

INTERLISP REFERENCE MANUAL

BY WARREN TEITELMAN

contributions by:

A. K. HARTLEY
J. W. GOODWIN
D. C. LEWIS
BOLT BERANEK & NEWMAN

D. G. BOBROW
P. C. JACKSON
L. M. MASINTER
XEROX PALO ALTO RESEARCH CENTER

XEROX

PALO ALTO RESEARCH CENTER
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

BOLT BERANEK & NEWMAN Copyright © 1974 XEROX CORPORATION
Revised October, 1974

Acknowledgements and Background

INTERLISP has evolved from a succession of LISP systems that began with a
LISP designed and implemented for the DEC.PDP-i by D. G. Bobrow and D. L.

Murphyj

at Bolt, Beranek and Newman in 1966, and documented by D. G. Bobrow.
An upwards compatible version of this LISP was implemented for the SDS 940 in
1967, by Bobrow and Murphy. This system contained the seeds for many of the
capabilities and features of the current system: a compatible compiler and

2 uniform error handling, an on-iine LISP oriented editor.a

interpreter,
sophisticated debugging facilities.4 etc. 940 LISP was also the firsy LISP
systemn to demonstrate the feasibility of using software paging techniques and a
large virtual memory in conjunction with & list-processing system {[Bob2].
DWIM, the Do-What-I-Mean error correction facility, was introduced into the
system in 1968 by W. Teitelman [Tei2], who was also responsible for

documentation for the 940 LISP system.

--------------------------------- PP O . NI AT RNU NIRRT ARNNVCOBDDGDRD RG0S D=

1 D. G. Bobrow is currently at Xerox Palo Alto Research Center (PARC), D. L.
Murphy is with Digital Equipment Corp.

2 The preliminary version of the compiler was written by L. P. Deutsch, now
at Xerox PARC. This was considerably modified and extended by D. L. Murphy
before producing the final working version.

3 The original idea of a LISP orieﬁtad structure editor belongs to L. P.
Deutsch. The editor in its current form was written by W. Teitelman, now
of Xerox PARC.

4 Designed and implemented by W. Teitelman.

In 1970, an upwards compatible version of 940 LISP called BBN LISP5 was
designed for the PDP-10 by D. G. Bobrow, D. L. Murphy, A. K. Hartley, and W.
Teitelman, and implemented»\by Hartley with assistance from ‘Murphy. A. K.
Hartley was also'responsible for modifying the 940 LISP compiler to generate
code for the PDP-10. BBN-LISP ran under TENEX, a sophisticated time sharing
system for the PDP-10 designed and implemented by D. G. Bobrow, J. D.
Burchfiel, D. L. Murphy, T. R. Strollo, and R. S. Tomlinson.[Bobi] With
hardware paging and 256K qf vvirtual,fmemory provided by, TENEX, it became
practical to provide extensivev and sophisticated in;eractive user support
facilities, such as the programmer's assistant [Teid4], CLISP LTeiS]. and a more
sophistiﬁated DWIM, all of which were designed and developed by W. Teitelman.
In 1971, the 510ck compiler was designed and 1mplemented by D. G. Bobrow. ' The
BBN-LISP Manual [Teild] was‘writteﬁ by W. Teitelman, with contributions from A.
K. Hartley and from J. w{ Goodwin, who also wrote TRANSOR and the special
arithmetic functions, as weli as a number of other utility functions. The name
of the system was chaﬂged from BBN-LISP to INTERLISP in 1973, when the
maintenénce and developméht of thevsystem eyolved ;nto a Joint effort between
Bolt Beranek and Newman, and Xerox Palo Alto Research Center. The INTERLISP
reference manual was written by W. Teitelman, with contributions from (in
alphabetic order) D. G. Bobrow, J. W. Goodwin, A. K. Hartley, P. C. Jackson, D.

C. Lewis, and L. M. Masinter. The cover was designed by Alice R. Fikes.

INTERLISP-10 is currently the LISP system used at Bolt Beranek and Newman,
Xerox Palo Alto Research Center, Stanford Research Institute Artificial

Intelligence Center, Information Sciences Institute, and the Dendral Project at

--- PO NPT NOEADNOINEOO® @O a DN

The design, construction and documentation for BBN LISP was sponsored by
the Information Processing Techniques Section of the Advanced Research
Project Agency, as was all of the subsequent work on the system that was
performed at BBN. Since March 1972, <the contributions made to the
development of the system by W. Teitelman, including the preparation of
this manual, were sponsored by Xerox Palo Alto Research Center.

ii

Stanford University,

America and Case

community now comprises approximately one hundred users.

INTERLISP for the

completion.

INTERLISP is a continuously eveolving system,

suggestions,

network, as well as

Institute

1BM

the

in addition to being available at Computer Corporation of

of Technology. The total INTERLISP-10

376, CDC 3300, and Burroughs 6700 are

and requests of the many users scattered throughout the ARPA

long range goals of the individuals

responsible for the system, which are currently:

Person
W. Teitelman
Xerox Palo Alto
Research Center
3180 Porter Drive
Palo Alto, Calif. 94304

A. K. Hartley
Bolt Beranek & Newman
50 Moulton St.
Cambridge, Mass. 02138

D. C. Lewis

Bolt Beranek & Newman
50 Moulton St.
Cambridge, Mass. 02138

J. W. Goodwin
Bolt Beranek & Newman
50 Moulton St.
Cambridge, Mass. 02138

L. M. Masinter

Xerox Palo Alto

. Research Center

3180 Porter Drive

Palo Alto, Calif. 94304

Responsible for
User Facilities: 1.e., pretty-print, editor,

break and trace, advising, printstructure,
DWIM, CLISP, programmer's assistant, atc.

INTERLISP-10 interpreter, garbage collector,
all SUBR's{hand-code machine language functions),
compiler.

INTERLISP-10 input-output, readtables,
terminal tables, user data types.

INTERLISP-10 overlays, sysin, sysout, makesys,
special arithmetic functions, functions
for accessing TENEX capabilities, TRANSOR.

pattern match compiler, record packagse,
INTERSCOPE.

iii

Implementations of

nearing

both in response to complaints,

primarily

The preparation of this manual has involved the efforts of several persons at
Xerox PARC, whom'l‘sbecifically want to mention, and to express my appreciation
for their support through this arduous, and at times seemingly endless task.
Thank you Suzan (Jerome), Janet (Farness), Peter (Deutsch), Bob (Walker), and

Larry (Tesler). I couldn't have done it without’you.

Warren Teitelman
Palo Alto
December, 1973

Special thanks go to R. L. Walker, L. M. Masinter, and L. P. Deutsch for

assistance in the preparation of this first revision.

w'T‘
October, 1974.

iv

TABLE OF CONTENTS

SECTION 1: Introduction

SECTION 2: Using INTERLISP
Using the INTERLISP Manual ...ccivieenncerncsnncons
Using the INTERLISP-10 System on TeneX ...cceeaeses

SECTION 3: Data types, Storage Allocation, and Garbage
Collection, and Overlays

Data Types ...c.cveevnne Nesessconanas ceeeene cesevae .
Literal Atoms thesterectreseenan ceenrans
PRnamescceveevncos sesenans cesrassesestannn
Numerical Atoms B Ceesacssisenads
LisStsS cvcovvenns seeveanane Cetseresescassannas .
Arrays «.eeo. Neeseeseanarannannn R R
SLrings cocoesecocvsscnsas teasseaorsaacnsans

Storage Allocation and Garbage Collection cos

Shared INTERLISP-10 Cetesecreeteeactsassaannas

SECTION 4: Function Types and»lmplicit PROGN

EXPrs ..eiiiiviecons Weessesseresnsastoseraan s enns
Compiled Functions thceceses et eteseeatectaesrass e
Function Type S
PROGN e o s 0 s e s © 600 08 0066056606000 06000900006e906e0 600
Implicit PROGN ® .0 0 0 @ 0 000 B S5O 8 PO O OO S L S B PO $ 3O e0

SECTION 5: Primitive Functions and Predicates
Primitive Functions tetieenrenaas teessasanne

RESETVAR and RESETFORM ..¢cveveervnnnon evesssoeania
Predicates and Logical Connectives creeeseesssvanas

SECTION 6: List Manipulation and Concatenation

SECTION 7: Property Lists and Hash Links

Property Listsciiveuiiiinieennaterenansnonnscnas
Hash Links 0000000 Q.‘..l‘.'d."ll‘0..'........l.‘lt
Hash Overflow oo-oo-co-j-.oouo;oo.n.oocn-c-.oo

Q@O =

10

15

£ S (W (W =

N s =

TABLE OF CONTENTS (cont.)

