
The things "everybody knows" about YKTLISP

This is basically an attempt to put some of my most popular song-and-dance
routines into labanotaion. It is a miscellany of hints, warnings and
admonitions written "on the fly". It is guaranteed to be incomplete, but
(as of today) correct.

XEDIT

Obey

PRY

Cyclic structures

YKTLISP / VM interaction.

YKTLISP peculiarities

Debugging compiled code versus interpreted code.

Values and functions.

Macros

Scope of variables.

Structured bound variable lists.

Imp lied PROGN

Scope of GO and EXIT

New built-in functions and special forms.

STATE and state descriptors

& -- the back-trace function.

CATCH and THROW.

SUPV and the break loop

Taking over the error handler.

Evaluation

External interrupt

PROG and SEQ

READ<--> PRINT

c--·
What are all those Qs and commas doing?

"T

Property lists

Sub-mini guide to LISPEDIT

Versions and systems

PAGE 2

,.

C

PAGE 3

YKTLISP / VM interaction.

XEDIT

YKTLISP and XEDIT have two incompatibilities. First, YKTLISP is loaded
into FREE/FRET storage, which is allocated at load time, and released only
upon invocation of the DROPnnnn module. XEDIT normally runs from a shared
segment, but if the user's virtual machine overlaps its shared segment
area it loa¾itself into the equivalent storage, whether anything else is
there or not. As a result, if you exit from LISP with the intention of
resuming and use XEDIT, you may find that LISP has been partially
overwritten. (Most users of YKTLISP at Yorktown use other editors than
XEDIT for this reason, as well as for the second one, below.)

YKTLISP's reader completely ignores end-of-lines, treating a file as a
single stream of characters. If you are using V format files for input,
this may require a seemingly gratuitous leading blank on some lines. Some
of the editors at Yorktown support so-called VB format files, in which all
lines less than the maximum length for the file have a single trailing
blank. XEDIT does not support such files. Thus a list of numbers or
identifiers which spans two records may be misread if the second record
does not start with a blank, e.g. the lines:

(ab c
def)

would be read as (ab cd e f). The LISP print functions may produce such
files (as they too ignore end-of-line conditions), an some of the source
files included in the YKTLISP distribution may also have this property.
As long as these files are left untouched all is well, but if they are
edited with XEDIT and refiled, things may break. One solution is to use F
format files, however this is wasteful of disk space. Note that LISPEDIT
does this, but it does not PRETTYPRINT its files, as they are not expected
to be examined outside of LISPEDIT, thus the space lost is minimal.

PAGE 4

Obey

YKTLISP includes a function, OBEY, which is supposed to pass a command
string to the CMS command interpreter from inside LISP. It is written
assuming the existence of a MODULE, called OBEY, which will do its work
for it. This module is called by an SVC 202 with a new-form PLIST, with
the command, OBEY, not contiguous with the argument list (the command
string). As of now there does not exist such a module which will run
outside of the Yorktown modified VM system.

The system itself does not depend on the OBEY function working, but if you
need this facility you will have to construct such a module yourself. The
LISPEDIT command CMS also assumes that OBEY works.

PAGE 5

PRY

Th~ function PRY forces an operation exception, to allow a system
programmer to enter what ever debugging facility is available on the
system. Execution can be resumed without harm after the exception is
taken. The name derives from the particular debugging facility used at
Yorktown.

PAGE 6

YKTLISP peculiarities

Cyilic structures

YKTLISP (as did LISP370) has declared cyclic structures to be first class
data objects. Most function which are defined on arbitrary arguments will
accept such structures and return reasonable results. Included in this
set are READ, PRINT, COPY and EQUAL. In fact the concept of EQUAL
required rethinking in this context, see the LISP370 manual for a
discussion of EQUAL and UEQUAL.

Many of the functions which operate on lists have been modified from their
LISP370 definitions to be tolerant of cyclic lists. Thus MEMBER, ASSOC,
and other list searching functions will (with a little extra overhead in
the cyclic case) return () when asked to search a circular list. Other
functions, such as LAST, APPEND, etc. which are expected to actually find
the end of a list will take an error break. The code has been written to
penalize the offenders, while adding almost no overhead to uses on
non-cyclic lists.

Note that not all list-processing functions are so robust. For example
INTERSECTION and UNION will both loop if given cyclic arguments.

Most LISPEDIT commands will also tolerate cyclic structures. The display
will show as much of the equivalent infinite representation as fits on the
screen. Some messages will show a labelled form.

PAGE 7

Debugging compiled code versus interpreted code.

Th~ interpreter of LISP370 and YKTLISP is not written in LISP. It is part
of the "core" S/370 assembler code of the system. The interpreter is a
direct implementation of an SECD machine definition of the basic semantics
of YKTLISP. This has one important effect on the debugging process.

When you are in the break-loop you can examine the frames on the stack.

If a frame belongs to a compiled function you will be given the name of the
function, together with the values of all its variables (by name).

