"Mary" . "had"), and

(GET FOO (CONS ''Mary' "‘had''))

returns the value 5. If we had used EQ hashing, the value would be NIL since the value 5 in FOO is
then associated with a particular instance of a pair.

22

3.18 Input and Output

Input and output is performed through a stream. A stream is an object that contains information
about the source or destination of the data, as well as buffers and other information. The functions
MAKE-INSTREAM and MAKE-OUTSTREAM are used to create streams as needed.

Output, by default, goes to a stream called CUROUTSTREAM, input to CURINSTREAM. One of
the output functions is PRINT. PRINT takes either one or two arguments. The first argument should
evaluate to an expression, which will then be output to the stream specified by the second argument,
if present, or to CUROUTSTREAM if no second argument exists. Both CUROUTSTREAM and
CURINSTREAM are initialized by the system to the terminal.

To create an output stream to a CMS file, and produce some output, we say

(SETQ FOO (MAKE-OUTSTREAM '(EXAMPLE DATA A))
(P.RINT (CONS 'A 'B) F00) }

This sequence will place the characters "(A . B)" on the first line of the CMS file:
"EXAMPLE DATA A". (PRINT 5 FOO) will place the number 5 on the second line.
(SHUT FOO) will inform CMS that LISP/VM is done with the file, and let other programs, includ-
ing LISP/VM itself, input data from the file.™

To input data we again create an input stream

(SETQ FOO (MAKE-INSTREAM '(EXAMPLE DATA A)))

(READ FOO) will return the pair containing the identifiers A and B. (READ FOO) a second time
returns the number 5.

3.19 Entering, Editing, and Observing Programs

The normal way of using LISP/VM will be through the system editor, Lispedit. To edit the value of
an expression simply input

E expression

The expression will be evaluated and the value displayed to you. If the expression is an identifier, you
may change its value using edit commands, and the value of the identifier will be different for the
duration of the session, or until it is changed again.

You can create a function with a given name by editing the identifier with that name. You can then
enter the definition of that function, and later evaluate it. To enter the definition, you would input
the character I and press the enter kéy. As you type the definition pressing the enter key will cause
the current value of the function to be displayed. To exit insert mode, the mode started by typing I,
press the enter key, when no characters have been input. The function may now be invoked by using
the function name and arguments in an expression.

The function definition may be changed by placing the cursor under the expression to be changed and
pressing the PF key labeled Sel (for select). The definitions of the PF keys may be found highlighted
at the bottom of the screen. Selecting a piece of the function will cause future commands to refer to
that piece. That piece is referred to as the focus, because it is presumed to be the part of the function
the user is focusing attention on. The focus is highlighted. DEL (the delete command) will delete the
focus. Inserting may be done by entering insert mode as above, and changing may be done by using
the REP command. REP with an argument will replace the focus.

To observe the evaluation of the program, input the TRAP command, followed by the name of the
function. Now whenever the function is invoked, it will be displayed and the focus will be the part
of the function which is about to be evaluated. The command RUN will evaluate the entire focus.
The command STEP will move the focus to the first component of the current focus and evaluate it.
UNTRAP is used to prevent future invocations from being displayed.

A function may be compiled by the command COMPILE function__name. After the COMPILE
command has been evaluated, editing the function will actually be equivalent to editing the source,

LISP/VM Overview 23

except that changes will not be reflected into the running system. The DEFINE command may be
used to switch to the interpreted version of the current source. The COMPILE command will re-
compile the version and thus also reflect the changes back into the running system.

On-line documentation is available for editor commands. The command HELP will give a short de-
scription of the system. HELP and a command name will give a description of that command. HELP
HELP will describe the HELP function. A description is simply an expression and may be edited if
it is too large to fit on a screen. To do so, the system will prompt you to push PF1. HELP WHAT
gives the names of all commands, grouped into coherent collections. HELP followed by the name
of the collection will give a one line description of those commands. The user should try to be familiar
with all the commands described in the BASIC collection.

While we recommend using the editor supplied with the system, if the user is only a casual user, one
of the CMS text editors may be used. The function EXF stands for 'evaluate file'".
(EXF ’(FOO BAR A)) will evaluate all expressions in the file FOO BAR on the user’s A disk. That
file may contain SETQ’s of function names to expressions, uses of the COMPILE function (described
later), or uses of the DEFUN function (for those familiar with some LISPs other than LISP/VM.)

The CMS command may be used to evaluate commands to the CMS environment while in LISP/VM.

3.20 Saving, and Loading Programs

A set of Lispedit commands support a CMS file organization we call Lispedit Indexed Files, or in-
dexed files for short. Indexed files allow a number of named property lists to be stored in a CMS file.
We normally use the notation ’xfn’ to indicate the name of an indexed file.

To save the function function type
SAVE xfn function_name

where xfn is the name of an indexed file. An indexed file is composed of a number of CMS files, and
is used to store a collection of functions and data, which are logically related. The command

LOAD xfn *
will load all members of an indexed file.

The source filed by the SAVE command is stored in the file in the property list associated with id, as
the property associated with the key VALUE. Other items in this property list indicate how this value
should be treated. To cause id to be compiled upon loading, you set its property DISPOSITION to
the value COMPILE in the property list associated with id in the file. The DI command performs this
operation conveniently.

LISP/VM also contains the functions DEFUN, DEFINE and COMPILE that support a more primi-
tive style of function definition. Note that since a function is defined by setting the value of an
identifier to a functional object, a particular name can be only a function, or only a variable at a given
moment. In addition, a compiled definition will cause the source definition to be discarded.

3.21 Running Programs

- The simplest way to cause an expression to be evaluated is to type it in and press the enter key. For
example to find the CAR of an identifier A, type :

(CAR A)

and press the enter key. If the expression is an identifier and the identifier is also the name of a
Lispedit command, it will be necessary to prefix the identifier with the V command. This will cause
the identifier to be evaluated instead of being treated as a command. V can prefix any expression.

Most errors which can occur while the expression is being evaluated will cause an automatic return
(actually a THROW) to Lispedit, with an indication that an error occurred,.and some debugging in-
formation. More information may be obtained by prefixing the expression with the command VB.
VB will cause the expression to be evaluated, but if an error occurs the program will be left in the
Break-Loop. In the Break-Loop variable values and the program stack may be examined.

24

C/

To return from the Break-Loop to Lispedit use the UNWIND operator. This will occasionally be
necessary even when the VB command is not used. The FIN operator is used to continue evaluation
past the error, possibly with new values. The & operator is used to examine the values of variables,
and the stack used in evaluation.

If a program is looping, it is possible to force it into the Break-Loop. If a Lispedit screen is displayed
with a locked keyboard (or input-inhibited), press RESET and CLEAR. The result will be a blank
screen with VM READ in the lower right-hand corner. Press ENTER to switch to RUNNING
mode, then PA1 to switch to CP READ mode. Finally, type EXT and wait for the Break-Loop to
respond. If the screen is already in RUNNING mode, you can omit the RESET, CLEAR, and EN-
TER steps.

While the screen is in VM READ or RUNNING mode, any input entered at the terminal
is saved in the CMS console stack. LISP/VM will evaluate this input the next time it ex-
pects input from the console. Null and blank lines are normally ignore by the Reader, but
other input should not be entered inadvertantly.

After examining variables in the Break-Loop, entering (FIN) will cause the program to continue.
UNWIND may be used to return to Lispedit.

3.22 Examples

The following two functions both compute factorials. The first is defined recursively, and the second
uses the program feature and a GO TO. There is little difference in performance when interpreted,
because the overhead caused by the function call is balanced by the extra expressions evaluated in the
looping version. However, there is a dramatic difference when the functions are compiled.

FACTR is
(LAMBDA (N)
(COND ((ZEROP N) 1)
('ELSE (TIMES (FACTR (SUB1 N)) N))))

FACTL is
(LAMBDA (N)
(PROG (X)
(SETQ X 1)
LOOP (COND ((ZEROP N) (RETURN X)))
(SETQ X (TIMES X N))
(SETQ N (SUB1 N))
(G0 LOOP))) .

To input the first of these functions, evaluate it, and then compile and evaluate it, you may type the
following lines pressing the enter key wherever the string [ENTER] occurs:

e factr [ENTER]
| - [ENTER
(L£MBDA JN) [ENTER;
(COND ((ZEROP N) 1) [ENTER]
('ELSE (TIMES (FACTR (SUB1°N)) N))))))) [ENTER]
[ENTER]
factr 5)
compile gENTER]
(factr 5

The next two functions show some typical LISP/VM programming techniques in a merge sort. The
function MERGE merges two sorted lists of numbers while preserving the order. The function SORT
calls MERGE.

LISP/VM Overview 25

Let MERGE be
(LAMBDA (LIST1 LIST2) -
(COND ((NULL LIST1) LIST2) ;:)
((NULL LIST2) LIST1)
((LESSP (CAR LIST1) (CAR LIST2))
(CONS (CAR LIST1) (MERGE (CDR LIST1) LIST2)))
('ELSE (CONS (CAR LIST2) (MERGE (CDR LIST2) LIST1)))))

SORT first checks the length of the list; if the list is shorter than 2, there is nothing to sort. Then it
scans the list up to the midpoint and splits the list into two halves. Finally, it merges the results of
sorting each half.

Let SORT be
(LAMBDA (L)
(PROG (I MID TAIL)
(SETQ | (LENGTH L))
(COND ((LESSP | 2) (RETURN L)))
(SETQ MID L)
SCAN (COND ((LESSP | 4) (GO SPLIT)))
(SETQ MID (CDR MID))
(SETQ | (DIFFERENCE | 2))
(GO SCAN)
SPLIT (SETQ TAIL (CDR MID))
(RPLACD MID NIL)
(RETURN (MERGE (SORT L) (SORT TAIL)))))

The merge sort illustrated here is much faster than a bubble sort. For a list of 100 numbers, this
routine runs 6.5 times faster than a bubble sort. For a list of 400 numbers, it is 23 times faster.

The following function may be used to check the evaluation tirme for a LISP/ VM expression.
(TIMER 'expression)

will return the evaluation time of the expression in milliseconds. This example illustrates the use of)
the PROG feature with assignment expressions. It also illustrates the use of EVAL to change the ‘
normal order of evaluation. «

TIMER is
(LAMBDA (EXPRESSION)
(PROG (TIME)
(SETQ TIME (SV-TIME))
(EVAL EXPRESSION)
(RETURN ($V-DELTA TIME))))

As an example of the use of TIMER, try computing factorial SO with the interpreted form and then
with the compiled form. Type the following three lines:

(TIMER (FACTR 50))
(COMPILE (LIST 'FACTR FACTR))
(TIMER (FACTR 50))

The first call evaluates the interpreted form of FACTR, then COMPILE generates the machine lan-
guage form, and the third line evaluates it. Note the exact placement of parentheses and quote.

When the built-in function COMPILE is used to compile a function, the source definition is lost. The
COMPILE command, however, stores that value where it can be retrieved by the editor. The fol-
lowing function saves the interpreted source form on the property list under the property SOURCE
before calling COMPILE. Remember to call this function with the quoted name of the function to
be compiled.

COMPSAVE is
(LAMBDA (FUNC)
(PROG (EXPR) -
(SETQ EXPR (EVAL FUNC)) ;:)
(PUT FUNC 'SOURCE EXPR) ‘

(COMPILE (LIST FUNC EXPR))))

26

()

The following set of functions may be used to take the derivatives of arithmetic functions. They il-
lustrate the ease of using LISP/VM for accessing the source form of a function, modifying it, and
generating new functions.

Let DERIV be
(LAMBDA (EX)
(PROG (X)
(SETQ X (CAADR EX))
(SETQ EX (CADDR EX))
(RETURN (LIST 'LAMBDA (LIST X) (DIFIATE EX X)))))

The function DERIV takes a monadic function as input, extracts the parameter symbol and the ex-
pression, and then passes them to the function DIFIATE to be differentiated. Finally, it combines
the parameter symbol with LAMBDA and the derivative of the expression to form a function ex-
pression that represents the derivative. For the function SQUARE defined as (LAMBDA (X)
(TIMES X X)),

(DERIV SQUARE)

would produce the result
(LAMBDA (X) (PLUS X X))

The calling program may either evaluate the derivative directly or use it to define a new function.
Since SQUARE is a monadic arithmetic function, the following expression would evaluate the deriv-
ative of SQUARE for the value 3:

((DERIV SQUARE) 3) ‘
The next expression defines a new function DSQ, which is the derivative of the function SQUARE:
(SETQ DSQ (DERIV SQUARE))

Once DSQ has been defined, (DSQ 3) gives the result 6. Then to get the second derivative of
SQUARE, (DERIV DSQ) gives a function expression for the constant function that produces the
result 2 for any input:

(LAMBDA (X) 2)

The following function differentiates an expression with respect to a given variable symbol. It is
called by the function DERIV, but it could be used by itself. This function is not complete; it only
recognizes the special functions PLUS and TIMES. As an exercise, the reader should extend the
function to recognize and differentiate DIFFERENCE, MINUS, QUOTIENT, EXP, SIN, COS,
LOG, etc.

DIFIATE is
(LAMBDA (EX X)
(SIMPLIFY

(COND ((ATOM EX)

(COND ((EQ EX X) 1) ('ELSE 0)))

((EQ 'PLUS (CAR EX))

(LIST
'PLUS
(DIFIATE (CADR EX) X)
(DIFIATE (CADDR EX) X)))

((EQ 'TIMES (CAR EX))

(LIST
'PLUS
(LIST 'TIMES (DIFIATE (CADR EX) X) (CADDR EX))
(LIST 'TIMES (CADR EX) (DIFIATE (CADDR EX) X))))))))

The function SIMPLIFY may be used to simplify arithmetic expressions. It is another illustration of
the ease with which expressions may be taken apart and recombined. To appreciate the power of
LISP/VM for such operations, the reader should try writing equivalent functions for some other
language. APL would be easier to use than PL/I, but even for APL the analysis would be much more
complex than for LISP/VM.

LISP/VM Overview 27

SIMPLIFY is
(LAMBDA (EX)
(PROG (FCN ARGS SIMPX)
(COND ((ATOM EX) (RETURN EX)))
(SETQ FCN (CAR EX))
(SETQ ARGS (MAPCAR SIMPLIFY (CDR EX)))
(SETQ SIMPX
(COND
((EQ 0 (CAR ARGS))
(COND
((EQ FCN 'PLUS) (CADR ARGS))
(EQ FCN 'TIMES) 0)
(EQ FCN 'MINUS) 0)
(EQ FCN 'DIFFERENCE) (LIST 'MINUS (CADR ARGS)))
(EQ FCN 'QUOTIENT) 0)
(EQ FCN 'EXP) 1)
(EQ FCN 'EXPT) 0)
(EQ FCN 'SIN) 0)
(EQ FCN 'co0S) 1)
"ELSE (CONS FCN ARGS))))
(CADR ARGS))

N

(EQ FCN 'PLUS) (CAR ARGS))
EEQ FCN 'TIMES) 0)
(

_—

—

m
—~

O
L T Y P e N e e e e i R T Y e e

EQ FCN 'DIFFERENCE) (CAR ARGS))

EQ FCN 'EXPT) 1)

"ELSE (CONS FCN ARGS))))

ND (EQ 1 (CAR ARGS)) (EQ FCN 'TIMES)

ND (EQ 1 (CADR ARGS)) (EQ FCN 'TIME?
)

gA (%ADR ARGS))
A

%AND (EQ 1 (CAR ARGS)) (EQ FCN 'EXPT)

A

(A

(N

) (CAR ARGS))
1

)

))

) (CAR ARGS))
0

ND (EQ 1 (CADR ARGS)) (EQ FCN 'EXPT |

ND (EQ 1 (CAR ARGS)) (EQ FCN 'L0OG))
UMP (CAR ARGS))
(COND
((EQ FCN 'MINUS) (MINUS (CAR ARGS)))
((AND (EQ FCN 'PLUS) (NUMP (CADR ARGS)))
(PLUS (CAR ARGS) (CADR ARGS)))
((AND (EQ FCN 'TIMES) (NUMP (CADR ARGS)))
(TIMES (CAR ARGS) (CADR ARGS)))
((AND (EQ FCN 'DIFFERENCE) (NUMP (CADR ARGS)))
(DIFFERENCE (CAR ARGS) (CADR ARGS)))
("ELSE (CONS FCN ARGS))))
('ELSE (CONS FCN ARGS))))
(RETURN SIMPX)))

(
(
(
(
(
(

28

4.0 Data Types

LISP/VM contains many different types of data objects. Unlike languages like Pascal, LISP/VM
data objects are typed rather than variables. A type is a set of data objects.

Types are arranged in a hierarchical fashion. The set of all numbers, for example, is a subtree of the
hierarchy which includes the sets of integers and reals. The set of integers contains the set of small
integers (snum) and large integers (bnum).

Objects may be of the following types:

identifier
gensym
num
rnum (floating point number)
int (fixed point number)
sint (small integer)
bint (big integer)
bpi)
fbpi (compiled function)
mbpi (compiled macro)
funarg
state descriptor
pair
list (alternate view of pair)
stream (alternate view of pair)
character stream '
key-addressed stream
vector
integer vector
character vector
real vector
bit vector
hashtable
readtable
%.EOF
NIL

Figure 2. Hierarchy of Types

For operations on arbitrary objects, seepage 141 .

4.1 Identifier

An identifier type has three components, a name, a value, and possibly an a-list, called a property list.
A name is any character string. It is also known as the print name or pname. A value is the result of
evaluating an expression. For an identifier, a value is the value of the binding which is associated at
any point in evaluation with the binding through identifier resolution rules. The property list is
composed of properties which are themselves composed of property name-value pairs.

The internal form of a print name is any character string. If the print name would be confused with
any other sequence of characters, the external form can contain the escape character, " | ", which
denotes that the following character should be interpreted as itself and is part of the internal form.
The external form is both input and output.

| (The identifier whose print name is ::(”“
+|1 The identifier whose print name is +1

Data Types 29

An identifier which occurs as an element of a SEQ or PROG expression is a label. It is not evaluated,
but rather serves as the point to which control can transfer through a GO.

For operations on identifiers, see page 97.

Identifiers may be grouped into two categories: stored and non-stored.

4.1.1 Stored Identifiers

Stored identifiers have a name, a value, and a property list and can be further divided into two cate-
gories: interned and uninterned. An interned identifier has the relation between the internal and ex-
ternal forms maintained in a master index called the obarray, or object array. Two interned identifiers
with identical print names will always be EQ, even for different invocations of the Reader. An
uninterned identifier has no relationship maintained.

4.1.1.1 Identifiers with Special Meaning

Some identifiers have pre-defined meanings. It is possible to redefine these identifiers but that would
not be a normal practice. Certain identifiers are conventionally distinguished, such as characters and
digits.

A special form is a macro-like operator, or the expression containing this identifier as the expression
operator, which is recognized directly by LISP/VM. The special forms are:

CLOSEDFN FUNCTION PROGN
COND GO QUOTE
EVALQ GVALUE RETURN
EXIT LAMBDA SEQ
F~CODE MLAMBDA SETQ

A built-in function is a function-like operator, or the expression containing this identifier as the ex-
pression operator, which is recognized directly by LISP/VM. The built-in function are:

APPLY CONS IVECP RPLACD
ATOM CVECP LISTP RVECP
BINTP EQ MBP I P SET
BFP EVAL MDEF SFP
BVECP FBPIP NULL SINTP
CALL FUNARGP NUMP STATE
FUNCALL GENSYMP PAIRP STATEP
CAR HASHTABLEP READTABLEP VECP
CDR IDENTP RNUMP

CLOSURE INTP RPLACA

4.1.2 Non-stored Identifiers, Gensyms

Non-stored identifiers are generated symbols, gensyms, which are unique. This uniqueness is en-
forced by the system rather than by programmer convention. Gensyms do not have property-lists,
and their internal print names are numbers. Gensyms can have either lexical or non-lambda bindings
but they cannot be used as free or fluid variables in compiled programs.

The external input form of a gensym is:

%Gn

where n is a number of the user’s choice. This external form is converted into an internal form where

n is translated into m in the range 220-1. This internal form has never before existed in the system.

During a single invocation of READ, all uses of a particular external form are associated with this
unique internal form. During a subsequent invocation of READ, the use of the same external form
will be associated with an entirely new m.

All invocations of PRINT for a gensym will print the same output external form of the internal form.

%Gm

30

D

e

There is a one-to-one mapping, on output, between the output external form and the internal form.

X

Value = %G1325
Y

Value = %G1325
(EQ X Y)

Value = non-NIL
(SETQ A '%G1)
Value = %G1401
(SETQ B '%G1)
Value = %G1402
(EQ A B)

Value = NIL

(SETQ C '(%G1 %G2 %G1 %G2))
Value = (%G1403 %G1405 %G1403 %G1405)

There is only a finite number of possible internal forms of gensyms, .75*220, and an error is signalled
if an attempt is made to generate more than that number.

4.2 Numbers .

There are three types of numbers: small integers, large integers, and real numbers.

Small integers have type SNUM and have a range -226 to 226-1 (-67,108,864 to 67,108,863). Large
integers have type BNUM and a range which includes all values not in SNUM. The arithmetic oper-
ators work on all numbers and allow mixed-mode arithmetic. The small integer type achieves greater
efficiency in computation and storage than the large integer type. All integers have exact represen-
tation with the amount of space available in the heap being the only limitation on integer size.

The input/output external format for integers is:

[+] {d...}

" where d specifies a decimal digit and no spaces may appear within the integer.

Real numbers are stored using System/370 double precision floating point format, yielding 53 to 56
bits of precision for the mantissa and a range of approximately 1074,

The input/output external format for real numbers is:

(-1 [d...] . [d][E[+| -1 §d...}H

where d specifies a decimal digit, no spaces may appear within the real number, and at least one dlglt
must be present.

There are two parameters which control the way in which real numbers are translated into their out-
put external forms, FUZZ and NDIGITS. FUZZ refers to a value used to define the intended preci-
sion of real number operations. Two real numbers, X and Y, are equal if

L1X] = 1Yl < FUZZ * maximum (IXI, |YI)

When a real number X is printed, the external form used is that which would have the shortest char-
acter string.

X-FUZZ*|X| to X+FUZZ*|X|

This external form may include an exponent, in which case there will be exactly one decimal digit
before the decimal point, or in cases where the number of digits (exclusive of decimal point and a
possible minus sign) needed to represent the numeric value is less than NDIGITS, no exponent will
be printed and the decimal point will be placed wherever required.

The user may specify values for FUZZ and NDIGITS by using the function SETFUZZ.

For operations on numbers, see page 101.

Data Types 31

4.3 Binary Program Images

The result of compilation of an expression or assembly of a LISP Assembly Language program (LAP)
is a binary program image, or bpi. Function binary program images are known as fbpis and macro
binary program images are known as mbpis.

The external form of a bpi is output only. If an attempt is made to input a bpi, READ will signal an
error.

%.FBP|.bpiname or %.MBPI|.bpiname

4.4 Funargs

A funarg type consists of an expression with a specific environment in which that expression is to be
evaluated. It is represented as a pair-like object. The type of the expression in the funarg charac-
terizes the funarg: identifier funarg, gensym funarg, number funarg, function funarg, macro funarg,
etc.

The external form of a funarg is output only.

%.FUNARG. (expression . "sd)

4.5 State Descriptor

A state descriptor is a data object which contains a state, that is, an environment, control chain, and
control point.

State descriptors are created by the STATE built-in function which saves the current state. This
current state is then retained even after the currently evaluating object terminates. When combined
with an expression into a funarg, it can be used to provide the environment in which an expression is
evaluated. It can also be used to transfer control back to the saved state with evaluation continuing
at the expression following the saved control point.

The external form is output only.

% .SD . xXXXXXXX

4.6 Pairs

A pair is a stored data object having two component objects which are referred to as the CAR com-
ponent and the CDR component (for historical and compatibility reasons). Each component may
be an arbitrary object.

Sometimes it is useful to illustrate data objects. The convention for pairs is a box diagram. Given a
pair with a CAR consisting of an arbitrary object, a, and a CDR consisting of an arbitrary object, b,
it can be drawn as:

|

|—’|o|o
S
| —b
|

L— 32

Figure 3. Box representation of pairs.

Two basic functions are provided for accessing part of a pair. CAR or CDR applied to a pair returns
as its value the corresponding component of the pair.

32

k’)
/

J

(N

The external form of a pair consists of a left parenthesis followed by the external form of the first
element of the pair, a blank, a period, a blank, the external form of the second element of the pair,
and finally a right parenthesis. The external form of the previous example is

(A . B)

For operations on pairs, see page 109.

4.6.1 Lists

Lists are composite objects created from pairs by taking an alternate view of the pair data type. Thus
each pair is a list whose CAR component is interpreted as the first element of that list, and whose
CDR component is interpreted as the remainder of that list.

The distinguished object NIL is used to denote an empty list. Thus, if the CDR of a pair is NIL, there
are no remaining elements in that list.

Having NIL as its CDR component is only one way in which a pair may be the end of a list. If the
CDR of a pair is any data object other than a pair, that pair terminates a list. This definition of list
is more general than the traditional LISP definition and accepts all traditional lists which end in NIL
as well as lists which end in non-NIL. -

For the purposes of functions which operate on lists, the CDR component of the pair terminating the
list is not considered to be part of the list.

Using the box notation, a list of three elements, A, B and C, would have the following structure:

(A. (B . (C. ()

|
| T
L_»Iolo
Ll 11
|
|
| T
L—..»'olo
J 1
—
I |
| y
| = | /]
| } —
| |
| e
I
| L ->B
I
L aA

Figure 4. Box representation of list, corresponding to dot notation.

Note the convention of representing a pointer to NIL by a / in the appropriate box.

The external form of a list is a modification of the representation of its component pairs as described
above. This modification is intended to improve readability by eliminating some of the parentheses
and divulging the sharing of data; however, the inclusion of some (or all) of the deleted parentheses
is always acceptable in input data. During printing, when a pair is pointed to from the CDR of an-
other pair, the separating period and blank of the original pair and the enclosing right and left pa-
rentheses of the CDR are not printed. In addition, when the terminating pair of a list has NIL as its
CDR component, that NIL and the space, period and space which would separate it from the CAR

Data Types 33

value are not printed. (Note, that if NIL is represented by its alternative form, (), the first rule has
the same results automatically.

Thus, the list

(A . (B . (C.NIL)))
would appear as

(ABC)
when printed. While

(A . (B . (C.D)))
will print as

(ABC . D)

List notation will be presented horizontally in future box diagrams. Thus, the previous list will be
drawn as:

.(A B C)

L—| o [E— '} | /
Ll |
1D 1
| |
—3A —»B —C

Figure 5. Box representation of list, corresponding to list notation.

For operations on lists, see page 113.

4.6.1.1 Circular Lists

Since a pair is a perfectly reasonable element of a list, it is possible to create lists which include
themselves, or parts of themselves, as elements. LISP/VM uses a general scheme for input/output
which indicates the sharing of data. This sharing scheme, as well as other aspects of the input/output
system, makes use of a break character which is defined in the standard system as percent (%). An
input expression written: ’

yL1=(A . %L1)

generates a pair whose CAR component is a pointer to the identifier A and whose CDR component
is a pointer to the pair itself. The structure is:

yL1=(A . %L1)
I
I -
| |
e | o ol
1
1
|
L—pA

Figure 6. Box representation of a circular list.

34

D

The list interpretation of this pair would be a circular list -- effectively an infinite list of A’s.
This sharing notation need not generate a circular list. For example, the expression:

(%L1=(A) %L1)

generates a list containing two elements. The first element is the list containing a single element --
the identifier A -- and the second element is another identical pointer. This is to be distinguished from
the expression:

((A) (A))

which also generates a list of two elements, each of which is a list containing the single identifier A.
In this case, however, the two elements are different pointers, although they point to equal (but sep-
arately stored) lists.

These two structures are:

(L1=(A) %L1)

|
|
Lep| o e p | o /
1
]
|
| .
—> L > |/
Ll
1
|
e——pA
((A) (A))
|
|] . /
I]
La| o[/ | L—>|s]|/
1 ,} 1
|
L—3A L——A

Figure 7. Box representation of equivalent shared and non-shared lists.

For purposes of accessing the elements of the list, both expressions are equivalent (but note that the
list having the shared data requires less storage). These two lists are not equivalent with respect to
updating. That is, the product of updating one may not be the same as the product achieved by the
same updating operation applied to the other.

There are two primary output operators, PRINT and PRETTYPRINT. PRINT produces
a continuous sequence of characters, with all shared structure exposed, whether circular
or not. PRETTYPRINT produces a formatted representation, with blanks and new-lines
inserted were it is deemed appropriate. However, PRETTYPRINT does not expose non-
circular sharing. Thus the two (different) structures presented here would appear the same

Data Types 35

when PRETTYPRINTed. PRETTYPRINT has no rules for displaying circular structures,
and defaults to the unformatted, PRINT, representation if any are present in its operand.