SECTION 8: Function Definition and Evaluation

SECTION 9: The INTERLISP Editor

INEFOAUCEION v vvveeneerernocecoeonnnnnasnnsenes
Commands for the New User ceacressesesennsananie
Attention Changing Commandscovvvonsnncasse
Local Attention Changing Commands
Commands That Searchccccevrivcecncesans
Search Algorithm cesssosas
Search Commands ...ccoeevevoncasscnnns
Location Specificationicevvveenns
Commands That Save and Restore the .
Edit Chain ' ceeeescescaresnssaans
Commands That Modify Structurecceceveoes
Implementation of Structure Modificatien
CommMandsiveeercennssocansccesoananas
The A, B, : COMMANAS «.vveeriinrnrooncnansas
Form Oriented Editing and the Role of UP ..
Extract and Embedccveeeercsrnnrennns
The MOVE Commandceccoevececncovsonnnanse

- Commands That "Move Parentheses"
TO and THRUciiiiiiiiiiiiiennnenncnanas ;

The R Command ...eeeeeceeentocossoscssnssans
Commands That Print ..vveverevecescoreoncnnsnnsse
Commands That Evaluate cecesersessieeiesaseasans
Commands That TESE tvvvvvevneronsnnsosasnsosnns
Macros srseeseesressas et e s e
Miscellaneous CommandsS ...ccceececcovesnconnsans
UNDOceevveee cttecte it Nessercesiensenssanans
EDITDEFAULT teiveersetrtasetnetstssats e s sesann
Editor FUunCtionsc.cieeeeencecnenccnccnnanse

SECTION 10: Atom, String, Array, and Storagefﬂanipulation

Pnames and Atom Manipulationc.eccivevveons
String Functions R R R R R
Searching Strings ...ceceectessnsosnsoscones
String StOrage .oceeececrscrsoccnssssssvoans
Array Functions T R RN
Storage FURCtionscoveieueincancnnnninains

SECTION 11: Functions with Functional Arguments
SECTION 12: Variable Bindings and Pushdown List Functions

The Pushdown List and the INterpreter
The Pushdown List and Compiled Functions

Pushdown List Functionsccccevveeeocncsccons
The Pushdown List and Funarg P T

i1

LRI

.80

oo e

LY
* e
LR IS

LRI
LRI

e e

° 06

5 e

Ted wg O

TABLE OF CONTENTS (cont.)

SECTION 13: Arithmetic

General Comme
Integer Arith
Floating Poin
Mixed Arithme
Special Funct
Reusing Boxed

Functions

nts 9 4 6 € 8 0 0 0 P 4 S 0 0P Q0 WSS S PO G e g e 00
117= 5 7 o
£ ArIthmetiC civiiiernnnenarssernncnans
R 7 I

ions et isecrtescoacacess s naanonn

Numbers in INTERLISP-10 - SETN

BOX and Unbox € ¢ 3 6 9 6 0000056000000 00900000000s080E00se

SECTION 14: Input/Outp

Files
Addressa
JFN Func
Input Functio
Output Functi

ut Functions

ble FA16S +ueouevesnesuesnennsneennnn.
tions 1“ INTERLISP 10 0 0 8 0 80 0 00 00t

NS s eeeieosooorsossnsesasssossisasssscns

(o113 eeseeossaseceeprastas s as s

Printleveliiicirvieienoceonsancsssscconsa

Readtables an
Readtabl
Syntax C
Read-mac
Terminal
Terminal
Line-Buf

Miscellaneous

Sysin and Sys

Symbolic File
File Map

Symbolic File

d Terninal Tables cieecirovoctoscrosnns
@ FUNCtilonsS ..ovevvcrerosoncassecnsannas
1aSSeS tiieieciietr et ettt accrccnasans
O Characters .eccvescenesscosssnanans
TablesS cv.eeoepoveenscssonancnsssssnss
Control FUNCTIONS cvvenvrerrvcsncanses
fering and Controlcicevvncannns
Input/Output Control Functions
Out ® 8 0 0 0 8 8 0 G B A P S 09 VS S OGS GO S0 s e DD e
INPUL tviieeocvenencarenesnonsoscnnss

8 i iee0sses0ssse0ssss 0 et ossess s 0 asan

OULPUL Lt eceoneerscnsasnastoscsssance

PRETTYPRINT ... viiinerrenrceeneenscacsacocnnnans

Comment
PRETTYDE
Special
File Package
Noticing
Marking
Updating
MAKEFILE

FRatUre ...evecevecrsnooscsssanscsccanca

F ottt ieeeteesosonssessossnsnasanassns
PRETTYPRINT Controls ..cceeeveenncecnns

Files ® 9 % ¢ % 00 000 ¢ 0 90 00 OB OGC SO0 QSO OO O

Changes ...veeeronorecocsnsosascansnss

Files Qo"tuulu.ll'Q.Q.COOQ'COUGOOAlIIv

© 0.9 04 9 0009050680005 ES 0008606000 SETOs S

Remaking a Symbolic File ... cveecenncnnncnas

SECTION 15: Debugging

Debugging Fac

BREAKL

Break Co
Brkcoms
Brkfile
Breakmac
Breakres
Break Functio
BREAKIN

- The Break Package

11381@8 tiiinnrerineeenoonnnoneneeansan

LI I R I R R I A S RN NN BB SRS N IR

.................... s eesesessasassenas
® 4 8 8 @ 6 0 0 08 6 0 ¢ O S 3 S S OGS GO LN s e e O GC S
FOS ccsvscocossssacsasnsanasnsssnssossas
EUTOTMS +ocveeessconcncacsaoossnansosnse
NS tocveeceosossoscsosnsssosansssacanss

6 0.0 6019806090800 s e 0 s 6 N0 e e e0GsOCLN0O0HOCTDE

iid

mmands Cecesessactaiesncsesas e aseees

-
WO ONON =

15

16
16 .
17
21

TABLE OF CONTENTS (cont.)

SECTION 16: Error Handling

Unbound Atoms and Undefined Functions ...cccceveeeen
Teletype Initiated Breakscceeveescsoncancnnns
Control H ..vieeeeeeeeosoesoersersonsoossacansscs
CONEIrOl B . iiieiienvenesecosnscnssonsscansnsncse
Control E A P
Other Types Of Errors .uo.eveeeecaoscossocecosonnssnos
Breakcheck = When to Breakceeecoerecocoscnsones
Error Types P
Error Handling by Error Type «.iccvevioniennss
Error FURCTIONS ..ovviiiienconcsocesesosnssasaneanscs
Interrupt Characters ..ciieiececsesssascasoscnssnans

SECTION 17: Automatic Error Correction - The DWIM Facility

Introduction c e e e tecssssserorensasesecs s
Interaction with DWIN D A S
Spelling Correction Protocolccceeeececans
Parentheses Errors Protocolcceeeecenncas
Spelling Correctioncciceceecsnoovescosscansnnas
Synonyms teeesosece st enesctec o esens s
Spelling Lists .v.viiievreiooeersisconsvsccsnns
Error Correction ...eveoeeernocecsoectosoosonsconcnas
Unbound ATOmMScvcieeivococcosasscosoasaons
Undefined Car of Formcccveeuee cesseceanne
Undefined Function in AppPly c.vevcevennonnnnens
DWIMUSERFN it iiiiiitietieeenseeasesssnssensscnoasns
Spelling Corrector Algorithm Cieeseesensaecesaraens
DWIM FURCELIONS +vivivivereeersnesnssnssossssanceosns

SECTION 18: The Compiler and Assembler

The Compillerieeieeeeaseocacoosasossosssnssssos
Compiler QUESLIONS .uvvereneeseacossensrsnsssnsosanas
Nlambdas ceesesacnanese ceevsesessseesaanan .
Global Variablescceeeconecescsscscossacocnsas

Compiler FUNRCTLIONS . .vcieerenecosnasescvosanosancas

DECLARE: . ittt eeenensnononsoossesosnoscnnsacs
RECOMPILE it veveieoncaneosnsnersesonscocnnnsns
Open FUNCtioNS ..i.iicereeccrnecssssocsassannsnnans
Compiler Macros sevesesesastssnasensssesr s
FUNCTION and Functional Arguments ersassevesaianans
Block conpiling 9 © & 5 0 0 0 0 09 0006 N O OB B G RO DB OO S e CE O SO PC O
SPECVAIS tiveoeesoesonsenscsassssaosssnsssssns
Localfreevarsoceeereceescncsansocensoanss
REE NS . iiivireoeeeesesosnesonnsnssssansssnsscs
BlRapplyfns .iiieeeetiooecsosoncacossssanasoss
Blklibrary ..ivieeececessonsnessesonencsoocsosns
Linked Function Calls ...cceeeevreeccecccnonsnccnns
Relinkingiciuieieiiiininrnnesonnsinnaanns
The Block Compiler .v.veeeeeeernoreronasosonesnnsanas
BLOCKCOMPILE ...t eivnencnoenconnscconcosnsscs
Block Declarationsceecesceccescsacnccssns
200 =

Tiv

g
DN N DS W WA N

TABLE OF CONTENTS (cont.)

BRECOMPILE +vevvvvnvenennenns

Compiler Structure e eeesersestrrscatasenaoe
ASSEMBLE et sseseseacatssts et csseannse

LAP ittt saceetateaeann

Using ASSEMBLE ... ivtieeriereoncscsrsorsnsscnsssnsanss

lecellaneous ceeecsosesennetcsnns

SECTION 19: Advising

Implementation of Advising
Advise Functionscceeeveveennnes

® 06 e s ee s s s e

LR R N N R R A A)

SECTION 20: Printstructure, Interscope, and Helpsys

PrintstrucCture ..c.eecocesceovcsene
INterscopeivieivecncencnncans
Helpsys ..iviiieiiieorocerosannans

SECTION 21: Miscellaneous

Measuring Functions ..ceeeeveneens
BREAKDOWN Ceeeseeseanenns
EDITA ... iiiiiiiiinennn cesecetaans
Input Protocol seeheesas
EDITA commands and variables

e s 00 s e eo 90000
® 0000000600 e8 0000

L R R A R R R

D R R R A N I R B A Y
S0 0cee e 0s 0t 0000
e e et e 0000009000300

----- C R N A I IR)

Interfork Communication in INTERLISP-10

SUbSYS ...ttt

ooooooo e o0 ec e

Miscellaneous TENEX Functions 1n INTERLISP i0
Printing Reentrant and Circular List Structures ...

