i

YKTLISP Program Description ahd ‘Operations Manual

Januarv~§¥$) 1933

hNi Alberga

e

Various, highly modi¥iad by Cyril

Coimputar Scienca Daepartment
IBM Thomas J, ‘Watson Raesearch Center
P. 0. Box 218, Yogktoun Heights, New York 10598

This is a manual in procass. As of this date it is inéomplete. but slouwly
growing. As each new adition is produced, this section will be updated
with an outline of the changaes from earliaer versions.

The section "Table of system functions, variables and commands™ on page
145 contains very telagraphic descriptions of all the operators in the
system which ara not meant purely for system use. Those whiéh have mora
complete descriptions in the body of the manual will hava ona or mora page
rafaerences to thosa descriptions.

The base manual, to which all changes will be related, Will be that of
November 22, 1982.

December 7, 1982.

Addad short descriptions of operators only available in the
LISPnnnn systaems.

Added chaptar on debugging.

January 5, 1983.

Ganaral clean up of misspallings, format errors, inconsistent notation.
Added chapters on LISPLIBs and compiler environmant.

-te
-t
-tu

Catalogua of changaes and additions to the YKTLISP manual.

-——

iv

YKTLISP Program Dascription and Opaerations Manual

BREFACE

This manual attempts to describe the YKTLISP systam, with thae excaeption of
LISPEDIT. It has baeen producad by merging and rewriting the LISP/370 Pro-
gram Description/Operations Manual (SH20-2076-0), the Research Raport
LISP/370 Concepts and Facilities, RC 7771, by Fred W. Blair, and various
internal notaes and mamos.

LISPEDIT is documented by a set of on-line command descriptions, which are

also available, with added commentary, from Martian Mikaelsons, IBM
Research, Yorktoun Haights. -

Preface v

vi YKTLISP Program Dascription and Operations Manual

,_\
F\
3

Introduction s s o

How to access YKTLISP from CMS e o s o v o o @
Loading and running YKTLISP e e o o s o e o o
Loader internals e o 6 o o« o o s o s o s o s
Invoking the loader “ o o o o o o s s s s e s
Invoking the unloader e o o o o o s e s e s e
Using a saved system e o 6 6 o o o o o s e o o
Interaction Hith YKTLISP ¢ o 5 o o s e o o s »
YKTLISP PI‘OSI‘I“ ¢« o o o " o o o o e o o o o @
YKTLISP syntax and semantics e ®© 8 o s o o o =
YKTLISP data typas e s s e o 4 s e o o o 4 o
Identifiers e e e e e s e e e e e e e e s e .
Pairs e o o o o s e a8 8 s s e e o s s e o o o
Lists s e 8 s o o s o s e o s e s e e e o
Numbers e o o s+ e s e s e e e e e s e o o @
Vactors . . e o 6 o o o s s e 8 o o o
Refaerence, Nord and Raal Vectors e e e e e e
Character Vectors e o s e o e o s o o o o
Bit Vectors e e e s e e o o o s e e e o w s
Binary program images e e e e s e e e e e e e
Funargs e e e s st e e e s e e e e e e e e e
Stata descriptor e e s s e s e s e e e s e e .
Straeams « v e e o ¢ o e o o e e e o o o @
Character strtams c e e e s e o s s e e o @
Key addressad streans © e s s s s s e e o o
Expressions: functions, macros and special forams.
Expressions e e e e e e e e e e e e e e e
Constants e e o o s s s s s s e 4 s e o s e
Variables c s e e o & e e e e e e e e e .
Lists as expressions e e e e e e s e e e e e e
Evalu.t‘on L] . . L] L] L] . * L] -
The environmant of evaluatvon and execut:on. .
Stack framaes . . e e e e e o o
Bindings and varlable raferencang e e e e
The environmant of compilation. e o e o o o
pascriptions of the operators of YKTLISP. o« .
A note on naming convantions e o 8 o s v o o
Environment of exeacution e ¢ 8 % s o 0 o 8 o ®
Specification of values e e e o o & o s e e
Saquenca of avaluation e e e e o s e e o o o
Conditional evaluation e e e o 4 o e « e e
Function and macro definition, variabla blnd in
Multiple level returns T
Environment of evaluation ® e o o o o s o s o
Evaluation e o o o o s s s e s e e & 4 o o o .
Assignment e o e o o 8 s e e e 8 e s a4 e o o @
Iteration over lists and vectors c e s & o o o
MACLISP style operators o . « e s o o
HACLISP style operators for vectors « e s e e
LISP 1.5 styla mapping operators « o s o o o @
Mtscellaneous « e o e o ® e o o s e s o s o
Auxiliary opaerators e« o o s e s o o o o o o a
Data types, type testing and other pradicates

Genaral e e o o o

-

.

e o 8 9 o ¢ ® 6 8 e 4 ¢ v 4 e 0

o o o o @ e s e 0

e o o o O

e e @ o & ¢ ¢ & o ¢ o s s @

e o o o o

o o o o @

¢ @

e & o o o O

® 0 0 o 0 0 & 06 e s o 2 s e o0

s s o o @

s e o o @

.

® o e o ¢ O

* ¢ o o o @

e o o o
e o o o
® e e o
. . e »
e e e o
o o . o
e » o o
« o e e
e o o @
. « o o
. « o o
« o o o
e o o o
e e o e
« e e o
e o o o
e © e o
« e e o
« o o o
*» e® e e
e o e o
L] L] L] -
e o o .
e o o o
. « o o
* o o o
e o e o

o o o o o @
o« o o o o 0
e ¢ & o o o
e ¢ o o s O

e o o o ¢+ @ . L]
o e ¢ s o 8 o .
o« o @
. L]

e e o o o o
e o o o o @

Contants

® 9 o 9 o 6 o & & ¢ 4 e s & o 0

e o s ¢ o

s ¢ o o @

s e 0 o e 8 e

® o & o ¢ o+ 0 9 0 0 s s e s & 0

e o o o @

e o o o o 8 0

O N T W =

vii

NIL and truth value

Pairs and lists « e e .
Vectors, strings and bpis
Identifiers e e e e o e
Place holdaers “ e s e o
Numbers e e s e o o o @
Funargs . . « e e o .
State descrtptors .« o e
Streams “ e e e e
Other prcdicatns « e e .
Operations on pairs . e
Craeation e e o e o o o o
Accessing e e s e e e
Updating e s s e e s o s
gperations on lists . o
Creation e e e e e e e
Accassing e e e e e e e
Searching e e e s
Searching and updati ng .
Updating « s o s e s s e
Miscellanaous e e e e e
Operations on vectors .
Creation e e e e e s e e
Accessing e e e e o s e
Updating e e e e e o o
Oparations on strings .
Creation e e e o o o o o
Accessing e o e s e o
Searching « e o s e o
Updating e e e e e e e
Comparing e o o s e e o
operations on numbers. -
Convarsion. e v e e e e
Praedicates e v e s e e
Computation e e e e e s
Operations on identifiers
Creation e e b e e e e
Acceassing o .
Searching and updatlng .
Updating e e e e e e e s
Object array e o s s & e
Strean 1/0 “ o o s s o o
Creation c e e e e e e s
Input e e e s v s e e .
Output e o o s « . .
Accassing components . .
Updating componants. .« .
Key addressed I/0 o o o
Creation e e e o o e o »
Input e s e s e o o & s
Output .« e e e « e e e
Library managemont e . e
Libraries as TXTLIBs . .

Operator definition o o
Dafinition « v e s e =
Option list « e e s e e

Debugging aids e o o o @
Environment examination

Call tracing « e e e o
Table of system functions,

I nd.x L] L) ° L L] L] * - *

viii YKTLISP Program Description and Opaerations Manual

. e e o o
e o o o o

. . e .
* o o . .
o o e o .
e« e o o o
* s e o
. . *« o e
o » . LI)
e o o o -
* e o ® o
e e o e o
. e e ° e
® o o & o
e o o o o
« e e e o
o« o o o .
» e . .
e« o s » .
e o e o o
. o o o
e o e o o
s o e o o
e e o . o
. e o . .
e o o o o
. e e e o
. e e .
e e o o .
e o e o e
. o o o
e o o o o
o e . . .
e e o . e
o o « o o

L] L] . .
e e o . .
e e e o .
* o . e o
* e o o e
) e o o o
e o o o o
e o e o o
o o * e
¢« o o o o
e o o e o
> s . ¢ o
L2 * - * -
e e o o
e e« & @
o e ¢ e o
e o o o .
e« e o e e

variables

e 6 o 2 o 9 o o o o
® o & 6 o o & s o o
e o ¢ 06 s o ¢ o o o
¢ 0 e & ¢ o s 0 s o
s o & 0 0 8 0 s o o
e e o o o o 0 o 0 o
s e o 06 v & o o o o
s o e 0 o o o o o o
o ¢ o & o s s 0 0 o
¢ & 0 e o 0o o ¢ o &
¢« o & @ ¢ o o ¢ o 0
e e 0 o o o o o o
e o e o ¢ o 0 0 o o
o e o @ ¢ o o+ 0 s o
@ o o 6 o & o o o o
* 8 6 & o o & o o o

e o s @
* o o 0
e e o 0
e o o @
* o o 0
* o o 0
e o o &
* o o @
o o o @
* o e @
¢ e o @
e ¢ o 0
¢ o s 0
)
e o o @
¢ v s @

e o o ¢ o s O
¢ o ¢ o o o @
o o o o 0 o @
e o 8 o ¢ 0 O
e o o ¢ o o o
s o o o o o o
¢ o o o o o @
o o o ¢ o o @
o o ¢ o o o o
* o & o o o @
e o & o o o @
e o e ¢ o o @
o ¢ o o o o @
e o o ¢ s o
¢ o 0o o ¢ o @

¢ o

e s o @
s o o 0
e o s @
« o o o
e o o 0
e o o @
e 2 o
* o o o
* ¢ s @
¢ e o o
s o o o
¢ o o o
s o o @
e o o o
s o e @
* o o @

¢ e o o o @
« o o o o 0
e« e v o o 0
e o ¢ o o @
o o o o o O
* o o o o O
e o o o o @
« s 6 o o @
* o 0 e o @
e o o o o 0
o o o o o @
e s & o o @
e s o o o @
" 0 s o e 0

¢ o o @

e ¢ o o o 0

* e o ®
o o o o
¢ e o @
« s e 0
s e o
« ¢« o @
s s 0 @
* o e 8
e o o @
o e o 0
e o o @
e o o ®
e o e 0
e o o @
e o o o

e o s 0 o @
* o o o s O
e« o o o o @
e e o s o @
e o & o o O
e o o o o @
® o o o o @
e o o ¢ o O
o o 0 o s @
e o o s o @
e o ¢ o o @
¢ o o o o @
e o o ¢ o @
e« ¢ o o o @

e o o o o @
e o & & o @
e o o s o @
e ¢ o o o ®
o o o o o @
o ¢ o o o @
o o o o o @
¢ o o o o @
o o o o o @
e &« o o o @
o ¢ o o o @
o e o o o @
¢ o & o » @
o o o o o o
e e o o ¢ o

® o o ¢ o O
e o o o o o
s o e ¢ o @
e« o o« o o @
e o o ¢ o O
* ¢ o ¢ 0o @
e o o o o O
e o o o o O
e o o ¢ o @
¢« 0 s o o O
e o o o o @
e o s o o @
e o & o o o
e o o o o O
o o s o 0 @

106

113
113
116
115
116
116

117
117
119
121
123
124

128
125
125
126
126
127

129
129
131
135
135
140
145

187

Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

e o o o @&

et el et Pl ot P o ok
ONTUVMPHUNHOW 00N O NPUWNK
. L[] L] .

19.
20.
21.
22.

Relation betwaen SHLISPWS and memory .

Error return codes
Error return codas
Box representation of
Box representation of
notation. o . .

Box representatlon of
notation. . . .

Box raprasentat|on of
Box representation of
lists. . .

Box representatlon of

from the
from YKTLISP ABENDs.

loader. . .

pairs. « o e e :
list, corresponding t
li;t; éo;r;séoﬁdiné
a évcllc 1|st o .
equivalent shared and

a rcf.rance vector.

A list, interpreted as a charactaer stream.
Effect of NEXT and WRITE on stream, . .
Description of a fictitious operator. . .
Abbreviations for oparand data types. .

CATCH,MESS values, actions and lnterpretation.

Result of MMAPLIST.
Result of MMAPCAN.
Result of LOTSOF. .
Raesult of APPEND. .
Effect of NCONC .
Effect of NREVERSE
Character
Bit string allocation

string alloc;t

o o . . - . ¢« o o

e e o o
® o o o o o o o
o e o o o o o
e o o o o o o
® o o o o o o
¢ o o o o o o
o o s o o o
@« » o ¢ o o o

ion

List of Illustrations

ll'.."..d'.O'o.c

e ¢ » s o o 0 o

uo....u.o"-

'l-oc.oo-otoo.c.n‘

e« o 0 e

e ¢ e o o 4 0 e o o o »

e o e o s 0 6 & o & 0 s s s

e« ¢ o o e o s s o

ix

x YKTLISP Program Deascription and Operations Manual

(«

N0 ’

This manual is intended as a guide to tha facilities and capabilities of
YKTLISP. It contains referaence material dascribing the functions avail-
able in that system, as well as matarial comprising a system programmers
guide. It also contains a certain amount of tutorial material that pro-
vidaes soma motivation or explanation for uwhy certain operations are par-
formed in the way thay are. .

This manual is not intended as a basic primer for LISP. For that purposa,
the reader should consult anothaer publication such as Let's Talk LISP by
Laurent Siklossy (Praentica-Hall, 1976), The Programmar's Introduction to
LISP by W. D. Maurer (Elsevier, 1972), or LISP by P. H. Winston and B. K.
P. Horn (Addison Wesley, 1981), all of which are textbooks presenting an
introduction to LISP for tha beginning LISP programmer. Other books, such
as Artificial Intalligence by Patrick Winston (Addison-Weslay, 1977) and
Computational Saemantics by E. Charniak and Y. Wilks (Elsavier, 1976) con-
tain chapters introducing LISP in the coursa of aexamining some of the
application areas whare LISP programs have baen significant.

This LISP system was originally developad in tha VM/CMS programming envi-
ronment, and this has affected the structure and facilities included in
the implemantation. Neverthalaess, wa have tried to avoid any real depend-
encies on features uniqua to that environment. The original LISP/370 was
provided with a MVS/TS0 system intarface. This has not baen maintained in
YKTLISP, howevaer the system dependent code is even more loosaly coupled to
LISP than in LISP/370, making tha task of providing such an interfacae no
hardaer, and possibly easier than in the earlier system.

The version of YKTLISP documented heraea is ona of a series of systems
produced during the continuing developmaent of LISP at the IBM Thomas J.
Watson Research Center. This version was selected for submission as an
Installed User Program because it had been usad for more than a year at
that site, during which time we felt that most major implementation errors
had been daetected and correctad. In fact, a sizable number of arrors
ramained in thae system as releasad. In addition, since tha time when this
system was daevisaed, our thoughts about saveral aspects of LISP have
evolved. Tha current system embodies both corraections for many of tha
errors axtant in the IUP, but also carries the system saeveral steps along
the road to our current ideal.

Usae of a screan display consola, such as the IBM 3270 seriaes of davicas,
is recommanded for program davelopment in the YKTLISP system. Normal tast
and debugging activity profits greatly from the rapid display capability
of these davices. Once a LISP application has been devaeloped, the valuae
of this typa of terminal will daepend upon tha application itsaelf rather
than any charactaeristic of YKTLISP.

YKTLISP contains a powarful, screen oriaented, structural editor,
LISPEDIT, which will aid tha user in tha developmant of his systems.
LISPEDIT is separataely documentead.

Thaere still remain a numbar of axtensions which should be added to tha
system. Thasae include: a faster, non-redefinable function linkage
(suspiciously like other LISP's function value call); a non-garbage col-
lected area of heap; redefinition of the FR and MR objects as
non-identifiars; a CASE primitive; etc. It is not clear whan, or aven if,
any of thesa additions may ba made.

Introduction 1

2 YKTLISP Program Dascription and Operations Manual

How to access YKTLISP from CMS

3

4

YKTLISP Program Dascription and Opaerations Manual

-

C

LOADING AND RUNNING YKTLISP

YKTLISP cannot be loaded by either of tha CMS modulaes LOAD or LOADMOD, as
storage must ba dynamically allocated, and data pointers raelocatad in ways
peculiar to LISP. Thus, transient routines (modules) exist to load and
unload YKTLISP. A third module is required, LISPCMS, which contains all
of the VM dependent code for YKTLISP. Finally, tha code and data which
constituta YKTLISP itself arae stored in two files, of filetypes SEGMENT
and SHLISPWS.)

We use stereotypaed namaes for thesae files, eight character with the last
four numeric, like COLD0028, BASE0037, LEDT0052, etc. In thase names the
numeric portion is a version number, complataly non-automatically main-
tained, which is used to coordinate genarations of the system.

The five distinct filas which make up a YKTLISP system ara:

aaaannnn SHLISPWS The code and data which cannot ba in readonly storage,
baelonging to both the system and the usar

bbbbnnnn SEGMENT Tha readonly portion of tha systam. On a VM system which
has a discontiguous shared segmant for LISP this file
may not bae needad in particular casaes.

LISPCMS MODULE The VM system depaendent codae acts as an interfaca betueen
the LISP world and the opaerating systaem.

WARMnnnn MODULE The loader for the three preceding files.

DROPnnan MODULE The "unloader™, releasaes storage which was allocataed dur-
ing loading. (Not really needed, you could always
re-IPL CMS or HX, or LOGOFF, for that matter.)

As an example, with no EXEC, we will assume the following files are on
accassad disks:

WARM0O045 MODULE
DROP0045 MODULE
LISPCMS MODULE
LISP0052 SEGMENT
LEDT0052 SHLISPWS

Then, to usae YKTLISP, the minimum in typing would be:

WARMOO45 LEDTO0052
LISP

At this point you should ba in the YKTLISP read-eval~print loop.

At the Yorktown research center all the files naeed to load and run
YKTLISP ara located on two mini-disks, ALBERGA 197 and MIKELSN 196.
In addition tharae is an EXEC, YKTLISP, on the CMSSYS 19F disk which
will make the neaded links and invokae the loadar. Thus, on any of
thosae systems it is sufficient to type:

LISPEDIT
to use the system.

For further information on tha YKTLISP EXEC, enter YKTLISP ? on any
of the Yorktoun VM systems.

When ever you ara communicating with a system read-eval-print loop, (there
are two, the supervisor, SUPV, and the break-loop), entering (FIN) will
signal your desire to end the loop. If you are at the "top-level” this
will return control to CMS. Altarnatively, exacution of the LISP function
(RET) will produca an immediate return to the callar of LISP. (RET) may
be evaluated at any leval, it need not ba tha top leval supervisor, to
leave LISP. (Of course you can always attention yourself to VM and HX, or
to CP and re-IPL, but that doesn't count.) YKTLISP will still be loaded
in memory, holding what ever storaga you might hava allowed it. Thae com-

Loading and running YKTLISP 5

mand LISP will re-start it, with all your work still praeasent. If you wish
to use your entire virtual machine for something alse you must unload
YKTLISP. That is accomplished simply by entaring the command:

DROP0045

I¥, during the coursa of a session, you have definad or compilad some

functions, or have built data structuraes in memory, and you wish to pre-

sarvae this work you may invoke the function FILELISP, which will create a

naw SHLISPWS file on disk. This new fila can be loaded as "BASE(N052" was

;l;:wé:ispa.nd you will raturn to tha state which obtained at tha time of
ing. .

This "script®™ is the simplest case (for the given file namas).
In real life matters bacome rather more complex. To make what follous

intalligibla I must digress into caertain aspacts of YKTLISP internal
organization.

é YKTLISP Program Description and Oparations Manual

LOADER INTERNALS

The code and data which comprise a loaded YKTLISP system reside in three,
potentially discontiguous areas of memory, a lisp-user area, a
lisp-system area, and a system-depandent area, corresponding to the
SHLISPWS, SEGMENT, and LISPCMS MODULE files respactively. The lisp-user
area is in turn sub-divided into six regions, NILSEC, HEAPl, HEAP2,
STACK1l, STACKZ2 and UBPI. The lisp-system area has two raegions, FIXEDSEC
and SBPI.
NILSEC contains various data which are not moved by the garbage
collector, and acts as a communication area batween sepa-
rately assemblaed and/or loaded functions.

HEAP & STACK contain the LISP data and tha "frames®™ for thae LISP intar-
preter and compiled functions. The duplicating of these
areas is necessitated by the garbage collection algorithm
chosen for YKTLISP. .

UBPI (Usaer Binary Program Imagae) contains compiled and assembled
functions linked or loadaed after the creation of the corre-
sponding SEGMENT file.

FIXEDSEC contains the portions of tha system written in assambler-H.
These include the garbage collector, the interprater, the
function linkaga coda, as waell as a large collection of of
built in functions.

SBPI fontains the portions of thae system written in LISP and/or

Tha SHLISPWS files contain copiaes of the contents of NILSEC, UBPI, and the
activa HEAP and STACK for a YKTLISP systaem, as thay existed at the time of
the call to FILELISP which created the file. They also contain a header
record (which the transient WSDATA can accass, useful for thae LISP EXEC)
which gives the minimum storage (in bytes) neaeded for aeach such area.
Each SHLISPWS filae is associataed with a specific SEGMENT file.

The system is designed to use a discontiguous shared segment (DSS)
for the praferraed SEGMENT. At Yorktown, such a DSS exists, and is
named LISP. The loader and unloader modulas have this DSS name
built in. At any othar installation there may ba no shared sagment,
or if there is one it may have another name. In the later case the
loader and unloader must be re-assembled, with the DSS name
replaced. In either case, keap that in mind when reading the fol-
lowing description.

In referring to SHLISPWSs and SEGMENTs, the word "file" will be
dropped at this point, with SHLISPWS aluays referring to a file, and
SEGMENT to either a filae or a discontiguous shared segment, which
aver partains.

Sinca all compiled functions, including those in SEGMENTs, use NILSEC as a
communication area, it is impossibla to load a SHLISPWS with a SEGMENT
other than the one which was loaded at tha time tha SHLISPWS was created,
and to expect tha system to operate. In order to preclude such actions
each SEGMENT contains a sixteaen byte kay, consisting of the machinae-id of
the computer on which it was created concatenated with the time-of-day
clock value at its creation time. Each SHLISPWS contains, in its header
tha key from the SEGMENT which was loadad whan it was craeated, as wall as
thae fila-name under which that SEGMENT was storad.

The loader first uses DMSFREE to reserve part of the virtual memory for
non-LISP uses, such as disk diractories, aditors, atc. It then locataes and
loads, into DMSFREE high storage, tha LISPCMS MODULE. If the load raquest
(see options, below) is for system storaga the virtual memory size is
found and tha existencae of a discontiguous shared sagmant (named LISP) is
tasted for. If the USERSTOR/SYSSTOR parameter (see WARMnnnn parameter
description, below) requests SYSSTOR, and if a DSS exists, its starting
location is compared with the mamory size to sae if it can be used, and if
it can it is loaded, either in shared or nonshared moda, depending on the
paramaeters. If no DSS exists, or if it overlaps thae users virtual memory,
the SEGMENT will ba loadaed into user storagae, and the processing skips the

Loader intarnals 7

next section. The storage keys are than saet in the shared segment area,
defaulting to D, which will pravent modification. The headar record from
the SHLISPWS if now read.

If the DSS has been loaded, its sixtean byte key is comparaed with the key
in the header racord of the SHLISPWS. If they do not match the length of
the proper SEGMENT (saved in the SHLISPWS header) is compared against the
leangth of the DSS. If the proper SEGMENT is not longer than tha DSS, the
DSS is re-loaded in non-shared mede. Otharwise the DSS is purged and the
USERSTOR/SYSSTOR flag is forced to USERSTOR. The minimum amount of space
raquired by the SHLISPWS is computed including any absoluta size parame-
ters (and including the size of the corresponding SEGMENT, if USERSTOR is
requaestaed, if no DSS exists, or if the DSS area is unusable for any
reason) and a DMSFREE is issued with that as its minimum and 16m as its
maximum. Once we have all tha rest of the machina we releasae tha DMSFREE
space we grabbaed at the very baeginning.

We now divid- up the allocated space among the various areas and regions.
Each raegion is given an absolute amount of spaca, the sum of its current
size (from the headar) and the size parameter. Any remaining space is
then partitioned on the basis of tha parcentage requests.

Finally, the files are loaded, first the SEGMENT if the DSS did not exist,
did not match the SHLISPWS, aor if USERSTOR was requested. In thaese cases
the file name is extracted from thae SHLISPWS headar. Then the SHLISPWS
itself is loadaed into the user's area, and a scan is made through mamory,
relocating all pointers to thara new locations. An attempt is made to
aestablish a nuclaus extension for the loaded system. If the YKTSVS pack~-
age (or VM/SP) is not present a module file is written (on tha users A
disk) which will transfer control to the entry point.

8 YKTLISP Program Daescription and Operations Manual

INVOKING YHE LOADER

(k\wg The format for the loader call is (with [...] enclosing optional fields)

WARMnnnn [¥n [ft [fml]]
[C [{NONSHARE | SHARE}] [{USERSTOR SYSSTOR}]
[NIL {nilsz] [nil%X)] [BPI [bpisz] lbpi%ll
[STACK [stksz] [stkX]] [HEAP [heapsz] [heap%]l]
[FIXED (fixedsz] [fixedX]] [GETMIN getmsz] .
[CMSHIGH cmshsz] [COMMAND command] [KEY keyl [)]1] -

whare the default valuas are:

WARMnRnnn LISP SHLISPWS * (NIL 16K BPI 32K STACK 8K 10X HEAP 8K 90X
GETMIN 320K CMSHIGH 144K COMMAND LISP
KEY 14 SHARE SYSSTOR)

Nota that all but the fn, ft and fm paramataers are (or follow) key words,
that the order is irrelevant (see the above examplae, where SHARE and
SY§§T0R1aro at the end in the default listing) and that ALL parametars are
optional.

SHARE DSS is loaded in shared moda if it matchas the SHLISPWS and
USERSTOR option is not present. This is the default.

NONSHARE DSS is loaded in non-shared modea.

SYSSTOR DSS is used. This is the default.

USERSTOR SEGMENT is loaded into user's virtual memory. (Note that SHARE
forcas SYSSTOR, while USERSTOR forcaes NONSHARE. The parameters
are scanned from left to right, tha last prevailing.)

KEY The following parameter must be a number, which becomas tha
storage protaction key for the DSS. (Note that CP will allow
you to sat the storaga kay in a DSS without effecting sharing.)

NIL Followed by an absolute and/or a parcentage space raequest for
allocation beyond the current contants of NILSEC in the

. SHLISPUWS. Absoluta requasts are of tha form "number®,

, y "numbar® or "number™ (e.g 1576K or 3M), where K and M indicate

(y multipliers of 1024 and 1043576 respectively. Percantage

g requests are of the form "number™X, whera "number”™ should bea
less than or eaqual to 100.

BPI Space requasts (a la NIL) for user's compiled function area.
STACK Space raquests for stack frame area.
HEAP Space requests for data area. Note that this and STACK are

effectively doubled, that is there will be two equal areas allo-
cated, and this is the request for one of them.)

FIXED Spacae requaests for tha SEGMENT area. This paramater is ignored
if an DSS is available and used. If USERSTOR is speacified, or
if no DSS exists, it applies as abova.

GETMIN Space raequaest (formatted like the absolute requaests, above) for
the area to ba set aside before the SHLISPWS is loaded.

CMSHIGH Space request for the area of DMSFREE high memory to bae sat
aside beforae loading. .

COMMAND Followed by the namae to ba used as the entry to YKTLISP. This
will either become a nucleus extension (saa NUCX memo) of the
filenamae of the MODULE written on the user's A disk.

Invoking tha loader 9

DASD) Mamory
LISPnnnn SHLISPWS

Header
NILSEC > NILSEC
STACK nilsz +
nilZ
HEAP
— STACK1
UBPI F - = -
stcksz +
stck%
> HEAPL] !
heapsz +
haapX
STACK2
HEAP2
ubpisz +
ubpiX
> UBPI
LISPCMS MODULE
SYSDEP > SYSDEP
LISPnnnn SEGMENT
FIXEDSEC FIXEDSEC
+ > +
SBPI SBPI
fixsz +
fix%

Figure 1. Relation batween SHLISPWS and maemory

Figure 1 may help. The laft sida represants the SHLISPWS fila and the
SEGMENT file, while the right side repraesants the computer storage layout.

If you are using a relatively small virtual memery the dafault valuaes for
GETMIN and CMSHIGH will probably be too large. There is no simple rulae to
determine "good" values for these parameters. A pariod of experimentation
may bae needad to saettle on numbaers satisfactory in a given configuration.
This becomas particularly true when no sharad-saegment is dafinaed, and the
FIXEDSEC and SBPI must bae loaded into the user's own virtual storage.

10 YKTLISP Program Description and Operations Manual

-

—

(‘_//
\

RC Error condition
1 Not enough free storage for CMSHIGH.
2 Not enough getmain storage for MINGET.
3 LISPCMS MODULE not found.
4 Not encugh free storage feor LISPCMS MODULE.
5 Read of LISPCMS MODULE failed.
é LOADSYS of shared segment failad.
7 Coldstart TEXT deck not found.
3 More than 100X of available space requested.
9 SEGMENT file not found.
10 SEGMENT bigger than shared segment.
11 Failure writing LISP MODULE.
12 SHLISPWS file not found.
13 Read aerror on work spaca file.
14 Loader dump pointer table full.
15 ADCON which points out of LISP found.
16 A mixed vector is embaedded in another.
17 Marked non-stored object.
18 Unknown vector length code typa (x2f).
19 Illegal type found.
20 Bad vector length encountered.
21 Error in frontier computation.
22 NIL full. :
23 HEAP full.
24 STACK full.
25 Error in CMS loadar.
26 Insufficient storagae for YKTLISP.
27 Error reading descriptor record of SHLISPWS.
28 Invalid WARMRnnn command format.
29 Error reading shared segment image.
30 SEGMENT file named in SHLISPWS has wrong key.

Figure 2. Error raeturn codaes from tha loader.

Various conditions can cause the loading operation to fail. In these
casaes a value in the ranga 1 to 30 will ba returned to CMS.
RC Proccass Error
8001 START-UP Start code unknown.
8002 COLDSTART Bad initial global a-list
8003 COLDSTART Bad identifier
8004 COLDSTART Bad idaentifier
8005 COLDSTART Obarray too small
- 8006 START-UP No restart state.
8007 START-UP Intarprater returned from a SD apply
8008 START-UP The SEGMENT image doesn't match the WS.
8010 RECLAIM Stack exhausted
8011 RECLAIM . Heap aexhausted
8012 RECLAINM Heap axhausted (no room for GC work area)
8013 EXIT "Impossible™ case)
8014 FINDBIND Bad display
8015 BINDER NILSEC exhausted
8016 UNBIND Shallow cell not found.
8017 GLOBAL Ill formed global a-list
8020 SECD MR CASE usad, SECD rules not yet dafined.
8021 SECD Fatal error in JAUNT
8030 RECLAIM Obarray full
8031 RECLAIM Heap overflow
8032 RECLAIM Unknouwn type, in vaector row
8033 RECLAIM Unknouwn type, 98-9F range
8034 RECLAIM Length in vector bad
8035 RECLAIM Tanglaed stack =-- ERR10
8036 . RECLAIM Tangled stack -- ERRY
8037 RECLAIM Tangled stack =- ERR?
8038 RECLAIM Tangled stack -- ERRS8
8040 GENSYM Eco~-death
8041 THROW Bad stack frame encountered.

F%gure 3. Error return codes from YKTLISP ABENDs.

Invoking the loader

11

There exist a number of fatal errors which can occur while YKTLISP is run-

ning. These will result in a return to CMS with a return coda in tha 80xx ::)
range.

12 YKTLISP Program Description and Operations Manual

)
N

e

Thae format for the unloadar call is:
DROPnnnn <command>
whara command dafaults to LISP.

The unloadar looks for a nucleus extension with the given command namea.
If it finds one (which presupposes that NUCX is present) it purges it from
tha nuclaeus extension table and freaes the storage which the loader grabbed
(using data stuffad into the first page of NILSEC by the loadaer). If no
nucleus aextension is found the A disk is searched for a MODULE file with
the command name, which is read. The unloader knows the "shape™ of the
MODULE, and extracts from it thae addrass of tha NILSEC, togethar with the
sixtean byte key inserted theraea by the loader. If the sixteen bytes in
NILSEC which should contain the key match that from the MODULE the storage
is released, as above. The reason for this extra check, is that the MOD-
ULE file can surviva a HX or re-IPL, which would release the in-corae part
of the system.

Invoking the unloader 13

——

14

YKTLISP Program Dascription and Oparations Manual

USING A SAVED SYSTEM

If the user has saved a YKTLISP system file image by using the FILELISP
function, he may load that saved system by specifying the file idantifier
as an argumaent of tha WARMhnnn module. For example, if tha YKTLISP system
file image is namad ASK SHLISPWS, it may ba invoked by the command: ;

WARMOO045 ASK
LISP

Whan such a saved YKTLISP system is invokad, axecution will continue with
a return from tha function FILELISP which saved the system. This may or
may not bae the top-laevel supervisor which receives control when the
dafault system LISPnnnn SHLISPWS is invoked, depending upon the manner in
which that particular YKTLISP system was saved.

Using a savaed system 15

16

YKTLISP Program Description and Operations Manual

When you first start YKTLISP (not in LISPEDIT), you ara confronted with an
EVAL supervisof. This is a program, SUPV, which reads an exprassion from
the console, displays the exprassion back to you, evaluates it, using the
interpreter, and displays its valua. It then goas back to tha READ, to
wait for a new input.

The first thing it will do is print
Value = n

for soma value of n, This is simply tha number of generations of FILELISP
that this particular system has been through.

The echoing of input and the display of values are turned on or off, inda-
pendaently, by the operators SET-ECHO-PRINT and SET-VALUE-PRINT. Called
with arguments of () they turn off the appropriate operator, called with
non-() arguments thay turn it on.

The operators LAST-VALUE and LAST-EXP will return the last value produced,
or tha last expraession read. Thus if you entered an expraession and want
to save the value you can type

(SETQ X (LAST-VALUE)).

If an error is signalad by any procaess, or if you forca an external inter-
rupt, yvou will bae put in the "break loop®™. This is similar to SUPV. It
diffars chiefly in not echoing input, and not praefacing tha values with

Value =

LAST-EXP and LAST~-VALUE do not work in tha break loop. Furthermore, if
you enter a singla ? tha break loop wWill rapeat the original error mes-
sage.

In eithar SUPY or the break loop antaring a "null™ line (hitting tha ENTER
key without any input) will result in a messagae indicating where you are.
SUPV prints "LISP", tha break loop prints "BREAK". Immediately upon being
started, the break loop clears any stacked linas in the console input and
holds them in a variable STACK. This can bae examined using &, but there is
no provision for re-stacking them.

To exit from the break loop you must either aenter (FIN exp) or
(UNWIND s=int). Many entries to the break loop are not re-startable, and
FINing in those cases is equivalent to (UNWIND 1). If an error is recov-
erabla, the error massage may tell you what you should do. (Not always
though, there are still a lot of loose aends around.) If you FIN the value
(of exp) will be taestad against a filter set by tha operator which
reported the error. If it passes, all wall and good. If not you will
receive a maessage, such as, "... FIN with small integer, ... Rapeat with
correct typae." "Still in break loop."

One characteristic of READ operator should ba pointed out hera. Since
READ treats its input as a continuous stream of characters, ignoring
end-of-lines, any input to either SUPV or thae break loop must end with a
delimiter. The closing parenthesis of a list, or > of a vector will do,
but if you wish to aenter a simple identifier or a number you must explic-
itly type a trailing blank bafora you hit ENTER, to inform the system that
there are no mora characters to follow.

Interaction with YKTLISP 17

18

YKTLISP Program Dascription and Oparations Manual

ldeally, the descriptions and definitions of the components of a program-
ming language should be written without forward references. No feature
should be mantioned baefore it is dafined. While such descriptions may be
possible in complataly formal definitions, (and not aven there whan recur-
sive definitions are needaed), thay are usually close to incomprehensibla.
The readar requires examples, and the examples almost always require some
features other than the onae under immediate examination.

Thus we will start by waving our hands a bit, giving & very informal
description of certain parts of the LISP language as embodied in YKTLISP.
This will provide a framework on which the more axact definitions which
follow can be placed. Further, thae current discussion will provide a
modicum of rational for some of the structure of the language.

In all that follows the reader should try to remember that, unlike most
languages, the sequences of character which we use to represent
exprassions arae not the expressions. The expressions are tha internal
structures of LISP data objects, pairs, identifiers, etc., which are con-
structed by the LISP reader from these sequaences of characters. The
interpretar (and the compiler) naever see what we see. Thaey act on
internal data structures only. It is often useful to describa the data
structures of the expression by drawing box diagrams of the structures,
although this is never strictly necessary. The internal forms exactly
mirror the representations, and one quickly learns to "sea" the resl
structure when looking at a collection of paranthesas. (It has bean
claimed that LISP stands for Long Incompraehensible Sequaencaes of Parenthe~
ses.) It is this fact that gives LISP much of its power. Since LISP pro-
grams are well formad LISP data they can ba easily constructed by other
programs.

As was stated in "Expressions™ on page 37 a list, (THIS IS A LIST), is
inge{?g?ted as an expression, with and opaerator, THIS, and oparands, IS, A
an .

In LISP every aexpression has a valua. In particular the LISP
eq:iviégnt of an IF ... THEN statement can bae usad as an argument to
a function.

Tha exceptions to this rule are all exprassions which cause a "shift
of location counter™, e.g. a GO statemant. Since the affect of a GO
is to mova the execution to another place in the program, there is
no way that the (GO0 label) expression can ba thought of as having a
value. Similarly, EXIT and RETURN aexpressions causae control to
laave tha current context, and THROW expressions act like
multi-level RETURNSs.

Tha evaluation of the axpression starts with the evaluation of thae opara-
tor, THIS.

Note that tha operator is aluays evaluated, then examined. This
diffars in several raespects from most other LISP systems. First, it
is the value of the operator, not it form, that counts. Second, the
evaluation does not differ from normal variable evaluation. Thare
are no "function value cells™ in YKTLISP. This is a mixaed blessing.
Unlike other LISPs, simple assignment or binding acts as
re-dafinition, which can be very useful. Howaever, this means that
the inadvartent use of an identifier as a variable can cause
irreparable damage to thae system.

Once the operator's value is found it is examined. If it is the name of
"special form"™ it is treated idiosyncraticly, if it is a macro it is
expanded and re-evaluated. If it is anything aelse, it is put asvde.and
the arguments are evaluated, left to right, and the previously obtainaed
operator value is appliad.

We will continue the (incorrect) tradition of describing (FOO 1 2) as the
application of the function FO0 to the arguments 1 and 2, when in reality
it is the application of tha valuae of FOO (which could be anything at all)
to the argumaents 1 and 2. Evaen in the case of the special forms and the

YKTLISP programs 19

built in functions this evaluate-first rule holds. (CAR X) is only what
it appears as long as the value of thae idantifier CAR is the (built in
function) identifier CAR. If you waere to assign tha identifier CDR to
CAR, (and CAR to CDR), you would cause all future instances of (CAR x) to
raturn the “"CDR"™ of x.

This is somewhat of a lie, in that it is true of interpretaed codae,
but not necessarily of compilaed code. The compilar resolves the
oparators at compile time, and for the special forms and built in
functions, "freazas" them, making tham insensitive to later redaefi-
nitions. This is also true of macro forms, but not of ordinary
functions (whether system or user definad). -

So, what is a function? A function is usually a LAMBDA exprassion or a bpi
produced by the compilation of a LAMBDA aexpression. We will ignorae tha
bpi for the moment, as it can ba considered as equivalent to its source
expression. Wa could "define™ a function, F00, by assigning a LAMBDA
expression to the identifier FOO:

(SETQ FOO "(LAMBDA (X) (COND (X 1) ("T 23)))
So much for orderly introduction of concepts.

SETQ is LISP's assignment operator. It assigns the valug of its
second operand to its first opaerand, which must be an identifier.

COND is LISP's answer to IF ... THEN, and will be dealt with
shortly.

" is shorthand for QUOTE, which in turn means "don't avaluate my
argumant, just use it as is". Notica that only the identifier, T,
is QUOTEd. HNumbers, such as 1 and 2, may ba QUOTEd for neatness,
but they are constants and can bae entaered as is.

If one now evaluates:

(FOO NIL)

the value will be 2. Thae interpraetar, on evaluating FOO and not finding a
spacial form or a macro, evaluataed the argument, NIL, which is a constant,
and then appliad the value of F00, tha LAMBDA expraession.

Application of a LAMBDA expraession consists of associating the
operand(s), (in this context often referred to as arguments) with the
bound variablae list, in this case (X), and than evaluating the body.

Here we have a single operand, NIL, and a singlaea variable in the bound
variable list, X. The effact is to creatae an environment in which X eval~-
uataes to NIL. Wae spaeak of this as "binding™ the variabla X.

The body of this particular LAMBDA aexpreaession is:

(COND
(X1)
cm"ra2Mn

A COND stataement consists of ona or more clausaes, sach of which contains a
pradicate and zaro or more exprassions. The predicate of aach clause is
avaluated in turn, until onae avaluatas to some valuae other than NIL. Whaen
that occurs, tha following expressions (if any) are evaluated, and tha
value of the final one becomaes the value of the COND.

In this case, X avaluataes to NIL, so the first clausae is abandoned. The
pradicate of tha sacond clause is "T (or (QUOTE T), in its full represaen-
tation). The value of "T is T, which is not NIL, so tha follouing
axpression is aevaluated. 2 is a constant, and as the final (and only)
axprassion in the clause, it bacomes the valua of thae COND.

Since the CDND is the only expression in the body of tha LAMBDA
expression, 2 the value of thae LAMBDA expression, and is returnaed as
tha valua of (FOO NIL).

COND is oftaen rafarraed to as tha McCarthy conditional.

20 YKTLISP Program Daescription and Oparations Manual

(COND
(pl el)
(p2 @2)
(p3 @3))

is equivalent (in a languagae in which IF ... THEN can have a value) to:

IF pl THEN el
ELSE IF p2 THEN e2
ELSE IF p3 THEN @3 ELSE NIL;

Just as a clause in a COND can contain a numbar of exﬁrcssions;’the last of
which provides the valua for the clause as a whole, so the body of a LAMBDA

expraession can contain more than one expression. Suppose the value of FOO
ware:

C(LAMBDA (X Y)
(SETQ X (TIMES 2 X)
(SETQ Y (TIMES 3 Y)
(PLUS X Y))

Then thae value of (FOO 5 6) would ba 28.

)
)

These forms are referraed to as implied PROGNs, as they obey the same rulas
as the PROGN operator. An expression of the form:

(PROGN @l @2 ... en)

will evaluatae the @i expressions, in order, and return the value of en as
the value of the PROGN expression.

In addition to simple saquential evaluation thae full powar of branching to
labals is provided. An expression with SEQ as its operator is interpretaed
as a collaction of axpressions and labels, whera and identifier in “oper-
and” position in the SEQ is taken as a labal, not a variable.

(SEQ

(GO LP))

Will return 32 as its value. Thae expression (EXIT Y) defines the value of
the SEQ in this case. The value of an SEQ can also be provided by having
exacution reach the final expression, which must not be a variable (label)
or a constant. If tha final axpraession is not a GO its value becomes the
value of the SEQ.

The pravious exampla contains assignmants to variables, X and Y, which are
not bound. Thesa free uses will search tha environment for bindings of X
and Y and used those. This is in general not a good thing to do. Other
LISPs have an operator, PR0OG, which combines tha behavior of our SEQ with
the ability to bind variables. We havae chosen to separate these functions
at the most basic levael, but we have provided a macro PROG. Wa can rewrite
the previous example as:

(PROG (X Y)
(SETQ X 5)
(SETQ Y 1D

LP
(COND
((EQ X 0) (RETURN Y))
(SETQ Y (TIMES Y 2))
(SETQ X (PLUS X =~1))
(GO LP))

Note the changae of EXIT to RETURN. Tha PROG is equivalent to a LAMBDA
expression, and RETURN is tha operator which provides a value for a LAMBDA
expraession. Thera is ona further difference between these two forms. In
the first (SEQ) example, a G0 to a label which did not occur in thae imme-
diately enclosing SEQ would not necessarily be an error. It would,

YKTLISP programs 21

instead, search for an outer SEQ containing the desired label. This
s@arch stops when an enclosing LAMBDA expraession is ancounterad. Since
PROG is a LAMBDA expression a GO cannot be used to leave a PROG.

The PROG expression has further facilities. Let us modify our example
again:

(PROG ((X 5) (Y 1))
LP

(COND

((EQ X 0) (RETURN Y))
(SETQ Y (TIMES Y 2)) .
(SETQ X (PLUS X =-1)))
(GO LP))

Here we have specified the initial values for tha variables X and Y
directly in the daclaration list of the PROG.

It must be remembared that in YKTLISP there are no unbound variables. Any
variable in a PROG without an axplicit initial value will be given ona of
NIL. An attempt to apply a LAMBDA expression to fewar arguments than it
has variablaes will result in an immediate error. A free variablae, which
has had no value assigned to it will avaluate to itself.

It is hopaed that this introduction will allow thae readaer to follow the
detailed descriptions of tha various operators which follouw.

22 YKTLISP Program Description and Operations Manual

@

P_SYNT T

LISP is noteworthy among programming languages, in that only a rather
small karnal of knoulgdgn is required to understand the meaning of its
utterances. (The particular dialect YKTLISP that is defined hare derives
from IBM licensed program 5796-PKL.) The whole gquestion of
"understanding®™ can be stated as: .

Hbat does the given sequence of characters (on paper or on a
dssglai)’reprasent! How does an expression of the following form
evaluate?

Undaerstanding qtteqancqp of natural languagas and most computer languages
through deduction is simply out of tha question. Understanding through
g.ductton is unproductive when the underlying rules or axioms are not
nown.

In a sense, the praceding two questions are really one. This is trua
because, in LISP, an expression is simply another data object. Its "ex-
pragslon-hood".is only an interpretation placed upon it by virtue of the
actions 9f the intarpreter and/or compiler being used. Thus understanding
of meaning must be approached in two stages, first, what are the data
o?:ect:; s:cond. what will the interpraeter/compiler "do"™ with any partic-
ular objact.

The understanding of YKTLISP evaluation is possible through the mastery of
the following concapts and the aid of a dictionary of primitive cpaerators.
Questions about the intent of a program or certain global understandings
may not be answaeraed by this procaess.

In this description we attempt to convey the underlying rules without
using :9ch formal notation. In dascribing syntax howaeaver we use a faw
conventions:

) { and } ara used for matalinguistic grouping.
. | is used to separata altaernatives.
. [and] are used to indicate optionality.

. The ellipsis "..." is used to denote zaero or more instances of the
praecading object.

YKTLISP DATA TYPES

The following is intended to be an intuitive introduction to the various
data objects supportaed by YKTLISP. Formal rigor is surrendered in favor
of an effort to impart a sufficient operational undaerstanding of thase
LISP data objects to make tha following sections describing the standard
LISP functions easier to use. For the programmar, the information pre-
sented hare should indicate tha range of data types available in the
YKTLISP system and allow him to make soma reasonable saelections for use in
describing his problaems.

It is common, when speaking of LISP data objects, to talk about a vector,
or an identifier, or perhaps a list cell, whaen in fact tha object being
discussed is actually a pointer to that vector, identifiaer, et catara.
This practice is ubiquitous in the LISP community, and will be employed in
this manual. Only in cases whare it is vitally important to make a dis-
tinction will tha mora cumbersoma form "pointer to a vector" be used.

Tha pointers used by YKTLISP are full words (32 bits) and ara rich point-
ers. This means that in addition to a storage address, thay contain (in
thair high-order bytae) a coda indicating the typa of object they point to.
The reason for having these rich pointers, which do consume more storage
space than would otheruwise be necessary, has to do with efficiency. Many
of the fraquently occurring LISP oparations require arguments of a speci-
fiad type. Since tha raesult of an operation performed on an invalid type

YKTLISP syntax and semantics 23

of argumant may actually destroy the LISP system, checking the types of
argumants is essential, and this checking may ba more efficiently per-
formed if the type code is part of the pointer.

While it doasn't occur very frequantly, garbage collaection is a very
expensive operation because of the quantity of data it processes. Having
t¥petcod-s associated with pointers makes garbage collaction more effi-
cient.