Note that the system providled READ-EVAL-PRINT supervisor uses PRETTYPRINT for
echoing its input and displaying the results of evaluation. This, in turn, means that non-
circular sharing will not be visible during interactions with the supervisor. LISPEDIT, also,
does not explicitly show sharing, circular or not, but it does inform the user of its presence.

In general, if it is true of two structures that corresponding accesses yield equivalent values then it can
be said that the structures are equivalent trees (see EQUAL function). If it is true that the products
of some updating operation applied to two structures would leave them EQUAL, then the structures
can be said to be equivalent rooted directed graphs (see UEQUAL function).

4.6.2 Streams

Streams are an alternate view of pairs. There are two distinct types of streams, each with its own set
of operators.

The streams which are managed by READ, PRINT and their related operators can be viewed as
producers or receivers of characters. These are the streams which allow LISP/VM to communicate
with the console, and to read and write files which can be edited by the user.

The streams which are managed by RREAD, RWRITE and their related operators can be viewed as
producers or receivers of arbitrary data objects. The DASD files which correspond to these streams
are, in general, not readable by the user.

All operations on streams are updating operations, that is, operations which change values, e.g., the
CAR of a stream uses a RPLACA operation. This insures that all processes which have access to a
particular stream remain in synchronization.

For operations on streams, see page 277 and page 283.

4.6.2.1 Character Streams

All character streams are pairs, with the CAR of the stream being the current character, or an "end-
of-line" flag,

The simplest form of a character stream is a list of characters:

(ABC)

I
I
L

o

o
[
|

Figure 8. A list, interpreted as a character stream.

The primitive operations on such a stream are NEXT and PRINT-CHAR.

KJ

After an application of NEXT

(B C)

| 1

| T 1 r 1 | | I —

e e i I e mend R B
4 | 1 : | 1 I i
| | |
L— L 8 L—»C

After an application of PRINT-CHAR, with X as first operand

(X ABC)

| 1

I r 7 | .

| T |7 T | | "

| o | ° Lp| | o / | L] ¢ | *
— (- [[4
| | 7
e—X L—»B —C L—pA

(Note, only the pair marked by * is newly created.)

Figure 9. Effect of NEXT and PRINT-CHAR on stream, Figure 8.

It should be noted that NEXT and PRINT-CHAR are mirror operations. If a list is produced by a
series of PRINT-CHARsS, the repeated application of NEXT will produce the characters in the re-
versed order.

The most common form of character stream is called a fast stream. This is a list, usually of a single
element, the final CDR of which is a vector containing the information required for performing I/0O
to or from a DASD device or a terminal.

Fast streams contain a number of components which may be accessed or changed by various opera-
tors. These include an association list, with entries specifying the direction of the stream (INPUT or
OUTPUT), the device type, the file name, etc., as needed. There is a buffer, containing the current
line from the device, with an index designating the current character in the buffer. A stream specific
function defines the action to be taken when the buffer is to be disposed of, either refreshed from an
input device, or written to an output device.

Two special configurations of a fast stream indicate end-of-line and end-of-file conditions. These
may be tested with the predicates EOLP and EOFP.

4.6.2.2 Key-Addressed Streams

The second type of stream supports key addressed, random access, files or libraries. Each member
in such a file represents a single data object. Associated with each item is a key and a class desig-
nation. The key is either a string or a GENSYM identifier, while the class is a small integer in the
range 0 (zero) to 255.

The usual file type for such files is LISPLIB.

Unlike character steams, libraries may contain an external form of a bpi, and are often used as an
analogue to VM TXTLIB files. It must be noted that an existing bpi can not be written to a library,
but can only be placed in one by the assembler.

Data Types 37

The basic operators which deal with libraries are distinguished by a prefixed R on their names, for
Random access. In addition there exist a set of operators, including LOADVOL, SUBLOAD etc,
which manage these files and allow operator definitions to be loaded from them.

4.7 Vectors

Vectors are one-dimensional objects containing components, or elements, with efficient indexed ac-
cess and a compact storage representation. The specific vector types include the set of integer vec-
tors, real vectors, character vectors, and bit vectors. If the vector is not identified as a vector of
specific element type, then the elements of the vector can be any arbitrary data objects.

Except for bit vectors, vectors may have any length (including zero) for which sufficient space exists
in the heap. All vectors have a length-- the number of elements in the existing vector object. They
also have a capacity, the maximum number of elements in the string. Character vectors and bit vec-
tors are known as strings.

The input/output external form of a vector of arbitrary elements is:
<EQ0 E1 ... Ei>

where Ei is the ith element of the vector.

A box diagram can be used to describe a vector.

<A B C>

[

S
b
£ 7

Figure 10. Box representation of a vector.

For operations on vectors, see page 123 and page 129.

4.7.1 Integer Vector
An integer vector is a vector containing integer elements.

The input/output external form of an integer vector is:

%I<INT...>
where INT specifies an integer element.

The length and capacity of an integer vector are always the same. The form
%Ik<INT...>

can be used for a vector of k elements. As an input external form, it can be used to create a vector i
of k elements initialized to NIL.

38

4.7.2 Real Vector

A real vector is a vector containing real number elements.

The input/output external form of a real vector is:
%F<R...>

where R specifies a real number element.

The length and capacity of an real vector are always the same. The form
%Fk<R...>

can be used for a vector of k elements. As an input external form, it can be used to create a vector
of k elements initialized to NIL.

4.7.3 Character Vectors

A character vector is a vector containing character elements. It is also known as a character string.
The delimiters and escape character can be used as characters within a character string by preceding
them with the escape character. Delimiters and escape characters are not counted in the length.

All character stfings have both a length and a capacity. Due to storage representation, the capacities
are quantized to multiples of four plus one.

The main input/output external form for character vectors is:
HC "

where C specifies a character element. When this form is used, the capacity becomes the quantized
capacity which is greater than or equal to the length.

For example,
v "'ABCD"
HABCDH = “ABCD”
(s1ze '"'ABcD')

(s1ze "ABCD") = 4
(CAPACITY "'ABCD')
(CAPACITY "ABCD'") =5

(CONCAT "'aBc'' 'DEF'")
(CONCAT ''aBc'' 'DEF') = "'ABCDEF"

The user can explicitly specify a capacity through operations and through a second input external
form. The same form is used on output, in some cases, to display the capacity.

%k''c..."

where C specifies a character element and k is the capacity designator. When the capacity designator
is specified on input, it is rounded up to the next quantized capacity and becomes the capacity of the
string.

e If the length equals the capacity, or is up to three less than the capacity, it is displayed on output
"

in the simple, "..." form.

e If the length is more than three less than the capacity, it is displayed on output in the %k"..."
form.

e If the length is greater than the capacity, an error is signalled.

Data Types 39

For example,

v %6''ABCDE" , _:)
%9''ABCDE'' = %9''ABCDE"'

(SI1ZE %6''ABCDE')

(S1ZE %9''ABCDE'') = 5

(CAPACITY %6''ABCDE'')

(CAPACITY %9''ABCDE'') =9

v %6''ABCDEF"

""ABCDEF'' = "'ABCDEF"

v %6''ABCDEFG"

'""ABCDEFG'' = '"ABCDEFG"

v %6''ABCDEFGH"

""ABCDEFGH'' = ''ABCDEFGH"

v %6''ABCDEFGHI"

""ABCDEFGHI'" = ”ABCDEFGHI“
v %6'"'ABCDEFGHIJ"

error is signalled

(UNWIND 1)

4.7.4 Bit Vectors
A bit vector is a vector containing bit elements. It is also known as a bit string.

All bit strings have a length and capacity. Length is the number of elements, or bits, in the bit string.
Capacity is the maximum number of elements, or bits, a bit string can have. Due to storage repre-
sentation, the capacities are quantized to multiples of thirty-two plus eight.

The main input/output external form for bit strings is:

%B"'H "\>

where H is a hexadecimal digit representing four bit elements. When this form is used, the length is —
inferred to be the number of bits from the leftmost bit of the bit string to the rightmost non-zero bit.
This length is known as the inferred length. The capacity is inferred to be the quantized capacity
greater than or equal to the number of hexadecimal digits in the bit string times four. This capacity
is known as the inferred capacity. When this form is used as the input external form, the value re-
turned may be displayed in one of the forms described below.

For example,

v %B''01"
%BIIO.IH = %B“O]”
(S1ZE %B''01'")

(SI1ZE %B''01") = 8
(CAPACITY %B''01")
(CAPACITY %B''01'') = 8

v %8“8,0“
%B“8“ - %BHSH
(s1ze %B''80'")

(S1ZE %B''8'") = 1
(CAPACITY %B''80'")
(CAPACITY %B''8") = 8

The user can explicitly specify a capacity and a length through operations and other input external
forms. The same forms are used on output, in some cases, to display the capacity and length.

%B II
%Bk“H

%Bk : c”H a ::>

where H stands for a hexadecimal digit which represents four bit elements, k is the capacity desig-
nator, and ¢ is the length. When the length is specified on input, it becomes the length of the bit

40

string. When the length is not specified, the inferred length becomes the length of the bit string.
When the capacity designator is specified on input, it is rounded up to the next quantized capacity
and becomes the capacity of the string. When the capacity designator is not specified, the inferred
capacity becomes the capacity of the string.

e If the length of the bit string is greater than the inferred length, then the length is printed on
output.

o If the length of the bit string is equal to the inferred length, then the length is not printed on
output.

o If the length of the bit string is less than the inferred length, then an error is signalled.

e If the length equals the capacity, or is up to thirty-one less than the capacity (or seven for ca-
pacity of eight), then the capacity is not printed on output.

e If the length is more than thirty-one less than the capacity (or seven for capacity of eight), then
the capacity is printed on output.

e If the length is greater than the capacity, then an error is signalled.

For example,

v %B:13"001"

%B:13"'0010" = %B:13"'0010"
(S1ZE %B:13"001")

(S1ZE %B:13''0010") = 13
(CAPACITY %B:13'"001")
(CAPACITY %B:13''0010") = 40

v %B:12"'001"
%B”OO]“ = %B“OO]“

v %B:11"001"
error is signalled
(UNWIND 1)

v %B32'001"
%8''001'" = %B''001"
v %332“800”
%B40"8" = %BL40''8"
v %B11'"001"

error is signalled
(UNWIND 1)

v %B10:4''8"
%B10:4''8" = %B10:4''8"

4.8 Hashtables

Hashtables are composite objects containing a collection of key-value pairs. They are designed to
allow relatively uniform access times to any of their components, as contrasted with a-lists, where the
range of access times is proportional to the number of components.

Each hashtable has a specified key class. There are four classes: two for arbitrary keys and two for
special key sets.

The two arbitrary key classes differ in the comparison operator, EQ or UEQUAL, used to search the
buckets for a match. ’ A

The two special key set classes (and corresponding hashing functions) are provided for character
strings and for identifiers. EQUAL is used for comparison of character strings and EQ is used for
comparison of identifiers.

Data Types 41

In addition to the key class, every hashtable is either "strong" or "weak''. In a strong hashtable, once
a key/value pair has been added it will persist until it is explicitly removed. In a weak hashtable, in
contrast, any such pair whose key is not accessible from some place other than the hashtable itself
will be deleted at garbage collection time. This allows a table to be built with keys drawn from various
data objects, and have the corresponding entries vanish when any of the objects is discarded.

A bucket is the collection of the keys which have been hashed to the same hashcode. The number
of key-value pairs in each bucket is under user control, allowing a maximum average bucket length
(and hence search time) to be maintained. Whenever a key/value pair is added or deleted from a
hashtable the count/size ratio is computed and compared with growth and shrinkage ratios. As long
the actual ratio is between the specified ratios, the table is left alone. Whenever it deviates the bucket
array is rebuilt, either larger or smaller, to return the ratio to the specified range.

One set of hashtable access functions treat them as a-lists. In other words, they follow the precedent
set by ASSOC and return a key-value pair. Another set of functions follow the example of GET and
treat hashtables as property lists, returning only the value associated with a key. The advantage of
the a-list style is that it is possible to distinguish between a missing key-value pair and a value of NIL.
The advantage of the property list style is that the value can be used immediately.

The external form of a hashtable is output only.

%.HASHTABLE . xxxx
For operations on hashtables, see page 137.

4.9 Readtables

A readtable is an object that defines the syntax rules to be used by the Reader. Readtables are built
and modified by the operators defined in the User-Defined Syntax chapter of the INPUT/OUTPUT
section.

The external form of a readtable is output only.

%.READTABLE . xxxx
For operations on readtables, see page 259.

4.10 Miscellaneous Types

There are two miscellaneous types, NIL and %.EOF. NIL denotes the empty list or the boolean
value ’false’. %.EOF. is the value returned by READ on an empty stream.

42

5.0 Evaluation

5.1 Object Evaluation

All objects can be evaluated.

Numbers, state descriptors, vectors, hashtables, readtables, and NIL evaluate to themselves.

The evaluation of an identifier involves finding the binding of the identifier using the identifier
resolution rules and returning the value of that binding.

Lists, pairs, and streams evaluate using rules which depend on the value of the operator.

e special form invocation: Occurs when one of the following identifiers appears as the value
of the operator:

CLOSEDFN FUNCTION PROGN
COND GO QUOTE
EVALQ GVALUE RETURN
EXIT LAMBDA - SEQ
F*CODE MLAMBDA SETQ

Each special form has its own evaluation rules which are described with the description of
the operator. If the identifier corresponding to a special form has been redefined, evalu-
ating the identifier will result in the application of the new definition. Evaluating the
quoted identifier will result in the application of the original built-in definition.

o function invocation: Occurs when the value of the operator is a function expression or an
fbpi. Evaluation of the function invocation causes the arguments to be evaluated and
bound to the bound variables. The environment and control chain are created for the
function invocation. The body of the function expression or fbpi is evaluated. The value
of the body becomes the value of the function invocation.

e built-in function invocation: Occurs when one of the following identifiers appears as the
value of the operator:

APPLY CONS IVECP RPLACD
ATOM CVECP LISTP RVECP
BINTP EQ MBP P SET
BFP EVAL MDEF SFP
BVECP FBP.IP NULL SINTP
CALL FUNARGP NUMP - STATE
FUNCALL GENSYMP PAIRP STATEP
CAR HASHTABLEP READTABLEP VECP
CDR IDENTP RNUMP

CLOSURE INTP RPLACA

The rules for evaluation of a built-in function invocation follow the rules for the evaluation
of a function invocation.

If an identifier corresponding to a built-in function has been redefined, evaluating the
identifier will result in the application of the new definition. Evaluating the quoted identi-
fier will result in the application of the original built-in definition.

e identity rule: If the value of the operator is not a special form or a built-in function and
the value is EQ to the operator, an error is signalled.

e macro invocation: Occurs when the value of the operator is a macro expression or an
mbpi. Evaluation of the macro invocation causes the single argument to be bound to the
single bound variable. The environment and control chain are created for the macro invo-
cation. The body of the macro expression or mbpi is evaluated. The value returned by the
body is evaluated again.

Evaluation 43

e function expression evaluation: Occurs when the value of the operator is the identifier
LAMBDA. The value of the function expression evaluation is a funarg, which contains the
function expression and the current environment.

. macro expression evaluation: Occurs when the value of the operator is the identifier
MLAMBDA. The value of the macro expression evaluation is a funarg, which contains the
macro expression and the current environment.

e funarg invocation: Occurs when the value of the operator is a funarg. Application of the
expression in the funarg proceeds normally in the environment contained in the funarg.

e erroneous atom rule: If the value of the operator is a non-identifier atom that fits none
of the above rules, then an error is signalled.

e re-evaluation of the operator: Occurs when the value of the operator is none of the
above. The operands are evaluated and their values saved, then the value of the operator
is evaluated. The above function and funarg rules are used if the new value is one of the
above. Macros and special forms may not be the result of the re-evaluation of the operator.
The operands will only be evaluated once. If the new value is also none of the above, it is
itself re-evaluated. This process may result in an indefinite repetition.

® The value of a bpi evaluation is a funarg, which contains the bpi and the current environment.

e The evaluation of a funarg involves evaluating the expression in the environment contained in
the funarg.

5.2 Environment and Control Chain

5.2.1 Invocation

Bindings are the associations of identifiers with values. Non-lambda bindings are those bindings which
are present prior to any invocations by the user. The set of all non-lambda bindings is known as the
non-lambda environment. LISP/VM provides for multiple non-lambda environments to allow such
features as compile-time choice of function or macro expressions, based on expected efficiency.
Since this would not affect the normal user, all discussions of environments will assume a single
non-lambda environment. A lambda binding is an association of a bound variable to an argument.
The set of all lambda bindings for bound variables specified within a function or macro expression
are known as a local environment.

Every invoked object has three parts: an environment, a control chain and a current control. These
parts are called the state of the invoked object. Every control point has associated with it a current
environment and a current control chain. When an applicable object is invoked, a record is kept of
the control point to which evaluation should return when this invocation terminates. These records
are known as the control chain. The point of current evaluation is known as the current control. The
environment is the set of all bindings which exist during invocation. A resolution boundary can exist
within an environment to limit searches during identifier resolution.

When an applicable object is invoked,

e A pointer to the local environment of the invoked object is added to a copy of the environment
of the invoking object or, if the invocation was at the top level, to a pointer to the non-lambda
environment. This becomes the environment of the invoked object. (Environments consist of
pointers to local and non-lambda environments so that the actual bindings are shared and
changes to a binding by one object can be visible to another object.) A resolution boundary is
created.

e The control point which immediately follows the invocation in the invoking object or in the top
level is added to a copy of the control chain of the invoking.object or top level. This becomes
the control chain of the invoked object.

44

™

o The control point changes from the invocation to the first expression in the body of the invoked
object.

If an object A invokes an object B, then B is said to be immediately dynamically nested within A. If
B then invokes C, C is immediately dynamically nested in B and dynamically nested in A. A would
be the outermost nested object and C would be the innermost nested object.

This semantic model has been chosen for simplicity of description. The actual implemen-
tation mirrors the model in a highly efficient manner by using shallow binding cells to effect
efficient access to the environment and by minimizing both copying and creation of
funargs.

5.2.2 Invocation in Non-standard Environments

Application of STATE causes a state descriptor to be created containing the current state. This is the
only way for an invoked object to prevent its environment from disappearing upon invocation termi-
nation. If APPLY, EVAL, or MDEF are then invoked with an applicable object and the state de-
scriptor as arguments, the result is to invoke the object in the environment contained in the state
descriptor..

® A copy of the environment of the state descriptor is made and a pointer to the local environment
of the invoked object is added to the copy and becomes the environment of the invoked object.
A resolution boundary is not created.

® A copy of the control chain of the object which evaluated the APPLY, EVAL, or MDEF is
made, the control point which immediately follows the invocation in the invoking object is
added, and this becomes the control chain of the invoked object.

e The control point changes from the invocation to the first expression in the body of the invoked
object.

5.2.3 Invocation Termination

When an invoked object terminates through evaluation of a contained RETURN or EXIT expression
or through evaluation of the last expression in the body:

® control returns to the control point specified in the control chain,
o the environment and control chain of the terminated object are deleted, and

e the environment and control chain associated with the specified control point are resumed.

5.2.4 Changing the Environment and Control Chain

There are several ways to change states. Application of STATE causes a state descriptor to be cre-
ated containing the current state. This is the only way for an invoked object to prevent its environ-
ment from disappearing upon invocation termination.

Application of JAUNT to a state descriptor causes the saved state to become the current state.

It is also possible to replace the current state with the state of an outer dynamic object. This allows
non-local transfers of control and error recovery. Evaluation of a catch operator sets a catch point
in the control chain. There can be multiple catch points. Evaluation of a THROW causes the control
chain to be outwardly searched for a catch point and causes the current control point to be the ex-
pression following the catch point, and the environment and control chain which would be current
during the evaluation of the catch point to become the current environment and the current control
chain.

5.3 Identifier Resolution

Identifier resolution is the process of finding a binding for a particular instance of an identifier. When
an identifier is encountered,

Evaluation 45

e If a binding occurs in the current local environment, then the identifier resolves to that binding. J

e If a binding does not occur in the current local environment, then the search continues outward
in all previous local environments until a resolution boundary is found. If a binding is found
before a resolution boundary occurs, then the identifier resolves to that binding.

e If a binding is not found before a resolution boundary occurs, then the search continues outward
only for a fluid binding.

e If a binding is not found in the outermost previous local environment, then it is guaranteed to
be found in the non-lambda environment.

5.4 Evaluation Operators

EVAL built-in function
(EVAL exp [sd])
If only one argument is specified, The EVAL operator causes the value of its operand,
exp, to be evaluated as if it had occurred in the place of the EVAL expression. If the
sd argument is specified, EVAL causes the value of exp to be evaluated in the environ-
ment captured by sd. Both evaluations have access to the lexical bindings in sd.
The following example illustrates the effect of EVAL when invoked with one argument:

(SETQ X 'A)

Value = A

((LAMBDA (A B) (EVAL B)) 1 X)

Value = 1 =
The sequence of evaluations in the last expression is:)
1. Xevaluatesto A
2. The identifiers A and B are bound to the objects 1 and A respectively.

3. Bevaluatesto A

4. EVAL applied to A evaluates to 1

5. The function expression returns 1

Note that even though the identifier A was not lexically present in the function ex-
pression, its lexical value was found.

The following example shows how a state descriptor retains a

(SETQ X ((LAMBDA (Y) (STATE)) 10))

Value = %.5D.XXXXXXXX

(SETQ Y 100)

Value = 100

(EVAL 'Y)

Value = 100

(EVAL 'Y X)

Value = 10

(EVAL '(PLUS Y Y))

Value = 200

(EVAL '(PLUS Y Y) X)

Value = 20

EVALFUN built-in function D
(EVALFUN exp [sd])

46

The EVALFUN operator causes the value of its operand, exp, to be evaluated as if it
had occurred in a function of no arguments called from the place of the EVALFUN ex-
pression.

The following example shows how EVALFUN differs from EVAL.
(SETQ X 'A)

Value = A

(SETQ A 10)

Value = 10

((LAMBDA (A B) (EVALFUN B)) 1 X)
Value = 10

The sequence of evaluations in the last expression is:

X evaluates i0 A

The identifiers A and B are bound to the objects 1 and A respectively

B evaluates to A

EVALFUN applied to A does not see the lexical binding of A to 1. Instead, the
outer, non-lambda binding of A, namely 10, is returned

5. The function expression return 10

b=

Here, unlike the previous case, the lexical binding of the variable A in the function ex-
pression is not found by the evaluation, and the previous binding is seen. If sd is speci-
fied, the same sort of evaluation takes place in the environment of sd

EVAL-ID

function
(EVAL-ID id)

The value of this operator is exactly the same as that of EVALFUN when applied to the
same argument. It differs in that its operand must have an identifier as value, (there is
no restriction on the value of the identifier, just on the value of the operand in the
EVAL-ID expression), and in its efficiency. Where EVALFUN must be able to evaluate
any expression, EVAL-ID, being restricted to identifiers, can use a much faster mech-
anism.

EVAL-LEX-ID Sfunction
(EVAL-LEX-ID id)

This operator is the (special case) identifier evaluator corresponding to EVAL. Unlike
EVAL-ID it can access those lexical bindings which are visible from the context of ap-

plication.
(SETQ X (SETQ Y 10))
Value = 10
((LAMBDA (X (FLUID Y)) (EVAL-ID 'X)) 100 100)
Value = 10
((LAMBDA (X (FLUID Y)) (EVAL-LEX-ID 'X)) 100 100)
Value = 100
((LAMBDA (X (FLUID Y)) (EVAL-ID 'Y)) 100 100)
Value = 100
((LAMBDA (X (FLUID Y)) (EVAL-LEX-ID 'Y)) 100 100)
Value = 100

EVAL-GLOBAL-ID Sfunction
(EVAL-GLOBAL-ID id)

This operator returns the value of its argument as bound in the non-lambda environment.
No values bound on the stack, either FLUID or LLEXical, are seen.

Evaluation 47

CEVAL-ID

CEVAL-LEX-ID

GVALUE

EVAL-GVALUE

SET-GVALUE

48

function
(CEVAL-ID id)

CEVAL-ID searches for a FLUID binding of id in the local environments of the invok-
ing objects, using the control chain to identify these local environments. If no binding
is found in a previous local environment, the non-lambda environment is searched; if no
binding is found there, the value is id.

In the actual implementation, the stack frame is maintained as a spaghetti
stack containing both environment and control chain. It also contains pointers
to the previous environment and previous control. These can be different,
though that is rare in practice. CEVAL-ID breaks the normal evaluation
search rule, and follows the control hierarchy at the splits.

The primary purpose of this abnormal evaluation is to search the control chain
for values which control exception handling. The error break mechanism is
controlled by the value of a free (hence non-lambda or FLLUIDIly bound) var-
iable, PROGRAM-EVENTS.

It is felt that the error break specifications found in the control chain are more
meaningful than those found in the environment chain in the cases when they
differ. Thus, a use of EVAL will not temporarily switch exception handling
to the status which existed when the sd operand was created, but will retain
the current status.

function
(CEVAL-LEX-ID id)

This operator differs from CEVAL-ID only in having access to those LEXical bindings
visible from the application context.

special form
(GVALUE id)

This special form returns the contents of a unique global value cell associated with its
argument. id is not evaluated, and must be an identifier. Otherwise an error is signaled.

function
(EVAL-GVALUE id)

This operator returns the contents of the global value cell associated with the identifier
which is the value of its argument, id. If the value of the argument is not an identifier
an error is signaled.

This is the functional equivalent of the special form GVALUE.

function
(SET-GVALUE id item)

This operator stores the value of item into the global value cell associated with the
identifier id. If the first argument is not an identifier, an error is signalled. No check is
made on the value of item.

_/

(N

&

5.5 Creating Funargs

Funargs are created by:

e evaluating a function expression

-® evaluating a macro expression

® evaluating a bpi
e applying CLOSURE to an expression and a state descriptor
® evaluating a FUNARG expression

e applying FUNCTION to an expression

STATE built-in function
(STATE [a-list])
This operator creates a state descriptor which saves the current environment, control
chain and control point.
If the optional argument, a-list, is present, it is used as the non-lambda environment.
a-list differs form normal a-lists in the interpretation of its final (non-pair) CDR. If
a-list terminates in a state descriptor, the non-lambda environment component of that
state descriptor becomes an extension of the non-lambda environment which holds
a-list. While this extension (and any extension it may have in turn) is searched for
bindings, only the portion of the non-lambda environment represented by a-list will have
new bindings added to it.

CLOSURE built-in function
(CLOSURE exp sd)
This operator creates a funarg composed of exp and sd.

FUNARG special form
(FUNARG exp sd)
This operator creates a funarg composed of its two arguments, unevaluated. It is in-
cluded for compatibility with older programs.

FUNCTION special form
(FUNCTION exp)

FUNCTION is exactly equivalent to
(CLOSURE 'exp (STATE)).

It is included for compatibility with older programs.

5.6 Using Funargs

If the expression in the funarg is an invocable object, then the funarg can appear as the value of an
operator and evaluation of this funarg invocation results in the application of the invocable object in
the environment contained in the funarg. If the expression is not an invocable object, then evaluation
of this funarg results in the evaluation of the expression in the environment contained in the funarg.

Evaluation 49

5.7 Effect of Compilation

A high degree of semantic equivalence exists between the interpreted and compiled versions of an
expression. In particular, the rules for variable binding and evaluation are identical in interpreted and
compiled programs. There are some incompatibilities, however.

During interpretation, a list whose operator is a macro will be macro-expanded each time it is en-
countered. During compilation, such a form will be macro-expanded once, and the resuit will be
compiled. In most instances this will not affect the semantics. However, a macro which retains in-
formation between invocations and expands differently at different times will not have its effects
maintained. In particular, a macro which uses an identifier bound FLUIDIly by the program in which
it is used as a free variable, will have different values available during interpretation and compilation.

If a macro is redefined, the new definition has no effect on previdusly'compiled programs.

The first phase of the compilation process is to expand all macros found in the program, and to re-
place the forms by their corresponding expansions. Certain other transformations are performed
“during this phase. The only one which could have an effect on the meaning of the program is an op-
timization of function invocation. When the compiler encounters a list of the form, (id item ...), it
- evaluates id in the environment of compilation. If the value found is not a special form, built-in
function or macro, it is assumed to be a function. If, further, id is not bound as a variable in the object
being compiled and is not used as a free variable, the run time evaluation of id is deferred until after
the evaluation of the arguments. The run time evaluation of id is short circuited, via id’s shallow
binding cell. This transformation is innocuous in all but one situation. If, during the evaluation of
one of the arguments, an assignment is made to id by some other function, then during interpretation
(where the operator is evaluated before the arguments) the effect is not seen, whereas during the
running of the compiled code, it is. The user may explicitly force interpreter order of evaluation by
writing (FUNCALL id item ...).