Typescript files ...ivcevennonnnes

s eeceo s 00080 s00 e

SECTION 22: The Programmer's Assistant and LISPX

INtroductionc.ceceenecceccncanes creeesa .
OVerVIeW ittt retsnssantnssorosssssasornsss .
Event Specification tetceseesretasenanan

History Commandsciceeeeencnencnna Ceteecenan

Implementation of REDO, USE, and FIX
History Commands Applied to History Commands .

History Commands That Fail ..

More History Commands

CR R R A A A N B B SRR S RN}

Miscellaneous Features and Commandsoveoveeees

Undoing cettoeasas Cerieseaons
Testmode Cieeseraene
Undoing out of order Gesenens
SAVESET i rnnnnenenns

s eacee v o0t e o0
L I I N A R)
DN N R I N A A I I IR R A

P s e e eb 00 s e s e

Format and Use of the History List cetcensertsaneans

LISPX and READLINEccv...
Functions Cheecssecesesnns
The Editor and the Assistant
Statistics ceercesene

Greeting and User Initialization ..

LR O I N RN BTN Y

¢ s e s 00000000 s0a0s 0

© e e 00000000000 0

S e e 0 e s s

10

TABLE OF CONTENTS (cont.)

page

SECTION 23: CLISP - Conversational LISP

INtroduCtionieecensvoronsesnosnsonssonssnncnns i
CLISP SyNtaX ..vuvisrseesesensssssscsnsssnsnsannssns 9
InfiX OPerators ...ivevevesseesecesossasosensnnanes 10
PrefiX Operatorsceceeveionsnnssnssnssnanans i3
Constructing Lists = the <(,> Operatorsvceveee. i6
IF, THEN’ ELSE ® 2 6 0 0 9 0 8 6 0 60 B 0 S s A O8NS A G I OO 6N e 0 17
Iterative Statements et ceeereessecnnennan i8
Errors in Iterative Statements .c..covcecvecans 28
Defining New Iterative Statement -Operators ... 29
CLISP TranslationsSveeeeceeceooesscasatnaosnncas 31
DEeClarations ...veeeeevessseoseassoassossnsaonssnns 35
Local Declarationscccvecesevencsnasnanns 37
The Pattern Match Compillerccocveennccanccnnss 38
Element Patterns ..oeeeeeeseencesestanescncanns 41
Segment Patternscociereieovencscnsrsivenoes 43
ASSIgNmMENtS i.vveensrearreooncasssesnsscansas 45
Place-markersceeeseerecssnncoadonnasasio 46
Replacementsceeereocescrosossocssasananas 46
ReconStruCtion ..iveeiioeeesosessosnsassnssanos 47
Record Packagecveeeeeeroceccstccsssnssonnass 50
Record Declarationsccceceeccoaacvascasas 53
CREATEottt ivennnrannencrenososasnssnnnas 59
Implementation ...ccviieeeveceernssncnnsennanns 61
CLISPIFY ittt iiaerconnvonnnsssoscsvonsssnanssnnns 62
DWIMIFY ittt iiieenrnuoeocnocesnscacsssossssnnasens - 65
Compiling CLISP ..cviiverrteenncesossoosonsosonsans 67
Operation R L L R R R R I S 68
CLISP Interaction with User tieicecicnnsnansanennes 71
CLISP Internal ConventionNsecieeeecovseonocsnas 72
CLISP Functions and Variablescceeevevrennnnan 75

APPENDIX 1: TRANSOR

Introductionvveeeeenvceonnconceassnssannsns
Using TRANSOR ® % 0 0 2 ¢ 0 0 0 0 08 08T O NSO N DA SO SED T
The Translation NOTES ...ceveevereirnncneeasannnnnen
TRANSORSET vt ivervineeesereoasansssssssnosssssinans
Controlling the SWeEBPcvcvevecasoccacsonsnscanse 1

& O > L2 s

APPENDIX 2: INTERLISP Interpreter
APPENDIX 3: Control Characters

MASTER INDEX

vi

SECTION 1
INTRODUCTION

This document is a reference manual for INTERLISP, a LISP system that 1s
currently implemented on (or implementations are in progress for) at least five
different machines. This manual is a reference manual for all INTERLISP
implementations, although it does contain some material that is relevant only
to INTERLISP-10, the implementation of INTERLISP for the DEC PDP-10 under the
BBN TENEX time sharing system.[Bob1]1 Where this is the case, .such matserial is

clearly marked.

INTERLISP has been designed to be a good on-line interactive system (from which
it derives its name). Some of the features provided include elaborate
debugging facilities with tracing and conditional breakpoints (Section 15), and
a sophisticated LISP oriented editor within the system (Sectidn 9).
Utilization of a uniform error processing through user accessible routines
(Section 16) has allowed the implementation of DWIM, a Do-What-I-Mean facility,
which automatically corrects many types of errors without losing the context of
computation (Section 17). The CLISP facility (Section 23) extends the LISP
syntax by enabling ALGOL-like infix operators such as ¢, -, ®, /, =, «, AND,

OR, etc., as well as IF-THEN-ELSE statements and FOR-WHILE-DO statements.

---------------------------- L L R R R R R I TSI IR AN Py

1 INTERLISP-10 is designed to provide the user access to the large virtual
memory allowed by TENEX, with relatively small penalty in speed (using
special paging techniques described in [Bob2]). INTERLISP-10 also provides
for essentially unlimited quantity of compiled code via the overlay
facility described in section 3. INTERLISP-10 was the first
implementation of INTERLISP, and is still the most widely used.

i.4

+ ¢ & e

CLISP expressions are automatically converted to equivalent INTERLISP forms
when they are first encountered. CLISP also includes a sophisticated pattern
match compiler, as well as a record package that facilitiates "data-less™

programming.

INTERLISP has also been designed to be a flexible system. Advising (section 19)
enables users to selectively modify or short-circuit any system function. Even
such "built-in" aspects of the system as interrupt characters, garbage
collection allocation and messages, output radix, action on various error
conditions, line-buffering protocol, etc., all can be affected through system
functions provided for that‘purpose. Readtables and terminal tables (section
14) allow the user complete control over input, including the ability to define
~read macro characters, specify echo modes, even redefine the action of
formatting characters such as parentheses. The user can also define new
datatypes (section 23) in addition to the 1lists, strings, arrays, and hash

association tables (hash links) already provided.

A novel and useful facility of the INTERLISP system is ‘thg programmer's
assistant (Section 22), which monitors and records all user inputs. The user
can instruct the programmer's assistant to repeat a particular operation or
sequence of operations, with possible modifications. or to UNDO the effects of
specified operations. The goal of the programmer's assistant, DWIM, CLISP,
etc. 1is to provide a programming énvironment which will Ycooperate" with the
user in the development'of his programs, and free him to concentrate more fully

on the conceptual difficulties and creative aspects of the problem he is trying

to solve.

To aid in converting to INTERLISP programs written in other LISP dialects,
e.g., LISP 1.5, Stanford LISP, we have implemented TRANSOR, a subsystem which
accepts transformations (br can operate from previously defined

transformations), and applies these transformations to source programs written

1.2

in another LISP dialect, producing object programs which will run on INTERLISP
(Appendix 1). 1In addition, TRANSOR alerts the programmer to problem areas that
(may) need further attention. TRANSOR was used extensivgly in converting from
940 LISP to BBN-LISP on the PDP-i0. A set of transformations is available for
converting from Stanford LISP and LISP 1.5 to INTERLISP.

A complete format dirscted list processing system FLIP [Teil], is available for

use within INTERLISP.

Although we have tried to be as clear and complete as possible, this document
is not designed to be an introduction to LISP. Therefore, some parts may only
be clear to people who have had some experience with other LISP systems. A
good introduction to LISP has been written by Clark Weissman [Weii]. Although
not completely accurate with respect to INTERLISP, the differences are small
enough to be mastered by use of this manual and on-line interaction. Another
useful introduction is given by Berkeley [Beri] in the collection of Berkeley

and Bobrow [Ber2].

Changes to this manual will be issued by replacing sections or pages, and
reissuing the index and table of contents at periodic intervals. In addition,
the manual will be maintained on-line, and up to date versions of any or all
chapters will be available in machine readable form from w.‘Teitelman at Xerox

PARC.Z

--------------------------- P P PN EUCTNTRCRVEDILTRVDDED DD D®EE D DD E®GDO DD DD DDDE DD

2 INTERLISP-10 includes a limited question-answering facility, HELPSYS
§§$gté?n 20), that uses these files to interactively answer questions about
RLISP.

1.3

First revision, October, 1974.