To facilitate the process of garbage collaction, pointer type codas are
classified into two groups -- pointers to stored objects and pointers to
non~stored objects. A type code having a high~ordar ona bit indicates a
storad object; a high-ordar zaero bit indicates a non-stored ocbject.

This dichotomy is an artifact of the garbage collector and is somewhat
misleading for the programmer, as it classifies binary programs as
non-stored objects. '

Navaertheless, there is a distinction to be made between pointers which
contain the address of stored data, and pointaers which might ba thought of
as containing immediate data. In the latter case, the type coda in the
pointer indicates the value of this data objaect is stored in the pointer
itself, not in soma other storage location. For exampla, small integral
numbaers are stored as part of a pointer with an appropriate type code,
while floating point numbers are always stored in a2 mamory location whose
addraess is part of a pointer with appropriate type code.

The significanca of this distinction between immediate data and storad
data affects the concapts of sharing and updating. Stored data may be
updated, and if it is shared by sevaeral structuraes, the updated data will
also be shared (that is, all of tha sharing structures ara simultaneously
updated). Immadiate data is intrinsically non-sharable; thaerefora, in
this sense it is not updatable.

IDENTIFIERS

An identifier is a stored data object having at least one component, its
pname (print name). This is a string of characters which is recognized by
the reader as repraesanting a particular, unique object, and which is used
by the printar in displaying the objaect. Thus, ABC represents an identi-
fier, and always tha same identifier, whether read today, tomorrow or next
month. The actual representation may contain additional characters, the
so-callad letterizer character, which is used to mark characters which
normally have a syntactic meaning to the readaer. An identifier whose
pname is '123' would print as |123 in order that it be distinguishable
from the numbaer 123.

There is a spacial sat of idantifiars, called GENSYMs (ganaerataed symbols),
which presarve identity only within a singla use of READ. GENSYMs are
printed as %Gn, where n $ 2%?¢-1. The readaer, on encountering a GENSYM in
the input, will replace the valuae, n, by a new valua, m, obtained by
increamenting a storaed value by one. Any furthaer instances of %Gn in the
input Wwill be mappaed into XGm. This mapping is only continued for a sin-
gla invocation of the readaer. If XGn recurs during a later invocation of
the reader it will be mapped into a diffarant m.

GENSYM identifiaers have only a pname. Othar identifiers may have a prop-
aerty list as well. The proparty list is not directly accaessibla to the
user, and does not appear in the print representation of the 1dent1fler.
It is manipulated by a spacial group of functions.

There are a numbaer of distinguished sub-classes of non-GENSYM
idantifiers. Thesa are tha FR and MR objects, further described below.
In addition certain identifiars ara conventionally distinguished, such as
characters, those identifiers having one character pnames, and digits,
thae identifiers with pnames '0' through '9'.

There are currantly thirteen MRs in YKTLISP. (A fourteenth, CASE, has
been proposad, but not yet implemented.) These arae:

24 YKTLISP Program Dascription and Opaerations Manual

C

¥CODE ggNCTIDN QUOTE

CLOSEDFN SEQ
COND LAMBDA SETQ
FR¥CODE MLAMBDA

FUNARG PROGN

As will ba reiterated belou, these identifiers have built in meanings.

A saecond group of identifiars with built in meanings are the FRs. There
arae currantly forty three of thasa, but more may (and certainly should) be
added in tha future. They ara:

APPLX EVAL MDEFX . RPLACA
APPLY EVAl . MRP RPLACD
ATOM EXIT MSUBRP SET
BITSTRINGP FIXP NTUPLEP SMINTP
CALL FLOATP NULL STATE
CALLX FRP NUMBERP STATEP
CAR GENSYMP PAIRP : STRINGP
CDR IDENTP PLEXP SUBRP
CLOSURE LINTP REALVECP VECP
CONS LISTP REFVECP WORDVECP
EQ MDEF RETURN

AIR

A pair is a stored data object having two component objects which ara
raferred to as the CAR componaent and the CDR component (for historical and
compatibility reasons). The storage allocation for a pair is two contig-
uous full-words. Both of thesa words contain pointers. Thae CAR component
occupies the first word; tha CDR component occupies the saecond word.
Since a pointer is used to repraesaent any LISP data object, a pair is an
association of two completely arbitrary LISP data objaects.

Sometimes it is useful to illustrate LISP data structures. The convention
we will use for pairs is a box diagram. Given a pair with a CAR consisting
of an arbitrary objaect, 8, and a CDR consisting of an arbitrary object, b,
we Wwill draw it as:

Lo

>a

Figure 4. Box raepresaentation of pairs.

Two basic functions are provided for selecting part of a pair. CAR or CDR
apglied to a pair returns as its value the corresponding componant of the
pair.

The print repraesentation of a pair is formally a left parenthasis followad
by tha print represantation of the first alement of the pair, a blank, a
period, a blank, the print representation of the second element of the
pair, and finally a right parenthesis. Or, for the previous axampla:

(a . b)

In actual practice casas, howevar, a simpler or more complex print repre-
sentation is usad.

Thare is a morae compact notation for lists, which is preferentially used,
while the existence of shared sub-structure elicits a more complex nota-
tion.

YKTLISP syntax and semantics 25

Lists

Lists are composita objaects created from pairs by applyvng a conventional
1ntcrprutatton to the pair data type. Thus each pair is a list whose CAR
componant is intarpreted as thae first element of that list, and whosae CDR
component is interpretad as the remaindar of that list.

(Nota: It is likewisae possible to give an intarpratation of pairs as trees
or rootad directed graphs, howevaer, tha usae of tha list interpretation is
assumaed by the majority of functions provided by tha system.)

The distinguished object NIL is used to denote an empty list. Thus, if
the CDR of a pair is NIL, therae are no remaining elements in that list.

Having NIL as its CDR component is only onae way in which a pair may bae the
and of a list. If the CDR of a pair is any LISP data object other than a
pair, that pair tarminates a list.

For the purposes of functions which operate on lists, thae CDR component of
the pair terminating the list is not considered to be part of the list.

Using tha box notation, a list of three elements, A, B and C, would have
tha following structure:

(A . (B . (C. ()

[J

L.

Lo

—t

>C
>B
>A

Figure 5. Box representation of list, corresponding to dot notation.

Note the convention of representing a pointer to NIL by a 7 in thae appro-
priate box.

The print representation of a list is a modification of the represaentation
of its component pairs as described abova. This modification is intendad
to improve readability by aeliminating some of the parenthases and
divulging tha sharing of data; houwaver, tha inclusion of some (or all) of
the delated parentheses is aluays accaptable in input data. During print-
ing, when a pair is pointed to from tha CDR of anothar pair, tha separat-
ing period and blank of tha original pair and the enclosing right and left
paraenthesas of the CDR are not printed. In addition, whan the ‘erminating
pair of a list has NIL as its CDR component, that NIL and the spaca, period
and space which would separate it from the CAR value are not printed.
(Nota, that if NIL is reprasented by its alternative form, (), thae first
rule has the sama results automatically. This seems more complicated when
described in words than when illustrated by example.

Thus, the list

(A . (B . (C . NIL)
would appear as

(A B C)

26 YKTLISP Program Description and Opaerations Manual

o,

C
» e

when printed. MWhila
(A . (B. CC. D))
will print as

(ABC.D

We will reflect this in future box diagrams by presenting tham horizontal-
ly, thus thae pravious list will bae drawn as:

(ABC -
'3
|—> . ot——>| o Sd—D | @ /

e > A ——>B s > G

Figure 6. Box representation of 1list, corresponding ¢to list
notation.

Since a pair is a parfactly reasonable element of a list, it is possible
to creatae lists which includa themsalvaes, or parts of themsaelvaes, as ele-

mants. YKTLISP uses a general scheme for input/output which indicates the
sharing of data. This sharing schaeme, as well as othar aspects of the
YKTLISP input/output system, makes use of a break character uwhich is
gafinad in the standard system as percent (%X). An input expression writ-
en:

XL1=(A . XL1)

generates a pair whosa CAR componant is a pointer to thae identifier A and
whosa CDR component is a pointer to the pair itself. The structure is:

XL1=(A . XL1)

-

3

Figure 7. Box repraesaentation of a cyclic list.

The list interpretation of this pair would be a circular list -- effaec-
tively an infinite list of A's.

This sharing notation neaed not genaratae a circular list. For exampla, tha
axprassion:

(%L1=(A) %L1)

genarates a list containing two elements. The first elaement is the list
containing a single alement -- the identifier A == and the second element
is another identical pointer. This is to be distinguished from the
expression:

(CA) (A))
which also generates a list of two alements, each of which is a list con—
taining the singla identifiar A. In this casa, howaver, the two elements

are diffarent pointers, although thay point to equal (but separataly
storad) lists.

YKTLISP syntax and semantics 27

Thesa two structures are:
(XL1=CA) %L1)

N

>1 o /
> >| e /
>A
(CA) (A))
o
l—) ° o >] e /
|—> . / > /

Figurae 8. ngt raeprasentation of aequivalent shared .and non-sharaed
ists.

For purposes of accaessing tha elaments of the list, both expressions are
equivalent (but notae that the list having the shared data requires lass
storage). These two lists are not aquivalaent with respaect to updating.
That is, the product of updating onaea may not bae the same as the product
achievaed by the same updating operation applied to tha othar.

YKTLISP has two primary output operators, PRINT and PRETTYPRINT.
PRINT producaes a continuous sequenca of characters, with all sharaed
structure exposed, whether cyclic or not. PRETTYPRINT produces a
formatted representation, with blanks and new—-lines insaerted werea
it is deemed appropriata. Howavar, PRETTYPRINT does pot expose
non-cyclic sharing. Thus thae two (diffaerent) structures presented
haere would appear the same when PRETTYPRINTaed. PRETTYPRINT has no
rules for displaying cyclic structures, and dafaults to the unfor-
mattaed, PRINT, reprasentation if any are present in its oparand.

Note that the system providaed read-eval-print supervisor uses
PRETTYPRINT for eaechoing its input and displaying tha rasults of
evaluation. This, in turn, means that non-cyclic sharing will not
bae visible during intaeractions uwith the supervisor. LISPEDIT,
also, does not explicitly show sharing, cyclic or not, but it doaes
inform tha usaer of its presanca.

In gaenaral, if it is true of two structure that corresponding accesses
vield equivalant values thaen it can be said that the structures are aquiv~-
alent trees (see EQUAL function). If it is true that the products of some
updating operation applied to two structures would leave them EQUAL, then
tha structures can be said to ba equivalent rooted directed graphs (see
UEQUAL function).

Numbers

YKTLISP opaeratas on three basic types of numbers. A basic numeric data
item may ba an intager or a real (also called a floating point numbar, or
simply a float). Integars, in turn, are devided into two types, depending
upon their value. Integers in the range =-22¢ +o 223%-1 (-67,108,864% to

28 YKTLISP Program Dascription and Oparations Manual

67,108,863), All other integers arae represented as largg integers. The
small integer format stores the numeric value as part of a pointer address
field, and so achiaeves greater efficiaency in computation and storage than
the large intager format. All integers are stored axactly by LISP. The
only limitation on sizae is the available space in the heap.

Real numbers arae stored using System/370 double precision floating point
format, yielding 53 to 56 bits of pracision for the mantissa and a range
of up to C(about) 1074,

The print representation for a real number always includes a dacimal point
to distinguish reals from integar valuas. This dacimal point must be pre-
ceded by at least ona decimal digit, to avoid possible confusion with the
pariod used in printing pairs. A minus sign may precede the first digit
to indicate a negativa valuae.

Both integer and real numbers may be followed by a dacimal exponent formad
by tha laettar E, a plus or minus sign (plus is optional), and the exponant
magnitude expressed in decimal digits.

There are two parametars which control the way in which real numbers are
translated into their print raepresentations for output. FUZZ refaers to a
value used to define the intended precision of real number oparations.
Two real numbers, X and Y, are equal in the LISP system if

HIXI = 1Y}l € Fuzz % maximum C]X}, 1Y])

Insofar as printing a real number, X, is concerned, a charactaer reprasen-
tation is generated for the value in the range

X-FUZz%|X| to X+Fuzz*|X|

which results in the shortest character string. This print repraesentation
may include an exponent, in which case there will be exactly one dacimal
digit before tha decimal point, or in cases whare the number of digits
(exclusiva of decimal point and a possibla minus sign) neaded to represent
the numeric value is less than NDIGITS, no exponaent will be printed and
thae decimal point will be placed wheraever is required.

The user may spacify valuaes for FUZZ and NDIGITS by using tha function
SETFUZZ.

VECTORS

YKTLISP vectors may be classified into two general types: pointer vectors
and non-pointer vectors. Pointer vectors, as the name implies, may con-
tain referaencas to any LISP data objects (including themsalves, so circu-~
lar structures arae possible). Pointer vectors are furthar classifiaed as
reference vectors and selector structures.

Non-pointer vectors contain binary information -~ that is, data which can~
not contain referances to other data objects. Thus, non-pointer vactors
are non-descendible from the point of view of the garbage collector and
structure-depandant functions such as EQUAL and PRINT. Non-pointar vec-
tors are further classified as bit vectors, character vectors, word vec-
tors and real vectors.

Except for bit vectors, vectors may have any length for which sufficient
space exists in the heap. Bit vaectors may have a maximum of 224-1
(16,777,215) alaements (bits).

All vectors use zero-origin indexing for referencing their components.
The function ELT is a general vector accessing function, applicabla to any
type of vactor with non-zero length. Thus

(ELT vector 0)
is aluways the first element of vector. Of course, if the vactor has a
length of zero, i.a. contains no components, then any use of ELT (or any

other accassing or updating function) is in error. Othar accassing func-
tions, tailorad to a particular type of vector, are provided because thay

YKTLiSP syntax and saemantics 29

are morae afficient in execution, or bacause a more specific chack on tha
gypet?f argument is dasired. Thaese are dascribaed in the saection on vactor
unctions.

Reference. Word and Res] Vectors

The print format of a refarence vector usaes angla brackets to dalimit the
axtent of the vector and blanks to separate elements of the vector:

<COMP0 COMP1 ... COMPn>

whare COMPn is the print representation of the LISP data objaect raeferenced
as the n'th alement of the refarence vector. Wa wWwill occasionally use the
a box diagram for a raefarence vector.

<A B C>

I—'>3 M B
.

>B

>A

Figure 9. Box representation of a referaence vector.
Tha print representation of a word vector is:

XI<COMPO0 COMPLl ... COMPn>
whaere COMPn is a number between 232-1 and -232,
The print representation of a real vector is:

%F<COMPO COMPl ... COMPRn>

where COMPn is a numbar in the S/370 double precision floating point
range.

Character Vectors

Strings (charactar and bit vectors) share a special storage character-
istic in the YKTLISP system. For reasons of economy (of both storage and
procassing tima) they are stored in contiguous blocks of storage. Never-
thaless, because it is considered desirable to allow them to vary in
langth, a compromisa has baen achiaved which involves maintaining two sep-
arate pieces of laength information for @ach string. One length reflacts
the amount of storage allocatad for the string, in terms of the number of
alemaents which may be put into the string without having to allocate more
storage for a larger string. The other length refers to tha current num-
ber of elements which are actually usaed, uhich is less than or equal to
the capacity of the string.

There are two input/output representations for character vectors. Tha
more general format is:

Xk'ec...'

where 'k' is the maximum number of characters which could ba put into the
vactor for thae character string baing read or printaed (sae tha figure
depicting string formats balow). The actual contaents of the character
string 'c...' reflects only the current length of the string, and might be

30 YKTLISP Program Description and Operations Manual

null. Any character may be included as part of a character string; howev-
er, the string delimiter character and the letterizer character must be
treated specially. 1In order to avoid confusion about whether a string
delimiter character actually delimits a8 string or is intended as a data
character in a string, every occurrence of the string delimiter character
as a data character in a string must be prefixed by a letterizer
character. This letterizer character is not part of the character string
in storagae; it is created during output by the print routine, and dis-
carded during input by the read routine. Llikewise, every occurrance of
the letterizer charactaer as a data character in a charactaer string must be
prefixed by the letterizer charactar. For example, the string

'l'l
contains ona character (a string Jnliniter). and the string

ATIRK '
contains two characters (a letterizer and a string delimiter).

Whaen it is necessary to represent a character string whose total capacity
is not larger than the shortaest vector necessary to contain the characters
spacified, the simpler form:

‘e..."

may be usad. This designates a character vector which may have zero, ona,
two or threae unused alements. If N is the numbar of real charactars in a
string (letterizing characters are not countad), the number of unused ele-
ments for this simplified notation is residue (N-1):4,

Examplae: to specify an eight-elemant charactaer vector containing thae let-
ters FUNCT I ON, writae:

*FUNCTION®

This vector will have space for nina characters and a current length of
eight. To specify a vector with a capacity of 100 characters, but with a
currant laeangth of zero, write:

x100°’

Bit Vectors

The inputZoutput format of bit vectors is similar to the format for char-
acter vectors; howevar, 4-bit segments are repraesented by one hexadacimal
character and the currant length field is a count of the numbaer of bits in
the vector, not a count of the number of bytes. Only the characters 0...9
and A...F may be spaecified as part of a bit string.

There are variant input/output raprasentations for bit vectors._dnpending
upon tha current length of the vector being considarad. For bit vectors
whosa length is a multipla of four bits, the format is:

%Bk'x..."

where 'k'! is the maximum number of bits which the specified vector could
contain. Tha actual contents of the bit string 'x...' reflaects only the
currant langth of the string, and might ba null.

As with character vactors, tha maximum length field is opgional and may be
omitted when representing a vector of length consistent with the explicit-
ly spacifiaed data. A bit vector specifiaed without an explicit maximum
length 'K' and with up to 28 unused elemants has the format:

%B'x..."

For bit vectors whosa current length is not a multiple of four bits, the
format is:

XBkie'x..."

YKTLISP syntax and semantics 31

whare 'k' is as previously definad and 'c' is the current number of bits
in the string. A bit vector spaecified without a maximum 'k', but with a
current length 'c' and with up to 31 unused elements has the format:

%B:c'x..." ;:)f

BINARY PROGRAM IMAGES

A bpi is a binary program image object which is:

An mbpi, a machine language macro.
An fbpi, a machine language function.

A bpi is tha product of either the LISP compiler or tha LAP assembler. The
saemantics of applying a bpi that was compiled from a defining expraession
is similar to the interpretad semantics of applying the expraession. The
compilaer works by transforming the original aexpression into a new LISP
axprassion, in the process performing macro expansion and dealing with
certain operators in special ways. The intarprated samantics of this new
sxprassion may differ slightly from thosae of the original expression. Thea
naW expression is thaen compiled into machine code which has identical
samantics with certain exceptions.

Thesa exceptions are of two kinds. First, any program which treats itself
as LISP data will fail, as it will have been transformed from a list
structure into a bpi. Second, certain operators (specifically RETURN and
EXIT) will fail in compilad coda if they are the result of a delayad aval-
vation. I.E., if F0O, in (F0O 12), avaluataes to RETURN at aexecution tima,
the compiled program will pot behava in the same way as the interpreted
program.

It is not possible to print binary program imagas in a form which would

parmit them to be subsequently read by LISP and used like the original

object. There are several reasons for this, thae major difficulty being o
the relationship batween the binary program and the entire LISP system, ‘
which makes the same program printed at one time from a particular LISP :
system incompatibla with another LISP systam, or possibly even with the

sama LISP system at a diffarent point in time.

Therefore, since it frequaently occurs that an object being printad con-
tains referencas to binary programs (@.g. in a backtrace), a convention is
usad which incorporates the name of a binary program (that is, the identi-
fier associatad with the BPI whan it was compilad) in the form:

X.SUBR.bpiname or X.MSUBR.bpinama

where SUBR is usad for functions with evaluated arguments, and MSUBR is
usaed for macros (functions with unaevaluataed arguments).

If an attempt is made to read such a form, the read program will emit an
error massaga and usae the .NOVAL object instead of a binary program.

EUNARGS

A funarg is a expression closure =-- that is, tha combination of a
exprassion with a specific environment in which that expression is to be
exacutad. It is repraesentad as a pair-like object:

% .FUNARG. (expression . sd)

where the first element is the actual expraession, which will evaluate to
an objaect which may be appliad) and the second elamant is a state descrip-
tor which defines the environmant.

WARNING: whila it is possibla to extract the componants of a funarg, the -
user is strongly advised to refrain from this practice. When the compilar ‘
aencounters a LAMBDA expraession as an argument, rather than as an operator, \/)
it genarataes coda to create a funarg, with a compilaed version of tha
LAMBDA expression as its exprassion part. These binary programs are com-

32 YKTLISP Program Description and Oparations Manual

piled with an understanding of their immediata environmaent, including tha
absolute offsets needed to accass variables in the stack frame captured by
the sd component of the funarg. By executing such a BPI in anothaer envi-
ronmant, unpredictable action (including failure of the YKTLISP system)
may occur.

STATE DESCRIPTOR

A state descriptor is an elementary data object generated by tha STATE
basic macro. It is conceptually a pointaer to a particular stack frama,
which serves to define eithar an environment (a set of identifier - value
associations) or a previous state, which denotas a spaecific point in the
application of a FUNARG. Practically, state descriptors have the capacity
to contain soma control information, since this is required by the garbage
collector and by their usa to detarmine validity of shallow bindings.
Thus they are five-word objects and are processaed only by a limited set of
functions which are preparaed to maintain thair structura.

Creation of a state descriptor ensuraes that the related stack frame will
be raetained until the stata descriptor is daleted by the garbage collector
when there are no referances to it.

State descriptors serve two purposes. First, thay define an environment
which may be used to create function closures. Second, they are actually
savad states which may applied in order to affect a transfer from the cur-
rent state to the saved state. Execution will subsequently proceed in the
environment of thae saved state, at the point immediataly following the
STATE operation which created the saved state. When a state descriptor is
applied, it must have an argument, which is evaluated in the environment
initiating the application. The valuae resulting from this aevaluation
becomes the valua of STATE when execution resumes in the saved statae.

A state descriptor is essentially unprintable, in that it contains the
stata of the machine as it existed at the time of its creation. Ifona is
ancountered by the print function it is repraesented as

X . SD . XXXXXAXXX

whara "xxxxxxxx" is the haxadecimal raepresentation of tha actual pointar.

STREAMS

Streams, like lists, araea not primitive data objacts. They are an inter~
pretation of composita data structuraes consisting of pairs and vectors.
There are two distinct types of streams, each with its own set of opera-
tors.

Tha streams which are managed by READ, PRINT and their related operators
can be viawad as producers or receivers of characters. These are the
streams which allow YKTLISP to communicate with the console, and to read
and write files which can ba editad by the user.

The streams which are managed by RREAD, RWRITE and their related opaerators
can be viewed as producars or receivers of arbitrary LISP data objects.
The DASD files which correspond to thesae streams are, in general, not
readable by the user. :

All operations on streams ara updating. That is, an operation which
changas tha value of, e.g., the CAR of a stream does so by a RPLACA opera-

tion. This insures that all processes which have accaess to a particular
stream remain in synchronization.

a tre

All character streams arae pairs, with tha CAR of tha stream baing the cur-
rent charactar, or an Tand-of-line"™ flag.

YKTLISP syntax and samantics 33

Tha simplast form of a character stream is a list of characters:
(A B C)

Lora—nTs

e—> e—>B —3>C -

Figura 10. A list, interpreted as a charactar stream.

The primitive operations on such a stream are NEXT and WRITE.
After an application of NEXT
(B ©

L.

. ° [L >L> ° V4

> >B e > C

Aftar an application of WRITE, with X as first operand
(XABOC)

e e ==]

>X 38 —>C —>A

1(Note, only the pair marked by ! is newly created.)
Figure 11. Effact of NEXT and WRITE on stream, Figure 10.

One peculiarity of tha stream interpraetation of lists should ba noted,
that that NEXT and WRITE are mirror oparations. If a list is producas by a
series of WRITEs, the rapeataed application of NEXT will produce the char-
acters in tha raevarsed ordaer.

The form of character stream more usually employed is called a fast
stream. This is a list, usually of a singla elemant, the final CDR of
which is a referenca vaector containing tha information required for per-
forming I70 to or from a DASD devica or a terminal.

Fast streams contain a number of component which may be accessaed or
changed by various opaerators. These include an association list, with
entries specifying the direction of thae stream (INPUT or OUTPUT), the
davice type, the filae name, etc., as neaded. Thera is a buffar, contain-
ing thae curraent line from tha davice, with an index designating tha cur-
rent charactar in thae buffer. A stream ific function defines tha
action to ba taken when the buffer is to be disposed of, @ither refreshad
from an input davice, or writtan to an output devica.

Two special configurations of a fast stream indicate end-of-line and

Eng;of~file conditions, thesa may be tested with the predicates EOLP and
OFP.

34 YKTLISP Program Description and Oparations Manual

C

K ddressed ams

The second typae of stream provided by YKTLISP supports key addressad, ran-
dom access, files. These Wwill be refarraed to as libraries. Each member
in such a file reprasents a single LISP data object. Associataed with each
jtam is a key and a class daesignation. Thae key is eithaer a string or a
?ENSY? tidgggifi-r. while thae class is a small intager in the range 0
zaero ° .

The usual fila type for such filas is LISPLIB.

Unlike character steams, libraries may contain an external representation
of a BPI, and are often used as an analogue to VM TXTLIB filas. It must be
noted that an existing BPI can not be written to a library, but can only ba
placaed in onae by tha assemblar.

The basic operators which deal with libraries are distinguished by a pre-
fixed R on thaeir names, for Random access. In addition there exist a set
of operators, including LOADVOL, SUBLOAD etc, which manage thasa filaes and
allow opaerator dafinitions to ba loaded from them.

YKTLISP syntax and semantics 35

36

YKTLISP Program Dascription and Operations Manual

PR : S _AN A ORM

The syntax of YKTLISP is dascribed in the wall knouwn list form. Whila tha
YKTLISP kernel is thought to exhibit an improved structure over many other
LISP dialects, it undoubtaedly has some weaknasses. For instancae, certain
jdeptifze;s hava reserved meanings when appliad. The readars' criticism
is invited.

SSION

Thae primitive expression classes ara constants, variables and lists.
A LISP expression is ona of:

. c, denoting a constant,

. id, an identifier, denoting a variablae,

. (operator [operand ...]), a list, denoting an operator-operands com—-
bination whaere the operator and each operand are axpressions.

CONSTANTS

Tha evaluation of constants is trivial: constants are idempotent, i.e.
they avaluate to themselves.

YKTLISP has tha following broad classes of constants:

decimal-numbers (integer and raal)
:?Elicative-constants (sds, bpis and funargs)
ranked-arrays (vectors and strings)

The propertiaes of these constants have baaen dascribed in "YKTLISP data
typas"™ on page 23.

VARTABLES

Variables are identifiers which have had valuaes associated with thaem.

Tha rules for evaluation variables are described in "Bindings and variable
raferencing™ on page 41.

STS XP SION

The third form that an expression can take is a list. These lists are of
the form (operator [operand ...1). They are classified, according to the
value of the operator, into:

1. Special forms: a small numbaer of primitivae expressions, each with its
own rules. Tha operators are refarred to as prs.

2. Macro-expressions: exprassions whose oparators recaeive the
expraession (of which they are tha operator) as their argument, and
whose value is avaluated again. The operators are either MLAMBDA
expressions, mbpis or macro funargs.

3. Functions: expressions whosa operators receiva tha values of the
operands, and whose value is that returned by the operator. The oper-
ators arae LAMBDA expraessions, bpis, functional funargs or built in
oparators, referred to as frs.

Expressions: functiens, macros and special forms. 37

4. Structure accaessing expressions: axpressions whose oparators are
macros dafined by tha DEFIME-STRUCTURE opaerator. Usad to accass com-
ponents of usar defined structuras.

5. Jaunt statements: axpressions whose operators are state descriptors,
and which causa the resumption of a previously saved environment.

If the valua of tha operator is not a mamber of ona of thesa classes, it is
sat asida and the operands are evaluated. It is then retrievaed and
repeatedly reevaluatad until its value is an applicable objact, in which
case it is applied, or a macro operator, constant or idempotant,
non—-applicabla objaect, in which case an aerror break is taken.)

Thus, thae type of application depends on the valua of the oparator. It
could be considerad unfortunate that each type of application is not
reprasanted by a distinct syntax. The resulting lack of transparency is
balanced by the flexibility of the dalayed interpratation that can be con-
sidered a feature of this LISP. Indead thae lack of distinction makes tha
dafinition of most oparators a free choice betwaeen macro daefinition and
ordinary function dafinition.

38 YKTLISP Program Description and Opaerations Manual

_

EVALUATION

At its simplaest, evaluation in YKTLISP consists of accessing and updating
the envircnment (see the next saction).

If an expression is a constant it evaluates to itself. If it is a

variable, tha environment of evaluation is searched for it current valua.

;f Lt is a list, its operator is evaluatad and the expraession is classi-
iad.

In fact, the case of
(Caxp list (exp ...1) [axp ...]1)

whaere @Xp evaluates to LAMBDA, is spaecially recognized. Saeman-
tically, it need not bae, as the operator would avaluatad to a funarg
which captures tha environment, but in ordar to avoid the creation
of a state descriptor, we note the explicit prasence of tha LAMBDA
expression, and treat it as a special case whan applying it.

Thae classes of composite exprassions are: special forms, functions, func-
tional funargs, macros, macro funargs and jaunts.

OPERATOR — special form
(OPERATOR [operand ...1)

Each special form has its own application rules. Special forms
diffar from macros (balow) in that they are built into thae sys-
tag.l The compilar also undarstands tham, and treats each sepa-
ratealy.

OPERATOR — built in function
(OPERATOR [operand ...])

A built in function operates directly on its operands. It has
no variablaes, and no stack frame is created for it. It, itsaelf,
may cause a stack frame to be created (a.g. CALL, APPLX, et
catera). The compilaer treats many of the built in functions
specially, producing in linae code for them.

OPERATOR — function
(OPERATOR [operand ...1)
A function is a LAMBDA expression or a fbpi.

A function contains two componaents, a list of variables and ona
or more aexpressions. (LAMBDA axpraessions contain thaese explic~-
itly, bpi's, implicitly.) Whaen & function is applied to the
valuaes of its operands thosa values are paired with the vari-
ablaes of tha function, and used to augment the environmant. At
the same tima the control environment at thae point of applica-
tion is saved and thae environment of execution is augmented to
avaluate tha expressions of tha function. Thesa expressions
are aevaluataed in this new environmant. When the evaluation com-
pletes a valua is returned (by reverting to the praevious state
of tha environmaent) which becomes tha value of the expression.

More details as to the changes to the aenvironment are given in
the following section.

OPERATOR — function + compiler macro
(OPERATOR {operand ...1)
A number of functions have corresponding macro definitions,
availabla to the compiler. Thaese allow thae production of in
line coda in bpi's, by providing thae compilar with code genera-

tors. Thesae macro dafinitions are not genaerally availabla to
the interprater.

Evaluation 39

Thae functional definitions of thase oparators, which are avail-
able to the intarpraeter, behave as in thae previous casa.

OPERATOR — macro
(OPERATOR (oparand ...])

Macro application differs from functional application in two
Ways.

First, thae items in the axpression are not evaluated, and the
variablas of the macro are associated with tha antire
expreassion as it was bafore the operator was avaluated. Saee the
dascription of MLAMBDA, pagae 53.

Second, the value returnad by the application does not become
tha value of thae exprassion. Rather, it is treated as if it had
o:cgrradt in the place of tha original expression, and is evalu-
ated in turn.

OPERATOR — funars
(OPERATOR [operand ...])

The expression component of funarg is applied, as a function or
as a macro, depending what it is. Tha application takes place
in tha environment of aevaluation which is captured by the state
descriptor componant of funarg.

OPERATOR — structure
(OPERATOR access-path instance)

Where structure evaluatas ¢to a macro created by the
DEFINE~-STRUCTURE operator. Raturns the componaent of instance
describaed by access-path.

OPERATOR — jaunt
(OPERATOR item)

Tha act of applying a stata descriptor (sd) to an opaerand is
referraed to as jaunting.

A state descriptor binds no variablas, and if does no explicit
computation. It causes execution to resumae at tha point where
ggh?gg created. This is an application of tha built in function

Tha program acts as if tha original application to the function
STATE had just complated. Howaver, the value returnad is item,
rathar than thae sd originally creatad. Saae paga undefined.

v N F T

All evaluations in YKTLISP take place with raspact to two environments,
the environment of exacution and the anvironment of avaluation.

Historically, thesa have been raeferrad to as the control and the
environmgnt. This tarminology has the virtua of brevity, and will
at timaes be used. In what follows, read "environment™ (with no pre-
positional phrasa) as "anvironmant of avaluation™, and "control™ as
"anvironment of exacution™.

The operators which effact the environment of exaecution provida the con-
trol structures for the language. Thae oparators which effect the environ-
mant of aevaluation include the assignmaent and evaluation opaerators.

The environment of avaluation consists of an ordared set of variablae

bindings, that is, locations which contain values, each with an associatad
variabla (an identifiar).

40 YKTLISP Program Description and Oparations Manual

.

Tha environment of exacution consists of the information needad to resuma
suspanded evaluations, whather the suspension is due to a simpla applica-
tion, or a stata saving opaeration.

$tack frames

Tha tuwo environments are embodied in & single structure, the stack, with
an extension, the global environment, which is part of the environment of
evaluation. The stack, in turn, is composed of frames. A frame is cra-
ated for each application of a LAMBDA or MLAMBDA expression or bpi and for
each invocation of the interpratar (via EVAL or EVAl).

Note that evaluating a PROG is equivalaent to the application of a
LAMBDA axpression. Since many of the operators used for control
purposes are macros which generate LAMBDA expressions, it is not
always apparent when a new stack frame will be created.

Each stack frame contains;

. a (possibly ampty) saet of variable bindings, consisting of value calls

and a display which contains the variable names and their
FLUID/LEXical status.

. a flag, indicating whather LEXical variables should be ignored from
this point on, if the search for a binding reaches this frama.

. a pointer to the next frame to be examined for a variablae's valua, if
it is not found in this frame. (the m . This may dif-
far from the next iteam, as will be detailaed balow.)

. a pointar to tha frame from which this frama was creatad, and to which

control ugl; r:turn whan the evaluation in this framae complaetas. (the
r .

L A flag marking this frama as a catch point, if it is one.

. the necessary information to allow evaluation to resume whan control
returns to this frame.

. miscaellaneous "housa keeping” information to allow the proper mainte-
nance of shallow binding cells for FLUID variablaes.

. othar information, accessibla only to assembler language programs.

The operation RETURN is seen as the abandonmaent of the current stack framae
and the resumption of evaluation in the previous frame on tha control
chain, with a value providaed. Application of a LAMBDA expraession is tha
creation of a new stack frame and the initiation of aevaluation in it.
THROW consists of following the control chain, performing housae kaaping
operation as each frame is abandonad, and resumption of evaluation in a
frama marked as a catch point.

This model is too incompleta to account for SEQ, EXIT and GO. Thay make
use of information which is hiddan from any user program.

a far i

A raferenca to a variabla must be resolved to a particular binding. The
binding, once found, can ba aithar accassed or updating. Accassing a
binding is equivalent to cvaluatlng the corraesponding variable. Updating
a binding is equivalent to assigning a new valuae to tha corresponding var-
jable. Thae search commences in the current stack framc. looking at all
variablas. Once it passas a "closed™ contour, that is a frame correspond-
ing to a non-lexically present LAMBDA (sea saction on Scope of variables)

only FLUIDly bound variables are looked at. If thae variable is not found

in the stack thae current global A-list is searched. If it is not found and
if the A-list tarminates in an SD the global A-list associated with that
SD is searched, and so on until thae variable is found or a non-SD tarmina-
tor is reached.

Evaluation 41

(Note that this search is often avoided by the use of shallow bind-
ing cells. In practicea, once tha search has laeft the immadiate
(laxical) scopa of the variabla @ "look aside™ is performad. If the
variabla has a shallow binding cell (not all do) and if that call is
current (that is it was last =at in the current environment) thaen it
is used to accass the current binding. If it is not current the
s@arch is carriad out and the shallow binding caell is "refrashed",
to avoid further searchas, until thae environmaent is changed again.)

The frames searchaed during this process arae normally the same as the "con-
trol chain™, that is the chain of stack frames from callaed function to
calling function. Howaever, whenaever a funarg is applied or EVAL, APPLY or
MDEF are callad a fork occurs, with tha environment chain following the
stack frames captured by tha sd invelved. In addition, in each of thesa
cases the global A-list in the SD bacomes the current global environmaent.

IHE ENVIRONMENT OF COMPILATION.

In YKTLISP there exists another environment which must be understood.
This is the gnvironment of compilation.

Compilation involvaes a partial interpretation of the function baing com-
pilad. In particular, all macro operators must be macro-appliad, that is
expanded, at thae time of compilation. Tha resulting, macro free, lisp
code is then translated into machina code.

YKTLISP provides two special forms, ¥CODE and FR¥CODE, which allow the
programmer, aithar directly or indirectly via macro dafinitions, to pro-
vida machine code saquaencas to the compiler for expressions. Many of the
basic operators, particularly the so-callaed "Q" operators (see "A nota on
naming convaentions™ on page 45) arae implemaented using this featura.

Macro definitions are not applicabla howaever. Thus it is desirable that
the numbar of macro definitions in the system be kapt to a minimum. To
escapae this dilemma the systems contains dual definitions of approximate~
ly 200 operators. In the "normal” environment, that is tha environment in
which user programs are evaluatad, these operators havae functional defi-
nitions. In addition macro definitions exist, macros which expand to
%CODE or FRXCODE expraessions. Thaesae macro definitions are bound in a spa-
cial environment, the gperator recognition gnvironmgnt, (reduced to OR as
a component of certain opaerator names, saee "Operator dafinition™ on page
129). Tha OR environmaent inhaerits thae normal global anvironmant, but not
the stack portion of the currant environment of evaluation. Thus, any
oparator not bound explicitly in tha OR environment will hava as its value
that that tha usaer normally seaes.

The compiler evaluataes all identifiers occurring as operators in the OR
environmaent.

The definition facility binds a number of FLUID variablaes, as may the pro-
gram from which it is invoked. Thae OR environment doaes not contain thesa
bindings, thus no conflict can arise batween thae system's FLUID variablas
and tha operator values in tha OR environmaent.

In order to prevent similar conflicts batwaeen operators used during macro
axpansion and system FLUID variablaes the expansion itsaelf is carried out
in a sacond spacial environmant, the macro gxpansion environment, (rae-
ferred to as the MA environmant). The MA environment, like the OR envi-
ronmaent, does not contain any of tha users or systems FLUID bindings.
Unlike the OR aenvironmant it normally contains no bindings of its oun,
simply ba equivalant to thae systams global environment.

Various functions exist to allow tha usar to add new dafinition to eithaer

of thaese anvironmaent, paermanently or temporarily. See "Operator dafi-
nition™ on pagae 129.

42 YKTLISP Program Dascription and Oparations Manual

SCRIPTION F

The following dascriptions consist of two parts. In each sub-saction
there is a short discussion of the operators which are grouped together.
This discussion may ba split, with an introduction at the beginning, and
more detailed commaents at the ‘end. Following the introduction will ba a
description of each function in tha group. The descriptions will follow a
stereotypad format, with one or more examplas followed by text, thus:

OPERATOR operator type
(OPERATOR operandl operand2 [operand3 ...))
Upon receiving its oparands operator merges them in an
order daetermined by the presence or absence of a fourth
oparand. If all supplied oparands are not of sufficient
strength an error break is taken.

Figure 12. Descriptfon of a fictitious oparator.

There ara also variants on this form, with variablaes and kay words rather
than operators.

In addition to thae cases sat forth on page 39, entries of the following
forms will be found.

WORD — key word

An identifier which must occur explicitly, either as an argu-
ment to some operator, or as a component of a structure. For
exampla, the property names of the elements of OPTIONLIST, sae
page undafined.

IDENTIFIER — variable

An identifier which contains a system provided initial valua.
It may ba used as a free variable by ona or more system cpera-
tors, in which case its value will effect tha behavior of those
opaerators in soma way, for example, CUROUTSTREAM. It may con-
tain a valua of usae to user programs, for axample STACKLIFO.

IDENTIFIER — system command
(CALLBELOW 'IDENTIFIER' [operand ...1)

A string uhich.is interpreted by the system dependant (VM, TS0,
etc.) module as a raquest for servica.

Nota that only the VM system dependant module has baen
implamentad to date.

Thae operands depend on the specific command, but must be
strings, word vectors or small intaegears.

PHRASE — concept

A discussion of some concept falt to be important. Thesa will
oftan replicate information from the syntax and semantics sec-
tion at a point where it is ralevant.

Argumants will be shown highlightad, as in tha axample, and their namas
will usually ba chosen to raflect thae type of valuae expected. In order to
minimize the length of tha exemplar line, the typas will be abbraviated,
as shown in Figure 13 on page 4%.

Dascriptions of tha operators of YKTLISP. 43

Abbraviation

Data type

item
pair
list
strm
rstrm
vec

str
c-str
b-str
id
char
num
s-int
fxX=num
flt
app-ob
axp

sd
labal
bv-list
a-list
sysdep-ares
file-name
file

object of any type

pair

pair, intaerpreted as a list
stream

random accaess file

vactor (including string)
string

character string

bit string

identifiaer

single character identifier
numbaer

small intaegar

fixed numbar (integer)
floating point numbar
applicable object
axprassion

state descriptor
identifier, interpreted as a labal
bound variablae list
association list

{str | uvac))

{id | (idl (id2 [id311)}
{¢idl [id2 [id31]) | idl [id2 [id311}

Figure 13. Abbraeviations for oparand data types.

If examplas are givaen, they will be in the form of a "tracae"™ of inter-
actions with tha normal supervisor, with echoing turned off.

X

Value = 123
(PLUS X X)
Valua = 246

4% YKTLISP Program Description and Operations Manual

A NOTE ON NAMING CONVENTIONS

LISP has always had a few conventions for naming functions with common
attributes. Most "truesfalse™ functions (predicatas) have names ending
in P, for exampla, while many functions which modify thair arguments have
names beginning with RPL (for replace) or N (origin unknown). Examples
are RPLSTRING and NREVERSE as contrasted with REVERSE. YKTLISP has
saeveral conventions of its own (as with tha ...P we are not 100X consist-
ent in following them). .

You will quickly notice many functions wmith commas imbeddéd in their
names. Thesae all uaere originally thought of as "system™ functions, which
the casual usar would not be interested in. As the comma has no special
syntactic meaning in LISP370/YKTLISP, but acted as a list separator in the
previors kISP available at Yorktown this was falt to ba a protaction from
namae clashas.

A few functions have names which start with a comma. These are usual “un-
der cover” versions of normal functions. Thus ,PLUS is a two argument
generic addition function, usad by PLUS which is the multiargument generic
addition function.

Many othar functions hava names prafixaed by ona or more letters and a com-
ma. The prefix groups the functions, a.g. parts of tha compiler start
wj:g :, parts of the LAP assembler uwith L, and general system functions
W1 s

Many other functions will be seen which start with a Q. This stands for
"QUICK™, and can hava onae of two meanings. In all cases it implies the
existence of a macro in the compile environment which produces in-lina
coda. In many casas it also implies a lack of typa chacking.

So QCAR and QCDR do not test their argumants for PAIRness, they assume
corraect type and act accordingly. The compilaer is, at praesent, not smart
anough to elide the type chacks in code such as

(COND ((PAIRP X) (CAR X)) ("T X)

so_:ba careful programmar is allowad to circumvent the built in chacks by
writing

(COND ((PAIRP X) (QCAR X)) ("T X))

Other of the Q oparators do type checking, but are quick in that they
result in in line coda. Thaese includa QMEMQ and QASSQ.

Another group of Q oparators are the QS... operators. These (QSPLUS,
QSADDl, etc.) assume that their arguments and values are small integars,
(numbers baetwaen -(2%26) and 2%26~1). ganaeral thay do arithmatic modulo
2%26, forcing correct small integar type codas on thair results. They are
also aware of each othar, and will skip tha forcing of typa codes on some
intermadiate rasults when nested.

Note that there are a few functions starting with Q which are neither in
line nor uncheckaed. Thaese includa QSORT and QUOTIENT.

Functions whose namaes end in Q are usually version of other functions

which use EQ rather than EQUAL. Such pairs include MEMBER/MEMQ,
ASSOC/ASSQ, UNION/7UNIONQ.

A note on naming conventions 45

46

YKTLISP Program Dascription and Opaerations Manual

e

\J EN UTION

Thase opaerators do not compute valuas, paer sa, but rather provide the con-
trol structure of programs. Many of them use their arguments as written,
rather than as evaluated. Even when arguments ara evaluated, tha order of
.vaigatign may differ from the normal, left to right, order of function
application.

Just as the operators describad in the following section can be thought of
as accessing and updating the environment of evaluation, so these opaera-
tors accass and updata tha environmant of execution. (See "The environ-
ment of evaluation and exacution.™ on page 40.)

The distinction is by no means clear cut, however. For example, the
application of a LAMBDA expraession results in an augmantation of both
parts of tha environment, in that a new stack frame is creatad, which con-
tains both variable bindings (environment of evaluation) and a control
chain pointer which RETURN may usae (environment of axecution).

Despite the importance of binding on the environmant of evaluation it was
fel:_that the control aspact of LAMBDA warranted its inclusion in this
saction.

SPECIFICATION OF VALUES

Many of the data objacts in YKTLISP ara constants, that is they evaluate
to themsaelves. This is true of all numbaers, strings and vactors, for
exampla. Lists (i.e. pairs) and identifiars, howaever, generally do not
have this property.

If, in an expression, you wish an identifiar or a pair itself, rather than
its valua, you must QUOTE it.

(Note the convention of spelling YKTLISP operators in uppercase
when using them as verbs. MWe will often writae QUOTEd or FLCATing
whan we ara speaking about the usa of tha operators QUGTE and FLOAT,
for axample.)

It is also possible (in compiled programs) to specify a constant as the
valua of an expression (evaluated during the compilation process). This
is dona by using the CONSTANT oparator.

QUOTE — special form
(QUOTE item)
The value of a QUOTE axpression is just the oparand, item. This
allows ona to mention an idantifiaer, or a list without having it

avaluated as an expraession. The reader in YKTLISP accepts the
form "item as qquivalent to (QUOTE item)..

(QUOTE X)
Valua = X
"ABC

VALUE = ABC
CONSTANT — macro

(CONSTANT axp)
Tha CONSTANT operator avaluates exp and returns its value.
During compilation, CONSTANT is dafined as a macros, which
replacaes itsalf by the QUOTEd valua of exp. This allows the use
of the values of exprassions (as evaluated at compile tima) as
constants.
Tha bpi resulting from tha compilation of

C(LAMBDA () (CONSTANT (EXP 3)))

Environment of execution 47

will return a3, without having to compute it each tima.

SEQUENCE OF EVALUATION

YKTLISP providaes a number of ways of speci fying tha seaquence of evaluation
of the exprassions which comprise a program.

The most basic is the order of avaluation of the alements of a list, when
it is intaerpretad as an expression. First the opaerator is evaluatad,
then, if it is not a macro or spacial form, tha operands are aevaluated in
strict laft to right saquance, and thaen the operator is applied to thaem.

If the opaerator is a macro, application follows immediately, and if it is
a special form its own rulae holds.

Next, in primitivenass, is the application of LAMBDA axpressions, or their
compilaed surrogates, bpi's. Each such application raesults in a transfer
of control to the body of the LAMBDA aexpression, its aevaluation, and a
raturn of control to tha point of application.

Within the body of a LAMBDA axpression, as well as in cartain othar con-
texts, tha implied PROGN rulae holds. This antails the laft to right order
of :v;luation, but in this case all but the final resulting value are dis-
carded.

The counterpart of IF ... THEN ... ELSE ... is provided by a number of
oparators, primarily COND. Haere a saries of tests are made, and tha first
to succead specifiaes a particular sequence of expressions to be avaluatad.

YKTLISP providaes a GO oparator, which within lihited contaext allows arbi-
trary saequencae of control.

RETURN, EXIT and THROW (with various oparators built on tham) allow thae
pramature termination of the normal control flow, with control ravertlng
to soma surrounding contaxt.

Finally, the application of a state descriptor results in control resuming
at the point at which that state dascriptor was created. This allous
co-routining and back-tracking.

PRGGN — special form
(PROGN [expl ...))