The special form CLOSEDFN is equivalent to QUOTE in interpreted programs. In compiled pro-
grams, CLOSEDFN may be used to specify that a nominally QUOTEGd function or macro expression
is to be compiled into a quoted bpi.

Programs which, in their interpretive forms, contain cyclic structure other than wholly within
QUOTEd objects, cannot be compiled at all. The compiler will not detect this condition, and will
loop.

Non-cyclic shared substructure in a program may compile correctly, unless it is used by the program
for self-modification, in which case the compilation will terminate with no apparent errors but the
resulting bpi will not behave in the same way as the original program.

5.7.1 Examples

The evaluation rules allow a great amount of flexibility for the advanced user, but can be used safely
and easily by the casual user. We include a few examples to illustrate the rules, and to give the ad-
vanced user a feel for how to use the rules, and the naive user some guidelines and some appreciation
of how the rules have enabled certain facilities to be built.

A function has arguments, builds up temporary values, and returns é final value. Those temporary
values are often stored in local variables. Suppose a function has an argument "X" and the pro-
grammer chooses to call the local variable "Y". The function would probably be written:

(LAMBDA (X)
(PrROG (Y)
by o

PROG is a macro and when it is the operator of an expression, that expression expands to an ex-
pression containing a function expression. If we do the expansion in place (as the compiler does) the
result looks like:

50

C

(LAMBDA (X)
((LA?BDA (y)

NIL)

The identifier Y is initially bound to the value NIL, when the innermost function expression is eval-’
uated. The programmer expects that when the variable X is used in the body of the inner lambda its
value is the value of the argument to the entire function. With the rules of evaluation, it is. The inner
function expression evaluates to a funarg, and hence no resolution boundary is raised between the
use of X and its intended binding.

Suppose the programmer wanted to re-define the "'="' operator to mean assignment as it does in a
language like Pascal. Evaluating "(SETQ = "SETQ) will cause that re-definition. After that evalu-
ation, evaluating "(= A 5)" will cause the binding for A to have a value of 5.

The programmer may have written a function P, in the course of which = should mean assignment,
and yet want to be able to return to the original meaning of = when the function is finished. This
may be accomplished by evaluating the following expression:
((LAMBDA ((FLUID =))
(P)
SETQ)

P will be evaluated on the otherside of a resolution boundary, but since = is bound to SETQ using
FLUID, that binding will be found by the identifier resolution rules.

The next example is furnished for the readers who wish to verify their understanding of the rules.
Let us assume that FOO has as its value:

(LAMBDA () (PRINT X))
and BAR has as its value:

(LAMBDA ((FLUID X))
(SETQ X 6)
((LAMBDA (X)

(SETQ BAZ '(LAMBDA () (PRINT X)))
(PRINT (EQUAL BAZ F00))
(BAZ)

('(LAMBDA () (PRINT X))
((LAMBDA () (PRINT X)))
(SETQ GRITCH (LAMBDA ()
(GRITCH))))

(BAR ()) will print 6, TRUE, 6, 6, 5, and 5. FOO is another function whose invocation raises a re-
solution boundary. Hence, the binding of X to S is not seen while the expression "(FOO)" is being
evaluated. The further away binding of X to 6 is seen. The rules were constructed so that equal
functions would result in equal values. The value of FOO is equal to the value of BAZ, and hence
"(BAZ)" also evaluates to 6. The quoted function expression, hence an unevaluated function ex-
pression, in operator position also follows the same rule. The application of an unevaluated function
expression does not see bindings which are not fluid.

)
(PRINT X)))

However, an evaluated function expression (e.g. the two in the example which are not preceeded by
the quote mark) returns a funarg, which does not raise a resolution boundary. These follow a dif-
ferent rule. That rule allows the programmer, when writing a function, to use local functions which
can see and modify local bindings.

Evaluation 51

KJ

(\\

6.0 Functions

A function is a built-in function, a function expression, or an fbpi.

A built-in function is one which has an implicit definition for the interpreter and compiler. It can be
invoked by evaluating a built-in function invocation.

Arguments which are passed to a built-in function are not maintained in a stack frame but
are kept directly in registers. This means that if an error occurs during evaluation of a
built-in function, the use of TRACE will not necessarily find a stack frame.

A function expression is a list which contains LAMBDA as its CAR at the time when the interpreter
recognizes the operator. A function expression can be created using the LAMBDA operator de-
scribed below. It can be invoked by evaluating a function invocation. In this case, the value of the
operator will be the function expression. '

An fbpi is a compiled function expression. It can be invoked by evaluating a function invocation. In
this case, the value of the operator will be the fbpi.

6.1 Creating Function Expressions

LAMBDA

special form
(LAMBDA bv-list [exp] ...)

This form is used to define new functions. The two main parts of a function expression
_ are the bound variable list and the group of expressions known as the function body. The
above notation uses Backus-Naur Form to describe the bound variable list. The bv-list
part of a function expression must have one of the forms shown below in Backus-Naur

Form.
bv = ()
var
(= var bv)
(ibv . bv)
ibv = bv
(ibv . ibv)
(= var ibv)
<ibv ...>
var = id
(LEX id)
(FLUID id)

The evaluation of a function expression differs depending on whether the evaluation
results from the recognition of the function expression in the operator position of a list
or in the operand position.

The evaluation of a function expression in operator position of a list consists of the fol-
lowing steps:

1. The bound variables are created, the arguments are associated with the bound
variables by rules which follow, and the arguments are evaluated from left to right,
based on the associated bound variables, and become the initial values for the
bound variables.

2. The following rules define argument binding.

Given a function expression (LAMBDA bv . body) being applied to values Al, A2,
..., form the list,

Functions 53

54

(A1 A2 ...)

Now, treating this list as a single argument, examine it and the bound variable list,
bv, in parallel.

. If bv is neither a pair, a vector or an identifier, discard the argument and ter-
minate.

o If bv is an identifier, bind the argument to that identifier.

o If bvis alist of two elements, of the form (LEX id), bind the argument to id.

. If bv is a list of two elements, of the form (FLUID id), bind the argument to
id, and note that id is declared FLUID in the environment created by the
function expression.

o If bvis a list of three elements, of the form (= id bv’), bind the argument to
the identifier id, and repeat the process with bv’ and the argument.

. If id in the above step is a list of the form (LEX id1) or (FLUID id1), bind
the argument to id1 and note the FLUID declaration if appropriate.

e If bv is any other pair and the argument is not a pair, signal an error.

o If both bv and the argument are pairs, repeat the process on their respective
CARs and CDRs.

o If both bv and the argument are vectors, and if the argument is at least as long
as bv, repeat the process for each element of bv and the corresponding ele-
ment of the argument.

(Note that NIL is not an identifier.)

Note that because of the "'constant’ rule, excess arguments are simply discarded,
not considered an error, while missing arguments are treated as an error.

The environment and control chain are created using the rules onpage 44 .
4. The expressions in the function-body are evaluated from left to right.

In normal termination, all expressions in the function-body are evaluated and the
value of the function expression is the value of the last expression in the function-
body.

6. In abnormal termination, all expressions in the function-body are evaluated until a
transfer of control expression is evaluated. The value of the function expression is
the value defined by the transfer of control construct.

The evaluation of a function expression in operand position of a list consists of creating
a funarg consisting of the function expression as the funarg expression and the current
state as the state of the funarg state descriptor.

CASE 1:

The environment created allows access to the variables in the environment of
the expression. Thus, as in the funarg, free variables will resolve to immediate
bindings.

A function expression which is found by evaluating an operator, (an identifier,

say), does not have access to the local environment. In order that a variable

be accessible from an invoked function it must be declared to be FLUID. This

corresponds to SPECIAL in many other LISP systems. The difference is that

the declaration of SPECIAL is made outside of any specific function ex-

pression, while the declaration of FLUID applies to one specific instance of a
- variable, in one specific function expression.

In order to declare a variable FLUID, the position usually taken by the vari-
able, say X, in the bound variable list is filled by the list (FLUID X). Suppose
that:

e

FOO = (LAMBDA (X) (BAZ))
BAR = (LAMBDA ((FLUID X)) (BAZ))

BAZ = (LAMBDA () X)

then the following sequence would ensue.

(SETQ X 10)
Value = 10
(FOO 1)
Value = 10
(BAR 1)
Value = 1

In the first case, (FOO 1), the free variable, X, in BAZ does not have access
to the binding of X in FOO, while in the second case, (BAR 1), it does have
access to the FLUID binding in BAR. This accessibility of the FLUID binding
is not just limited to the immediately invoked function, but is also effective at
deeper levels of calling.

CASE 2:

When the resulting funarg is applied, free variables in the function expression
will be resolved, lexically, in the environment of the state-descriptor.

Suppose the value of the identifier FOO is
(LAMBDA (X) (LAMBDA (Y) (PLUS X Y)))
and the expression (FOO 7) is evaluated.
The value of this expression will be
%.FUNARG. ((LAMBDA (Y) (PLUS X Y)) . %.SD.xxxxxxxX)

where the state descriptor part of the funarg captures the binding of X (from
the original function expression) to 7. The resulting funarg will now add 7 to
any argument that it is applied to.

((LAMBDA U U) 123)=1(123)
({LAMBDA (U) uU) 123) =1

((LAMBDA (U . V) (LIST U V)) 123)=1(1(23))
((LAMBDA (U V . W) (LIST UV W)) 123)=1{(12(3))
((LAMBDA (U V W) (LIST U V W)) 123)=1(1223)
((LAMBDA (U VW . X) (LISTUV W X)) 123)=(1231())
((LAMBDA (U V W X) (LISTU V w X)) 12 3) = Error break
((LAMBDA ((U . V)) (LIST U Vv)) (1 2)) = (1 (2))
((LAMBDA ((U V)) (LIST U V)) "(12)) = (1 2)
((LAMBDA ((= U (v W)) (LISTU V W)) (1 2)) = ((12) 1 2)
((LAMBDA (= U (V . w)) (LIST U V W)) 123)=((123)1(23))
((LAMBDA (<U Vv>) (LIST U V)) '<123>) =(12)
((LAMBDA (<U V w>) (LIST U V W)) '<1 2>) = Error break
Figure 11. Examples of LAMBDA bv-lists.

6.2 Naming Functions

A function expression is an object, and therefore can be the value of an identifier. The association
of a function expression with an identifier is made by the SETQ function.

Because there are so many operators, naming conventions are necessary to allow the programmer to
develop expectations of the probable meaning of an operator name. Conventions are not rigidly
followed. In addition, it is important to avoid accidental re-definitions that might change the behavior
of the system.

A simple rule rule of thumb is as follows. If an identifier is described in this document, then
the identifier is a reserved name of LISP/VM. In a LISP/VM environment with no user

Functions 55

programs, if the value of an identifier is not that identifier, then the identifier is a reserved
name of LISP/VM. Changing the value of reserved identifiers may change the behavior
of LISP/VM.

Predicates have names ending in P.

Argument-modifying operators have names beginning with N (for Non-copying). Example:
NREVERSE as contrasted with REVERSE.

System operators have a comma in their name. These functions must be avoided or used with caution
since most of them make extensive assumptions about the environment in which they are called.

Optimized versions of operators have names beginning with Q for QUICK. In all cases it implies the
existence of a macro in the compile environment which produces in-line code. In many cases a quick
operator avoids type checking. Another group of Q operators are the QS... operators. These
(QSPLUS, QSADDI, etc.) assume that their arguments and values are small integers, (numbers be-
tween -(2*26) and 2*26-1). In general, they do arithmetic modulo 2*26, forcing correct small integer
type codes on their results. They are also aware of each other, and will skip the forcing of type codes
on some intermediate results when nested. QE operators are quick operators which relate to
EBCDIC representations of characters, QV operators relate to vectors, and QC operators relate to
character vectors. Note that there are a few functions whose names start with Q which are neither
in line nor unchecked. These include QUOTE and QUOTIENT.

Functions whose names end in Q are usually version of other functions which use EQ rather than
EQUAL. Such pairs include MEMBER/MEMQ, ASSOC/ASSQ, UNION/UNIONQ.

Functions whose names begin with MAKE usually create data objects. Examples are MAKE-VEC
and MAKE-INSTREAM.

When an abbreviation of a type name appears in a function name, the function either takes that type
as an operand type or returns it as the result type.

The prefix H in a function name relates to hashtable functions.

6.3 Using Functions

To cause a function to be invoked, we write expressions of the form:

(id [exp] ...)
where id must evaluate to a function.

The evaluation of a function invocation causes the argument expressions to be evaluated and associ-
ated with the bound variables of the function. The current environment and control chain are created
and the evaluation continues at the current control point, the first expression in the body of the
function.

Two other forms which are used to invoke functions are:
(function-expression [exp] ...)

or
('function [exp] ...)

In the first case, the function-expression is optimized to prevent a funarg being created. In the second
case, the function must be quoted since the evaluation of a function produces a funarg as its value.

6.4 Special Ways of Creating and Using Functions

Application, on the other hand, treats one object as an operator and one or more other objects as
operands, computing the value which results from the action of the operator upon the operands.

APPLY built-in function

56

)

()

(APPLY app-ob list [sd])

The operator APPLY applies app-ob to the eleéments of list in the environment captured
by sd. app-ob must not be a macro-expression (an macro expression or a mbpi), nor
may it evaluate to a macro-expression.

If app-ob requires more operands than are contained in list an error is indicated.

(APPLY PLUS '(1 2 3 4 5))

Value = 1§

(SETQ X ((LAMBDA (Y) (STATE)) 10))
Value = %.5SD.xxxxxxxX

(SETQ Y 100)

Value = 100

(APPLY '(LAMBDA (Z) (PLUS Y Z)) '(1))
Value = 101

(APPLY '(LAMBDA (Z) (PLUS Y Z)) '(1) X)
Value = 11

Note that the app-ob (the function expression) must be QUOTEd. If it had
not been it would have evaluated to a funarg, which when applied would have
supplied its own environment of evaluation, ignoring that supplied by APPLY.

CLOSEDFN special form
(CLOSEDFN item)

This operator is exactly equivalent to QUOTE during interpretation. It acts as a signal
to the compiler to compile its operand. This allows a QUOTEd bpi to be constructed.
In compiled code, the value of

(CLOSEDFN (LAMBDA (X) (PLUS X 7)))

is a bpi, which adds 7 to its argument. This differs from
(QUOTE (LAMBDA (X) (PLUS X 7)))

which is the specified list structure, and
(LAMBDA (X) (PLUS X 7))

which results in 2 compiled function, a bpi, but one which is enclosed in a funarg.

FUNCALL

built-in function
(FUNCALL app-ob [item ...])
The FUNCALL operator applies app-ob to its remaining operands, item etc.
Interpretively,
(FUNCALL app-ob iteml item2 ...)
is exaétly equivalent to
(app-ob iteml item2 ...)

In compiled programs this is not true. The compiler transforms expressions with identi-
fiers as operators into CALL expressions, with the operator evaluated after the oper-
ands. In most cases these are equivalent, but if an operand assigns a new value to the
operator they differ, the original form not "seeing" this side effect, while the compiled

form does. :

If the initial evaluation of the operator is important the FUNCALL form should be used.

Note that the transformation to CALL expressions is only done for operators which are
identifiers that are not bound in the program containing the expression.

(FUNCALL LIST '1 '2 '3)
Value = (1 2 3)

Functions 57

CALL

VAPPLY

58

built-in function
(CALL [item ...] app-ob)
The CALL operator applies app-ob to its remaining operands, item etc.

The CALL operator is used as an intermediate form by the compiler, to reflect the usual
function invocation mechanism used by compiled code.

(CALL '1 '3 'L LIST)
Value = (1 2 3)

Sfunction
Apply a function and verify the arguments and value.
(VAPPLY predO app-ob [predl itemi] ...)
The effect of this function is very similar to that of the expression
(app-ob item1 ...)

but before app-ob is invoked, each of the predicates pred], ... is invoked for the corre-
sponding arguments &iteml, If any predicate returns a value of NIL, an error is

signalled. The predicate predO is invoked on the value returned by app-ob and if the.

value returned by the predicate is NIL, an error is also signalled.

By using VAPPLY, you can perform selective type checks on the arguments and values
of functions without cluttering the body of the function. One typical use of VAPPLY
is in the interpreted expression in F*CODE forms emitted by Q-macros. The interpreted
expression verifies that the arguments and values are in the right domain and range,
while the compiled machine instructions simply perform the operations on the assump-
tion that the constraints are met.

7.0 Macros

A macro is a special form, a macro expression, or an mbpi. A special form is a macro-like operator,
or the expression containing this operator as the expression operator, which is recognized directly by
LISP/VM. It can be invoked by evaluating a special form invocation. A macro expression is a list
which contains MLAMBDA as its CAR at the time when the interpreter recognizes the operator. A
macro expression can be created using the MLAMBDA operator described below. It can be invoked
by evaluating a macro invocation. In this case, the value of the operator will be the macro expression.
An mbpi is a compiled macro expression. It can be invoked by evaluating a macro invocation. In this
case, the value of the operator will be the mbpi.

A macro-applicable object is an invocable object (a macro or a macro-funarg) which is used by the
programmer to extend the syntax.

7.1 Compilation of Macros

Compilation involves .a. partial interﬁretation of the expression being compiled. In particular, all
macro operators must be macro-applied, that is expanded, at the time of compilation. The resulting
macro-free form is then translated into machine code.

The environment of compilation consists of the operator recognition environment and the macro ap-
plication environment.

The operator recognition environment is an environment used by the compiler which adds and replaces
bindings from the non-lambda environment. It is used to selectively redefine operators during com-
pilation, for reasons of efficiency and to achieve macros local to a file. Macros are recognized here
and applied in the macro application environment. Macro application is the process of passing the
argument to a macro and of returning the value of the macro. Macro application takes place during
evaluation when the result of macro application is normally evaluated again. It also takes place during
the first stage of compilation. Macro expansion is the effect of macro application. The macro appli-
cation environment is an environment in which the compiler performs all macro applications. It is used
to add temporary definitions or redefine existing definitions of macros and functions invoked during
the macro applications which are triggered by the actual compilations. This serves to isolate the
compiler from the compiled expression. This environment is normally empty.

7.2 Creating Macro Expressions

MLAMBDA

special form
(MLAMBDA bv-list [exp ...])

Like the function, the macro expression behaves differently when used in operator or
operand position.

A macro expression, used as an operator, specifies a macro application. This differs
from ordinary application (such as of a function expression) in three ways.

No evaluation of operands occurs before the macro application

2. The entire expression, including the (unevaluated) operator, becomes the operand
of the macro operator.

3. The value returned by the macro operator is itself evaluated, as if it had occurred
in the place of the original expression.

The expression (which becomes the operand) is treated as if it were the conceptual op-
erand list described above, under functions. Thus to bind the entire expression to a
variable, one would write

Macros 59

((MLAMBDA X N .
(PRETTYPRINT (LIST '*%% x !#%¥y)

(CONS 'CAR (CDR X)))
(A . B))
((MLAMBDA X
(PRETTYPRINT (LIST '#*** x '#%%))
(CONS 'CAR (CDR X)))
"(A . B))
***)

Value = A

It is as if an outer pair of parentheses had been supplied. One can use a structured bound
variable list, as well.

((MLAMBDA (() . X) o .
(PRETTYPRINT (LIST '#*%% x !'¥*%¥y)
(CONS 'CAR X))

.I.J"S:A H B)) Lok
(%% (1(A". B)) ***)
Value = A P

In these example we see the side effects of the macro application, and the value of the
resulting expression, but not the value of the macro itself. In both cases that is

(CAR '(A . B))

but that expression is reevaluated before any value is returned.

As in the function expression, a macro which is written explicitly as an operator has ac-
cess to the lexical bindings of its environment.

This is true of an macro expression which is the result of a macro application. D
Thus, one macro application may create a new expression which contains a
macro operator, resulting in a second macro application.

An macro expression which is the immediate value of an operand does not have such
lexical access.

If an macro expression is found as a result of repeated evaluations of an operator, an
error is signalled. The rational for this action, is that elements of the expression, putative
operands, will have been evaluated, making it impossible to recover the original form,
the correct operand of the macro expression.

This rule applies to mbpis as well.

If an operand which the compiler assumed would have an applicable value during eval-
uation has, in fact, a macro applicable operand, the same error is signalled.

LAM —— macro

60

(LAM bv-list [exp ...])

Unlike most other LISP systems, functions which receive their arguments unevaluated,
FEXPRs, are not fundamental to LISP/VM. This capability is realized through the
LAM macro. A LAM macro acts like a function expression with the bound variable list
augmented with declarative information. In the case of an augmented bound variable
list, the LAM macro expands to a macro expression which processes the variables ac-
cording to the declarations in the bound variable list and then applies a function ex-
pression incorporating the body from the original LAM. ,)

The augmented bound variable list of the LAM expression may be defined in Backus-
Naur Form as:

(N

oL
bvn

bv

ibv

var

bv
(QUOTE by)
(bv . bv™)

((QUOTE bv)
()

var
(= var bv)
(ibv . bv)
bv
(ibv . ibv)

(= var ibv)
<ibv ...>

id
zLEX id)
(FLUID id)

(LAM (QUOTE X) [exp ...})

(LAM (X (QUOTE Y)) [exp ...}

(LAM ((QUOTE (X . Y))) . [exp ...)

(LAM (X . (QUOTE Y)) . [exp ...])

. bv¥®)

indefinite number of arguments, all QUOTEd

where an instance of -(QUOTE' bv) specifies an unevaluated argument which is to be
bound to the bound variable.

two arguments, the first evaluated, the second

QUOTEd

one unevaluated argument which is to be decom-

posed, with its CAR bound to X and its CDR to

Y

trailing QUOTEd arguments

1)

((LAM ((QUOTE X) Y) (LIST X Y)) A B)

Value

(A 2)

The expansion of this expression would result in the expression:

((LAMBDA (X Y) (LIST X Y)) (QUOTE A) B)

To avoid having the resultant mbpi contain the entire body of the original
LAM as a QUOTEGd expression, DEFINE and COMPILE perform an opti-
mization on the macro expression generated by the LAM. The LAM is ex-
panded (by use of the system operator MDEF) and the QUOTEdJ function
expression is extracted from it. A system generated name is generated and
inserted in place of the function expression and the system generated name is

then given the function expression as its value.

When LAM does not expand to a macro expression, the transformation de-
scribed is not possible, and the expansion (which ultimately results in a func-
tion expression) is assigned to the name (in the case of DEFINE) or compiled.

Macros

one evaluated argument, indefinite number of

Note that the last case (as the trailing FLUID binding discussed under LAMBDA) would
print as

(LAM (X QUOTE Y) . [exp ..

Given A and B with values of 1 2 respectively:

Note that LAM may be redefined by the user, but it requires careful consideration of the
interaction between LAM and DEFINE.

61

7.3 Naming Macros

The naming conventions for macros follows those for functions.

7.4 Using Macros

To cause a macro to be invoked, a macro invocation is written. This is a list of the form
(id [arg] ...)

where id evaluates to a macro expression, an mbpi, or a macro funarg.

Evaluation of the macro invocation causes the entire invoking expression to be bound bound to the

-single bound variable of the macro. The environment and control chain are created for the macro
invocation. The body of the macro expression or mbpi is evaluated. The value returned by the body
is evaluated again.

MDEF

built-in function

(MDEEF arg item [sd]) -

This operator allows only the macro invocation stage of evaluation to be performed in
isolation. The argument arg must be a macro expression, an mbpi, or a macro funarg.
Otherwise an error is signalled. The second argument is treated as a macro invocation

and is bound to the bound variable of arg The result of the macro invocation is returned
as the value and is not evaluated as would be the case in ordinary macro invocation.

If the sd argument is specified, the macro invocation is done in the environment of sd.

62

()

()

8.0 Operator Definition and Transformation

An identifier may be established as an operator by simple assignment. For various reasons this is
rarely done in practice. Instead one of a group of definition and transformation operators is usually
used, COMPILE, ASSEMBLE, DEFINE, or DEFINATE.

These operators interact with a data object, the option list, which is bound to the variable
OPTIONLIST. This is an a-list which specifies various types of processing. The option list may be
augmented by the user in various ways, as will be noted below.

8.1 Definition and Transformation Operations

COMPILE Sfunction

(COMPILE list1 [list2])
" Where list1 must be of the form
(ia exp)
or of the form
((id1 expl) ce)

For each id and exp, COMPILE performs a transformation of exp and sets id to have the
transformed expression as its value. The COMPILE operator performs a five-stage
transformation of expression. In the first stage, any outermost LAM is expanded and
the id exp list is transformed into two id exp lists, with the second having a name of the
form LAM,id. In the second stage, the expression operator is evaluated. If the result is
a macro invocation, it is invoked. This process continues until the value of the operator
is no longer a macro invocation. If the resulit is then a function or macro expression, no
further transformation occurs. Otherwise, the expression is enclosed as the body of a
function expression. The third stage macro-expands all macros in the expression. The
fourth stage transforms the expression to LAP code. The fifth stage transforms LAP
code into object code and produces a bpi and/or an entry in a LISPLIB.

The transformation is affected by the value of the option list.

ASSEMBLE function
(ASSEMBLE list1 [list2])
Where list1 has the form
(id exp)
or the form
((ia exp) e.)

. For each id and exp, ASSEMBLE performs a transformation of expression and sets
name to have the transformed expression as its value. The ASSEMBLE operator per-
forms a single stage transformation of expression. Expression must be LAP code. AS-
SEMBLE transforms LAP code into object code, and produces a bpi and/or an entry in
a LISPLIB. :

The transformation is affected by the value of the option list.

Operator Definition and Transformation ‘63

DEFINE

DEFINATE

64

Sfunction

(DEFINE list1 [list2])

Where listl has the form
(id exp)

or the form

((id exp) ...)

For each id and exp, DEFINE performs a transformation of expression and sets name
to have the transformed expression as its value. The DEFINE operator performs a
two-stage transformation of expression. In the first stage, any outermost LAM is ex-
panded and the id exp list is transformed into two id exp lists, with the second having
a name of the form LAM,id. In the second stage, the expression operator is evaluated.
If the result is a macro invocation, it is invoked. This process continues until the value
of the operator is no longer a macro invocation. If the result is then a function or macro
expression, no further transformation occurs. Otherwise, the expression is enclosed as
the body of a function expression.

The transformation is affected by the value of the option list, primarily the FILE and
NOLINK key words.

function -- FOR THE EXPERT LISP/VM USER
(DEFINATE list1 id1 id2 list2)
Where listl has the form
(id exp)
or the form
((id exp) col)

The values of the second and third operands are key words, indicating the form of the
first operand and the desired processing, respectively. These are the specification and
the action.

The fourth operand is a list of key-value pairs which is to be temporarily added to the
head of the option list.

There are five specifications and six actions, and they are interrelated. For example,
COMPILATION specifies that the input is in the same form that would have been
produced by the action COMPILE. The actions are ordered, each requiring the result
of the previous one. DEFINATE sequentially performs them in order, starting with the
action which will accept the first operand as specified, and continuing until the requested
action has been reached.

The final disposition of the value is controlled by the option list.
The specification describes the exp parts of the first operand.

EXPRESS EXPRESSION An EXPRESSION is any LISP expression. As an
action, EXPRESS is the identity operator, no processing
is done.

DEFINE DEFINITION The action, DEFINE, examines an EXPRESSION for
the explicit operator LAM. If it finds one it performs
the macro expansion of the LAM into a macro ex-
pression and transforms that into two id exp lists, with
the second having a name of the form LAM,id.

This prevents the body of the LAM expression from
being included at each instance of its use. It also causes

(M

REALIZE REALIZATION

REDUCE REDUCTION

the body of the LAM expression to be not lexically
present, and thus to behave in the same way as function
expressions with regard to variable evaluation.

The action, REALIZE, evaluates the operator of the
DEFINITION and if the result is a macro invocation, it
is invoked. This process continues until the value of the
operator is no longer a macro invocation. If the result
is then a function or macro expression, no further action
occurs. If the result is any other expression, it is en-
closed as the body of a function expression.

The action, REDUCE, replaces all subexpressions in the
REALIZATION by their macro expansions. This is
done top down.

Asin REALIZE, the value of the operators in the com-
pilation environment determines whether a macro ex-
pansion is done.

COMPILE COMPILATION The action, COMPILE, transforms the REDUCTION

ASSEMBLE

8.1.1 EXF

to LAP code.

LAP is a high level assembler, accepting S/370 machine
instructions (in parenthesized form) and various
pseudo-operations. It is not interpretable.

The action, ASSEMBLE, transforms LAP code into
object code, and produces either a bpi, or an entry in a
LISPLIB (or both).

There is no specification, ASSEMBLY, as there is no
READable representation for the result of this action.

Many LISP systems have a variety of operators which deal with text files of expressions. They may
have separate LOAD and COMPILE command, for example. In LISP/VM the exists a single such
function, EXF, which simply reads successive expressions from a file and evaluates them.