If a frame belongs to an interpreted function two things must be noted.
First, in cases where the compiled function has a single frame the
interpreted function will have a separate frame for each level of LAMBDA
binding, with at least one additional frame for the interpreter itself.
Second, there is NO way to determine the "name" of the function, all
frames being attributed to the interpreter, SECD or SECDl. In addition
the SECD machine's Sand C stacks will be displayed to you in their full
inscrutability.

The only current and up to date definition of the SECD transition states
consists of the comments in the ASSEMBLE file for the core of the system.

Of course if you are using LISPEDIT this is mostly moot, as the use of
HEVAL allows you to run the interpreter in an interactive mode, with
various controls on the stepping rate, and a full display of the code
being interpreted.

t· i: f

PAGE 8

Values and functions.

Probably the greatest difference between LISP370/YKTLISP and the most
widely used LISP dialects (MACLISP and INTERLISP) is the lack of so-called
function value cells. In YKTLISP operators are evaluated in exactly the
same manner as any other variable.

In one sense assignment is equivalent to definition. (In practice it is
not, in that DEFINE does a certain amount of processing on the expression
given it. But in the end the resulting expression IS simply assigned as
the value of the name.)

This means that a function which binds LIST as a variable may not behave
as expected if it attempts to use LIST as an operator. (Of course it MAY
behave as expected if you know what to expect, that is if you have a
functional value for LIST and it is the function you wish to use when y~u
say LIST.)

In addition, a name can be a function or a macro, but not both (we never
look at the property list of an identifier during evaluation). This
problem is surmounted by the use of different environments (embodied in
state descriptors, SDs, see below) for compilation and interpretation.

,.-.•·:,

PAGE 9

Macros

In YKTLISP expressions beginning with MLAMBDA (as opposed to LAMBDA)
define macros. (The compiler transforms these into MSUBRs (also known as
MBPis).) During interpretation or compilation if an operator evaluates to
a macro the macro is applied to the entire form and the resulting value is
treated as if it had occurred in the place of the form.

For technical reasons an MLAMBDA expression is treated as if it were
APPLXed to its form. See the section on structured bound variable lists
for examples of MLAMBDAs.

If an operator evaluates of anything but a macro or a special-form (e.g.
SETQ, COND) the arguments are evaluated and then the operator value is
again examined.

If it is applicable (a LAMBDA expression or a BPI for example) it is
applied, otherwise it is re-evaluated until it becomes applicable or a
constant. If, during the re-evaluation it becomes a macro an error is
signaled, as the original form has been lost, and "argument" which the
macro might have used unevaluated have be evaluated, with all concomitant
side effects.

In compiled code all arguments are evaluated and then the operator is
fetched. (The fiction is that (FOO X Y Z) is first transformed into (CALL
X Y Z FOO), and only then compiled.) If an operator which was not a macro
at compile time evaluates to a macro a run time the same error break is
taken, viz. "Dynamic macros not al lowed."

PAGE 10

Scope of variables.

YKTLISP has dynamic lexical scope. In general a variable is only
"visible" in the immediate context of its binding. Consider a LAMBDA
expression which is the value of some variable, say FOO.

If Xis bound by that LAMBDA, then any X contained in the expression,
(even if it is in another, contained, LAMBDA expression) will "see" that
binding. Note that an X which occurs in a macro expansion is treated as if
it had been present in the original expression.

A use of X in a function called, at whatever depth, from this expression
will NOT see this binding. If you wish to bind X in such a way that
function which you call can see it you must bind it as a FLUID variable.
Unlike many other LISPs this is done directly in the bound variable list.
Thus the X in:

(LAMBDA (X) (BAR))

is invisible to BAR or any function it calls, while the X in:

(LAMBDA ((FLUID X)) (BAR))

is visible to BAR and all functions called by it.

":.,· .. _'., ·.• .·

PAGE 11

Structured bound variable lists.

When a LAMBDA expression (or its resulting BPI) is applied to a set of
values the binding process can be conceptualize as follows. (The actual
process differs somewhat, but the effect is the same.)

Given a LAMBDA expression (LAMBDA bv. body) being applied to values Al,
A2, ... , form the list,

(Al A2 ...)

Now examine this list and the bound variable list, bv, in parallel.
If bv is neither a pair or an identifier, discard the value list and
terminate.
If bv is an identifier, bind the value list to that identifier.
If bv is a pair and the value list is not a pair, signal an error.
If both bv and the value list are pairs, repeat the process on their
respective CARs and CDRs.
(Note that NIL is not an identifier.)

Let me present a few examples.

((LAMBDA U U) 1 2 3) = (1 2 3)
((LAMBDA (U) U) 1 2 3) = 1
((LAMBDA (U. V) (LIST UV)) 1 2 3) = (1 (2 3))
((LAMBDA (UV. W) (LIST UV W)) 1 2 3) = (1 2 (3))
((LAMBDA (UV W) (LIST UV W)) 1 2 3) = (1 2 3)
((LAMBDA (UV W. X) (LIST UV W X)) 1 2 3) = (1 2 3 ())
((LAMBDA (UV W X) (LIST UV W X)) 1 2 3)

= Error break, non-conformal arguments
((LAMBDA ((U . V)) (LI~T UV)) 11 (1 2)) = (1 (2))
((LAMBDA ((U V)) (LIST U V)) "(1 2)) = (1 2)

Note that because of the "constant" rule, excess arguments are simply
discarded, not considered an error, while missing arguments are treated as
an error.