The sequential evaluator. Thae expraessions, expl ..., are eval-
uated in ordaer, and the value of tha final axpraession is
normally the valua of the PROGN expression. If control leaves
tha PROGN exprassion, via a GO or RETURN for examplae, than, in
some sense, thae PROGN aexpraession has no valua.

(PROGN (SETQ X "(A B)) X)
;aluo = (A B)
Valua = (A B)
(PROGN (SETQ X ™10) (SETQ Y ™20) (PLUS X Y))
Valua = 30
X
Value = 10
PROG1l — macro
(PROG] exp ...)
The PROGl operator evaluataes its oparands in laft to right
saquaenca, in tha sama why as PRGGN, but raturns the valuae of its
first exp as its valua.
PROG2 — macro

(PROG2 exp &xp ...)

43 YKTLISP Program Description and Operations Manual

Thae PROG2 operator evaluates its operands in laeft to right
s@quence, in the same why as PROGN, but returns the valuae of its
second exXp as its valua.

SEQ — special form
(SEQ [exp ...1)

SEQ definaes thae scope for labaels. Any @XP which is an identifi-
er is not evaluated, but instead acts as a labael, for GO state-
ments. The othar axps are saquentially evaluated, as in PROGN,
except when a GO is executed. A GO to a label in the SEQ causaes
the saequential aevaluation to racommance at thae following
expraession.

The value of an SEQ is daeterminad in ona of two ways.

If the sequential evaluation reachas the last exprassion in the
SEQ, and if that is an expression with a value (i.e., not a GO,
RETURN, etc.), then thae valuaea of that expression becomes tha
value of the SEQ expraession.

Labels are treated as if they had a value of NIL. Thus, if the
final expression in an SEQ is a labal, thae value of tha SEQ will
be NIL, whether control reaches the end via a GO or by normal
sequential avaluation.

Alternatively, if an EXIT expression is evaluated insida an SEQ
thae valuae of its argument becomes thae value of the SEQ.

GO — special form
(GO id)
The GO searchaes for an enclosing SEQ expression. If it encount-
aers an enclosing LAMBDA or MLAMBDA expression an error break is
taken.
If it finds an SEQ it searches it for an instance of id, and if
it finds it cause aevaluation to start at the following
expraession. If thare is no instance of id the search for an
enclosing SEQ is repeataed, outside the previously found SEQ.
EXIT — built in operator
(EXIT exp)
The EXIT operator causes control to leave the nearest enclosing
SEQ or LAMBDA expression. Tha value of exp becomes the valua of
the SEQ or of the application of tha LAMBDA expression.
EXIT is provided to allow the tarmination of a SEQ expression,
gith a valua. EXIT expressions may occur anywhare within the
EQ.
RETURN — huilt in cperator
(RETURN exp)
The RETURN operator causas control to leave tha nearest sur-
rounding LAMBDA or MLAMBDA application, with exp becoming the
valuae of thae application.

Surrounding SEQ expressions are not seen by RETURN, and their
evaluation is terminated.

PROG — macro
(PROG list [{exp | id} ...1)

The PROG operator combines cartain aspects of SEQ and LAMBDA
exprassions.

It establishes a context of GOs and labels, as SEQ does, and
also establishas a scope for variablaes, as LAMBDA does.

Environment of execution 49

Sinca PROG is equivalent to a LAMBDA expression (in fact it jg a
LAMBDA exprassion with a SEQ expraession as its body), GO is not
allowed to leave a surrounding PROG. Either RETURN or EXIT will
causa an immadiataely surrounding PROG to terminate, and will
provida thae value for the terminated aevaluation.

Unlike either SEQ or LAMBDA, thae value of a PROG which termi-
nates due to the evaluation of its final axpression (if it is
not a GO, EXIT or RETURN), is NIL.

The saquance of {@xp | id)}'s is interpreted in the same way that
the body of a SEQ expraession is, that is id's are not evaluateaed,
but act as labels for GO expressions.

list is a list of variable which are bound by the PROG. The
elemants of the list may have onae of threae forms:

1. ;g:ntificr, a laxical variable, with an initial valuae of

2. ({FLUID | LEX} identifier), a explicitly FLUID or LEXical
variable, with an initial valua of NIL. (Tha form
(LE{E;d?ntifier) is only required for tha identifiers FLUID
or .

3. (variable exp), whaera variable may bae aithar of the two
precading forms, a variable with initial valua exp.

It is important to nota that exp is evaluated gutside the bind-
ing scope of the PROG. Thus sequencas of avaluations such as

(SETQ X ™(2 1))

Value = (2 1)

g;Rgelg (X (CONS 3 X)) (PRINT X) (RETURN (CONS 4 X)))
xalue = (§321))

Value = (2 1)

where a value of a variable outside thae PROG is used, manipu-
lataed, but may bae unaffacted after the PROG complataes. Of
coursae, if updating operation had beaen appliad within tha PROG,
thair effects could havae been visible afteruards.

CONDITIONAL EVALUATION

COND — special form

(COND [clause ...1)

This is tha IF ... THEN ... ELSE of LISP. Each clausa is a list
of axpraessions of the form

(predicate [exp ...))
(Any clause which is not a list is treatad as a comment.)

Tha clauses are axamined in order, and the predicate is aevalu-
ated. If the valua is NIL the next clause is examinaed.

If the valua is not NIL, the raemainder of the clause is
examined. If thaere are no &Xxps tha valua of tha predicate is
tha valua of the COND expression. Otherwisa the list of exps is
evaluated as if it were praefaced with PROGN. Thae valua of the
final exXp becomas tha valua of the COND.

In either case, no further predicatas are evaluated.

CASEGO — macro

50

(CASEGO axp list ...)

YKTLISP Program Description and Oparations Manual

O

Whare each list is of tha form
Citem id)

This operator evaluates exp and compares the resulting valua
with the items from successiva lists. These items arae not eval-
uvataed. If ona is found which is EQ to the value of exp a GO is
performad to the corresponding id, interpreted as a label.

(CASEGO
(CAR X)
(A L1)
(B L2)
(3 L2)
(XYZ D))

Will execute a GO to tha labal Ll if the CAR of thae value of X is
the identifier A, to the label L2 if it is the identifier B or
the number 3, to the label D if it is the identifier XYZ. If it
is nona of those four, control will continue following the

. CASEGO expraession.

If a CASEGO expraession is used as an operand, and no G0 is per-
formad, its valuae is the valua of axp.

OR — macro

(OR [exp ...]1) .
This operator evaluataes the axps from left to right, until the
first exp whosa value is non-NIL. The value of the expraession
is that non-NIL value, if such exists, and is NIL otherwisa.

(OR expl exp2 ... &axp3.)
is equivalant to

(COND (axpl) (exp2) ... (axpn))

(OR) has a valua of NIL.

AND — macro

(AND [exp ...1)
This operator evaluates tha &xps from left to right, until the
first exp whose value is NIL. The value of the axpression is
tha value of thae final axp, or NIL, if an @arlier @xp resulted
in that valua.

(AND expl exp2 exprassionl)
is equivalent to

(COND (expl (COND (axp2 expression3))))

(AND) has a value of %T¥,

SELECT — macreo

(SELECT expl list ... exp2)
Wherae the lists are of the form

(exp exp ...)
The SELECT cpaerator evaluataes expl. It then evaluataes the first
exp of each list, until it find ona whose value is EQ to the
value of expl. If it finds such a ona, it evaluates the remain-
ing exps in that list as an impliad PROGN, returning the value
of tha final axp as the valuae of thae SELECT expraession.

If no such list is found exp2 is avaluated and its value becomas
that of thae SELECT exprassion.

Environmaent of execution 51

SELECT is a macro which genarates a LAMBDA eaexpression, so
RETURNs and EXITs in any of the evaluated expressions will sim-
ply return control from thae SELECT. In addition, GOs are illa-
gal, as there is no SEQ in the resulting LAMBDA expraession.

EUNCTION AND MACRO DEFINITION, VARIABLE BINDING

LAMEDA — spacial form

52

(LAMBDA bv-list [exp ...1)

Tha behavior of a LAMBDA expression varies, dapending upon
whether it is itself an operator in anothaer expression, or if it
is an operand.

A LAMBDA exprassion in opaerator position is immadiataely applied
to its arguments. Thae application is paerformad by binding the
valuas of the arguments to the variable daeclared in the
bound-variablae list of thae LAMBDA axprassion. This binding
process can bae conceptualize as follows. (The actual procass
di ffers somewhat, but tha affact is the samae.)

Givan a LAMBDA eaexpression (LAMBDA bv . body) baing applied to
valuaes Al, A2, ..., form the list,

(Al A2 ...)

TQT examinae this list and tha bound variable list, bv, in paral-
el.

. If bv is naither a pair or an identifier, discard tha value
list and tarminata.

. if bv is an idantifier, bind the value list to that identi-

iar.

. If bv is a pair and the valuae list is not a pair, signal an
arror.

. It both bv and the value list are pairs, repeat the process
on their respectiva CARs and CDRs.

(Notae that NIL is not an identifier.)

Let ma present a few examplas.

(LAMBDA
(LAMBDA
(LAMBDA
(LAMBDA
(LAMBDA
(LAMBDA
(LAMBDA
(LAMBDA
(LAMBDA

c
~
w

~
c

cccccacc
EEX €w
~
<X
N
~ T Wl W
5 o~ ~
0~ S
o

-
NAONNNAN N

Y e lolalalalete)
Pl alolelalatalal
DD 0t et b ot d o et
~ o

HENNNRNONNDN
NNV UUUHUHWUWNL
s~

Wl Wl ot Nl S N N Nl ot
WHusuunun
AU
e Nl ol ol o I]

~ N~

ccCcc<<c
N

~
<
~

Note that because of the "constant™ rule, excaess arguments are
simply discarded, not considared an error, whila missing argu-
ments are treated as an error.

Once the anvironment corresponding to thae bindings has been
creatad, the body of thae LAMBDA axpression is evaluatad as an
implied PROGN.

Nota that the environmaent created allows access to the vari-
ablas of the in tha environment of the expression. Thus, like
thae funarg, frae variables will resolve to immaediate bindings.

A LAMBDA axprassion which is found by avaluating an opaerator,
(an identifier, say), doaes not have accass to thae local environ-
mant. In order that a variabla be accessible from a callaed
function it must be daeclared to ba FLUID. This corresponds to
SPECIAL in many other LISP systams. Tha differencae is that the
daclaration of SPECIAL is mada outsida of any specific LAMBDA

YKTLISP Program Dascription and Oparations Manual

x

expression, while tha daclaration of FLUID applias to one spae-

ci

fic instance of &a variable, in one specific LAMBDA

exprassion.

In

order to declare a variable FLUID, the position usually taken

by the variable, say X, in the bound variabla list is filled by
the list (FLUID X). Suppose that:

th

In
no
(B

FOO = (LAMBDA (X) (BAZ))
BAR = (LAMBDA ((FLUID X)) (BA2))
BAZ = (LAMBDA () X)

an the following sequencae would ensua.

(SETQ X 10)
Value = 10
(F0O0 1)
Value = 10
(BAR 1)
Value =

the first case, (F00 1), the free variable, X, in BAZ does
t see tha binding of X in F00, whilae in the second case,
AR 1), it does see thae FLUID binding in BAR. This visibility

of the FLUID binding is not just limited to the immadiately

ca
in

A

op
fu
st
LA

lled function, but is also affactive at deeper levels of call-
g.

LAMBDA aexpression treated as an axpraession, and not as an
erator, evaluataes to a funarg. The expraession portion of the
narg is simply the original LAMBDA expression, whila the
ate-descriptor portion capturaes tha environment in which the
MBDA expraession was evaluated.

When thae resulting funarg is applied, frae variables in the

LA

MBDA aexpression will ba resolvad, lexically, in the environ-

maent of the stata-descriptor.

Su

pposae the value of the identifier FOO is
(LAMBDA (X) (LAMBDA (Y) (PLUS X Y)))

and the expression (FOQ 7) is avaluatad.

Tha value of this axpression will be

%.FUNARG. ((LAMBDA (Y) (PLUS X Y)) . %.SD.xXxxxxxxx)

whare the sd part of the funarg capturas tha binding of X (from
the original LAMBDA expression) to 7. The resulting funarg will

no

w add 7 to any argument that it is applied to.

MLAMBDA — special form
(MLAMBDA bv-list [exp ...]1)

Li

ke tha LAMBDA, the MLAMBDA aexpression behaves differently

whan usaed in operator or operand position.

An MLAMBDA expression, used as an operator, spaecifies a macro
application. This differs from ordinary application (such as
of a LAMBDA exprassion) in three ways.

1.

2.

3.

No avaluation of operands occurs before the macro applica-
tion

The entirae aexpression, including the (unevaluated)
oparator, becomes the oparand of the macro oparator.

The value returned by thae macro opaerator is itself gvglu-
ated, as if it had occurred in the placae of the original
expression.

Environment of exaecution 53

The exprassion (which becomes the operand) is treated as if it
wera thaea conceptual operand list dascribed above, under LAMBDA.
Thg: to bind the entire expression to a variable, one would
write

{ (MLAMBDA X
(PRETTYPRINT (LIST ™xxx X ™XXX))
(CONS "CAR (CDR X))
"(A . B))
€11
((MLAMBDA X
(PRETTYPRINT C(LIST ™xx X "3xx%x))
(CONS "CAR (CDR X))
(A . B))
%33)
Valua = A

It is as if an outer pair of parenthesaes had been supplied. One
can use a structuraed bound variable list, as wall.

C (MLAMBDA (() . X)
(PRETTYPRINT (LIST ™xx X "™x%%x))
(CONS "CAR X))
"(A . B))
(%% ("CA . B)) »xx)
Value = A

In thesae example we =ee the side affacts of tha macro applica-
tion, and the valuae of tha raesulting exprassion, but not tha
valua of tha macro itsalf. In both casaes that is

(CAR "(A . B))

but that aexpression is reevaluated befora any value is
raturned.

As in tha LAMBDA axprassion, an MLAMBDA which is written explic-
itly as an opaerator has accass to the laxical variables of its
environmant.

This is trua of an MLAMBDA expression which is the result
of a macro application. Thus, ona macro application may
craeate a new aexpraession which contains a macro operator,
resulting in a second macro application.

An MLAMBDA exprassion which is the immediata valua of an operand
doas not have such lexical accass.

If an MLAMBDA exprassion is found as a raesult of repeatad avalu-
ations of an oparator, an aerror break is taken. The rational
for this action, is that elemaents of the expression, putative
operands, will have beaen avaluated, making it impossible to
recover thae original form, the corract operand of tha MLAMBDA
expression.

This rule applies to mbpi's as wall.
If an operand which the compilar assumed would have an applica-

ble value at exacution time has, in fact, a macro applicable
opaerand, the samae arror break is taken.

CLOSEDFN — special form

56

(CLOSEDFN item)
This operator is aexactly equivalent to QUOTE during interpreta-~
tion. It acts as a signal to the compiler to compila its opar-
and. This allows a QUOTEd bpi to be constructed. In compiled
code, thae valua of

(CLOSEDFN (LAMBDA (X) (PLUS X 7))
is a bpi, which adds 7 to its argument. This differs from

(QUOTE (LAMBDA (X) (PLUS X 7)))

YKTLISP Program Description and Operations Manual

which is the specifiaed list structure, and
(LAMBDA (X) (PLUS X 7))

which results in a compilad function, a bpi, but one which is
anclosed in a funarg.

FUNARG — special form
(FUNARG axp sd)

Something of a fossil. This operator creates a funarg (primi-
tive object) comprised of its tuwo arguments, unevaluated.

In an earlier version of LISP/370 the funarg object was not a
primitive, but was rather a list, (FUNARG expression sd). In
ordar to allow older code, which constructed such funarg, to run
in the later system, it was necessary to define the opaerator
FUNARG in this mannar.

FUNCTION — special form
(FUNCTION axp)

This is also an anachronism. It is exactly equivalent to (CLO-
SURE "exp (STATE)). It is included for compatibility with older
programs, written when CLOSURE did not exist, and when the map-
ping operators ware functions rather than macros.

MULTIPLE LEVEL RETURNS

Each application of an ordinary opaerator (LAMBDA expression or bpi)
results in the craeation of a frame in the stack. Normally, execution
remains within a frame until the aend of tha axpression sequencae of a
LAMBDA body, or an explicit RETURN, causes axecution to revart to the
immediately praecaeding frame.

Thare exists a set of operators which mark cartain stack framas as catch
points. A catch point is a frame which can receive control directly from
a frame which is not its immediate successor, via the oparator THROW. The
frame passing control to a catch point must be a successor of tha catch
point, but may ba many levael below it.

Certain catch points will intercept only specific THROW operations, oth-
aers will intercapt a wide class, or aven all THROW operations.

Each THROW has two operands, tha first (referred to as the tag) specifying
the targeted catch point, the second providing an arbitrary value which is
availabla when the (refarred to as the yalue) THROW terminataes. Whan a
catch point receives control it has accass to both of thesa values. It
may then execute arbitrary code, continue execution, or propagatae the
THROW, with the samae or modified tag.

Each catch point corraesponds to a stack frama, with variabla bindings. In
particular each such frame has a laexical variable CATCH,MESS which is
bound to a "massage™, a distinctive value identifying the catch point.
These values are found and interpreted by the & operator. See page 135
and Figure 14 on page 56.

CATCH — macro
(CATCH idl exp [id2 [item ...)))

Where neither idl nor id2 are evacuataed, but are used as
written.

CATCH establishes a catch point and then evaluates exp. If no
THROW occurs during the evaluation the valua of tha CATCH
exprassion is the value of axp. If a THROW to a tag EQ to idl
occurs, tha value is tha valua THROWen.

Environment of execution 55

ERRSET?
(0 . [usar-item ...1) Raturn THROWen valuae. ::)’
ERRCATCH? ‘
(2 . [usaer-itam ...J) Raturn THROWen valua.
(3 . [usar~-item ...1) Return THROWan valua, sets FLAGVAR.
CATCH
(4 . [user-item ...1) Raturn THROWen valua.
(5 . (user-item ...1) Return THROWen value, sats FLAGVAR.
NAMEDERRCATCH?
(6 . [usar-itam ...1) Raturn THROWen value.
SUPERMAN?
901 Call to SUPYV
Tries again, with existing streams.
902 EVAl of user providad expression, INITSUPYV
Same action as 901.
SuUpv?
903 Read input
Raturns to read with existing streams.
904 Echo-print
Same action as 903.
905 EVAlFUN of input
Sama action as 903, .
but ,VAL updated with caught valua.
906 Value-print
. Same action as 903. .
907 Print of message whan UNWIND is caught)
Sama action as 903. -
EXF1
908 SUPV call
EXFTEMP LISPLIB not renamed (if it
axists), files shut.
ERRORLOOP?
909 Error maeassage print
Entaers the read loop.
910 Read input
Raturns to input read.
911 EVAl input
Same as 910.
912 Valuae-print
Sama as 910.
913 Print of messaga whan UNWIND is caught
Same as 9510.
DISPATCHER?
914 Dispatch loop
Stops interrupt servicer scan.
! marks catch points which intercept numaric tags and count
them down.

Figure 14. CATCH,MESS valuas, actions and interpratation.

If id2, is prasent, it is interpraeted as a variable, and is used

D)

56 YKTLISP Program Description and Oparations Manual

to indicata tha mode of return. If the evaluation of exp com-
pleted normally, id2 is assignad a value of NIL. If a THROW to
idl prematurely terminated the evaluation, id2 is assigned a
valua of idl. (0f coursa, if a THROW to some othar tag occurs,
control naever raturns to this CATCH.)

The evaluation of exp is parformed in such a way as to contain
the scope of EXIT and RETURN expressions within it. Either will
providae a value for exp, but neithar will cause control to leave
the CATCH without its setting the valua of id2, if present.

Tha jteng. if prasent, arae maka part of the valuae of CATCH,MESS.
If 1di is NIL items may follow it, but it is treated as not
prasaent.

THROW — function
(THROW {id | s~-int) &item)

The THROW operator taerminates the current evaluation and
searches backwards in thae stack for a catch point. At each
catch point found the value of tha tag of the is examined to
determine whethaer the destination has been reached. If so, the
THROW is stopped and aexecution rasumes as that catch point. If
not, the THROW is continued, possibly with a modified tag, or
after arbitrary clean-up coda has been executed, saee
THROW-PROTECT, below.

At the catch point which stops the THROW the value of itam is
available. The value of the tag is somatimaes availabla.

UNWIND — function
(UNWIND [s-int [item]])

The UNWIND oparator exacutes a THROW with a numeric tag. sS-int
defaults to 1 (one), whila itam defaults to NIL.

UNWIND is normally usad to aescape from the error break loop,
passing control back to an arror-eaxpacting catch point.

THROK=-PROTECT — macro
(THROW-PROTECT axpl axp2)

This operator evaluates its operands in sequenca, establishing
a catch point during the evaluation of expl.

If the evaluation of @xpl complaetas normally, its value is
reservaed, and becomes the value of the THROW-PROTECT
exprassion, after exp2 has been evaluatad.

If the evaluation of expl results in a THROW which is not caught
before control passes thae THROW-PROTECT, tha THROW is temporar-
ily stoppad, exp2 is evaluated, and the THROW is continued.

The avaluations of both expl and @xp2 are protectad against con-
trol being lost due to RETURN or EXIT expressions. A THROW in
exp2 will, however, take precedencae over the resumption of the
suspandad THROW.

ERRSET — macro
(ERRSET exp [item ...])

Thae ERRSET oparator establishaes a catch point and evaluataes
exp. If the evaluation terminates normally the value of the
ERRSET expression is a list of ona element, containing thae value
of exp.

If a THROW with a numeric tag occurs during the aevaluation,
ERRSET examines the tag. If the tag is 0 (zero), tha THROW is
stoppad and the value of the ERRSET expression is the value
THROWan. If tha tag is not 0 (zero) the THROW is continued,
with tha tag decremented by 1 (ona).

Environment of execution 57

Thus, thae first oparand of the THROW (or the UNWIND) controls
the numbar of ERRSET (and ERRCATCH and NAMEDERRSET) aexprassion
to ba skippead.

The items, if present, are make part of tha value of CATCH,MESS.

NAMEDERRSET — macro

(NAMEDERRSET id axp (item ...])

NAMEDERRSET behavas like ERRSET, but allows a tag and user mes-
sagaes to be spaecifiad.

This allows an UNWIND directly to a specific NAMEDERRSET, aven
when there may be an unknown number of ERRSETs or ERRCATCHs
intervening.

The items, if present, are make part of the valuae of CATCH,MESS.

ERRCATCH — macro

53

(ERRCATCH exp [id [item ...1])

ERRCATCH behaves lika ERRSET with two aexceptions. First, tha
value of the ERRCATCH expression is either tha value of exp (not
in a list), or the value of the intercepted THROW. Second, id,
if praesent, is sat to NIL if the evaluation of exp tarminates
normally, and to 0 (zero) if a THROW is intaercepted.

Unlike ERRSET, which can be foolad by THROWing a list as valuae,
ERRCATCH allows tha return of arbitrary valuaes, whila still
datacting abnormal raeturns.

Thae items, if praesaent, are make part of tha valua of CATCH,MESS.
Iftid is NIL items may follow it, but it is treatad as not pras-
ent.

YKTLISP Program Dascription and Operations Manual

~,

-

ENVIRCNMENT OF EVALUATIQON

As was pointed out in the introduction to the previous section, the two
parts of tha YKTLISP environment are tightly intertwined. LAMBDA
expraessions (and corresponding bpi's) always effect both parts. These
aspaects are dascribed in tha previous saction.

This section wWill describe those operators which prlmarlly affact the
environment of evaluation alone.

EVALUATION

EVAl — built in function
(EVAl exp)

The EVAl operator causes the value of its oparand, exp, to be
avaluatgd as if it had occurrad in tha placa of tha EVAl
axpression.

(SETQ X ™A)

Value = A

((LAMBDA (A B) (EVAl B)) 1 X)
Valua =1

The sequaence.of avaluations is:

1. X avaluates to A

2. Thae valuas of A and B becoma 1 and A, raespectivaly

3. B avaluates to A

4. EVALl appliad to A evaluates to 1

5. Tha LAMBDA expression raturns 1

Note well, that even though the identifiar A was not lexically
prasent in tha LAMBDA expression, its laxical value was found.

EVALFUN — function
(EVA1FUN axp)

The EVALFUN operator causes the value of its operand, exp, to be
avaluated as if it had occurred in a function of no arguments
called from tha placa of tha EVA1IFUN expression.

(SETQ X "A)

Valua = A

(SETQ A 10)

Value = 10

((LAMBDA (A B} (EVAL1FUN B)) 1 X)
Value = 10

The sequenca of avaluations is:

. X avaluates to A
. The values of A and B bacoma 1 and A respectively
. B evaluatas to A
. EVAlFUN applied to A avaluatas to 10
The LAMBDA expression return 10
Herae, unlike the pravious casae, the lexical variablae, A, in the
LAMBDA expression is not found by tha evaluation, and the global
valua is seen.

EVAL —/ built in function
(EVAL axp sd)

1
2
3
Py
5.

EVAL causaes the value of eXp to ba avaluated in the environment
captured by sd. This evaluation, like that of EVAl, has accaess
to tha lexical binding in sd.

Environment of avaluation 59

(SETQ
Value
(SETQ
Value
(EVAL
Value
(EVAL
Value

AMBDA (Y) (STATE)) 10))
« XXXXKXKXXX

o

W an 3u~<nX

20

EVAL-ID — built in function

(EVAL-ID id)

Tha valua of this opaerator is axactly the same as that of
EVAIFUN when applied to the sama argumant. It differs in that
its operand must have an identifier as valua, (there is no
restriction on the value of the identifiaer, just on the value of
the opaerand in tha EVAL-ID expression), and in its efficiency.
Wharae EVALFUN must bae ablae to evaluata any expression, EVAL-ID,
being rastricted to identifiers, can use a much faster maech-
anism.

EVAL-LEX-ID — built in function

(EVAL-LEX~ID id)

This oparator is thae (spacial casa) identifier avaluator corre-
sponding to EVAl. Unlikae EVAL-ID it can accaess thosa lexical
bindings which are visible from tha contaxt of application.

(SETQ X (SETQ Y 10))

Value = 10

((LAMBDA (X (FLUID Y)) (EVAL-ID "X)) 100 100)
Value = 10

((LAMBDA (X (FLUID Y)) (EVAL-LEX-ID "X)) 100 100>
Value = 100

¢ (LAMBDA (X (FLUID Y)) (EVAL~-ID "™Y)) 100 100)
Valua = 100

C (LAMBDA (X (FLUID Y)) (EVAL-LEX-ID ™Y)) 100 100)
Valua = 100

EVAL=-GLOBAL-ID — function

(EVAL-GLOBAL-ID id)

This operator raturns the value of its argumant as bound in tha
currant global aenvironment. No values bound on the stack,
@ither FLUID or LEXical, ara seen. If no binding is found in
@ga currant global environmaent the valua of the exprassion is
‘ -

CEVAL-ID — function

60

(CEVAL-ID id)

This operator searchaes the stack for a FLUID binding of the val-
ua of its oparand, following tha gontrol chain. If no binding
is found in thae stack, no global environment search is made and
the value of the exprassion is id

As was explained (see paga 41) the stack may split, with
the control chain indicating the hierarchy of applica-
tions, while tha environment chain indicates the search
order for avaluation. CEVAL-ID breaks the aevaluation
seig:h rule, and follows tha application hierarchy at the
splits.

Tha primary purpose of this abnormal evaluation is to
se@arch the control chain for values which control excep-
tion handling. Thae arror break machanism is controllad
by tha value of a fraa (henca global or FLUIDly bound)
variable, PROGRAM-EVENTS.

It is felt that the arror break specifications found in
the control chain are more meaningful than those found in

YKTLISP Program Description and Operations Manual

O

[

the environment chain in the cases when they differ.
Thus, a usae of EVAL will not temporarily switch excaption
handling to tha status which existed when the sd operand
was created, but will retain the current status.

CEVAL-LEX-ID — function
(CEVAL-LEX-ID id)

This operator differs from CEVAL-ID only in having access to
thosae LEXical bindings visible from tha application context.

ASSIGNMENT

SETQ — special form
(SETQ id exp)

The assignment operator. The value of exXp is assignad to id.
While exp is evaluated, id is not, and must be an identifier,
otherwisa an error break is taken.

COUNT

Value = COUNT
(SETQ COUNT ™100)
Value = 100

COUNT

Value = 100

RESETQ — macro
(RESETQ id [iteml)

Assigns tha valuae of item to id, as in SETQ. Tha value of this
expression is the valua which id had bgfore tha assignmant.

itam defaults to NIL.

(SETQ X "(1 2 3))
Value = (1 2 3
(RESETQ X (CDR X))
xalue = (1 2 3)
Value = (2 3

SET — built in function
(SET id exp)

The other assignment opaerator. The valua of exp is assigned to
id. Unlike SETQ, both arguments are evaluated. The value of id
must ba an identifier, otherwise an error break is taken.

COUNT

Value = COUNT
(SETQ X "COUNT)
Value = COUNT
(SET X "100)

Value = 100
COUNT

;alue = 100
Value = COUNT

SET-ID — function
(SET-ID id item)

This operator is equivalent to SET, except that it affects only
FLUID or global bindings.

SET-LEX-ID — function

Environment of evaluation 61

(SET-LEX-ID id item)

An anomaly. Diffars from SET only in baing a function rather
than a builtin operator. 0ddly enough this makas SET-LEX-ID
faster, as tha curraent implementation of SET involvaes starting
up tha entira interprater.

SET-GLOBAL-1ID — function

(SET-GLOBAL-ID id item)

This operator performs an assignment in the curraent global
environment. It does not effect any stack bindings. If no
binding for id is found one is addaed to tha head of tha currant
global environmaent.

CSET-ID — function

(CSET-ID id item)

This operator is the assignment operator corraesponding to
CEVAL-ID. 1t s@archaes the control chain for a FLUID binding of
id, and if it finds one updates it with item. If no binding is
found in the control chain no updating is performed and the val-
ua of tha CSET-ID expraession is id. No search of a global envi-
ronment is mada.

CSET-LEX-ID — function

62

(CSET-LEX-ID id item)

The assignment opaerator corresponding to CEVAL-LEX-ID. Differs
from CSET-ID in that it has accass to thosae LEXical bindings
which are visibla in tha application context.

YKTLISP Program Description and Oparations Manual

.(Q

A VE $

Mapping operators are the commonast iterativaea constructs in LISP. All
LISP systems have saeveral, usually with conflicting dafinitions. In
YKTLISP wae support three of tha LISPl.5 mapping oparators, six of tha
MACLISP mapping operators (with slightly modified names) and several
additional ones.

All of the YKTLISP mapping operators ara macros, which construct PROGs,
with their functional operand explicitly placed in operator position.
This obviates tha naed to construct funargs, with their overhead of state
descriptors, and allows many macros to ba usaed as functional opaerands.

In gaeneral, LISP mapping opaerators apply a functional opaerand to succes-
sive portions of one or more lists, often constructing a value from the
results of these applications. In addition, YKTLISP provides operators
which iterate over vectors, and othars which will terminate their iter-
ation when some critaerion is met.

All of the mapping operators terminate when their shortest list or vactor
is exhaustad.

This allows thair usa with "infinita" lists, e.g5. tha valua of the
LOTSOF opaerator, as long as one of their argumants is non-cyclic.

Tha chief difference between the mapping opaerators as defined in LISPl.5
and as defined in MACLISP is the order of arguments. A LISPl.5 mapping
expraession is of the form

(mapping-operator list app-ch)
while a MACLISP mapping expression is of tha form
(mapping-oparator app-ob list ...)

It is evident that the former allows only function of one argument, while
thae latter allows multi-argument functions.

As an earliaer version of LISP (LISP360) in use at Yorktown Heights used
the LISPl.5 opaerators we have raetained thair syntax. Tha MACLISP opera-
tors arae formed by prefixing their usual names by an M, yielding MMAP,
MMAPCAR, etc.

A sP S ERATOR

The MACLISP stylae operators, the MMAP... operators, can be split along two
axes,

. Those that apply thaeir app-ob to tha successiva elements of their list
oparands.
MMAPC, MMAPCAR, MMAPCAN

. Those that apply thaeir app~oh to thair list operands, and the succes-
siva CD...Rs of thosa oparands.
MMAP, MMAPLIST, MMAPCON

and

. Thosa that return their first list operand as their value.
MMAPC, MMAP

. Those that construct a list of the valuaes returned by successive
applications of their app-gb.
MMAPCAR, MMAPLIST

° Thosa that use NCONC to splice togathar the values returnaed by succas-

sive applications of thair app-chb.
MMAPCAN, MMAPCON

Itaeration over lists and vaectors 63

MMAPC — macro
(MMAPC app-ob list ...) J
'y

MMAPC applias app-ob to thae 1lst, 2nd, etc. elemaents of tha
lists., Tha value of tha expression is the first list.

g?NAPg)(LAMBDA (X Y) (PRINT (CONS X Y))) ™(1 2 3 &) ™(9 8 7))

(2 . 8)
(3 . 7)
Valua = (1 2 3 &)

MMAP — macro
(MMAP app-ob list ...)

MMAP applies app-ob to the lists, then to tha CDRs, CDDRs, atc.
of tha lists. Tha valua of thae exprassion is tha first list.

(MMAPC (LAMBDA (X) (PRINT X)) "™(1 2 3 %))
(123 %)

(2 3 4)

(3 §)

(%)

Value = (1 2 3 %)

Nota that the expression
(MMAP PRINT "(1 2 3 4))
would have tha same rasult.

Thaesae two oparators are used only for thair side affacts,
in this casae, printing.

MMAPCAR — macro ;:)
(MMAPCAR app-ob list ...) . —

MMAPCAR applies app-ob to the 1lst, 2nd, aetc. elements of the
lists. The value of tha exprassion is a list of tha valuaes of
thesae applications.

(MMAPCAR (LAMBDA (X Y) (CONS X YJ)) "™(1 2 3 4) ™(9 8 7))
Value = ((1 . 9) (2 . 8) (3 . 7))

Remembaer that YKTLISP discards any extra operands. Thus,
ona can use the termination condition of the mapping
operators, when tha shortast list is exhaustaed, in many
ways. :

For instanca:
(SETQ X "(1 2 3 §))
Value = (1 2 3 4)
(MMAPCAR (LAMBDA () ()) X)
Valua = (()) () ()N

Here wa have constructed a list of NILs, equal in langth
to anothar list.

In order to facilitata such operations a group of auxil-
iary operators has beaen provided, NILFN, TRUEFN and IDEN-
TITY. Sea page 69.

MMAPLIST — macro

(MMAPLIST app-ob list ...)

MMAPLIST applies app-ob to thae lists, then to the CDRs, CDDRs., =
etc. of tha lists. Tha valua of the expression is a list of tha \/)
values of these applications.

64 YKTLISP Program Daescription and Operations Manual

.

(MMAPLIST IDENTITY "(1 2 3 4))

Value = ((1 . XL1=(2 . %XL2=(3 . %XL3=(4)))) XLl XL2 %L3)

value

L]

[__ 1 2] 1
> ° o-J——————> 7 @ s 3 *— > /7

® L
1 []
|-—-> 1 0-—-—->[-> 2 o-———->l——> 3 0-—-—->l——>r‘4 /

(Note, thae pairs marked by ! are nauwly created.)
Figure 15. Result of MMAPLIST.
MMAPCAN — macro
(MMAPCAN app-ob list ...)

MMAPCAN applies app-ob to the 1lst, 2nd, etc. elaments of the
lists. The value of the axpraession produced by NCONCing the
valuas of these applications togather.

(MMAPCAN LIST "(1 2 3) "(6 7 8 9))
Value = (1 6 27 3 8)

(SETQ X (LIST "(1) "(4% 5) 8 "(2)))
Value = ((1) (4 5) 8 (2))

(MMAPCAN IDENTITY X)
Value = (1 ¢ 5 2)

X
Value (€1 . %L1=(4 5 . %L2=(2))) %L1 8 %L2)

value
.

X
.

I-——>) >| o . >| 8 . > o /

1 1 L
>|—> 1 .___>I_> 6 | o >l 5 --——>|—> 2| s

(Note, no new pairs are created.)
Figura 16. Rasult of MMAPCAN.

With both MMAPCAN and MMAPCON side affects can be
drastic. Unlaess you are constructing the valuas of the
indi¥igua1 applications, ab novo, you should be very
caraeful.

MMAPCON — macro
(MMAPCON app-ob list ...)
MMAPCON applies app-ob to thae lists, then to the CDRs, CDDRs,
atc. of the lists. Tha value of tha aexpression produced by
NCONCing thae values of these applications togethar.

(MMAPCON COPY "(1 2 3 4))
Valua = (1 2 3 623 6 3 4 4)

MMAPLACA — macro
(MMAPLACA app-o0b list ...)

Iteration over lists and vectors 65

SCANOR — macro

MMAPLACA applias app-ob to the 1lst, 2nd, etc. elaements of thea
lists. Thae first list is updated, with RPLACA, with the values
of the successive applications. The valuae of tha expression is

the first (updataed) list.

(SETQ X "(1 2 3 §))
Value = (1 2 3 &
(MMAPLACA ADD1 X
xalua = (2345
Value = (2 3 4 5
(MMAPLACA CONS X C(LOTSOF a b)) -
;alue S ((2.a) (3 .Db) (4. a) (5 . b))

((2 . a) (3.b) (4. a) (5. b))

Value

(SCANOR app-ob list ...)

SCANOR applias app-ob to the lst, 2nd, etc. alements of thae
lists., The iteration terminates at the first such application
which rasults in a non-NIL value. If all applications raesult in
NIL values, the value of the expression is NIL, otherwise it is

the non-NIL, terminating, valua.

ssgANOR i%AMBDA (X) (GREATERP X 10)) ™(5 3 13 8 23))
alue =
(SCANOR (LAMBDA (X) (GREATERP X 100)) "(5 3 13 8 23))

Valua = ()
ASS5Q (sea page 86) could be dafined as

(LAMBDA (I L)
(SCANGOR
(LAMBDA (XD
(COND
(CAND (PAIRP X) (EQ (CAR X) I))
L) X))

SCANAND — macro

66

(SCANAND app-ob list ...)

SCANAND appliaes app-0Ob to tha 1st, 2nd, etc. alemants of the
lists. The iteration terminataes at tha first such application

which results in a NIL value. If all applications result

in

non-NIL values, tha valua of tha expression is tha valua of the

last application, otherwisa it is NIL.

(SCANAND NUMBERP "(1 2 3 & 5))
Value = 5
(SCANAND NUMBERP ™(1 2 a 3 b))
Valua = ()

P_STY OPERATOR OR _VECT

The following operators are dasignad primarily for iteration of
vaector operands. Since they use ELT to accaess their operands thay
will work corractly on lists, as waell as on strings. Since they
require an upper limit on their indax value thae compute the MIN of
SIZE of all of their operands. This restricts thair usa to
non-cyclic lists. In addition, sinca SIZE must traverse its operand
when it is a list, such operands will ba traversed tuice.

The upshot of all this is, only use thaesae opaerators when ona or more

gf‘:ha arguments are vactors, and naver usa them with circular
ists.,

ﬁp addition, nota that thasa oparators have namas without tha M pre-
ix.

YKTLISP Program Dascription and Operations Manual

MAPE — macro

(MAPE app-0b vec ...)

MAPE appliaes app-ob to tha lst, 2nd, atc. aleménts of tha vecs.
The valuae of the expraession is the length of the shortest vec,
i.a., the numbar of iterations.

:HAPE PRINT 'ABC')
B

c

Value = 'ABC'

MAPELT — macro

(MAPELT app-cb vec ...)

MAPELT applies app-ob to the 1lst, 2nd, atc. elaements of tha
vecs. The value of the expression is a referenca vector con-
taining the values of the successiva applications.

(MMAPELT
(LAMBDA (X Y) (STRCONC X Y))

YABCD'
<'1' '23' '456' '7890' '12345'>)
Valua = <'Al' 'B23' 'C456' 'D7890'>

MAPSETE — macro

(MAPSETE app-ob vec ...)

MAPSETE applies app-ob to the 1lst, 2nd, etc. elements of the
vecs. Tha first vec is updataed by SETELT with the successive
value of the applications. The value of tha expression is the

first (updated) vec.

(SETQ X <1 2 3 4>)

Valua = <1 2 3 4>

(MAPSETE PLUS X ™(10 20 30 40))
galue = <11 22 33 44>

<11 22 33 44>

Value

These are the vector countaerparts of SCANOR and SCANAND. The pravious
discussion applies.

VSCANOR — macro

(VSCANOR app-ob vec ...)

VSCANOR applies app-ocb to the 1lst, 2nd, etc. elemants of the
vecs. The iteration terminates at the first such application
which results in a non=-NIL value. If all applications result in
NIL values, the value of the expression is NIL, otherwisa it is

the non-NIL, tarminating, value.

(SETQ X 'This, is a test.')
Value = 'This, is a test.'
(VSCANOR (LAMBDA (X3 (MEMQ X “(. , 3))) X)

Value = ,

VSCANAND — nmacro

(VSCANAND app-cb vec ...)

VSCANAND applies app-ob to thae lst, 2nd, etc. elements of the
vecs. The itaration taerminates at tha first such applicatign
which results in a NIL value. If all applications rasult in
non-NIL values, tha valuae of the expression is thae value of the

last application, otharwise it is NIL.

Iteration over lists and vaectors 67

p

(VSCANAND LESSP <3 6 4 8> <5 7 8 10>
Value = %7
(VSCANAND LESSP <3 6 § 8> <5 7 2 9>)
Value = NIL

PPING OPERAT

Since thae semantics of these operators is a subsat of the semantics
of the MACLISP style opaerators, thaey ara simply defined as macros
which changae the ordaer of the operands and raplace the oparator by
thae corresponding M prefixed oparator.

MAP —/™ macro

(MAP list app-ob)
(MMAP app-ob list)

MAPCAR — macro

(MAPCAR list app-cb)
(MMAPCAR app-ob list)

MAPLIST — macro

(MAPLIST list app-ob)
(MMAPLIST app-ob list)

HISCELLANEOUS

MAPOBLIST — function

(MAPOBLIST app-ob)

MAPOBLIST applies arPp-0ob to each identifier in the object
array, that is to each non-GENSYM, INTERNed idantifier in the
systam. Thae value of the expression is NIL, so any raesults must
ba obtainad via sida effects.

WRAP - function

638

(WRAP list jtem)

This oparator itaratas ovar list, creating a new list whosae elae-
maents are datarmined by tha value of item.

For list of tha form
(il i2 ...)

item is NIL, the value will ba list,
iteam is not a pair, tha valuae will be

(Citem il) (item i2) ...)

if
if

if itam is a list, its elements are match with tha elaments of
list, with the value containing elemants from list whare the
corresponding elament of itam is NIL, and lists of tha alements
from item and list othaerwisa.

If item is a list, and if list contains mora elemants than itenm,
t?elfigal CDR of item is matchad against tha remaining elements
o 18%.

YKTLISP Program Description and Operations Manual

(WRAP "(A B C D E) "QUOTE)

Valua = ("A "B "C "D "E)

(WRAP "(A B C D E) "FLUID)

Valua = ((FLUID A) (FLUID B) (FLUID C) (FLUID D) (FLUID E))
(WRAP (A B C D E) "(FLUID () () . FLUID))

Value ((FLUID A) B € (FLUID D) (FLUID E))

(WRAP "(A B €C D E) ™(X Y 2))

Value ((X A) (Y B) (ZC)DBE)

AUXILIARY OPERATORS

These are operators which correspond to often used app-Ob operands. They
have been defined both for a clearer style, since their names are mar-
ginally more understandable than the corresponding LAMBDA expressions,
and in order to obtain morae efficient code, via macro definitions avail-
able at compilation.
IDENTITY — function + compiler macro

(IDENTITY item)

The value of IDENTITY is item. This oparator is exactly equiv~-
alent to

(LAMBDA (X) X)
TRUEFN — function + compiler macro
(TRUEFN)

Ihe valua of TRUEFN is %T%., This operator is exactly equivalent
o

(LAMBDA () ™xTx)

Remembar, for this and the following, that the value of
extra opaerands are ignorad.

NILFN — function + compiler macro
(NILFN)

Ihe value of NILFN is NIL. This operator is exactly equivalent
o

(LAMBDA () ())

Iteration over lists and vectors 69

70

YKTLISP Program Dascription and Operations Manual

[

A PES P G_AN DICAT

YKTLISP allows the creation and manipulation of data objects of a numbar
of differaent typaes, sea "YKTLISP data types™ en paga 23.

There exist a collection of operators which are used to detarmine, at exe-
cution tima, the tvpe of any particular data object. Thaese opaerators are
usually refaerrad to a predicatgs, and tha majority have names ending in P.
Each of tha primitive types has a corresponding predicate. In addition
sogn %?lons of primitive typaes have pradicates, as do somé arbitrary
sub-sats.

Thesa are by no means the only predicates. There are many two argument
operators which act as predicates (EQUAL and GREATERP for example), as
wall a oparators which raeport on various aspaects of the statae of the sys-
tem (IOSTATE and BOUNDP). This section describes only those which deal
with the type of thae object directly.

It must be remembered that the primary use of predicates is in COND
expressions (or such forms as OR and AND, which ara variations on COND),
and that in COND expressions truth and falsity are represented by non-NIL
and NIL. Most predicates will return their value for "true™, if it is

appropriate. (Exceptions to this rule are NULL, ATOM and LISTP, all of
which are true when their argument is NIL.)

GENERAL

NONSTOREDP — function + compiler macro
(NONSTOREDP item)
Returns item if item is not a stored object. By "stored"” ue
really mean, possibly heap resident, and hence, may be moved by
the garbaga collector. This is indicatad, in a somewhat arbi-
trary way, that the type code of item has a 2zero in its

high-order bit. Thus, small integers, generated symbols, bina-
ry programs ara examples of non-stored objects.

NIL AND TRUTH VALUE

NULL — built in function
(NULL item)

This function has tha valua *T* if item is NIL; otherwise, it
returns the valua NIL.

NOT — function + compiler macro
(NOT item)
NOT is exactly equivalent to NULL. Its reason for existaence,
othar than hvstor\cal. is to allow a more meaningful operator
when the praedicate in a COND is to be inverted.

In some sansa it doesn't balong in this saction, but its equiv-
alence to NULL made it seem tha best placa for it.

PAIRS AND S

ATOM — built in function
(ATOM item)

Data types, typa testing and other predicates 71

This function returns thae velua NIL if item is a pair;
otharwisae, valuae is %XTx,

It is unfortunatae that the word ATOM is wasted as the
not-pair predicate, but to change this tradition would
lead to considerabla confusion and problems of compat-
ibility.
LISTP — built in function
(LISTP item))
This function raturns the value %T% is item is a list; othar-
Wwise, it returns the value NIL. The value of LISTP applied to
NIL (tha ampty list) is %Tx,
PAIRP — built in function
(PAIRP item)
This function returns item if item is a pair; otherwisae, it

raturns the value NIL. It is distinguishad from LISTP by tha
fact that (LISTP NIL) = %T%, whereas (PAIRP NIL) = NIL.

VECTORS, STRINGS AND BPIS

REFVECP — built in function

(REFVECP item)

Raeturns item if it is a reference vector, elsa returns NIL.
WORDVECP — built in function

(WORDVECP itam)

Raturns item if it is a vector of 32 bit integars, alsa returns

REALVECP ™ built in function
(REALVECP itom)

Returns item if it is a vactor of 64 bit floating point numbaers,
elsa raturns NIL.

STRINGP — built in function
(STRINGP itam)
This function raeturns tha value item if item is a character
string (that is, a vaector of charactars); otherwisa, it returns
thae valua NIL. .

BITSTRINGP — built in function
(BITSTRINGP item)

This function returns the value item if item is a bit string
(i.a. a vactor of bits); othaeruisae, it returns thae valua NIL.

SUBRP — built in function
(SUBRP item)

Raturns item if item is a compiled function, otherwisa raturns
NIL.

MSUBRP — built in function
(MSUBRP item)

72 YKTLISP Program Description and Operations Manual

Returns item it item is a compiled macro (MLAMBDA ...)
expression, otherwisae returns NIL.

BPIP — function + compiler macro
(BPIP jtem)

Returns item if item is a bpi, that is @ither a subr or an
msubr, otherwise returns NIL.

Here you see tha terminology shifting bafore your very
eyas. P

VECP — built in function
(VECP item)

This function returns the value item if item is any variety of
vector; otherwise, it returns the valuae NIL.

See Figure 21 on page 92. Basides the vector objects described
. in that figure, VECP accepts bpis.