The first revision to the INTERLISP reference manual corresponds to changes or
additions to the 'INTERLISP system during the first ten months of 1974.
Approximately 200 (out of 700) pages have been changed to some extent in this
revision. A significant number ofvthese (about 60 pages) occur in Section i4
(input/output). About 30 pages of chapter 23 (CLISP) have been changed, and
the rest of the changes ére SCattered thfohghdut the manual. Changed material
in the text is flagged'in the outside margin by the appearance of either a '+
(for addition of compieteiy new material), '-' (for deletion of originél
material), or Y (indicating changes to existing material that more or less
preserve its original structure.) Thus the reader who is already familiaf with
the iNTERLISP manual can,quickly determine what has been changed. Note: very
few of these changés are not "uﬁwards combatible“bwith the original manual,
i.e. almosi all of them represent extensions or additions. Naverthelesé. the

reader is encouraged to skim through the manual noting changes which may affect

him.

For those who do not wish to 6bta1ﬁ an entire new manual. an updats consisting

of Jjust the changed péges 1s‘availabie.

1.4

Bibliography

[Bert]
[Ber2]

[Bobi]

[Bob2]
[Bob3]
[McCi]
[Muri]
(Smi1]
[Teitl]

[Tei2]
[Tei3]

[Teid]
[Tei5]

[Weil]

Berkeley, E.C., "LISP, A Simple Introduction" in Berkeley, E.C. and
Bobrow, D.G. [Ber2].

Berkeley, E.C., and Bobrow, D.G. (editors), The Programming Language
LISP, its Operation and Applications, MIT Press, 1966.

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlinson, R. S.
"TENEX, a Paged Time Sharing System for the PDP-i0",
Communications of the ACM, March, 1972.

Bobrow, D.G., and Murphy, D.L. "The Structure of a LISP System Using
Two Level Storage", Communications of the ACM, ViC 3, March 1967.

Bobrow, D.G., and Wegbreit, B. "A Model and Stack Implemsntation for
Multiple Environments" (to be published), Third International
Joint Conference on Artificial Intelligence, Augusti 1973.

McCarthy, J. et al. LISP 1.5 Programmer's Manual, MIT Press, 1966.

Murphy, D.L. "Storage Organization and Management in TENEX",
Proceedings of Fall Joint Computer Conference, December 1972.

Smith, D. "MLISP" Artificial Intelligence HMemo Ne. 135 Stanfoid
University, October 1970.

Teitelman, W. FLIP, A Format Directed List Processor in LISP, BEN
Report, 1967.

Teitelmén. W. "Toward a Programming Laboratory" in Walker, D. {ed.)
International Joint Conference on Artificial Intelligence, May
1969.

Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L. BBN-LISP
TENEX Reference Manual, Bolt Beranek and Newman, July 1971, first
revision February 1972, second revision August 1972.

Teitelman, W. "Automated Programmering - The Programmer's Assistant®,
Proceedings of the Fall Joint Computer Conference, Dacember 1972.

Teitelman, W. “CLISP - Conversational LISP", Third International
Joint Conference on Artificial Intelligence, August 1973.

Weissman, C. LISP 1.5 Primer, Dickenson Press (1967).

i.5

¥

SECTION 2
USING INTERLISP

2.1 Using the INTERLISP Manual - Format, Notation, and Conventions

The INTERLISP manual is divided into separate, more or less independent
sections. Each section 1s paginated independently, to facilitate issuing
updates of sections. Each section contains an index to key words, functions,
and variables contained in that section. 1In addition, there is a composite

index for the entire manual, plus several appendices and a table of contents.

INTERLISP is currently implemented on (or implementations are in progress for)
at least four different computers. This manual purports to be a refereﬁce
manual for all implementations of INTERLISP, both present and future. However,
since the largest user cummunity is still that of INTERLISP-IO.,the original
implementation for the DEC PDP-10, the manual does contain some implementation
dependent material. Where this is the case, the text refers to INTERLISP-10,

and is indicated as such.
Throughout the manual, terminology and conventions will be offset from the text
and typed in italics, frequently at the beginning of a section. For example,

one such notational convention 1is:

The nomes of junctions and variables are written in lower case and underlined
when they appear in the text. Meta-LISP notation i{s used for describing forms.

Examples: member[x;y] is equivalent to (MEMBER X Y), member[car[x];F00] is

2.1

equivalent to (MEMBER (CAR X) (QUOTE FO0)). Note that in meta-LISP notation

lower case variables are evaluated, upper case quoted.

notation is used to distinguish between cons and list.

e.g., if x=(A B C), (FOO x) is (FOO (A B C)), whereas (FOO . x)

is (FOO A B C). In other words, x is cadr of (FO0 x) but cdr of (FOO . x).
Similarly, y is caddr of (F00 x y), but cddr of (FOO x.. y). Note that this
convention is in fact followed by the read program,

i.e., (FOO . (A B C)) and (FOO A B C) read in as equal structures.
Other importaﬁt conventions are:
TAUE in INTERLISP means not WIL.

The purpose of this is to allow a single function to be used both for the
computation of some quantity, and as a test for a condition. For example, the
value of member[x;y] is either NIL, or tha tailA of y beginning with x.
Similarly, the value of or is the value of its first TRUE, i.e., non-NIL,
expression, and the value of and 1s either NIL, or the value of 1%5 last

expression.

Although most lists terminate in NIL, the occasional list that ends in an atom,
e.g., (AB .C) or worsé; a number or string, could cause bizarre effects.

Accordingly, we have made the folloWing implementation decision:

All Jfunctions that iterate through a list, e.g., member. length, mupc, etc.
terminate by an nlistp check, rather than the conventional null-check. as a
safety precaution against encountering data types which might cause infinite
cdr loops, e.g., strings, numbers, arrays.

Thus, member[Xx;(A B . C)]zmember[x;(A 8)]
reversef (A 8 . C)J=reverse[(A B8)]

2.2

append[(A B . C);yl=append[(A B);v]

1 we have provided

For users with an application requiring extreme efficiency.
fast versions of memb, last, nth, assoc, and length which compile open and
terminate on NIL checks, and therefore may cause 1nfinite cdr loops if given
poorly formed argument¢s. However; to help detect these situations, fmemb,

flast, fnth, fassoc, and flength all gensrate errors when interpreted if their

argument ends in a non-list other than NIL, e.g. BAD ARGUMENT - FLAST.

Most junctions thai set system parameters, e.g., printlevel, linelength. radix.
etc.. return as their velue the old setiing. IJf given V¥IL as an argument. they
return the current value without changing it. '

All SUBRS, i.e., hand coded junctions, such as read., print, eval, cons. etc.,
have 'argument names' selected from U. V, 'W, X, Y. 2. das described under
arglist. Section 8. However, jor tutorial purposes. more suggestiive names are
used in the descriptions of these functions in the text.

flost functions whose names end in p are predicates, e.g. pumberp. tailp. exprp:
most functions whose names end in g are nlambde's, i.e., do nol require quoting
their drguments, e.g., setq. defineq., nisetq.

"x is equal to y" means equal{x:y] is true, as opposed to "x is eq to y"
meaning eqfx:y] is true, it.e., x and y are the same identical LISP pointer.

When new literal atoms are created (by the read program, pack, or mkatom), they
are provided with a function definition cell initialized to VIL (Section 8)., u
value cell initialized to the atom NOBIND (Section 16). and a property list
initialiized to VIL (Section 7). The junciion definiiion cell 1is dwccessed by
the functions getd and putd described in Section 8. The value cell of an atom
is car of the atom, and its property list is cdr of the atom. [In particular,.

car “of VIL and cdr of VIL are glways ¥IL, and “the system will resist attempts
o change them.

The term list refers to any structure created by one or more conses, i.e. it
does not have to end in NIL. For example. (A . B) is @ list. The junction
listp, Section 6, is used to test jor lists. AMNote that not bezng a list does
not necessarily imply an atom, e.g., strings end arroys are not lists, nor are
they atoms. See Section 10.

Mauny system jfunctions have exira optional arguments jfor internal use that ure
not described in the writeups. For example, readline is described as «
Junction of one argument., bui arglist[READLINE] returns (RDTBL LINE LISPXFLG).
In such cases, the user should just tgnore the extre arguments.

---------------- P P GO RO N PGS TP O NE NI ENO O TNIUN PRIV VDI TODDEDDED®oE@ED G oD@

1 A NIL check can be executed in only one instruction, an nlistp on
INTERLISP-10 requires about 12, although both generate only one word of
code. .

2.3

INTERLISP departs from LISP 1.5 and other LISP dialects in that car of a form
is never evaluated. In other words, if car of a form is not an atom with a
function definitidn,‘and not a function object, i.e. a list car of which 1is
LAMBDA, NLAMBDA, or FUNARG, an error is generated. apply or apply* (section 8)
must be used if the name of a function is to be computed as for example, when

functional arguments are applied.

2.2 Using the INTERLISP-10 System on TENEX - An Overview

Call INTERLISP-10 by typing LISP followed by a carriage return. INTERLISP will
type an identifying message, the date, and a greeting, followed by a '~'. This
prompt character indicates that the user is "talking to" the ¢top level
INTERLISP executive, called ggglg_. (for h1st6rica1 reasons), Jjust as '@’
indicates the user is talking to TENEX. evalqt calls lispx which accepts.
inputs in either eval or apply format: if just one expression is typed on a
lipe, it is evaluated; 1if two expressions are typed, the first is apply-ed to
the second. eval and apply are described in section 8. In both cases, the

value is typed, fo;lowed by « indicating INTERLISP is ready for another input.