In order to achieve the variation in control provided by multiple file reading operators in other sys-
tems, LISP/VM contains a collection of functions, described in the chapter on Operator Definition,
which adjust their behavior according to the value of the variable OPTIONLIST, a property list.

Thus, to cause the compilation of a factorial function, a file might contain the following sequence of

lines.
(COMPILE '(
(FACTOR I AL
(LAMBDA (N)
(COND
((EQ N O) 1

)
('T (TIMES N (FACTORIAL (SUB1 N)))))))))

Operator Definition and Transformation 65

To define a function the following form would be used.

(DEFINE '(
(NREVERSE
(LAMBDA (X)
(PROG (U V)

TOP (COND ((NOT (PAIRP X)) (RETURN U)))
(SETQ Vv (CDR X))
(SETQ U (RPLACD X U))
(SETQ X V)
(o TOP))))))

The actual action taken depends on two entries in OPTIONLIST. If there is a FILE property, the
value of which is a library, then a bpi (if the operator was COMPILE), or the given function ex-
pression (in the case of DEFINE), will be placed in the corresponding library, with keys of "FAC-
TORIAL" and "NREVERSE". If there is a NOLINK property with a value of non-NIL, then no
bpi will be created in the currently running LISP/VM system. The bpi which is placed in the library
is fast-loadable in that it does not have to be parsed. One can thus produce any combination of
fast-loadable and currently loaded versions of the function.

The operators FILEQ and FILEACTQ may be used to place expressions in the library, with flags
indicating whether they are to. be assigned or evaluated at load time.

In addition, there exist operators such as ADDTEMPDEFS and TEMPDEFINE, which make prede-
fined macro and function definitions (possibly compiled) available to the compiler and to compile-
time macros. These definitions persist only for the duration of the processing of the current file.

EXF

macro
(EXEF argl [arg2 [FILE filespec] [id item] ... 1)

The EXF operator receives its argument unevaluated. It rebinds OPTIONLIST,
CURREADTABLE, OUTREADTABLE, and CURRENT-SYNTAX to have fluid
binding, with their previous values. This allows the values of these variables to be
changed within the EXF without affecting evaluations following its completion. Side-
effects on these values will affect the invoking environment, unless the values are copied.

EXF analyzes its arguments, uses them to augment OPTIONLIST, and then invokes the
system’s top-level READ-EVAL-PRINT loop, with appropriate input and output
streams.

The first argument, argl, is required. It may be NIL, an identifier or a list of the form
(id1 [id2 [id3]]), where the ids are CMS filename, filetype and filemode respectively.
If argl is NIL, the READ-EVAL-PRINT loop is given the current value of
CURINSTREAM as its input stream. If argl is the identifier *, EXF reads from the
console. If argl is a list, it is used as a file spec. to create an input stream to read from
disk. If it is an identifier, it is assumed to be a disk file name. The variable
EXF-FILETYPES is evaluated to obtain a list of defauit CMS filetypes. The initial
value of this variable is the list (LISP). The user-supplied filename is combined with
these until a file is found and that file is used for input. If no such file is found, EXF
terminates and returns a value of NIL.

The resolved filetype determines the reader syntax, files of type LISP use standard syn-
tax, while files of type LISP370 use LISP370 syntax.

The second argument, if present, specifies the output stream for the
READ-EVAL-PRINT loop. A missing argument, or one of NIL, causes the current
value of CUROUTSTREAM to be used. If arg2 is the identifier *, output is directed to
the console. If arg2 is the identifier &, any output is discarded. If arg2 is the identifier
=, output is directed to a file with filetype EXF and filename and mode the same as the
input file. Any other identifier is taken as a filename, with filetype EXF and filemode
A. A list of identifiers is assumed to specify filename, filetype and filemode.

66

()

&

If a FILE property is to be given, it must immediately follow arg2. When the third ar-
gument is the identifier FILE, the fourth argument, filespec, specifies a library which is
to receive fast-loadable objects. As with arg2, this may be an =, specifying a library file
of filetype LISPLIB with a filename the same as the input file. An identifier is inter-
preted as the filename for a library of filetype LISPLIB, while a list of identifiers is in-
terpreted as the filename, filetype and filemode.

In the cases of output streams and LISPLIBs, an existing file of the same name, type and
mode will be replaced by the new file.

The remaining arguments are paired and added to the current (by EXF) binding of
OPTIONLIST. Note that no evaluation takes place during this binding, only constant
values may be placed in OPTIONLIST as property values.

Two such properties interact with EXF. If a WIDTH property is currently in
OPTIONLIST, or is added to it by the EXF argument list, its value is used to specify the
buffer length for the output stream. If no such property is defined, the default value is
80 characters. If a FILE property is given, then a property of NOLINK with a value of
non-NIL is added to OPTIONLIST before any of the remaining properties in the EXF
argument list are added.

The effect of this is to suppress the creation of bpis in the current running system if a
fast-loadable file is being created. To override this default, the call to EXF must contain
the arguments NOLINK NIL following the FILE filearg arguments.

This function rebinds CURREADTABLE and OUTREADTABLE to their current val-
ues. As a result, any permanent side effects to these tables are visible in the environment
that invoked EXF. If it is desirable to avoid these side effects, the expression
(COPY-IOTABLES) should appear in the file.

EXF-FILETYPES variable

The value of this variable is a list of identifiers that specify a sequence of default CMS
filetypes. This list is used by the EXF operator and the Lispedit READ and IMPORT
commands to find a file specified by name only. A typical use of this variable is to add
additional filetypes to it in the profile file evaluated every time LISP/VM is started up.

8.2 The Option List

OPTIONLIST variable

An a-list, holding named values which are examined by various functions in the defi-
nition facility.

The values of various properties on this augmented list control various aspects of defi-
nition, compilation and assembly. GET is used to search OPTIONLIST, thus NIL is the
default value for any property not explicitly present.

Various processes effect the option list. Every definition operator may temporarily add
its own options. EXF adds options which are removed when it finishes. Other operators
change the current value.

Both EXF and DEFINATE re-bind OPTIONLIST, and the standard operators modify
it in such a way that their effects are lost upon exit from these functions.

8.3 Properties of the Option List

BPILIST

key word
(BPILIST . boolean)

Operator Definition and Transformation 67

A non-NIL value for BPILIST causes an assembly listing to be produced. This listing
contains the hexadecimal System/370 machine code produced by the assembler, to-
gether with a variable amount of symbolic LAP code.

If BPILIST is non-numeric or if it is greater than 3, a full listing is produced. This in-
cludes all instructions generated by the assembler, all comments and all source in-
structions.

A value of 3 causes intermediate instructions to be dropped from the listing. That is,
instructions generated by the assembler, which in turn resulted in the generation of fur-
ther instructions rather than in object code.

A value of 2 causes comments to be dropped from the listing.

A value of 1 causes only source instructions to be printed symbolically, although the
object code (hexadecimal) is printed in full.

FILE —— key word

INITSYMTAB

(FILE . rstrm)

The value of FILE shouid be NIL or a stream. If FILE is non-NIL a loadable bpi-image
will be written onto it. If FILE is NIL no action is taken.

By use of the FILE and NOLINK options programs can be compiled and/or assembled
for future loading without their being defined in the running system. (See LOADVOL
function.) The resulting file, when loaded, causes the same assignments to take place
as would have resulted if the NOLINK option were NIL.

key word

(INITSYMTAB . a-list)

The value of this property should be an a-list (or NIL, which is an empty a-list) which
will be searched by the assembler (LAP) for operation code values, symbolic register
names, symbolic immediate operand names and symbolic literals. The values in
INITSYMTARB override the build-in values of the assembler, and are overridden in turn
by symbols established by EQU statements in the LAP code.

LAPLIST —— key word

(LAPLIST . boolean)

A non-NIL value for LAPLIST causes the assembly code produced by the compiler to
be PRETTYPRINTed. This property does not control the printing of LAP source code,
which is under the control of the SOURCELIST property. The default value is NIL.

LISTING —— key word

(LISTING . stream)

The value of LISTING should .be NIL or a fast stream. If LISTING is a stream the
output produced as a result of the preceding four options (SOURCELIST, TRANSLIST,
LAPLIST and BPILIST) will be written onto that stream. If LISTING is NIL it defaults
to the value of the fluid CUROUTSTREAM. ‘

MACRO-APP-SD —— key word

68

(MACRO-APP-SD . sd)

The environment in which macros are to be expanded by the compiler. The use of
MACRO-APP-SD protects from conflict between variables bound by the compiler and
the bindings of macros used in expressions being compiled. If the value is NIL, the initial

_state (where only nil-environment bindings are present) is used.

W,

(N

MESSAGE

key word
(MESSAGE . stream)

The value of MESSAGE should be NIL or a fast stream. All error and warning messages
from the definition functions are written onto the MESSAGE stream. If the value of -
MESSAGE is NIL it defaults to CUROUTSTREAM.

NOLINK key word
(NOLINK . boolean)
If the NOLINK property has a non-NIL value, the result of an assembly is not made into
a bpi. The default is to create a bpi and assign it to the name with which it was paired
in the specification list.

NONINTERRUPTIBLE key word
(NONINTERRUPTIBLE . boolean)
If the NONINTERRUPTIBLE property is non-NIL, no polling for interrupts is inserted A
in the bpi by the assembler. Explicit POLL statements will be assembled. The default
value is NIL, i. e. the bpi is interruptible.

OPTIMIZE key word
(OPTIMIZE . sint)
The value of the OPTIMIZE property controls the amount of code modification during
pass 2 of the compiler. The default value is 4, the highest level of optimization. Level
0 lets the code emitted by the various generators stand as-is. The levels from 1 to 3
perform various operations, such as dead code elimination, code motion to eliminate
branches, common code merging, etc.

NOMERGE key word
(NOMERGE . boolean)
A non-NIL value of the NOMERGE property suppresses the compiler’s contour merg-
ing. This is an optimization in which the variables of operator LAMBDAs are promoted,
that is made into non-argument variables of enclosing LAMBDAs. The resulting bpi
will create fewer stack frames than the the interpretive evaluation of the original form.
For debugging purposes it may be desirable to compile a function with this merging
suppressed.

OP-RECOGNITION-SD key word
(OP-RECOGNITION-SD . sd)
The environment in which the operators are evaluated by the compiler. The values
found in this environment are used to distinguish functions, macros and special forms.
Various operators exist to augment this environment, see -- Heading id ’compenv’ un-
known --.

QUIET key word
(QUIET . boolean)
If the QUIET property has a non-NIL value warning and informational messages to the
console are suppressed.

NOSTOP key word

(NOSTOP . boolean)

Operator Definition and Transformation 69

If the NOSTOP property has a non-NIL value errors found during macro will not signal
an error, but will print their messages on the MESSAGE and LISTING streams.

SOURCELIST
(SOURCELIST . boolean)

If SOURCELIST has a non-NIL value the source program (either LISP or LAP) is
PRETTYPRINTed by the definition functions. The default is NIL. When running with
SOURCELIST non-NIL it should be remembered that the printing by the supervisor can
be controlled by the settings of the fluid variables , ECHOSW and/or ,VALUSW.

key word

TRANSLIST
(TRANSLIST . boolean)

A non-NIL value for TRANSLIST causes the output of pass one of the compiler to be
PRETTYPRINTed. This is the "transformed" LISP/VM, with all macros expanded and
‘with various other changes, which will be made into a bpi by pass two of the compiler
and the assembler. A number of forms internal to the compiler appear in this listing. If
definitions of these internal forms existed (unfortunately impossible in some cases) in-
terpretation of this transformed LISP/VM would duplicate the behavior of the bpi which
results from the full compilation/assembly process. The default value is NIL.

key word

8.4 Operations on the Option List

ADDOPTIONS
(ADDOPTIONS [id item] ...)

This operator constructs an a-list from its operands, using them alternately as keys and
values. The result is appended onto the front of the current value of OPTIONLIST.

Sfunction

If the number of operands is odd, an error is signalled.

MAADDTEMPDEFS
(MAADDTEMPDEEFS filearg)

filearg must designate a LISPLIB. The objects read from filearg are added to the
MACRO-APP-SD, as the values of their keys.

This allows a set of functions need by compiler macros to be available, without their in-
terfering with the standard system functions.

function

MATEMPDEFINE
(MATEMPDEFINE list1 [list2])
Where the operands are as for DEFINE.
MATEMPDEFINE invokes DEFINATE with a requested action of REALIZE.

The results are added to MACRO-APP-SD. This allows the temporary definition of
functions needed by macros, without their interfering with the normal system definitions.
These will persist only as long as the current binding of OPTIONLIST.

function

ORADDTEMPDEFS
(ORADDTEMPDEEFS filearg)

filearg must designate a LISPLIB. The objects read from filearg are added to the
OP-RECOGNITION-SD, as the values of their keys.

Sfunction

[0

_

(N

This allows a set of macro definitions to be installed during the processing of a set of
compilations, by EXF for example, without their becoming a permanent part of the
system.

ORTEMPDEFINE
. (ORTEMPDEFINE list1 [list2])
Where the operands are as for DEFINE.
ORTEMPDEFINE invokes DEFINATE with a requested action of REALIZE.

The results are added to OP-RECOGNITION-SD. This allows temporary macro defi-
nitions, which will persist only as long as the current binding of OPTIONLIST, without
interfering with the standard system definitions.

function

Operator Definition and Transformation 71

()

9.0 Predicates

A predicate is a function whose result is either NIL or non-NIL and which is usually used for testing.
A built-in predicate name usually ends in P. Whenever possible, the non-NIL value returned is one
that could be of use.

9.1 General

NONSTOREDP function and compile-time macro
(NONSTOREDP item)

This operator returns item if item is not a stored object. Stored objects are possibly heap
resident and may be moved by the garbage collector. Small integers, gensyms, and bpis
are examples of non-stored objects.

9.2 NIL and Truth Value

NULL built-in function
(NULL item)
This function returns the value non-NIL if item is NIL; otherwise, it returns the value
NIL. :

NOoT built-in function

(NOT item)

This operator is exactly equivalent to NULL. It is useful for readability when the pred-
icate in a COND is to be inverted.

9.3 Pairs and Lists

ATOM

built-in function
(ATOM item)

This function returns the value NIL if item is a pair; otherwise, it returns the value
non-NIL. In the list interpretation of data objects, ATOM is the general test for an
empty list.

PAIRP

built-in function
(PAIRP item)

This function returns item if item is a pair; otherwise, it returns the value NIL. In the list
interpretation of pairs, PAIRP is a test for a non-empty list.

9.4 Vectors and Bpis

VECP

built-in function
(VECP item)

This function returns the value item if item is a vector capable of holding arbitrary ob-
jects; otherwise, it returns the value NIL.

Predicates 73

IVECP

built-in function)
(IVECP item))

This function returns the value of item if item is a vector of 32 bit integers; otherwise, it
returns the value NIL.

RVECP

built-in function
(RVECEP item)

Returns item if it is a vector of 64 bit floating point numbers, else returns NIL.

CVECP

built-in function
(CVECP item)

This function returns the value item if item is a character vector (that is, a vector of
characters); otherwise, it returns the value NIL.

BVECP

built-in function
(BVECP item)

This function returns the value item if item is a bit vector; otherwise, it returns the value
NIL.

FBPIP

built-in function
(FBPIP item)

This function returns the value item if item is a compiled function; otherwise, it returns -
the value NIL.)

MBPIP

built-in function
(MBPIP item)

This function returns the value item if item is a compiled macro expression; otherwise,
it returns the value NIL.

BPIP

function
(BPIP item)

This operator returns the value item if item is compiled function expression or a compiled
macro expression; otherwise, it returns the value NIL.

9.5 Identifiers

IDENTP built-in function

(IDENTP item)

This function returns the value item if item is an identifier; otherwise, it returns the value
NIL.

IDENTP will return a non-NIL value for special forms, built-in functions, identifiers and
gensyms. NIL is not an identifier, and (IDENTP "NIL) = NIL.

BFP built-in function TN

(BFP item) “)

This function returns the value item if item is an built-in function; otherwise it returns
the value NIL.

74

" SIMPLEIDP

SFP

built-in function
(SFP item)

This function returns the value item if item is a special form; otherwise it returns the
value NIL.

GENSYMP built-in function

(GENSYMP item)

This function returns the value item if item is a gensym; otherwise, it returns the value
NIL.

built-in function
(SIMPLEIDP item)

This function returns the value item if item is an identifier that is not a special form,
built-in function, or gensym. Otherwise the value is NIL.

function and compile-time macro E
(CHARP item)

This operator tests whether item is one of the 256 identifiers which span the total range
of possible single character print names. CHARP returns NIL if item is not one of these
objects; otherwise, it returns the value item.

CHARP

DIGITP

function and compile-time macro
(DIGITP item)

This operator returns the value item if item is one of the 10 identifiers which span the
total range of possible single digit print names (0, 1, 2, 3, 4, 5,6 ,7, 8, 9); otherwise, it
returns the value NIL.

9.6 Place Holders

PLACEP Sfunction and compile-time macro
(PLACERP item)
This operator returns the value item if item is % .EOF; otherwise, it returns the value
NIL. :
% .EOF is the value of (READ x) when x is an empty stream, e.g. a stream
at end-of-file. This is the only condition under which READ will return this
value since it is an object without a readable external form.
9.7 Numbers
NUMP built-in function
(NUMP item)
This operator returns the value item if item is any type of number; otherwise, it returns
the value NIL.
SINTP built-in function
(SINTP item)
This operator returns the value item if item is a small integer; otherwise, it returns the
value NIL.

Predicates 75

BINTP

built-in function

(BINTP item)

This operator returns the value item if item is a large integer; otherwise, it returns the
value NIL.

INTP

built-in function
(INTP item)

This operator returns the value item if item is an integer number; otherwise, it returns the
value NIL.

RNUMP built-in function
(RNUMP item)

This operator returns. the value item if item is a real number; otherwise, it returns the
value NIL. ‘

9.8 Funargs

FUNARGP

built-in function
(FUNARGP item)

This function returns the value item if item is a funarg; otherwise, it returns the value
NIL.

9.9 State Descriptors

STATEP

built-in function
(STATEP item)

This function returns the value of item if item is a state descriptor; otherwise, it returns
the value NIL.

9.10 Hashtables

HASHTABLEP
(HASHTABLEDP item)

This function returns the value of item if item is a hashtable; otherwise, it returns the
value NIL.

built-in function

9.11 Readtables

READTABLEP built-in function
(READTABLEP item)
This function returns the value of item if item is a readtable; otherwise, it returns the
value NIL.
9.12 Streams
STREAMP —— function
(STREAMP item)

76

)

M

This function returns the value item if item could be a stream (i.e., if item is a pair);
otherwise, it returns the value NIL. STREAMP is exactly equivalent to PAIRP.

FASTSTREAMP Sfunction
(FASTSTREAMP item)

This function returns the value non-NIL if item is a fast stream (i.e., a pair whose CDR
is a vector of length at least 3); otherwise, it returns the value NIL.

Note: this test is completely heuristic so that it is possible for an arbitrary object to be
recognized as a fast stream.

IS-CONSOLE function
(IS-CONSOLE item)

This function returns the value NIL if item is not a fast console stream; otherwise, it re-
turns the value item.

9.13 Other Predicates

EQ

built-in function
(EQ item1 item2)

EQ tests for pointer identity between its two arguments. Its value is the identifier
non-NIL if iteml and item2 are identical pointers. This means that the pointer type
codes as well as the pointer address fields are identical. If these fields are not identical,
the value of EQ is NIL.

EQ and EQUAL are equivalent for identifiers created by the Reader or by the
INTERN operator. The CVEC2ID operator can create two identifiers that
have the same external form but are neither EQ nor EQUAL. EQ and
EQUAL are equivalent for all small integers. It is not possible to create two
distinct small integers having the same value.

EQ may be used for quick tests of equivalence. If two expressions are EQ, then they are
-necessarily EQUAL; however, the converse is not true. Two expressions which are not
EQ may nevertheless be EQUAL.

Note that two copies of a given object will not be EQ because they are stored at different
locations. Similarly, it is possible to have different representations of the same numeric
value which are EQUAL, but which are not EQ.

EQUAL Sfunction

(EQUAL item1 item2)

This is a generalized equality testing function applicable to any data objects, including
circular objects and numeric quantities.

For numeric quantities to be EQUAL, they must represent the same value. For tests
involving one or two real (floating point) numbers, a fuzz factor may be relevant. If an
integer is to be compared with a real number, the integer is converted to a real value for
the comparison.

Two vectors are EQUAL if they are of the same type, the same length, and their absolute
parts are identical and their pointer parts are EQUAL.

For composite arguments, EQUAL implements access-equivalent equality testing. This
means that two objects are EQUAL if every part of one object which can be reached
by a composition of accessing functions is EQUAL to the corresponding part of the the

Predicates 77

UEQUAL

UGEQUAL

78

other object reached through the same composition of accessing functions. Intuitively,
two objects are EQUAL if they denote the same (possibly infinite) tree.

The value of EQUAL is either NIL or non-NIL.

f dnction
(UEQUAL item1 item2)

This is a generalized update-equality testing function applicable to any data object in the
same sense as EQUAL. It differs from EQUAL in that for two objects to be UEQUAL,
not only must corresponding parts of the objects be EQUAL through the access func-
tions, but there must be the same number of unique parts and if any of these parts were
to be updated in one object and the same update operation performed on the corre-
sponding part of the other, then the objects would still be EQUAL.

In addition, numeric values are considered UEQUAL only if they are of the same type
and numerically equivalent. Bit and character vectors are UEQUAL only if they have
the same capacity as well as the same type, length, and contents.

Intuitively, two objects are UEQUAL if and only if they denote equivalent rooted di-
rected graphs, i.e. if they denote EQUAL objects which also have the same circular and
non-circular sharing object.

The value of UEQUAL is either NIL or non-NIL.

function
(UGEQUAL iteml item2)

Like UGEQUAL, this function compares two objects for structural equivalence. In ad-
dition, it keeps a table of the gensyms in each object. If iteml and item2 have the same
structure and the same pattern of gensym occurrences, this function return a non-NIL
value, otherwise the value is NIL.

Since two successive invocations of the READ function will create different gensyms in
the internal form of a single external form, both EQUAL and UEQUAL will return NIL
when comparing such objects. UGEQUAL can be used to test if two objects have
equivalent external forms.)

10.0 Control Structures

10.1 Specification of Values

Many of the data objects are constants, that is they evaluate to themselves. This is true of all num-
bers, strings and vectors, for example. Lists (i.e. pairs) and identifiers, however, generally do not
have this property.

If, in an expression, you wish an identifier or a pair itself, rather than its value, you must QUOTE it.
It is also possible (in compiled programs) to specify a constant as the value of an expression (evalu-
ated during the compilation process). This is done by using the CONSTANT operator.

QUOTE — special form

(QUOTE item)

The value of a QUOTE expression is just the operand, item. This allows one to mention
an identifier, or a list without having it evaluated as an expression. The READER ac-
cepts the form ’item as equivalent to (QUOTE item).

(QUOTE X)
Value = X
'ABC

VALUE = ABC

CONSTANT macro
(CONSTANT exp)
The CONSTANT operator evaluates exp and returns its value.

During compilation, CONSTANT is defined as a macro, which replaces itself by the
QUOTEC value of exp. This allows the use of the values of expressions (as evaluated
at compile time) as constants.

The bpi resulting from the compilation of
(LAMBDA () (CONSTANT (EXP 3)))

will return e3, without having to compute it each time.

10.2 Assignment

macro

(SETQ id exp)

The assignment operator. The value of exp is assigned to id. While exp is evaluated, id
is not, and must be an identifier, otherwise an error is signalled.

COUNT
Value = COUNT
(SETQ COUNT '100)

SETQ

Value = 100
COUNT
Value = 100

RESETQ —— macro
(RESETQ id [item])

Assigns the value of item to id, as in SETQ. The value of this expression is the value
which id had before the assignment.

item defauits to NIL.

Control Structures. 7%

(SETQ X '(1 2 3))
Value = (1 2 3)
(RESETQ X (CDR X))
Value = (1 2 3)
X
Value = (2 3)
SET built;in function
(SET id exp)
The other assignment operator. The value of exp is assigned to id. Unlike SETQ, both
arguments are evaluated. The value of id must be an identifier, otherwise an error is
signalled.
COUNT
Value = COUNT
(SETQ X 'COUNT)
Value = COUNT
(SET X '100)
Value = 100
COUNT
Value = 100
X
Value = COUNT
SET-ID function
(SET-ID id item)
This operator is equivalent to SET, except that it affects only FLUID or non-lambda
bindings.
SET-LEX-ID function

(SET-LEX-ID id item)
Semantically equivalent to SET but faster.

SET-GLOBAL-ID
(SET-GLOBAL-ID id item)

This operator performs an assignment in the current non-lambda environment. It does
not effect any lambda bindings. If no binding for id is found, one is added to the head
of the current non-lambda environment.

function

CSET-ID function
(CSET-ID id item)
This operator is the assignment operator corresponding to CEVAL-ID. It searches the
control chain for a FLUID binding of id, and if it finds one updates it with item. If no
binding is found in the control chain, no updating is performed and the value of the
CSET-ID expression is id. No search of the non-lambda environment is made.
CSET-LEX-ID Sfunction

(CSET-LEX-ID id item)

The assignment operator corresponding to CEVAL-LEX-ID. Differs from CSET-ID in
that it has access to those LEXical bindings which are visible in the application context.

80

C 10.3 Expression Grouping

There are three types of expression groupings: PROGN, PROG1, PROG?2, which only group ex-
pressions; SEQ, which groups expressions and acts as a scope for labels; and PROG, which groups
expressions and acts as a scope for bound variables and labels. Since PROG1 and PROG2 are not
as commonly used, they are described at the ¢nd of this section.

PROGN special form

(PROGN [expl ...])

This form groups expressions. The group of expressions is known as the progn-body.

Evaluation of the PROGN expression consists of the following steps:

1. The expressions in the progn-body are evaluated from left to right.

2. In normal termination, all expressions in the progn-body are evaluated and the
value of the PROGN expression is the value of the last expression in the progn-
body.)

3. In abnormal termination, all expressions in the progn-body are evaluated until a
transfer of control expression is evaluated. The value of the PROGN expression
is the value defined by the transfer of control construct.

(PROGN (SETQ X '(A B)) X)
Value = (A B)
X
Value = (A B) ‘
(PROGN (SETQ X '10) (SETQ Y ‘20) (PLUS X Y))
— Value = 30
C X
- Value = 10
SEQ special form

(SEQ [exp ...])

This form groups expressions and acts as a scope for labels. The group of expressions
is known as a seq-body. Any of these expressions which are identifiers are known as /a-
bels.

Evaluation of the SEQ expression consists of the following steps:

1. The expressions in the seq-body, with the exception of labels, are evaluated from
left to right. Labels, though not evaluated, are considered to have the value NIL.

2. In normal termination, the value of the SEQ expression is the value of the last ex-
pression in the seq-body. -

3. In abnormal termination, all expressions in the seq-body are evaluated until a
transfer of control expression is evaluated. The value of the SEQ expression is the
value defined by the transfer of control construct.

A SEQ expression is a label-scope for labels.

Labels are used as the target of GO expressions.

Control Structures 81

PROG

82

macro
(PROG
(local-variable-list)
fexpr...})

local-variable-list
[flocal-variable | (local-variable expr)i...]

local-variable
id | (LEX id) | (FLUID id)

This form groups expressions and acts as a scope for local variables and labels. The
group of expressions is known as a prog-body. Any of these expressions which are
identifiers are known as labels. The &expr. in the local-variable-list is known as the in-
itialization expression. A local-variable for which a binding class is not specified is given
a defauit class of LEX.

" Evaluation of the PROG expression consists of the following steps:

1. The local-variables are created, the initialization expressions are all evaluated from
left to right in the environment which was in effect before the PROG expression
was evaluated, and the associated variables are set to these values or to NIL if no
initialization expression was specified.

2. The expressions in the prog-body, with the exception of labels, are evaluated from
left to right. Labels, though not evaluated, have the value NIL.

In normal termination, the value of the PROG expression is NIL.

In abnormal termination, all expressions in the prog-body are evaluated until a
transfer of control expression is evaluated. The value of the PROG expression is
the value defined by the transfer of control construct.

A PROG expression is a contour, that is, a scope for bound variables. A prog-body is
a label-scope for labels.

The form (LEX id) is only required for the identifiers FLUID or LEX.

Because the initialization expressions are evaluated in the environment which
was in effect before the PROG expression was evaluated, evaluation of a
RETURN expression in an initialization expression causes that previous en-
vironment to be terminated. Evaluation of a RETURN expression in any
other context within the PROG expression causes the evaluation of the PROG
expression to be terminated and the value of the PROG expression is the value
of the RETURN expression. The following example shows the importance
of evaluating initialization in this environment.