IDENTIFIERS

IDENTP — built in function
(IDENTP itam)

This function returns the value item if item is an identifiar;
otherwise, it returns the valua NIL.

IDENTP will return a non-NIl value for frs, mrs, ordinary iden-
tifiers and gensyms. NIL is not an identifier, and
(IDENTP ™NIL) = NIL.

FRP — built in function
(FRP item)

Returns item if it is an fr (a built in operator); otherwisa
returns NIL.

The term Yfr" derives from tha phrasa Functional
opeRator.

MRP = built in function
(MRP item)

Returns item if it is an mr (a spacial form); otherwise raturns
NIL.

The tarm "mr™ darivas from the phrase Macro opeRator.
GENSYMP — built in function
(GENSYMP item)
Raturns item if it is a gensym; otherwise returns NIL.
CHARP — function + compiler macro
(CHARP item)
This operator tests whether item is a character object: one of
tha 256 identifiers which span the total range of possib%e sin-
glae character print names. The valua of CHARP ig NIL if item is
not one of thase objects, otharwise tha value is item.

DIGITP — function + compiler macro

Data types, type testing and other predicates 73

(DIGITP item)
Raturns item if it is one of tha charactar objects (identifiaers)

0, 1, 2, 3, 4, 5 ,6 ,7, 8 or 9; otharwise, returns NIL. (Note,
tha actual print reprasentation of thaesa objects is |0 |1 ete.)

PLACE HOLDERS

PLACEP — function + compiler macro
(PLACEP item)

Raturns item as its value if item is a read-place~holder, elsa
raturns NIL.

A read-place-holdar is tha valua of (READ x) when x is an
aempty straeam, e@.g. a straeam at end-of-fila. This is tha
only condition wunder which READ will raturn a
read-place-holder as its valua.

Nota that there is no print representation for

read-placae-holdars. They arae gansym-lika, in that thaey
ara created anew whan needad.

NUMBERS

NUMBERP — built in function
(NUMBERP item)

This opaerator returns tha valuae item if item is any type of num-
bar. If item is not a number, tha value NIL is raturned.

SMINTP — built in function
(SMINTP item)
This oparator returns the value item if item is a small intager;
otharwisae, its valua is NIL. Small integars arae numbers in the
ranga =22¢ to 22¢-1,
LINTP — built in function
C(LINTP item)
This operator returns the valua item if item is a large intager;
.otherwisae, its valua is NIL. Larga intagers are an fixaed point
number outsida thae small integer ranga.
FIXP — built in function
(FIXP item)
This operator raturns the valua item if item is a fixed point
number; otharwisa, its value is NIL. The class of "fixed point
numbers™ is the union of small integars and larga intaegers.
FLOATP — built in function
(FLOATP item)

This operator returns the valuae itam if item is a floating point
numbar; otharwise, its valua is NIL.

74 YKTLISP Program Dascription and Operations Manual

FUNARGS

FUNARGP — huilt in function
(FUNARGP item)

If item is a funarg data objaect, returns item as its value; oth-
arwise returns NIL.

AT RIPT

STATEP — built in function
(STATEP item)

If item is a stata descriptor data object, returns item as its
value; otharwisae returns NIL.

REAM

STREAMP — function
(STREAMP item)

Returns item if it could ba a stream, i.e. if it is a pair.
Exactly equivalent to PAIRP.

FASTSTREAMP — function
(FASTSTREAMP itam)
This function raturns true if item is a fast stream -- that is,
a pair whosa CDR is a raferencae vector of length at least 3.
Otherwise, the value of FASTSTREAMP is NIL.

Ba warned that this is a completaly hauristic test, and an arbi-
trary data object could "pass™ it.

IS-CONSOLE — function
(IS-CONSOLE item)

This function returns NIL as its valua if item is not a fast
console stream. If item is such a stream, it is raturnad as the
valua of tha function.

OTHER PREDICATES

EQ — built in function
(EQ iteml item2)

EQ tests for pointer identity baetween its two arguments. Its
value is the identifiaer %7 if iteml and item2 are identical
pointers. This means that tha pointer type codes as well as the
pointer address fields are identical. If thaese fields are not
identical, tha value of EQ is NIL.

EQ may ba used for quick tests of equivalance. If two
expraessions are EQ, then thay ara necessarily EQUAL; howaever,
tha conversa is not true. Two expressions which are not EQ may
nevaertheless be EQUAL.

Data typaes, type testing and other predicates 75

Note that two copies of a given object will not be EQ because
they are stored at differaent locations. Similarly, it is possi-
ble to have diffaeraent representations of the same numeric value
which ara EQUAL, but which are not EQ.

EQUAL — function

(EQUAL iteml item2)

This is a ganaralizad equality tasting function applicabla to
any LISP objects, including circular structures and numeric
quantities. -
For numeric quantities to be EQUAL, they must represent the sama
value. For tests involving ona or two real (flocating point)
numbaers, a fuzz factor may be relevant. This is explained in
the section of this manual discussing data typaes. If an integar
is to be compared with a real number, the intaeger is converted
to a real value for the comparison.

Two vectors are EQUAL if they are of tha sama type, the same
langth, and their absoluta parts are identical and thair point-
er parts are EQUAL.

For composite argumants, EQUAL implamaents access-aquivalant
aquality testing. This maans that two structuras ara EQUAL if
every part of one structure which can be reached by a composi-
tion of accaessing functions is EQUAL to the corresponding part
of the the other structure reachaed through tha same composition
of accaessing functions. Intuitively, two structures ara EQUAL
if they denote the same (possibly infinita) tree.

Tha valua of EQUAL is aither NIL or %Tx.

Sea the discussion under LISTS in the Data Type saection for an
exampla and further commentary. .

UEQUAL — function

(UEQUAL iteml item2)

This is a ganeralizaed updatae~equality testing function applica-
ble to any LISP object in the same sensa as EQUAL. It diffars
from EQUAL in that for two structures to be UEQUAL, not only
must corresponding parts of the structuraes be EQUAL through the
access functions, but thare must bae the same numbar of unique
parts and if any of thasae parts were to be updated in one struc-
ture and the sama update opaeration parformed on the correspond~
ing part of tha othar, than the structures would still be EQUAL.

In addition, numaeric values are considered UEQUAL only if thay
ara of the same type and numerically aquivalant. Bit and char-
acter strings ara UEQUAL only if they have thae samae capacity as
well as tha same type, length, and contents.

Intuitivaly, two structures are UEQUAL if and only if thaey
denote equivalent rooted directed graphs, i.a. if they danota
EQUAL structures which also hava the same acyeclical and
cyclical sharing structura.

The value of UEQUAL is @ither NIL or XT%.

See thae discussion undar LISTS in tha Data Typa secticon for an
axampla and further commaentary.

EQUALN — function

76

(EQUALN iteml itam2)

Thae valuae of this function is thae value of (EQUAL iteml itex2)
when thae floating point fuzz factor is zero. Tha fuzz factor is
tamporarily mada 2ero while EQUAL is invokaed, then restored to
its original valua.

YKTLISP Program Description and Opaerations Manual

These operators treat pairs as pairs, not imposing any interpraetation,
gucb as lists, on tha contents. Not withstanding, in many cases a comment
is included to indicate the list intarpretation of their actions.

CREATION

CONS — built in function
(CONS iteml item2)

CONS is the basic pair-creating function. 1Its valua is the new
pair constructed with iteml as its CAR componant and item2 as
its CDR component.

0f particular interest is the case where item2 is a pair.
Then the value of CONS is the list formed by adding iteml
to the beginning of tha list item2.

CESSING

CAR — built in function
(CAR item)

One of the two basic salaeaction functions daefined on pairs. Its
valua is tha CAR componaent of thae pair item.

In its list interpretation, tha value of (CAR iteam) is
tha first alement of the list item.

If item is not a pair, an arror results.
CDR — built in function
(CDR item)

One of the two basic saelection functions defined on pairs. Its
valua is the CDR componant of tha pair item. If item is not a
pair, an aerror rasults.

The value of (CDR item) is usually the list containing
all but the first alament of the list itam; howevar, this
is not tha case when item is the terminating pair of a
list. In that casa, (CDR item) is the terminating atom,
usually NIL.

The use of the words CAR and CDR is also one of thosae traces of
history, and whilae FIRST and REST might be praeferred (and may be
defined by the user), a cartain tenacious tradition causes the
usa of CAR and CDR to thrive.

CCA[D}...R — function + compiler macro

(C{A[D}...R item)

There are twanty eight macros defined in YKTLISP which give
maaning to opaerators of this form, whera ... designates any
saequanca of ona to four As or Ds. For exampla, (CADDR item) is
aquivalent to

(CAR (CDR (CDR item)))
and so on. This is literally truae for intaerpreting such a

macro, but if tha macro is expanded by the LISP compiler, it is
smarter than that and achiavaes the complete operation with only

Operations on pairs 77

ona call to an appropriatae subroutina. In fact, this subroutine
is capabla of handling strings of CARs and CDRs up to 256 lavels
deep, and thae macro will economize (CADR (CDR item)) to
(CADDR item), and will aeven do waell by (C..R (C...R item))
where .. is two, threa or four lettaers, and ... is any numbar
such that total dapth is less than 256.

An aerror braak is takaen if any of tha successivae CAR and CDR
oparations applies to a non-pair.

QCLA|DY...R — function + compiler macro

(QC{AID}...R item)

Each of thae C...R operators (including CAR and CDR) has a corrae-
sponding QC...R oparator. Thesa opaerator perform tha sama
action as the C...R operators, without first checking their
argumant for type. Thus, if applied to anything but pairs their
action is unpredictabla.

Indcompilnd programs thase operation are performed by in-lina
coda. .

IFCAR — function + compiler macro

(IFCAR item)

This is a conditional CAR oapaerator. If item is a pair, it is
equivalant to (CAR item), otharwise it has a value of NIL.

XCRCAR — function + compiler macrso

(XORCAR item)

This is another conditional CAR oparator. If item is a pair, it
is aquivalent to (CAR itam), otherwisae the argument, item, is
returned as tha valua.

IFCDR — function + compilar sacro

(IFCDR item)

This is a conditional CDR oapaerator. If item is a pair, it is
aquivalaent to (CDR itam), otharwise it has a valua of NIL.

XORCDR — function + compilar macro

(XORCDR item)

This is another conditional CDR opaerator. If item is a pair, it
is equivalent to (CDR item), otherwisa tha argument, item, is
returned as the valua. ‘

UPDATING

RPLACA — built in function

(RPLACA pair item)

This is one of tha two basic functions for updating pairs. Its
valua is the updatad pair which results when the CAR componant
of thae pair pair is replacaed by item. An arror is indicated if
pair is not a pair.

QRPLACA — function + compiler macro

(QRPLACA pair item)

Equivalent to RPLACA, with no typae chacking of argumants.

RPLACD — built in function

73

YKTLISP Program Description and Operations Manual

(RPLACD pair item)
This is the othar basic function which updatas pairs. Its value
is the updataed pair which results when the CDR component of the
pair PAIr is replacaed by item. An error is indicated if paipr is
not a pair.
QRPLACD — function + compiler macro
(QRPLACD pair item)
Equivalent to RPLACD, uith no type checking of argumants.
RPLACAD — function + compiler macro
(RPLACAD pairl pair2)
This function is equivalent to

(RPLACA pairl (CAR pair2))
(RPLACD pairl (CDR pair2))

Its value is the updated pair, Pairl An arror is indicated if
either argument is not a pair.

QRPLACAD — function + compiler macro

(QRPLACAD pairl pair2)

Equivalent to RPLACAD, with no type chacking of arguments.
RPLNODE — function + compiler macro

(RPLNODE pair iteml item2)

This function is aquivalent to

(RPLACA pair iteml)
(RPLACD pair item2)

Its valua is the updated pair. An aerror is indicated if the
argument, pair, is not a pair.

QRPLNODE — function + compiler macro
(QRPLNODE pair iteml item2)

Equivalent to RPLNODE, with no typae chacking of arguments.

Operations on pairs 79

80

YKTLISP Program Dascription and Oparations Manual

Dy

7

P TIONS

These operations assuma thae list intarpratation of pairs, saee "Lists™ on
paga 26. The valua of thae final, non-pair, CDR of an argument is general-
ly ignoraed once its non-pairnaess has bean discoverad. Similarly, an atom-
ic (non-pair) argument is in most cases treataed as equivalent to NIL.
There is a special form of list, called an association list, or a-list,
which is used by some processes. This is a list of pairs, where the CAR of
eaih pair is used as a nama, labeling the CDR, which is interpretaed as its
valua.
(CA . 10) (B . 14) (C . 6))

is an association list with A having a valua of 10, B of 14 and C of 6.
Remember that it is the CDR of each pair which defines tha value.

((1 ona item) (2 two itams) (0 no items at all))
is an a~list with 1 having a valua of (onae item), 2 of (two items) and 0
(no items at all). The order of namaea-value pairs in an a-list is not
important, axcept as it effects tha length of searches. In genaeral, the

first instance of a name to be found is usad, thus existing valuaes may be
"shadowed™ by CONSing new pairs onto the front of thae list.

CREATION

LIST — function + compiler macro
(LIST [item ...1)

Returns as value a list of n alements, the first elemant being
the valuae of the expression iteml, et cetaera.

(LIST iteml item2 ... itemn)
is equivalent to
(CONS iteml (CONS item2 ... (CONS item2 NIL)))
LOTSOF — function
(LOTSOF item ...)
LOTSOF returns an infinite list of its arguments.
(LOTSOF 2 ™A "(3 . 9))
value
.

L=

. @ e 3 [[
1 i
|-—->A |-——>] 9
Figure 17. Result of LOTSOF.
CONS — built in function
(CONS item list)
When its second argument is a list, CONS can bae considared a

list creating opaerator. It is used to add new items to the
beginning of a list. Sea also paga 77.

>

Opaerations on lists 81

APPEND — function

(APPEND listl list2)

If the argument listl is not a pair, thae value of APPEND is
ligt2. If listl is a list, tha pairs constituting tha list are
copiad and thae final CDR of tha copied list is sat to list2.
Tha valua of APPEND than baecomas this copied list., If listl is
circular, an arror break is takaen.

Thera is no copying of tha structure below thae top lavel, which
would ba accessed by dascending tha alamaents of listl. . Considar
CAPPEND "(il i2) "(i3 i4)). Tha structurae beforae, and aftar the
call would ba:

Baeforae procassing

listl list2
>l o o > e / > . @ e > . /
L L 1 1
|-——>i]. |'-—>i2 |---->i3 |-—->M
After procaessing
listl list2
> . ° > . / D > e o > [/
1 | [l 1
-——>|—>i1 —>|—->i2 |—>i3 I—)M
value
1 b
> [o~ > . °

(Notae, thae pairs markad by ! are neuwly creataed.)
Figure 18. Result of APPEND.
CONC — function

(CONC [list ... 1)

This is a macro which axpands into an aexpression which usas
APPEND to creata a list from saveral lists. It will accept an
arbitrary numbaer of lists as argumaents. For exampla,

(CONC listl list2 list3)
= (APPEND listl (APPEND list2 list3))

Note that thae last argument to CONC appears as the second argu-
ment to APPEND, so that it is not copied at the first level as
are tpgN%ther arguments to CONC, which appear as first arguments
to AP .

REVERSE — function

(REVERSE list)

This operator returns as its valuae a new, top-level copy of tha
list list whare the alemaents of this new list are in tha inversa
order of their occurrenca in list.

(REVERSE "(1 2 3 4))
Value = (4 3 2 1)

VECZ2LIST — function

82

YKTLISP Program Dascription and Operations Manual

(VEC2LIST vec)

This operator constructs a new list, conta\nlng the elements of
tha vaector, vec. Nota that vector, in this case, includes
strings, but excludes bpis.

UNION — function
(UNION listl list2)

This oparator constructs a new list contains all the elements
appaearing in @ithar of the lists list]l and list2. Each elaement
appears only once in the valua list. MEMBER, which in turn uses
EQUAL, is used to datect whathar an element appears in a list.
Any elements in the union found in listl will preceda those
found only in list2. Thae order will match that of the lists of
origin. Thus:

CUNION (T HISISATEST)™MOFTHEUNTIOND
raesults in
(THISAEOFUNMN
UNIONQ — function
(UNIONQ listl list2)

This operator differs from UNION only in using MEMQ, and henca
EQ, to test for membership in its argumants.

INTERSECTION — function
(INTERSECTION listl list2

Constructs a naw list containing only thosa elements appearing
(at the top lavael) in both listl and list2. MEMBER, which in
turn uses EQUAL, is used to detect whether an element appaars in
a list. Tha elements in this new list are in the same ordar as
thaeir occurrence in listl. If eithar argument is not a pair, it
is treated as if it were tha only element in a list of length
ona.

INTERSECTIONQ — function
CINTERSECTIONQ listl list2)

This operator differs from INTERSECTION only in using MEMQ, and
hence EQ, to test for maembership in its arguments.

SETDIFFERENCE — function
(SETDIFFERENCE listl list2)
Constructs a new list containing only those elements appearing
(at tha top level) in listl but not in list2. MEMBER, which in
turn uses EQUAL, is used to detect whether an element appears in
a list. The elements in this new list are in the same ordar as
their occurrancae in listl. If either argument is not a pair, it
is treated as if it ware the only element in a list of length
one.

SETDIFFERENCEQ — function
(SETDIFFERENCEQ listl list2)

This operator differs from SETDIFFERENCE only in using MEMQ,
and henca EQ, to tast for membership in its argumants.

MTON — function
(MTON s-intl s~-int2)

Operations on lists 83

ACCESSING

This operator raturns a list of the intaegers from s-intl to
s-int2, inclusiva. It does not check its arguments, and if
either is not a small integer, or if $-int2 is less than s~-intl
the results will be unpredictable, and possibly fatal.

CAID...IJR — function + compiler macro

(CALD...IR list)

Any oparator of this form, that is zaro or more CDRs followed by
a singla CAR, may be though of as an accassing function for a
1ist.77CAR givas the first aelement, CADR the sacond, etc. See
pagea .

QCAID...IJR — function + compiler macro

(QCAID...JR list)

;hc non~checking vaersions of the preceding oparators. Seae page
8.

CD...R — built in function

(CD...R list)

Any operator of this form, that is zero or more CDRs, may also
be though of as an accessing function for a list. Rather than
giving elament, howaver, these oparations return the "tail™ of
their argument. CDR gives tha list, lass its first elament,
CDDR, lass its first and sacond, etc. See pagae 77.

QCD...R — function + compiler macro

(QCD...R list)

;:e non-chacking versions of the precading oparators. See page

ELT — functicon + compiler macro

CELT list s-int)

Whila ELT is normally thought of as an opaerator on vectors, it
also is dafined on lists. Its valua is the s~-int element of
list, whaerae the first elemaent is designated by zaero (0), the
sacond by ona (1), atc.

If s-int is not within the bounds of list, an error break is
taken. If list is not a vactor or a list, an error is
indicated.

Note: ELT applied to NIL will always produce a bounds
arror, as NIL is interprated as tha empty list.

LAST — function

(LAST list) ‘
Returns as value tha last element of list (i.a. the CAR of tha
last paI{ comprising list). If list is non-pair, the valua of
LAST is 0.

If list is circular an arror break is taken.

LASTNODE — function

24

(LASTNODE list)

YKTLISP Program Dascription and Oparations Manual

y

This operator returns as its value the last pair forming the
%i:t list. If list is non-pair or is circular an error break is
akan.

(LASTNODE ;(1 2 3 8))

Value = (4
This valua (as is truae of the CD...R forms) is not a copy.

gpd:ting operations applied to it will effect the original
ist.

SEARCHING

MEMBER — function
(MEMBER item list)
This operator searches the list list for the objact item, using
EQUAL testing for identity. It item is not found, or if list is
not a pair, the value of MEMBER is NIL. If item is found, the
value of MEMBER is that portion of list beginning with item.
list is searchad on tha top level only.

UMEMBER — function
(UMEMBER item list)

This operator is similar to MEMBER, aexcept that it uses UEQUAL
tasting for identity instead of EQUAL taesting.

MEMQ — function
(MEMQ item list)

This operator is similar to MEMBER, except that it uses EQ tast-
ing for identity instead of EQUAL tasting.

QMEMQ — function + cempiler macro
(QMEMQ item list)
When compiled, this opaerator produces inline code equivalent to
thae MEMQ oparator. This operator doaes not check for cyclic
lists, and will loop indafinitly.

TAILP — function
(TAILP item list)

This operator searchas list for a CDR EQ to item. If such is
found the value if %XT%, otharwisa it is NIL.

The casa of itam EQ to list is considered a success. Since EQ

is used,
(TAILP "™(3 4) "(1 2 3 4))
Value = NIL

will occur, as thae two lists are separata. 0On the othar hand,

(SETQ X ™(3 4))

Valua = (3 4)

(SETQ Y (APPEND "(1 2) X))
Value = (1 2 3 &)

(TAILP X Y)

Value = %Tx

because of tha sharing in tha valua of APPEND.
ASSOC — function
(ASSOC item a-list)

Operations on lists 85

- @

a-list is a list of pairs, ((namel . valuael) (name2 . value2)
..+). ASSOC compares item with namael, then name2, ..., using
EQUAL to parform thae comparison. Any elaments of list which arae
not pairs are skipped. If a~list is not a list, or if item is
not found in a-list, tha value of ASSOC is NIL. Otharwise, the
valua of ASSOC is tha first pair (name . valua) such that
(EQUAL iteam ™name) is trua. If there arae elements of a-list
which are not pairs, they are skipped and the naxt alement of
a-list is examinead.

ASSOCN — function -
(ASSOCN item a-list)

This opaerator is vary similar to ASSOC, except that EQUALN is
used instead of EQUAL for comparing item with tha CARs of elae-
mants in a-list.

UASSOC — function

(UASSOC item a-list)

This operator is identical to ASSOC aexcept that UEQUAL, rather
than EQUAL, is usad for the comparison of item with the a~list.

ASSQ — function
(ASSQ item a-list)

This operator is similar to ASSOC, axcaept it usas EQ rather than
EQUAL to comparae item with the CARs of elemants in a=list.

QASSQ — function + compilar macro
(QASSQ item list)

When compilaed, this opaerator produces inline code egquivalent to
tha ASSQ operator. This operator does not chack for cyclic
lists, and will loop indefinitly.

SA8S0OC — function
(SASSOC item a-list app-ob)

This operator is similar to ASSQ, but raquires threa argumants
and if item is not matched, it raeturns the result of applying
:ggagb to no arguments, instaad of tha NIL valua returned by

GET — function
(GET list itam)

Tha opaerator GET is usually used to accass the property lists of
;dentifinrs. Tha YKTLISP definition of GET also applias to
ists, .

If list is not an identifier or a pair, value is NIL. If list is
a pair, it is interprated as an a-list, and searchad for an ela-
mant whose CAR is EQ to item If found, the valua of GET is the
CDR of tha alament, otharwisa tha valua of GET is NIL.

Nota the diffarenca betwean GET and ASSQ, in that ASSQ
raturns the name-value pair, whareas GET raturns only the
valua portion. Also, note tha reversal of tha ordar of
argumants, GET receivaes the list to ba search, followad
by thae nama; while ASSQ (and tha other .ASS. operators)
recaiva tha nama Ffirst, followed by tha list to be
s@arched.

QGET — function + compiler macro
(QGET list jtem)

86 YKTLISP Program Description and Operations Manual

When compilaed, this operator produces inlinae codae equivalent to
tha GET operator. This operator does not check for cyclic
lists, and will loop indafinitly.

C

SEARCHING AND UPDAYING

ADDTOLIST — function
CADDTOLIST list item)

If list is not a pair, the value returnaed is (LIST item). Oth-
erwisa this operator searches list for an instance of item,
using EQ. If no instance of item is found, item is addad to the
tail of tha list, using RPLACD. In effact,

(NCONC list (LIST item))

The valuae returnad is the list list, whether or not item was
_initially praesent.

MAKEPROP — function
(MAKEPROP list iteml item2)

Just as GET, MAKEPROP is usually used to update the property
lists of identifiers. And just as GET, the YKTLISP definition
of MAKEPROP also appliaes to lists. See page 115 for a
dascription of MAKEPROP when appliaed to identifiars.

list is intarpreted as an a-list. It is searched for a pair

with CAR EQ to iteml. If such a pair is found it is updated,

with RPLACD, making item2 its CDR. If no such pair is found a

new pair, (iteml . item2), is added to the front of list, by

ggd:ting oparations. is put at the beginning of thae property
- ist.

(;, Tha value of list must be an identifier or list, but itaml and
item2 may be any expressions.

REMPROP — function
(REMPROP list item)

Sea page 115 for a dascription of the behavior of REMPROP when
appliad to identifiers.

Tha item property of the identifier list is removed from tha
proparty list of list. The value of REMPROP is NIL if thare is
no item proparty. If tha proparty aexists, the valuae of REMPROP
is the valuae associatad with that property.

The effect is that of EFFACE, given tha nama-value pair as an
operand.

UPDATING

RPLACA — built in function
(RPLACA list item)

When its first argument is intarpreted as a list, RPLACA
replaces tha first alemaent of that list.

(SETQ X "(1 2 3 4))
Valua = (1 2 3 4)
(RPLACA X "10)

(\V ;alue = (10 2 3 4)
. Value = (10 2 3 4)

Operations on lists 87

See paga 78.

QRPLACA — function + compilear macro

(QRPLACA pair itam)
Equivalent to RPLACA, with no typa checking of argumaents.

RPLACD — built in function

(RPLACD pair item)

When its first argument is interpretad as a lisi. RPLACA
replacaes tha tail of that list.

(SETQ X "(1 2 3 4§))
Valua = (1 2 %)
(RPLACA X "(20 30 40))
Valua = (1 20 30 40)

X
Value (1 20 30 40)

See pagae 78.

QRPLACD — function + compiler macro

(QRPLACD pair item)
Equivalent to RPLACD, with no typa checking of arguments.

SETELT — function ¢+ compilar macro

(SETELT list s~-int item)

Lika ELT, SETELT is normally thought of as an operator on vec-
tors, but it too is definad on lists. It is the inverse opera-
tor of ELT -- it updataes the S-int elemant of list to ba itam.
SETELT will taka an error break if list is not updatabla or if
s=int is out of ranga.

(SETELT LIST 3 VALUE)
is eaquivalaent to:
(RPLACA (CDR (CDR (CDR LIST))) VALUE)

The value of SETELT is its last argument, item, the valua used
in updating thae specifiad objact.

NCONC — function

83

(NCONC listl list2)

If listl is non-pair, the value of NCONC is list2. If listl is
a circular list, an arror break will be taken. Otherwisa,
RPLACD is usad to replacae the final CDR of listl with list2, and
tha updatad listl is returnad as tha valua of NCONC.

Considar (NCONC ™(il i2) "(i3 i4)). Tha structure before, and
after the call would be:

YKTLISP Program Dascription and Opaerations Manual

Bafora processing

After procassing

listl 1ist2

value

listl 1

-
0

”
N

> =

—

. . .
)) 1
|——>i1 |—>i2 >i3 |——>i4

> >

> @ et——

. . .
L (] 1
|""'>i1 |'-"">i2 |--'-->i3> l""'-'>i‘0

v
[

(Notae, no new pairs are created.)
Figure 19. Effect of NCONC
NREVERSE — function

(NREVERSE list)

This function shufflaes the CDR componants of thae pairs making up
list so that the CDR of the last pair in list points to the
next-to-last pair, at cetara. Tha CDR of the first pair is made
NIL, and the value of NREVERSE is the last pair of list, which
is now tha first pair of a list containing exactly the same ela-
ments as list, but in raevaersed ordar. See also REVERSE, page
82, which constructs a new list in reversaed ordar instead of
reusing tha pairs in the original list.

Consider (NREVERSE ™(il 12 i3 i4)). Tha structure befora, and
after thae call would ba:

Bafora processing

list

[e Pl . [> . >

[] []
1 ! 1
l_>il l_>i2 >i3 , l-)i‘l

—

After processing

list

value

|
Lo | Lbom | bom | Lo

>il |-—->i2 —2>i3 —>i4

(Note, no new pairs are creataed.)
Figure 20. Effaect of NREVERSE
EFFACE — function

(EFFACE item list)

Operations on lists 89

Usaes EQUAL to search list for tha first occurraence of item. If
item is not found, or if list is atomic, returns list as its
value. If jtem is found, it is removad from list by updating
via RPLACD, and the up-dated list is returned as the value of
EEF:CE. Only tha first occurranca of item will be removed from
18C.
If list contains a single element, and that element is EQUAL to
item, then no updating is done, but the value of EFFACE is
(CDR list).
EFFACEQ — function
(EFFACEQ item list)

Equivalant to EFFACE, but usas EQ rathar than EQUAL.

MISCELLANEQUS

LENGTH — function
(LENGTH list)
If list is a pair, LENGTH raturns tha number of alements in thea
list beginning with that pair. If list is not a pair, the valua
of LENGTH is zaero.
If list is a circular list an arror break is taken.
QLENGTH — function + compiler nacro
(QLENGTH list)
Whan compilaed, this operator producaes inline code aquivalant to
the LENGTH operator. This operator does not check for cyclic
lists, and will loop indafinitly.
SIZE — function
(SIZE list)
When applied to lists, SIZE is aquivalant to LENGTH. It differs
whan it is appliad to vectors, in which casa it returns the num-
bar of element in thae vactor, rathar than zaero, as LENGTH does.
QSORT — function
(QSORT list)
QSORT returns a newly CONSed list, containing the elemant of
list, ordaeared by the operator SORTGREATERP. SORTGREATERP is
initially defined as equivalent to GGREATERP, page undaefined,
but may ba redefinad at tha usars pleasurae.
Tha quicksort algorithm is used.
SORTBY — function
(SORTBY app-ob list)
This oparator sort its second argument, list. Where QSORT com-
paraes thae elaements of tha list, SORTBY compares tha valuaes of
(app=-0b element). Thus where

(QSART "((2 g) (1 n) (3 a)))
Valua = ({1 n) (2 @) (3 a))

wa can hava

(SORTBY ™CADR "((2 ¢) (1 n) (3 a)))
Value = ((3 a) (2 g) (1 n))

90 YKTLISP Program Dascription and Oparations Manual

PER NS ON V R

The set of data objects grouped under the title vector includes strings
and bpis. In this saction strings will only be mentioned in passing and
bpis only oncae. Those oparators which effact only strings are defined in
their own saction.

CREATION

GETREFV — function
(GETREFV s-int)
Returns as value a new raefaerence vaector containing $-int ele-
mants. Thae initial value of each element is s=intIL. This is
thae basic allocating operator for refarence vectors.

GETREALV — function
(GETREALV s-int)
Allocatas and returns as valua a real vaector containing s-int
alements. Each of tha floating point values (elements) are ini-
tialized to zero.

GETUHORDV — function
(GETWORDV s-int)
Allocates and returns as value a word vector containing $~int
elements. The elements of the allocated vactor arae not initial~-
ized. Seae also GETZEROVEC.

GETZEROVEC — function
(GETZEROVEC s~-int)

Like GETWORDVEC, excapt the alements of the word vector are ini-
tialized to zaero.

VECTOR — function + compiler macro
(VECTOR [item ...

This operator is tha reference vector analoguae of LIST. Its
valuae is a refaraence vector containing its operands.

(VECTOR 1 2 3 &)
Value =<1 2 3 4>

LIST2REFVEC — function
(LIST2REFVEC list)
This operator constructs a new raefarence vector from the ale-
mants of list. If list is non-pair, tha value of LIST2REFVEC is
a reference vector with zero elements. If list is a circular
list, the operator loops. Otherwise, the value is a raeference
vector of the form:

<(CAR LIST) (CADR LIST) ... (CAD.R LIST)>

LIST2FLTVEC — function
(LIST2FLTVEC list)
This operator is similar to LIST2REFVEC but for the fact that

the resulting vector is a vector of floating point (real) num-
bers. Thae elaments of list may or may not already be real num-

Opaerations on vectors 91

STANDARD VECTOR OPERATORS
A tabular index to primitiva vector oparators

Type Pradicate | Valua Spacific Spacific Allocating
3:ctor :Iement Ezé:g§i:n gsg::ggg Function
Refaerenca| REFVECP Anything ELT SETELT GETREFV
Charactaer| STRINGP Identifier| FETCHCHAR | STORECHAR | GETSTR
Bit BITSTRINGP !ﬁklor ELT SETELT GETBITSTR
Word WORDVECP Integer ELT SETELT GETWORDV
Real REALVECP Real ELT SETELT GETREALV

Analogous opaerators for pairs ara listed below for comparison
Pair PAIRP CAR RPLACA CONS

CDR RPLACD
List LISTP Anything ELT SETELT LIST
bars. If thay are not raal, they ara floated. If any elemaent

of list is not a number, or cannot ba converted into a floating
point numbar, tha FLOAT operator which is called by LIST2FLTVEC
will takae an error break.

LIST2IVEC — function

ACCESSING

(LIST2IVEC list)

This operator is similar to LIST2REFVEC but for the facts that
its value is an intager vaector and the slements of list must be
integars within the range acceptablae for integer (word)
vaectors. This range is 23! > valua ¢t =23},

SIZE — function

(SIZE vec)

SIZE raeturns as its value the number of elements in its argument
-=- that is, one mora than the maximum valid index which may be
used to addrass an elamant of this vaector. SIZE may also ba
appliad to lists, in which casa it parforms aexactly as doas
LENGTH. Sea page 90. If SIZE is given an argumant other than a
pair or vactor, it returns the valua zero.

Nota that string vectors (eithar character or bit) may have a
capacity largaer than the number of elamants currently in the
vector.

You may nota that whila SIZE (and LENGTH) are lumpad as
"miscallaneous™ oparators whan applied to lists, thay are
included among the access oparators for vectors. This is
baecausae the number of elemaent is a vector is explicitly
recordad in the data structure, whilae the number of ala-
maents in a list can only ba found by counting.

MAXINDEX — function

(MAXINDEX vec)

92 YKTLISP Program Daescription and Operations Manual

Raturns as value tha maximum allowed index for the given vector.
This operator is defined as (SUBl (SIZE vec)), so uhile its
principal use concerns vectors, it could be applied to other
objaects as wall.

QREFVECMAXINDEX — function + compiler macro
(QREFVECMAXINDEX referenca-vector)

This is the non-checking counterpart of MAXINDEX. If its opar-
and is a reference-vector it returns the desiraed value, other-
wisae its value is unpredictabla.

Nota, that QREFVECMAXINDEX will producae the corraect value
whan applied to a word vector.

QREFVECLENGTH — function + counpiler macro
(QREFVECLENGTH reference-vector)

This is the non-checking countaerpart of SIZE. If its operand is
a reference-vector it returns the desired valuae, otherwise its
valuae is unpredictabla.

Note, that QREFVECLENGTH will produce the correct valua
whan applied to a word vaector.

LENGTHCODE — function
(LENGTHCODE vee)

LENGTHCODE returns as its valuae the size, in bytaes, of tha vec-
tor vec. If veC is a charactar or bit vector, this value is the
MAXIMUM sizae specified, including the 3-byte current string
langth field

An arror break is taken if veC is not a vector.
QLENGTHCODE — function + compiler macro
(QLENGTHCODE vec)

This is the non-checking counter part of LENGTHCODE. If vec is
a vector, it returns its length. If vec is not a vector its
result is unpredictabla.

Sea also page undafined sqlngth..
ELT — function + conpiler macro
(ELT vec s-int)

This is the ganaral selaction operator for vaectors and lists.
Its value is the s-int element of vec, where the type of object
returnad by ELT is indicatad in Figura 21 on page 92for various
typas of vecs.

If s-int is not within tha bounds of vec, an aerror is indicated.
If vec is not a vector or a list, an arror is indicated.

Thae first element of a vector or a list is selectad by using
zaro as the S-int valuae. Nota: ELT applied to NIL will always
produce a bounds arror, as NIL is interpretad as the empty list.

If vec is a vector of reals, ELT will allocata a new real number
into which the valua of the selectad element is copied, and
return this new real to the caller. This is necessary (although
not very afficient) becausae pointers pointing inside a vector
are not allowad (thay confuse the garbage collecter). Thus, if
a collectlon of real numbars are to be assembled into a vaector,
jt is better to have a refarence vector when accaess to these
reals is mada on an individual basis using ELT. The vector of
reals axists for applications wherae the user has implemented
arithmatic processes requiring the contiguous storaga of real
data in order to axecuta efficiently.

Oparations on vactors 93

——cm

If vec is & word vactor, ELT may hava to build a new large inte-
gar and return it as the value of ELT for cartain values in tha
word vactor. Any value within the range of a LISP small integer
will be returned as a small integer, and will not require allo-~
cation of haap spaca. Valuaes outside tha ranga of small intae-
gers must ba convaertad by ELT into large integars.

QREFELT — function + compiler macro
(QREFELT reference-vactor s-int)

This is tha non~chacking counterpart of ELT. It is only defined
when its first oparand, reference-vector is a raference vector,
and its sacond operand, $-int, is a small intager and is in the
correct ranga. In that casa its valua is the same as ELTs.
Otherwise its valua is unpredictable, and possibla fatal. .

VEC2LIST — function
(VEC2LIST vec)
This opaerator constructs a naw list, containing the alements of
the vector, vec. The claments of the resulting list will corre-

spond to tha values of ELT for tha specific vector from which
thaey arae draun.

UPDATING

SETELT — function + compiler macro
(SETELT vec s-int item)

This is tha inversa operator of ELT ==~ it updataes tha $~-int ela~-
ment of vec to bae item. Tha nature of item for various typas of
vac is indicated in Figura 21 on paga 92.

SETELT will take an error break if veCc is not updatabla, if
s-int is out of rangae, or if item is not compatible with the
type of vec.

SETELT may be usad to updatae the $=-int elamaent of a list.

The valua of SETELT is item, the value usad in updating the
specified object.

QSETREFV — function + compilar macro
(QSETREFV raferenca-vector s-int item)

This is the non-checking counterpart of SETELT. It is only
defined whan its first oparand, refarenca-vector is a raference
vector, and its sacond oparand, s-int, is a small integer and is
in tha corract range. In that casa its valuae is the same as
SEIE&T!. ‘Otherwise its value is unpraedictablae, and possibla
fatal.

MOVEVEC — function
(MOVEVEC veel vec2)
Copies the contaents of vecior vecl into vector vec2. Both argu-
ments must hava the same capacity, and they must be both refer-

enca vectors or both binary (character, bit, real or word)
vactors.

96 YKTLISP Program Description and Opaerations Manual

OPERATIONS ON STRINGS

There are two kinds of strings in YKTLISP, character strings and bit
strings. The elements of a charactar string are identifiaers passing the
CHARP predicate. See Figurae 21 on page 92. Tha elements of a bit string
are boolaan values, aithar NIL or non-NIL.

U:lgss otharwise indicated tha following oparators apply to character
strings.

As described in "Charactar Vactors™ on page 30, YKTLISP strings have
both a current laength, the contaent length, and a potential length,
the capacity. The capacity is aluays greater than or aequal to the
contents. Certain opaerations will conditionally update a string,
depending on its capacity. Thus, RPLACSTR will update its first
argumant, if the resulting string has a content commensurate with
the capacity, and will creata a new string otherwise.

CREATION

GETSTR — function
(GETSTR s-int)

Allocates a charactaer vector with a capacity of at least s-int
characters. The new vaector is returned as thae valuae of GETSTR.
Vectors arae allocated in incremaents of full-words: for a char-
actar vector, tha first word includes only the first charactaer
of the string, prefaced by a 3-byte current langth fiald.
Theraefore, the actual capacity of the vector is defined by

(CC s=int + 6) 7/ &) % ¢) - 3 characters.

s-int Maximum capacity of allocated string
1 1
2-5 5
6-9 9

Figure 21. Character string allocation

Zero or naegativae numbers are invalid values for s$-int and will
cause an aerror break. The character string returned by GETSTR
is initialized to the null string, that is, its contents length
is zaro, and it prints as ''.)

GETFULLSTR — function
(GETFULLSTR s~int [{id | c-str | s~-int}])

Similar to GETSTR in that a new character vector is allocated
and returnaed as tha valuae of GETFULLSTR. The new string, howev-
ar, contains 8-int instead of zero characters. The id argument
ijs optional. If it is spacifiaed as an identifier, the new
string will be initialized so that each charactar is the initial
latter of the P-name of id. If it is a small-integer, the low
ordar a@ight bits becoma the fill character. If it is a string,
the laeftmost character is used. If id is not specified, the
string will ba initialized to binary zero characters.

GETBITSTR — function
(GETBITSTR s=int)

Operations on strings 95

Allocatas a bit vector with a capacity of at least s-int bits.
The new vector is returned as the value of GETBITSTR. Vactors
ara allocatad in increments of full words: for a bit vactor, the
first word includes only tha first 8 bits of tha string, pre-
faced by a 3-bytae current langth field. Thaerafore, the actual
capacity of tha vaector is dafined by

((C s=int + (31 +(3%8))) s 32) % 32) - 24 bits

s-int Maximum capacity of allocatad string
1-8 8
9-40 40
41-72 72

.

Figure 22. Bit string allocation
STRCONC — function

(STRCONC c-str ...)

This oparator returns as its valua a new string made by concat-
enating all of tha strings c-str, c-strn may be eithar a
character vactor or a storad identifiar (not a GENSYM). In tha
sacond casae, the print nama of tha idantifier is concatanated
into the result string. If c-strn is not a character string or
stored identifiar, an error is indicated.

STRINGIMAGE — function

(STRINGIMAGE item)

This opaerator creatas a character string containing the print
reprasantation of itam.

For axamplae, to obtain tha character equivalent of an intaeger,
ona can wWrite

INTEGER

Valua = 1352
(STRINGIMAGE INTEGER)
Value = '1352°

itam may be any LISP valua.

STRINGIZE — function

(STRINGIZE itam)

This operator also computes a string represantation for value
of item. If itam is not a list, tha value of STRINGIZE is
(STRINGIMAGE item). If item is a list, tha value of STRINGIZE
is tha concatanation of the STRINGIMAGEs of the alemaents of
item, with blanks batween the elemants,

STRING2BITSTRING — function

(STRING2BITSTRING c~str)

This opaerator copies its operand, c¢-str, and converts it into a
bit string. Thae contents of thae string are unchanged, only the
typa of the pointer to it, and tha contents length are modified.

This ocparator allous direct accass to the bit pattern of a
charactar string.

BITSTRING2STRING — function

(BITSTRING2STRING b-str)

96 YKTLISP Program Dascription and Opaerations Manual

This oparator copies its operand, b-8tr, and converts it into a
charactar string. Tha contents of the string are unchangeaed,

only the typae of the pointer to it, and the contents langth are
modifiad.

PNAME — function
(PNAME id)

Returns a copy of the print name of id. If the valuae of id is
not an identifier, an aerror break is taken. The print name is a
charactaer string.

While PNAME is primarily thought of as an operator on
identifiers, it is also a craation oparator for strings.

ANDBIT — function
(ANDBIT b-str ...)

ANDs b-str ... and returns as value the resultant string. None
of the argument strings is changed by the operation.

An error is indicated if any operand is not a bit string or if
the strings are not equal in length.

ORBIT — function
(ORBIT b=-str ...)

ORs b-str ... and returns as value the resultant string. None
of the argumant strings is changad by the operation.

An arror is indicatad if any operand is not a bit string or if
the strings are not equal in length.

XORBIT — function
(XORBIT b-str ...)

Exclusive ORs b-str ... and returns as value the resultant
:?ring. None of the argumaent strings is changed by the opera-
ion.

An error is indicated if any oparand is not a bit string or if
thae strings are not equal in langth.

MAXETRTTABLE — function
(MAKETRTTABLE tabla-definition item)

This operator creates a S/370 translata-and-test table. Oper-
ands are a collaction of characters-of-interest,
table-dafinition and an inversion flag, item. The first oper-
and can be either a string or a list. If a string it is con-
vartad to a list of identifiers using VEC2LIST.

The list elements may be small integars, strings or non-GENSYM
identifiers, or pairs with one of the above as CAR and a
small-integer as CDR. Tha table, a newly created character
string of length 256, is initialize with x00 (if item is NIL),
or XFF (if item is ~NIL). Thaen the positions corresponding to
the list elemants (or their CARs, if pairs) arae set to xFF or
x00 (opposite of the initial value), or to the CDR value for
pairs.

Tha resulting string is a suitable opaerand for STRP0OS, STRPOSL,
and STRTRT.

MAKESTRING — function
(MAKESTRING c=-str)

Operations on strings 97

This oparator raeturns a copy of its argument. Its primary use
is in compiled code, whare it genaratas code to produce a string
from data storad in the bpi, rather than in the data heap. This
is donae to fraea the more valuabla, garbagae collactad, space.

ACCESSING

STRINGLENGTH — function
(STRINGLENGTH str)
This oparator raturns as its value the curraent length of the
charactar or bit string STR. An aerror is indicated if STR is
not a character or bit string.
As with non-string vectors, the size of a string is an
intrinsic part of the object. Again, nota that this is
the size of tha contaents of thae string, not its capacity.
As of now, there is no opaerator which will report the
capacity of a string directly, but see LENGTHCODE, fol-
lowing.
QSTRINGLENGTH — function
(QSTRINGLENGTH c-str)
This is tha non-chacking countar part of STRINGLENGTH. If c-str
is a charactar string, it returns its contents length. If c-str
is not a charactaer string its rasult is unpredictabla.
LENGTHCODE — function
(LENGTHCODE str)
LENGTHCODE raeturns as its value tha siza, in bytas, of the
string str. If vac is a charactar or bit vactor, this value is
the MAXIMUM size spacifiad, including the 3-byta current string
langth fiald

To determinae the capacity of a string, LENGTHCODE must ba
used. For a charactar string tha capacity is

(DIFFERENCE (LENGTHCODE c-str) 3)
For a bit string it is
(TIMES 8 (DIFFERENCE (LENGTHCODE b-str) 3))
QLENGTHCODE — function
(QLENGTHCODE str)
This is the non-chacking countar part of LENGTHCODE. If str is
a string, it returns its contents length. If str is not a
string its result is unpredictabla.
Sea also page undafined valngth..
FETCHCHAR — function + compiler macro
(FETCHCHAR c-str s-int)
Returns as valuae the charactar object (identifiar whose print
nama is a single charactar) corresponding to the s-intth ala-
ment of the character string €-Str. An error is indicated if
c-str is not a string, or if S-int is nagativae or axceeds the
currant langth of the string c-str.
ELT — function + compilar macro

C(ELT str s-int)

98 YKTLISP Program Dascription and Operations Manual

For charactar strings,
(ELT c-str s-int)

is exactly aquivalant to
(FETCHCHAR c-str s-int)

For bit strings ELT raeturns a valuae of NIL or %XT¥%. ELT is the
only accass operator for bit strings.

SUBSTRING — function + compiler macro
(SUBSTRING c-str s-intl s-int2)

This macro returns a copy of part (or all) of c-str. The
returned value starts with the s$-intl (indax) character of
c-gtr (remember, index zero is the first character) and is
s$-int2 (length) charactaers long. If $-int2 is specified as (),
that designatas thae end of the string.

STRING2ID-N — function
(STRING2ID-N c~-str s-int)

This operator treats its first operand, c-str, as a collaction
of tokens, wherae the tokens are substrings, separated by onae or
more blanks. (Leading blanks are ignorad.) Tha s-intth tokan
is extracted and INTERNed (Sae page 113) and the resulting iden-
tifier is returned as the valua. If there are less than s-int
tokens in c-str, the valuae is zero (0).

STRING2PINT=-N — function
(STRING2PINT~-N c-str s-int)

This operator treats its first operand, c-str, as a collaection
of tokens, where the tokaens are substrings, secparated by one or
mora blanks. (Leading blanks are ignored.) Thae S=intth token
is extracted and, if it consists wholly of digits, the corre-
sponding positive small intager is returnad as the value. If
therae are less than S-int tokens in €-str or the s-intth token
contains non-digit characters, tha valuae is NIL.

VEC2LIST — function
(VEC2LIST str)
This oparator constructs a new list, containing tha aelements of
tha string, str. Tha alements of thae resulting list will be

identifiars, in tha casa of character strings, and (NIL | %Tx}
in the case of bit strings.

SEARCHIMNG

STRPOS — function
(STRPOS c-strl c-str2 s-int item)

This operator searches c-str2 for a substring, c-strl, which
may contain don't care characters. s-int is the an index, indi-
cating the starting position for tha search. item is NIL or thae
don't care character. An error break is taken if item is not a
small intager, identifier, string or NIL.