Macros (MLAMBDAs) are a special case, in that the form is treated as if tt
were the value list. In the next set of examples I will display the macro
expansion, rather than the result of an evaluation. In each case we
assume that FOO has as its value the indicated MLAf1BDA expression.

(MLAMBDA U (LIST "PRINT (LIST "QUOTE U)))
(FOO A B C) --> (PRINT 11 (FOO A B C))

(MLAMBDA (U V W) (LIST "PRINT (LIST U V W)))
(FOO ABC)--> (PRINT (FOO AB))

(MLAMBDA (() . U) (CONS "PLUS U))
(FOO ABC)--> (PLUS ABC)

(MLAMBDA (() U . V) (LIST "BAR U (CONS "FOO V)))
(FOO ABC)--> (BAR A (FOO BC))

:· .. :-.. ;,.~·:;:t"::/·rtr~!t:=>:•_.!•?>.-~- --~~-~,~· :"~'.;:•/~~-_.,: -·• .,.~ --:_ .. _:.,..
•. : .. ·~: - ~-

•. ':;· --:; · .. -· :._ ;· .-~~::_~~:./ ::_. •.
-. ·.-.:.·, ~;:~~--; • - •

-------~---------------------------

Again, note the use of the constant rule, in this case to discard the
operator from the form.

PAGE 13

Implied PROGN

One change in YKTLISP from LISP370 is the addition of the so-called
implied PROGN. This effects LAMBDA, MLAMBDA and COND expressions. In
LAMBDA and MLAMBDA expressions the "body" now consists of one OR MORE
expressions. These are evaluated in order (as if they had a PROGN wrapped
around them), and the value of the last is the value of the expression.n
The evaluation of an explicit RETURN anywhere in the body will immediately
end execution and provide the value.

(LAMBDA (X) (PRINT X) (PLUS XX))

for example, will first print its argument, and then return twice its
value.

In a COND expression the implied PROGN effects the expressions following a
predicate.

(COND
((ATOM X) (PRINT "ATOM) (LIST X))
("T (PRINT "PAIR) X))

will print ATOM or PAIR, and then return a PAIR.

PROGN itself has been added as a special form to the system.

'-

PAGE 14

Scope of GO and EXIT

In-YKTLISP the GO statement is strictly bounded by LAMBDA expressions.
Control can only leave a LAMBDA expression by a RETURN or by "falling out
the bottom", unlike INTERLISP where GO will search for labels in
surrounding LAMBDA expressions. GO will leave an SEQ if it is embedded in
another SEQ (with no intervening LAMBDAs, of course). In particular, SEQs
11scope 11 labels in the same way as LAMBDAs "scope" variables. (See section
on PROG and SEQ.)

YKTLISP allows GO and EXIT expressions in any context. Of course, both
should be contained in an SEQ, and the GO should have a valid label
available to it. In particular, a GO or EXIT in an argument to a function
will abort the application of the function, and keep any later arguments
from being evaluated.

C

PAGE 15

New built-in functions and special forms.

YKTLISP has a number of built-in functions and special forms which do not
exist in LISP370. (It has also eliminated one, LABEL, which has, to the
best of my knowledge, never been debugged in any version of LISP370.) The
new special forms are PROGN and CLOSEDFN (in addition provisions have been
made for a CASE operator, but it is yet to be implemented), while the
action of FUNARG has changed.

(PROGN expl ... expn) evaluates its expressions in turn, returning the
value of the last as its value. It does not create either a binding
(LAMBDA) contour, or an SEQ (scope delimiter for EXIT).

(CLOSEDFN LAMBDA-expression) acts like QUOTE when interpreted. The
compiler compiles the LAMBDA-expression, producing a BPI. This allows
compiled function-valued objects which are not funargs.

Funargs have become distinguished objects in YKTLISP, rather than
interpretations of lists of the form (FUNARG exp sd). FUNARG as an
operator creates a funarg object with the (unevaluated) components exp and
sd. (Note that while PRINT will display a funarg correctly, PRETTYPRINT
does not. Since the READ-EVAL-PRINT loop uses PRETTYPRINT, you may see
ugly items of the form 93xxxxxx. These are the hexadecimal
representations of the pointers to funargs.)

The 1~ew bui 1 t - in functions are APPLY, CALLX, CLOSURE, FUNARGP, MDEF,
MSUBRP, REALVECP, REFVECP, SUBRP and WORDVECP. In addition RETURN and
EXIT, defined as special forms in LISP370 are now defined as built-in
functions.

FUNARGP, MSUBRP, REALVECP, I,EFVECP, SUBRP and WORDVECP are simply the
predicates for the associated data types. All of them had non-built-in
functional definition in LISP370.