(SETQ X '(2 1))

Value = (2 1)

gPROG g (X (CONS 3 X)) (PRINT X) (RETURN (CONS & X)))
321

Value = (4 3 2 1)

X
Value = (2 1)

A value of a variable outside the PROG expression is used, manipulated, but
may be unaffected after the PROG expression completes. Of course, if an
updating operation had been applied within the PROG expression, their ef-
fects could have been visible afterwards. :

Evaluation of a PROG expression results in the creation of an implicit lambda
expression, with the local variables becoming the bound variables of the
lambda expression and the initial values becoming the arguments.

10.3.1 Other Expression Groupings

PROG!

PROG2

function and compile-time macro

(PROGI1 exp ...)

This form groups expressions. The group of expressions is known as the progl-body.

Evaluation of the PROG1 expression consists of the following steps:

The expressions in the progl-body are evaluated from left to right.

In normal termination, all expressions in the progl-body are evaluated and the
value of the PROGI1 expression is the value of the first expression in the
progl-body.

In abnormal termination, all expressions in the progl-body are evaluated until a
transfer of control expression is evaluated. The value of the PROG1 expression is
the value defined by the transfer of control construct.

The PROG1 expression is most commonly used to evaluate an expression with
side effects and returfi a value that must be evaluated before the side effects
happen.

function and compile-time macro

(PROG?2 exp exp ...)

This form groups expressions. The group of expressions is known as the prog2-body.

Evaluation of the PROG?2 expression consists of the following steps:

The expressions in the prog2-body are evaluated from left to right.

In normal termination, all expressions in the prog2-body are evaluated and the
value of the PROG2 expression is the value of the second expression in the
prog2-body.

In abnormal termination, all expressions in the prog2-body are evaluated until a
transfer of control expression is evaluated. The value of the PROG?2 expression is
the value defined by the transfer of control construct.

PROG?2 is used to allow a side effect to occur before and after the evaluation
of an expression whose value is returned.

10.4 Iteration

Do

macro

(DO

(local-variable-1list)
(end-test {expr...})
fexpr...}

local-variable-1list

{local-variable | (local-variable expr)
(local-variable expr expr)i...

local-variable

“id | (LEX id) | (FLUID id)

This form is an iteration expression which provides top-of-loop testing with an
"UNTIL-like" test. It provides expression grouping and a scope for both variables and
labels. local-variable-list, a list consisting of a test expression and a group of expressions
known as an end-body, and a group of expressions known as a do-body. The first ex-

Control Structures 83

pression of the local-variable-list is known as the initialization expression and the second
expression is known as the step expression. A local-variable for which a binding class is
not specified is given a default class of LEX.

Evaluation of the DO expression consists of the following steps:

1. The local-variables are created, the initialization expressions are all evaluated from
left to right in the environment which was in effect before the DO expression was
evaluated, and the associated variables are set to these values or to NIL if no in-
itialization expression was specified.

2. The end-test test expression is evaluated. If the value is non-NIL, normal termi-
nation occurs. If the value is NIL, the expressions in the do-body are evaluated
from left to right, all step expressions are evaluated and the associated local-
variables modified by the step values. This set of actions is repeated until normal
or abnormal termination occurs.

3. Normal termination consists of evaluating the end-body from left to right. The
value of the DO is the value of the last expression.

4. In abnormal termination, all expressions in the do-body are evaluated until a
transfer of control expression is evaluated. The value of the DO expression is the
value defined by the transfer of control construct.

A DO expression is a contour, that is, a scope for bound variables. A do-body is a
label-scope for labels.

The form (LEX id) is only required for the identifiers FLUID or LEX.

Because the initialization expressions are evaluated in the environment which
was in effect before the DO expression was evaluated, evaluation of a RE-
TURN expression in an initialization expression causes that previous envi-
ronment to be terminated. Evaluation of a RETURN expression in any other
context within the DO expression causes the evaluation of the DO expression
to be terminated and the value of the DO expression is the value of the RE-
TURN expression.

Because the do-body is a label-scope, evaluation of an EXIT expression
within the do-body causes termination of an individual iteration rather than
termination of the DO expression.

Evaluation of a DO expression results in the creation of an implicit lambda
expression, with the local variables becoming the bound variables of the
lambda expression and the initial values becoming the arguments.

Since the local variables are set after all step-expressions have been evaluated,
explicit assignments to step variables in the step expression will be lost.

10.5 Transfer of Control

GO

EXIT

84

speciél form
(GOid)

id must be associated with a label in an enclosing label-scope. The GO expression
transfers control to the associated label. Control may not transfer out of an enclosing
contour or label-scope or an error is signalled.

special form
(EXIT [exp])

RETURN

The EXIT expression causes control to leave the nearest enclosing label-scope or con-
tour. If exp is present, the value of exp becomes the value of the terminated expression.
Otherwise, the value of the terminated expression is NIL.

special form
(RETURN [exp])

The RETURN expression causes control to leave the nearest enclosing contour. If exp
is present, the value of exp becomes the value of the terminated expression. Otherwise,
the value of the terminated expression is NIL.

Control may transfer over enclosing label-scopes, causing their termination.

10.6 Conditional Evaluation

COND

CASEGO

special form
(COND [clause ...]) :

This is the IF ... THEN ... ELSE of LISP. Each clause is a list of expressions of the form
(PREDICATE [exp ...])

(Any clause which is not a list is treated as a comment.)

The clauses are examined in order, and the predicate in each clause is evaluated. If the
value is NIL, the next clause is examined.

If the value is not NIL, the remainder of the clause is examined. If there are no exps the
value of the predicate is the value of the COND expression. Otherwise the list of exps
is evaluated as if it were prefaced with PROGN. The value of the final exp becomes the
value of the COND.

In either case, no further clauses are examined.

(COND ((GREATERP X 0) X)
('ELSE (MINUS X)))

returns the absolute value of X. The "ELSE predicate can never evaluate to NIL since
it is quoted.

macro
(CASEGO exp list ...)

Where each list is an alternative of the form
(item id)

and where id must be associated with a label within an enclosing SEQ or PROG.
CASEGO evaluates exp and compares the resulting value with the unevaluated items
from successive alternatives. If one is found which is EQ to the value of exp, control
transfers to the associated label. Control may not transfer out of an enclosing contour
or an error is signalled.

(CASEGO
(CAR X)
(ALY
(B L2)
(3 L2)
(Xxyz 0))

Will transfer control to the label L1 if the CAR of the value of X is the identifier A, to
the label L2 if it is the identifier B or the number 3, to the label D if it is the identifier

Control Structures 85

XYZ. If it is none of those four, control will continue following the CASEGO ex-
pression.

If control continues through the last expréssion of the CASEGO, the value of the
CASEGO is the value of exp.

OR macro
(OR [exp ...])
This operator evaluates the exps from left to right, until the first exp whose value is
non-NIL. The value of the expression is that non-NIL value, if such exists, and is NIL
otherwise.
(OR expl exp2 ... expn)
is equivalent to
(COND (exp1) (exp2) ... (expn))
(OR) has a value of NIL.
AND macro
(AND [exp ...])
This operator evaluates the exps from left to right, until the first exp whose value is NIL.
The value of the expression is the value of the final exp, or NIL, if an earlier exp resulted
in that value.
(AND expl exp2 exp3)
is equivalent to
(COND (expt (COND (exp2 exp3))))
(AND) has a value of non-NIL.
SELECT macro
(SELECT expl list ... exp2)
Where each list is an aiternative of the form
(exp exp ...)
The SELECT operator evaluates expl. It then evaluates the first exp of each alternative
until it find one whose value is EQ to the value of expl. If it finds such a one, it evaluates
the remaining exps in that alternative as an implied PROGN, returning the value of the
final exp as the value of the SELECT expression.
If no such list is found exp2 is evaluated and its value becomes that of the SELECT ex-
prgssion.
SELECT is a macro which generates a function expression. A SELECT is a scope for
local variables.
10.7 Multiple Level Returns, CATCH and THROW

Each application of an ordinary operator (function expression or bpi) resuits in the creation of a
frame in the stack. Normally, evaluation remains within a frame until the end of evaluation of the
body of a function expression or an explicit RETURN causes evaluation to revert to the immediately
preceding frame.

There exists a set of operators which mark certain stack frames as catch points. A catch point is a
frame which can receive control directly from a frame which is not its immediate successor, via the
operator THROW. The frame passing control to a catch point must be a successor of the catch point,
but may be many levels below it.

86

\.

Certain catch points will intercept only specific THROW operations, others will intercept a wide
clqss, or even all THROW operations.

Each THROW has two operands, the first (referred to as the zag) specifying the targeted catch point,
the second providing an arbitrary value which is available when the (referred to as the value)
THROW terminates. When a catch point receives control it has access to both of these values. It
may then evaluate arbitrary code, continue evaluation, or propagate the THROW, with the same or
modified tag.

Each catch point corresponds to a stack frame, with lambda bindings. In particular each such frame
has a lexical binding of CATCH,MESS which is a "'message", a distinctive value identifying the catch
point. These values are found and interpreted by the & operator. See page 229 and Figure 12 on
page 88. .

CATCH

macro
(CATCH id1 exp [id2 [item ...]])
Where neither id1 nor id2 are evaluated, but are used as written.

CATCH establishes a catch point and then evaluates exp. If no THROW occurs during
the evaluation the value of the CATCH expression is the value of exp. If a THROW to
a tag EQ to id1 occurs, the value is the value THROWen.

If id2, is present, it is interpreted as a variable, and is used to indicate the mode of return.
If the evaluation of exp completed normally, id2 is assigned a value of NIL. If a
THROW to idl prematurely terminated the evaluation, id2 is assigned a value of id1.
(Of course, if a THROW to some other tag occurs, control never returns to this
CATCH.)

The evaluation of exp is performed in such a way as to contain the scope of EXIT and
RETURN expressions within it. Either will provide a value for exp, but neither will
cause control to leave the CATCH without its setting the value of id2, if present.

The items, if present, are make part of the value of CATCH,MESS. If id2 is NIL items
may follow it, but it is treated as not present.

CATCHALL

macro
(CATCHALL exp [id [item ...]])
Where id is not evaluated, but is used as written.

CATCHALL establishes a catch point and then evaluates exp. If no THROW occurs
during the evaluation the value of the CATCH expression is the value of exp. If a
THROW occurs to any tag the value is the value THROWen.

If id, is present, it is interpreted as a variable, and is used to indicate the mode of return.
If the evaluation of exp completed normally, id is assigned a value of NIL. If a THROW
prematurely terminated the evaluation, id is assigned the tag THROWen to as its value.

The evaluation of exp is performed in such a way as to contain the scope of EXIT and
RETURN expressions within it. Either will provide a value for exp, but neither will
cause control to leave the CATCH without its setting the value of id, if present.

The items, if present, are make part of the value of CATCH,MESS. If id is NIL items
may follow it, but it is treated as not present.

THROW

Sfunction and compile-time macro
(THROW {id | sint} item)

The THROW operator terminates the current evaluation and searches backwards in the
stack for a catch point. At each catch point found the value of the tag of the is examined
to determine whether the destination has been reached. If so, the THROW is stopped

Control Structures 87

ERRSET!

(0 . [user-item ...]) Return THROWen value.
ERRCATCH!

(2 . [user-item ...]) Return THROWen value.

(3 . [user-item ..

1)

Return THROWen

value, sets FLAGVAR.

CATCH

(4 . [user-item ...
(5 . [user-item ...

~—

Return THROWen
Return THROWen

value.

value, sets FLAGVAR.

NAMEDERRCATCH!

(6 . [user-item ..

-1)

Return THROWen

value.

THROW-PROTECT

(7 . [user-item ..

1)

Evaluate epilog and continue THROW.

CATCHALL

(8 . [user-item
(9 . [user-item

D)
)

Return THROWen
Return THROWen

value.

value, sets FLAGVAR.

! marks catch points which intercept numeric tags and count

them down.

UNWIND

THROW-PROTECT

88

Figure 12. User Defined CATCH,MESS values, actions and interpretation.

and evaluation resumes as that catch point. If not, the THROW is continued, possibly
with a modified tag, or after arbitrary clean-up code has been evaluated, see
THROW-PROTECT, below.

At the catch point which stops the THROW the value of item is available. The value of
the tag is sometimes available.

Sfunction
(UNWIND [sint [item]])

The UNWIND operator evaluates a THROW with a numeric tag. sint defaults to 1
(one), while item defaulits to NIL. .

UNWIND is normally used to escape from the error break loop, passing control back to
an error-expecting catch point.

macro
(THROW-PROTECT expl exp2)

This operator evaluates its operands in sequence, establishing a catch point during the
evaluation of expl.

If the evaluation of expl completes normally, its value is reserved, and becomes the
value of the THROW-PROTECT expression, after exp2 has been evaluated.

If the evaluation of expl results in a THROW which is not caught before control passes
the THROW-PROTECT, the THROW is temporarily stopped, exp2 is evaluated, and
the THROW is continued.

The evaluations of both expl and exp2 are protected against control being lost due to
RETURN or EXIT expressions. A THROW in exp2 will, however, take precedence
over the resumption of the suspended THROW.

SUPERMAN!
901 Call to SUPV
Tries again, with existing streams.
902 EVAL of user provided expression, INITSUPV
Same action as 901.
SUPW
903 Read input
Returns to read with existing streams.
904 Echo-print
Same action as 903.
905 EVALFUN of input
Same action as 903,
but ,VAL updated with caught value.
906 Value-print .
Same action as 903.
907 Print of message when UNWIND is caught
Same action as 903.
EXF1
908 SUPV call
EXFTEMP LISPLIB not renamed (if it
exists), files shut.
ERRORLOOP1
909 Error message print
Enters the read loop.
310 Read input
Returns to input read.
911 EVALFUN input
Same as 910.
912 Value-print
Same as 910.
913 Print of message when UNWIND is caught
Same as 910.
DISPATCHER
914 Dispatch loop)
Stops interrupt servicer scan.
! marks catch points which intercept numeric tags and count
them down.

Figure 13. System Defined CATCH,MESS values, actions and interpretation.

ERRSET

macro

(ERRSET exp [item ...])

The ERRSET operator establishes a catch point and evaluates exp. If the evaluation
terminates normally the value of the ERRSET expression is a list of one element, con-
taining the value of exp.

If a THROW with a numeric tag occurs during the evaluation, ERRSET examines the
tag. If the tag is O (zero), the THROW is stopped and the value of the ERRSET ex-
pression is the value THROWen. If the tag is not 0 (zero) the THROW is continued,

with the tag decremented by 1 (one).

Thus, the first operand of the THROW (or the UNWIND) controls the number of

ERRSET (and ERRCATCH and NAMEDERRSET) expression to be skipped.

Control Structures

.

NAMEDERRSET

ERRCATCH

The items, if present, are make part of the value of CATCH,MESS. D

macro
(NAMEDERRSET id exp [item ...])

NAMEDERRSET behaves like ERRSET, but allows a tag and user messages to be
specified.

This allows an UNWIND directly to a specific NAMEDERRSET, even when there may
be an unknown number of ERRSETs or ERRCATCHs intervening.

The items, if present, are made part of the value of CATCH,MESS.

macro
(ERRCATCH exp [id [item ...]])

ERRCATCH behaves like ERRSET with two exceptions. First, the value of the
ERRCATCH expression is either the value of exp (not in a list), or the value of the in-
tercepted THROW. Second, id, if present, is set to NIL if the evaluation of exp. termx-
nates normally, and to 0 (zero) if a THROW is intercepted.

Unlike ERRSET, which can be fooled by THROWing a list as value, ERRCATCH al-
lows the return of arbitrary values, while still detecting abnormal returns.

The items, if present, are make part of the value of CATCH,MESS. If id is NIL items
may follow it, but it is treated as not present.

10.8 TIteration over Lists and Vectors, the Mapping Operators

Mapping operators are the commonest iterative constructs.)

All of the mapping operators are macros, which construct PROGs, with their functional operand ex-
plicitly placed in operator position. This eliminates the need to construct funargs, with their overhead
of state descriptors, and allows many macros to be used as functional operands.

List mapping operators apply a functional operand to successive portions of one or more lists, often
constructing a value from the results of these applications. In addition, operators are provided which
iterate over vectors, and others which will terminate their iteration when some criterion is met.

All of the mapping operators terminate when their shortest list or vector is exhausted.

This allows their use with "infinite"" lists, e. g. the value of the LOTSOF operator as long
as one of their arguments is non-cyclic.

10.8.1 List Mapping Operators

The mapping operators can be split along two axes.

and

90

Those that apply their app-ob to the successive elements of their list operands.
MAPC, MAPCAR, MAPCAN

Those that apply their app-ob to their list operands, and the successive CD...Rs of those oper-
ands.
MAP, MAPLIST, MAPCON

Those that return their first list operand as their value.
MAPC, MAP

Those that construct a list of the values returned by successive applications of their app-ob.)
MAPCAR, MAPLIST -

Those that use NCONC to splice together the values returned by successive applications of their
app-ob.

™
\,
3 i

MAPCAN, MAPCON

MAPC macro

(MAPC app-ob list ...)

MAPC applies app-ob to the 1st, 2nd, etc. elements of the lists. The value of the ex-
pression is the first list.

gTAPCSgLAMBDA (X Y) (PRINT (CONS X Y))) ‘(12 3.4) '(987))
(2 . 8)

(3.7)

Value = (12 3 &)

MAP

macro
(MAP app-ob list ...)
MAP applies app-ob to the lists, then to the CDRs, CDDRs, etc. of the lists. The value
- of the expression is the first list.

(MAPC (LAMBDA (X) (PRINT X)) '(1 2 3 4))
(1 234)
(2 3 4)
(3 4)
(%)
Value = (1 2 3 &4)
Note that the expression

(MAP PRINT '(1 2 3 4))
would have the same result.
These two operators are used only for their side effects, in this case, printing.

MAPCAR

macro
(MAPCAR app-ob list ...)
MAPCAR applies app-ob to the 1st, 2nd, etc. elements of the lists. The value of the
expression is a list of the values of these applications.
(MAPCAR (LAMBDA (X Y) (CONS X Y)) '"(1234) '(987))
Value = ((1 . 9) (2 . 8) (3. 7))

Extra operands are discarded. Thus, one can use the termination condition
of the mapping operators, when the shortest list is exhausted, in many ways.

For instance:

(SETQ X '(1 2 3 4))

Value = (1 2 3 &)
(MAPCAR (LAMBDA () ()) X)
Value = (() () () ())

Here we have constructed a list of NILs, equal in length to another list.

In order to facilitate such operations a group of auxiliary operators has been
provided, NILFN, TRUEFN and IDENTITY. See page 95.

MAPLIST macro
(MAPLIST app-ob list ...)

MAPLIST applies app-ob to the lists, then to the CDRs, CDDRes, etc. of the lists. The
value of the expression is a list of the values of these applications.

Control Structures 91

MAPCAN

MAPCON

92

(MAPLIST IDENTITY '(1 2 3 4))
((1. gL1=(2,. %L2=(3 . %L3=(4)))) %L1 %L2 %L3)

Value =

VALUE

|
—p|

L
[

(Note, the pairs marked by * are newly created.)

Figure

(MAPCAN
Value =
(SETQ X
Value =
(MAPCAN
Value =
X

Value =

VALUE

[

14. Result of MAPLIST.

;nacro
(MAPCAN app-ob list ...)

MAPCAN applies app-ob to the 1st, 2nd, etc. elements of the lists. The value of the
expression produced by NCONCing the values of these applications together.

‘(6 7 89))

5) 8 '(2)))
2))

LIST '(1 2 3)
(162738)
(LIST '(1) '(&
((1) (45) 8 (
IDENTITY X)

(1 45 2)

((1 . gL1=(4 5 . %L2=(2))) %L1 8 %L2)

| 8

(Note, no new pairs are created.)

Figure 15. Result of MAPCAN.

With both MAPCAN and MAPCON side effects can be drastic. Unless you
are constructing the values of the individual applications, you should be very

careful.

macro
(MAPCON app-ob list ...)

MAPCON applies app-ob to the lists, then to the CDRs, CDDRs, etc. of the lists. The
value of the expression produced by NCONCing the values of these applications to-

gether.

- (MAPCON COPY '(34
(:/, Value = (1 2 3 4 3 4

NMAPCAR

macro
(NMAPCAR app-ob list ...)

NMAPCAR applies app-ob to the 1st, 2nd, etc. elements of the lists. The first list is
updated, with RPLACA, with the values of the successive applications. The value of the
expression is the first (updated) list.

(SETQ X '(1 2 3 4))
Value = (1 2 3 4)
(NMAPCAR ADD1 X)
Value = (2 3 4 5)

X

Value = (2 3 4 5)

(NMAPCAR CONS X (LOTSOF a b))

xalue‘= ((2.a) (3.b) (4. a)(5.0b))
“Value = ((2 . a) (3 .b) (4. a)(5.0b))

SCANOR

macro
(SCANOR app-ob list ...)

SCANOR applies app-ob to the 1st, 2nd, etc. elements of the lists. The iteration termi-
nates at the first such application which resuits in a non-NIL value. If all applications
result in NIL values, the value of the expression is NIL, otherwise it is the non-NIL,
terminating, value.

(SCANOR (LAMBDA (X) (GREATERP X 10)) '(5 3 13 8 23))

Value = 13

(SCANOR (LAMBDA (X) (GREATERP X 100)) '(5 3 13 8 23))

Value =

ASSQ (see page 118) could be defined as

(LAMBDA (I L)
(SCANOR
(LAMBDA (X)
(COND
((A§? gPAIRP X) (EQ (CAR X) 1))
X

(O

L))

SCANAND ——— macro
(SCANAND app-ob list ...)

SCANAND applies app-ob to the 1st, 2nd, etc. elements of the lists. The iteration ter-
minates at the first such application which results in a NIL value. If all applications resuit
in non-NIL values, the value of the expression is the value of the last application, oth-
erwise it is NIL.

(SCANAND NUMP '(1 2 3 4 5))

Value = §

(SCANAND NUMP '(1 2 a 3 b))

Value = ()

- 10.8.2 Vector Mapping Operators

\\/ The following operators are designed primarily for iteration of vector operands. Since they
use ELT to access their operands, they will work correctly on lists, as well as on vectors.
Since they require an upper limit on their index value, they compute the MIN of SIZE of

™~

Control Structures 93

all of their operands. This restricts their use to non-cyclic lists. In addition, since SIZE
must traverse its operand when it is a list, such operands will be traversed twice.

These operators should only be used when one or more of the arguments are vectors, and
never should be used with circular lists.

MAPE macro
(MAPE app-ob vec ...)
MAPE applies app-ob to the 1st, 2nd, etc. elements of the vecs. The value of the ex-
pression is the length of the shortest vec, i.e., the number of iterations.
(MAPE PRINT "‘ABC'')
A
B
C
Value = 3
MAPELT macro
(MAPELT app-ob vec ...)
MAPELT applies app-ob to the 1st, 2nd, etc. elements of the vees. The value of the
expression is a vector containing the values of the successive applications.
(MAPELT
(LAMBDA (X Y) (APPEND X Y))
" 1]
<ﬁ?chDIl2}II “456“ Il7890ll ll1231‘5l|>)
Value = <"A1" "B23" "'C456" "'D7890''>
NMAPELT macro

(NMAPELT app-ob vec ...)

NMAPELT applies app-ob to the 1st, 2nd, etc. elements of the vecs. The first vec is
updated by SETELT with the successive value of the applications. The value of the ex-
pression is the first (updated) vec.

(SETQ X <1 2 3 4>)

Value = <1 2 3 b>

(NMAPELT PLUS X '(10 20 30 40))
Value = <11 22 33 44>
X .
Value = <11 22 33 44>

These are the vector counterparts of SCANOR and SCANAND. The previous discussion applies.

VSCANOR

macro
(VSCANOR app-ob vec ...)

VSCANOR applies app-ob to the 1st, 2nd, etc. elements of the vecs. The iteration ter-
minates at the first such application which results in a non-NIL value. If all applications
result in NIL values, the value of the expression is NIL, otherwise it is the non-NIL,
terminating, value.

(SETQ X "'This, is a test.')

Value = '"This, is a test.'

(VSCANOR (LAMBDA (X) (MEMQ X '(. , ;5 :))) X)

Value = (, ; :

VSCANAND

macro
(VSCANAND app-ob vec ...)

94

(M

VSCANAND applies app-ob to the 1st, 2nd, etc. elements of the vecs. The iteration
terminates at the first such application which results in a NIL value. If all applications
result in non-NIL values, the value of the expression is the value of the last application,
otherwise it is NIL.

(VSCANAND LESSP <3 6 4 8> <5 7 8 10>)

Value = non-NIL

(VSCANAND LESSP <3 6 4 8> <5 7 2 9>)

Value = NIL _

10.8.3 Miscellaneous

MAPOBLIST
(MAPOBLIST app-ob)

MAPOBLIST applies app-ob to each identifier in the object array, that is to each non-
gensym, interned identifier in the system. The value of the expression is NIL, so any
results must be obtained via side effects.

function

WRAP

Sfunction
(WRAP list item)
This operator iterates over list, creating a new list whose elements are determined by the
value of item.
For list of the form
(i1 i2 ...)
if item is NIL, the value will be list,
if item is not a pair, the value will be
((item i1) (item i2) ...)
if item is a list, its elements are match with the elements of list, with the value containing

elements from list where the corresponding element of item is NIL, and lists of the ele-
ments from item and list otherwise.

If item is a list, and if list contains more elements than item, the final CDR of item is
matched against the remaining elements of list.

(WRAP '(A B CDE) 'QUOTE)

Value = ('A 'B 'C 'D 'E)

(WRAP '(A B C D E) 'FLUID)

Value = ((FLUID A) (FLUID B) (FLUID C) (FLUID D) (FLUID E))
(WRAP '(A B CDE) "(FLUID () () . FLUID))

Value = ((FLUID A) B C (FLUID D) (FLUID E))

(WRAP '(ABCDE) '(XY Z))

Value = ((X A) (Y B) (2 C) DE))

10.8.4 Auxiliary Operators

These are operators which correspond to often used app-ob operands. They produce more efficient
code.

IDENTITY function and compile-time macro
(IDENTITY item)
The value of IDENTITY is item. This operator is exactly equivalent to

(LAMBDA (X) X)

TRUEFN function and compile-time macro

Control Structures 95

(TRUEFN)

The value of TRUEFN is non-NIL. This operator is exactly equivalent to
(LAMBDA () 'non-NIL) '
TRUEFN and NILFN ignore the value of extra operands

NILFN Sfunction and compile-time macro
(NILFN)
The value of NILFN is NIL. This operator is exactly equivalent to

(LAMBDA () ())

96

e

11.0 Operations on Identifiers

11.1 Creation

INTERN function
(INTERN cvec)
This operator searches the object array for a pre-existing identifier with a pname
EQUAL to cvec. If one exists, it is returned as the value of INTERN. Otherwise, a new
identifier is created, with a print name EQUAL to cvec and added to the object array.
This new identifier is returned as the value of INTERN. If cvec is not a character vector,
an error is signalled.

CVEC2ID function
(CVEC2ID cvec)
This operator creates a new identifier, with a pname EQUAL to cvec This new identifier
is returned as the value of CVEC2ID. It is not added to the object array. If cvec is not
a character vector, an error is signalled.

GENSYM function and compile-time macro
(GENSYM)
This operator constructs a new, unique, non-stored identifier.
The mechanism used to insure unique ID’s is simply to have a counter which is incre-
mented every time a new gensym is required and to incorporate this counter’s value into
the print name of the identifier.

DOWNCASE Sfunction
(DOWNCASE id)
The DOWNCASE operator returns the identifier whose pname is the result of translat-
ing any upper case alphabetic characters in the pname of id into their lower case equiv-
alents.

OR

(DOWNCASE cvec)
This operator, when applied to a character vector, translates all upper-case alphabetic
character to their lower-case equivalents. This translation is done in place, updating the
operand.
DOWNCASE will also accept a list of character vectors, in which case its value is a new
list of the translated vectors.

UPCASE Sfunction
(UPCASE id)
The UPCASE operator returns the identifier whose pname is the result of translating any
lower case alphabetic characters in the pname of id into their upper case equivalents.

OR

(UPCASE cvec)

This operator, when applied to a character vector, translates all lower-case alphabetic
character to their upper-case equivalents. This translation is done in place, updating the

Operations on ldentifiers 97

operand. UPCASE will also accept a list of character vectors, in which case its value is
a new list of the translated vectors.