INTERLISP is normally exited via the function LOGOUT, i.e., the user types
LOGOUT(). However, typing control-C at any point in the computation returns
control immediately to TENEX. The user can then continue his program with no
ill effects with the TENEX CONTINUE command, even if he interrupted it during a
garbage collection. Or he can reenter his program at evalqt with the TENEX
REENTER command. The latter is DEFINVITELY not advisable if the Control-C was

———— wam——— — e—————————————— ————

typed during g garbage collection. Typing control-D at any point during a
computation will return ‘conirol to evalqgt. If typed during a garbage
collection, the garbage collection will first be completed, and then control
will be returned to INTERLISP's top level, otherwise, control returns

immediately.

2.4

When typing to the INTERLISP read program, typing a control-Q will cause
INTERLISP to print '##°' and clear the input buffer, i.e., erase the entire line
up to the last carriage return. Typing cbntrol-A erases the last character
typed in, echoing a \ and the erased character. Control-A will not back up
beyond the last carriage return. Control-O can be used to immediately clear

2 In

the output buffer, and rubout to immediately clear the input buffer.
addition, typing control-U (in most cases) will cause the INTERLISP editor
{Section 9) to be called on the expression being reaq. when the read 1is
completed. Appendix 3 contains a 1list of all control characters, and a
reference to that part of the manual where they are described. Section 16

describes how the system's interrupt characters can be disabled or redefined,

as well as how the user can define his own interrupt characters.

Since the INTERLISP read program is normally line-buffered to make possible the
action of control»Q.s the user must type a carriage return bqfore any
characters are delivered to the function requesting input, e.g.,

«E T2 4

T
However, the read program outomatically supplies (and prints) this carriage
return when a matching right parenthesis is typed, making it unnecessary for
the user to do so, e.g.,

«~CONS(A B)
(A . B)

é ---------- L L e R . L R @ o oo

The action of control-Q takes place when it is read. If the user has
'typed ahead' several inputs, control-Q will only affect at most the last
line of input. Rubout however will clear the entire input buffer as soon
as it is typed, i.e., even during a garbage collection.

Except following control[T], see Section 14.

' 1is used throughout the manual to denote carriage-return.

2.5

The INTERLISP read program treats square brackets as ‘super-parentheses': a
right square bracket automatically supplies‘enbugh right parentheses to match
back to the last left square bracket (in the expression being read), or if none
has appeared, to match the first left parentheses, |
e.g., (A (B (CJ=(A (B (C))),

(A [B (C (D] E)=(A (B (C (D))) E).

% is the universal escape character for read. Thus to input an atom containing
a syntactic delimiter, precede it by %, e.g. AB¥% (C or %%. See Section 14 for

more details.

1V (control-V) can be used to type a control character that would otherwise
interrupt the input process, e.g. control-D, control-C, etc. If the character
following tV is A, B, ... or 2, the correSponding control character is input,
e.g. tVATVBtVC is the atom control-Acontrol-Bcontrol-C. tV followed by any
other character has no effect, -i.e. FOOtVi and FOO1 are identical. For more

details, see appendix 3.

Most of the "basics" of on-line use of INTERLISP, e.g. defining functions,
error handling, editing, saving your work, eté.. are illustrated in the

following brief console session. Underlined characters were typed by the user.

1. The wuser calls INTERLISP from TENEX, INTERLISP prints a date, and a

greeting. The prompt character ¢ indicates the user is at the top level of
INTERLISP.

2. The user defines a function, fact, for computing factorial of n. In
INTERLISP, functions are defined via DEFINE or DEFINEQ, (Section 8).
Functions may independently evaluéte arguménts. or not evaluate them, and
spread their arguments, or not spread them (Section 4). The function fact
shown here is an example of an everyday run-of-the-mill fﬁnction of one

argument, which is evaluated.

- 2.6

GLISP,

INTERLISP-10 11-17-73 ...
GOOD EVENING.

~DEFINEQ((FACT (LAMBDDA (N) (COND ((EQ N 0) NIL)

(T (ITIMES N (FACTT (SuBi1 W]
(FACT)
~«(GETD (QUOTE FACT))

(LAMBDDA (N) (COND ((EQ N 0) NIL) (T (ITIMES N (FACTT (SUB1 N))))))

«FACT(3)
LAMBDDA [IN FACT] =-> LAMBDA ? YESy
FACTT [IN FACT] -> FACT 7 YES,

NHON-NUMERIC ARG
NIL
IN ITIMES

(BROKEN)
:BT>
ITIMES
COND
FACT
COND
FACT
COND
FACT
RRTOP® R

P
1

:EDITF(FACT)
EDIT

*(R _NIL 1)
*0K 5

FACT
RETURN 12
'BREAK' =1
6

«PP FACT),

(FACT
[LAMBDA (N)
(COND
((EQ N 0)
1

)
(T (ITIMES N (FACT (SUB1 NJ)
FACT ’
«~PRETTYDEF((FACT) FACT)
FACT.;1

2.7

13
14

(4]

The user "looks" at the function definition. Function definitions 1in
INTERLISP are stored in a special cell called the function definition cell,
which is associated with the name of the function (Section 8). This cell

is accessible via the two functidns,‘getd and putd, (define and defineq use

putd). Note that the wuser typed an input consisting of a single
expression, i.e. (GETD (QUOTE FACT)), which was therefore interpreted as a

form for eval. The user could also have typed GETD(FACT).

The user runs his function. Two errors occur and corrections are offered
by DWIM (Section 17). In each case, the user indicates his approval, DWIM
makes the correction, i.e. actually changes the definition of gggﬁ.‘and
then continues the computation.

An error occurs that DWIM cannot handle, and the system goes into a break.
At this point, the user can type in expressions to be eval-ed or apply-ed
exactly as at the top level. The prompt character ':' indicates that the
user 1s in a break, i.e. that the context of his computation is available.
In other words, the system is actually "within" or "below" the call to

itimes in which the error occurred.

The user types in the break command, BT, which calls for a backtrace to be
printed. In INTERLISP, interpreted and compiled code (see Section 18 for
discussion of the compiler) are completely compatible, and in both cases,
the name of the function that was called, as well as the names and values
of its arguments are stored on the stack. The stack can be searched and/or

modified in various ways (see Section 12).

Break commands are discussed in Section 15, which also explains how the
user can "break" a particular function, i.e. specify that the system go
into a "break" whenever a certain function or functions are called. At
that point the user can examine the state of the computation. This

facility is very useful for debugging.

2.8

10.

11.

12.

13.

The user asks for the value of the variable n, i.e. the most recent value,
or binding. The interpreter will searéh the stack for the most recent
binding, and failing to find one, will obtain the top level value from the
atom's value cell, which is car of the atom (Section 3). If theré are no
bindings, and the value cell contains the atom NOBIND, an unbound atom

error is generated (Section 16).

The user realizes his error, and calls the editor to fix it. (Note that
the system is still in the break.) The editor is described at length and in
detail in Section 9. It i1s an extremely useful facility of INTERLISP.

Section 9 begins with a simple introduction designed for the new user.

The user instructs the editor to replace all NIL's (in this case there is
only one) by 1. The editor physically changes the expression it is
operating on so when the user exits from the editor, his function, ads it

is now being interpreted, has been changed.
The user exits from the editor and returns to the break.

The user specifies the value to be used by itimes in place of NIL by using
the break command RETURN. This causes the computation to continue, and 6 is

ultimately returned as the value of the original input, fact(3).

The user prettyprints (Section i4) fact, 1i.e. asks it be printed with
appropriate indentations to indicate structure. Prettyprint also provides
a comment facility. Note that both the changes made to fact by the editor

and those made by DWIM are in evidence.
The user writes his function on a file by using prettydef (Section 14),

creating a TENEX file, FACT.;1, which when loaded into INTERLISP at a later

date via the function load (Section 14), will cause fact to be defined as

2.9

i4.

it currently is. There 1is alsoc a facility in 'INTERLISP for saving and
restoring an entire core image via the functions sysout and sysin

(Section 14).
The user 1logs out, return‘ing control to TENEX. However, he can still

continue his session by re-entering INTERLISP via the TENEX REENTER or
CONTINUE command.