CALLX is a function (exactly equivalent to MACLISP's FUNCALL) which is
used in the intermediate "pure" LISP code which is produced by pass I of
the compiler. It is the "evaluate operator first" form of CALL.

APPLY is analogous to APPLX, with a third argument, which must be a state
descriptor.

(APPLY fn valuelist sd)

will apply fn to the valuelist in the environment defined by sd.

MDEF is to MDEFX as APPLY is to APPLX. That is,

(MDEF macro form sd)

will apply the macro to the form in the environment defined by sd.

CLOSURE creates arbitrary funargs.

PAGE 16

(CLOSURE expl exp2)
(·

is equivalent to

(EVAl (LIST "FUNARG expl exp2))

'--- •

/
\

PAGE 17

STATE and state descriptors

LISP370 and YKTLISP have a data type called a "state descriptor" (SD for
short).

SDs are created by the built-in function STATE (and incidental by the
creation of closures) and are used in three distinct but related ways. An
SD captures and retains the state of the computation.

It must be emphasized that what is captured is NOT a set of name/value
relationships, but a set of name/value-cell relationships. Repeated uses
of a SD need not result in the same value, but will share the use of the
same value-cells.

An SD may be; included as one component of a closure (funarg), given to
EVAL, APPLY or MDEF as a final argument, applied to an argument.

The value of a LAMBDA expression, when it is not used as an operator, is a
funarg.

(SETQ X (LAMBDA (Y) Y))

results in a value of X of

%.FUNARG.((LAMBDA (Y) Y). %.SD.xxxxxxxx)

(Note that %. is used as a prefix in printing essentially unprintable
objects, that is objects which can not be read back after being-pr-inteci. T- --
Note also that LISP370 fully supports so-called "upward funargs".

Let us suppose that the following expression has been evaluated.

(SETQ TEST ((LAMBDA (X) (STATE)) 12))

The resulting value in TEST will be an SD. Then the following results
would ensue.

(EVAL "X TEST) = 12
(APPLY "(LAMBDA (Y) (CONS X Y)) "(10) TEST) = (10 . 12)

Now, suppose we evaluate the following

(PROG (S)
(SETQ S (STATE))
(COND

((STATEP S) (SETQ TESTS) (PRINT 'First time.') (RETURN 0))
("T (PRINT 'Again? ') (RETURN S))))

The result would be the printing of 'First time.' and a value of 0. If at
any future time the expression

(TEST "BOO)

!'til:J.u .10

were evaluated, the result would be the printing of 'Again?' and a value
of BOO.

When the function STATE is called the result is an SD, which has captured
the state of computation. If that SD is applied to an argument, the
computation is resumed at the return from STATE, however the value
returned is the value of the argument of the SD. This resumption may be
done as many times as desired.

This allows rather straight forward programming of back-tracking,
coroutining and other hyphenated control structures. The use of SDs does
exact a price in overhead, due to the retained stack frames which must be
processed during garbage collection, and in the invalidation of
shallow-binding cells when contexts are switched. Local experience has
been that once an algorithm has been developed and debugged using SDs, it
should be examined to see if it can be re-implemented without them. They
make the initial development much simpler, but for much used processes
they may prove expensive.

STATE will accept an optional argument, a global environment. This is an
A-list like structure, of the form

(() (id. v)* ... <sd>)

The leading() is required. See the section on Evaluation for details on
the use of this structure. If the A-list is omitted the resulting SD is
given the current global A-list.

The value of STATE captures both the environment (for EVAL) and the
control chain (for application). If it is to be used only for evaluation
this is au expensive weight to carry around.

To allow "cheaper" SDs, where they are not to be used for resumption of
execution, two functions are supplied, EXTSTATE and GLOEXTSTATE. They
both take three arguments, a list of identifiers, a list of values, and a
SD.

(EXTSTATE "(A B C) "(4 6 9) sd)

They return a new SD which has the same set of bindings as the old SD (the
third argument) with the given identifiers bound to the values "ahead" of
the old bindings. In addition the new SD does not capture the control at
its point of creation, but acts as if it had been created in the same
control environment as the given SD. Thus on returning from a function
where one of these functions was called the frames can be discarded.

EXTSTATE adds the new bindings to the head of the environment stack of the
old SD, while GLOEXTSTATE adds them to the head of the old SD's global
A-list.

(

PAGE 19

& -- the back-trace function.

The stack examining function, ?, described in the LISP370 manual has been
replaced by a new function,&. (? is still present, just not used.) The
most immediate difference is that & receives its arguments unevaluated.
Thus

(& full 3)

replaces

(? "full 3)

& normally uses a special print routine which will only write one line per
value, eliding large objects. & also accepts a number of new parameters.

(& UNWIND) will display a list of all stack frames which will "stop" an
UNWIND, with descriptive titles for those it recognizes. One can then
(UNWIND n) to return control to some particular frame, by counting (zero
origin) back in the list.

(& ... p ...), where p = PP, PR or (PR fn), will cause the value displays
to be done this, respectively PRETTYPRINT, PRINT or fn, rather than with
the one-line printer.