11.2 Accessing

PNAME function
(PNAME id)
Returns a copy of the print name of id. If the value of id is not an identifier, an error is
signalled. The print name is a character vector.
GET Sfunction
(GET id item) .
If id is not an identifier or a pair, value is NIL. Otherwise the property list of id is
searched for the first occurrence of an element such that
(EQ item (CAR element))
is true. If found, the value of GET is (CDR element). If such an element is not found,
the value of GET is NIL.
OR
(GET list item)
If list is not an identifier or a pair, value is NIL. If list is a pair, it is interpreted as an
a-list, and searched for an element whose CAR is EQ to item If found, the value of GET
is the CDR of the element, otherwise the value of GET is NIL.
Note the difference between GET and ASSQ, in that ASSQ returns the
name-value pair, whereas GET returns only the value portion. Also, note the
reversal of the order of arguments, GET receives the list to be search, fol-
lowed by the name; while ASSQ (and the other .ASS. operators) receive the
name first, followed by the list to be searched.
PROPLIST function
(PROPLIST id)

The.value of id must be an identifier. Returns the property list associated with that
identifier. The property list is an association list. The value returned is not the actual
property list, but is the result of applying APPEND to the property list and NIL. Thus,
while the name-value pairs may be updated, the actual property list itself is secure. .

11.3 Searching and Updating

PUT

Sfunction
(PUT id item1 item2)

Operator to update the property list of the identifier id. If the iteml property already
exists, its associated value is changed to item2. If the item1 property does not currently
exist, a new property with this name is put at the beginning of the property list.

The value of id must be an identifier or a list, but iteml and item2 may be any ex-
pressions.

OR
(PUT list item1 item2)

list is interpreted as an a-list. It is searched for a pair with CAR EQ to iteml. If such a
pair is found it is updated, with RPLACD, making item2 its CDR. If no such pair is

98

()

found a new pair, (iteml . item2), is added to the front of list, by updating operations.
is put at the beginning of the property list. :

The value of list must be an identifier or list, but iteml and item2 may be any ex-
pressions.

DEFLIST

Sfunction
(DEFLIST list item)

This function expects list to be a list of pairs whose CARs are identifiers and whose
CADRs are arbitrary values. For each of these pairs, (PUT ID item VALUE) is per-
formed, assigning the CADR value from the pair as the value of the item property in the
identifier’s property list.

The value of DEFLIST is a new list containing the property values (the CADRSs of the
elements of list).

To put NUM properties on each of the identifiers A through F, with values 10 through
15, one would write

(DEFLIST
:ﬁu£§ 10) (B 11) (c 12) (D 13) (E 14) (F 15))
Value = (10 11 12 13 14 15)

REMPROP

function
(REMPROP id item)

The item property of the identifier id is removed from the property list of id. The value
of REMPROP is NIL if there is no item property. If the property exists, the value of
REMPROP is the value associated with that property.

(REMPROP list item)

The item property of the identifier list is removed from the property list of list. The value
of REMPROP is NIL if there is no item property. If the property exists, the value of
REMPROP is the value associated with that property.

The effect is that of NREMOVE, given the name-value pair as an operand.

11.4 Updating

REMALLPROPS function
(REMALLPROPS id)

All properties on the property list of id are removed. If id is not a stored identifier the
value of REMALLPROPS is NIL, otherwise the value is id.

11.5 Object Array

OBARRAY

Sfunction
(OBARRAY)

Returns as value a copy of the current object array. This is a vector containing elements
which are identifiers (INTERN’ed variables).

Because the value of OBARRAY is a copy of the actual object array, it may be modified
in any way by the user.

Operations on Identifiers 99

12.0 Operations on Numbers

The majority of operators which expect numbers as operands will accept either integer or real num-
bers. Unless otherwise stated, any operator having mixed-type operands will return a real number
as the result, even if the value is a whole number. When an operator returns an integer result, the
choice of type for that resuit, small or large integer, will not be determined by the types of the oper-
ands. See ‘“‘Numbers” on page 31. -

12.1 Conversion

FLOAT

function
(FLOAT num)

function
(INT2RNUM num)

The operand value must be numeric or an error is signalled. The FLOAT and
INT2RNUM functions convert the operand value to a real number which is returned.
If the operand value is an integer, the converted value is the closest real approximation
to that integer, unless the integer exceeds the range of real numbers (approximately
1075), in which case an error is signalled. If the operand value is already a real number,
that value is returned.

INT2RNUM

FIX

Sfunction
(FIX num)

RNUM2INT
(RNUM2INT num)

The operand value must be numeric or an error is signalled. The FIX and RNUM2INT
functions convert the operand value to an integer which is returned. If the operand value
is a real number, the converted value is the integral part of that operand value. If the
operand value is already an integer, that value is returned. :

function

12.2 Predicates

PLUSP

function
(PLUSP item)

The PLUSP function tests whether the operand value is positive, zero, negative or non-
numeric. If it is positive or zero, the operand value is returned. If it is negative or non-
numeric, NIL is returned.

QSPL usp macro
(QSPLUSP sint)

The non-checking counterpart of PLUSP. If the operand value is not a small integer, the
value returned is unspecified.

ZEROP function

(ZEROP item)

Operations on Numbers 101

The ZEROP function tests whether the operand value is zero, non-zero or non-numeric.
If it is zero, the operand value is returned. If it is non-zero or non-numeric, NIL is re-
turned.

OSZEROP

macro
(QSZERORP sint)

The non-checking counterpart of ZEROP. If the operand value is not a small integer,
the value is unspecified.

MINUSP Sfunction
(MINUSP item)

The MINUSP function tests whether the operand value is negative, positive, zero, or
non-numeric. If it is negative, the operand value is returned. If it is positive, zero, or
non-numeric, NIL is returned.

OSMINUSP

macro
(QSMINUSP sint)

The non-checking counterpart of MINUSP. If the operand value is not a small integer,
the value is unspecified.

ODDP function
(ODDP item)

The ODDP function tests whether the operand value is an odd or even integer. If it is
odd, the operand value is returned. Otherwise, NIL is returned.

QSODDP macro
(QSODDP sint)

The non-checking counterpart of ODDP. If the operand value is not a small integer, the
value is unspecified.

GREATERP

function
(GREATERP numl num2)

Both operand values must be numeric or an error is signalled. The GREATERP function
compares the operand values. If the first operand value is greater than the second, then
non-NIL is returned. Otherwise, NIL is returned. If either operand is a real number, the
real fuzz factor may affect the comparison. See page 31

OSGREA TERP
(QSGREATEREP sint1 sint2)

The non-checking counterpart of GREATERP. If both operand values are not small
integers, the value is unspecified.

macro

LESSP

Sfunction
(LESSP numl num?2)

Both operand values must be numeric or an error is signalled. The LESSP function
compares the operand values. If the first operand value is less than the first, then
non-NIL is returned. Otherwise, NIL is returned. If either operand is a real number, the
real fuzz factor may affect the comparison. See page 31

102

()

QSLESSP

macro
(QSLESSP sint1 sint2)

The non-checking counterpart of LESSP. If both operand values are not small integers,
the value is unspecified.

12.3 Computation

+

Sfunction and compile-time macro

(+ num ...)

PLUS function and compile-time macro

(PLUS num ...)

All operand values must be numeric or an error is signalled. The + and PLUS functions

compute and return the sum of all operand values. If all operand values are integers, the

sum is an integer. Otherwise, the sum is real. The + and PLUS macros cause an
" equivalent result. '

Sfunction and compile-time macro

(- [numl num2 ...])

DIFFERENCE function and compile-time macro
(DIFFERENCE [num1 num?2 ...])

If all arguments are omitted, the value is 0; if any arguments are supplied, they must all
be numeric or an error is signalled.

If only one argument is given, the value is (MINUS numl).

When two arguments are supplied, the - and DIFFERENCE functions subtract the sec-
ond operand value from the first and return the difference. If both operand values are
integers, the difference is an integer. Otherwise, the difference is real. The - and DIF-
FERENCE macros cause an equivalent result.

If more than two arguments are supplied, the third argument is subtracted from the dif-
ference of the first two, and so on.

* function and compile-time macro

(* num ...)

TIMES

function and compile-time macro
(TIMES num ...)

All operand values must be numeric or an error is signalled. The * and TIMES functions
compute and return the product of all operand values. If all operand values are integers,
the product is an integer. Otherwise, the product is real. The * and TIMES macros cause
an equivalent result.

/

function
(/ [numl num2 ...])

QUOTIENT

function
(QUOTIENT [numl num2 ...])

If all arguments are omitted, the value is 1; if any arguments are supplied, they must all
be numeric or an error is signalled.

Operations on Numbers 103

If only one argument is given, the value is (/ 1 numl).
When two arguments are supplied,

numl is the dividend and num2 is the divisor. The / and QUOTIENT functions divide
the dividend by the divisor and return the quotient. If the dividend and divisor are inte-
gers, the quotient is an integer. Otherwise, the quotient is real. If the divisor is zero, an
error is signalled.

If more than two arguments are supplied, the quotient of the first two is divided by the
third, and so on.

o function
(** numl num2)
EXPT function

(EXPT numl num2)

numl is the base and num2 is the exponent. The base and exponent must be numeric
or an error is signalled. The ** and EXPT functions raise the base to the power of the
exponent and return the result. If the base is an integer and the exponent is a positive
integer, the result is an integer. Otherwise, the result is real. Since imaginary numbers
do not exist in LISP/VM, the base cannot be negative when the exponent is not a posi-
tive integer.

MAX

function and compile-time macro
(MAX num ...)

All operand values must be numeric or an error is signalled. The MAX function finds
and returns the algebraically largest operand value. The MAX macro causes and
equivalent result.

OSMAX

function and compile-time macro
(QSMAX sintl sint2)

The non-checking counterpart of MAX, defined for only two operands. If both operand
values are not small integers, the value returned is unspecified.

MIN

function and compile-time macro
(MIN num ...)

All operand values must be numeric or an error is signalled. The MIN function finds and
returns the algebraically smallest operand value. The MIN macro causes an equivalent
result.

OSMIN function and compile-time macro
(QSMIN sint1 sint2)

The non-checking counterpart of MIN, defined for only two operands. If both operand
values are not small integers, the value returned is unspecified.

ABSVAL

function
(ABSVAL num)

The operand value must be numeric or an error is signalled. The ABSVAL function re-
turns the absolute value of the operand value.

QOSABSVAL

function and compile-time macro

104

_/

()

(QSABSVAL sint)

The non-checking counterpart of ABSVAL. If the operand value is not a small integer,
the value is unspecified. '

MINUS

Sfunction
(MINUS num)

The operand value must be numeric or an error is signalled. The MINUS function ap-
plies unary minus to the operand value and returns the result.

QSMINUS function and compile-time macro

(QSMINUS sint)

The non-checking counterpart of MINUS. If the operand value is not a small integer,
the value is unspecified.

QSPLUS function and compile-time macro
(QSPLUS sint1 sint2)

The non-checking counterpart of PLUS, defined for two operands. If both the operand
values are not small integers, or if the sum is outside the small integer range, the value
will be an unspecified small integer.

ADDI

Sfunction
(ADD1 num)

The operand value must be numeric or an error is signalled. The ADD1 function adds
1 to the operand value. If the operand value is an integer, the sum returned is an integer.
Otherwise, the sum returned is a real number.

QSADDI

function and compile-time macro
(QSADD!1 sint)

The non-checking counterpart of ADD1. If the operand value is not a small integer, the
value is unspecified.

QSINC1 —— macro
(QSINC1 sint)

This function is equivalent to QSADDI1, except when its operand value is -1. In that
case, its value is unspecified and possibly fatal.

The QSINC1 function compiles to a single machine instruction, and is used for index
arithmetic in many internal functions. The QSINC1 macro causes an equivalent result.

QSDIFFERENCE function and compile-time macro
(QSDIFFERENCE sint1 sint2)

The non-checking counterpart of DIFFERENCE, defined for small integers. If both the
operand values are not small integers, or if the difference is outside the small integer
range, the value will be an unspecified small integer.

SUBI function
(SUB1 num)

The operand value must be numeric or an error is signalled. The SUB1 function sub-
tracts 1 from the operand value. If the operand value is an integer, the difference re-
turned is an integer. Otherwise, the difference returned is a real number.

Operations on Numbers 105

QSSUB!I Sfunction and compile-time macro
(QSSUBI sint)

The non-checking counterpart of SUB1. If the operand value is not a small integer, the
value is unspecified.

QSDECI

macro
(QSDECTI sint)

This function is equivalent to QSSUB1, except when its operand value is zero. In that
case, its value is unspecified and possibly fatal.

QSDECI1 compiles to a single machine instruction, and is used for index arithmetic in
many internal functions. The QSSUB1 macro causes an equivalent result.

QSTIMES Sfunction and compile-time macro
(QSTIMES sint1 sint2)

The non-checking counterpart of TIMES, defined for two operands. If both operand

values are not small integers, or if the product is outside the smmall integer range, the value ~

is an unspecified small integer.

DIVIDE function

(DIVIDE num1 num2)

numl is the dividend and num2 is the divisor. The dividend and divisor must be numeric
or an error is signalled. The DIVIDE function divides the dividend by the divisor and
returns a list whose first element is the quotient and whose second element is the re-
mainder. If both operand values are integers, the quotient and remainder will be inte-
gers. Otherwise, the quotient and remainder will be real numbers. In this case, the
remainder is computed by multiplying the divisor by the quotient and subtracting it from
the dividend. If the divisor is zero, an error is signalled. THe DIVIDE macro causes an
equivalent result.

QSQUOTIENT function and compile-time macro
(QSQUOTIENT sint1 sint2)

The non-checking counterpart of QUOTIENT. If both operand values are not small
integers, or if the quotient is outside the small integer range, the value is an unspecified
small integer.

REMAINDER function and compile-time macro
(REMAINDER numl num2)

numl is the dividend and num2 is the divisor. The dividend and divisor must be numeric
or an error is signalled. The REMAINDER function divides the dividend by the divisor
and returns the remainder. If both operand values are integers, the remainder will be
an integer. Otherwise, the remainder will be a real number which is computed by
multiplying the divisor by the quotient and subtracting it from the dividend. If the divisor
is zero, an error is signalled. The REMAINDER macro causes an equivalent result.

QOSREMAINDER [function and compile-time macro
(QSREMAINDER sintl sint2)

The non-checking counterpart of REMAINDER. If both the operand values are not
small integers, or if the remainder is outside the small integer range, the value will be an
unspecified small integer.

106

N

LEFTSHIFT function
(LEFTSHIFT num sint)

num must be a small integer or one word large integer and &sint. must be a numeric value
or an error is signalled. The first operand value is the field to be shifted and the second
operand value is the shift-size, the number of bits to be shifted. If the shift-size is posi-
tive, the LEFTSHIFT function applies a binary left shift of the shift-size to the field and
the shifted value is returned. If the shift-size is negative, the field is shifted right and
returned. Any bits shifted outside of a 32 bit word are lost, and zero bits are supplied
as needed.

QSLEFTSHIFT function and compile-time macro
(QSLEFTSHIFT sintl sint2)

The non-checking counterpart of LEFTSHIFT. If both the operand values are not small
integers, or if the result outside the small integer range, the value will be an unspecified
small integer.

RIGHTSHIFT Sfunction and compile-time macro
(RIGHTSHIFT num sint)

num must be a small integer or one word large integer and &sint. must be a numeric value
or an error is signalled. The first operand value is the field to be shifted and the second
operand value is the shift-size, the number of bits to be shifted. If the shift-size is posi-
tive, the RIGHTSHIFT function applies a binary right shift of the shift-size to the field
and the shifted value is returned. If the shift-size is negative, the field is shifted left and
returned. Any bits shifted outside of a 32 bit word are lost, and zero bits are supplied
as needed. The RIGHTSHIFT macro causes an equivalent result.

ALINE

function -- FOR THE EXPERT LISP/VM USER
(ALINE sint1 sint2)

Value is the small integer sintl rounded up to the nearest multiple of the small integer
sint2, where sint2 is a power of 2. If sintl or sint2 are not small integers or are negative,
an error is signalled. If sintl is zero or one, returns sintl unchanged. If sint2 is not a
power of 2, result is unspecified.

(ALINE 15 &4) = 16.

QSNOT function and compile-time macro
(QSNOT sint)

The QSNOT function returns the bitwise complement of the numeric value of the oper-
and value, as a small integer. If the operand value is not a small integer, the value is
unspecified. The QSNOT macro causes an equivalent result.

QSAND

function and compile-time macro
(QSAND sint1 sint2)

The QSAND function returns the bitwise AND of the numeric values of the operand
values. small integer. If both operand values are not small integers, the value is un-
specified. The QSAND macro causes an equivalent result.

QSOR function and compile-time macro

(QSOR sintl sint2)

Operations on Numbers 107

The QSOR function returns the bitwise OR of the numeric values of both operand values
as a small integer. If both operand values are not small integers, the value is unspecified.
The QSOR macro causes an equivalent result.

QSXOR function and compile-time macro
(QSXOR sintl sint2)

The QSXOR function returns the bitwise exclusive OR of the numeric values of both
operand values as a small integer. If the operand values are not small integers, the value
is unspecified. The QSXOR macro causes an equivalent resuit.

EXP

Sfunction
(EXP num)
The EXP function returns the value of e raised to the power of the operand value.
If the operand value is greater than 174.66, an error is signalled.

LN function
(LN num)

num must be a numeric value within the range of a real number or an error is signalled.
The LN function computes and returns the natural logarithm of the operand value. The
result is a real number.

LoG

function
(LOG num)
num must be a numeric value within the range of a real number or an error is signalled.

The LOG function computes and returns the base ten logarithm of the operand value.
The result is a real number.

LOG2 function

(LOG?2 num)

num must be a numeric value within the range of a real number or an error is signalled.
The LOG?2 function computes and returns the base two logarithm of the operand value.
The result is a real number.

SIN function

(SIN num)

num must be a numeric value less than approximately 3.5*10%5, or an error is signalled.
The SIN function computes and returns the sine of the operand value, the angle in
radians. The sine is a real number.

coS

function
(COS num)

num must be a numeric value less than approximately 3.5*1015, or an error is signalled.
The COS function computes and returns the cosine of the operand value, the angle in
radians. The cosine is a real number.

108

N\

M

13.0 Operations on Pairs

These operators treat pairs as pairs, not imposing any interpretation, such as lists, on the contents.

13.1 Creation

CONS built-in function
(CONS item] item2)
CONS is the basic pair-creating function. Its value is the new pair constructed with
iteml as its CAR component and item2 as its CDR component.
Of particular interest is the case where item2 is a pair. Then the value of
CONS is the list formed by adding item1 to the beginning of the list item2.
CONSFN Sfunction

Do several CONSes with one call. .
(CONSFN item1 [item2 ...] itemn)

The result of this operation is a pair where the CAR is item1 and the CDR is itemn or a
pair where the CAR is item2. If itemn is NIL, this operator is equivalent to LIST.

13.2 Accessing

CAR built-in function
(CAR item)
One of the two basic access functions defined on pairs. Its value is the CAR component
of the pair item.
In its list interpretation, the value of (CAR item) is the first element of the list
item.
If item is not a pair, an error is signalled.
CDR built-in function
(CDR item)
One of the two basic access functions defined on pairs. Its value is the CDR component
of the pair item. If item is not a pair, an error is signalled.
The value of (CDR item) is usually the list containing all but the first element
of the list item; however, this is not the case when item is the terminating pair
of a list. In that case, (CDR item) is the terminating atom, usually NIL.
C...A|D..R Sfunction and compile-time macro

(C...A|D...R item)

There are twenty eight macros defined which give meaning to operators of this form,
where ... designates any sequence of one to four As or Ds. For example,

(CADDR item)

is equivalent to
(CAR (CDR (CDR item)))

and so on. The interpretations of these macros are performed efficiently. If any of the
successive CAR and CDR operations applies to a non-pair, an error is signalled.

Operations on Pairs 109

OR

(CA[D...]IR list) D

Any operator of this form, that is zero or more CDRs followed by a single CAR, may
be though of as an accessing function for a list. CAR gives the first element, CADR the
second, etc. ’

CD...R function and compile-time macro

(CD...R list)

These operations return the "tail"" of their argument. CDR gives the list, less its first
element, CDDR, less its first and second, etc.

QC...A|D...R
(QC...A|D...R item)

Each of the C...R operators (including CAR and CDR) has a corresponding QC...R
operator. These operator perform the same action as the C...R operators, without first
checking their argument for type. Thus, if applied to anything but pairs their action is
unpredictable.

function and compile-time macro

In compiled programs these operation are performed by in-line code.

QCA([D...]JR

function and compile-time macro
(QCAID...]R list)

The non-checking versions of the preceding operators.

QCD...R function and compile-time macro

(QCD...R list)

The non-checking versions of the preceding operators.

IFCAR

function and compile-time macro
(IFCAR item)

This is a conditional CAR operator. If item is a pair, it is equivalent to (CAR item),
otherwise it has a value of NIL.

XORCAR function and compile-time macro
(XORCAR item)

This is another conditional CAR operator. If item is a pair, it is equivalent to
(CAR item), otherwise the argument, item, is returned as the value.

IFCDR Sfunction and compile-time macro
(IFCDR item)

This is a conditional CDR operator. If item is a pair, it is equivalent to (CDR item),
otherwise it has a value of NIL.

XORCDR function and compile-time macro

(XORCDR item) . D

This is another conditional CDR operator. If item is a pair, it is equivalent to
(CDR item), otherwise the argument, item, is returned as the value.

110

13.3 Updating

RPLACA

built-in function
(RPLACA pair item)

This is one of the two basic functions for updating pairs. Its value is the updated pair
which results when the CAR component of the pair pair is replaced by item. If pair is
not a pair, an error is signalled.

QRPLACA

macro
(QRPLACA pair item)

Equivalent to RPLACA, with no type checking of arguments.
OR

(QRPLACA list item)

Equivalent to RPLACA, with no type checking of arguments.

RPLACD

built-in function -
(RPLACD pair item)

This is the other basic function which updates pairs. Its value is the updated pair which
results when the CDR component of the pair pair is replaced by item. If pair is not a pair,
an error is signalled.

QRPLACD

macro
(QRPLACD pair item)

Equivalent to RPLACD, with no type checking of arguments.
OR '
(QRPLACD list item)

Equivalent to RPLACD, with no type checking of arguments.

RPLPAIR

function
(RPLPAIR pairl pair2)
This function is equivalent to

(RPLACA pair1 (CAR pair2))
(RPLACD pairt (CDR pair2))

Its value is the updated pair, pairl If either argument is not a pair, an error is signalled.

QRPLPAIR

macro
(QRPLPAIR pairl pair2)
Equivalent to RPLPAIR, with no type checking of arguments.

NCONS

Sfunction
(NCONS pair item1 item2)
This function is equivalent to

(RPLACA pair iteml)
(RPLACD pair item2)

Its value is the updated pair. If the argument, pair, is not a pair, an error is signalled.

QNCONS —— macro

Operations on Pairs 111

112

(QNCONS pair item1 item2)
Equivalent to NCONS, with no type checking of arguments.

14.0 Operations on Lists

These operations assume the list interpretation of pairs, see “Lists” on page 33. The value of the
final, non-pair, CDR of an argument is generally ignored once its non-pairness has been discovered.
Similarly, an atomic (non-pair) argument is in most cases treated as an empty list.

14.1 Creation

LIST Sfunction and compile-time macro
(LIST [item ...])
Returns as its value a list of n elements, the first element being the value of the ex-
pression item1, et cetera.
(LIST iteml item2 ... itemn)
is equivalent to A i
(CONS item1 (CONS item2 ... (CONS item2 NIL)))
LOTSOF Sfunction

(LOTSOF item ...)
LOTSOF returns an infinite list of its arguments.

(LOTSOF 2 'A '(8 . 9))

VALUE

]

I

|
1

Lel—bp| 2| o edQ——
|

|

—f-

—

Figure 16. Result of LOTSOF.

CONS built-in function
(CONS item list)
When its second argument is a list, CONS can be considered a list creating operator. It
is used to add new items to the beginning of a list. See also page 109.

APPEND function

CONC function

(APPEND (list1 ... lism])

If APPEND is invoked with no arguments, the value is NIL. If APPEND is invoked with
one argument, the value is precisely that argument. If APPEND is invoked with several
arguments, and all but the last are atoms (ie. not pairs, or equivalently, empty lists), the
value is again the last argument.

In all other cases, the value of an invokation of APPEND is a list which has a length
equal to the sum of the lengths of the arguments. The pairs that form the top-level list

Operations on Lists 113

structure of all but the last argument are copied, and the last argument becomes the CDR
of the last copied pair. If any argument but the last is a circular list, an error is signalled.)

There is no copying of the structure below the top level, which would be accessed by
descending the elements of listl. Consider (APPEND °(il i2) ’(i3 i4)). The structure
before, and after the call would be:

Before processing

list1 list2

|
| |
—p| ot p| o / i —p| ot | / I

il Li2 i3 il

After processing

list1 list2
| |
| | —— —
—p| | @ / —el—»| ¢ | *—4—> I . / I
1 1 L]
|
—pLl—pil —pl—»i2 —»i3 L—p il

value ’)
| e |
L—p] o —ag—>| I .

(Note, the pairs marked by * are newly created.)

Figure 17. Result of APPEND.

APPEND?2

Sfunction
(APPEND? list] &list2)
A special case of APPEND with exactly two arguments.

CONCAT

function
(CONCAT [item1 ... itemn)

If item1 is NIL or a pair, the effect of CONCAT is identical to the effect of APPEND.
If item1 is a vector or a specific vector, then CONCAT builds a new vector that holds
all the elements of the arguments.

REVERSE function

(REVERSE list)

This operator returns as its value a new, top-level copy of the list list where the elements
of this new list are in the inverse order of their occurrence in list.)

(REVERSE '(1 2 3 4))
Value = (4 3 2 1)

114

- REMOVE Sfunction
C (REMOVE list item { arg })

If arg is omitted, this function copies the top-level list structure of list until a list element
EQUAL to item is found. That element is skipped, and the rest of list becomes the CDR
of the last copied pair. In effect, this operator builds a list equivalent to list with the first
occurrence of item deleted.

If arg is a positive integer, contine the above process to remove the first arg occurrences
of item If arg is anything else, remove all occurrences of item.

REMOVEQ function
(REMOVEQ item list { arg })
Equivalent to REMOVE, but uses EQ rather than EQUAL.
VEC2LIST function
(VEC2LIST vec)
This operator constructs a new list, containing the elements of the vector, vec. See page
126.
UNION Sfunction
(UNION list1 list2)
This operator constructs a new list contains all the elements appearing in either of the
lists list] and list2. Each element appears only once in the value list. MEMBER, which
. in turn uses EQUAL, is used to detect whether an element appears in a list. Any ele-
(‘ ments in the union found in listl will precede those found only in list2. The order will
- match that of the lists of origin. Thus:
(UNION (TH 1 ST SATEST) "(OFTHEUNI! ON))
results in
(THI1 SAEOFUN)
UNIONQ Sfunction
(UNIONQ list1 list2)
This operator differs from UNION only in using MEMQ, and hence EQ, to test for
membership in its arguments.
INTERSECTION Sfunction
(INTERSECTION list1 list2
Constructs a new list containing only those elements appearing (at the top level) in both
list1 and list2. MEMBER, which in turn uses EQUAL, is used to detect whether an el-
ement appears in a list. The elements in this new list are in the same order as their oc-
currence in listl. If either argument is not a pair, it is treated as if it were the only
element in a list of length one.
INTERSECTIONQ Sfunction
(INTERSECTIONQ list1 list2)
This operator differs from INTERSECTION only in using MEMQ, and hence EQ, to
C test for membership in its arguments.

Operations on Lists 115

SETDIFFERENCE function
(SETDIFFERENCE list1 list2)

Constructs a new list containing only those elements appearing (at the top level) in list1
but not in list2. MEMBER, which in turn uses EQUAL, is used to detect whether an
element appears in a list. The elements in this new list are in the same order as their
occurrence in listl. If either argument is not a pair, it is treated as if it were the only el-
ement in a list of length one.

SETDIFFERENCEQ function
(SETDIFFERENCEQ list1 list2)

This operator differs from SETDIFFERENCE only in using MEMQ, and hence EQ, to
test for membership in its arguments.

MTON

Sfunction
(MTON sintl sint2)

This operator returns a list of the integers from sint1 to sint2, inclusive. It does not check
its arguments, and if either is not a small integer, or if sint2 is less than sintl the results
will be unpredictable, and possibly fatal.

14.2 Accessing

CA[D...]JR [function and compile-time macro
(CA[D...]R list)

These operators return elements of a list. CAR returns the first, CADR the second,
CADDR the third, and CADDR the fourth. See page 110.

QCA[D...]JR

function and compile-time macro
(QCAID...]R list)
The non-checking versions of the preceding operators. See page 110.

CD...R function and compile-time macro
(CD...R list)

These operations return the "tail" of their argument. CDR gives the list, less its first
element, CDDR, less its first and second, etc. See page 110.

QCD...R function and compile-time macro
(QCD...R list)

The non-checking versions of the preceding operators. See page 1 10.~

ELT function and compile-time macro
(ELT list sint)

ELT returns the sint element of list See page 125.

LAST

function
(LAST list)
Returns as value the last element of list (i.e. the CAR of the last pair comprising list).

If list is a non-pair or is circular an error is signalled.