2.10

Index for Section 2

Page
Numbers

APPLY[FN;ARGS] SUBR O et
apply format treree it anens cecscessaecoanea
APPLYA[FN;ARGL;...;ARGN] SUBR®ieronvncnnnns
ARGLISTIX] ...vivuennnn s eacesseererersare o s e
DA Erace L ittt i i i ittt
BAD ARGUMENT = FASSOC (error mesSsSage) ..ceesecees
BAD ARGUMENT = FLAST (error mesSsSage) ..eeeessssss

BAD ARGUMENT = FLENGTH (error message)ceeees
BAD ARGUMENT FMEMB (error message) ...ececeeeas
BAD ARGUMENT - FNTH (error meSS&8G98) coveeecessens
BT (break command) hetsescetctattetatestanann
CONTINUE (tenex command)eveeeevecocnnennanne
CONTROL[U;TTBL] SUBR t.iivvervrnnnennnn ciesanesean
CONTrol CharacClersS .c..ieiececeecsoctocsscsosnsnonns
control-A csebesenserressestssentasen e s
control-C C e s e esessacesseneseses st asaenaann
control-D ceeccsacanns N
control-0 e escescresenesttsnesasssatsosn et
CONUIrOLl=Q ..ttt ieeeeereeeoronoonosoosssonsonsnan
control-U Ceeesescieeraesstce s e esnann
COMErOLl=V L it iiteeeaeeeoosossoscsansosnsnannns
debuggingc0c0.n. crenaas cestesinennans cee
DEFINE[X] et eeseescessrseseserssss sy .
DEFINEQL X] NL® i iiiiiieeosecnnasnnossncscssonnns
dot NOTationiiiiiiiiivieiennnsnenencnsnnnns
DWIM casessseneseane cscevsessunessenasne

°
-
o

8
(32}

e o o e o e o e

@ @

€0 ceiuinn.. Ceeestrsacssseteseresssaretsessanabasn
EO[X;Y] SUBR @ 0 8 2 0 0 0 0 0 8 QW PPN L OO NN ND eSS
L= 1 T PP

EOUAL[X;YJ ® 0 6 f 8+ 000 00 00 IO 0000 0E 0O LILEEL YOS
escape CharaCterciieenseecenvsonsocncnsansns
EVALLX] SUBR tiiitieeeneenensnseoeessssasaassnsas
eVal fOrmMat i veeeeneeneeeoneanonesansonanannns
EVALQTt eiinnnn. Ceeeececann Cestecaerceccrtenn
FASSOCEX;Y] vveiiiiiennnnnn e st eceesreessnssanas
filesiiiiiiinnnnn cetereeseseeessenens veseee
L I
FLENGTHLX] cieienterenevesnasoacacenonsnns ceeeens
FMEMBL X Y] it i ittt it eeeeenoennnannans ceane
FNTHLX;N] ceseen teeteetsesesceseettonnenan
function definition €1liierirenenrenenonnns
functional argumentseeeececcecncceaanancannn
garbage co0lleCtioniceiiiiiiitrenereerenannans
GETD[X] SUBR i.iviveennnn teteeaecsctcscanaenans
INTerrupt charactersS ...iceveecscecsosesnnnenoons
LINELENGTHIN] SUBR . ivvireivereoeensonoaanonnnsas
line-bufferingcce... teecrteeenscercnosenn
LISTPIX] SUBR s iviiieeveeneeseoonsnonansssnonnan
1ists ... iiveiennnnn. s s esessestoacassctssranraaan
LOAD[FILE;LDFLG;PRINTFLGE] ..vievecencononnnnncnns
LOGOUTL] SUBR .t iiietvencensnosocenennennsanannss
NIL
R T S = G
NOBIND e
NUll-checkiiiiirereenoennecoseosessonsoncnsns
predicates et ecesseseesestaaescssestereanens

e » ¢ o o e o

e o o6 o e e * e + e o . e

e o o o e

INDEX.2.1

PRETTYDEF

..

PRETTYPRINT

PRINTLEVEL[N] SUBR
prompt character
property list
pushdown list
PUTDL[X;Y] SUBR
RADIX[N] SUBR
REENTER (tenex command)

e e e v e e s e e

ee o000

#6600 s e

D I I R N R R R I N I R I N I R R R A RN S NN)

R R N RN RN B S R Y B BN}

LR B A]

D R R I I A A A 2 R RN S B R A B RN N BRI R

D R R I R A N I N R R N A A B R N N A I N X)

L R I R I I I I R A N A R R R A

® ¢ 0000 0000000000t ULeLENsNEGOSOEOO

R R A A I I IR R I R R I R R A I N A I B B A BN)

RETURN (break command)

rubout

square brackets
SYSIN[FILE] SUBR
SYSOUT[LFILE] EXPR

TENEX
true ..

U.B.A.

LR

o e o

e ¢ o 0 e

value cell

variable bindings

2 (carriage-return)
(typed by systen)
% (escape character)

. notation

oooooo

D A R]

© 209 6 e 08 0000B00ITOESICOETEOE

D I RN R N R B A S R RN R)

© 0 0 8 608060060 EONGBLLNEEIOIGEIEIEBLIOIOLEIEIEOTS

$ e e e s e 000000 G000 et

L I N R I I R N I I A R R N I)

ee e aco s

L N R A N R I A B Y I I BN BT B B B RN)

LI A R T e I N I R R R R R R I B A R I N)

(error message)

L I I R R A I I I A A I B RE A B N I)

user interrupt characters

LR R A N A R A A IR R Y B B N BB)

L I I N I K B R IR R]

L R R I I A I R N R IR

oo

L R I I R R R A N)

s 000 e 0000000 e

INDEX.2.2

: (typed by system) '
\ (typed by system)

e e s s ec s

D I I A N I I B A A I A N I R RN A N I Y
D I I I I I R R A I N A IR RN R Y

« (typed by system)

© s 06000080000 C000 0PN IORNOLODN

o<

o
(=4

NN NNNDNDNN
DOMBNOUMUUBOWOUNND e ONOHLWWRBWHLWOO

- 00
[~}
-
o
]
[¥S
(-}

e o o e o = e

-
(-}

SECTION 3
DATA TYPES, STORAGE ALLOCATION, GARBAGE COLLECTION, AND OVERLAYS!

INTERLISP operates in an 18-bit address space.z This addraess space is divided
into 512 word pages with a limit of 512 pages, or 262,144 words, but only that
portion of address space currently in use actually exists on any storage
medium. INTERLISP 4itself and all data storage are contained within this
address space. A pointer to a data element such as a number, atom, etc., is

simply the address of the data element in this 18-bit address space.

3.1 Data Types

The data types of INTERLISP are lists, atoms, pnames, arrays, large and small
integers, floating point numbers, string characters and string pointers.3

Compiled code and hash arrays are currently included with arrays.
In the descripticns of the various data types given below, for each data type,

first the input syntax and output format are described, that is, what input

sequence will cause the INTERLISP read program to construct an element of that

W B BTN EDOPO R, ECTEE NI PN PO AT CE SN W EBOADVTDTVE WS DD DD DCDEE DO ED S GG S-S w DS

1 This section was written by A. K. Hartley and J. W. Goodwin.

2 INTERLISP is currently implemented on (6r implementations are in progress
for) at least four different machines. This section treats subjects that
are for the most part somewhat implementation dependent. Where this is the
case, the discussion refers to INTERLISP-10, the implementation for the DEC
PDP-10, on which INTERLISP was first implemented.

3

The user can also define new data types, as described in section 23.

3.1

LR 2K 2K 2

type, and how the INTERLISP print program will print such an element. Next,
those functions that construct elements of that data type are given. Note that
some data types cannot be input, they can only be constructed, e.yg. arrays.
Finally, the format in which an element of that data type is stored in memory

is described.

3.1.1 Literal Atoms

A literal atom is ihput as any string of non-delimiting characters that cannot
be interpreted as a number. The syntatic characters that delimit atoms are
space, end-of—line.4 line-feed, % () " J and [. However, these characters may

be included in atoms by preceding them with the escape character %.

Literal atoms are printed by print and prin2 as a sequence of characters with

%'s inserted before all delimiting characters (so that the atom will read back
in properly). Literal atoms are printed by prini as a sequence of characters
without these extra %'s. - ?or example, the atom consisting of the five
characters A, B, C, (, and D will be printed as ABC%(D by print and ABC(D by |
prinl. The extra %'s are an artifact of the print program; they are not stored

in the atom's pname.

Literal atoms can be constructed by pack, ‘mkatom, and gensym (which uses

mkatom).
Literal atoms are unique. In other words, if twd literal atoms haVe the same

pname, i.e. print the same, they will always be the same identical atom, that

is, they will always have the same address in memory, or equivalently, they

An end-of-line character -is transmitted by TENEX when it sees a
carriage-return.

3.2

will always be gg.s Thus if pack or mkatom 1is given a list of characters
~corresponding to & literal atom that already exists, they return a pointer to
that atom, and do not make a new atom. Similarly, if the read program is given

as input of a sequence of characters for which an atom already exists, it

returns a pointer to that atom.

5 ----------- LA A AL AL R EEEEEEE LA LR L ER R R R R L LR EEEE R IR X T X I N R R R N

Note that this 1is not true for strings, large integers, floating point
numbers, and lists, i.e. they all can print the same without being eq.

3.3

A literal atom is a 3 word (36 bits) datum containing:

. PROPERTY LI1ST TOP LEVEL BINDING

WORD 1: (COR) (CAR)
0 7 18 35

WORD 2: FUNCTION CALLING INSTRUCTION
0 35
, RESERVED FOR FUNCTIONS

WORD 3: PNAME N o ES
| 0 7 18 35

FIGURE 3-1

Car of a literal atom, i.e. the right half of word 1, contains its top level
binding, initially the atom NOBIND. Cdr of the atom is a pointer to its

property list, initially NIL.

Word 2, the function definition cell, is a full 36 bit word, containing an
instruction to be executed for calling the function associated with that atom,
if any. The left half differs for different function types (i.e., EXPR, SUBR,

or compiled code); the right half is a pointer to the function definition.e

The pname cell, the left half of the third word, contains a pointer to the
pname of the atom. The remaining half word is reserved for an extension of

INTERLISP-10 to permit storing function definitions on files.

5 ------------------------ A A A A LR AL AL LR LR LR T LEERLERERER] PesteessOcCOoREOROene

This use of a full word saves some time in function calls from compiled

‘code in that we do not need to look up the type of the function definition
‘at call time. ‘

3.4

3.1.2 Pnames

The pnames of atoms,7

pointed to in the third word of the atom, comprise
another data type with storage assigned as it is needed. This data type only
occurs as a component of an atom or a string. It does not appear, for example,

as an element of a list.