(& (varl ... varn) ... VAL ...) cause a search for the first frame binding
any one of the variables vari, and the returning of the value of the first
found variable as the value of the call to &. Usually a single variable in
the list is most useful.· (& (X) 5 10 VAL) will return the first value of X
in frames 5 through 10 that is found.

(& (varl ... varn) ... VALLIST ...) is similar to VAL, but a list of ALL
relevant values is returned.

& normally searches for the nearest frame used by the function EVAlFUN and
numbers the frames from 1 up, starting with the frame above the EVAlFUN
frame.
(& (FL <n id>) ...) will cause the frame numbering to begin,
respectively, n frames above & 's frame, or, if the value of id is a
number, as if that had been used, if the value of id is a BPI, with the
first frame used by that BPI. Thus (& INDEX (FL FOO)) will display the
stack index, treating the first frame used by the function bound to FOO as
frame 1.

f',~
\, ..

PAGE 20

CATCH and THROW.

YKTLISP has a MACLISP-like CATCH and THROW facility. The standard form is

(CATCH name expression id)

Where name is an identifier, and id is a variable name. The expression is
evaluated, and in the normal case, its value is the value of the CATCH
expression, while the variable, id, will be set to (). If during the
evaluation of the expression a THROW of the form

(THROW name-exp t-exp)

is executed, where the value of name-exp (in the THROW) is EQ to name (in
the CATCH), then the value of the CATCH is the value oft-exp, while the
variable, id, is set to name. Thus after the CATCH the program can
unambiguously determine whether control returned normally or not. The
final argument, id, is optional, so MACLISP style CATCHes will work. Note
that the first argument, name, is NOT evaluated in the CATCH, but is
evaluated in.the THROW.

Another form provided is THROW-PROTECT.

(THROW-PROTECT expressionl expression2)

evaluates the two expression in order. If a THROW occurs during the first
evaluation, which would return control to a CATCH above the THROW-PROTECT,
the second expression is evaluated "on the way through". Of course a
THROW during the evaluation of the second expression is NOT intercepted.

UNWIND is implemented using THROW, so UNWINDing from an error-break may
cause THROW-PROTECT expressions to be activated.

Other forms using the CATCH/THROW logic are ERRSET, ERRCATCH and
NAMEDERRSET.

(ERRSET expression) evaluates expression, establishing a CATCH point for
UNWIND. If the expression evaluates normally its value, V, is made into,a
list, (V) and returned. If an UNWIND is done to this CATCH point, its
value is passed on as the value of the ERRSET. This has the ambiguity of
the original ERRORSET, in that UNWIND can provide a value which is a list,
an thus not distinguishable from a normal value.

(ERRCATCH expression· id) behaves like a (CATCH xx expression id), but
instead of establishing a named CATCH point sets up an UNWIND CATCH point.
Here, the ambiguity of ERRSET is avoided.

(NAMEDERRSET name exp) behaves like ERRSET, in that the value is made into
a list for normal return, and not for UNWIND. Unlike ERRSET, NAMEDERRSET
will also stop a THROW to name, treating it like an UNWIND.

- -··•---·' ~--:-~~ <- ... , .-. ~-: .~--~- ~-:_~"" .,,. ~. ---

, _. ,.._·. ~---:.·/~~:, __ .- ~· ~

(1-~t:
·~..:..: ;

PAGE 21

All these facilities are implemented with the under-lying primitive
S,CATCH.

(S ,-CATCH expression id message) binds the value of message to the variable
CATCH,MESS and evaluates expression. If the evaluation completes, id is
set to NIL and the value is returned. If a (THROW name t-exp) is executed,
id is set to the value of name, and the value oft-exp is returned. A
value of NIL for name is an error. All of the "user level" operators,
above, do a S,CATCH and examine the resulting value of id, then either
return the value, signaling normal/THROW, or THROW to the next CATCH point
above them.

UNWIND throws a "name" which is a number, and each CATCH point which can
stop an UNWIND checks it for zero. If it is not zero, the next THROW will
use name-1. Thus the number is counted down until some one claims it, or
until the root of the stack is reached. In that case (as with THROWs to
unused names) the initial READ-EVAL-PRINT loop is restarted.

(

PAGE 22

SUPV and the break loop

When you first start YKTLISP (not in LISPEDIT), you are confronted with an
EV!L supervisor. This is a program, SUPV, which reads an expression from
the console, displays the expression back to you, evaluates it, using the
interpreter, and displays its value. It then goes back to the READ, to
wait for a new input.

The first thing it will do is print "Value = n", for some value of n. This
is simply the number of generations of FILELISP that this particular
system has been through.

The echoing of input and the display of values can both be turned on or
off, independently, by the functions SET-ECHO-PRINT and SET-VALUE-PRINT.
Called with arguments of() they turn off the appropriate function, called
with non-() arguments they turn it on.