116

LASTPAIR function
(LASTPAIR list)

This operator returns as its value the last pair forming the list list. If list is a non-pair or
is circular an error is signalled.

(LASTPAIR '(1 2 3 &4))
Value = (4)

This value (as is true of the CD...R forms) is not a copy. Updating operations applied
to it will effect the original list.

14.3 Searching

MEMBER

function
(MEMBER item list)

This operator searches the list list for the object item, using EQUAL testing for identity.
It item is not found, or if list is not a pair, the value of MEMBER is NIL. If item is found,
the value of MEMBER is that portion of list beginning with.item. list is searched on the
top level only.

UMEMBER function
(UMEMBER item list)

This operator is similar to MEMBER, except that it uses UEQUAL testing for identity
instead of EQUAL testing.

MEMQ

function
(MEMQ item list)

This operator is similar to MEMBER, except that it uses EQ testing for identity instead
of EQUAL testing.

macro
(QMEMQ item list)

When compiled, this operator produces inline code equivalent to the MEMQ operator.
This operator does not check for circular lists, and will loop indefinitly.

OMEMQ

TAILP function
(TAILP item list)

This operator searches list for a CDR EQ to item. If such is found the value is non-NIL,
otherwise it is NIL.

The case of item EQ to list is considered a success. Since EQ is used,

(TAILP '(3 4) '(1 2 3 4))
Value = NIL

will occur, as the two lists are separate. On the other hand,

(SETQ X '(3 4))

Value = (3 4)

(SETQ Y (APPEND '(12) X))
Value = (1 2 3 4)

(TAILP X Y)

Value = non-NIL
because of the sharing in the value of APPEND.

Operations on Lists 117

ASSOC Sfunction
(ASSOC item a-list)
a-list is a list of pairs, ((namel . valuel) (name2 . value2) ...). ASSOC compares
item with namel, then name?, ..., using EQUAL to perform the comparison. Any ele-
ments of list which are not pairs are skipped. If a-list is not a list, or if item is not found
in a-list, the value of ASSOC is NIL. Otherwise, the value of ASSOC is the first pair
(name . value) such that (EQUAL item ’name) is true. If there are elements of a-list
which are not pairs, they are skipped and the next element of a-list is examined.
vASSoC function
(UASSOC item a-list)
This operator is identical to ASSOC except that UEQUAL, rather than EQUAL, is used
for the comparison of item with the a-list.
ASSQ function
(ASSQ item a-list))
This operator is similar to ASSOC, except it uses EQ rather than EQUAL to compare
item with the CARs of elements in a-list.
QASSQ macro
(QASSQ item list)
When compiled, this operator produces inline code equivalent to the ASSQ operator.
This operator does not check for circular lists, and will loop indefinitly.
SASSOC Sfunction
(SASSOC item a-list app-ob)
This operator is similar to ASSQ, but requires three arguments and if item is not
matched, it returns the result of applying app-ob to no arguments, instead of the NIL
value returned by ASSOC. :
GET Sfunction
(GET list item)
GET returns the value of a name-value pair of an association list.
See page 98.
OGET macro
(QGET list item)

When compiled, this operator produces inline code equivalent to the GET operator. This
operator does not check for cyclic lists, and may loop indefinitely.

14.4 Searching and Updating

ADDTOLIST function
(ADDTOLIST list item)

If list is not a pair, the value returned is (LIST item). Otherwise this operator searches
list for an instance of item, using EQ. If no instance of item is found, item is added to the

tail of the list, using RPLACD. In effect,
(NCONC tist (LIST item))

118

Y

The value returned is the list list, whether or not item was initially present.

PUT function
(PUT list item1 item2)
- PUT is used to update or add a name-value pair to an association list. See page 98.
REMPROP function
(REMPROP list item)

REMPROP removes a name-value pair from an association list. See page undefined

14.5 Updating

RPLACA built-in function
(RPLACA list item)

When its first argument is interpreted as a list, RPLACA replaces the first element of
that list.

(SETQ
Value

X
Value =

See page 111.

macro
(QRPLACA list item)
Equivalent to RPLACA, with no type checking of arguments. See page 111.

QRPLACA

RPLACD

built-in function
(RPLACD pair item)
When its first argument is interpreted as a list, RPLACD replaces the tail of that list.

(SETQ X '(1 2 3 4))
Value = (1 2 3 &)
(RPLACD X '(20 30 40))
Value = (1 20 30 40)
X

Value = (1 20 30 40)

See page 111.

ORPLACD

macro
(QRPLACD pair item)
Equivalent to RPLACD, with no type checking of arguments. See page 111.

SETELT function and compile-time macro
(SETELT list sint item)

SETELT updates the sint element of list. See page undefined.

NCONC

function

(NCONC [list1 ... listn])

Operations on Lists 119

If NCONC is invoked with no arguments, the value is NIL. If NCONC is invoked with
one argument, the value is precisely that argument. If NCONC is invoked with several
arguments, and all but the last are atoms (ie. not pairs, or equivalently, empty lists), the
value is again the last argument.

In all other cases, the value of an invokation of NCONC is EQ to the first argument that
is a pair. Each argument that is a pair is scanned up to the final pair, and the next ar-
gument that is a pair becomes the CDR of that pair. If any argument but the last is a
circular list, an error is signalled.

Consider (NCONC ’(i1 i2) ’(i3 i4)). The structure before, and after the call would be:

Before processing

value

list1 list2
| |
—p| [y EE— I} / —p| o ok p| o /i
} J
|
il —»i2 i3 ik
After processing
list1 list2
I I I
| | r r | T —T
Ll - —f—| o._“...—_..’L_’I . | | / |
L — L } (I i
|
il —»i2 L—i3 —»il

(Note, no new pairs are created.)

Figure 18. Effect of NCONC

NCONC2 Sfunction

(NCONC2 list]1 list2)

A special case of NCONC with exactly two arguments.
NREVERSE function

(NREVERSE list)

120

This function shuffles the CDR components of the pairs making up list so that the CDR
of the last pair in list points to the next-to-last pair, et cetera. The CDR of the first pair
is made NIL, and the value of NREVERSE is the last pair of list, which is now the first
pair of a list containing exactly the same elements as list, but in reversed order. See also
REVERSE, page 114, which constructs a new list in reversed order instead of reusing
the pairs in the original list.

Consider (NREVERSE (il i2 i3 i4)). The structure before, and after the call would be:

o

Before processing

list
I |
1 1 T 1 T 1
I_>| . o_|.__.__.> . | . I .__*_’ ° I / l
| | i i
| I | I
il L—i2 i3 il
After processing
list VALUE
I
I
| 7|
| ||
| -) T I B ey |
| o / I L—p| . ' L—p| . I I —p| o I IS I
I] J I | 1|
I I I
| L L
I
L—il L—i2 L—i3 L—i4

(Note, no new pairs are created.)

Figure 19. Effect of NREVERSE

NREMOVE function
(NREMOVE list item { num })

Uses EQUAL to search list for the first num occurrences of item. If item is not found,
or if list is atomic, returns list as its value. If item is found, it is removed up to num times.

If the first element of the list is not EQUAL to item, the list will be updated, so that
item will be removed from any objects containing list If the first element of the list is
EQUAL to item then NREMOVE will return the resuit of NREMOVE applied to the
CDR of the list, with a count of one less.

If the num is not given as an argument, it defaults to one, hence only the first instance
of item will be removed. If the third argument is NIL, all instances of item will be re-
placed.

NREMOVEQ
(NREMOVEQ item list { num })
Equivalent to NREMOVE, but uses EQ rather than EQUAL.

function

14.6 Miscellaneous

LENGTH

Sfunction
(LENGTH list)

If list is a pair, LENGTH returns the number of elements in the list beginning with that
pair. If list is not a pair, the value of LENGTH is zero.

If list is a circular list an error break is taken.

Operations on Lists 121

QLENGTH

macro
(QLENGTH list)

When compiled, this operator produces inline code equivalent to the LENGTH operator.
This operator does not check for circular lists, and may loop indefinitely.

SIZE Sfunction
(SIZE list)
SIZE returns the number of elements in list. See page 124.
SORT function
(SORT list)
SORT returns a newly CONSed list, containing the element of list, ordered by the op-
erator SORTGREATERP. SORTGREATERP is initially defined as equivalent to
GGREATERP, page undefined, but may be redefined at the users pleasure.
The quicksort algorithm is used.
SORTBY function

(SORTBY app-ob list)
This operator sort its second argument, list. Where SORT compares the elements of the
list, SORTBY compares the values of (app-ob element). Thus where
(SORT '((2 g) (1 n) (3 a)))
Value = ((1 n) (2 g) (3 a))
SORTBY produces

(SORTBY 'CADR) (1 n) (3 a)))
(IORTEY (R 2

122

U

f N
~
i

15.0 Operations on Vectors

The set of data objects grouped under the title vector includes bpis although they are mentioned only
once. Those operators which effect only character vectors or bit vectors are defined in their own
section.

15.1 Creation

MAKE-VEC function

(MAKE-VEC sint)
Returns as value a new vector containing sint elements. The initial value of each element

is NIL. This is the basic allocating operator for vectors that are capable of holding ar-
bitrary objects.

MAKE-RVEC function .
(MAKE-RVEC sint)

Allocates and returns as value a real vector containing sint elements. Each of the floating
point values (elements) are initialized to zero.

MAKE-IVEC Jfunction
(MAKE-IVEC sint)

Allocates and returns as value an integer vector containing sint
elements. The elements of the allocated vector are not initialized. See also
GETZEROVEC.

GETZEROVEC function
(GETZEROVEC sint)
Like MAKE-IVEC, except the elements of the integer vector are initialized to zero.

VECTOR function and compile-time macro
(VECTOR [item ...]) _
This operator is the vector analogue of LIST. Its value is a vector containing its oper- .
ands.
(VECTOR 1 2 3 L)
Value = <1 2 3 4>
LIST2VEC Sfunction
(LIST2VEC list)
This operator constructs a new vector from the elements of list. If list is non-pair, the
value of LIST2VEC is a vec with zero elements. If list is a circular list, the operator
loops. Otherwise, the value is a vector of the form:
<(CAR LIST) (CADR LIST) ... (CAD.R LIST)>
LIST2RVEC Sunction
(LIST2RVEC list)

This operator is similar to LIST2VEC but for the fact that the resulting vector is a vector
of floating point (real) numbers. The elements of list may or may not already be real
numbers. If they are not real, they are floated. If any element of list is not a number,

Operations on Vectors 123

STANDARD VECTOR OPERATORS
A tabular index to primitive vector operators
Type Predicate | Value Specific Specific Allocating
of of Selection | Updating Function
Vector element Function Function
VEC VECP Anything ELT SETELT MAKE-VEC
Character | CVECP Identifier | ELT SETELT MAKE-CVEC
Bit BVECP NIL or ELT SETELT MAKE-BVEC
“NIL

Word IVECP Integer ELT SETELT MAKE- | VEC
Real RVECP Real ELT SETELT MAKE-RVEC

Analogous operators for pairs are listed below for comparison
Pair PAIRP . CAR RPLACA CONS

CDR RPLACD

List LISTP Anything ELT SETELT LIST

El

Figure 20. Standard Vector Operators

or cannot be converted into a floating point number, the INT2RNUM operator which
is called by LIST2RVEC will signal an error.

LIST2IVEC Sfunction
(LIST2IVEC list)

This operator is similar to LIST2VEC but for the facts that its value is an integer vector
and the elements of list must be integers within the range acceptable for integer vectors.
This range is 231-1 > value > -231,

15.2 Accessing

SIZE function
(SIZE vec)
SIZE returns as its value the number of elements in its argument -- that is, one more than
the maximum valid index which may be used to address an element of this vector. SIZE
may also be applied to lists, in which case it performs exactly as does LENGTH. See
page 122. If SIZE is given an argument other than a pair or vector, it returns the value
Zero.
Note that string vectors (either character or bit) may have a capacity larger than the
number of elements currently in the vector.
You may note that while SIZE (and LENGTH) are lumped as "miscella-
neous'' operators when applied to lists, they are included among the access
operators for vectors. This is because the number of element is a vector is
explicitly recorded in the data structure, while the number of elements in a list
can only be found by counting.
OR
(SIZE list)
When applied to lists, SIZE is equivalent to LENGTH.
MAXINDEX function
(MAXINDEX vec) X

124

L

(D

Returns as value the maximum allowed index for the given vector. This operator is de-
fined as (SUB1 (SIZE vec)), so while its principal use concerns vectors, it could be
applied to other objects as well.

QVMAXINDEX
(QVMAXINDEX vec)

This is the non-checking counterpart of MAXINDEX. If its operand is a vec it returns
the desired value, otherwise its value is unpredictable.

Note, that QVMAXINDEX will produce the correct value when applied to
an integer vector.

function and compile-time macro

QVSIZE

function and compile-time macro
(QVSIZE vec)

This is the non-checking counterpart of SIZE. If its operand is a vec it returns the de-
sired value, otherwise its value is unpredictable.

Note, that QVSIZE will produce the correct value when applied to an integer
vector.

ELT

Sfunction and compile-time macro
(ELT item sint)

This is the general selection operator for vectors and lists. Its value is the sint element
of item, where the type of object returned by ELT is indicated in Figure 20 on page
124 for various types of items.

If sint is not within the bounds of item, an error is indicated. If item is not a vector or a
list, an error is indicated.

The first element of a vector or a list is selected by using zero as the sint value.

If item is a vector of reals, ELT will allocate a new real number into which the value of
the accessed element is copied, and return this new real to the caller. This is necessary
(although not very efficient) because pointers pointing inside a vector are not allowed

. (they confuse the garbage collector). Thus, if a collection of real numbers are to be as-
sembled into a vector, it is better to have a vector when access to these reals is made on
an individual basis using ELT. The vector of reals exists for applications where the user
has implemented arithmetic processes requiring the contiguous storage of real data in
order to evaluate efficiently. '

If item is an integer vector, ELT may have to build a new large integer and return it as
the value of ELT for certain values in the integer vector. Any value within the range of
a small integer will be returned as a small integer, and will not require allocation of heap
space. Values outside the range of small integers must be converted by ELT into large
integers.
If item is a character vector ELT will return one of the 256 identifiers with one byte
pnames.
For bit strings ELT returns a value of NIL or -NIL. ELT is the only access operator for
bit strings.

OR
(ELT list sint)

The value of ELT is the sint element of list, where the first element is designated by zero
(0), the second by one (1), etc.

If sint is not within the bounds of list, an error is signalled. If list is not a vector or a list,
an error is indicated.

Operations on Vectors 125

Note: ELT applied to NIL will always produce a bounds error, as NIL is in-
terpreted as the empty list.

QVELT

macro
(QVELT vector sint)

This is the non-checking counterpart of ELT. It is only defined when its first operand,
vector is a vector, and its second operand, sint, is a small integer and is in the correct
range. In that case its value is the same as ELTs. Otherwise its value is unpredictable,
and possible fatal.

VEC2LIST

function
(VEC2LIST vec)

This operator constructs a new list, containing the elements of the vector, vec. The ele-
ments of the resulting list will correspond to the values of ELT for the specific vector
from which they are drawn.

153 Searching :

VMEMQ

function
(VMEMQ item vec)

Searches vec for an element EQ to item. If such an element is found the value of
VMEMQ is its index. Otherwise the value is NIL.

(SETQ V '<A 3 8 B X>)

Value = <A 3 8 B X>

(VMEMQ 'B V)

Value = 3

(VMEMQ 'L V)

Value = NIL

15.4 Updating

SETELT

function and compile-time macro
(SETELT iteml sint item2)

This is the inverse operator of ELT -- it updates the sint element of item1l to be item2.
The nature of item2 for various types of item1 is indicated in Figure 20 on page 124.

SETELT will signal an error if item1 is not updatable, if sint is out of range, or if item2
is not compatible with the type of iteml. '

SETELT may be used to update the sint element of a list.

The value of SETELT is item2, the value used in updating the specified object.
(SETELT LIST 3 VALUE)

is equivalent to:
(RPLACA (CDR (CDR (CDR LIST))) VALUE)

For character strings, item must be an identifier. For bit strings it may have any value,
with NIL and anything else being distinguished.

QSETVELT —— macro
(QSETVELT vector sint item)

This is the non-checking counterpart of SETELT. It is only defined when its first oper-
and, vec is a vector, and its second operand, sint, is a small integer and is in the correct

126

_/

~ range. In that case its value is the same as SETELTs. Otherwise its value is unpredict-
Q ! able, and possible fatal.

MOVEVEC Sfunction
(MOVEVEC vecl vec2)

Copies the contents of vector vecl into vector vec2. Both arguments must have the same
capacity, and they must be both vectors or both binary (character, bit, real or integer)

vectors.

Operations on Vectors 127

(N

16.0 Operations on Character and Bit Vectors

Two kinds of vectors, character vectors and bit vectors, permit operations not allowed on other vec-
tors. Unless otherwise indicated, the following operators apply to character vectors.

16.1 Creation

MAKE-CVEC
(MAKE-CVEC sint)

Creates a character vector with a capacity of at least sint characters. The new vector is
returned. as the value of MAKE-CVEC. Vectors are allocated in increments of full-
words: for a character vector, the first word includes only the first character of the string,
prefaced by a 3-byte current length field. Therefore, the actual capacity of the vector

function

is defined by
(((sint + 6) / 4) * 4) - 3 characters.
sint Maximum capacity of allocated string
1 |
2-5 5
6-9 9
Figure 21. Character string allocation

Zero or negative numbers are invalid values for sint and will cause an error to be sig-~
nalled. The character string returned by MAKE-CVEC is initialized to the null string,
that is, its contents length is zero, and it prints as """

MAKE-FULL-CVEC Sfunction
(MAKE-FULL-CVEC sint [{id | cvec | sint}])

Similar to MAKE-CVEC in that a new character vector is allocated and returned as the
value of MAKE-FULL-CVEC. The new string, however, contains sint instead of zero
characters. The id argument is optional. If it is specified as an identifier, the new string
will be initialized so that each character is the initial letter of the P-name of id. If it is a
small-integer, the low order eight bits become the fill character. If it is a string, the
leftmost character is used. If id is not specified, the string will be initialized to binary
zero characters.

MAKE-BVEC
(MAKE-BVEUC sint)

Allocates a bit vector with a capacity of at least sint bits. The new vector is returned as
the value of MAKE-BVEC. Vectors are allocated in increments of full words: for a bit
vector, the first word includes only the first 8 bits of the string, prefaced by a 3-byte
current length field. Therefore, the actual capacity of the vector is defined by

Sfunction

Operaltions on Character and Bit Vectors 129

(((sint + (31 +(3%8))) / 32) * 32) - 24 bits

sint Maximum capacity of allocated string
1-8 8
9-40 40
41-72 72

Figure 22. Bit string allocation

CONCAT Sfunction
(CONCAT cvec ...)
When its first argument is a character vector, this operator returns as its value a new
vector made by concatenating all of the vectors cvec, Because it is frequently used,
a special case has been made so that cvecn may be either a character vector or a stored
identifier (not a gensym). In this case, the print name of the identifier is concatenated
into the result string. If the first argument to the operator is a character vector and if
cvecn any of the other arguments are neither a character vector or stored identifier, an
error is signalled.
PRIN2CVEC function
(PRIN2CVEC item)
This operator creates a character string containing the external form of item.
For example, to obtain the character equivalent of an integer, one can write
INTEGER
Value = 1352
(PRI NZCV.EIC | N:I:EGER)
Value = 1352
item may be any value.
CVEC2BVEC Sfunction
(CVEC2BVEC cvec)
This operator copies its operand, cvec, and converts it into a bit vector. The contents
of the vector are unchanged, only the type of the pointer to it, and the contents length
are modified.
This operator allows direct access to the bit pattern of a character string.
BVEC2CVEC Sfunction
(BVEC2CVEC bvec)
This operator copies its operand, bvec, and converts it into a character vector. The
contents of the vector are unchanged, only the type of the pointer to it, and the contents
length are modified.
PNAME Sfunction
(PNAME id)

PNAME creates a character vector which is a copy of the print name of id.

130

b)

U

Q } ANDBIT function
(ANDBIT bvec ...)

AND:s bvec ... and returns as value the resultant vector. None of the argument strings
is changed by the operation.

An error is indicated if any operand is not a bit vector or if the vectors are not equal in

length.

ORBIT function
(ORBIT bvec ...)
ORs bvec ... and returns as value the resultant vector. None of the argument vectors is
changed by the operation.
An error is indicated if any operand is not a bit vector or if the vectors are not equal in
length. ‘

XORBIT Sfunction -
(XORGBIT bvec ...) ’
Exclusive ORs bvec ... and returns as value the resultant vector. None of the argument
vectors is changed by the operation.
An error is indicated if any operand is not a bit vector or if the vectors are not equal in
length.

MAKETRTTABLE Jfunction

C‘ (MAKETRTTABLE table-definition item)

This operator creates a S/370 translate-and-test table. Operands are a collection of
characters-of-interest, table-definition and an inversion flag, item. The first operand can
be either a character vector or a list. If a character vector it is converted to a list of
identifiers using VEC2LIST.
The list elements may be small integers, character vectors or non-gensym identifiers, or
pairs with one of the above as CAR and a small-integer as CDR. The table, a newly
created character vector of length 256, is initialize with x00 (if item is NIL), or xFF (if
item is non-NIL). Then the positions corresponding to the list elements (or their CARs,
if pairs) are set to xFF or x00 (opposite of the initial value), or to the CDR value for
pairs.
The resulting vector is a suitable operand for STRPOS, STRPOSL, and STRTRT.

MAKESTRING function and compile-time macro

(MAKESTRING cvec)

cvec must be a constant which is a character vector. It will not be evaluated. When used
in compiled code, the cvec will be placed in the bpi, not in the heap. This is done to free
the more valuable, garbage collected, space. This operator returns a copy of its argu-

ment.
-- FOR THE EXPERT LISP/VM USER

16.2 Accessing

- SIZE function
C,, ‘ (SIZE bORcvec)

This operator returns as its value the current length of the character or bit vector
bORcvec

Operations on Character and Bit Vectors 131

As with non-string vectors, the size of a string is an intrinsic part of the object.
Again, note that this is the size of the contents of the string, not its capacity.

QCSIZE Sfunction and compile-time macro
(QCSIZE cvec)

This is a non-checking counter part of SIZE, which assumes that its argument will be a
character vector. If cvec is a character vector, it returns its contents length. If cvec is
not a character vector its result is unpredictable.

CAPACITY

function
(CAPACITY bORcvec)

This function returns the maximup possible size of a bit or character vector.

QLENGTHCODE function and compile-time macro
(QLENGTHCODE bORcvec)

This is the non-checking counter part of CAPACITY for character vectors. For bit
vectors it returns the number of potential bytes in the vector, in other words the number
of bits divided by eight.

ELT function and compile-time macro

(ELT cvec sint)

Returns as value the character object (identifier whose print name is a single character)
corresponding to the sintth element of the character vector cvec. An error is signaled if
sint is negative or exceeds the current length of the string cvec.

ELT function and compile-time macro
(ELT bvec sint)
ELT may be thought of as a predicate returning nil or - nil depending on the sint element
of the bvec

SUBSTRING function

(SUBSTRING cvec sintl sint2)

This macro returns a copy of part (or all) of cvec. The returned value starts with the
sintl (index) character of cvec (remember, index zero is the first character) and is sint2
(length) characters long. If sint2 is specified as (), that designates the end of the string.

STRING2ID-N function
(STRING2ID-N cvec sint)

This operator treats its first operand, cvec, as a collection of tokens, where the tokens
are substrings, separated by one or more blanks. (Leading blanks are ignored.) The
sintth token is extracted and INTERNed (See page 97) and the resulting identifier is
returned as the value. If there are less than sint tokens in cvee, the value is zero (0)

-- FOR THE EXPERT LISP/VM USER

STRING2PINT-N function
(STRING2PINT-N cvec sint)

This operator treats its first operand, cvec, as a collection of tokens, where the tokens
are substrings, separated by one or more blanks. (Leading blanks are ignored.) The
sintth token is extracted and, if it consists wholly of digits, the corresponding positive

132

()

VEC2LIST

small integer is returned as the value. If there are less than sint tokens in cvec or the
sintth token contains non-digit characters, the value is NIL.
-- FOR THE EXPERT LISP/VM USER

function
(VEC2LIST bORcvec)

VEC2LIST converts a vector (including character or bit vectors) to a list.

16.3 Searching

STRPOS Sfunction
(STRPOS cvecl cvec2 sint item)
This operator searches cvec2 for a substring, cvecl, which may contain don’t care char-
acters. sint is the an index, indicating the starting position for the search. item is NIL
or the don’t care character. An error is signalled if item is not a small integer, identifier,
string or NIL.
The value is NIL if the substring is not found, and the index of the first character of the
substring if found.
X
Value = ""This is a test of those operations."
(STRPOS ''h*s'' x 0 '**'')
Value = 1 .
(STRPOS ''h*s'' x 2 '*')
Value = 1.9¢ . .
(STRPOS 'h*s'' x 20 '"*")
Value = NIL
STRPOSL function
(STRPOSL table cvec sint item)
This operand searches a character vector for a character from a given set. table should
be a translate-and-test table, as built by MAKETRTTABLE, or a valid first argument
for that function. cvec is the vector to be searched. sint is an index, indicating the point
in the vector at which the search is to start. item is a flag, if NIL search ends at first
character specified by table, otherwise search ends at first character not specified by ta-
ble. The value is NIL, if the search fails, or the index of the found character.
X
Value = "This is a test of those operations."
(STRPOSL '‘aeiou' X 0 'T)
Value = 2
(STRPOSL '‘aeiou'' X 0O NIL)
Value = 0
(STRPOSL ''aeiou' X 3 'T)
Value = 5§ '
(STRPOSL "'aeiou'' X 6 'T)
Value = 8
STRTRT function
- (STRTRT table cvec pair)

This operator searches cvec for a specified character or characters. It is similar to

STRPOSL, but without the negation flag, and the position argument (pair) is an
updatable pair, whose CAR is the starting position.
Operations on Character and Bit Vectors 133

If the desired character is not found the value is NIL. If it is found, the value of the pair
is updated, with its CAR being set to the position of the found character and its CDR
being set to the table entry. If pair is not a pair, one is created and initialized with zero.

X
Value = ''This is a test of those operations.'

(SETQ Y (CONS 0 0))

Value = (0 . 0)

(STRPOSL '((a) (e . 2) (i . 3)(o. 4) (u.5))XY)
Value = (2 . 3)

(RPLACA Y (ADD1 (CAR Y)))

Value = (3 . 3)

(STRPOSL "((a . 1) (e . 2) (i . 3) (o . 4) (u . 5)) X Y)
Value = (5 3)

(RPLACA Y (ADD1 (CAR Y)))

Value = (6 . 3)

(STRPOSL ((a . 1) (e . 2) (i .3)(o.b) (u.5))XxY)
Value = (8 . 1)

Note that in the above example it would be move efficient to call
MAKETRTTABLE once with the first operand, and then pass that as the
value to STRPOSL. The test in STRPOSL to see if a ready made TRT table
has been provided is a heuristic one. If the first operand is a string containing
256 characters, it is used as a TRT table, otherwise it is passed to
MAKETRTTABLE.

16.4 Updating operators

SETSIZE function and compile-time macro
(SETSIZE bORcvec sint)
The length of the character or bit vector bORcvec is updated to be the value sint. An
error is indicated if bORcvec is not a character or bit string, or if the value of sint exceeds
the maximum potential length of bORcvec. The value of SETSIZE is the vector
bORcvec with its new length. If the size is increased, unspecified values will be added
at the end of the vector.

QSETSIZE macro
(QSETSIZE cvec sint)
This is the non-checking counterpart to SETSIZE for character vectors. If cvec is a
character string, and sint is a small integer < the capacity of cvec, then the result is
equivalent to SETSIZE. Otherwise the result is unpredictable, and possible fatal.

TRIMSTRING function
(TRIMSTRING cvec)
This operator updates the capacity of its argument, to produce a character vector with
the minimum capacity which will hold the current contents. The portion of the vector
which is discarded (if any) becomes inaccessible. There are no operations to increase
the capacity of a vector in place.
-- FOR THE EXPERT LISP/VM USER

SUFFIX function and compile-time macro

(SUFFIX id cvec)

Updates the character vector cvec by adding the first character of the print name of the
stored identifier id to the end of the vector. id is usually a character object, but may be
any stored identifier. This function increments the length of the character vector by one,

134

7N

or causes an error to be signalled if there is not sufficient space in the vector cvec for
the additional character.

SETELT

Sfunction and compile-time macro
(SETELT bORcvec sint item)

SETELT updates the sint element of bORcvec to be item. If bORcvec is a character
vector, item is assumed to be an id with a one character print name, if not, the first
character of the print name is used. See page undefined.