The value is NIL if the substring is not found, and the index of
the first charactar of tha sub-string.

Opaerations on strings 99

X

Value = 'This is a test of those operations.’'
(STRPOS 'h¥s' X 0 "%')

Valua =1

(STRPOS 'h¥*s' X 2 "%')
Value = 19

(STRPOS 'hXs' X 20 "%')
Valua = NIL

STRPOSL — function

(STRPOSL table c-str s-int item)

This operand searches a strlng for a character from a given sat.
table should be a translate-and-test table, as built by
MAKETRTTABLE, or a valid first argument for that function.
Cc-str is tha string to ba searched. s$=-int is an index, indicat-
ing tha point in tha string at which the search is to start.
item is a flag, if NIL search ends at first character specified
by tabla, otherwisae search ends at first character not speci-
fied by table. The value is NIL, if the search fails, or the
index of the found character.

X

Valua = 'This is a test of those oparations.®
(STRPOSL 'a@iou' X 0 "T)

Valua = 2

(STRPOSL 'aeiou' X 0 NIL)

Value = 0

(STRPOSL 'aeiou' X 3 "T)

Value = 5

(STRPOSL 'aeiou' X 6 "T)

Value = 38

STRTRT — function

100

(STRTRT table c-str pair)

This operator searches ¢~str for a specified charactaer or char-
acters. It is similar to STRPOSL, but without the negation
flag, and thae position argumant (pPair) is an updatable pair,
whosa CAR is the starting position.

If the desired character is not found tha valuae is NIL., If it
is found, the valua is the pair is updataed, with its CAR being
sat to the position of thae found character and its CDR being sat
to tha table entry. If pair is not a pair, one is created and
initialized with zaro.

X

Value = "This is a tast of thosa opaerations.®

(SETQ Y (CONS 0 0))

Valua = (8 . 0)

(STRPOSL "(€a . 1) (@ . 2) (i . 3) (o . &) Cu . 5))XY)
Valua = (2 . 3)

(RPLACA Y (ADD1 (CAR Y))3

Valua = (3 . 3)

(STRPOSL "((a . 1) (@ . 2) (i . 3) (o . &) (u . 5N XY)
Valua = (5 . 3)

(RPLACA Y (ADD1 (CAR Y)))

Valua = (6 . 3)

(STRPOSL "((a . 1) (@ . 2) (i . 3) (o . 4) Cu . 5)) X Y)
Value = (8 . 1)

Note that in tha above axampla it would be mova afficient
to call MAKETRTTABLE once with the first oparand, and
than pass that as the valuae to STRPOSL. Thae test in
STRPOSL to see if a ready mada TRT table has baan provided
is a heuristic ona. If the first opaearand is a string con-
taining 256 characters, it is used as a TRT table, othaer-
wisa it is passad to MAKETRTTABLE.

YKTLISP Program Description and Operations Manual

PDAT

CHANGELENGTH — function + compiler macro
(CHANGELENGTH str s~-int)

Tha length of the string str is updated to be the value s-int.
An error is indicatad if $tr is not a character or bit string,
or if tha value of $-int exceaeds tha maximum potential length of

Ttr.thTha valua of CHANGELENGTH is tha string $tr with its new
ength. :

QSCHANGELENGTH — function + compiler macro
(QSCHANGELENGTH c-str s~int))

This is the non-checking counterpart to CHANGELENGTH. If c-str
is a charactaer string, and s-int is a small integer £ the capac-
ity of c-str, then the result is equivalent to CHANGELENGTH.
Otharwise the result is unpredictablae, and possible fatal.

TRIMSTRING — function
(TRIMSTRING c-str)

This operator updates the lengthcode in its argumant, to
produce a string with the minimum capacity which will hold the
current contants. The portion of the string which is discarded
(if any) becomaes inaccessibla.

STORECHAR — function + compiler macro
(STORECHAR c-str s-int id)

Updates c-str by replacing the S~intth character with thae first
character of the print name of tha stored identifier id. An
error break is taken if C-$tr is not a charactaer string, or if
s~int is negativa or exceeds thae current langth of the string
c-str, or if id is not a stored identifier.

SUFFIX — function + compilar macro
(SUFFIX id c-str)

Updates the character string C-str by adding the first charac-
tar of thae print name of the stored identifier id to the and of
tha string. id is usually a character objaect, but may be any
stored identifier. This function increments tha length of the
character string by ona, or causaes an error break if there is
nzt sﬂfficiant space in tha string c-str for the additional
charactar.

Tha valua of STORECHAR is the last argument to STORECHAR, the
value used to updata the designatad charactar of tha string.

SETELT — function + compiler macro
(SETELT str s-int item)
This is tha inversa function of ELT -- it updatas tha s-int ale-
ment of str to be item. For character strings, item must be an
jdentifier. For bit strings it may hava any valua, with NIL and
non-NIL baing distinguishad.

SETELT will taka an error braak if s-int is out of range, or if
item is not compatible with tha type of str.

The valua of SETELT is item, the value used in updating the
spacifiaed objact.

RPLACSTR — function + compiler macro
(RPLACSTR c-strl s-intl s-int2 c-str2 [s-int3 [s-int4ll)

Oparations on strings 101

This is a ganaralized string modification routina. It can
raplace any part of c=-strl with any part of c-str2, making any n
necaessary adjustment in tha length of ¢=-strl baecause thae
replacemant characters from C-Str2 are greater or feuwar than
the charactaers being replacad in €-strl. Furthermorae, it can
ins:r} c-str2, or soma spacifiad substring of c-str2, into
C-Strrl.

c-strl must be a character vactor, else an error is indicated.
c-str2 may be either a charactar vactor, or it may ba a stored
identifier (not a GENSYM). In tha lattaer casae, the print name
of the identifiar (which is a charactaer string) will be usaed as
c-str2, and s-int3 and s-int% refer to this string. If c-strl
or ¢c-str2 are not ad described, an arror is indicated.

s-int]l specifies tha index of the first character in c-strl to
be raplaced. $~-int2 spaecifies the numbar of consacutive char-
acters, beginning with the s$-intl charactaer, to be replaced.
s-int3 and s-inté spacify the location and numbar of characters
fro: f-strz which are to replace tha designated charactars in
C=Strl.

s-intl, s-int3, s-int2 and s-int§% may ba aither integer values
or NIL; an error is indicataed if thay are not.

In ganeral, an INDEX may vary from zarc to the current length-1l.
If NIL is spaecified for an index, tha numeric value zero is
used. If s-intl is aqual to the current length, s$~-int2 must be
zero: by use of this convaention, C-str2 can be appanded to tha
and of c-strl.

If zaro is spacifiaed for $-int2, c-str2 is inserted in c-strl
bafore tha position spacifiaed by s=-intl. If NIL is specifiad
for a length, all of tha charactars from tha raelated indax value
to tha end of tha string are usaed. In effact, using NIL for the
valua of LENx is an efficiant way of spaecifying the valua:

(DIFFERENCE (STRINGLENGTH STRx) INDEXx)

s-int4% and $~-int3 are optional arguments. If thay are not spac-
ified, a valua of NIL will ba assumad.

Whanaver possibla, RPLACSTR will update the original
c~-strl, and return as its valuae tha updatad string. How-
avar, if 8-int% is greater than s$~int2, it is possibla
that c-strl does not have sufficient spaca for thae result
string. In this case, a new string is constructed and
this new string is returned as the valua of RPLACSTR.

The usar may test whether the updated string is the ori-
ginal c-strl or a copy by an exprassion such as:

(EQ c-strl (SETQ TEMP (RPLACSTR c-strl ...)))

which will ba true if c=-strl has baen updatad in placae,
and falsa if a naw string had to bae creatad. The purpose
of tha SETQ oparation is to preserva the valua of RPLACSTR
in case a naew string was creataed.

L=-CASE — function

(L-CASE c-str)

This opaerator, whan applied to a character string, translates
all lowaer-casa alphabatic charactar to thair uppaer-case equiv-
alentsé This translation is donea in place, updating tha
oparand.

L-CASE will also accept a list of charactar strings, in which
casae its valua is a nauw list of tha translated strings.

U=-CASE — function

102

(U-CASE c-str)

YKTLISP Program Description and Operations Manual

This oparator, uwhen applied to a character string, translataes
all upper-case alphabatic character to their lower-case equiv-
alents. This translation is dona in placae, updating the
opaerand. U-CASE will also accept a list of charactaer strings,
in which case its valua is a new list of the translated strings.

OMPA G

STRGREATERP — function -
(STRGREATERP c-strl c-str2)

This functions compares two character strings and returns true
if c-strl is greater than str2, otherwisa it returns NIL. The
comparison is donae using tha $/370 CLCL instruction.

If the two strings are of unequal length, the shorter string is
considered to be padded on the right with binary zeros for pur-
poses of comparison. If an argument is not a character string,
an aerror break occurs.

BITGREATERP — function
' (BITGREATERP b-strl b-strn)

Comparas twoe bit strings, and raturns true if b-strl is greater
than b-strn. If the strings are unequal in length, the shorter
string is considered to be padded on tha right with zeros for
purposaes of comparison. Tha argument strings are not changed by
this function, even the bits beyond the current laength of the
strings are presarved.

If b-strl or h-strn is not a bit string, an error braak occurs.

Oparations on strings 103

104

YKTLISP Program Dascription and Oparations Manual

ONS ON MBERS.

The majority of YKTLISP opaerators which expect numbers as operands will
accept aither fixed or floating arguments. Unless otherwise stated, any
operand receiving mixed operands, will produce a floating value. When the
valua of an operation is integer, it will be represented by aither a small
integer or a large integer, irrespective of thae form of its arguments.
See@ "Numbars™ on page 28.

In a sensa thare are only number creating operators. Since-numbers ara
non-updatablae objects, each numeric value is a new number.

CONVERSION.

FLOAT — function
(FLOAT num)

If num is an integer number, the value is the closaest real
approximation to that number, unless num exceaeds tha range of
floating point numbers (approximately 1075), in which casa an
error break is taken. An error break occurs also if num is not
numeric. If num is already a real numbaer, it is returned as tha
value of FLOAT.
FIX — function
(FIX num)

If num is a real (floating point) numbar, returns the integral
part of that value as an integer. If num is already an integer
number, it is raturnaed as tha valua of FIX. For other values of
num, an aerror break is taken.

PREDJCATES

PLUSP — function
(PLUSP item)

Raeturns item if item is positiva or zero, NIL if item is nega-
tive. If item is non-numeric the value is NIL.

QSPLUSP — function + compiler macro
(QSPLUSP s=int)

The non-checking counterpart of PLUSP. If s=-int is not a small
integar the value is unpradictabla.

Tha operators whose names start with QS (with the excep-
tion of QSORT) are only defined for small integar argu-
maents. The computational QS... operators always raturn
small integar results. Certain of these operators have
further restrictions, which are detailed in their defi-
nitions.
ZEROP — function
(ZEROP item)

Returns item if item is zero, NIL if item is non-zero. If item
is non-numeric the valuae is NIL.

QSZERCP — function + compiler macro
(QSZERQP s-int)

Operations on numbers. 105

The non-checking countarpart of ZEROP. If s-int is not a small
intaeger tha valua is unpradictabla.

MINUSP — function
(MINUSP item)

Raturns NIL if item is positiva or zaro, item if item is nega-
tive. If item is non~-numeric tha valua is NIL.

QSMINUSP — function + compiler macro
(QSMINUSP s=int)

The non-checking countaerpart of MINUSP. If s~int is not a small
integer tha valuae is unpredictabla.

oDDP — function
(ODDP item)

Returns NIL if item is aven, iten if item is odd. If item is not
a fixad number the valua is NIL.

QSODDP — function + compilar macro
(QSODDP s~-int)

The non-checking counterpart of ODDP. If s-int is not a small
integer the value is unpradictabla.

GREATERP — function
(GREATERP numl num2)
For numl and num2 numeric valuas, compares them and returns XTx
if numl is greatar than Num2, or NIL if numl is not greater than
num2. Should either nunl or Num2 ba a floating point value, the
real fuzz factor may affect the comparison. Therae is a dis-
cussion of this in thae section on data types, page 29. Bas-
ically, tha fuzz factor allows two real values which are closa
in value to ba considered equal, thus neither is greater than
the othar. Tha valua of tha real fuzz factor defines what closa
maans.

QSGREATERP — functicn ¢ compiler macro
(QSGREATERP s~intl s-int2)

Thae non-chacking countarpart of GREATERP. If s-intl and s-int2
arae not small intagars the valua is unpredictabla.

LESSP — function
(LESSP numl num2)
Tha value of (LESSP X Y) is equivalent to the valua of (GREATERP
Y X), howaver tha order of evaluation of tha operands, and hance
of sida affects, is maintained.

QSLESSP — function + compilar macro
(QSLESSP s=-intl s~-int2)

The non~checking countarpart of LESSP. If s-intl and s-int2 are
not small integers thae valua is unpradictable.

COMPUTATIO

MAX — function + conpilar macro
(MAX num ...)

106 YKTLISP Program Description and Operations Manual

The value of this operator is the algebraically largest argu-
ment value. If any of tha arguments is not a number, an error
braeak occurs.

QSMAX — function + compiler macro
(QSMAX s~-intl s-int2)

The non-checking counterpart of MAX, defined for two small
integer opaerands. If s-intl and $~int2 are not small integers
the value is unpredictabla.

MIN — function + compiler macro
(MIN num ...)

Thae value of this operator is thae algebraically smallest argu-
ment value. If any of the arguments is not a number, an error
break occurs.

QSMIN — function + compiler macro
(QSMIN s-intl s-int2)

The non-checking counterpart of MIN, defined for two small
integer opaerands. If $-intl and $-int2 are not small integers
the valuae is unpredictabla.

ABSVAL — function
CABSVAL num)

Returns the absolute value of nNnum, if X is a numbaer. Ifnumis
not a number, an arror break is taken.

QSABSVAL — function + compiler macro
(QSABSVAL s-int)

Returns the absolute value of num, if X is a number. If s-intl
is not a small intagar the value is unpredictable.

MINUS — function
(MINUS num)

Unary minus operation. num may be any number. Value returned
isminus X. If num is non-numaric an error break is taken.

QSMINUS — function + compiler macro
(QSMINUS s~-int)

Tha non-checking counterpart of MINUS. If s=int is not a small
integer the valua is unpredictable.

PLUS — function + compilar macro
(PLUS num ...)
This oparator computas the sum of num ..., where those arguments
are numaric values. If any of humn are not numeric, an arror
break is taken. If all of numn ara integers, thae rasult is an
integer. Otherwise, tha result is real.

QSPLUS — function ¢ compiler macro
(QSPLUS s-intl s-int2)
The non-checking countaerpart of PLUS, dafined for two operands,
both of which are small integers. If either of tha arguments is
not a small intaeger, or if tha raesult is outsida thae small inte-

ger ranga, the valua is unpredictabla, but will ba a small inte-
ger.

Oparations on numbears. 107

ADD1l — function
(ADD1 X)

Returns as its value (PLUS X 1). If X is not numaeric an aerror
break will ba takan.

QSADD]l — function + compiler macro
(QSADD1 s-int)

The non-checking counterpart of ADD1. If s-int is not a small
intaeger tha value is unpraedictable.

QSINC1 — function + compiler nacro
(QSINC]1 s-int)
This opaerator is aquivalent to QSADDl, except when its operand
;st-%. In that case its value is unpredictable, and possibly
atal.

QSINC] compiles to a singla machina instruction, and is used for
indax arithmatic in many intaernal functions.

DIFFERENCE — function + compilar macro
(DIFFERENCE numl num2)
This function computaes tha value numl minus NUM2, where Numl and
num2 are numeric valuaes. If either numl or NUM2 is not numaric,
an error break is takan. If both numl and num2 are intagers,
thae value of DIFFERENCE will be an integar. Otherwise, the
raesult valua is raqal.

QSDIFFERENCES — function + compiler macro
(QSDIFFERENCES s-intl s-int2)
The non-checking counterpart of DIFFERENCES, definaed for small
intagers. If either of the arguments is not a small integer, or
if the result is outside tha small integer range, tha value is
unpredictabla, but will be a small intagar.

SUBl — function
(SUB1 X3

Raturns as its valuae (DIFFERENCE X 1). If X is not numeric an
error braeak will be taken.

QSSUB1 — function ¢+ compiler macro
(QSSUB1 s~-int)

The non-chacking counterpart of SUBL. If's-int is not a small
integer the valua is unpradictabla.

QSDEC1 — function + compilar macro
(QSDEC]1 s-int)
This operator is equivalent to QSSUBl, aexecpt whaen its dperand
istoi In that casa its valua is unpredictablae, and possibly
fatal.

QSDEC]l compiles to a singla machina instruction, and is used for
indax arithmatic in many intarnal functions.

TIMES — function + compiler macro
(TIMES num ...)

108 YKTLISP Program Description and Oparations Manual

This opaerator computes tha product of num ..., where these argu-
ments are numeric values. If any of numn are not numaric, an
error break is taken. If all of numh are intagers, the result
in an integer. Otherwise, the result is real.

QSTIMES — functicn + compiler macro
(QSTIMES s~-intl s-int2)

The non-checking counterpart of TIMES, defined for two
operands, both of which are small integers. If either of the
arguments is not a small integer, or if the result is outside
the small integer range, the value is unpredictable, but will be
@ small integer.

DIVIDE — function + compiler macro
(DIVIDE numl num2)

DIVIDE computes the quotient of numl divided by num2, and
returns as value a list:

(QUOTIENT REMAINDER).

The first alement of this list is the quotient and the second
element is the ramainder. If both numl and num2 are integers,
the quotient and remaindaer will be integers. If any argument is
real, the quotient and remainder will be real. The remainder
for a real quotient is peculiar because it exists only because
of the approximation needed for represaenting real numbers as
floating point numbers in the computer. A real remainder is
computed as

(DIFFERENCE numl (TIMES num2 QUOTIENT)).

If the divisor is zero, or if a@ither argument is non-numeric,
and error break is taken

QUOTIENT — function + compiler macro
(QUOTIENT numl num2)
This function is similar to DIVIDE in that it computes the quo-
tient of numl divided by num2, but differs in that it returns
only the quotient, rather than a list of quotient and remainder.
If numl and num2 are both integers, the quotient will be an
integer. Otherwise, the quotient is real.

If the divisor is zero, or if aither argument is non-numeric,
and error break is taken

QSQUCTIENT — function + compiler macro
(QSQUOTIENT s-intl s-int2)
The non-checking counterpart of QUOTIENT, definad for small
intaegers. If either of the arguments is not a small integer, or
if the result is outside the small integer range, thae value is
unpredictable, but will be a small integer.

REMAIMNDER — function + cecapiler macro
(REMAINDER nunl num2)
Returns as value the remainder of NuMl divided by num2. " If both
nunl and nume are integers, the remainder is computed from an
integer division. If either numl or NUM2 is floating point, tha
remainder is computed by subtracting num2 times the real quo-
tient from nuanl. See DIVIDE, this page.

If the divisor is zero, or if either argument is non-numeric,
and error break is taken

QSREMAINDER — function + compiler macro

Operations on numbers. 109

(QSREMAINDER s=-intl s-int2)

Tha non-checking countarpart of REMAINDER, defined for small
integars. If either of tha argumants is not a small intaeger, or
if the rasult is outsida tha small integer range, thae valuae is
unpradictablae, but will be a small integar.

LEFTSHIFT — function
CLEFTSHIFT num s-int)

If num is a small integer or ona word large integer,' the valua
of this function is tha number (limitaed to tha range of a ona
word large integar) obtainad by a binary shift of s~-int bits.
Positiva values of $-int denote a laft shift, negativa valuas a
right shift. Any bits shifted outside of a 32 bit word are
lost, and zero bits are supplied as neaded. If num is not with-
in the describaed range, an arror braeak is taken.

QSLEFTSHIFT — function ¢+ compiler macro
(QSLEFTSHIFT s~-intl s-int2)
The non-chacking counterpart of LEFTSHIFT, definad for small
integers. If either of the arguments is not a small integer, or
if the rasult is outside the small integer range, the value is
unpraedictable, but will ba a small intager.

RIGHTSHIFT — function + compiler macro
(RIGHTSHIFT num s~int)
Equivalent to (LEFTSHIFT num (MINUS s-int)).

ALINE — function
(ALINE s-intl s-int2)
Value is the small integer s~intl roundad up to the nearaest mul-
tipla of tha small integer $~int2, where 8$-int2 is a power of 2.
If s=intl or $-int2 are not small integers or are negative, an
error braak is taken. If s-intl is zero or ona, raturns s~-intl
ugghangad. If s-int2 is not a power of 2, raesult is unpradict-
abla.

CALINE 15 4¢) = 16.

QSNOT — function + compiler macro
(QSNOT s=int)
Returns thae bitwisae complement of the numeric value of s~int, as
a small intagar. If s-int is not & small intaegar thae valua is
unpredictible, but will ba a small integer.

QSAND — function + compiler macro
(QSAND s-intl s-int2)
Raeturns the bitwise AND of the numeric valuaes of s=-intl and
8-int2, as a small intagaer. If s-intl and $-int2 are not small
integers the valua is unpredictibla, but will be a small
intagaer.

QSOR — function + compiler macro
(QSOR s-intl s-int2)
Returns the bitwisea OR of thae numeric values of s$-intl and
s-int2, as a small integer. If s-intl and s-int2 are not small
in:egers the value is unpredictible, but will ba a small
integaer.

QSXOR — function + compiler macro

110 YKTLISP Program Description and Oparations Manual

(QSXOR s=-intl s-int2)
Returns tha bitwise exclusiva OR of the numeric values of s-intl .
and s$-int2, as a small integer. If s-intl and s-int2 are not
small integers tha value is unpredictibla, but will be a small
integar.

EXPT — function
(EXPT numl num2)
Returns the value of numl raised to the num2 power. Tha value
is an integaer if NUM]l is an integer and NUM2 is a positive intae-
gar; otherwise, tha value is a floating point numberl.
numl cannot be negative if num2 is not a positive integer.

EXP — function
(EXP num)
Returns the valuae of @ raised to the Num power.
An aerror break will be taken if num > 174.66.

LN — function
(LN num)
This operator computaes the natural logarithm of num. num may be
eithaer integer or floating, but it must ba within the range of a
floating number. The raesult is a floating number.

LOG — function
(LOG num)
Computes common (base ten) logarithm of num. num may bae aither
integer or floating, but must ba within the range of a floating
number. Tha value is a floating point numbar.

LOG2 — function
(L0G2 num)
Computaes the logarithm to the basa 2 of num. num may be either
integer or floating, but must be within the range of a floating
numbaer. Tha valua is a floating point number.

SIN — function
(SIN num)
Computes tha sine of num, the angle in radians. num may be
either integer or floating, but must be < approximately
3.5%10!3%, Tha valua is a floating point numbar.

cos — function
(C0S num)
Computes tha cosine of num, the angle in radians. hum may be

either integer or floating, but must be < approximately
3.5%10!3,. The value is a floating point number.

Opaerations on numbars. 111

112

YKTLISP Program Dascription and Operations Manual

C

OPERATIONS ON IDENTIFIERS

In YKTLISP identifiaers are of two types, normal or stored, and GENSYM or
non-stored.

GENSYM identifiaers have only a single component, their pname, which has
the form 'X6n', with 1 $ n $ 224, They can be used as lexical or global
variables, but not as fluid variables.

GENSYM identifiers are treated specially by the standard PRINT and
READ routines, in that they are identifiabla as GENSYM's in printed
output and whan one is read, it is replaced by a naw GENSYM in the
structura created by tha READ program. Thus, if the same expression
is read several times, it will contain unique GENSYM's in each copy
read, although there will ba only ona naw GENSYM created for each
distinct GENSYM in the expression being read. If the same GENSYM
occurs more than one time in the input expression, the same newly
created replacemant GENSYM will be raefarenced every placae thae ori-
ginal GENSYM was referenced.

X

¥a1ue = %G1325
Valua = %G1325
(EQ X Y)

Value = %Tx
(SETQ A "%G1l)
Value = %G1401
(SETQ B "%Gl)
Value = %Gl1402
(EQ A B)

Value = NIL

(SETQ C "(%Gl %G2 %Gl %G2))
Valuae = (XG1403 %Gl405 %Gl403 %G1405)

There is only a finite number of possible GENSYMS, .75%224, and an error
break is taken if an attampt is made to genaerate more than that many.

Therae are two types of normal identifiers, in turn.

INTERNed identifiars are remembered in a system tablae, the OBARRAY (some-
times referred to as tha OBLIST, for historical reasons). Two identifiers
with jdentical pnames will always be EQ, evan when read on differant occa-
sjons.

UNINTERNed identifiers can only be created internally, they can not be
raad. Different applications of UNINTERN to the same pname result in dif-
ferent, non-EQ, objects. An UNINTERNed identifier is not distinguishablae
upon printing, and if read in from a fila, will be interpreted as an
INTERNED identifiaer. UNINTERN@d identifiers are meant to be used
internally, uwhere thaere is a danger of exhausting the set of GENSYMs.

Normal identifiars have two components, their pname and thaeir property
list.

CREATION

INTERN — function
(INTERN c-str)

This opaerator searches tha object array for a pre-existing
identifier with a pname EQUAL to t-str. If one exists, it is
returnaed as the value of INTERN. Otherwisa, a new identifier is
created, with a print name EQUAL to c-str and added to the
object array. This new identifiar is raeturned as the value of
INTERN. If c-str is not a character string, an arror break
occurs.

UNINTERN — function

Opaerations en identifiers 113

CUNINTERN c-str)

This oparator creates a naw identifiar, with a pname EQUAL to
c-8tr This new identifier is raturned as the value of UNINTERN.
It is not addad to the object array. If c-str is not a charac-
ter string, an error break occurs.

GENSYM — function

(GENSYM)
This operator cohstructs a new, unique, non-storaed idaentifiar.

Tha mechanism used to insure unique ID's is simply to have a
countar which is incraeamented avery time a new GENSYM is required
and to incorporata this counter's value into thae print nama of
the identifiar.

Becausa thare are a limited number of GENSYM's, it is
recommended that GENLABEL's bae used whenaver they are
appropriate rather than the more costly GENSYM's.

GENLABEL — function

(GENLABEL)

The value of this oparator is a non-stored constant suitable for
us@ as a statement labael inside of a PROG aexpression or in a LAP
contour. Thase objects pass tha GENSYMP predicate. Thesa con-
stants are generated in a series which is rasat to its starting
value by tha DEFINATE function so that the same values may ba
reusad. The principal usa of GENLABEL is by macro definitions
which require a locally unigue labal to be incorporatad into
their expansion.

The only differaence between the value of GENLABEL and GENSYM is
tha range of numaeric valuas usaed. They are in all othar
raespacts simply GENSYM idaentifiers.

GENLABEL's share the peculiar nature of GENSYM's with raespact
to READ. They arae never read in verbatim, but rather cach dis-
tinct GENLABEL in an expression baeing read is replacaed in tha
naw structure READ producaes by a neuwly ganaratad GENSYM.

L=CASE — function

(L-CASE id)

Tha L-CASE opaerator returns tha identifiaer whose pname is tha
result of translating any upper casa alphabetic characters in
tha pname of id into their lowar casae aquivalaents.

Sea pagae 102 for the behavior of U-CASE when applied to sfrings.

U=CASE — function

ACCESSING

(U-CASE id)

The U-CASE oparator returns the identifier whose pname is the
raesult of translating any lower case alphabetic characters in
the pnama of id into thair upper case equivalents.

Seae page 102 for tha bahavior of U-CASE when appliad to strings.

PNAME — function

(PNAME id)

114 YKTLISP Program Dascription and Oparations Manual

Raturns a copy of the print nama of id. If the value of id is
not an identifier, an error break is taken. Thae print name is a
character string.

GET — function
(GET id item) .

See paga 86 for thae description of the behavior of GET whan
applied to lists. If id is not an identifier or a pair, value
is NIL. Otherwise the property list of id is searched for tha
first occurraence of an elament such that

(EQ item (CAR elament))

is trua. If found, tha value of GET is (CDR elament). 'If such
an alement is not found, the value of GET is NIL. .

PROPLIST — function
(PROPLIST id)

The value of id must ba an identifier. Returns the proparty
list associated with that identifier. The property list is a
standard LISP association list. The value raturnad is not the
actual property list, but is the result of applying APPEND to
the property list and NIL. Thus, whila the name-value pairs may
ba updataed, thae actual proparty list itself is secure.

ARCHING AN PDA

MAKEPROP — function
(MAKEPROP id iteml itam2)

Operator to update the property list of tha identifier id. If
tha iteml property already exists, its associated value is
changed to item2. If the iteml property doas not currently
exist, a new property with this name is put at the beginning of
the proparty list.

The value of id must ba an identifiar or a list, but iteml and
item2 may ba any expressions. For a description of the behavior
of MAKEPROP when applied to lists, see paga 87.

DEFLIST — function
(DEFLIST list item)
This function expects list to ba a list of pairs whose CARs are
identifiers and whose CADRs are arbitrary values. For aach of
these pairs, (MAKEPROP ID item VALUE) is parformed, assigning
the CADR value from tha pair as thae value of tha item property
in the identifiar's property list.

The valua of DEFLIST is a naw list containing the property val-
ues (the CADRs of the elements of list).

To put NUM properties on each of the identifiers A through F,
Wwith values 10 through 15, one would writae

(DEFLIST
:((A 10) (B 11) (C 12) (D 13) (E 14) (F 15))

NUM)
Valuae = (10 11 12 13 14 15)
REMPROP — function
(REMPROP id item)

Operations on identifiers 115

UPDATING

The item property of the identifier id is removaed from tha prop-
erty list of id. The valuae of REMPROP is NIL if thare is no item
proparty. If the propaerty exists, the valuae of REMPROP is tha
value associated with that property.

REMALLPROPS — function

(REMALLPROPS id)

All propertias on the proparty list of id are removad. If id is
not a normal identifier the valua of REMALLPROPS is NIL, other-
wise the valua is id.

OBJECT ARRAY

OBARRAY — function

116

(OBARRAY)

Raeturns as valua a copy of the current LISP objaect array. This
is a reference vector containing elemaents which are identifiars
(INTERN'ad variablaes).

Bacause tha valua of OBARRAY is a copy of tha actual objact
array, it may be modified in any way by tha user.

YKTLISP Program Description and Operations Manual

STREAM 1/0

YKTLISP supports two major styles of 1/0, stream I/0 to and from disk
files and terminals, and key addressed I/0 to spacially formatted disk
files. This section covers the former, whilae thae "Key addraessed I/0" on
page 125 covers the latter.

At its simplest, a stream can be considered a source of, or recipient of a
sequance of characters. In practice, the essaentially line (or record)

oriented devices show through to a greater or lesser extant. See
"Streams™ on page 33.

YKTLISP providas six pre-constructed streams. Thaese arae:
CURINSTREAM — variable

The currently active input stream. Each invocation of SUPV
results in a new binding of this variable. This may bae either a
console (terminal) stream or a file (disk) straeam.

CUROUTSTREAM — variable

The currently active output stream. This may be aeither a con-
sole stream or a file stream. Also bound by SUPV.

ERRORINSTREAM — variable

The input stream used by tha break loop. Normally a console
stream. Distinguished from CURINSTREAM in case an arror is
daetacted attempting to read from CURINSTREAM.

ERROROUTSTREAM — variabla

The output stream used by the break loop. Normally a console
‘stream.

NULLOUTSTREAM — variable

etdata sink. This stream simply discards anything written to
it.

STACXLIFO — variable

An output stream which places lines in the console stack, so
that they will be saen by any program reading from the console.

Therae are really two classaes of operators dascribed in this section, those
which use streams to perform I0 and those which operate on the streams as
data objects.

CREATION

DEFIOSTREAM — function
(DEFIOSTREAM list s-intl s-int2)

This function constructs a standard structure usable as an
input/output straam by the normal READ and PRINT programs. The
structure which is created and returned as the value of
DEFIOSTREAM is not checked for validity by DEFIOSTREAM. The
first usa of the stream will typically involvae initialization
and verification of the data in the structure according to the
naeds of the using function. Thus, DEFIOSTREAM will create an
input stream for a non-existent fila, and no error will be indi-
cated until an attempt is made to read from the rasulting
stream.

list is an association list which defines somae of the charactar-

istics of the stream baing created. S-intl is an integer defin-
ing the laength of the lines for which buffar spaca is to be

Stream I/0 117

providad. This represents a maximum length; shorter lines may
be producaed by using TERPRI for output, and shorter lines may bae
emitted by whatever source an input stream usaes. A line buffer
is not allocatad by DEFIOSTREAM, but will ba allocated the first
tima the straeam is used by READ or PRINT. s$-int2 daesignatas a
particular record within a data set. A valua of zero means usa
tha first record if an input stream, or the naxt racord if an
output stream.

Streams may bae defined by this function based either on a disk
file or console as an input/output davica. Tha list value is
examinad to detarmine which of these davices is to ba used, and
an appropriate program is selacted and stored as the value of
rfn in the stream structurae.

In order to implement commonly-needed default stream
i?tzibutas, DEFIOSTREAM makes tha following modifications to
1§¢:

. If no MODE proparty is already part of list, (MODE . INPUT)
is added to list by nondestructivae CONSing.

. If (MODE . I) or (MODE . 0) is spacifiad, I or 0 is RPLACDad
by INPUT or QUTPUT, respectivaly.

Following is a dascription of tha proparties and meanings which
are most commonly usaed for list. Additional propaerties are
ignored by the standard stream processing functions, but may be
added to provida additional information to ba used by the user's
programs.

. (DEVICE . CONSOLE) is specifiad to indicate this stream is
defined on the user's consola.

. (FILE filenama filetype) or (FILE filenama filaetypa
fileamode) is spacifiad to indicata this stream is defined
on thae designated disk fila. Values for filaname and
filatypa may ba spacified either as identifiaers or charac-
ter strings.

. (MODE . INPUT) or (MODE . OUTPUT) dasignates an input or
ogtput)stream; raspectivaely. (This attribute was discussed
abova.

. (RECFM . V) or (RECFM . F) designates whether a disk file
referenced in an output stream is to have fixed or varying
langth records in it. Varying length records is thae default
assumption.

. (QUAL . {5 | Tl U] V] X}) designatas tha type of CMS raead
operation to ba usaed in obtaining records from the conscle
for this stream. Tha lettars have the following meanings:

S = pad records with blanks to 120 characters.

T = raad a logical lina (tha dafault operation).
U = pad with blanks and translate to upper casa.
V = translate to upper case.

X = read a physical lina.

U (QUAL . {LIFO | FIFO | NOEDIT}) specifies for consola output
filas that no aediting is to be performed on output lines
(i.e. for typewritaer consoles, trailing blanks are not
deleted and a carriaga return is not automatically appended
to the line). LIFD and FIFQO dasignata that output lines ara
to be placed into the consola input stack, rathar than be
written to tha consola.

SHUT — function

113

(SHUT strm)

This operator invokas a system~dependent routine to close any
filae rclated to the argument strm. If no fila is actually in
need of closing, the action of SHUT is affectivaly a
no-operation. The valua of SHUT is -1 if strm is ill formaed, 0

YKTLISP Program Daescription and Operations Manual

INPUT

if thae stream is successfully shut or un-shutabla (a console
stream, for example), and the return code from the system
dependent shut routine otherwise.

Note that, for an output stream, if a partial buffer of
data exists, an explicate TERPRI must be done before SHUT
is applied, otharwisa the data will be lost.

end-of-file — concept

It is possible for a stream to become empty. This occurs, for
exampla, if a DASD file reaches end-of-file.

Unfortunately, when using READ, it is impossible to reliably
tell that you have just read the last item from a stream. Thus,
any use of READ must be prepared to recieve a read-place-holder
as the value of a use of that operator. Read-place-holders are
spacial, non-representable, objects which can be identifiad by
the oparator PLACEP (paga undefined refid=placep), and which
are only encountared as the value of READ and READ-LINE when an
attempt is made to read beyond thae end of a stream.

NEXT — function + compiler macro

(NEX? strm)

This opaerator advances strm to the next charactaer and returns
tge upgated strm as its value; the CAR of the strm is this next
character.

If the last character in the buffer of stra has been axtracted,
it is put into the end-of-list configuratien. If it is in the
end-of-lina configuration, an attempt is made to re-fill the
buffer. If the buffer is refillad the first charactaer is
extracted from it, otherwisae the straam is put into the empty
configuration. (See "Streams™ on paga 33).

NEXT does not check strm to verify that it is an input stream.

ITEM=-N-ADV — function + compiler macro

(ITEM-N-ADV sirm)

This operator extracts the current object at the head of the
stream strm, and then advances strm, using NEXT. Its value is
the objact extracted, i.e., that which was current at tha time
it was invoked, rather that that which is current at the time it
returns. Returns as value tha current object at the head of the
steam strm, then advances strm using NEXT. This function dis-
cards line end indications, so the caller will see only actual
data values from strm, ’ .

RDCHR — function + compiler macro

(RDCHR [(strm))
This operator is equivalant to ITEM-N-ADV.

The operand, strm, is optional, and daefaults to CURINSTREAM if
omittad.

READ-LINE — function

(READ-LINE strm)
This operator reads ona line from strm. This is a single

racord, from a DASD file, or the contents of the input area, for
a console stream.

Stream 1/0 119

If strm is in the end-of-fila condition the valua is a
read-place-holdar, otherwisa it is a string.

READ — function + compiler macro

(READ [strml)
This operator reads one complete list object from strm.
If strm is omittad it defaults to CURINSTREAM.

READ refaerences three free variables which control the parsing
of input data. These arae QUOTEIZER, STRINGIZER and LETTERIZER,
which ara initially set to ™, ' and |, respectively. Each
should be bound to the character object which is to signal the
READ program to paerform an appropriate oparation. The
QUOTEIZER character indicates that the symbolic exprassion
immediately following (there may be no intervening blanks
baefore the first character of this expression) is to become the
:agggd elemant in a list whosa first element is tha identifier

“"(A B C)
is equivalent to
(QUOTE (A B €))

This is a particularly useful facility when typing expressions
interactively from a tarminal.

The STRINGIZER charactar is simply the character designataed to
act as a string delimiter.

The LETTERIZER is the character usaed to signal that the imme-

diately following character is to be considered a data charac-

ter rathaer than a control charactaer. The LETTERIZER character

is needed for dasignating, for example, the identifier having

;?e zrint name 999, or thae character object laft parenthaesis or
ank.

1999

Value = |
(LENGTH "
Value = 3

999
clcl Hh»

When a stream is empty (at end-of-filae), the valuae of READ is a
read place holdar. Sea the discussion undar PLACEP, paga 74.

When a stream becomaes ampty it is put into a pecular con-
figuration, which unfortunataly discard all useful infor-
mation, such as file nama. A straam is empty when:

(EQ strm (CAR strm))
(EQ strm (CDR strm))

are both trua.

TEREAD — function + compiler macro

(TEREAD [strml)

This operator forces an and of line condition in tha fast stream
strm. Any characters laft in the current input buffer are lost.
A sacond application of TEREAD with no intaervening NEXTs will
have no effact.

If strm is omitted it defaults to CURINSTREAM.
TEREAD does not refresh the buffer in a stream, it simply

puts the steam into tha end-of-lina condition, so that
the next application of NEXT will refraesh the buffer.

PUTBACKX — function

120

YKTLISP Program Dascription and Operations Manual

_/

QUTPUY

(PUTBACK item strm)

One of the oparators for manipulating input streams. The value
of item is pushed onto the head of the stream, whare it becomes
the current object at the head of the stream.

item is always a character object when PUTBACK is called by the
system.

This operation is, approximataely, an output of one char-
acter to an input stream.

It is meaningful only for input streams, and finds appli-
cation in the READ programs, where a dalimiter is
encountered by an auxiliary function, using ITEM-N-ADV,
and the delimiter is PUTBACK onto the stream where it will
ba subsequently seen by that part of the READ cperation
which is equipped to intarpraet it.

It is needed to allow look ahead on straeams which are
really raecord oriented. In fact, given YKTLISP's defi-
nition of streams, PUTBACK is only required for look
ahead greater than one if NEXT is used rather than
ITEM-N-ADV. This implies, houwever, that end-of-lines
must ba explicitly handled.

WRITE — function + compiler macro

(WRITE character strm)

This opaerator places character into strm

If the buffer is full it is written onto the output device, and
character becomes the first character of the naw buffar. (Sea
"Streams"™ on page 33).

WRITE doas not chack strm to verify that it is an output stream.

PRINTCH — function + compiler macro

(PRINTCH character [stral)
This operation is equivalent to WRITE.
If strm is omitted it defaults to CURODUTSTREAM.

TERPRI — function + compiler macro

(TERPRI [strm])

This operator forces output of tha current line in STREAM. A
sacond application of TERPRI, with no intarvening WRITEs, will
raesult in a blank lina.

If strm is omitted it defaults to CURQGUTSTREAM.

HRITE-LINE — function

(WRITE-LINE c=-str strm)

PRINTEXP — function + compiler macro

Writes c=-Str onto strm, as a single lina. Only the content; of
c-str are written, with no string delimiters or letterizer
charactaers.

Any data written to the stream since the previous TERPRI (ex-
plicit or implicit) is lost. (PRINTEXP c-str [strml)

Stream I/0 121

This operator writes the characters comprising c-str into strm,
with no string dalimiters, and no latterizer characters.

If strm is omitted it dafaults to CUROUTSTREAM.

SKIP — function + compiler macro

(SKIP s-int [stral)

Thi;lfperator issues s$-int TERPRI's to strm. Tha valua of SKIP
is .

I1f strm is omittad it defaults to CUROUTSTREAM.

TAB — function + compiler macro

_(TAB s-int [stral)

This operator causaes sufficient blanks to bae written into stra
so that tha.last character in the stream output buffaer is a byte
position S~int. If there are already more than S$-int bytes in
the current output buffer, a TERPRI is parformed, and s-int
blanks inserted into an empty output buffar.

The affaect of (TAB n strm) is to cause tha next charactaer writ-
ten to strm to ba placed in position N+l in its buffar.

If strm is omitted it defaults to CUROUTSTREAM.

PRIN1 — function + compiler nacro

(PRIN]1 item [strm])

This operator writes the characters making up the reprasen-
tation of item to strm. No formatting is paerformaed and no
TERPRI is dona. No blank is printaed after item. Thus the next
write to strm (if no TERPRIs intervenae) will place charactars
immediately following the results of this oparation.

This operator will print only non-descendiblae objects (i.a.
n:ither pairs nor raeference vectors). The value of PRIN]l is
item.

If strm is omitted it dafaults to CURCUTSTREAM.

PRIN1B — function + compiler macro

(PRIN1B itam [(strml)

This operand is similar to PRIN1, but a blank character is writ-
ten into strm after item is printaed.

If strm is omitted ié dafaults to CUROUTSTREAM.

PRINO — function + compiler macro

(PRINO jtem [stral)

This operator is tha standard YKTLISP print routina, which
writes the canonical output representation of tha value of item
to strm. PRINO is dafinad for all data objects. This represan-
tation shows all shared substructure, including cyclical struc-
ture.

No formatting is performed and no TERPRI is done. No blank is
printad aftar item. Thus the next write to strm (if no TERPRIs
intervene) will place charactars immediataely following the
raesults of this operation.

PRINO differs from PRIN1 in its ability to print pairs and ref-
erenca vactors.

If strm is omitted it dafaults to CUROUTSTREAM.

PRINT — function + compiler macro

122

YKTLISP Program Dascription and Opaerations Manual

(PRINT item [strm])

This operator is equivalent to an application of PRINO followed
by a TERPRI. Thus, the next write to strm will start a new
lina. Its value is item.

If strm is omitted it defaults to CUROCUTSTREAM.
PRINM — function + compiler macro
(PRINM item [strml)

A specialized print operator which expacts item to be a pair
(otherwise item is CONSaed with NIL and this pair is treataed as
item) and prints each element of the list item, with blanks
betueen the elements. There are no top levael parentheses
printed, and if any elemaent of the list item is a character
string, it is printad by PRINTEXP instead of the normal, PRINO,
routinae, so that its delimiting characters ara not printad.

If strm is omitted it dafaults to CUROUTSTREAM.
PRETTYPRINT — function + compiler macro
(PRETTYPRINT item [(strnl)

Similar to PRINT, except a mora complicated program is invoked
which understands many of the more common forms of symbolic
expressions and prints them in a structured format. Unlike
PRINT, PRETTYPRINT will not try to print structures with cycles
in them. If a cycle exists in item, the regular PRINT function
is invoked. PRETTYPRINT does not attempt to evidence shared
structures as does PRINT, but prints each shared substructure
in full., If it is not provided, the current value of the vari-
able CUROUTSTREAM is used. PRETTYPRINT usaes a free variabla,
EBETTYNIDTH. to define for it the maximum laength of output
ines.

If strm is omitted it daefaults to CUROUTSTREAM.
PRETTYPRINO — function + conpiler macro
(PRETTYPRINO item [strml)

This is a subfunction of PRETTYPRINT which takes the same argu-
maents but does not parform a TERPRI aftaer item has baen printed.

Thae following operator does not use a straeam.
CONSOLEPRINT — function + compilar macro
(CONSOLEPRINT c~-str)
This operator displays its operand directly on the console

device. It is tha operator of last resort, to be used if you
suspect that tha world is coming down about your ears.

CCESSING COMPONENT

All streams are pairs. A simple list may be treatad as a stream, houever
the majority of streams usad in YKTLISP have a complaex structure, and are
refaered to as fast r

At tha moment, fast streams are not a distinct data typa, they are an
interpretation of a particular structure of pairs and vectors. Sea
"Straams™ on page 33. YKTLISP provides operators for accessing and updat-
ing tha componaents of streams. These should be used in praefarence to
C...R and ELT, as they will give protaction against any change in the for-
mat of streams.

CAR — function

Stream 1/0 123

(CAR strm)

The value of CAR, whan applied to a stream, is tha current char-
acter. That is, for an output stream, the last charactar writ-
ten into the stream, for an input stream, the last character
extractaed from its buffaer.

CAR of a stream uwhich is at end-of-line is EQ to the stream
itself.

STREAM=~A-LIST — function
(STREAM-A-LIST strm)
Returns tha a-iist of strm. This corresponds to the (possibly
augmented) first operand of tha DEFIOSTREAM invocation which
originally creataed Strm. Seae page 117.
STREAM=-BUFFER — function
(STREAM-BUFFER strm)
Returns the I/0 buffer of strm. This is normally a string, con-
taining tha last lina read (for input streams), of the next line
to bae writtaen (for output streams).
The TERPRI oparator emptias the buffar, using
CHANGELENGTH to transform it into an empty string. A
stream which has not been activated will have a buffaer of
NIL. Once a WRITE or NEXT has been parformad on tha
stream, thae buffer will bae created, with tha proper
langth.
STREAM=DESCRIPTOR — function
(STREAM-DESCRIPTOR strm)
Returns the dascriptor from strm. This is a reference vactor
(sae "Streams™ on paga 33) containing various sub-componaents of
the stream.
STREAM-P-LIST — function
(STREAM-P-LIST strm)
Raturns the system dapaendent control block from strm. This is
an object (a string or word vector) which is created, updated
and usad by the system dependent routines. It contains arbi-

trary data, not amanable to manipulation by LISP oparators. In
an unactivated stream the p-list will be NIL.

UPDATING COMPONENTS,

SET-STREAM-A-LIST — function

(SET-STREAM=-A-LIST strm list)

Replaces tha currant a-list of strm by list.
SET-STREAM-BUFFER — function

(SET-STREAM-BUFFER strm item)

Raeplaces thae current buffar in strm by itam.
SET-STREAM-P-LIST — function

(SET-STREAM-P-LIST strm item)

Raeplacaes the current p-list of strm by item.

124 YKTLISP Program Description and Opaerations Manual

KEY_ADDRESSED 10

This section describes the operators used to manipulate specialized DASD
filas referraed to as libraries or LISPLIBs. Thesa files are similar to 0S
partitioned data sets. They contain memb » which are representations of
LISP data objects, in a form which can be loaded quickly (though writing
them is often slow). .

Each member in a library is addressed by means of a key, a string, and has
a class number (between 0 and 255) associated with it. -

When a library is opaened (by RDEFIOSTREAM) its directory is read and made
part of the stream. If the library is opened for output, the file is so
marked, and may not be opened for input until it has been shut. Output
opaerations only modify the stream's diraeactory, not that in the file, and
the data is appended to the end of the file, not overwritten upon old

data. Only when the stream is closed is the directory in the file
updated. .

Some of the following oparators act directly on named libraries, while
othars act indirectly, through streams.