The functions LAST-VALUE and LAST-EXP will return the last value produced,
or the last expression read. Thus if you entered an expression and want
to save the value you can type

(SETQ X (LAST-VALUE))

If an error is signaled by any process, or if you force an external
interrupt, you will be put in the "break loop". This is similar to SUPV.
It differs chiefly in not echoing input, and not prefacing the values with
"Value =". LAST-EXP and LAST-VALUE do not work in the break loop.
Furthermore, if you enter a single ? the break loop will repeat the
original error message.

In eithe:c SUPV or tl.e break loop entering a "null" line (hitting the ENTER
key without any input) will result in a message indicating where you are.
SUPV prints "LISP", the break loop prints "BREAK". Immediately upon
entering, the break loop clears any stacked lines in the console input and
holds them in a variable STACK. This can be examined using &, but there is
no provision for re-stacking them.

To exit from the break loop you must either enter (FIN exp) or (UNWIND n}.
Many entries to the break loop are not re-startable, and FINing in those
cases is equivalent to (UNWIND 1). If an error is recoverable, the error
message MAY tell you what you should do. (Not always though, there are
still a lot of loose ends around.) If you FIN the value (of exp) will be
tested against a filter set by the function which reported the error. If
it passes, all well and good. If not you will receive a message, such as,
". . . FIN with small integer, . . . Repeat with correct type." "Still in
break loop."

One characteristic of READ should be pointed out here. Since READ treats
its input as a continuous stream of characters, ignoring end of lines, any
input to either SUPV or the break loop must end with a delimiter. The
closing parenthesis of a list, or > of a vector will do, but if you wish to
enter a simple identifier or a number you MUST explicitly type a trailing

PAGE 23

blank before you hit ENTER, to inform the reader that there are no more
characters to follow. (See the example in the section on XEDIT.)

PAGE 24

Taking over the error handler.

When an error occurs a function (in the file ERROR LISP370) CONDERR is
called with four arguments. The first is an error "channel", a number,
currently from 1 to 24. CONDERR calls a second function,
S ,PROGRAM-EVENTS, with this number as its argument. S ,PROGRAM-EVENTS
checks for a FLUID or global binding of the identifier PROGRAM-EVENTS in
the control chain, and if it finds one searches its value with ASSQ for an
entry of the form (n fn. string). If one is found its CDR is returned to
CONDERR. Otherwise the number is used to access an internal table in
S,PROGRAM-EVENTS and a pair, (fn. string) is returned.

CONDERR constructs an error message based on the string in the value of
S,PROGRAM-EVENTS and its other arguments, and then applies fn, from the
value of S,PROGRAM-EVENTS, to three arguments, the channel number, its
third argument (?ARGS?) and the message it has constructed. (See the file
ERRORS NOTES for a list of all error messages in the BASE system.)

To co-opt this machinery FLUIDly re-bind PROGRM!-EVENTS to a list of the
form

((1 fnl. stgl) (2 fn2. stg2) ...)

with your choice of functions for the fn's.

PAGE 25

Evaluation

Identifiers are normally evaluated by searching up the stack. The search
commences in the current stack frame, looking at all variables. Once it
passes a "closed" contour, that is a frame corresponding to a
non-lexically present LAMBDA (see section on Scope of variables) only
FLUIDly bound variables are looked at. If the variable is not found in
the stack the current global A-list is searched. If it is not found and if
the A-list terminates in an SD the global A-list associated with that SD
is searched, and so on until the variable is found or a non-SD terminator
is reached.

(Note that this search is often avoided by the use of shallow binding
cells. In practice, once the search has left the immediate (lexical)
scope of the variable a "look aside" is performed. If the variable has a
shallow binding cell (not all do) and if that cell is current (that is it
was last set in the current environment) then it is used to access the
current binding. If it is not current the search is carried out and the
shallow binding cell is "refreshed", to avoid further searches, until the
environment is changed again.)

The frames searched during this process are normally the same as the
"control chain", that is the chain of stack frames from called function to
calling function. However, whenever a funarg is applied or EVAL, APPLY or
MDEF are called a fork occurs, with the environment chain following the
stack frames captured by the SD involved. In addition, in each of these
cases the global A-list in the SD becomes the current global environment.

Since error handling is most usefully thought of as a function of the
control, a special function, S,CEVAL-ID is supplied, which searches the
"control chain" for a binding of its argument, and returns its value if it
exists. Like normal evaluation, an "unbound" variable evaluates to
itself. No global environment is searched by this function.

A second function, S,EVAL-GLOBAL-ID, will search only the current global
environment for a value.

,: • • ' •.• ·.:: :·..;.,. ~ > • '

,•••~/.-':/ •,c•-:;-. ,; hit,•

PAGE 26

External interrupt

When YKTLISP is loaded a ext'ernal interrupt handler is enabled. If at any
time CP is entered and EXT typed, a request for interrupt is posted in
LISP. This request is polled on every function entry, function exit and
also in all loops in LISP function. When the request is detected the
break loop is entered. An (UNWIND 1) or a (FIN x) will cause execution to
resume at the point of interruption. Note that if LISP is waiting for
input it will not see the interrupt request, it must be actively running.