RPLACSTR

Sfunction and compile-time macro
(RPLACSTR cvecl sintl sint2 cvec2 [sint3 [sint4]])

This is a generalized string modification routine. It can replace any part of cvecl with
any part of cvec2, making any n necessary adjustment in the length of cvecl because the
replacement characters from cvec2 are greater or fewer than the characters being re-
placed in cvecl. Furthermore, it can insert cvec2, or some specified substring of cvec2,
into cvecl.

cvecl must be a character vector, else an error is indicated. cvec2 may be either a
character vector, or it may be a stored identifier (not a gensym). In the latter case, the
print name of the identifier (which is a character string) will be used as evec2, and sint3
and sint4 refer to this string. If cvecl or cvec2 are not ad described, an error is indicated.

sint1 specifies the index of the first character in cvecl to be replaced. sint2 specifies the
number of consecutive characters, beginning with the sintl character, to be replaced.
sint3 and sint4 specify the location and number of characters from cvec2 which are to
replace the designated characters in cvecl.

sint1, sint3, sint2 and sint4 may be either integer values or NIL; an error is indicated if
they are not.

In general, an INDEX may vary from zero to the current length-1. If NIL is specified
for an index, the numeric value zero is used. If sintl is equal to the current length, sint2
must be zero: by use of this convention, cvec2 can be appended to the end of cvecl.

If zero is specified for sint2, cvec2 is inserted in cvecl before the position specified by
sintl. If NIL is specified for a length, all of the characters from the related index value
to the end of the string are used. In effect, using NIL for the value of LENX is an effi-
cient way of specifying the value:

(DIFFERENCE (SIZE STRx) INDEXx)

sint4 and sint3 are optional arguments. If they are not specified, a value of NIL will be
assumed.

Whenever possible, RPLACSTR will update the original cvecl, and return as
its value the updated string. However, if sintd is greater than sint2, it is pos-
sible that cvecl does not have sufficient space for the result string. In this
case, a new string is constructed and this new string is returned as the value
of RPLACSTR.

The user may test whether the updated string is the original cvecl or a copy
by an expression such as:

(EQ cvect (SETQ TEMP (RPLACSTR cvecl ...)))
which will be true if cvecl has been updated in place, and false if a new string

had to be created. The purpose of the SETQ operation is to preserve the value
of RPLACSTR in case a new string was created.

DOWNCASE function
(DOWNCASE cvec)

Operations on Character and Bit Vectors 135

DOWNCASE returns the lower-case equivalent of a character vector. This function also
accepts a list of charcter vectors. See page 97.

UPCASE

function
(UPCASE cvec)

UPCASE returns the upper case equivalent of a character vector. This function also
accepts a list of character strings. See page 97.

16.5 Comparing operators

CGREATERP Sfunction
(CGREATERRP cvecl cvec2)

This functions compares two character vectors and returns true if cvecl is greater than
bORcvec2, otherwise it returns NIL. The comparison is done using the S/370 CLCL
instruction.

If the two strings are of unequal length, the shorter string is considered to be padded on
the right with binary zeros for purposes of comparison. If an argument is not a character
vector, an error is signalled.

BGREATERP Sfunction
(BGREATERP bvecl bvecn)

Compares two bit vectors, and returns true if bvecl is greater than bvecn. If the vectors
are unequal in length, the shorter vector is considered to be padded on the right with
zeros for purposes of comparison. The argument vectors are not changed by this func-
tion, even the bits beyond the current length of the strings are preserved.

If bvecl or bvecn is not a bit vector, an error is signalled.

136

17.0 Operations on Hashtables

17.1 Creation

MAKE-HASHTABLE
(MAKE-HASHTABLE id1 [id2])

This operator return as its value a new, empty, hashtable. id1 is used to specify the class
of key for this hashtable, and must have a value of EQ, UEQUAL, ID or CVEC, where:

Sfunction

EQ - Key may be any Lisp object, EQ used for search
UEQUAL - Key may be any Lisp object, UEQUAL used for search

ID - Key must be an identifier, EQ used for search

CVEC - Key must be a character vector, EQUAL used for search

~ The second argument, id2,.is optional. It must have a value of WEAK or STRONG, and
defaults to STRONG. It specifies whether the hashtable should use ""weak" or "strong"
links to its keys. In the former case, key-value pairs in which the only reference to the
key is from a weak hashtable will be dropped during garbage collection.

17.2 Accessing

HGET

function
(HGET hashtable item1 [item2])

This operator searches hashtable for a value associated with the key iteml. If one is
found it is returned, otherwise if item2 is present, it is returned. If item2 is not given the
value is NIL.

If item1 and hashtable are nonconformal an error is signalled.

HGETPROP Sfunction
(HGETPROP hashtable item1 item2)

This operator searches hashtable for a property list associated with item1. If one is found
it is search for a value associated with item2, which is returned. If either search fails the
value is NIL.

If item1 and hashtable are nonconformal, an error is signalled.

HKEYS Sfunction
(HKEYS hashtable)

This operator returns a list of all the keys in hashtable, in arbitrary order. It does not
follow chain fields. :

If hashtable is not a hashtable an error is signalled.

HASHTABLE-CLASS Sfunction
(HASHTABLE-CLASS hashtable)

If hashtable is a hashtable, returns the key class (EQ, UEQUAL, etc., see
MAKE-HASHTABLE, this page), otherwise returns NIL.

Operations on Hashtables 137

HCOUNT

function

(HCOUNT hashtable) _

Returns the number of key/value pairs in hashtable.

If the argument is not a hashtable an error is signalled.

17.3 Accessing or Updating

HCHAIN

Sfunction
(HCHAIN hashtablel [hashtable2])

When the optional second argument is absent, returns the contents of the chain field of
hashtable. If hashtablel is not a hashtable an error is signalled.

When hashtable2 is specified this operator sets the chain field of hashtablel to point to
hashtable2. This causes searches which fail in hashtablel to be continued in hashtable2,
but with new entries only added to hashtablel.

A mismatch of the key classes of hashtablel and hashtable2 will result in an error being
- signalled.

HGFACTS

Sfunction
(HGFACTS hashtable [num1 num2])

When the optional second and third arguments are absent, returns a list of the shrinkage
and growth count/size ratios for hashtable. Due to the representation of the ratios in the
hashtable the values returned may differ slightly from those provided in a previous three
argument call to HGFACTS.

When numl and num2 are specified this operator sets the count/size ratios which con-
trol the shrinkage and growth of hashtable. The MIN of each number an 64 is taken and
the resulits are stored in hashtable.

If the ratio of number of entries in hashtable to the number of buckets falls below num1
hashtable is shrunk to the smallest size which would not cause immediate growth. If the
count/size ratio exceeds num2 hashtable will be grown to the largest size which would
not cause immediate shrinkage.

The relative values of numl and num2 are not checked, and the specification of
numl > num2 could cause oscillations.

17.4 Searching and Updating

HPUT function
(HPUT hashtable item1 item2)

Operator to update the hashtable hashtable. If the key iteml already has a value in
hashtable, its value us changed to item2. Otherwise it is added to the hashtable with a
value of item2.

If item1 and hashtable are not conformal, an error is signalled.

HPUT* function

(HPUT* hashtable &a-list.)

For each name-value pair in &a-list. a HPUT is done into hashtable. If any of the names
are non-conformal with hashtable an error is signalled without any of the HPUTs being

done.

HREM

function

138

HPUTPROP

HREMPROP

(HREM hashtable item)

This operator searches hashtable for a key/value pair associated with item. If one is
found it is deleted from hashtable. The value returned is the key/value pair, if such ex-
isted, otherwise it is NIL.

If hashtable is not a hashtable, or if item and hashtable are nonconformal, an error is
signalled.

function
(HPUTPROP hashtable item1 item2 item3)

This operator adds (or changes) an item on a property list associated with item1 in
hashtable. The property item2 is given a value of item3.

If item1 and hashtable are nonconformal an error is signalled.

Sfunction
(HREMPROP hashtable item1 item2)

Searches hashtable for a property list associated with iteml. If such is found it is
searched for a property item2, and the property and its value are deleted from the list.
If the searches are successful the value returned is the (deleted) property value. Other-
wise the value is NIL.

If hashtable is not a hashtable an error is signalled.

17.5 Updating

HCLEAR

Sfunction
(HCLEAR hashtable)

This operator removes all key/value pairs from hashtable. The count is reset to zero and
the bucket array is reduced to a single element vector.

If hashtable is not a hashtable an error is signalled.

Operator to set the chain field of hashtablel to point to hashtable2. This causes searches
which fail in hashtablel to be continued in hashtable2, but with new entries only added
to hashtablel.

A mismatch of the key classes of hashtablel and hashtable2 will result in an error is sig-
nalled.

17.6 Miscellaneous

MAPHASH

HASHEQ

function
(MAPHASH app-ob hashtable)

This operator applies app-ob to each key and value in hashtable, in arbitrary order.
app-ob must be a function of two arguments, the first being a key from hashtable and the
second the corresponding value. The results of the applications are discarded, and the
value of the MAPHASH expression is NIL.

If the second argument is not a hashtable an error is signalled.

function
(HASHEQ item)

For any argument this operator returns a positive small integer hash code in the range 0
to 226-1.

Operations on Hashtabies 139

HASHUEQUAL

HASHCVEC

HASHID

140

The hash codes for two EQ arguments will be equal.

Sfunction
(HASHUEQUAL item)

This operator returns a positive small integer hash code for any lisp object, in the range
0 - 226-1. The hash codes for objects which are UEQUAL will be equal.

function
(HASHCVEC cvec)

This operator returns a positive, small integer hash code for any character vector, cvec,
in the range 0 - 226-1.

The hash codes for two EQUAL character vectors will be equal. If &cvec. is not an cvec
an error is signaled.

Sfunction
(HASHID id)

This operator returns a positive small integer hash code for any identifier, id., in the
range O to 226-1. The hash codes for identifiers with EQUAL pnames will be equal.

If id is not an identifier an error is signaled.

18.0 Operations on Arbitrary Objects

18.1 Creation

corY

Sfunction
(COPY item)

This operator creates a distinct object which is UEQUAL to the original. Numbers,
identifiers, and bpis are not copied. The exact structure, including all cycles and sharing,
of item is reproduced. The purpose of COPY is to allow operations on either the COPY
or the original without affecting the other. Only those parts of the object which can be
modified are copied.

(SETQ X 5)

(SETQ Y (copPy X))
(EQ Y X)

VALUE T

(UEQUAL Y X)
VALUE T

(SETQ X (CONS A B))
(SETQ Y (coPY X))
(EQ Y X)

VALUE NON-NIL
(UEQUAL Y X)

VALUE T

(SETQ X (CONS A B))

(RPLACD X X) make circular
(SETQ Y (COPY X))

(EQ Y X)

VALUE NON-NIL

(UEQUAL Y X)

VALUE T

X

¥ALUE = %L1=(A . %L1)

VALUE = %L1=(A . %L1) : N

SUBST

Junction
(SUBST item1 item2 item3)

This operator creates a copy of item3 in which all instances of item2 are replaced by
item3. EQUAL is used in searching for instances of item2. The resulting uses of item1
will all be EQ, and are not themselves examined for instances of item2.

This operator will fill ail space if item3 contains a cycle.

(suBsT 'X '(vy 2) '"(A(xYZ)YZYZ)
Value = (A (X . X)) YZ . X)

(SuBST '(A) 'X "(U <x v X> (W . X) X))
Value = (U <%L1=(A) v %L1> (W . %L1) %L1)
(suBsT 6 2 '(4 3 2 1 0))

Value = (4 3 6 10)

SUBSTQ Sfunction
(SUBSTQ item1 item2 item3)

This operator differs from SUBST in using EQ rather than EQUAL.

Operations on Arbitrary Objects 141

MSUBST function
(MSUBST item] item2 item3)
This operator produces a value which is EQUAL to that produced by SUBST for the
same arguments. It differs in copying only those parts of item3 which contain changes.
EQUAL is used in searching for instances of item2. The resulting uses of item1 will all
be EQ, and are not themselves examined for instances of item2.
This operator will fill all space if item3 contains a cycle.
(SETQ V '(A (XY Z)YZY))
Value = (A (XY Z)Y ZY)
(SETQ W (MSUBST 'X '(Y Z) V))
Value = (A (X . X) Y ZY)
(LIST V W)
Value = ((A (X . X) . #L1=(Y ZY)) (A (XY Z) . %L1))
MSUBSTQ Sfunction
(MSUBSTQ item1 item2 item3)
This operator differs from MSUBST in using EQ rather than EQUAL.
EQSUBSTLIST function
(EQSUBSTLIST list1 list2 item)
This operator is a multi-item version of SUBSTQ. A copy of item is created, with every
instance of a component which is EQ to the nth element of list2 replaced by the nth el-
ement of listl. As in SUBSTQ the substituted objects are not examined for further
substitution.
Cycles in item will cause space to be filled.
(EQSUBSTLIST '(A B C) '(123) '(3 (<1 (2. 1)5>) 3))
Value = (C (4 <A (B . A) 5> C)
(EQSuBSTLIST '((A B) (B B)) '(AB) '(X (BA) (A.B)C))
Value = (X ((B B) (A B)) ((AB)BB)C)
EQSUBSTVEC function

(EQSUBSTVEC r-vecl r-vec2 item)
Differs from EQSUBSTLIST in requiring vectors for its first and second operands.

(EQSUBSTVEC '<A B C> <1 23> '(3 (4 <1(2.1)5) 3))
Value = (C (4 <A (B . 5> c)
(EQSUBSTVEC '<(A B) (B B)> '<A B> '(X (B A) (A.B)C))
Value = (X ((B B) (A B)) ((AB) BB)C)
The reason for the existence of EQSUBSTVEC beside EQSUBSTLIST is
pragmatic. A QUOTEd vector uses less space in the heap and in the
SHLISPWS file than the equivalent QUOTEGJ list. Similarly, the VECTOR
operator generates less code than does the LIST operator.

18.2 Accessing

SETQP

macro
(SETQP item1 item2)

The SETQP operator performs a traversal of its two operands, in parallel. item] is used
as written, as if it had been QUOTEGd, while item2 is first evaluated, and its value used.

When ever an ID is encountered in item1l the corresponding component of item2 is as-
signed to that ID as its value. If a pair is encountered in iteml for which no corre-

142

J
K\~/

()

sponding pair exists in item2 the traversal stops and the value of the SETQP expression
is NIL. (See the following paragraph for the sole exception.) Similarly, if a vector is
encountered in iteml without a corresponding vector in item2, of at least the same
length, the traversal stops, with a value of NIL.

If item1 contains a list of three elements, the first of which is an =, the second an ID and
the third an arbitrary object, the corresponding component of item2 is assigned to the
ID and is then descended in parallel with the structure, the third element of the list. This
is the exception alluded to in the previous paragraph. Note that the third element may
be simply another ID, resulting in a multiple assignment.

If the entire structure of iteml is traversed the value of the SETQP expression is
non-NIL.

(SETQ X ‘(1 2 3 4))
Value = (1 2 3 &)
(SETQP (Y . X) X)
Value = non-NIL

Y

Value = 1

X }

Value = (2 3 4)
(SETQP (() Z) Xx)
Value = non-NIL

z

Value = 3

(SETQP (() () Y X) X)
Value = NIL

- (SETQ X '(A . <F00 <'"This'' 0 2> BAR>))
Value = (A . <F00 <''This' 0 2> BAR>)
(SETQP (C . <() <S () L>>) X)

Value = non-NIL
C
Value = A
S
Value
L
Value 2
(SETQP (C . <() (=B <S () L>)>) X)
Value = non=NIL
B
Value
C
Value = A
S
Value
L
Value
(SETQ
Value
(COND
1
Value = 1 ‘ .
(COND ((SETQP (Y . X) X) (PRINT Y)) ('T (PRINT 'Empty)))
Empty
Value = Empty

In the cases where SETQP returns NIL, some of the assignments may have been done

before the failure was discovered. The exact order in which the assignments and testing
is done can not be easily predicted.

"This"'

<'This'" 0 2>

i
=
o

m—

—~ I >

1
)
TQP (Y . X) X) (PRINT Y)) ('T (PRINT 'Empty)))

Operations on Arbitrary Objects 143

QOSETQ

macro
(QSETQ iteml item2)

The QSETQ operator is the non-checking equivalent of SETQP. The programmer must
be certain that the value of item2 is conformal with iteml. The value of the QSETQ
operator is unpredictable.

18.3 Searching

EQQ

QEQQ

CYCLES

144

macro
(EQQ iteml1 item2)
The EQQ operator traverses iteml and the value of item2, in the manner of SETQP.

When an ID is encountered in item1 its value is compared (using EQ) with the corre-
sponding component of item2. Similarly, when a component of the form (QUOTE item)
is encountered in item1 item is compared with the corresponding component of item2.

If at any time such a comparisoh fails, or if item1 and item2: prove to be non-conformal,
the value of the EQQ expression is NIL. Otherwise, it is non-NIL.

(SETQ X '(1 23 4))
Value = (1 2 3 4))

(SETQ Y 3)

Value =

(EQQ (() () Y) X)
Value = non-NIL

(EQQ ('1 () () '4) Xx)
Value = non-NIL

(EQQ (Y) X)

Value = NIL

(EQQ (() () () () () x)
Value = NIL

macro

(QEQQ item1 item2)

This is the non-checking version of EQQ. The same comparisons are made, but item2
is not checked for conformity.

Sfunction
(CYCLES item)

This operator searches its operand, item, for any cycles. If none are found a value of
NIL is returned. If any exist a vector is returned.

This vector contains twice as many elements as the number of cycles found. The even
elements (index 0, 2, etc.) contain pointers to an element of each of the cycles found.
The remaining, odd, elements are initialized to zero.

(CYCLES '(A %L1=(1 2 . %L1) B . %L2=(C D E . %L2)))

Value = <%L1=(1 2 . %L1) 0 %L2=(C D E . %L2) 0>

(CYCLES '%L1=(1 2 %L2=(3 &4 . %L3=(5 %L2 . %L3)) %L1))
<L1=(1 2 %L2=(3 &4 . %L3=(5 %L2 . %L3)) %L1) 0 %L2 O %L3 0>

This, and SHAREDITEMS, produce a vector of special components of their
operand. This vector is used by the PRINT operators to identify the compo-
nents of a object which should be labeled. The "extra" (odd indexed) ele-
ments are used for bookkeeping, to record which components have been
printed in full.

SHAREDITEMS

The PRINT operators apply the value of the identifier S,TO-BE-LABELED
to their operands. In the initially created system this identifier has
SHAREDITEMS as its value. This guarantees UEQUALIity over printing and
subsequent reading. The user may redefine S,TO-BE-LABELED, however
any definition which does not detect cycles may cause the PRINT operators
to loop.

function
(SHAREDITEMS item)

This function examines the arbitrary object item for shared substructure. If there is only
one possible path from the root, item, to every part of item, then the value NIL is re-
turned. If there is shared substructure, the value of SHAREDITEMS is a vector whose
even (0, 2, etc.) elements are pointers to the shared nodes (either vectors or list cells),
and whose odd (1, 3, 5, etc.) elements are initialized to zero.

Since any cycle must be shared, this function subsumes CYCLES, which is useful when
only circular object is of interest.)

See comments on the relationship between CYCLES, SHAREDITEMS and PRINT in
the description of CYCLES.

18.4 Updating

NSUBST

NSUBSTQ

RPLQ

Sfunction
(NSUBST item1 item2 item3)

The NSUBST operator searches its third operand, item3, for any components EQUAL
to iteml. If any such are found they are replaced (using RPLACA, RPLACD or
SETELT) by item2. All such instances are EQ, and are not themselves examined for
instances of item1.

Unless item3 itself is EQUAL to item1 the value of NSUBST will be EQ to item3.

(SETQ X '(A (B C) D))
Value = (A (B C) D)
(SETQ Y (NSUBST '(A C) '(C) X))

Value = (A (B A C) D)

(EQ X Y)

Value = non-NIL

(SETQ Y (NSUBST '(z2) 'A Y))
Vaiue = (%L1=(Z) (B %L1 C) D)
(EQ X Y) _

Value = non-NIL

function
(NSUBSTQ item1 item2 item3)
The NSUBSTQ operator differs from NSUBST in using EQ rather than EQUAL.

macro
(RPLQ iteml1 item2)

The RPLQ operator is the inverse of the SETQP operator. It updates the value of
item1 with the values of any identifiers or quoted objects it finds in item2 (un-evaluated).

In the same way as SETQP does, RPLQ returns NIL if the value of iteml is not con-
formal with item2.

Operations on Arbitrary Objects 145

(SETQ X '(1 2 3))
Value = (1 2 3)
(SETQ Y "'xyz'')

Value = ''xyz'"

(RPLQ X (Y () 'ANY))
Value = non-NIL

X

Value = (''xyz'' 2 ANY)

item2 may consist of any object of pairs and vectors.

macro
(QRPLQ item1 item2)

This is the non-checking version of RPLQ. If item2 and the value of item2 are not con-
formal damage to the system may resuit.

18.5 Miscellaneous

GT

QRPLQ

Sfunction
(GT iteml item2)

where item1 and item2 are either both numbers, both cvecs, or both bvecs, or signals an
error. Compares the two and has a non-NIL value if the first is greater than the second,
otherwise returns NIL.

LT Sfunction

(LT item1 item2)

where item1 and item2 are either both numbers, both cvecs, or both bvecs, or signals an
error. Compares the two and has a non-NIL value if the first is less than the second.
Otherwise returns NIL.

GE function

(GE item1 item2)

where item1 and item2 are either both numbers, both cvecs, or both bvecs, or signals an
error. Compares the two and has a non-NIL value if the first is greater than or equal to
the second. Otherwise returns NIL.

LE function

(LE iteml item2)

where item1 and item2 are either both numbers, both cvecs, or both bvecs, or signals an
error. Compares the two and has a non-NIL value if the first is less than or equal to the

second. Otherwise returns NIL.

GGREATERP function
(GGREATERP item1 item2)
Compares iteml and item2. If iteml is greater than item2 then has a non-NIL value.
An arbitrary order has been imposed on different types, so that if the two items have

different types, then one will be greater than the other.
Warning: This function may not halt on cyclic structures.

146

19.0 Structured Access to Data Objects

The structured definition facility allows users to define collections of access functions for data objects
in a convenient centralized manner.

Consider a list of three elements in which the second element is a vector of two elements. The ex-
pression

(DEFINE '(SAMPLE (STRDEF SAMPLE (A1 , B1 <C1 , C2> , D))))
defines SAMPLE to be an access macro for the above object. Let the variable X be bound to the
object (1 <2 3> 4), then the expressions below will evaluate as shown:

(SAMPLE A1 X) = 1
(SAMPLE B1 X) = <2 3>
(SAMPLE D X) = 4
(SAMPLE B1 C1 X)
" (SAMPLE B1 C2 X)

The expression
(SET-S (SAMPLE C1 X) (ADD1 17))

will update the object bound to X to (1 <18 3> 4). The expression
(SHOW-S SAMPLE X)

will evaluate to the expression
(SAMPLE (A1 =1 , Bl =<C1 =2 ,C2=23>,D=4))

(SAMPLE C1 X)
(SAMPLE C1 X)

[]
w N

19.1 Syntax of Structured Definitions
A structured definition is an expression of the form
(STRDEF field-def)

It is a macro call that expands to a macro definition. Structure definitions can be defined, compiled
and filed like function and macro expressions.

When structured definitions are included in temporary compiler environments, they must
be included in both the operation recognition environment and the macro application en-
vironment. The function and disposition TEMDEFINE is used for this purpose.

19.1.1 Field Definitions

A field definition describes the structure of a component of a data object. It may assign one or more
names to that component. It may also associate other attributes with that component

Unnamed field with defined sub-structure
shape [attr val] ...

This form defines an unnamed field with defined sub-structure. This field cannot be
extracted or modified, but any named components can be.

Named field with defined sub-structure
name ... [shape [attr val] ...]

This form defines a named field with sub-structure. A field can have any number of
names that can be used interchangably. Accessing or setting a structured sub-field
causes a compiler warning message.

Named field with no further structure
name ... [= init-expr [attr val] ...]

Structured Access to Data Objects 147

This form defines a named field with no defined sub-structure. Whenever an instance
of the object is created, this field is initialized to NIL or init-expr is evaluated to produce
an initial value.

19.1.2 Defining the Structure of a Field

The shape component of a field-def describes the structure of the field.

List or pair

Vector

(field-def [, field-def] ... [; field-def])

defines a sub-list. The field-def following the ’;> describes the remainder of the list
treated as a single field.

<field-def [, field-def] ... >

defines a vector.

Association List

& prop-name ... &

defines a sub-structure that is an association list. Each item in the alist is retrieved as a
named field.

Named Flags and Sets of Flags

$ i flag-name bo... S
(set-name flag-name ...)

defines a field that can contain one of the flag-name identifiers specified in the declara-
tion. Each set-name must be an identifier and denotes any of the flag values following;
the latter may be identifiers or positive small integers. An integer value can be defined
as a named flag by including it in a set of one element.

Set names can only be used in access expressions; update expressions must use a specific
flag name or the name of a set containing only one integer. An access expression that
mentions a flag-name or set-name is a predicate that test the setting of the field. An
update expression is written without a value-expression and updates the field to the
specified flag setting.

Bit-level Fields

148

bitnum
name { (bitnum [width [init]]) }
(name2 val)

defines a field that contains an integer value. Individual groups of bits can be interro-
gated and set by name. If only bitnum is specified, then the field is one bit wide. If a
width is specified, it must not extend the field beyond the end of the machine word.
Bitnum must be an integer from 6 to 31. If name2 is specified, name defines a name for
value val in bitfield name.

An access expression for a bit field extracts the contents of the field as an integer value.
An access expression for a named bit-field value is a predicate that test for that value.

An vupdate expression for a bit field sets the bit field to the low-order width bits of the
value expression. An update expression for a named bit-field value has no value ex-
pression and sets the bit field to the associated value.

19.1.3 Attributes of Field Definitions

Each field definition can be followed by one or more attribute/value pairs.

Display of Field Values
SHOW fn
This attribute interacts with the SHOW-S form. If fn is NIL, SHOW-S does not display

the value of that field. If fn is non-NIL it must be a function of one argument. SHOW-S
displays the value of the function applied to the value of the field.

Speed of Generated Code
QFORM xx

This attribute is recognized only in the top-level field-def of STRDEF. If xx is NIL, safe
access code is generated, so that if an instance expression evaluates to an inappropriate
object, an error may be signalled. If xx is non-NIL fast, non-checking access code is
generated. .

Comments

* comment

This attribute allows comments to be inserted in structured definitions.

19.1.4 A Note on the Syntax of Structured Definitions

The structured definition facility gives the appearance of syntax by using some reserved identifiers
as delimiters. Note that these delimiters must be entered as identifiers in order to be recognized. The
shape expression (A,B) defines a sub-structure that contains only one sub-field with A,B as the name
of the sub-field. To define a list of two fields named A and B respectively, you must enter the sepa-

. rating blanks, as in (A , B).

Future extensions of the structured definition facility will require additional keywords and delimiters.
In order to remain compatible with these extensions, do not use field names that. consist of a single
non-alphabetic character.

19.2 Operations With Defined Structures

Creating-expression macro

A creating-expression evaluates to a new instance of a defined object.
(ob ject-name) = new-instance-of-ob ject

Each field in the new object is initialized to the value of the initial expression specified
in the definition. These expressions are evaluated in the lexical context where the cre-
ating expression occurs.

Access-expression macro

An access-expression evaluates to the current setting of a field in a particular instance
of a defined object.

(object-name access-path instance-expression)
The name of a object is the first name mentioned in the top level field definition used
with STRDEF. An access path is a sequence of field names that uniquely identifies a
sub-structure. Intermediate object names need not be specified if the final sub-field
names are unique. An access expression used as an expression evaluates to the value of
the field in the object that is the value of the instance expression.

Structured Access to Data Objects 149

SET-S macro
The SET-S form performs an assignment to a sub-field of a object.
(SET-S access-expression [value-expression])

The effect of this expression is to update the field specified in the access expression with
the value of value-expression. If value-expression is omitted, the sub-field is set to the
initial value or to a named value denoted by the access expression.

The value of a SET-S expression is not defined.

TEST-S macro
The TEST-S form is a predicate that evaluates to a non-NIL value if the specified field
is present in the given instance of the object.
(TEST-S object-name access-path instance-expression)
The value is NIL if the specified field is not present in the value of instance-expression.
The value is non-NIL (but unpredictable) if the field is present.
SHOW-S macro

The SHOW-S form expands an instance of a defined data object to build an expression
that contains field names as well as values.

(SHOW-S ob ject-name access-path instance-expression)
= exploded-ob ject-instance

19.3 Cross-Reference Facility

If you compile object uses stored in a Lispedit indexed file, you can get a cross-reference of object
and field uses by function. The cross-reference facility is activated by adding the STRUCT-XREF
property to a file with the Lispedit command

SETDP filename (STRUCT-XREF xrefmem

The argument xrefmem is the nam