Pnames have no input syntax or output format as they cannot be directly

referenced by user programs.
A pname 1is a sequence of 7 bit characters packed 5 to a word, beginning at a

word boundary. The first character of a pname contains its 1ength: thus the

maximum length of a pname is 126 characters.

3.1.3 Numerical Atoms

Numerical atoms, or simply numbers, do not have property lists, value cells,
functions definition cells, or explicit pnames. There are currently two types

of numbers in INTERLISP: integers, and floating point numbars.

Integers

The input syntax for an integer is an optional sign (+ or -) followed by a

7 All INTERLISP pointers have pnames, since we define a pname simply to be

how that pointer is printed. However, only literal atoms and strings have
their pnames explicitly stored. Thus, the use of the term pname in a
discussion of data types or storage allocation means pnames of atoms or
strings, and refers to a sequence of characters stored in a certain part of
INTERLISP's memory.

3.5

sequence of digits, followed by an optional 0.8 If the Q@ is present, the digits
are interpreted in octal, otherwise in decimal, e.g. 77Q and 63 both correspond
to the same integers, and in fact are indistinguishable internally since no

record is kept of how integers were created.

The setting of radix (Section 14), determines how integers are printed: signed

or unsigned, octal or decimal.

Integers are created by pack and mkatom when given a sequence of characters
observing the above syntax, e.g. (PACK (LIST 1 2 (QUOTE Q))) = 10. Integers
are also created as a result of arithmetic operations, as described in Section

13.

An integer is stored in one 36 bit word; thus its magnitude must be less than
2735.9 To avoid having to store (and hence garbage collect) the values of small
integers, a few pages of address space, overlapping the INTERLISP-10 machine
language code, are reserved for their representation. The small number pointer
itself, minus a constant, is the value of the number. Currently the range of
'small' integers is -1536 thru +1535. The predicate smallp is used to test

whether an integer is 'small’.

While small integers have a unique representation, large integers do not. In
other words, two large integers may have the same value, but not the same
address in memory, and therefore not be eq. For this reason the function eqp

(or equal) should be used to test equality of large integers.

g ----------------- cToccacswes LR EY TR YRR Y TR TR TR R A R R R R Y

and terminated by a delimiting character. Note that some data types are
self-delimiting, e.g. lists.

If the sequence of digits used to create the integer is too large, the high
order portion is discarded. (The handling of overflow as a result of
arithmetic operations is discussed in Section 13.)

3.6

Floating Point Numbers

A floating point number is input as a signed integer, followed by a decimal
point, followed by another sequence of digits called the fraction, followed by
an exponent (represented by E followed by a signed 1nteger).10 Both signs are
optional, and either the fraction following the decimal point, or the integer
preceding the decimal point may be omitted. One or the other of the decimal
point or exponent may also Be omitted, but at least one of them must be present
to distinguish a floating point number from an integer. For example, the
following will be recognized as floating point numbers:
5. 5.00 5.01 .3 - 5E2 5.1E2
5E-3 =-5,.2E+6

Floating point numbers are printed using the facilities provided by TENEX.
INTERLISP-10 calls the floating point‘number to string conversion routineslI
using the format control specified by the function fltfmt (Section 14). fltfmt
is initialized to T, or free format. For example, the above floating point
numbers would be printed free format as:

5.0 5.0 5.01 .3 500.0 510.0

.005 -5.2E6

Floating point numbers are also created by pack and mkatom, and as a result of

arithmetic operations as described in section 13.

A floating point number is stored in one 36 bit word in standard PDP-10 format.

The range is #2.94E-39 thru +1.69E38 (or 2%-128 thru 2t127).

---------------------------------- S PPN TR NNTPROPROONIVORNRODIACNIDDNVIODOGD BT oD@

10 and terminated by a delimiter.

11 Additional information concerning these conversions may be obtained from
the TENEX JSYS Manual.

3.7

3.1.4 lists

The input syntax for a list is a sequence (at least one)12 of INTERLISP data
elements, e.g. literal atoms numbers, other 1lists, etc. enclosed in
parentheses or brackets. A bracket can be used to terminate several 1lists,

e.g. (A (B (C], as described in Section 2.

If there are two or more elements in a list, the final element can be preceded
by a . (delimited on both sides), indicating that cdr of the final node in the
list is to be the element immediately following the ., e.g. (A . B) or
(A BC . D), otherwise cdr of the last node in a list will be NIL.I® Note that
the input sequence (A B C . NIL) is thus equivalent to (A B C), and that (A B .
{C D)) is thus equivalent to (A B C D). Note however that (A B . C D) will

create a list containing the five literal atoms A B . C and D.

Lists are constructed by the primitive functions cons and list.

Lists are printed by printing a left parenthesis, and then printing the first

element of the 113t,14

then printing a space, then printing the second element,
etc. until the final node is reached. Lists are considered to terminate when
cdr of some node is not a list. 1If cdr of this terminal node is NIL (the usual
case), car of the terminal node is printed followed by a right parenthesis. If

cdr of the terminal node is not NIL, car of the terminal node is printed,

--------------------------------- O e NN NN PPN TT OB UNROTNCRNTBTEBDOGD DO

12 () is read as the atom NIL.

13 Note that in INTERLISP terminology, a list does not have to end in NIL, it
is simply a structure composed of one or more conses.

14

The individual elements of a list are printed using prin2 if the list is
being printed by print or prin2, and by prini if the list is being printed
by print. ,

3.8

followed by a space, a period, another space, cdr of the terminal node, and
then the right parenthesis. Note that a list input as (A B C . NIL) will print
as (ABC), and a list input as (A B . (C D)) will print as (A B C D). Note
also that printlevel affects the printing of 1lists to telestyps, and ‘thqt
carriage returns may be inserted where dictated by linelength, as described in

Section 14.

A list is stored as a chain of 1ist nodes. A 1ist node is stored in one 36 bit
word, the right half containing car of the list (a pointer to the first element
of the list), and the left half containing cdr of the list (a pointer to the

next node of the list).

3.1.5 Arrays

An array in INTERLISP is a one dimensional block of contiguous storage of
arbitrary length. Arrays do not have input syntax; they can only be created by
the function array. Arrays are printed by both print, prin2, and prini, as #
followed by the address of the array pointer (in octal). Array Qlements can be
referenced by the functions elt and eltd, and set by the functions seta and

setd, as described in Section 10.

Arrays are partitioned into four sections: a header, a section containing
unboxed numbers, a section containing INTERLISP pointers, and a section
containing relocation information. The last three sections can each be of
arbitrary length (including 0); the header is two words long and contains the
length of the other sectfons as indicated in the diagram below. The unboxed
number region of an array 1is used to store 36 bit quantities that are not
INTERLISP pointers, and therefore not to be chased from during garbage
collections, e.dg. machine instructions. The relocation informaion is used when

the array contains the definition of a compiled function, and specifies which

3.9

locations in the unboxed region of the array must be changed if the array 1is

moved during a garbage collection.

The format of an array is as follows:.

HEADER WORD O ADDRESS OF RELOCATION
INFORMATION LENGTH
WORD | USED BY GARBAGE ADDRESS OF POINTERS
COLLECTOR

FIRST DATA WORD
NON-POINTERS

POINTERS

RELOCATION
INFORMATION

FIGURE 3-2

The header contains:

word 0 right length of entire block=ARRAVSIZE+2.

left - address of relocation information relative to word 0 of
block (> 0 if relocation information exists, negative
if array is a hash array, 0 if ordinary array). :

word 1 right address of pointers relative to word 0 of block.

left

used by garbage collector.

3.1.6 Strings

The input syntax for a string is a *, followed by a sequence of any characters
except " and %, terminated by a ". " and % ‘mayvbe included in a string by

preceding them with the escape character %.

3.10

Strings are printed by print and prin2 with initial and final "'s, and %'s
inserted where necessary for it to read back in properly. Strings are printed

by prini without the delimiting “'s and extra %'s.

Strings are created by mkstring, substring, and concat.

Internally a string is stored in two parts; a string pointer and the sequence
of characters. The INTERLISP pointer to a string is the address of the string
pointer. The string pointer, in turn, contains the character position at which
the string characters begin, and the number of characters. String pointers and

string characters are two separate data t.ypes."5

and several string pointers
may reference the same characters. This method of storing strings permits the
creation of a substring by creating a new string pointer, thus avoiding copying

of the characters. For more details, see Section 10.

String characters are 7 bit bytes packed § to a word. The format of & string

pointer is:

OF CHARACTERS | 5 ® ADDRESS OF STRING + CHARACTER
POSITION
0 14 15 : 35

FIGURE 3-3

The maximum length of a string is 32K (K=1024) characters.

15 String characters are not directly accessible by user programs.

3.11

3.2 Storage Allocation and Garbage Collection

In the following discussion, we will speak of a quantity of memory being
assigned to a particular data type, meaning that the space 1is reserved for
storage of elements of that type. Allocation will refer tovthe process used
to obtain from the already assigned storage a particular location for storing

one data element.

A small amount of storage is assigned to each data type when INTERLISP-10 is

started; additional storage is assigned only during a garbage colléction.