PAGE 27

PROG and SEQ

In 'YKTLISP the form (PROG bv . body) is not primitive. PROG is a macro
which expands effectively as follows.

(PROG (X Y Z) . body)
--> ((LAMBDA (X Y Z) (SEQ . body)) () () ())

There is actually some further processing.

First, the YKTLISP definition of PROG states that if control leave by
"falling out the bottom" rather than by a RETURN, the value of the PROG
expression is (). To ensure this the macro scans the body, and if it can
not be certain that all exits are by RETURNs it adds a (RETURN()) to the
end.

Then, if the body consists of a single expression the SEQ is omitted.

Finally, the local variable list may contain initial values. If one
writes

(PROG ((X expl) Y (Z exp2)) . body)
--> ((LAMBDA (X Y Z) (SEQ . body)) expl () exp2)

will result.

Note that the expressions are evaluate outside the LAMBDA expression.
This allows the "pushing down" of variables by use of expressions such as

(PROG (((FLUID FLAG) FLAG)). body)

While body is evaluated the FLUID variable FLAG will initially have its
previous value. Any assignments to FLAG within body will be available to
function called from there, but upon leaving the PROG, FLAG will revert to
its previous value.

,
The rational behind these constructs was the desire to limit variable
binding to a single form, LAMBDA (considering MLAMBDA as simply a
variant), as well as a desire to separate the scope of variable from the
scope of labels. In order to accomplish this a new form, SEQ, was
invented. SEQ is to labels as LAMBDA is to variables.

YKTLISP (as noted elsewhere) does not allow GO to cross variable binding
contours. Thus GO can not leave a PROG. SEQ on the other hand binds no
variables, it simply delimits a set of labels. A GO will attempt to find
its target label within the immediately enclosing SEQ. If it fails it
will then search more remote enclosing SEQs until it either locates its
target label or encounters a LAfIBDA contour, in which case it fails. Just
as a variable bound by a LAMBDA can not be seen from outside that LAMBDA, a
label within an SEQ can not be reach by a GO in a enclosing SEQ. This
provides a clean mechanism for isolating labels in mechanically generated
pieces of code.

C

PAGE 28

READ <- -> PRINT

To.as great an extent as possible READ and PRINT in YKTLISP are symmetric.
That is, if an object is PRINTed to a file the result of READing from that
file should be UEQUAL to the original object. Similarly, if one READs an
object form a file and then PRINTs it the resulting representation should
match the original.

Both of these ideal are approached, but not reached.

In the first case, there exist within YKTLISP certain data objects which
have no READable representation. These include compiled programs (BPis)
and state descriptors (SDs). Both will PRINT, but only as%. forms, which
can not be READ.

In the second case there are several areas of failure. The representation
of numbers is "many to one", in that 127, for example, can be written as
127, 00127, or %X7F, but will only be PRINTed as 127. In a similar manner
extra blanks will be lost, as will gratuitous "let:terizer" characters,
e.g. IAIBICID will print as ABCD. Finally, PRINT favors list notation
over dot notation, so

(A . (B . (C . ())))
-->(ABC)

(This is particularly annoying when one has written a FLUID indefinite
trailing argument in a LAMBDA expression, so that

(LAMBDA (X. (FLUID Y)) ...)
--> (LAMBDA (X FLUID Y) ...)

The interpreter and compiler do just fine, but reading the listing takes
getting used to.)

t:;

(

PAGE 29

What are all those Qs and commas doing?

LISP has always had a few conventions for naming functions with common
attributes. Most "true/false" functions (predicates) have names ending
in P, for example. YKTLISP has several conventions of its own (as with
the ... P they are not 100% consistent).

You will quickly notice many functions with commas imbedded in their
names. These all were originally thought of as "system" functions, which
the casual user would not be interested in. As the comma has no special
syntactic meaning in LISP370/YKTLISP, but acted as a list separator in the
previous LISP available at Yorktown this was felt to be a protection from
name clashes.

A few functions have names which start with a comma. These are usual
"under cover" versions of normal functions. Thus ,PLUS is a two argument
generic addition function, used by PLUS which is the multiargument generic
addition function.

Many other functions have names prefixed by one or more letters and a
comma. The prefix groups the functions, e.g. parts of the compiler start
with C, parts of the LAP assembler with L, and general system functions
with S,.

Many other functions will be seen which start with a Q. This stands for
"QUICK", and can have one of two meanings. In all cases it implies the
existence of a macro in the compile environment which produces in-line
code. In many cases it also implies a lack of type checking.

So QCAR and QCDR do not test their arguments for PAIRness, they assume
correct type and act accordingly. The compiler is, at present, not smart
enough to elide the type checks in code such as

(COND ((PAIRP X) (CAR X)) ("T X)

so the careful programmer is allowed to circumvent the built in checks by
writing

(COND ((PAIRP X) (QCAR X)) ("TX))

Other of the Q operators do type checking, but are quick in that they
result in inline code. These include QMEMQ and QASSQ.