CREATION

RDEFIOSTREAM — function
(RDEFIOSTREAM list)

This operator creatas a stream which can be used to accass or
updata a library.

list has the same genaral form and meaning as tha corresponding
operand of DEFIOSTREAM, page 117, howaver tha only meaningful
proparties are MODE and FILE.

INPUT

RREAD — function
(RREAD c-str rstrm)

This function reads the value component of a member, identified
by €-str from the library specifiad by rstrm. c-str must be a
character string. rstrm must have have been defined by
RDEFIOSTREAM. If output has baen parformed to the library after
the creation of rstrm, its affects will not be seen by RREAD.
Such changes are only evident in streams which were created
after the writing process has shut the library. This is so
bacause thae directory in tha file is only updated upon shutting.

The value of RREAD is tha object read.

An aerror break is taken if c-str is not a valid key for the
library. :

RCLASS — function
(RCLASS c-str rstrm)
This operator returns the class value for tha item designated by
c-str in tha library accessed by rstrm The value is a small
integer, in the ranga 0 to 255.

An arror break is taken if c-str is not a valid key for the
library.

RKEYIDS — function

Key addressed I/0 125

QUTPYT

(RKEYIDS film)

This operator returns a list of identifiers corresponding to
the keys in the library named by file. Thaesae identifiers are
produced by INTERNing thae actual kaeys, that is the identifiar
ABC rapresants the kaey 'ABC'.

RHRITE — function

(RWRITE c~str item rstrm)

This oparator add, or replacas, an object reprasenting item
associataed with the key €-3tr to thae library accessed by rstra

If there already exists such an object the class is unchanged,
if this is a new kay, the class is sat to zero.

Neither state descriptors nor bpis can be writtan directly to a

library. State daescriptors have no representation in

libraries. Bpis are represented, but tha representation must

be creataed directly by the LAP assemblar. This is accomplishad

?y :ppropriate usa of thae FILE option in tha dafinition option
ist.

RSETCLASS — function

(RSETCLASS c-str s-int rstrm)

This opaerator sets the class component for a member of a
library. s-int must be in the range 0 to 255.

The oparation is only valid if the key already has been addad to
tha library, by an RWRITE, and an error break is taken
oﬁh:ruise. Thae effect is only visible aftar the library is
shut.

RSHUT — function

(RSHUT rstrm)

:;r input streams the RSHUT opaerator simply parforms a CMS

For output streams the RSHUT operator writes the current
library directory into tha file, removes thae "open for output®™
flag and parforms a CMS FINIS.

A library which has been cpenad for output must be shut before

it can bae read again. Failure to do so uWill result in an
unreadabla fila.

AGEM

RPACKFILE — function

126

(RPACKFILE file)

This operator reformats a library, discarding all inaccessibla
data.

RWRITE, it should ba remembaraed, never overwritas old data raep-
resantations, but rather appands new data to the end of the
existing library. RPACKFILE ramovas the supersadaed data,
shrinking the library to its minimal siza.

If any errors occur during tha processing, tha original file is
laft unharmad.

YKTLISP Program Dascription and Operations Manual

RCOPYITEMS — function
(RCOPYITEMS filel file2 list)
This operator copies selectaed members from filel to file2.
list is expaected to be composed of identifiers, the pnames of
which are used as kays to select members from filel. These mem-
bers arae written into file2, replacing existing members with
the same kays. Any element of list which doas not correspond to
an existing member of filel is ignored.
If errors occur during thae processing file2 is unchangad.
RDROPITEMS — function
(RDROPITEMS file list)

This operator removes selected members from the library named
by file.

list is interpraeted in the same manner as in RCOPYITEMS, and
designates the membars to be dropped from thae library.

Only thae directory is changed, to recover the DASD space occu-
pied by the data the operator RPACKFILE must be usad.

BRAR TXT

This sat of oparators is used to load collections of operator definitions
from librarys. They also contain facilitias for "load time"™ evaluation of
ar?itrary exprassions, allowing such actions as the setting of property
values.

All of these operators are controlled by the class value of tha members of
a library. At the moment only the values 0 (zaero) and 1 (one) are used.

A member with class 0 will be assignad as the value of the idantifier cor-
responding to tha kay of that membear.

A member with class 1 will be passaed to the interpreter for avaluation.

LOADVOL — function
(LOADVOL file)

This operator reads all the members of the library named by
file, and based on thaeir class, assigns or evaluatas them.

Tha value of the operator is a list of tha identifiers corre-
sponding to the keys in the library. This is equivalent to the
valua of RKEYIDS whan applied to tha same library.

SUBLOAD — function
(SUBLOAD file-name {id | list})
This operator attempts to read the members with keys corre-
sponding to id or tha elements of list from the library named by
file-name. Each such axisting member is treatad as in LOADVOL.
The value is a two element list, (11 12), where 11 is a list of
all elements of list (or id) which wera found in file-name, and
12 is a list of all those not so found.

LOADCOND — function
(LOADCOND file)
This operator operates like LOADVOL with two differancas.
First, only membaers with class 0 are loaded, no load-time evalu-

Kay addressed 1/0 127

ations arae dona. Second, the identifiers corresponding to the
keys in the library are evaluated and any which currently have
oparators as valuas, (LAMBDA exprassions or bpis), are ignored.
All othars are loaded and assigned.

This allows various libraries to ba constructed for diffarent
applications, with overlapping sets of oparators. Suppose two
such librariaes exist, for example a cross reference analyzer
for symbolic code and for compiled coda. There could ba certain
oparators needed by both packages. These operators can bae rep-
licated in thae two libraries. Then, by using LOADCOND, both
packages can ba loadad without loading multiple copiaes of the
common oparators.

The restriction to class 0 members is raquired, as no simple
test can bae made to determine if a class 1 member has already
been evaluated.

The valua is a list of the idaentifiers corresponding to tha mam-
bars loadaed.

DEPLOAD — function
(DEPLOAD {file-name | listl) {id | list2})

Tha first operand of DEPLOAD is either & library name or a list
of library names. Thae second is either an identifiar or a list
of identifiers.

All of tha libraries named in tha first operand are opened and
searched for mambers corrasponding to thae identifiers in the
sacond argumant. All those found are loadaed.

Then, every such loadad membar is examinaed. If it is a bpi, the
list of identifiers which it uses as operators is extractad from
it. Thesa are evaluated, and if their valua is not an oparator
(LAMBDA expraession or bpi) tha libraries are searched for a mem-
bar by that nama. If one is found it is loaded, and its opara-
tor usaga is similarly chaecked.

Thae valua is a list, (11 12), where 1l is a list of idantifiers
corrasponding to the members loaded, which 12 is a list of oper-
ator names which did not hava oparator values and which could
not be found in tha set of librarias.

128 YKTLISP Program Description and Oparations Manual

OPERATOR DEFINITION

In YKTLISP an identifier may be established as an operator by simple
assignment. For various reasons this is raraly done in practice. Instead
one of a group of definition operators is usually used.

This operators perform more or less preprocessing on the operator defi-
nition _befora making the assignment. Tha preprocaessing treats certain
expression specially, in particular the LAM construct (see paga
undefined). It may involve compilation of LISP expression into bpi's, the
assembly of LAP (Lisp Assemblar Program) coda, which is not applicablae par
sae, and tha creation of LISPLIB files, which are analogous to TXTLIBs.

All of the definition operators interact with a data structure, the option
list. This is an a-list which specifies various types of processing. Tha

gp}lon list may ba augmantad by tha user in various ways, as will be noted
elow.

DEFINITION

DEFINATE — function
(DEFINATE listl idl id2 list2)
Wharae listl has a valuae of either
(name expression)
or
((name sxpression) ...)

The valuaes of the second and third operands are key words, indi-
cating the form of tha first operand and thae desired processing,
respectively. These are the specification and the action.

The fourth opaerand is a list of namasvalue pairs which is to ba
temporarily added to the head of tha option list.

There are five specifications and six actions, and they are
interrelated. For exampla, COMPILATION specifies that the
input is in tha same form that would have been produced by the
action COMPILE. The actions are ordered, each requiring the
result of the previous one. DEFINATE sequentially paerforms
them in ordaer, starting with the action which will accept tha
first operand as specified, and continuing until the reguested
action has been reachead.

The final disposition of tha value is controlled by the option

list.

- The specification describaes the axpression parts of the first
opaerand.
EXPRESS EXPRESSION An EXPRESSION is any LISP expression.

As an action, EXPRESS is the identity
operator, no procassing is done.

DEFINE DEFINITION The action, DEFINE, examines an
EXPRESSION for the explicit operator
LAM. If it finds ona it paerforms the
macro expansion of the LAM into a
MLAMBDA eaexpression and <transforms
that into twoc nane expra2ssion lists,
with the second having a nama of the
form LAM,name.

This prevaents the body of the LAM

exprassion from baing included at each
instanca of its use. It also causes

Oparator definition 129

the body of the LAM expression to be
not laxically present, and thus to
bahave in the same way as LAMBDA
expraessions with regard to variable
avaluation.

REALIZE REALIZATION Tha action, REALIZE, examines the
operator of thae DEFINITION. If it has
a macro as its value in the compila-
tion environment (see "Tha environ-
ment of compilation.™ on page 42) an
axpansion is performad and tha taest is
repeatad.

Onca the form is not a macro it is
further aexamined. If its opaerator is
explicitly LAMBDA or MLAMBDA no fur-
ther processing is done. Otherwise it
is transformad into

((LAMBDA () expression))
unless it is alraeady in that form.

It will be notad that applying this
form is equivalent to applying
expression itself. Tha reason of the
transformation is to provide a form
which the compiler can process.

REDUCE REDUCTION Tha action, REDUCE, replaces all sub-
expraession in the REALIZATION by their
gacro expansions. This is dona top

ouWn.

As in REALIZE, tha valua of the opera-
tors in the compilation environment
determines whether a macro expansion
is dona.

COMPILE CONMPILATION The action, COMPILE, translates the
REDUCTION to LAP code.

LAP is a high level assembler, accept-

ing S/370 machine instructions (in

parenthesized from) and various pseu-

gi-operations. It is not intarprata-
.

ASSEMBLE _ The action, ASSEMBLE, translates LAP
code into objact coda, and produces
@ither a bpi, or an entry in a LISPLIB
(or both).

Thera is no specification, ASSEMBLY,
as therae is no READablae representation
for tha result of this action.

All other definition oparators invoke DEFINATE with differing actions
raquested. .

Their first oparand is of the same form as the first operand of DEFINATE,
their saecond as tha last. The all specify their first operand as an
EXPRESSION. .

In actual usage thesa operators are almost always QUOTEd,
(DEFINE "(
(HEAD (LAMBDA (X) (CAR X)))
(TAIL C(LAMBDA (X) (CDR X3)3))

Note that tha firal raesult, whether a bpi, an addition to a LISPLIB or
both, is controlled by the value of tha option list.

DEFINE — function

130 YKTLISP Program Dascription and Operations Manual

(DEFINE listl [list2])
Where the oparands are as previously dascribed.
DEFINE invokes DEFINATE with a requestaed action of REALIZE.

Ibetresults are disposed of according to the valua of the option
ist.

COMPILE — function
(COMPILE listl [list2])
Where the oparands are as previously dascribed.
COMPILE invokes DEFINATE with a requestaed action of ASSEMBLE.

Ibatresults are disposad of according to the valua of tha option
ist.

The result of DEFINATE with an action of COMPILE is not usable
as an operator. The COMPILE operator translates LISP
expressions to bpis.

ASSEMBLE — function
(ASSEMBLE listl [list2])
Where the oparands are as previously described.

ASSEMBLE invokes DEFINATE with a requested action of ASSEMBLE
and an operand spacification of COMPILATION.

Ibntresults arae disposed of according to tha value of the option
ist. .

ASSEMBLE is used to transform programs written in LAP into bpis.

PTION LIST

The values of various propertiaes on this augmented list control various
aspects of definition, compilation and assembly. GET is used to search
OPTIONiIST. thus NIL is tha default value for any property not explicitly
present.

Various processes effect the option list. Every definition operator may
temporarily add its own options. EXF add options which are removed when
it finishes. Othar operators change tha current valua.
Both EXF and DEFINATE re-bind OPTIONLIST, and the standard operators modi-
fy it in such a way that their effacts are lost upon exit from these func-
tions. .
ADDOPTIONS — function
(ADDOPTIONS [id iteml ...)
This operator constructs an a-list from its operands, using
them alternately as namas and valuaes. The result is appended
onto the front of the current value of OPTIONLIST.
If the numbar of oparands is odd, an error break is taken.
ORADDTEMPDEFS — function
(ORADDTEMPDEFS file)

file must designate a LISPLIB. Thae objects read from file are
added to the OP-RECOGNITION-SD, as the values of their keys.

Operator daefinition 131

This allows a sat of macro definitions to be installed during
the processing of a set of compilations, by EXF for axamplae,
without their becoming a permanent part of tha system.

MAADDTEMPDEFS — function
(MAADDTEMPDEFS fila)

file must designate a LISPLIB. Thae objects read from file are
addad to tha MACRO-APP-SD, as the valuaes of thair kays.

This allows a set of functions naead by compilar macros to be
:vaitgble. without their interfaring with the standard system
unctions.

ORTEMPDEFINE — function
(ORTEMPDEFINE listl [list2])
Where the operands ara as for DEFINE.

g;EEMPDEFINE invokes DEFINATE with a requasted action of REAL~-

Thae results are added to OP-RECOGNITION-SD. This allows téempo-
rary macro dafinitions, which will parsist only as long as the
current binding of OPTIONLIST, without intarfaring with the
standard system definitions.

MATEMPDEFINE — function
(MATEMPDEFINE listl [list2])
Wharae tha oparands are as for DEFINE.

?QEEMPDEFINE invokas DEFINATE with a requaested action of REAL-

The results are addad to MACRO-APP-SD. This allows the tempo-
rary definition of functions nead by macros, without their
intarfering with the normal system dafinitions. These will
persist only as long as the current binding of OPTIONLIST.

OP-RECOUGNITION-SD — kay ord
(OP-RECOGNITION-SD . sd)

The environmant in which the operators are evaluated by the com-
piler. Tha valuas found in this environment arae used to distin-
guish functions, macros and spacial forms. Various oparators
exist to augment this environment, sea "The environment of com-
pilation.™ on pagae %2.

MACRO-APP-SD — key uord
(MACRO~APP-SD . sd)

The environment in which macros araea to ba expanded by tha com-
pilar. The use of MACRO-APP-SD protects from conflict betwaen
variables bound by tha compiler and the bindings of macros usaed
in expressions being compiled. If tha valua is NIL, the initial
state (whera only nil-environment bindings are present) is
usad. '

NOLINK — key word
(NOLINK . boolean)
If tha NOLINK property has a non-NIL valua tha result of an
assembly is not made into a bpi. The dafault is to create a bpi
and assign it to the name with which it was paired in thae spec-
ification list.

INITSYMTAB — key word

132 YKTLISP Program Description and Operations Manual

(INITSYMTAB . ta-list.)

The valua of this property should ba an association list (or
NIL, which is an empty association list) which will be searched
by the assemblaer (LAP) for operation code values, symbolic reg-
ister names, symbolic immediate operand names and symbolic
literals. The values in INITSYMTAB override the build-in val-
ues of the assembler, and are overridden in turn by symbols
established by EQU statements in the LAP coda.

NONINTERRUPTIBLE — key word
(NONINTERRUPTIBLE . boolean)

If thae NONINTERRUPTIBLE property is non=NIL, no polling for
interrupts is inserted in the bpi by the assembler. Explicit
POLL statements will bae assembled. The daefault value is NIL, i.
@. the bpi is interruptible. .

SOURCELIST — key word
(SOURCELIST . boolean)

If SOURCELIST has a non-NIL value the source program (either
LISP or LAP) is PRETTYPRINTed by the definition functions. The
default is NIL. When running with SOURCELIST non=-NIL it should
be remembered that the printing by the supervisor can be con-
t;ztéga by the settings of thae fluid variablaes ,ECHOSW and/or
? .

TRANSLIST — key uord
(TRANSLIST . boolean)

A non-NIL value for TRANSLIST causes the output of pass ona of
the compilar to be PRETTYPRINTed. This is the "transformed"
LISP, with all macros expanded and with various other changes,
which will be made into a bpi by pass two of tha compiler and
the assambler. A number of forms internal to the compiler
appear in this listing. If definitions of these internal forms
existed (unfortunately impossibla in some cases) interpretation
of this transformed LISP would duplicate the behavior of the bpi
which results from the full compilation/assembly process. The
daefault value is NIL.

LAPLIST — key nord
CLAPLIST . boolean)

A non-NIL value for LAPLIST causas the assembly code produced by
tha compiler to ba PRETTYPRINTad. This property does not con-
trol the printing of LAP source code, which is under the control
of the SOURCELIST property. Tha default value is NIL.

BPILIST — key word
(BPILIST . boolean)

A non-NIL value for BPILIST causes an assambly listing to be
produced. This listing contains the hexadecimal System/370
machine code produced by the assamblar, together with a vari-
able amount of symbolic LAP code.

If BPILIST is non-numaeric or if it is greater than 3 a full
listing is produced. This includes all instructions generated
by the assembler, all comments and all source instructions.

A valuae of 3 causes intermediate instructions to be dropped from
thae listing. That is, instructions generated by thae assembler,
which in turn resulted in tha g¢generation of further
instructions rathaer than in object code.

A valuae of 2 causes comments to be dropped from the listing.

Opaerator definition 133

- —

A value of 1 causes only sourca instructions to ba printed sym-
goi;cally. although the objact code (hexadacimal) is printaed in
ull.

LISTING — key word

(LISTING . strm)

The value of LISTING should ba NIL or a fast stream. If LISTING
is a stream the output produced as a result of tha preceding
four options (SOURCELIST, TRANSLIST, LAPLIST and BPILIST) will
be written onto that stream. If LISTING is NIL it defaults to
the value of tha fluid CUROUTSTREAM.

MESSAGE — kay word

(MESSAGE . strm)

Thae value of MESSAGE should be NIL or a fast stream. All error
and warning messages from the definition functions are written
onto the MESSAGE stream. If the MESSAGE and LISTING streams are
not EQ the MESSAGE steam is mada to dominate the LISTING stream.
(Sea tha DOMINATESTREAM function.) If the value of MESSAGE is
NIL it defaults to CUROUTSTREAM.

FILE — key uord

(FILE . rstrm)

The value of FILE should ba NIL or a stream. If FILE is non-NIL
a loadable bpi-imagae will be written onto it. If FILE is NIL no
action is takan.

By usa of the FILE and NOLINK options programs can be compiled
and/or assembled for futurae loading without their baing dafinaed
in the running system. (See LOADVOL function.) Tha resulting
fila, whan loadad, causes tha same assignments and/or MAKEPROPs
to take placae as would have resulted if the NOLINK option wera
NIL. Tha current form of a loadable fila may be changed in the
future, howevaer this is still a matter of dispute and
discussion.

QUIET — key uord

(QUIET . boslean)

I+ the QUIET proparty has a non-NIL value warning and informa-
tional massages to the console are suppressed.

OPTIMIZE — key word

134

(OPTIMIZE . s-int)

The valuae of thae OPTIMIZE property control tha amount of code
modi fication during pass II of the compilar. The default value
is currently 4, tha present highast lavel of optimization. Lav-
@l 0 lets tha code emitted by the various gaenerators stand
as-is. The levels from 1 to 3 parform various operations, such
as dead coda aelimination, coda motion to eliminate branches,
common coda merging, ate. Thaere is no guarantee that 4 will
remain thae top level (and hencae the default). If time parmits
further optimizations may be added.

YKTLISP Program Daescription and Oparations Manual

(1 VIRONM

& — macro

(¢ [id Litem ...10)

AMINA

DEBUGGING AJIDS

The & operator controls the examination of stack frames created
by the exaecution process. It is possible to look at arguments

of functions,

to determine bindings of variables, and to dis-

play variable values.

The first argument, if present, specified a command to the oper-
ator, the remaining arguments may be in arbitrary order.

id

The COMMAND, an identifier or list specifying thae

action,

i.a., the kind of stack examination desired.

The possibilitiaes ara:

INDEX

FULL

(list of

FLUID

LEX

UNHIND

BIND

ARGS

Display a series of stack frame identifica~-
tions sequentially indexed with a small
integer. These appear in a LIF0 order
(last in exacution, first in listing). The
form of each frame identification is:

l. index, or frame number

2. frame name, or NIL

3. frame type

4. contour laval, if not outermost.

Stack frame identification followed by
1. argument names, if any arg

2. all variablas, with their been bound at
this frame.

identifiers) For every identifier there is

an indication of lexical or fluid binding,
stack frame identification, and value.

If the identifier refers to a generated

symbol, i.e. one in the form %Gn, only the

?umeric part, i.e. n, should appear in the
ist.

Stack frame identification for only those
frames at which fluid binding information
axists; following each identification are
all the variables, and their values, with
FLUID bindings at that frame.

Stack frame identification for only those
frames at which lexical binding information
exists; following each identification are
all the variables, and their values, bound
lexically at that frama.

Display information for each stack frame
which has is catch point. Thosa which are
known to tha & operator are annotated. See
UNWIND, paga 57, and Figure 14 on paga 56.

Stack frama identification for only those
frames at uwhich some binding information
axists; following each identification are
all tha variablaes bound at that frame.

Stack frame identification for only those
frames reprasenting functions to which

Debugging aids 135

136

argumants have been passaed; following each
identification are all the argument namas
and their values.

SECD Stack frame idantification for only those
framas associatad with SECD (interpretive)
execution and which also have somae elaemaents
on the SECD control or stack; thera follows
the elamants of thae control and stack.

The remaining arguments may ba given in arbitrary ordar. The
only caveat is with respect to the START and STOP points, where
tha relative order of appropriata valuaes (¥, numbars) defines
thaeir meaning.

chain Tha search control. '

A Indicates that the aenvironment chain is to
ba examined. If not praesent, the control
chain is examinad.

print Tha print control. The default is an elided display,
one line per variablae.

PP Indicates that PRETTYPRINTing is to ba
: dona. This option is useful when a vari-
abla must be examined in daetail.

PR Indicatas that tha normal PRINT function is
to ba used. This will show it existence of
shared sub-structura.

{PR operator) Indicatas tha the supplied operator is
to ba usad for printing.

floor Raference frame spaecification.

Thae frame numbers displayed by the & operator and
used in tha start and stop operands ara ralative to a
"floor™ frame. Normally this is the nearest framae on
tha control chain which is in use by the oparator
EVA1FUN. This choica prevents the intarnal workings
of tha & cperator from distracting tha user.

It is possibla to specify another frama as tha
"floor™ frama.

{FL s-int) use tha frame s-int above tha one baing
used by tha display function as the floor.
The display function itself is frama 0.

(FL id) whare id has a bpi as its value. Use tha
nearest frama (in thaea chain specified by
chain) which is in usa by the bpi which is
tha value of id.

start Start control.

s=-intl Spaecifies the first stack frama which is to
be examined.

start defaults to 1.
stop Stop control.

s-int2 Spacifias the last stack frame which is to
examined.

* Specifias that the stack examination should
continua through to tha highest lavel.

stop defaults to:
start ¢ 15 whaen id is INDEX and start was specified.

YKTLISP Program Description and Oparations Manual

10 when id is FULL and start was not
spaecifiaed.

% when id is UNWIND and any othar case when
start was specifiad.
start in any othar casa whaen start was specifiad.
value request for value

Must ba usaed with the variable list commanq.

VAL Returns the value of the first variable
found.

VALLIST Returns a list of all values of all vari-
ables found.

(&), with no operands is aquivalent to (& index 1 14).

We will compile a version of the factorial function which forces.
an arror break when its argument is zaro.

(COMPILE "™(
(FACT
(LAMBDA (N)
. (COND ((EQ N 0) (BREAK)) ("T (TIMES N (FACT (SUB1l N)J)))))

Macro-expanding FACT
Compiling FACT
Assembling FACT
Linking FACT

Valua = (FACT)

Wa now call the new function.

(FACT 5)
Error: forced braak,
Break taken,
FIN with any value, otherwise UNWIND to exit break loop.

%)

7ARGS? = NIL
%.SUBR.S,ERRORLOOP = Contour: 1
%.SUBR.S, ERRORLOOP
X.SUBR.CONDERR
%.SUBR.BREAK
%.SUBR.FACT
%.SUBR.FACT
%X .SUBR.FACT
%.SUBR.FACT
%.SUBR.FACT
0 %.SUBR.FACT
1 SECD1
2 %.SUBR.EVAIFUN
3 %.SUBR.SUPV = Contour: 1
4
IL

ot b ot ot 2 D OB ST D U

%.SUBR.SUPV
N

Note that (&) displays thae value of the variable ?ARGS?, which
is sometimes used to pass information about the error (see
balow).

We now ask for more information about four of the stack frames.

Daebugging aids 137

(& full 5 7)
5 %.SUBR.FACT
1 argument(s)
1 Leaxical binding(s)
N 0
6 %.SUBR.FACT
1 :rgument(s)
1 Lexical binding(s)
N 1
7 %.SUBR.FACT
1 :rgument(s)

1 Lexical binding(s)
N 2

NIL

Wa requaest a complete back-trace of the stack.

& index)

%.SUBR.S,ERRORLOOP = Contour: 1
%.SUBR.S, ERRORLOOP
%.SUBR.CONDERR

%X.SUBR.BREAK
%.SUBR.FACT
%.SUBR.FACT

%.SUBR.FACT

%.SUBR.FACT

%.SUBR.FACT

%.SUBR.FACT

SECD1

%.SUBR.EVALFUN

%.SUBR.SUPV = Contour: 1
%.SUBR.SUPV

%.SUBR.SUPERMAN = Contour: 2
X.SUBR.SUPERMAN = Contour: 1
%.SUBR.SUPERMAN
%.SUBR.HIGHLORD

Pt et 2 3 QOO NN D GIN =~
HPUN-O

(et ot ot ot
0o~ U

NIL

Wa raquest information about all bindings of N.

(& (N))

N Lexical 5 X.SUBR.FACT
Lexical 6 X.SUBR.FACT
Lexical 7 X.SUBR.FACT
Laxical 8 X.SUBR.FACY
Lexical 9 X.SUBR.FACT
Laxical IE %.SUBR.FACT

w N -~ o

NIL

Wa requast information about catch-points in tha control chain.

138 YKTLISP Program Description and Operations Manual

(& unwind)
1 X.SUBR.S,ERRORLOOP = Contour: 1

'"Lisp UNWIND point, value ignored, continue in read loop.'
13 X.SUBR.SUPV = Contour: 1 :

"Lisp UNWIND point, value ignoraed, continue in read loop."'
15 X.SUBR.SUPERMAN = Contour: 2

"Lisp UNWIND point, value ignorad, supervisor re-started.’'
NIL

We request information about an interpreter frame.

(& full 11D
11 SECD1
4 alements in SECD control
%.SUBR.FACT
NIL
META_APP2
NIL
1 egements in SECD stack

NIL

g:EAteave thae break loop, providing a value for the call to

(fin 1)
Valua = 120

Now we will force soma system datected errors.

(car ())

(CAR NIL)

Error: FR domain,

FIN with any valua, otherwise UNWIND to exit break loop.

(&)
7ARGS? = (NIL CAR)
(LAST ?7ARGS?) = CAR
1 %.SUBR.S,ERRORLCOP = Contour: 1
2 %X.SUBR.S,ERRORLOOP
3 %.SUBR.CONDERR
4 SECD
5 SECDI
6 %.SUBR.EVA1FUN
7 %.SUBR.SUPV = Contour: 1
8 %.SUBR.SUPV
9 %.SUBR.SUPERMAN = Contour: 2
10 %.SUBR.SUPERMAN = Contour: 1
11 %.SUBR.SUPERMAN
12 %.SUBR.HIGHLORD

NIL

Here, ?ARGS? holds the oparator (CAR) and the invalid operand
(NIL).

Wa will UNWIND to the suparvisor and force another error.

Debugging aids 139

(UNWIND 1)

?gggng)caught by SUPV with value: NIL ~
Error: application of inapplicable objact, \,)

FIN with any value, otherwise UNWIND to exit break loop.

(&)
?2ARGS? = (X F00)
(LAST ?ARGS?) = F0O

1 %Z.SUBR.S,ERRORLOOP = Contour: 1
2 X.SUBR.S, ERRORLOOP

3 %.SUBR.CONDERR

4 SECD

5 SECD1

6 X.SUBR.EVA1FUN

7 %.SUBR.SUPV = Contour: 1

8 X.SUBR.SUPV

9 %.SUBR.SUPERMAN = Contour: 2

10 X.SUBR.SUPERMAN = Contour: 1
11 %.SUBR.SUPERMAN

12 X.SUBR.HIGHLORD

NIL
Hera, again, ?ARGS? shows us the oparator which is in error.
CALL TRACING
TRACE macro
(TRACE exp id ...)
axp is evaluated, with all calls to the oparators which ara the -
valuas of id ... traced. \;).
(TRACE
(PLUS (TIMES 12 20) (QUOTIENT 13 4.3))
PLUS
TIMES
QUOTIENT)

TIMES Called by EVALFUN
Args = (12 20)
Valuae = 240

TIMES Raturned

QUOTIENT Callad by EVALFUN
Args = (13 4.3)
Valua = 3.023255813953

QUOTIENT Returned

PLUS Called by EVAl1FUN
Args = (240 3.023255813953)
Valua = 243.02325581%

PLUS Returnaed

Value = 243.023255814

140 YKTLISP Program Daescription and Operations Manual

C

(TRACE (MEMBER "C "(A B C D E)) EQUAL)

EQUAL Called by MEMBER
Args = (A ©)
Valuae = NIL

EQUAL Raturned

EQUAL Called by MEMBER
Args = (B C)
Value = NIL

EQUAL Returned

EQUAL Called by MEMBER
Args = (C C)
Value = %Tx

EQUAL Returned

Value = (C D E)

MONITOR — function

(MONITOR id [listl [list21])

MONITOR is a simple call tracing operator.
is the id, thae valua of which

The first argument
function or macro to be

traced. Onca MONITOR has been exacuted, all calls to id will be

intercepted and tha values of the arguments,

followed by the

value of the call to id, or the expansion of id if it is a macro,

will be printed on CURQUTSTREAM.

coda, the id of the calling program will also be printad.

The two optional arguments ara lists of IDs.

If id is MONITORad in compiled

If they are pres-

ent and non-NIL the FLUID bindings of thae IDs in the listl will
is actually called,
while thosa in tha list2 will be printad after the function

bae printed beforae the MONITORed function

returns.

The affact of MONITOR is removed by (UNEMBED id).

Debugging aids

141

——

(COMPILE "(
(STEP-X
(LAMBDA (N)
(SETQ X
. (COND ((NUMBERP X) (PLUS X N)) € "T N))I))

Macro-expanding STEP-X
X occurs free
Compiling STEP-X
Assambling STEP-X
Linking STEP-X
Value = (STEP-X)
(MONITOR "STEP-X "™(X) "™(X))
Value = STEP-X
(STEP-X 4)
X =X
STEP-X Called by EVAl1FUN
Args = (§)
Valua = 4%
STEP-X Returned
X =4
Value = ¢
(STEP-X §)

X =4

STEP-X Callaed by EVAlFUN
Args = (4)
Value = 8

STEP-X Raeturned

X =8

Value = 8

(STEP-X 4)

X =8

STEP-X Called by EVAlFUN
Args = (§)
Valua = 12

STEP-X Returned

X =12

Value = 12

(MONITOR "PROG)
Valua = PROG
(PROG (A B)
(SETQ A 1)
(SETQ B 2)
(SETQ A (CONS A B))
(RETURN A))
PROG Baing MACRO-expandad
Args = (PROG (A B)
(SETQ A 1)
(SETQ B 2)
(SETQ A (CONS A B))
(RETURN A))
Expansion = ((LAMBDA (A B)
(SEQ
(SETQ A 1)
(SETQ B 2)
(SETQ A (CONS A B))
(RETURN A)))
NIL

NIL)
PROG Raturnaed
Valuae = (1 . 2)
(UNEMBED "PROG)
Value = PROG

UNEMBED — function
(UNEMBED id)
Removas tha effact of an EMBED of tha value of id.
ular, cancals tha effact of a usa of MONITOR on id.

142 YKTLISP Program Description and Oparations Manual

In partic-

EMBED — function
(EMBED id exp)

(::\ Whare the value of id is normally an operator, exp', and @Xp is
- a LAMBDA or MLAMBDA expression.

If exp does not contain instances of id, then EMBED is effec-
tively a reversible assignment of exp to id.

If exp contains instances of id, then exp is modified in such a
way as to cause those instances to evaluatae to @xp', the pravi-
ous value of id. All other uses of id (exterior to exp) will
evaluate to this modified expression.

(DEFINE

"((FACT (LAMBDA (N)

(COND
(CEQR N 0) 1)
("T (TIMES N (FACT (SUB1 N)))>))))¥))

Value = (FACT)
(FACT 6)
Value = 720
(EMBED

"FACT

W(LAMBDA (X) (PRINT 'Hi there!') (FACT X)))
Value = FACT
(FACT 6)
'Hi thera!’
'Hi there!'
*Hi there!’
YHi there!"’
'Hi there!"'
'Hi there!"'
'Hi there!’
Valua = 720

Q EMBEDBED — function
(EMBEDDED)

Returns a list of all ids which currently have EMBEDed defi-
nitions.

Debugging aids 143

144

YKTLISP Program Description and Operations Manual

JABLE OF SYSTEM FUNCTIONS, VARYABLES AND COMMAMNDS

See Figure 13 on pagae 4% for a description of the opaerand types.

«NOVAL variable
Value is the "undefined™ object.

& macro
(& [id [item ...10)
Back trace printer, unQUOTEd argumaents. See page 135.

$ALLFILES CMS dependent function
(SALLFILES file-name)
Returns a list of all files that match tha argumaents.

$CHECKMODE CMS dependent function
(SCHECKMODE item)
Returns () ¥ or a CMS filemode for a linked disk.

$CLEAR CMS dependent function

(SCLEAR)

Clear tha screen if the console is a 32xx.
$ERASE CMS dependent function

(SERASE fila-name)
Erase a file.

$EST CMS dependent function
($EST {str | id})
Tasts the status of the disk with tha given filemode.

$Fcopy CMS dependent function
($FCOPY {strl | idl} {str2 | id2} id3
Copy a fila. If 1d3=APPEND then append.

$FILEDATE CMS dependent function
($FILEDATE (str | id})
Return a string of the form 'yy/mm/dd/ hh:mm' or ().

$FILEREC CMS dependent function
. (SFILEREC {str | id | s-int} s=-int)
Returns a string containing the specified record or ().
Will read from files or console.

$FILESIZE CMS dependent function
($FILESIZE {str | id})
Returns () or the file size in bytes (this is a
passimisstic upper bound for v-format files).

$FINDLINK CMS dependent function
($SFINDLINK [str | id])
getﬁrn a modeletter if the argument denotes a linked
isk.

$FLAT-STRING function
(SFLAT~-STRING 1item)
Concatenate all the atoms in thae argument ignoring any
list structure and converting atoms as required.

$FNFTFN function
($FNFTFM file)

Ver}fg arguments for reasonableness and retrun a llst (fn
ft fm).

$INFILE function
(SINFILE File)
Valuae is (fn ft fm) if the file exists, otherwise ().

$INSTREAM function
($INSTREAM file-name s-int)
Valua is a stream positioned at tha given record if the
fila exists, otherwise ().

Table of system functions, varisbles and commands 145

$OUTFILE function
($CUTFILE fila)
Value is (fn ft fm) if it can be an output fila.

$OUTSTREAM function
($OUTSTREAM file-name s-intl s-int2)
Value is an output stream positioned at tha specified
recordfj{ possible. The width argument is used only for
a new file.

$READFLAG function
(SREADFLAG)
Valua is non-() if thare are linaes in the program (or
consola) stacks.

$REPLACE function
(SREPLACE filea-namel file-name2) The data in file-name2
raplacaes thae data in fila-namel. ¥file-name2 is aerasa,
and the data in fila-namel is lost.

$RESET-STREAM function
(SRESET~-STREAM strm)
Updatae the stream so that the naxt Lisp read operation
will start at the first character of the curraent racord.

$SCREENSIZE function
(SSCREENSIZE)
If the curraent consola is a 32xx, the value is (rowus
cols) or (rows cols REMOTE).

$SETPFIMM function
(SSETPFIMM s~int c-str)
Set the PF key to tha string as an immediata command.

$SHOULINE function
($SHOWLINE c-str s-int)
Display thae string on thae spacifiad lina of a 32xx.

$T-DELTA function
(ST-DELTA num)
Valuae is elapsed total cpu time.

$T-TIME function
($T-TIME)
Total cpu tima in milliseconds sincae last logon.

$TIMESTAMP function
(STIMESTAMP)

Value is current data and time as a string '"mms/dd/yy
hh:mm®

$TOKEN function
($TOKEN c-str s-int)
Value is () or the indax-th substring delimitad by
blanks.

$TYPELINE function
(STYPELINE c-str)
Typa tha string at the consola.

$V-DELTA function
(SV-DELTA num)
- Valuae is virtual cpu timae in mtlllseconds sinca nhum.

$V-TIME function
“ ($V-TIME)
Valua is virtual cpu time in millisaeconds since last
logon.
%#CODE spacial form

(%CODE exp list [lap-statement ...1)

Whare @xXp is tha interpretive equvilant and list is a
daclaration.

Inserts in-line LAP coda.

146 YXTLISP Program Dascription and Oparations Manual

ABSVAL

ADDOPTIONS

ADDRESSOF

ADDTOLIST

ADD1

ALINE

ALL-NON-DESC

ALLFUNCTIONS

AND

ANDBIT

APPEND

APPLX

APPLY

ARRAYKEYS

ASMTIME

function
(? command [item ...])
Synonym for LAM,&

command to system interface
(CALLBELOW °"?' {c~-str | s-int})
Query to SYSDEP, to verify commands.

key word

Requast to the break loop to repeat the error maessaga.
Saea page 17.

function
(ABSVAL num)
Absolute valua. See paga 107.

function
(ADDOPTIONS Lid item]l ...)
Adds pairs to OPTIONLIST See page 131.

function, with macro definition for compilation
(ADDRESSOF item)
Returns thae address part of pointer as SMINT

function
(ADDTOLIST list item)
ggds an item to a list if not already there. See page

function
(ADD1 num)
Incrments its argument by ona. See paga 108.

function

(ALINE s-intl s-int2)

Whera s~-int2 is a powaer of 2.

Rounds up to a power of two. Sea page 110.

function

(ALL-NON-DESC item)

Valua is a list of all the non-descendabla components
the argument.

function
(ALLFUNCTIONS {id | bpil)
Raturns list of functions callad by a BPI

macro
(AND (exp ...0)
E:aluatas axpressions until ona returns NIL. See page

function
(ANDBIT b-str ...) :
Logical AND of bit strings. See page 97.

function
(APPEND iteml item2)
"Pastaes™ two lists, with soma copying. Sea pagae 82.

built in function
(APPLX app-ob list)
Apply a function to a list of values

built in function
(APPLY app-ob list sd)
APPLX with raespect to an aenvironmant

function
(ARRAYKEYS hasharray)
Value is a list of all the kaeys in the array.

function

(ASMTIME)
Raturns time and datae of system assembly

Tabla of system functions, variablaes and commands

in

147

ASSEMBLE function
(ASSEMBLE listl [list2])

Whara listl is eithar a nama/LAP program list or a list

of namae/LAP program lists.
The LAP assambler Sea page 131.

ASSOC function
(ASSOC item list)

Search a list of name-value pairs, usas EQUAL. See page

ASSOCN function
(ASSOCN item list)

Search a list of name-value pairs, usaes NEQUAL. See page

86.

ASSQ function
(ASSQ item list)

Search a list of name~value pairs, uses EQ. Saee page 86.

ATOM built in function
(ATOM 1item)
Tasts for not-pairnaess. Seae page 71.

AUGMENTGLOBAL function
CAUGMENTGLOBAL list sd)
Whare list is of tha form ((name . valua) ...).
Add bindings to global environmaent of SD

AUGMENTSTACK function
(AUGMENTSTACK list sd)
Whare list is of the form ((name . valua) ...).
Add FLUID bindings to stack environment of SD

BATCHERROR function
(BATCHERROR itaml item2)
Action when break is entered in batch

BITGREATERP function
(BITGREATERP b-strl b-strn)
Comparas two bitstrings. See page 103.

BITSTRINGP built in function
(BITSTRINGP item)
Tasts for bitstring type. See paga 72.

BITSTRING2STRING function
(BITSTRING2STRING b-str)

BITSUBSTRING2NUM function
(BITSUBSTRING2NUM b-str s-intl s-int2)
Numbaeric value of up to 24 bits of bitstring

BOOLEANP function

(BOOLEANP)

Synonym for TRUEP, to make nicer messages
BOUNDEDBY? function

(BOUNDEDBY? bpi)
Searches aenvironment chain for BPI in frame

BOUNDP function
(BOUNDP id)
Tasts for tha existanca of a binding

BPILEFT function

(BPILEFT)

Returns bytaes of BPI space remaining
BPILIST dafinition option

(BPILIST . booclean)
Raquest printing of an assambly listing on tha listing
stream. Sqae page 133.

148 YKTLISP Program Dascription and Opaerations Manual

Changas type and contants count of bit string. Sea page

BPINAME

BPIP

BREAK

BYTES

Cx%R

CAAAAR

CAAADR

CAAAR

CAADAR

CAADDR

CAADR

CAAR

CADAAR

CADADR

CADAR

CADDAR

CADDDR

CADDR

CADR

function
(BPINAME bpi)

Returns tha "name" id of a BPI

function
(BPIP item)

Tests for BPI data types.

function
(BREAK)

Forces an aerror break

function
(BYTES item)

Valua is a list,

(bytes ids sds),

Sea page 73.

storagae occupied by tha argumaent.

function, with macro definition for compilation
(C¥R c-str item)

Where string has the form '

Does nasted CAR and CDRs

(A | D}...".

function, with macro definition for compilation

(CAAAAR item)
(CAR (CAR (CAR

function, uwith
(CAAADR item)
(CAR (CAR (CAR

function, with
(CAAAR item)
(CAR (CAR (CAR

function, with
(CAADAR item)
(CAR (CAR (CDR

function, with
(CAADDR item)
(CAR (CAR (CDR

function, with
(CAADR item)
(CAR (CAR (CDR

function, with
(CAAR item)
(CAR (CAR x)).

function, with
(CADAAR iten)
(CAR (CDR (CAR

function, uwith
(CADADR item)
(CAR (CDR (CAR

function, with
(CADAR item)
(CAR (CDR (CAR

function, with
(CADDAR item)
(CAR (CDR (CDR

function, with
(CADDDR item)
(CAR (CDR (CDR

function, with
CCADDR item)
(CAR (CDR (CDR

function, with

Table of system functions, variablaes and commands

(CAR x)))). Sea
macro dafinition
(CDR x)))). See

macro definition

paga 77.
for compilation
pagae 77.

for compilation

x))). Sea paga 77.

macro definition
(CAR x)))). Sae
macro definition
(CDR x)))). See

macro dafinition

for compilation
page 77.
for compilation
pagae 77.

for compilation

x})). See paga 77.

macro definition
Sea page 77.
macro daefinition
(CAR x)))). Sea
macro definition
(CDR x)))). Sae

macro definition

for compilation

for compilation
paga 77.
for compilation
paga 77.

for compilation

x))). See paga 77.

macro definition
(CAR x2))). See

macro dafinition

(CDR x)))). Sea page 77 and page 84.

macro dafinition

for compilation
page 77.

for compilation

for compilation

x))). Sea paga 77 and page 84.

macro definition

for compilation

that describes

149

CALL

CALLBELOW

CALLEDBY?

CALLX

CAR

CASEGO

CATCH

CBOUNDP

CDAAAR

CDAADR

CDAAR

CDADAR

CDADDR

CDADR

CDAR

CDDAAR

CDDADR

CDDAR

(CADR item)
(CAR (CDR x)). Saeae page 77 and paga 84.

built in function
(CALL [item ...] app-ob)
Apply last argumant to list of othar arguments

function, with macro daefinition for compilation
(CALLBELOW c-str [sysdep-area ...1)
Invoke system dapaendent codae

function
(CALLEDBY? bpi) -
Searchaes control chain for calling BPI

built in function
(CALLX app-0ob [item ...1)
Apply first argument to remaining argumants

built in function
(CAR item)
First elament of a pair. See page 77 and page 84.

macro

(CASEGO exp list ...)

Whare list has the form (item id).
N way branch, usaes EQ. Saae paga 50.

function
(CATCH idl exp [id2 [item ...11)

Establishs stopping point for THROWs. Sea pagae 55.

function
(CBOUNDP id)
Tast for binding on the control chain

function, with macro definition for compilation
(CDAAAR item)
(CDR (CAR (CAR (CAR x)))). Saea page 77.

function, with macro definition for compilation
(CDAADR itam)
(CDR (CAR (CAR (CDR x)))). Sea page 77.

function, with macro definition for compilation
(CDAAR item)
(CDR (CAR (CAR x))). See paga 77.

function, with macro definition for compilation
(CDADAR item)
(CDR (CAR (CDR (CAR x)))). Sea page 77.

function, with macro definition for compilation
(CDADDR item)
(CDR (CAR (CDR (CDR x))})). Sea paga 77.

function, with macro dafinition for compilation
(CDADR item)
(CDR (CAR (CDR x))). See page 77.

function, with macro definition for compilation
(CDAR item)
(CDR (CAR x)). Sea page 77.

function, with macro definition for compilation
(CDDAAR itam)
(CDR (CDR (CAR (CAR x)))). Sea page 77.

function, with macro definition for compilation
(CDDADR item)
(CDR (CDR (CAR (CDR x)))). Saa page 77.

function, with macro dafinition for compilation
(CDDAR item)
(CDR (CDR (CAR x))). Saea page 77.

150 YKTLISP Program Dascription and Operations Manual

CDDDAR

CDDDDR

CDDDR

CDDR

CDR

CEVAL-ID

CEVAL~LEX~-ID

CHANGELENGTH

CHARP

CHARZNUM

CLOSEDFN

CLOSURE

COMCELLP

COMMENT

COMPILE

comMpP370

CONC

function, with macro definition for compilation
(CDDDAR item)
(CDR (CDR (CDR (CAR x)))). Saee page 77.

function, with macro definition for compiiation
(CDDDDR item)
(CDR (CDR (CDR (CDR x)))). See pagae 77 and paga 86.

function, with macro definition for compilation
(CDDDR item)
(CDR (CDR (CDR x))). Seaee paga 77 and page 34.

function, with macro definition for compilation
(CDDR itam)
(CDR (CDR x)). Sae page 77 and page 8%.

built in function
(CDR item)
Second element of pair. See paga 77 and page 864.

function
(CEVAL-ID id) :
Control chain ID_evaluator. drops lexicals. Seae page 60.

function
(CEVAL-LEX-ID id)
Control chain ID avaluator, seas callars lexs. See page

function, with macro definition for compilation
(CHANGELENGTH str s-int)
Changa the contents count of a string. See page 101.

function, with macro definition for compilation
(CHARP item)
Tests for ona charactar identifiar. See pagae 73.

function

(CHAR2NUM char)

Whera identifiar has a one charactar pnama.
Returns tha numbaer, 0 to 255, for character id

special form

(CLOSEDFN item)

Whera item is a LAMBDA expraession or an MLAMBDA
expression. In interpreter = QUOTE, compiles to QUOTEd
bpi. See paga 54.

built in function
(CLOSURE exp sd)
Creataes a FUNARG from an axpression and a SD

function
(COMCELLP item)
Tast for existanca of a communication cell

macro
(COMMENT exp [item ...1)
Expands to expr.

function

(COMPILE listl [list2))

Whaerae listl is either a name/axpression list or a list of
nama/exprassion lists.

The LISP compilar Seae page 131.

function

(COMP370 listl [list2])

Where listl is either a nama/exprassion list or a list of
name/aexprassion lists.

0ld version of COMPILE, hacks recursive macros

function, with macro dafinition for compilation

(CONC [item ...&rbk)
Multi-argument APPEND. Sea paga 82.