Another group of Q operators are the QS.. . operators. These (QSPLUS,
QSADDl, etc.) assume that their arguments and values are small integers,
(numbers between - (2>':26) and 2,•:26- l). general they do arithmetic modulo
2•1:26, forcing correct smal 1 integer type codes on their results. They are
also aware of each other, and will skip the forcing of type codes on some
intermediate results when nested.

Note that there are a few functions starting with Q which are neither
inline nor unchecked. These include QSORT and QUOTIENT.

C

PAGE 30

Functions whose names end in Qare usually version of other functions
which use EQ rather than EQUAL. Such pairs include MEMBER/MEMQ,
ASSOC/ASSQ, UNION/UNIONQ.

PAGE 31

"T

YKTLISP does not treat the identifier T specially. Thus in the
"otherwise" clause of a COND you should quote the traditional T. (Any
constant will suffice, some people favor 1). If you write

(COND ((PAIRP X) (PRINT (CAR X))) (T (PRINT X)))

You could be surprised if some function contained

(SETQ T ())

with T free.

C·

Property lists

YKTLISP' s
INTERLISP.

property lists are ASSOC type lists,
If you evaluate

(MAKEPROP "X "A 1)
(MAKE PROP "X "B 2)
(MAKEPROP "x "c 3)

then

(PROPLIST "X) = ((A . 1) (B . 2) (C . 3))

PAGE 32

not flat list as in

Note that the value of PROPLIST is not the actual list from the
identifier. The top-level pairs have been copied, as in APPEND. The
property name/value pairs are "real", so updates on them will be reflected
in the actual property list.

Since YKTLISP relies on multiple environments and uses assignment for
function definition, the use of properties to annotate functions is of
little or no value. There is still one (potentially incorrect) vestige of
this in YKTLISP, with various identifiers having the property SAFE.

N.B. the description of DEFLIST in the LISP370 manual is incorrect. The
second argument is a list of length two lists, with the CAR being the
identifier receiving the property, the CADR being the value.

PAGE 33

Sub-mini guide to LISPEDIT

If you enter LISPEDIT, by evaluating (EDIT exp) for example, you need to
know at least six commands in order to do anything.

TELL item
Will present you with a block of text about "item". If you are on a remote
terminal the text will be assigned to the FLUID variable =, if you are on a
non-remote terminal you it will be put in a recursive call to EDIT,
editing the text. In the first case you should immediately enter
EDIT= or E =

LISPEDIT views most objects as lists, and the change of focus is with
respect to the list structure. You can "move" to the right or left within
a list, up to a containing list, or down to some element of a list.

SON nor Sn
If you are currently focused on a list (the current focus is bright unless
it is the entire object being edited) Sn will move the focus to the nth
element of the list (with the CAR being counted as 1). S * will move the
focus to the last element, while S -2 will move it to the next-to-last.

UP nor Un
If you are currently focused on an element of a list U 1 will move the
focus to the list itself. U 2 is equivalent to entering U 1 twice in
succession.

RIGHT nor Rn
If you are currently focused on an element of a list Rn will move the
focus n elements to the right. R * will move to the rightmost element.

LEFT nor L n
If you are currently focused on an element of a list L n will move the
focus n elements to the left. L * will move to the leftmost element.

TELL WHAT
Entering TELL WHAT will present you with text which describes all the
commands available in LISPEDIT. ,

:::·•-•.'...i :-~?.--:·:··. ~;_:?<-~- :: -.~?::':'- .,..,._:ll:·':'"::·'"~:···~··· ,_: .. _.: ~:--~---~ ... -.·----~·:· _.. :·,-.;·,··.--,.-:::-;..,_,~-­
' .: ,: .. :t-. ••

•

PAGE 34

Versions and systems

As is explained in the YKTLISP MEMO, a YKTLISP system is embodied in two
files, a SEGMENT file and a SHLISPWS file. These files are given names of
the form SSSSnnnn, where SSSS designates as particular system, and nnnn a
particular version. For example, LEDTOOSO is the current (version 0050)
LISPEDIT system.

A system may have only a SHLISPWS, using a SEGMENT with another system
name .

The most commonly used systems are
COLDnnnn -- An "empty" LISP, can only coldstart (see YKTLISP MEMO).
EVALnnnn A "stripped down" system. No compiler or assembler.
BASEnnnn A LISP system with a compiler and assembler, but no LISPEDIT.
LISPnnnn A full LISP system, with LISPEDIT.
LEDTnnnn A SHLISPWS with LISPEDIT activated.

If you have defined a LISP shared segment on your VM system you should
save the LISPnnnn SEG~IENT as the shared version. Otherwise, you may wish
to run with the smallest system that will support your needs, as the
SEGMENT will be loaded into your own virtual memory .

.... ·, ... ~_:·•:;-\; ;""::~::.\~--:-~-?.t!(:•:~~~: ?~:~·'.-:"::_~t~(\"::~~:'!-.. ·:-··_ ·=\ <.t: :-·:·/\ ... ~>~: >-·.,: ::~:;._ ~ .. ~·- -.:"'·", --•·-:. --~ ~--. '
·.·