Table of system functions, variables and commands 151

COND

CONDERR

CONS

CONSOLEPRINT

CONSTANT

CONTAINSQ

CONVERSATIONAL

CONVSAL

copy

cos

COUNT

COUNT-CALLS

COUNT-PAIRS

CREATE-SBC

CSET-ID

CSET-LEX-1ID

CURINSTREAM

CURLINE

special form

(COND [clausa ...1)

Where clause is eithar a string (a commant) or of the
form (axp ...).
Nested IF-THEN-ELSEs. Sea page 50.

function

(CONDERR s-int iteml item2 app-ob)

Whara iteml is q@ither a string of a list of strings.
Entry to break, typed FIN or UNWIND enforced

built in function

(CONS iteml item2) -
Creataes a new pair from its argumants. See paga 77 and
paga 81.

function, with macro dafinition for compilation
(CONSOLEPRINT c-str) :

OQutput diractly to console. Saee page 123.
macro

(CONSTANT axp)

Where item will ba avaluated at compile-time.
QUOTEs the valua of its argument. See page 47

function
(CONTAINSQ iteml item2)
Searchaes item2 (any pair/vector structure) for EQ iteml

function
(CONVERSATIONAL)
Tasts for batch/non-batch eperation

command to system intarfacea
(CALLBELOW 'CONVSAL'")

Tasts for batch varsus conv. moda
function

(COPY item)

Creatas a structurally axact copy

function

(CO0S num)

Cosina, argument in radians. See page 1l11.

macro

(COUNT axp id ...)

Evaluata axp and count how many times id ... ara callad.

macro

(COUNT-CALLS axp)

Evaluate exp and count the total numbaer of contours
antarad.

macro
(COUNT-PAIRS axp)
Evaluate 8Xp and count calls by caller and callaa.

function
(CREATE-SBC id)
Creatas a shallow binding call for an id

function

(CSET-ID id item)

Control chain assignmaent, drops lexicals. See pagae 62.
function

(CSET-LEX-ID id item)

Control chain assignmant, saees callers lexs.

Sae pagae
62.

variable
Default input stream See page 117.

function

152 YKTLISP Program Dascription and Operations Manual

CURQUTSTREAM

CURRENTTIME

CURRINDEX

CYCLES

CYCLESP

21o3]

DEBUGMODE

DEFINATE

DEFINE

(CURLINE strm)
Currant record numbar in a FILE stream

variable
Default output stream Seae page 117.

function
(CURRENTTIME)
Raturns the curraent time and date as string

function
(CURRINDEX strm)
Position in thae lina of a stream

function
(CYCLES item)
Returns vactor of sub-cycles in a structure

function
(CYCLESP item)
Tests for existanca of cycles in a structure

macro

(DCQ iteml item2)

Where iteml is a pair/refarencae vector structurae.
Assigns components of structurae to IDs.

function
(DEBUGMODE boolean)
Sats abend/hard-stop switch for fatal arrors

function

(DEFINATE listl idl id2 list2)

Whare listl is a name/axpression list, list2 is an option
list, idl is the input spacification and id2 is tha
action requaest.

The generic s—axp transformar for dafintion See paga 129.

function

(DEFINE listl [list2])

Where ligstl is either a name/axprassion list or a list of
name/axpression lists.

?gis s-axps as valuaes, making LAMs applicable See page

DEFINE-STRUCTURE macro

DEFIOSTREAM

DEFLISY

DELPROP

DEPLOAD

DIFFERENCE

DIGITP

(DEFINE~-STRUCTURE id structure-def)
Creatas a structure definition.

function
(DEFIOSTREAM list s-intl s-int2)
Craates an input/output stream. See page 1l1l7.

function

(DEFLIST list item)

Where list is of the form ((id item) ...).

Adds to the property lists of identifiers. See page 115.

function
(DELPROP hasharray iteml item2)
Remove a property from a hasharray aentry.

function

(DEPLOAD {file-name | listl} {id | list2})

Where item is a list of one or more LISPLIB names.
kg:ds missing functions from a BPIs call tree See page

function, with macro definition for compilation
(DIFFERENCE numl num2)
Numaeric diffarence of two arguments. Saee pagae 108.

function, with macro definition for compilation

(DIGITP item)
Tast idontifier as |0 - |9. Sea page 74.

Tabla of system functions, variables and commands 153

DIG2FIX function, with macro daefinition for compilation
(DIG2FIX digit)
Convart identifiers |0 - |9 to small integars

DISABLE function, with macro dafinition for compilation
(DISABLE)
Suppreses recognition of intarrupts, cf ENABLE
DISPATCHER function

(DISPATCHER item s-int)
Systam function, gats control on intarrupt

DIVIDE function, with macro definition for compilation -
(DIVIDE numl num2)
Quotiaent and remainder for two arguments. See page 109.

DROPAREA command to system interface
(CALLBELOW 'DROPAREA' s-intl s-int2)
Ralaases FREE/FRET storaga.

EBCDIC function
(EBCDIC s-int)
Raeturns tha charactar id for s-int 0 to 255

ECONST macro
(ECONST s-int)
Expands to quoted valua of (EBCDIC s~int).

ECQ macro
(ECQ iteml item2)
Where itaml is a pair/refaraence vaector structura.
Simple pattern matcher

EDIT macro
(EDIT item)
Call Lispadit to edit thae valua of item.

EFFACE function
(EFFACE item list)

§§moves item from a list, updatas, usas EQUAL. See paga

EFFACEQ function
(EFFACEQ item list)
Removes item from a list, updataes, usas EQ. Sea pagae 90.

ELT function, with macro definition for compilation
(ELT {vec | str | list} s-int)
Gets an elamant of a list or vector, by index. Saee paga
93, page 98 and pagae 84.

EMBED function
(EMBED id exp)
Redafines function, may usae old definition See page 143.

EMBEDDED function
(EMBEDDED)
Raturns list of EMBEDad functions Sea page 143.
ENABLE function, with macro dafinition for compilation
(ENABLE)

Allous recognition of intaerrupts, cf DISABLE

ENBLSPIE command to system intarface
(CALLBELOW ‘ENBLSPIE" s-int)
Sats up a SPIE to signal axcaptions

ENVIRONEVAL function
(ENVIRONEVAL sdl sd2)
Combine control and environmant from two SDs

EGFP function, with macro dafinition for compilation

CEQFP item)
Test a straam for end-of-file condition.

154 YXTLISP Program Description and Oparations Manual

EOLP function, with macro definition for compilation
(EOLP item)
Test a stream for and-of-line condition.

EQ built in function
(EQ iteml item2)
Tasts for identity. See paga 75.

EQSUBSTLIST function
(EQSUBSTLIST listl list2 item)
Replaces old items by new. Uses EQ, no updata

EQSUBSTVEC function
(EQSUBSTVEC r-vecl r-vec2 item)
Replaces old items by new. Uses EQ, no update

EQUAL function
(EQUAL iteml item2)
Tests access aquivilence. See page 76.

EQUALN function
(EQUALN iteml item2) ,
Tests accaess equivilence, with FUZZ = 0.0. Sea page 76.

ERASE function
(ERASE fila)
Erases a disk fila

ERASE command to system intarfaca
(CALLBELOW "ERASE' c-str)
Erase a file

ERRCATCH macro
(ERRCATCH exp [id [item ...11)
Like ERRSET, but truae valua, optional flag. Sea page 58.

ERROR function, with macro dafinition for compilation
(ERROR item)
Inline antry to break, UNWIND forced.

ERROR-PRINT function
(ERROR-PRINT item strm)
Print function for break loop, = PRETTYPRINT

ERRORINSTREAM variable
Daefault input stream in break loop See page 1ll1l7.

ERRORN function
(ERRORN item ...)
Like ERROR, with multi-part message

ERRORCUTSTREAM variabla
Default output stream in break loop See page 117.

ERRORR function, with macro dafinition for compilation
(ERRORR item)
Inline entry to break, FIN allowed

ERROR2 function, with macro definition for compilation
(ERROR2 iteml item2)
Like ERROR, two item message

ERROR3 function, with macro daefinition for compilation
(ERROR3 iteml item2 item3)
Like ERROR, threae item messaga

ERRSET macro
(ERRSET axp [item ...1)
Intersepts UNWINDs from insida evaluations. Sea page 57.

ERR1 macro
(ERR1 s-int)
Enters tha break loop, with FIN allowed.

ERR2 macro

Table of system functions, variablaes and commands 155

ERR3

ERRS

ERR®

ERR,

EVAL
EVAL-GLOBAL-ID
EVAL-ID

EVAL-LEX-ID

((ERR2 s=-int) item)
Expands to a LAMBDA which aenters break loop, with FIN
alloued.

macro
(ERR3 s-int)
Enters tha break loop, UNWIND forced.

function
(ERR5 s=-int itam) ,
Qutlina entry to break, no statae saving

function -
(ERR6 s=-int item app-ob)
Outlinae entry to break, value requested

function
(ERR7 s-int item app-ob)
Outline aentry to break, argument raequastaed

built in function
(EVAL axp sd)
Evaluate expression in given environment. Sea paga 59.

function
(EVAL-GLOBAL-ID id)
Global environmaent ID evaluator. Sea page 60.

function
(EVAL-ID id)
Raturns fluid value of id in currant stack. Seae paga 60.

function
(EVAL-LEX-ID id)
Egturns valua of id, sees callar’s lexicals. See page

EVALANDFILEACTQ macro

EVal

EVAIFUN

EXF

EXIT

EXP

EXPT

(EVALANDFILEACTQ [id] exp)
Lika FILEACTQ with EXF time aevaluation

built in function
(EVAl exp)
Evaluatae expression in current environment. Sae page 59.

function
(EVA1FUN exp)
Evaluate exprassion, dropping laxicals Sea paga 59.

macro
(EXF item ...)
Faaed a disk fila to SUPV

built in function
(EXIT exp)
Leave a SEQ with valua. See page 49.

function
(EXP num)
§§§onentiation function, floats its argument. Scee page

function
(EXPT numl num2)
f{gonentiation function, FIXX¥XFIX gives FIX. Saa paga

EXTERNAL-EVENTS-CHANNELS variable

EXTSTATE

Actions for various interrupts, list

function -

(EXTSTATE listl list2 sd)

Where listl is (id ...) and list2 (item ...).
Augmaents the E of an SD, without capturing C.

156 YKTLISP Program Daescription and Oparations Manual

F

FASTSTREAHP
FETCH
FETCHCHAR
FETCHPROP
FETCHPSMINT

FILE

FILEACTQ
FILEIN
FILELISP
FILEOUT
FILEQ
FILESEG
FIN

FIX

FIXP

FLOAT

FLOATP

FORCE~-GLOBAL

variable
Just in case anyone expects F to be falsa, NIL

function
(FASTSTREAMP item)

.Pragmatic test for fast io stream. See paga 75.

function
(FETCH rstrm)
Read and reconstituta an iteam from a LISPLIB

function, with macro definition for compilation
(FETCHCHAR c-str s-int) -
Extract a single character from a string. See paga 98.

function !
(FETCHPROP hasharray itaml item2)
Returns the iteml property of item2 form the hasharray.

function
(FETCHPSMINT c~-str s-intl s-int2)
Like SUBSTRING but return a positive small integar.

definition option

(FILE . prstrm)

Specifias the output LISPLIB for dafinition operators.
See page 134.

macro
(FILEACTQ id item)
Adds expression to LISPLIB, aevaluated at load

command to system interfaca
(CALLBELOW 'FILEIN' sysdep-areal sysdep-area2 s-int)
Read a record from a fila

function
(FILELISP file)
Save tha users data on disk

command to system interfaca
(CALLBELOW 'FILEOQUT' sysdep-areal sysdep-areal2 s-int)
Write a record to a fila

macro
(FILEQ id item)
Add an arbitrary item to a LISPLIB

function
(FILESEG file)
Save tha shared part of thae system on disk

function
(FIN [item])
A sop to APPLX, doaesn't do anything usefull

function
(FIX num)
Integer part of a floating point number. Saee page 105.

built in function
(FIXP item)
Test for integerness. Sea page 74.

function
(FLOAT num)
gggvarts intagers to floating point numbers. Sea page

built in function
(FLOATP item)
Test for floatingnass. See page 74.

function
(FORCE-GLOBAL id)

Tablae of system functions, variables and commands 157

FR*CODE

FRARGCOUNT

Forcas binding in proximal Global A-list

special form

(FR¥CODE exp list [lap-statement ...]1)
Where ARGUMENT] is a declaration and the
LAP instructions.

Allows LAP coda to ba fed values

function
(FRARGCOUNT built=-in-function)
Minimum numbar of arguments for FRs

FREEZE-SHARED-SEGHENT function -

FRP

FUNARG

FUNARGP

FUNCTION

GCCOUNT

GCMSG

GCNPLIST

GENLABEL

GENSYM

GENSYMP

GET

GETBITSTR

GETCH

GETFLT

(FREEZE-SHARED-SEGMENT)

ARGUMENT2's are

Makaes thae sharaed segment area out of bounds

built in function
(FRP item)
Tasts for FR type. See paga 73.

special form
(FUNARG exp sd)

Creates a funarg object from it's arguments. See page

55.

built in function
(FUNARGP item)
Tast for FUNARG typa. Saee paga 75.

special form
(FUNCTION exp)

Makes a funarg out of an unavaluated argument. Saee page

55.

function
(GCCOQUNT)
Number of times RECLAIM has baen called

function
(GCMSG boolaan)

Turns on and off RECLAIMs statistic massage

command to systam interface

(CALLBELOW *GCNPLIST' c-strl {"INPUT' |
sysdep-area2)

Creata a console I/0 PLIST

function
(GENLABEL)

'OUTPUT '}

Craates a GENSYM based on ,LABELNUM. See page 1ll4.

function, with macro definition for compilation

(GENSYM)

Creatas a GENSYM based on the system sead. Sea page

undafined refid=gensym,.

built in function
(GENSYMP item)
Tasts for gansym type. See pagae 73.

function

(GET fid | list} item)

Searchas a propaerty or name-value llst.
paga 86.

function
(GETBITSTR s-int)
Craatas a naew bitstring. Sce paga 95.

function
(GETCH c-str s-int)
Synonym for FETCHCHAR

function
(GETFLT)

158 YKTLISP Program Dascription and Oparations Manual

Set page 115 and

W

GETFULLSTR

GETHASHARRAY

GETHASHSTRING

GETREALYV

GETREFV

GETSTR

GETUORDV

GETZEROVEC

GFIPLIST

GGREATERP

GLOEXTSTATE

GREATERP

HASHARRAYP

HASHINIT

HASHITEM

HASHPROP

ggnaga a naw floating point number cell See pagae undae-
1na

function
(GETFULLSTR s-int [{id | c-str | s-int}l)

g;eata a string, filled with a given character. Seae page

function
(GETHASHARRAY s-int)

Create a hasharray with an initial siza of (EXPT 2 s-int)
entries.

function
(GETHASHSTRING c-str hash-array)
String to hash table entry/index

function
(GETREALV s-int)
Creata a vector of floating point numbers. See page 91

function
(GETREFV s=int)
Creata a vector of s-axps. Seae page 91

function
(GETSTR s=-int)
Create an empty string with given capacity. See page 95.

function
(GETWORDV s-int)
Creata a vector of integers (32 bits). Saea page 91

function
(GETZEROVEC s-int)
Create intaeger vaector filled with zaeros. See page 91

command to system intarface '
(CALLBELOW *GFIPLIST' c-strl {"INPUT' | 'OUTPUT') c-str2
s-int sysdep-areaxl)

Create a fila I/0 PLIST

function
(GGREATERP iteml item2)
Generic comparison, arbitrary order of typas

function
(GLOEXTSTATE listl list2 sd)
Augmants GLOE of an SD, without capturing C.

special form
(G0 label)
Transfar control to a labael in a SEQ. Sea paga 49.

function
(GREATERP numl num2)
Compare two numbers. Seae paga 106.

function
(HASHARRAYP item)
Valua is argument if it is a hasharray.

function
(HASHINIT)
Discard all existing hasharrays.

function

(HASHITEM hasharray iteml]l item2)

ﬂ:kezan entry into a hasharray for iteml with value
1tems.

function

(HASHPROP hasharray iteml item2 ijten3)
Sat item2 proparty of iteml to item3 in tha hasharray.

Table of system functions, variablas and commands 159

HEAPLEFT
HEXEXP
HEXNUM
HEXSTRINGPART

HPROPLIST

IDENTITY
IDENTP
IFCAR

IFCDR
INITIALCPEN
INITSUPY
INITSYMTAB
INTERN

INTERSECTION

INTERSECTIONQ
IOSTATE
IOSTATEHN

IS-CONSOLE

160 YKTLISP Program Dascription and Operations Manual

function
(HEAPLEFT)

Raturns bytas of HEAP spaca remaining

function
(HEXEXP itair)

Convert a LISP pointer to a hexadecimal string

function

(HEXNUM fx-num)
Convaert an integaer to a haxadacimal string

function

(HEXSTRINGPART c-str s-intl s-int2)
Substring to hexadecimal.,

function

(HPROPLIST hasharray item)

12 3 or 4 chars

Fatch an entire entry from the hasharray (doaes not

include the kay).
function, with macro definition for compilation
(IDENTITY item)
(LAMBDA (X) X).

built in function

(IDENTP item)

Taests for identifier typa.

function, with macro definition for compilation

(IFCAR item)

If argumaent is a pair,
function, with macro definition for compilation

CDR, otherwise NIL.

(IFCDR item)

If argumaent is a pair,

function
(INITIALGCPEN)

Does a fixup of the globally bound streams

variable

NIL or expraession to start user's suparvisor

definition option
ta-list.)
Provided a pre-defined sat of EQUs for ASSEMBLE.

CINITSYMTAB .
paga 133.

function
C(INTERN c-str)

String to idantifiaer, copies pnama.

function

CINTERSECTIDN listl list2)
Set intersection of two lists, no duplicates.

33.

function

(INTERSECTIONQ listl list2)
Saet intersaction, uses EQ, no duplicates.

function

(IOSTATE file-nana)
Tasts for the existance of a disk file

function

(IOSTATEW fila-narme)
Tests for the writeability of a disk file

function

(IS~-CONSOLE item)
Tests a stream for (DEVICE . CONSOLE) property.

75.

Sea page 69.

Sae pagae 73.

CAR, otharwisa NIL.

Saa pagae 78.

See paga 78.

See

See paga 113.

Seae page

See paga 83.

See page

ITEM-N-ADV

L=-CASE

LAM

LAMBDA

LAPLIST

LAST

LAST-EXP

LAST-VALUE

LASTNODE

LEFTSHIFT

LENGTH

LENGTHCODE

LESSP

LETTERIZER

LINTP

LISPRET

LISPSEG

LIST

LIST=PAIRS

function, with macro definition for compilation
(ITEM-N-ADV strm)

Gat current stream itam and step to the next. See page
undefinad.

function .

(L-CASE {c-str | id | list})

Shifts string, id, or list thereof to 1l case. See page
102 and page 114.

macro
(LAM bv-list [exp ...1) -
Extension of tha LAMBDA spaecial form

special form
(LAMBDA bv-list (exp ...1)
Special form for applicable expressions. Sea paga 52.

definition option
(LAPLIST . boolean)
Requasts a listing of the assembler coda. Sea page 133.

function
(LAST list)
Final item of a list (ignoring final CDR). See pagae 8%.

function
(LAST-EXP)
Returns tha last expraession SUPV aevaluated

function
(LAST-VALUE)
Raturns the last value computad by SUPV

function
(LASTNODE list)
Final pair of a list. See page 84%.

function .
(LEFTSHIFT num s-int)
Multiply by a powar of two. Saee page 110.

function
(LENGTH item)
Number of items in a list. See page 9%90.

function

(LENGTHCODE vee)

Numbar of bytes occupied by a vactor. Saae paga 93 and
page 98.

function
(LESSP numl num2)
GREATERP, backwards. Seae page 106.

variable
Global whosa valua defines tha letterizer, |

built in function
(LINTP item)
Tests for long intager type. Sea paga 74.

command to system interface
(CALLBELOW °'LISPRET' s-int sysdep-area)
Raturn controel to invoking environmant

command to systam interface

(CALLBELOW °*LISPSEG')

Returns addraess of LISP sharaed segment.
function, with macro dafinition for compilation
(LIST Litem ...1)

Makes a list of its argumants. See page 381.

macro

.Table of system functions, variables and commands 161

LISTING

LISTOFFLUIDS

LISTOFFREES

LISTOFLEXICALS

LISTOFQUOTES

LISTOFSAME

LISTP

LIST2FLTVEC

LIST2IVEC

LIST2REFVEC

LN

LOADCOND

LOADVOL

LOG

LOG2

LOTSOF

162

(LIST-PAIRS exp)

Like COUNT-PAIRS but prints a fila CALL PAIRS A.

definition option
(LISTING . strm)

Provides a stream for program listings.

function
(LISTOFFLUIDS bpi)

See page 134.

Raeturns variablaes bound FLUID by a BPI

function
(LISTOFFREES bpi)

Raturns variables usaed free by a BPI

LISTOFFUNCTIONS function
(LISTOFFUNCTIONS bpi)
Returns names of functions callaed by a BPI

function

(LISTOFLEXICALS bpi)
Raturns variables bound LEXically by a BPI

function
(LISTOFQUOTES bpi)

Returns all items QUOTEd by a BPI

function
(LISTOFSAME list)

Tasts for identical types on list membars

built in function
(LISTP item)
Tast for listness,

function

(LIST2FLTVEC list)
Where all alements
ggnverts a list to

function
(LIST2IVEC list)
Where all elements
Converts a list to

function
(LIST2REFVEC list)
Convarts a list to

function
(LN num)
Natural logarithm.

function
(LOADCOND file)

Loads curraently undefined items from a LISPLIB.

127.

function
(LOADVOL file)

Loads all items from a LISPLIB.

function
(LOG num)
Logarithm,

function
(LOG2 num)
Logarithm, basa 2.

function
(LOTSOF itam ...)

Raturns "infinita list" of argumants

basa 10.

i.e. pair or NIL. Saee page 72.

of list are numbers.

a vaector of floating nums. Sea page

of list are fixed point numbaers.
a vactor of integers. Saa paga 92.

a vaector of s-exps.

Sea page 91.

See page 1lll.

Sea paga

See page 127.

See page 11l1.

Seaae pagae 1lll.

YKTLISP Program Dascription and Opaerations Manual

MAADDTEMPDEFS

MACRO-APP-SD

MAKEPROP

MAKESTRING

MAKETRTTABLE

MAP

MAPCAR

MAPE

MAPELT

MAPLIST

MAPOBLIST

MAPSETE

MASKNUM

MATEMPDEFINE

MATEMPSETQ

MAX

MAXINDEX

function
(MAADDTEMPDEFS ¥file)
Adds items from a LISPLIB to MACRO-APP-SD See pagae 132.

dafinition option
(MACRO-APP-SD . sd)

Spacifies macro application environment for definition.
See pagae 132.

function

(MAKEPROP {id | list} iteml item2)

Add o;7change a nama-valua property. Seae paga 115 and
page .

function, with macro definition for compilation
(MAKESTRING c-str)
ggturns c-str arg, compilas with data inline. See paga

function
(MAKETRTTABLE {c-str | list) item)
Builds translate and tast tablaes. See page 97.

macro
(MAP list app-ob)
Equivilent to MMAP with argumants raeversed. See pagae 68.

macro
(MAPCAR list app-ob)

Eguivilent to MMAPCAR with arguments raeversed. Sea page

macro

(MAPE app-ob {vec | list} ...)

Appli:; operator to vector elements, returns size. Sea
page .

macro

(MAPELT app-cb (vec | list} ...)

Appli:; opaerator to vector elements, returns vec.. Seaa
page .

macro
(MAPLIST list app-ob)
E:uivilent to MMAPLIST with arguments revaersed. See page

function
(MAPOBLIST app-0b)
Applies function to elements of obarray. Saea page 68.

macro :

(MAPSETE app-ob {vec | list} ...)

Appli:; oparator to vector alemants, SETELTs 1lst v. Sae
page .

function
(MASKNUM fx-num s-int)
Rightmost n bits of a numbar

function

(MATEMPDEFINE listl [list2]) .
Whaere item is eithar a nama/aexpraession list or a list of
nama/axprassion lists.

Adds dafinitions to MACRO-APP-SD Sea page 132.

function

(MATEMPSETQ id item [list])

Adds values to MACRO-APP-SD

function, with macro dafinition for compilation
(MAX num ...)

Largest of a set of numbars. Sea page 106,

function

Table of system functions, variables and commands 163

MDEF

MDEFX

MEMBER

MEMQ

MESSAGE

MIN

MINUS

MINUSP

MLAMBDA

MMAP

MMAPC

MMAPCAN

MMAPCAR

MMAPCON

MMAPLACA

(MAXINDEX vec)

Largast valid index, = (SUBl (SIZE x)). Sea pagae 92.

built in function
(MDEF wmacro-app-ob item sd)

MDEFX with raspact to an environmant

built in function
(MDEFX macro-app-ob item)
Singla laval macro axpansion

macro
(MDO listl list2 [exp ...1)

Whara listl declare variable, with inital and subsiquant
valuas, and list2 definas tha termination tast, epilogue

and valua.
Maclisp basad itaerator.

function
(MEMBER item list)

Membarship of itam in list, usaes EQUAL. Sae page 85.

function
(MEMQ item list)

Mambarship of item in list, uses EQ. See page 85.

daefinition option
(MESSAGE . strm)

Provides a stream for information and warning messagas.

Seae paga 134.

function, with macro definition for compilation

(MIN num ...)
Smallaest of a set of numbars.

function
(MINUS num)
Changaes tha sign of a numbar.

function
(MINUSP item)

Tasts for number lass than zero.

spaecial form
(MLAMBDA bv-list [exp ...1)

Spaecial form for macro applicable expressions.

.

macro
(MMAP app-ob list ...)

Sea page 107.

Sea

Apply function to succeeding CDRs.

macro
(MMAPC app-ob list ...)
Apply function to succeeding

macro

(MMAPCAN app-ob list ...)
Apply function to succeading
paga 65.

macro

(MMAPCAR app-ob list ...)
Apply function to succeading
pagae 64.

macro .

(MMAPCON app-ob list ...)
Apply function to succaaeding
paga 65.

macro

(MMAPLACA app-ob list ...)
Apply function to succeading
page 65.

itams.

items,

items,

CDRs,

CARs,

paga 107.

Seae pagae 106.

See page 64%.

Sea paga 64.

NCONC values. Se

LIST values. Sea

NCONC valuaes. Seea

RPLACA 1st arg..

164 YKTLISP Program Dascription and Oparations Manual

Seae paga

See

MMAPLIST

MONITOR

MONITOR-ON-OFF

MOVEVEC

MRP

MSUBRP

MTON

NAMEDERRSET

NCONC

NCONSTKD

NENABLE

NEWAREA

NEUQUEUE

NEXT

NILFN

NILLEFT

NILSD

NOLINK

macro
(MMAPLIST app-ob list ...)

function
(MONITOR id [listl [list211)

epply function to succeeding CDRs, LIST values. Saeae page

Sets a function to print on call and return. See page

141.

variable
Global switch to allow monitoring PRINT et.al.

function
(MOVEVEC vecl vac2)

Copias contests of ona vactor into another. See pagae 94.

built in function
(MRP item)
Tasts for MR. See paga 73.

built in function
(MSUBRP item)
Tests for MSUBR type. See paga 72.

function
(MTON s-intl s~-int2)
Creatas list of intagers from n to m. Sea page 33.

macro
(NAMEDERRSET id exp [item ...1])
ERRSET with tag usable by THROW. Seae page 58.

function
(NCONC listl list2)
APPENDs by updating, no copying. See page 88.

command to system interfaca
(CALLBELOW YNCONSTKD')
Raturns no. of physical lines in console stack

command to system intarfaca
(CALLBELOW "NENABLE' s-intl s-int2 s-int3 s~-int4%)
= ENABLE, for varsions after 0023

command to system interfacae
(CALLBELOW "NEHAREA' s-int)
Allocates FREE/FRET storagea.

function
(NEWQUEUE s~-intl s-int2)
Changes max quauae langth for an intarrupt

function, with macro definition for compilation
(NEXT strm)
Advanca an input stream one item. See paga 1l19.

function, with macro definition for compilation
(NILFN)
(LAMBDA () ()). Sea page 69.

function
(NILLEFT) .
Raturns bytes of NIL space raemaining

function
(NILSD item)
Returns - the SD for tha root of the stack

definition option

(NOLINK . boolean)

Controls the craation of a bpi following assembly.
page 132.

NONINTERRUPTIBLE definition option

Tabla of system functions, variables and commands

See

165

NONSTOREDP

NOT

NOTEFILE

NREVERSE

NSTACKED

NSUBST

NTUPLEP

NULL

NULLCUTSTREAN

NUMBEROFARGS

NUMBERP

NUM2TIME

OBARRAY

oBDUMP

OBEY

OBEY

oDpP

ONE-OF

(NONINTERRUPTIBLE . boolean)
Controls the compilation of interrupt polling
instructions. Sea pagae 133.

(NONSTOREDP item)
;;sts for nonstored (i.e. not heap raesidaent). See page

function, with macro definition for compilation ::)

function, with macro definition for compilation
(NOT item)
True in argument is NIL, NIL otherwisa. Sea pagae 71.

function
(NOTEFILE strm)
Raturns position information for file stream

function
(NREVERSE list)
Revaerses a list in placa by updating. See pagae 89.

command to system interface
(CALLBELOW "NSTACKED'")
Raeturns number of linaes in program stack

function
(NSUBST iteml item2 itend)
Updata a structure with item substitutions

built in function
(NTUPLEP item)
Tests for ntupl type

built in function
(NULL itam)
Tests for NIL valuae. See paga 71.

variable -
A no-op stream, a data sink Sea page 1l17. ‘;)

function
(NUMBEROFARGS bpi)
Raturns numbar of argument for a BPI

built in function
(NUMBERP item)
Tests for numbaer types. Sae pagae 74.

function
(NUM2TIME ¥x-num)
Unpacks small int. to timaesdate (sea TIME2NUM)

function
(OBARRAY) ,
Raturns copy of tha obarray. Sea pagae 116.

function

(OBDUMP id)

Evaluate id and prattyprint (id valuae) if tha value is
non-trivial. :

function
(O0BEY c-str)
Passaes a command to tha host systam

command to systam interface
(CALLBELOW 'OBEY' c-str)
Pass a command string to the system

function

(ODDP item)
0dd test for integers. Seae page 106.

macro)
C((ONE-OF idl ...) idn) |

166 YKTLISP Program Dascription and Oparations Manual

Test for arg EQ to maembar of QUOTEd sat

OP-RECOGNITION-SD definition option

OPTIMIZE

OPTIONLIST

ORADDTEMPDEFS

ORBIT

ORTEMPDEFINE

ORTEMPSETQ

PACKHEXSTRING

PAIRP

PANICMSG

PARAMETERS

PARMLIST

PLACEP

PLEXP

PLUS

PLUSP

(OP~-RECOGNITION-SD . sd)
Specifiaes opaerator racognition environment for
dafinition. See page 132.

definition option

(OPTIMIZE . s-int)

Controls the amount of optimization by the compilaer. See
page 134.

variable
A-list which controls DEFINATE's actions

macro

(OR [exp ...1)

Evaluates exprassions until one returns non-NIL. See
pagae 51

function
(ORADDTEMPDEFS file)
Qggs items from a LISPLIB to OP~RECOGNITON-SD See page

function
(ORBIT b-str ...)
Logical or of bitstrings. See page 97.

function

(ORTEMPDEFINE listl [list2])

Whaere item is either a nama/expression list or a list of
name/axpraession lists.

Adds definitions to OP-RECOGNITION-SD Sea page 132.

function
(ORTEMPSETQ id item [listl)
Adds values to OP-RECOGNITION-SD

function
(PACKHEXSTRING c=-str)
Creates string whosa hex form is argument

built in function
(PAIRP item)
Tests for pair typa. See page 72.

command to system intarface
(CALLBELOW YPANICMSG' c-str)
Writaes to consola unconditionally

function
(PARAMETERS)
Raturns tha parametar string from LISP370

command to system intaerface
(CALLBELOW 'PARMLIST' sysdep-area)
Raetrieves the parametar list from invocation

function, with macro definition for compilation
(PLACEP itam)
Tasts for raead place holder typa. See pagae 7%.

built in function
(PLEXP itam)
Tasts for plex type

function, with macro definition for compilation
(PLUS num ...)
Sums a set of numbars. See page 107.

function

(PLUSP jtem)
Tasts for positive numbers., Sae page 105.

Table of system functions, variables and commands 167

PNAME

POINTFILE

POLLUP

POP

POPP

POST

POST-SELECT

PRETTYPRINT

PRETTYPRINO

PRINM
PRINT

PRINTCH

PRINTEXP

PRINTVAL
PRINTHARN
PRINO
PRINOR

PRIN1

function
(PNAME id)

Raturns a copy of the p-namae of an id. Saa paga 114 and

page 97.

function
(POINTFILE pair strm)
Repositions a fila stream

function, with macro dafinition for compilation
(POLLUP)
Tast for upward branch intarrupt

macro
(POP idl [id21)
Pops an item from a list. Value is the new CDR,

which

bacomas value to idl. Optionally assigns CAR to id2.

macro

(POPP idl [id21])

Pop an item from a list, satting idl to new list.
is tha old list. Optionally asaigns CAR to id2.

function
(POST s~-int itam)
Signal an intarrupt

function
(POST-SELECT s-intl item s-int2)
Signals an interrupt, enables selacted POLL

function, with macro daefinition for compilation
(PRETTYPRINT item [strm])
Formataed print, with TERPRI. Sea page 123.

function, with macro dafinition for compilation
(PRETTYPRINO item [strml)
Formated print, no TERPRI. Saae page 123.

function, ui{h macro definition for compilation
(PRINM list [strm])

Value

Print list elaments, may dafault stream. See page 123.

function, with macro definition for compilation
(PRINT item [strml)

Print item and TERPRI, may default stream. See paga 123.

function, with macro dafinition for compilation
(PRINTCH char [(stral)

Put character on a stream, may default stream. See paga

121.

function, with macro dafinition for compilation
(PRINTEXP c-str [strml)

Print contents of string, may daefault stream. Saee page

121.

function
(PRINTVAL c-str strm)
Print routine for SUPV

function
(PRINTWARN list)
Does PRINM on CURCUTSTREAM, forcing new lina

function, with macro definition for compilation
(PRINO item [strml)
Print item, may dafault stream. Seae page 122.

function
(PRINOR item s-int [(strml)

Print item right justifiad in a field of width smint.

function, with macro daefinition for compilation
(PRIN1 item [stral)

163 YKTLISP Program Description and Opaerations Manual

.

U

&

PRINIB

PROG

PROGN

PROGRAM=-EVENTS

PROG1

PROG2

PROPLIST

PRY

PSMINTP

PUSH

PUTBACK

QASSQ

QCAAAAR

QCAAADR

QCAAAR

QCAADAR

QCAADDR

Print atom, may default stream. Sae page 122.

function, Wwith macro definition for compilation
(PRIN1B item [strml)
Print atom + blank, may default stream. Sea page 122.

macro

(PROG list [{exp | id} ...1)

Bind, initialize variablaes; establish labels. Sae page
undefinaed.

special form
(PROGN [exp ...]1)
Egaluate exprassions in saq., value is last. See page

variable
A-list of actions on errors, list

function, with macro definition for compilation
(PROGL exp ...)
E;aluate expressions in seq., value is first. See page

function, with macro dafinition for compilation
(PROG2 exp exp ...)
E;aluata exprassions in seq., value is sacond. Sae paga

function
(PROPLIST id)
iggurns id's proparty list, partial copying. Sae page

function
(PRY [itam ... 1)
Forces entry to machine debuggar

macro
(PSMINTP 1tem)
Equivilaent to QSPLUSP.

macro

(PUSH item id)

CONS the valuae of item onto a list, valua of id. Sats id
to naew list.

function
(PUTBACK item strm)
Replacas item onto head of input stream. Sae page 121.

function, with macro definition for compilation
(QASSQ itam list)
ASSQ, functional vaersion of in-lina macro. Sae page 86.

function, with macro definition for compilation
(QCAAAAR item)
(QCAR (QCAR (QCAR (QCAR x)))). Sea page 78.

function, with macro definition for compilation
(QCAAADR item)
(QCAR (QCAR (QCAR (QCDR x)))). Seae pagae 78.

function, with macro definition for compilation
(QCAAAR item)
(QCAR (QCAR (QCAR x))). Saea page 78.

function, with macro definition for compilation
(QCAADAR item)
(QCAR (QCAR (QCDR (QCAR x)))). See page 78.

function, with macro dafinition for compilation

(QCAADDR item)
(QCAR (QCAR (QCDR (QCDR x)))). Sea paga 78.

Tabla of system functions, variables and commands 169

QCAADR
QCAAR
QCADAAR
QCADADR
QCADAR
QCADDAR
QCADDDR
QCADDR
QCADR

QCAR

QCDAAAR
QCDAADR
QCDAAR
QCDADAR
QCDADDR
QCDADR
QCDAR
QCDDAAR

QCDDADR

function, with macro dafinition for compilation
(QCAADR item)
(QCAR (QCAR (QCDR x))). Sae paga 78.

function, with macro definition for compilation
(QCAAR item)
(QCAR (QCAR x)). See paga 78.

function, with macro dafinition for compilation
(QCADAAR item)
(QCAR (QCDR (QCAR (QCAR x)))). Sea pagae 78.

function, with macro definition for compilation

(QCADADR item)
(QCAR (QCDR (QCAR (QCDR x)))). See page 78.

function, with macro definition for compilation
(QCADAR itam)
(QCAR (QCDR (QCAR x))). Seae paga 78.

function, with macro definition for compilation
(QCADDAR item)
(QCAR (QCDR (QCDR (QCAR x))}). Seae page 78.

function, with macro definition for compilation
(QCADDDR item)
(QCAR (QCDR (QCDR (QCDR x)))). See paga 78 and

function, with macro definition for compilation
(QCADDR item)

paga 84.

(QCAR (QCDR (QCDR x))). Saee page 78 and page 34.

function, with macro dafinition for compilation
(QCADR item)
(QCAR (QCDR x)). Saa page 78 and page 34%.

function, with macro dafinition for compilation
(QCAR item)
Likae CAR, but no argument type check made. Sea
and pagae 84.

function, with macro definition for compilation
(QCDAAAR item)
(QCDR (QCAR (QCAR (QCAR x)))). Sea page 78.

function, with macro definition for compilation
(QCDAADR item)
(QCDR (QCAR (QCAR (QCDR x)))). Seae paga 78.

function, with macro definition for compilation
(QCDAAR item)
(QCDR (QCAR (QCAR x))). Saa page 78.

function, with macro daefinition for compilation
(QCDADAR item)
(QCDR (QCAR (QCDR (QCAR x)))). Saa page 78.

function, with macro definition for compilation
(QCDADDR item)
(QCDR (QCAR (QCDR (QCDR x)))). Sea page 78.

function, with macro dafinition for compilation
(QCDADR item)
(QCDR (QCAR (QCDR x))). Sea paga 78.

function, with macro dafinition for compilation
(QCDAR item)
(QCDR (QCAR x)). Saae pagae 78.

function, with macro definition for compilation
(QCDDAAR item)
(QCDR (QCDR (QCAR (QCAR x)))). Saee page 78.

function, with macro definition for compilation
(QCDDADR item)

170 YKTLISP Program Dascription and Operations Manual

page 78

D

U

(QCDR (QCDR (QCAR (QCDR x)))). Sea page 78.

QCDDAR function, with macro definition for compilation
(QCDDAR item)
(QCDR (QCDR (QCAR x))). Sea page 78.

QCDDDAR function, with macro definition for compilation
(QCDDDAR item)
(QCDR (QCDR (QCDR (QCAR x)J))). Saee page 78.

QCDDDDR function, with macro definition for compilation
(QCDDDDR item)
(QCDR (QCDR (QCDR (QCDR x))3). Seae page 78 and paga 8%.

QCDDDR function, with macro definition for compilation
(QCDDDR item)
(QCDR (QCDR (QCDR x))). See page 78 and paga 84.

QCDDR function, with macro definition for compilation
(QCDDR item)
(QCDR (QCDR x)). See pagae 78 and page 84.

QCDR function, with macro definition for compilation
(QCDR item)
Like CDR, but no argumaent type chack made. See page 78
and page 8%.

QDCR macro
(QDCQ iteml item2)
Where iteml is a pair/reference vector structura.
Like DCQ, but no type checking.

QEAPPEND macro
((QEAPPEND {id | c=-str | s-int) ...) c=-str2)
SUFFIXas QUOTEd chars to t-str2, no check

QECHAR macro
((QECHAR s=-int) c-str)
Extracts char from c-str, no chack

QECHARN function, with macro definition for compilation
((QECHARN s-int) c-str)
Extracts char coda from €-str, no check

QECQ macro
(QECQ iteml item2)
Whaere iteml is a pair/rafarenca vector structure.
Lika ECQ, but no type chacking

QEFILL macro
((QEFILL {id lc-str | s-int}) e-str2)
Pads c-str2 with QUOTEd charactar, no check

QESTORE macro
((QESTORE s=-int {id |c-str | s-int} ...) ec-str2)
Replaces chars in ¢~str2 by QUOTEd chars

QESUFFN macro
(QESUFFN c-str s-int)
Suffix a character to a string.

QETEST1 macro
((QETEST! s-int {id [c-str | s-int} ...) c-str2)
Test for char in C-str2, no check

QGET function, with macro dafinition for compilation
(QGET {id | list) item)
GET, functional version of in-line macro. See pagae undae-
fined and paga 86.

QHIGHHALF function, with macro definition for compilation
(QHIGHHALF f1lt)
First 4 bytaes of flocating point numbaer as fixed

QINSERT function, uWith macro definition for compilation

Table of systam functions, variables and commands 171

(QINSERT s-intl s~-int2 c-str fx-num)
Insert bytes from fixad number into string

QINSERTFP function, with macro definition for compilation
(QINSERTFP s-int c-str f1lt))
Insert floating point number into string

QINSERTSTG function, with macro definition for compilation
(QINSERTSTG s-int c-strl c-str2)
Insaert string into string

QLENGTH function, with macro daefinition for compilation
(QLENGTH list) -
Inlina LENGTH, no chack for cycle. See page undaefined.

QLENGTHCODE function, with macro dafinition for compilation
(QLENGTHCODE vec)

ggline LENGTHCODE, no type check. Sae page 93 and page

QLOKHALF function, with macro definition for compilation
(QLOWHALF €1t)
Last & bytas of floating point numbaer as fixed

QMEMQ function, with macro definition for compilation
(QMEMQ item list)
MEMQ, functional vaersion of in-line macro. Sea page 85.

QRCQ macro
(QRCQ itaml item2)
Where item2 is a pair/refarenca vector structure.
Like RCQ, but no type chacking.

QREFELT function, with macro definition for compilation
(QREFELT r-vec s-int)
%iko ELT of refarancae vector, no typa check. Sea page

QREFVECLENGTH function, with macro definition for compilation
(QREFVECLENGTH r-vec)
SIZE for refaerance vectors, no checking. Sea page 93.

QREFVECMAXINDEX function, with macro dafinition for compilation
(QREFVECMAXINDEX r-vec)
MAXINDEX for referance vactors, no checking. Sea page

QRPLACA function, with macro definition for compilation
(QRPLACA pair item)
Lika RPLACA, no type chack. See page 78 and page 88.

QRPLACAD function, with macro definition for compilation
(QRPLACAD pairl pair2)
Lika RPLACAD, no typa check. See page 79.

QRPLACD function, with macro dafinition for compilation
(QRPLACD pair item)
Like RPLACD, no typae chack. Saea paga 79 and page 88.

QRPLNODE function, with macro definition for compilation.
(QRPLNODE pair iteml iteam2)
Like RPLNODE, no typa check. Sea page 79.

QSABSVAL function, with macro dafinition for compilation
(QSABSVAL s=-int)
ii;a ABSVAL of small integer, no typae chack. See page
07.

QSADD1 function, with macro definition for compilation
(QSADD1 s-int)
Lika ADD1l of small intager, no typa check. Seae page 108.

QSAND function, with macro dafinition for compilation

(QSAND s~-intl s-int2)
Bitwisa AND of small integars, no check. Sea page 110.

172 YKTLISP Program Daescription and Oparations Manual

QSBITS
QSCHANGELENGTH
QSDEC1

QSDIFFERENCE

QSETBITS
QSETREFY
QSGREATERP
QSINCI

QSLEFTSHIFT

QSLESSP
QSMAX
QSMIN
QSMINUS
QSMINUSP
QSNOT
QSODDP
QSOR
asorT

QSPLUS

macro
((QSBITS s-intl s~int2) s-int3)
Extracts bits from small intaeger, no chaeck

function, with macro dafinition for compilation
(QSCHANGELENGTH c~str s-int)
Like CHANGELENGTH, no typae check. Seae page 101.

function, with macro definition for compilation
(QSDEC1 s-int)
Like QSSUBl, but won't cross zero. Sea pagae 108.

function, with macro definition for compilation
(QSDIFFERENCE s-intl s-int2)
%;ge DIFFERENCE of small intagars, no check. See page

macro
((QSETBITS s~-intl s-int2) s-int3 s-int4)
Sets bits in small integer, no check

function, with macro dafinition for compilation
(QSETREFV r-vec s-int item)
Like SETELT of raferenca vactor, no check. Seae pagae 94%.

function, with macro definition for compilation
(QSGREATERP s-intl]l s-int2)
Likae GREATERP of small intagers, no check. See page 106.

function, with macro definition for compilation
(QSINC1l s=-int)
Like QSADDl, but won't cross zero. Saea page 108.

function, with macro dafinition for compilation
(QSLEFTSHIFT s-intl s-int2)
&;ge LEFTSHIFT of small integers, no check. Sea page

function, wWith macro definition for compilation
(QSLESSP s-intl s-int2)
Like LESSP of small integars, no check. See page 106.

function, with macro definition for compilation
(QSMAX s=-intl s-int2)
Like MAX of small intaegars, no chack. See pagae 107.

function, with macro dafinition for compilation
(QSMIN s-intl s-int2)
Lika MIN of small integers, no chack. Sea page 107.

function, with macro definition for compilation
(QSMINUS s~-int)
Lika MINUS of small integers, no chaeck. Sae page 107.

function, with macro dafinition for compilation
(QSMINUSP s=-int)
Like MINUSP of small integers, no check. See page 106.

function, with macro definition for compilation
(QSNOT s=-int)
Bitwisa NOT of =mall integer, no check. See page 110.

function, with macro daefinition for compilation
(QSODDP s-int)
Like ODDP of small interger, no chack. Sece pagae 106.

function, with macroe dafinition for compilation

(QSO0R s-intl s-int2)

Bitwisa OR of small integers, no chaeck. Saea paga 110.
function

(QSORT list)

Quicksort on lists, uses SORTGREATERP. See page 90.

function, with macro definition for compilation

Tabla of system functions, variables and commands 173

QSPLUSP
QSQUOTIENT

QSREMAINDER

QSSUB1
QSTIMES
QSTRIM

QSTRINGLENGTH

QSXOR
QSZERCP
QUIET
QUOTE
QUOTEIZER
QUOTIENT
RANDOM
RANDOMCJS
RCLASS
RCOPYITEMS

RCQ

(QSPLUS s-intl s-int2)
Lika PLUS of small intaegers, no check. Sea page 107.

function, with macro daefinition for compilation)
(QSPLUSP s=-int) \/)
Lika PLUSP of small integers, no check. Saea paga 105.

function, with macro dafinition for compilation

(QSQUOTIENT s~-intl s-int2)

Like QUOTIENT of small integars, no chack. See page 109.

function, with macro daefinition for compilation -
(QSREMAINDER s=-intl s-int2)
%}:a REMAINDER of small integers, no check. Sea page

function, with macro daefinition for compilation
(QSSUB1 s-int)
Like SUBl of small integers, no chack. Sea page 108.

function, with macro dafinition for compilation
(QSTIMES s-intl s-int2)
Like TIMES of small integers, no check. Sea page 109.

macro
((QSTRIM s-int) c-str)
Inline CHANGELENGTH, no check

function, with macro dafinition for compilation
(QSTRINGLENGTH c-str)

Like SIZE for character strings, no chack. See page
undefined. ‘

function, with macro dafinition for compilation
(QSXOR s-intl]l s=-int2)
Bitwise XOR of small integers, no check. Sea paga lll.

(QSZEROP s-int)

function, with macro definition for compilation ::)
Lika ZEROP of small intagaers, no chack. Saae page 105.

dafinition option
(QUIET . boolean)
Supprassas messagaes to the consola. Saee page 134.

spacial form
(QUOTE item)
Returns argument un-aevaluated. Sea paga 47.

variable
Global whose valua dafinas the quotaizer, "

function, with macro definition for compilation
(QUOTIENT numl num2)
{ggk (DIVIDE x yJ)), quotient aftaer division. Sea page

function
(RANDOM)
Return a random 32-bit intagaer based on the system seed.

function
(RANDOMCJS &int.)
Raeturn a random 32-bit intagaer basad on the 32-bit input.

function
(RCLASS c~str rstrm)
Returns the class byta from LISPLIB item. See pagae 125.

function

(RCOPYITEMS filel file2 list)

Copy item(s) from ona LISPLIB to another. See page 127. -
macro ;:>

(RCQ iteml item2)

174 YKTLISP Program Dascription and Operations Manual

RDCHR

RDEFIOSTREAM

RDLINE

RDROPITEMS

READ

READ-LINE

READPLACEGEN

REALVECP

RECLAINM

REFVECP

RELPAGES

REMAINDER

REMALLPROPS

REMOVE

REMOVEQ

REMOVER

REMOVEGR

Whaere item2 is a pair/refarence vector structura.
Updates components of structure from ID values

function, with macro daefinition for compilation
(RDCHR [strml)
Like ITEM~AND-ADVANCE, may default stream. See page 119.

function

(RDEFIOSTREAM list)

Create a stream for LISPLIB oparations. Seae page 125.
command to systaem interface)
(CALLBELOW 'RDLINE' sysdep-areal sysdep-area2)
Reads line from console

function
(RDROPITEMS fila list)
Deleta item(s) from a LISPLIB file. See page 127.

function, with macro definition for compilation
(READ [strml) .
§ggds any s—axprassion, may default stream. See page

function
(READ-LINE strm)
Reads a line (record). Saee page 119.

function
(READPLACEGEN)
Creata a read place holdar

built in function
(REALVECP iteam)
Tast for real vector type. Seae page 72.

function
(RECLAIM)
The garbage collactor

built in function
(REFVECP item)
Taest for referance vector typae. Seae page 72.

command to system interface
(CALLBELOW °*RELPAGES' s-intl s-int2)
Releasa virtual pages

function, with macro definition for compilation
(REMAINDER numl num2)
iggDR (DIVIDE x y)), remainder after division. See page

function
(REMALLPROPS id)
Remove all items from a propaerty list. See page 1l16.

function

(REMOVE list item [s-intl)

Dalete one (or s~-int) occurrence(s) of item in list.
Usas EQUAL and copies input list.

function

(REMOVEQ list itam [s-intl)

Daleta ona (or S$-int) occurraence(s) of item in list.
Uses EQ and copies input list.

function

(REMOVER list item [s-intl])

Delaete one (or S-int) occurrence(s) of item in list.
Usaes EQUAL and updates input list.

function
(REMOVEQR list item [s-intl)

Table of system functions, variablas and commands 175

REMPROP

RENAME

REPLACEF

REPLACEFILE

RESETQ

RESOLVEF

RESTARTSD

RET

RETURN

REVERSE

RIGHTSHIFT

RKEYIDS

RPACKFILE

RPLACA

RPLACAD

RPLACD

RPLACSTR

Daelata onae (or s$-int) occurrence(s) of item in list.
Uses EQ and updataes input list.

function

(REMPROP id item)

Remova a specific item from a proparty list. See page
115 and page undefined.

command to system intaerfacae

(CALLBELOW 'RENAME' sysdep-areal sysdep-area2)
Raename a disk file

command to system interface
(CALLBELOW 'REPLACEF' sysdap-areal sysdep-area2)
Safa raname for disk files

function
(REPLACEFILE fila-namel file-name2)
Functional link to CALLBELOW REPLACEF

macro
(RESETQ id [item])
Assigns to a variablae, returns previous value. See page

command to systam intarfacea
(CALLBELOW 'RESOLVEF' sysdep-areal sysdep-area)
Raeturns data for raesolvad fila

variable
Rasume point on warm start, SD

function
(RET [s~int [sysdep-araall)
Exit to host system

built in function
(RETURN item)
Exit from a LAMBDA contour with valua. See page 49.

function
(REVERSE list)
Revarses ordaer of a list, no updating. Sea pagae 82.

function, with macro definition for compilation
(RIGHTSHIFT num s-int)
Divide by a pouwar of two. See page undefined.

function
(RKEYIDS file)
Identifiers matching LISPLIB kaeys. Sae paga 126.

function
(RPACKFILE file)
Garbaga collect a LISPLIB fila. See page 126.

built in function

(RPLACA pair itam)

U?datn the first element of a pair. See page 78 and page
37.

function
(RPLACAD pairl pair2)
§aplace CAR+CDR of 1lst arg by contents of 2nd. See page

built in function

(RPLACD pair item)

Updata the second alement of a pair. Saee page 79 and
pagae 88.

function, with macro definition for compilation
(RPLACSTR c=-strl s-intl s-int2 c-str2 [s-int3 [(s-int4ll)
Whaere any of tha S~int argumaents may also ba NIL.

176 YKTLISP Program Dascription and Opaerations Manual

K_)

gggate part of a string (if there is room). Saeae page

RPLNODE function
(RPLNODE pair iteml item2)

ggdata CAR+CDR of lst arg by 2nd & 3rd args. Saea page

RREAD function
(RREAD c-str rstrm)
Read an item from a LISPLIB, by key. See page 125.

RSETCLASS function
(RSETCLASS c-str s-int &rstrm)
Saets tha class byte in LISPLIB item. Sae page 126.

RSHUT function
(RSHUT rstrm)
Close a LISPLIB stream. See page 126.

RWRITE function
(RWRITE c-str item rstrm)
Write an item into a LISPLIB, by key. Seae page 126.

SASSOC function
(SASSOC item list app-oh)
ASSOC with function supplied for failure. See page 86.

SBCP function

(SBCP id)

Tast for existance of a shallow binding call
SBOUNDP function

(SBOUNDP id)
Tests for binding in stack part of environment

SCANAND macro
(SCANAND app=-ob list ...)

Apply function to succeading list items until NIL. Saea
page 66.

SCANOR macro
(SCANOR app-ob list ...)
Apply function to succeeding list items until nonNIL.
See pagae 66.

SEARCHPAIRVECTOR function, with macro dafinition for compilation
(SEARCHPAIRVECTOR item r-vec)
Searchs vector for EQ item in even element

SEESUHAT macro
(SEESWHAT id ...)
Raturn usaeful information about id's.

SEGMENTNAME function
(SEGMENTNAME)
Returns tha file name of this segment image

SEGTIME function
(SEGTIME)
Returns time and datae of segment image

SELECT macro ‘ .
(SELECT expl list ... exp2)
Where each list is of thae form (axp exp ...).
A case construct. Sae page 51.

SEQ special form
(SEQ [exp ...Y)
E;aluate expressions saquentially, allow GOs. See page

SET built in function
(SET id item)

Tablae of system functions, variables and commands 177

SET-ECHO-PRINT

SET-GLOBAL-ID

SET-ID

SET-LEX~-ID

SET-MCASE

SET-QUAL

SET-8

Assign value of ona argument to value of other. Sea paga

function
(SET-ECHO-PRINT boolean)
Turn acho printing on/off in SUPV '

function
(SET-GLOBAL-ID id item)
Global environmaent assignment. See paga 62.

function .
(SET-ID id item))
Sets fluid value of id in current stack. See page 61.

1

function
(SET-LEX-ID id item)
Sats value of id, seas caller's lexicals. Seae page 62.

function
(SET-MCASE strm)
Forces a consola stream to mixed-casa reading

function
(SET-QUAL strm id)
Forces an input edit moda in a consola stream

macro
(SET-S (id access-path instance) item)
Updata a fiald in a definaed structura.

SET-STREAM-A-LIST function

(SET-STREAM-A-LIST strm list)
Update operator on fast streams. See page 124.

,

SET-STREAM-BUFFER function

(SET-STREAM-BUFFER strm item)
Updata oparator on fast streams. Saee paga 124. ::)

SET-STREAM-P-LIST function

SET-UCASE

(SET-STREAM-P-LIST strm item)
Updata opaerator on fast streams. See page 124.

function
(SET-UCASE strm)
Forces a console stream to upper~case reading

SET-VALUE-PRINT function

SETANDFILEQ

SETDIFFERENCE

SETDIFFERENCEQ

SETELT

SETFUZZ

(SET-VALUE~-PRINT boolean)
Turn valua printing on/off in SUPYV

macro
(SETANDFILEQ id item)
Assign and add to LISPLIB

function
(SETDIFFERENCE listl list2)}
Members of one list which ara not in other. See page 83.

function
(SETDIFFERENCEQ listl list2)
Sama as SETDIFFERENCE, but usas EQ. Sea paga 83.

function, with macro dafinition for compilation

(SETELT {vec | str | list} s-int itam)

Updata operator for vaectors, indexad. See page 94, page
101 and page 38.

function
(SETFUZZ pair)
Changae thae numeric comparison tolerence

SETGENLABELSEED functian

(SETGENLABELSEED s=int) \,)
(Re-)initializes GENLABEL seaed

178 YKTLISP Program Dascription and Operations Manual

SETLINE

SETQ

SHARED

SHAREDITEMS

SHAREDP

SHOW-CALLS

SHOU-S

SHUT

SHUT

SIN

SIZE

SKIP

SMINTP

SORTBY

SORTGREATERP

SOURCELIST

STACKLEFT

STACKLIFO

function
(SETLINE s-int strm)
Set record numbar in FILE stream

special form
(SETQ id item)
Assign item to the (unevaluatad) identifier. See page

command to system intarface
(CALLBELOW 'SHARED')
Returns SHARED/NONSHARED status

function
(SHAREDITEMS item)
Return vector of multireachable items in struc

function
(SHAREDP)
Tasts for SHARED/NONSHARED mode

macro
(SHOW-CALLS exp) .

:rint a file SHOW CALLS A containing a detailed call
race.

macro
(SHOW-S id access-path instance)
Display a structure instanca with field names.

function
(SHUT strm)
Close a stream, non-op on consocla streams

command to system interfacae
(CALLBELOW 'SHUT' sysdep-area)
Closa a file

function
(SIN num)
Sine, argument in radians. Sea paga 1ll1l.

function

(SIZE item)

Number of glamaents in a list or vector. See page 92,
page undefined and page 90.

function, with macro definition for compilation
(SKIP s=int [strl)
Does n TERPRIs, may dafault stream. See page 122.

built in function
(SMINTP item)
Tast for small integer typae. Seae page 74.

function
(SORTBY app-ob list)
38rts list of iteams with given access function. See page

functioﬁ
(SORTGREATERP itaml itam2)
Initializaed to GGREATERP, for QSORT

definition option

(SOURCELIST . boolean)

Requaests printing of the sourca expression on the listing
stream. Saee page 133.

function

(STACKLEFT)

Raturns bytaes of STACK space raemaining

variable

Stream which faeds thae console stack See pagae 117.

Tabla of system functions, variables and commands 179

STARTTIME function
(STARTTIME)
Returns time/date of initial entry to LISP

STAT command to system interface
(CALLBELOW 'STAT' sysdep-area)
Sands XMSG to DATASTAG

STATE built in function
(STATE [listl])
Capture and environmant and control

STATEP built in function
(STATEP item)
Tast for SD type

STORECHAR function, with macro definition for compilation
(STORECHAR c-str s-int id)
Insert charactar into a string. See page 101.

STRCONC function
(STRCONC {c-str | id} ...)
Concatanate a set of strings. See page 96.

STRDEF macro
(STRDEF structure-def)
Equivilent to LAMBDA, for structure definitions.

STREAM=A-LIST function
(STREAM=A-LIST strm)
Raturns A-list component of a fast stream. Saa page 124.

STREAM=-BUFFER function
(STREAM-BUFFER strm)
Raturns buffer component of a fast stream. Sae page 124%.

 STREAM=DESCRIPTOR function
(STREAM-DESCRIPTOR strm)

§eturns dascriptor componant of a fast stream. Sea page
26.

STREAM-P~LIST function
(STREAM-P-LIST strm)
Raeturns the systam control block of a fast stream. Sae
pagae 124%.

STREAMP function
(STREAMP item)
Huristic is-this~a-stream? tast,

STRGREATERP function
(STRGREATERP c-strl c-str2)
Compara (collating sequancae) two strings. See paga 103.

STRINGIMAGE function
(STRINGIMAGE itam))
C:nvert an s-gxp to a string, as if printed. See page
96.

STRINGIZE function
(STRINGIZE item)
Makes a string of tha elements of a list. Sea page 96.

STRINGIZER variable
Global whose value defines the stringizer, '

STRINGLENGTH function
(STRINGLENGTH str)
Number of characters or bits in a string See page 98.

STRINGP built in function
(STRINGP item)
Tast for string typa. Sae pagae undefined.

STRING2BITSTRING function

PAIRP. See page 75.

180 YKTLISP Program Dascription and Opaerations Manual

(STRING2BITSTRING c-str)
Copias with changa of type. See page 9%96.

STRING2ID-N function
(STRING2ID-N c=-str s-int)

ggnvnrts the nth token in a string to an id. Seae page

STRING2PINT-N function
(STRING2PINT-N c-str s-int)

ggnverts the nth token in a string to a number. See page

STRLENGTH function
(STRLENGTH c-str)
Synonym for STRINGLENGTH

STRPOS function
(STRPOS c~-strl c-str2 s-int item)
Searchaes string for sub-string. See pagae 99.

STRPOSL function
(STRPOSL table c-str s-int item) :
Saarches string for spacified charactaer(s). See page 99.

STRTRT function
(STRTRT tabla c-str pair)

&ggates and identifiaes characters in string. See page

SUBLOAD function
(SUBLOAD file {id | list})
Load a subset of a LISPLIB. Saee page 127.

SUBRP built in function
' (SUBRP ijtem)
Test for SUBR typa. Sea paga 72.

SUBST function
(SUBST iteml item2 item3)
Create a structure with item substitutions

SUBSTRING function
(SUBSTRING c-str s~-intl s-int2)
Creata a new string from part of another. Sae paga 99.

sSuBl function
(SUBl num)
Subtracts ona from its argument. See page 108.

SUFFIX function, with macro definition for compilation
(SUFFIX id c-str)
Adds a charactar to a string, lengthaning it. See page

101.
SUPERMAN function

(SUPERMAN)

Tha next-to-root function, binds error streams
SUPV function

(SUPV strml strm2)
System READ/EVAl/PRINT loop

SUPV=-PRINT function .
(SUPY-PRINT item strm)
Print function for PRINTVAL, = PRETTYPRINT

sve202 command to system interface
(CALLBELOW 'SVC202' sysdep-area)
Issues SVC 202 for arbitrary PLIST

SYSID function

(SYSID)
Returns tha cpu id for the host system

Tabla of system functions, variables and commands 181

SYSID
SYSKEY
TAB
TAILP

TEMPDEFINE

TEMPUS
TEMPUS-FUGIT

TEREAD

TERPAGE
TERPRI

TEST-S

THROKW

THROW=-PROTECT

TIMES

TIME2NUM

TINLL

TOULL

182 YKTLISP Program Dascription and Operations Manual

command to system interface
(CALLBELOW *SYSID")
Returns 1, maeaning CMS

function
(SYSKEY)

Returns machine/time stamp for this fileim

function, with macro definition for compilation
(TAB s-int [stral)

Sats output position, may default stream.

function
(TAILP item i

Tast lst arg for EQ to (C [D...IJR 2nd arg).

function

st)

(TEMPDEFINE item [listl)
Where item is either a name/expression list or a list of
nama/axpression lists.

Adds augmanted STATEs to OPTIONLIST

command to system interface
CALLBELOW °"TEMPUS' sysdep-araa)

Raturns time,

function
(TEMPUS-FUGIT)

date and CPU usage

Raturns elapsed virtual timae

See page 122.

Sea page 85.

function, with macro dafinition for compilation

(TEREAD [strm]

)

Discards ramainder of linae, may default stream. Sae paga

120.

function

(TERPAGE s-int (strnl)
Advance the stream to a multiple of pagae length.

function, wifh macro daefinition for compilation

(TERPRI [strml

Forces output of line, may daefault stream.

macro

)

(TEST-S id access-path instanca)
Tast if a dafinad field is praesant in an instance of the

structure.

Sea pagae 121.

function, with macro definition for compilation
(THROW {id | s-int} item)

Raturn control to a CATCH, exaecuting EXITs.

macro

(THROW-PROTECT expl exp2)
Evaluates an expression, dispite THROW/UNWIND. See paga

57.

Seae paga 57.

function, with macro dafinition for compilation
(TIMES num ...)

Computes product of a set of numbers.

undefined.

function

(TIME2NUM c-str)
Where C-str is a tima/datae, as returnaed from CURRENTTIME,

Q.9.
Encoda tima-data string as small intaeger

command to system interface
(CALLBELOW °*TINLL®™)

Raturns consola input line langth

command to sysfem interface
(CALLBELOW "TOULL®)

Return consola output line length

Sea page

TPLINE

TRACE

TRANSLIST

TRIMSTRING

TRUEFN

7

TYPEOF

U=-CASE

UASSOC

UEQUAL

UMEMBER

UNEMBED

command to system interface
(CALLBELOW 'TPLINE' sysdep-areal sysdep-area2)
Display line on console

macro
(TRACE exp id ...)
Evaluate exp whilae MONITORing id Seae page 140.

definition option

(TRANSLIST . boolean)

Requaests printing of the macro expandad LISP codae. See
page 133.

function
(TRIMSTRING c-str)
;:;ces the capactity of a string to minimum. See page

function, with macro definition for compilation
(TRUEFN)
(LAMBDA () ™T). Saeae pagae 69.

macro

(TT exp)

Evaéuate @XP and return the total and virtual cpu time
used.

function, with macro definition for compilation
(TYPEOF item)
Returns the typae-byte of a pointer as a SMINT

function

(U-CASE {c-str | id | listh

Shifts string, id, or list thercof to u case. See page
102 and pagae 114.

function
C(UASSOC item list)
gzarch a list of namae-value pairs, uses UEQUAL. See page

function
(UEQUAL itenl item2)
Tasts for update equivalence. Seae page 76.

function
(UMEMBER item list)
Searches list, using UEQUAL. Sea page 85.

function
(UNEMBED 1id)
Undoes EMBED Seae page l42.

UNFREEZE~SHARED-SEGMENT function

UNINTERN

UNION

UNIONQ

UNSHARE

UNWIND

(UNFREEZE-SHARED-SEGMENT)
Reestablishes access to the shared sagment

function
(UNINTERN c-str)
Creates an un-intarnad identifier. See page 11l4.

function
(UNION listl list2)
Sat union of two lists. See page 83.

function
(UNIONQ listl list2)
Set union of two lists, uses EQ. See page 83.

command to system intarface

(CALLBELOW "UNSHARE')

Force sharad segment to non-shared mode
function .

(UNWIND [s-int [item]l])

Table of system functions, variables and commands 183

THROWs to tha nth ERRSET.

command to system interface
(CALLBELOW 'USEREXT' c~-str [{s-int | sysdep-arealxl)
Escapa to locally implimanted SYSDEP commands

Seae page 57.
USEREXT

VECP built in function

(VECP itam)

Tasts for vactor types. Saa page 73.
VECTOR function, with macro dafinition for compilation
(VECTOR [item ...)) .
Makes a refarence vqctor of its arguments. See page 91.
VECTOROFSAME function

(VECTOROFSAME vee)

Tests for identical types on vaector members
VECZ2LIST function

(VEC2LIST vec)

Makes a list of the contents of a vector. See page 83,
page undefined vvaclis. and page 99.

VERSION function

(VERSION)

Raturns string with version id, creation date
VGREATERP function

(VGREATERP vecl vec2)

Subroutinae of GGREATERP, ordars vectors

VMEMQ

VSCANAND

VSCANOR

WHOCALLED

function
(VMEMQ itam p-vec)
Returns index of EQ element of a vector

macro
(VSCANAND app-ob {vec | list}
Lika SCANAND, for vectors.

A |
Seae paga 67.

macro
(VSCANOR app-cb {vec | list}
Like SCANOR, for vaectors.

S |
See page 67.

function

(WHOCALLED s~-int)

"Namae™ of $-intth BPI up tha control chain
WHOSEES macro
(WHOSEES id ...)
Raturn a list of functions that call or usae the ids fraeae
or quoted.
WORDVECP built in function
(WORDVECP 1item)
Tasts for word vector type. Sea page 72.
NRAP function
(WRAP list itam)
Whare item2 is eithar the "x™ or a list of "x"s.
"Wraps® list itams e@.g. (a b) => ((x a) (x b)).

See pags

WRBLX command to system interface

(CALLBELOW '"URBLK' sysdep-areal s-intl s-int2 s-int3
sysdep-area2)

Writa blockaed raecords to a file

WRITE function, with macro definition for compilation
(WRITE character strm)

Places a charater into an output stream. Saee page 121.
NRITE-LINE function

(WRITE~LINE c-str strw)

Writes a lina on an output stream. Sca page 121.

184 YKTLISP Program Description and Opaerations Manual

HSTIME

XORBIT

XORCAR

XORCDR

ZEROP

J2XXPLST

32XXURIT

function
(WSTIME)
Returns time and date of WS creation

function
(XORBIT b-str ...)
Exclusive OR of bit strings. Sea page 97.

function, with macro dafinition for compilation
(XORCAR item)
If arg is pair, CAR, otherwise arg. See page 78.

function, with macro dafinition for compilation
(XORCDR item)
If arg is pair, CDR, otherwise arg. See paga 78.,

function
(ZEROP item)
Tests for zero value. Saea page 105.

command to system interface
(CALLBELOW '32XXPLST' s-int sysdep-area)
Returns information about a virtual device

command to system intarface

(CALLBELOW "32XXURIT' s-intl sysdep-area s-int2 s-intl)

Parforms DIAG 58 output to console

Table of system functions, variables and commands

185

186

YKTLISP Program Daescription and Oparations Manual

i
& 4
—

C

Special Characters

...Q functions 45
.NOVAL 145

& 17, 135, 145
SALLFILES 145
$CHECKMODE 145
$CLEAR 145
$ERASE 145

$EST 145

SFCOPY 145
$FILEDATE 145
$FILEREC 145
$FILESIZE 145
SFINDLINK 145
$FLAT-STRING 145
$SFNFTFM 145
SINFILE 145
S$INSTREAM 145
$OUTFILE 146
$OUTSTREAM 146
SREADFLAG 146
SREPLACE 146
$RESET-STREAM 146
$SCREENSIZE 146
SSETPFIMM 146
SSHOWLINE 146
$T-DELTA 146
$ST-TIME 146
STIMESTAMP 146
STOKEN 146
STYPELINE 146
$V-DELTA 146
$V-TIME 146
%CODE 146

» in names 45

? 147

A

a-list 81

ABSVAL 107, 147
ADDOPTIONS 131, 147
ADDRESSOF 147
ADDTOLIST 87, 147
ADD1 108, 147
ALINE 110, 147
ALL-NON-DESC 147
ALLFUNCTIONS 147
AND 51, 147
ANDBIT 97, 147
APPEND 82, 147
APPLX 147

APPLY 42, 147
ARRAYKEYS 147
ASMTIME 147
ASSEMBLE 131, 148
ASSOC 85, 148
association list 81
ASSOCN 86, 148
ASSQ 86, 148

ATOM 71, 148
AUGMENTGLOBAL 148
AUGMENTSTACK 148

BATCHERROR 148
BITGREATERP 103, 148
BITSTRINGP 72, .148
BITSTRING2STRING 96, 148
BITSUBSTRING2NUM 148
BOOLEANP 148

BOUNDEDBY? 148

BOUNDP 148

BPILEFT 148

BPILIST 133, 148

BPINAME 149

BPIP 73, 149

BREAK 149

break loop 17

built in function application 39
BYTES 149

c

C¥R 149

C{AID}...R 77
CAID...JR 84
CAAAAR 77, 149
CAAADR 77, 149
CAAAR 77, 149
CAADAR 77, 149
CAADDR 77, 149
CAADR 77, 149

CAAR 77, 149
CADAAR 77, 149
CADADR 77, 149
CADAR 77, 149
CADDAR 77, 149
CADDDR 77, 84, 149
CADDR 77, 84, 149
CADR 77, 84, 149
CALL 150

CALLBELCW 150
CALLEDBY? 150
CALLX 150

CAR 77, 84, 124, 150
CASEGO 50, 150
CATCH 41, 55, 150
CBOUNDP 150

CD...R 84

CDAAAR 77, 150
CDAADR 77, 150
CDAAR 77, 150
CDADAR 77, 150
CDADDR 77, 150
CDADR 77, 150

CDAR 77, 150
CDDAAR 77, 150
CDDADR 77, 150
CDDAR 77, 15¢
CDDDAR 77, 151
CDDDDR 77, 84, 151
CDODDR 77, 84, 151
CDDR 77, 84, 151
CDR 77, 84, 151
CEVAL-ID 60, 151
CEVAL-LEX-ID 61, 151
CHANGELENGTH 101, 151
CHARP 73, 151

Index 187

188

CHAR2NUM 151
CLOSEDFN 54, 151
CLOSURE 151
COMCELLP 151
comma name@s 45
COMMENT 151
compilation, environmant. 42
COMPILE 131, 151
coMP370 151
CONC 82, 151
concapt daescription 43
COND 50, 152
CONDERR 152
CONS 77, 81, 152
CONSOLEPRINT 123, 152
CONSTANT 47, 152
CONTAINSQ 152
control chain 62
control of axaecution,
operators 47-58
conditional evaluation
muliple laval raturns
oparator specification,
binding 52-55
saquance of avaluation
value specification 47-48
CONVERSATIONAL 152
CONVSAL 152
COPY 152
cos 111, 152
COUNT 152
COUNT-CALLS 152
COUNT-PAIRS 152
CREATE-SBC 152
CSET-ID 62, 152
CSET-LEX-ID 62, 152

CURINSTREAM 117, 152
CURLINE 152
CUROUTSTREAM 117, 153

CURRENTTIME 153
CURRINDEX 153
CYCLES 153
CYCLESP 153

DCQe 153
debugging 17
debugging, oparators which
aid 135-143
stack examination 135-140
tracing exacution 1640-143
DEBUGMODE 153
DEFINATE 129, 153
DEFINE 131, 153
DEFINE-STRUCTURE 153
definition, operator
definition 129-131
definition options
DEFIOSTREAM 117, 153
DEFLIST 115, 153
DELPROP 153
DEPLOAD 128, 153
DIFFERENCE 108, 153
DIGITP 74, 153
DIG2FIX 154
DISABLE 154%
d;scontiguous shared saegmaent
0

129-134
131-134

50-52
55-58

48-50

7,

8,

DISPATCHER 154
DIVIDE 109, 154
DROPAREA 154

EBCDIC 154

ECONST 154

ECQ 154

EDIT 154

EFFACE 89, 154

EFFACEQ 90, 154

ELT 84, 93, 98, 154

EMBED 143, 154

EMBEDDED 143, 154

empty stream 119

ENABLE 154

ENBLSPIE 154%

end-of-file 119

ENVIRONEVAL 154

anvironment chain 42

anvironment of compilation.

environmaent, operators on
assignment 61-62
evaluation 59-61

EOFP 154

EOLP 155

EQ 75, 155

EQSUBSTLIST 155

EQSUBSTVEC 155

EQUAL 76, 155

EQUAL/EQ usa 45

EQUALN 76, 155

ERASE 155

ERRCATCH 58, 155

ERROR 155

error handling 17

error message 17

ERROR~-PRINT 155

ERRORINSTREAM 117, 155

ERRORN 155

ERROROUTSTREAM 117, 155

ERRORR . 155

ERROR2 155

ERROR3 155

ERRSET 57, 155

ERR1 155

ERR2 155

ERR3 156

ERR5 156

ERRé6 156

ERR7? 156

EVAL 42, 59, 158

EVAL supervisor 17

EVAL-GLOBAL-ID 60, 156

EVAL-ID 60, 156

EVAL-LEX-ID 60, 156

EVALANDFILEACTQ 156

EVAl 59, 156
EVAIFUN 59, 156
EXF 156

EXIT 49, 156

EXP 111, 156

EXPT 111, 156
EXTERNAL-EVENTS-CHANNELS 156
EXTSTATE 156

YKTLISP Program Dascription and Operations Manual

59-62

OPTIONLIST 167
F PROGRAM-EVENTS 169

QUOTEIZER 120, 174
RESTARTSD 176

F 157 STACK 17
fast streams 123 STACKLIFO 117, 179
:eigakag?P 75, 157 STRINGIZER 120, 180

global variable description 43
FETCHCHAR 98, 157 GLOEXTSTATE 159 i
FETCHPROP 157 GO 49, 159
FETCHPSMINT 157 . GREATERP 106, 159

FILE 134, 157
FILEACTQ 157

FILEIN 157

FILELISP 6, 15, 157 H

FILEOUT 157

FILEQ 157

FILESEG 157 HASHARRAYP 159
FIN 5, 17, 157 HASHINIT 159
FIX 105, 157 HASHITEM 159
FIXP 764, 157 HASHPROP 159
FLOAT 105, 157 HEAPLEFT 160
FLOATP 74, 157 HEXEXP 160
FLUID 41 HEXNUM 160
FORCE-GLOBAL 157 HEXSTRINGPART 160
FRxCODE 158 HPROPLIST 160

FRARGCOUNT 158
FREEZE-SHARED-SEGMENT 158
FRP 73, 158

funarg 42, 55, 158 b 4
funarg application 40
FUNARGP 75, 158

FUNCTION 55, 158 identifiers, operations on 113-116
functional application 39 accessing 114-115

fuzz 29 accassing the object array 116
v creation 113-114
searching and updating 115-116

updating 116
G : IDENTITY 69, 160

IDENTP 73, 160
IFCAR 78, 160

GCCOUNT 158 IFCDR 78, 160

GCMSG 158 INITIALOPEN 160

GCNPLIST 158 INITSUPY 1680

GENLABEL 114, 158 INITSYMTAB 133, 160

GENSYM 114, 158 INTERN 113, 160

GENSYMP 73, 158 INTERSECTION 83, 160

gensyms 113 INTERSECTIONQ 383, 160

GET 86, 115, 158 IOSTATE 160

GETBITSTR 95, 158 JOSTATEW 160

GETCH 158 IS-CONSOLE 75, 160

GETFLT 158 ITEM-N-ADV 119, 161

GETFULLSTR 95, 159 iteration, operators 63-69%
GETHASHARRAY 159 auxiliary operators 69
GETHASHSTRING 159 iteration over vectors 66-68
GETREALV 91, 159 iterations over lists 63-66
GETREFV 91, 159 miscellaneous iteration
GETSTR 95, 159 operators 68-69

GETWORDV 91, 159
GETZEROVEC 91, 159
GFIPLIST 159
GGREATERP 159 J
global environment 41
GLOBAL VALUES

.NOVAL 145 jaunt 40

CURINSTREAM 117, 152

CURQOUTSTREAM 117, 153

ERRORINSTREAM 117, 155
ERRORQUTSTREAM 117, 155 K
EXT%%;AL-EVENTS-CHANNELS 156

INITSUPY 160 kay word description 43
letterizer 2%, 120, 161 .

MONITOR-ON-OFF 165

NULLOUTSTREAM 117, 166

Index 139

190

L

L-CASE 102, 114, 161

LAM 161

LAMBDA 41, 52, 16l

LAPLIST 133, 161

LAST 84, 161

LAST-EXP 17, 161

LAST-VALUE 17, 161

LASTNODE 84, 161

LEFTSHIFT 110, 161

LENGTH 50, 161

LENGTHCODE 93, 98, 161

LESSP 106, 161

latterizer 24, 161

libraries, operations on 125-128
creation 125
data input 125-126
data output 126
library management 126-127
program loading 127-128

LINTP 74, 161

LISPCMS MODULE 5

LISPRET 161

LISPSEG 161

LIST 81, 161

LIST-PAIRS 161

LISTING 134, 162

LISTOFFLUIDS 162

LISTOFFREES 162

LISTOFFUNCTIONS 162

LISTOFLEXICALS 162

LISTOFQUOTES 162

LISTOFSAME 162

LISTP 72, 162

lists, operations on 81-90
accassing 84-85
creation 81-84
miscellaneous 50
searching 85-87
searching and updating 87
updating 87-90

LIST2FLTVEC 91, 162

LIST2IVEC 92, 162

LIST2REFVEC 91, 162

LN 111, 162

LOADCOND 127, 162

LOADVOL 127, 162

LOG 111, 162

LO0G2 111, 162

LOTSOF 81, 162

MAADDTEMPDEFS 132, 163
macro application 40
macro definition for
compilation 39
MACRO-APP-SD 132, 163
MAKEPROP 87, 115, 163
MAKESTRING 97, 163
MAKETRTTABLE 97, 163
MAP 68, 163
MAPCAR 68, 163
MAPE 67, 163

MAPELT 67, 163
MAPLIST 68, 163
MAPOBLIST 638, 163
MAPSETE 67, 163
MASKNUM 163
MATEMPDEFINE 132, 163
MATEMPSETQ 163

MAX 106, 163
MAXINDEX 92, 163
MDEF 42, 164

MDEFX 164

MDO 164 ,
MEMBER 85, 164 i
MEMQ 85, 164
MESSAGE 134, 164
MIN 107, 164

MINUS 107, 164
MINUSP 106, 164
MLAMBDA 53, 164
MMAP 64, 164

MMAPC 64, 16%
MMAPCAN 65, 164
MMAPCAR 64, 164
MMAPCON 65, 164
MMAPLACA 65, 164
MMAPLIST 64, 165
MONITOR 141, 165
MONITOR-ON-OFF 165
MOVEVEC 94, 165
MRP 73, 165

MSUBRP 72, 165
MTON 83, 165

NAMEDERRSET 58, 165

NCONC 88, 165

NCONSTKD 165

NENABLE 165

NEWAREA 165

NEWQUEUE 165

NEXT 119, 165

NILFN 69, 165

NILLEFT 165

NILSD 165

NOLINK 132, 165

NONINTERRUPTIBLE 133, 165

NONSTOREDP 71, 166

NOT 71, 166

NOTEFILE 166

NREVERSE 89, 166

NSTACKED 166

NSUBST 166

NTUPLEP 166 :

nucleus extension 8, 13

NULL 71, 166

null line 17

NULLOUTSTREAM 117, 166

NUMBEROFARGS 166

NUMBERP 74, 166

numbers, operations on 105-111
computation 106-111
conversion 105
pradicates 105-106

numeric comparisons 29

NUM2TIME 166

YKTLISP Program Description and Opaerations Manual

OBARRAY 116, 166
OBDUMP 166
OBEY 166
ODDP 106, 166
ONE-OF 166
OP-RECOGNITION-SD 132, 167
operations on identifiers 113-11%
accessing 114-115
accessing the object array 116
creation 113-11¢
searching and updating 115-116
updating 116
oparations on libraries 125-128
creation 125
data input 125-126
data output 126
library management 126-127
program loading 127-128
operations on lists 81-90
accessing 86-85
creation 81-84
miscellaneous 90
searching 85-87
searching and updating 87
updating 87-90
operations on numbers 105-111
computation 1056-111
conversion 105
pradicates 105-106
operations on pairs 77-79
accassing 77-78
creation 77
updating 78-79
operations on streams 117-124
accessing components 123-124
creation 117-119
data input 119-121
data output 121-123
updating components 124
operations on strings 95-103
accessing 98-99
comparing 103
creation 95-98
saarching 99-100
updating 101-103
operations on vectors 91-94
accessing 92-9%94
craation 91-92
updating 94
operations which act as
predicates 71-76
comparing 103
other 75-76
type testing 71-75
operator definition 129-134
definition 129-131
definition options 131-134

oparators on the environment 59-62

assignment 61-62
evaluation 59-61
opaerators which aid
debugging 135-143
stack examination 135-140
tracing execution 140-143
operators which control
exacution 47-58
conditional aevaluation 50-52

muliple level return
operator specificati
binding 52-55
sequence of evaluati
value specification
oparators which iterate
auxiliary operators
iteration over vecto
iterations over list
miscellaneous iterat
oparators 68-69
OPTIMIZE 134, 167
OPTIONLIST 167
OR 51, 167
ORADDTEMPDEFS 131, 167
ORBIT 97, 167
ORTEMPDEFINE 132, 167
ORTEMPSETQ 167

P

PACKHEXSTRING 167
PAIRP 72, 167

s 55-58

on,

on 648-50
47-48
63-69

69

rs 66-68
s 63-66

ion

pairs, oparations on 77-79

accessing 77-78
creation 77
updating 78-79
PANICMSG 167
PARAMETERS 167
PARMLIST 167
PLACEP 74, 167
PLEXP 167
PLUS 107, 167
PLUSP 105, 167
pname 24, 97, 114, 1638
POINTFILE 168
POLLUP 168
POP 168
POPP 168
POST 168
POST-SELECT 168

praedicates, operations which act

as 71-76
comparing 103
other 75-76
type testing 71-75
PRETTYPRINT 123, 168
PRETTYPRINO 123, 1638
PRINM 123, 168
PRINT 123, 168
PRINTCH 121, 168
PRINTEXP 121, 168
PRINTVAL 168
PRINTWARN 168
PRINO 122, 168
PRINOR 168
PRIN1 122, 168
PRIN1B 122, 169
PROG 49, 169
PROGN 48, 169
PROGRAM-EVENTS 169
PROG1 48, 169
PROG2 48, 169
PROPLIST 115, 169
PRY 169
PSMINTP 169
PUSH 169
PUTBACK 121, 169

Index

191

192

b

Q... functions 45
QASSQ 45, 86, 169
QC{A|D}...R 78
QCAL[D...IR 84
QCAAAAR 78, 169
QCAAADR 78, 169
QCAAAR 78, 169
QCAADAR 78, 169
QCAADDR 78, 169
QCAADR 78, 170
QCAAR 78, 170
QCADAAR 78, 1790
QCADADR 78, 170
QCADAR 78, 170
QCADDAR 78, 170
QCADDDR 78, 84, 170
QCADDR 78, 84, 170
QCADR 78, 84, 170
QCAR 45, 78, 84, 170
QCD...R 84

QCDAAAR 78, 170
QCDAADR 78, 170
QCDAAR 78, 170
QCDADAR 78, 170
QCDADDR 78, 170
QCDADR 78, 170
QCDAR 78, 170
QCDDAAR 78, 170
QCDDADR 78, 170
QCDDAR 78, 171
QCDDDAR 78, 171
QCDDDDR 78, 84, 171
QCDDDR 78, 84, 171
QCDDR 783, 84, 171
QCDR 45, 78, 84, 171
QDCQ 171

QEAPPEND 171

QECHAR 171

QECHARN 171

QECQ 171

QEFILL 171

QESTORE 171

QESUFFN 171

QETEST1 171

QGET 86, 171
QHIGHHALF 171
QINSERT 171
QINSERTFP 172
QINSERTSTG 172
QLENGTH 90, 172
QLENGTHCODE 93, 98, 172
QLOWHALF 172

QMEMQ 45, 85, 172
QRCQ 172

QREFELT 94, 172
QREFVECLENGTH 93, 172
QREFVECMAXINDEX 93, 172
QRPLACA 78, 83, 172
QRPLACAD 79, 172
QRPLACD 79, 88, 172
QRPLNODE 79, 172
QS... functions 45, 105
QSABSVAL 107, 172
QSADDl 108, 172
QSAND 110, 172
QSBITS 173
QSCHANGELENGTH 101, 173
QSDEC1 108, 173
QSDIFFERENCE 173
QSDIFFERENCES 108
QSETBITS 173

QSETREFV 94, 173

QSGREATERP 106, 173

QSINC1 108, 173 -
QSLEFTSHIFT 110, 173 ‘J)
QSLESSP_ 106, 173 —)
QSMAX 107, 173

QSMIN 107, 173

QSMINUS 107, 173

QSMINUSP 106, 173

QSNOT 110, 173

QSODDP 106, 173

QSOR_ 110, 173

QSORT 90, 173

QSPLUS 107, 173

QSPLUSP 105, 174

QSQUOTIENT 109, 174

QSREMAINDER 110, 174

QSSUB1 108, 174

QSTIMES 109, 174

QSTRIM 176

QSTRINGLENGTH 98, 1764

QSXOR 111, 174

QSZEROP 105, 174

quick functions 45

QUIET 134, 174

QUOTE 47, 174

QUOTEIZER 174

QUOTIENT 109, 174

R

RANDOM 174

RANDOMCJS 174

RCLASS 125, 174 —~
RCOPYITEMS 127, 176 ‘;)
RCQ 174

RDCHR 119, 175
RDEFIOSTREAM 125, 175
RDLINE 175

RDROPITEMS 127, 175

READ 17, 120, 175
READ-LINE 119, 175
READPLACEGEN 175

REALVECP 72, 175

RECLAIM 175

REFVECP 72, 175

RELPAGES 175

REMAINDER 109, 175
REMALLPROPS 116, 175
REMOVE 175

REMOVEQ 175

REMOVEQR 175

REMOVER 175 .

REMPROP 87, 115, 176
RENAME 176

REPLACEF 176

REPLACEFILE 176

resaerving storaga 7, 9, 10
RESETQ 61, 176 :
RESOLVEF 176

RESTARTSD 176

RET 5, 176

RETURN 41, 49, 176

REVERSE 82, 176

RIGHTSHIFT 110, 176
RKEYIDS 126, 176

RPACKFILE 126, 176

RPLACA 78, 87, 176 -
RPLACAD 79, 176 ‘:)
RPLACD 79, 88, 176
RPLACSTR 101, 176

RPLNODE 79, 177

YKTLISP Program Description and Operations Manual

RREAD 125, 177
RSETCLASS 126, 177
RSHUT 126, 177
RWRITE 126, 177

SASSOC 86, 177
SBCP 177

SBOUNDP 177

SCANAND 66, 177

SCANOR 66, 177
SEARCHPAIRVECTOR 177
SEESWHAT 177

SEGMENT 5

SEGMENTNAME 177

SEGTIME 177

SELECT 51, 177

SEQ 49, 177

SET 61, 177

SET-ECHO-PRINT 17, 178
SET-GLOBAL-ID 62, 178
SET-ID 61, 178

SET-LEX-ID 62, 178
SET-MCASE 173

SET-QUAL 178

SET-S 178
SET-STREAM-A-LIST 124, 178
SET-STREAM-BUFFER 124, 178
SET-STREAM-P-LIST 124, 178
SET-UCASE 178
SET-VALUE-PRINT 17, 178
SETANDFILEQR 178
SETDIFFERENCE 83, 178
SETDIFFERENCEQ 83, 178
SETELT 88, 94, 101, 178
SETFUZZ 178
SETGENLABELSEED 178
SETLINE 179

SETQ 61, 179

shallow binding caell 42
SHARED 179

SHAREDITEMS 179

SHAREDP 179

SHLISPWS 5, 6

SHOW-CALLS 179

SHOW-S 179

SHUT 118, 179

SIN 111, 179

SIZE 90, 92, 179

SKIP 122, 179
small-integer arithmetic 45
SMINTP 74, 179

SORTBY 90, 179
SORTGREATERP 179
SOURCELIST 133, 179
special form application 39
STACKLEFT 179

STACKLIFO 179

STACKLIFO variable 117
STARTTIME 18¢

STAT 180

STATE 180

state descriptor 42

state descriptor application &0
STATEP 75, 180

storage organization 7

BPISEC 9
diagram 10
FIXEDSEC 9
HEAP 9

loader options

BPI 9
CMSHIGH 9, 10
COMMAND 9
default values 9
FIXED 9
format 9
GETMIN 9, 10
HEAP 9
KEY 9
NIL 9
NONSHARE 9
SHARE 9
STACK 9
SYSSTOR 7, 9
USERSTOR 7, 9
NILSEC 9
STACK 9
storaga protection 7, 9
STORECHAR 101, 180
STRCONC 96, 180
STRDEF 180
STREAM-A-LIST 124, 180
STREAM-BUFFER 124, 180
STREAM-DESCRIPTOR 124, 180
STREAM-P-LIST 124, 180
STREAMP 75, 180
streams, operations on 117-124
accessing components 123-124%
creation 117-119
data input 119-121
data output 121-123
updating components 124
STRGREATERP 103, 180
STRINGIMAGE 96, 180
STRINGIZE 96, 180
STRINGIZER 180
STRINGLENGTH 98, 180
STRINGP 72, 180
strings, oparations on 95-103
accessing 98-99
comparing 103
creation 95-98
searching 69-100
updating 101-103
STRING2BITSTRING 96, 130
STRING2ID-N 99, 181
STRING2PINT-N 99, 181
STRLENGTH 181
STRPOS 99, 181
STRPOSL 100, 181
STRTRT 100, 181
structure access &0
structured bv 52
SUBLOAD 127, 181
SUBRP 72, 181
SUBST 181
SUBSTRING 99, 181
SUBl 108, 181
SUFFIX 101, 181
SUPERMAN 181
supvy 17, 181
SUPV-PRINT 181
svcz202 181
SYSID 181, 182
SYSKEY 182
SYSTEMICgMMANDS (CALLBELOUWS)
? 4
CONVSAL 152
DROPAREA 154
ENBLSPIE 154
ERASE 155
FILEIN 157
FILEOUT 157
GCNPLIST 158
GFIPLIST 159

Index

193

194

LISPRET 161
LISPSEG 161
NCONSTKD 165
NENABLE 165
NEWAREA 165
NSTACKED 166
OBEY 166
PANICMSG 167
PARMLIST 167
RDLINE 175
RELPAGES 175
RENAME 176
REPLACEF 176
RESOLVEF 176

SHARED 179
SHUT 179
STAT 180
SvCcz202 181
SYSID 182
TEMPUS 182
TINLL 182
TOULL 182
TPLINE 183

UNSHARE 183
USEREXT 184
WRBLK 184

32XXPLST 185
32XXWRIT 185

system dependant commands 43

T

TAB 122, 182

TAILP 85, 182
TEMPDEFINE 182
TEMPUS 182
TEMPUS~-FUGIT 182
TEREAD 120, 182
TERPAGE 182

TERPRI 121, 182
TEST-S 182

THROW 41, 57, 182
THROW-PROTECT 57, 182
TIMES 108, 182
TIME2NUM 182

TINLL 182

TOULL 182

TPLINE 183

TRACE 140, 183
trailing blark 17
TRANSLIST 133, 183
TRIMSTRING 101, 133
TRUEFN 69, 183

TT 183

type checking in functions
TYPEOF 183

u

U-CASE 102, 114, 133

UASSOC 86, 1383

UEQUAL 76, 183

UMEMBER 85, 183

UNEMBED 142, 183
UNFREEZE~SHARED-SEGMENT 183
UNINTERN 114, 183

UNION 83, 183

%5

UNIONQ 383, 133
UNSHARE 133
UNWIND 17, 57, 183 ‘
usa of SEGMENT fila 8, 9
USEREXT 184 §
using YKTLISP .
break loop 17
loader 5
loader options 9
re-starting exacution 5, 9
saved system
saving)
starting execution "~ 5, 9
stopping exacution 5
unloadar
unloading 5, 13
user interface 17

v

variable evaluation 37

VECP 73, 184

VECTOR 91, 184%

VECTOROFSAME 184

vectors, operations on 91-94
accassing 92-9¢%
creation 91-92
updating 94

VEC2LIST &3, 94, 99, 184

VERSION 184

version coordination 7, 8

VGREATERP 184

VM/SP 8

VMEMG 184

VSCANAND 67, 136 .
VSCANOR 67, 184 ‘:>
W

WHOCALLED 134
WHOSEES 134
WORDVECP 72, 184
WRAP 638, 134

WRBLK 184

WRITE 121, 184
WRITE~-LINE 121, 184
WSDATA 7

WSTIME 135

X

XORBIT 97, 185
XORCAR 78, 185
XORCDR 78, 1385

Y

YKTLISP fila namaes 5

_/

YKTLISP Program Description and Oparations Manual

Z

ZEROP

105,

1385

3

32XXPLST
32XXWRIT

185
185

Index

195

196

YKTLISP ?rograii"beuription and Operations Manual

)

J

	Preface
	Contents
	Introduction
	Loading and running YKTLISP
	Loader internals
	Invoking the loader
	Invoking the unloader
	Using a saved system
	Interaction with YKTLISP
	YKTLISP programs
	YKTLISP syntax and semantics
	Expressions: functions, macros and special forms
	Evaluation
	Descriptions of the operators of YKTLISP
	A note on naming conventions
	Environment of execution
	Iteration over lists and vectors
	Data types, type testing and other predicates
	Operations on pairs
	Operations on lists
	Operations on vectors
	Operations on strings
	Operations on numbers
	Operations on identifiers
	Stream I/O
	Key addressed I/O
	Operator definition
	Debugging aids
	Table of system functions, variables and commands
	Index