The page 1s the smailest unit of memory that may be assigned for use by a
particularvdata type. For each page of memory there is a one word entry in a
type table. The entry contains the'data type residing on the page gs well as
other information about the page. The type of a pointer is determined by

examining the appropriate entry in the type table.

Storage is allocated as 1is needed by the functions which create new data

elements, such as cons, pack, mkstring. For example, when a large integer is

created by iplus, the integer is stored in the next available location in the
space assigned to integers. . If there is no available location, & garbage

collection is initiated, which méy result in more storage being assigned.

The storage allocation and garbage collection methods differ for the Various
data types. The major distinction is between the types with elements of fixed
length and the types with'elements of arbitrary length. List nodes, atoms,
large integers, floating point numbers, and string pointers aré fixed length;
all occupy 1 word except atoms which use 3 words. Arrays, pnémes. and strings

(string characters) are variable length.

Elements of fixed length types are stored so that they do not overlap page

boundaries. Thus the pages assigned to a fixed length type need not be
adjacent. If more space is needed, any empty page will be used. The method of
gllocating storage for these types employs a free-list of available locations;
that is, each available location contains a pointer to the next ayailable
location. A new element 1s stored at the first location on the free-list, and

the free-list pointer is ug:odated.‘i6

Elements of variable length data types are allowed to overlap page boundaries.
Consequently all pages assigned to a particular variable length type must be
contiguous. Space for a new element is allocated following the last space used

in the assigned block of contiguous storagse.

When INTERLISP-10 is first called, a few pages of memory are assigned to each
data type. When the allocation routine for a type determines that no more
space 1is available in the assigned storage for that type, a garbage collection
is initiated. The garbage collector determines what data 15 currently in use
and reclaims that which is no longer in use. A garbage collection may also be

initiated by the user with the function reclaim (Section 10).

Data in use (also called active data) is any data that can be ‘reached' from
the currently running program (i.e., variable bindings and functions in
execution) or from atoms. To find the active data the garbage collector
‘chases' all pointers, beginning with the contents ¢f the push-down lists and
the components (i.e., car, cdr, and function definition cell) of all atoms with

at least one non-trivial component.

e Do oo e e R R] RO ECOONUCOEOEAEOGRI DRI TNV OETTANDEDDBREG D wWDD GG D DB

16 The allocation routine for list nodes 1is more complicated. Each page
containing list nodes has a separate free list. First a page 1s chosen
(see CONS for details), then the free list for that page is used. Lists
are the only data type which operate this way.

3.13

When a previously unmarked datum is encountered, it is marked, and all pointers
contained in it are chased. Most data types are marked using bit tables; that
is tables containing one bit for each datum. Arrays, however, are marked using

a half-word in the array headsr.

When the mark and chase process is completed, unmarked (and therefore unused)
space is reclaimed. Elements of fixed length types that are no longer active
are reclaimed by adding their locations to the free-list for that type. This
free list allqcation method permits reclaiming space without moving any data,
thereby avoiding the time consuming process of updating all pointers to moved
data. To reclaim unused space in a block of storage assigned to a variable
length type, the active elements are compacted toward the beginning of the
storage block, and then a scan of all active data that can contain pointers to
the moved data is performed to update thé‘pointers.

Whenever a garbage collection of any type is initiated,!?

unused space for all
fixed length types is reclaimed since the additional cost is 'slight. However,
space for a variable length type is reclaimed only when that type 1n1t1ated the

garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage
collection is less than the minimum free storage requirement for that type, the
garbage collector will assign enough additional storage to satisfy the minimum
free storage requirement. The'minimum free storage requirement for each data
may be set with the function minfs (Section 10). The garbage collector assigns
additional storage to fixed length types by finding empty pages, and adding the

appropriate size elements from each page to the free 1list. Assigning

----------- LA KR R XX EE L R R R R R R R R R R R X N R X

17 The ‘type of a garbage collection' or the ‘'type that initiated a garbage
collection' means either the type that ran out of space and called the
garbage collector, or the argument to reclaim.

additional storage to a variable length ¢type involves finding empty pages and
moving data so that the empty pages are at the end of the block of storage

assigned to that type.

In addition to incresasing the storage assigned to the type initiating a garbage
collection, the garbage collector will attempt to minimize garbage collections
by assigning more storage to other fixed length types accordiﬁg to the
following algorithm.zg If the amount of active data of a type has increased
since the last garbage collection by more than 1/4 of the minfs value for that
type, storage 1is increased (if necessary), to attain the minfs value. If
active data has increased by less than 1/4 of the minfs value, available
storage is increased to 1/2 minfs. If there has been no increase, no more
storage is added. For example, if the minfs setting is 2000 words, the number
of active words has increased by 700, and after all unused words have been
collected there are 1000 words available, 1024 additional words (tiwo pages)
will be assigned to bring the total to 2024 words available. If the number of
ac;ive words had increased by only 300, and théfe were 500 words available, 512

additional words would be assigned.

3.3 Shared INTERLISP-10

The INTERLISP-10 system initially obtained by the user is sharéd; that 1s, all
active users of INTERLISP-10 are actually using the same pages of memory. As a
user adds to the system, private pages are added to his memory. Similarly, if
the user changes anything in the original shared INTERLISP-10, for example, by

advising a system function, & private copy of the changed page is created.

--------------------------------- LR R L R R R R R RN R L RN

18 We may experiment with different algorithms.

3.18

In addition to the swapping time saved by having several users accessing the
same memory, the sharing mechanism permits a large saving in garbage collection
time, since we do not have to garbage collect any data in the shared system,
and thus do not need to chase from any pointers on shared pages during garbage

collections.

This reduction in garbage collection time is possible because the shared system
usually is not modified very much by the user. If the shared system is changed
extensively, the savings in time will vanish, because once a page that was
initially shared is made private, every pointer on it must be assumed active,
because it may be pointed to by something in the shared system. Since every
pointer on an initially shared but now private page can also point to private

data, they must always be chased.

A user may create his own shared system with the function makesys. If several
people are using the same system, making the system be shared will result in a
savings in swapping time. Similarly, if a system is large and seldom modified,
making it be shared will result 1n‘a reduction of garbage collection time, and

may therefore be worthwhile even if the system is only being used by one user.

makesys[file] creates a saved file in which all pages in this
system, including private user pages, are made
read execute, i.e. shared. This system can then
be run via the TENEX command RUN, or GET and
START.

For example, new INTERLISP-10 systems are brought up by loading the appropriate
compiled files and then performing makesys[LISP.SAV].Ig

-------------------------- X R R R LYY R R R Y R R R R R N R

makesys is also advised (see section 19) to set the variable makesysdate to
(DATE), 1.e. the time and date the system was made.

3.16

herald[string] makes string be the 'herald' for the system, i.e.
the message printed when the system 1is first

started. Primarily for use im conjunction with

makesxs.zo

3.4 The INTERLISP-10 Swapper<!

INTERLISP-10 provides a very large auxilary address space exclusively for
swappable arrays (primarily compiled function definitions). In addition to the
256K of resident address space, this "shadow space® can cufrently accomodate
an additonal 256K words, can easily be expanded to 3.5 million words, and with
some further modifications, could be egpanded to 128 million words. Thus, the

overlay system provides essentially unlimited space for compiled code.22

Shadow space and the swapper are intended to be more or less transparent to the
user. However, this section is included in the manual to give programmers a
reasonable feeling for what overlays are like, without getting unnecessarily
technical, as well as to document sohe new functions and system controls which

may be of interest for authors of exceptionally large systems.

P ttdadbeddddddd A I R R R e A TN S R I

20 makesys is advised to set the variable heraldstring to the concatenation
of "INTERLISP-10", the month and day of the makesys, and "..." and to call
herald on this string. Alternatively, makesys can be given as a second
argument a string to be used instead of “INTERLISP-10O", e.g.
makesys[STREK.SAV;STAR-TREK] would cause the message STAR-TREK followed by
the date and "..." to be printed when STREK.SAV was run.

21 The INTERLISP-10 swapper was designed by E. L. Wegbreit (PARC) and J. W.
Goodwin (BBN), and implemented by J. W. Goodwin. :

22

Since compiled code arrays point to atoms for function names, and strings
for error messages, not to mention the fact that programs usually have data
base, which are typically l1lists rather than arrays, there 1s still a very
real and finite limit to the total size of programs that INTERLISP-10 can
accomodate. However, since much of the system and user compiled code can
be made swappable, there is that much more resident space available for
these other data types.

3.17

LK 25 R 4

+ %

LR R K K 2% 4

3.4.1 Overlays

The shadow space is a very large auxiliary address space used exclusively for
an INTERLISP data type called a swappable array. The regular address space is
called the "résident“ space to distinguish it from shadow spdace. Any kind of
resident array - compiled code, pointer data, binary data, or a hash array -
can be copied into shadow space (“"made swappable"), from which it is referred
to by a one-word resident entity called a handle. The resident space occupied
by the original array can then be garbage collected normally (assuming there
are no remaining pointers to it, and it has not been made shared by a makesys).
Similarly, a swappable array can be made resident again at any time, but of

course this requires (re)allocating the necessary resident space.

The mein purpose and intent of the swapping system is to permit utilization of
swappable arrays directly and interchangeably with resident arrays. thereby
saving resident space which is then available for other data types, such as

lists, atoms, strings, etc.

This is accomplished as follows: A section of the resident address space 1is

permanently reserved for a swapping buffer.‘e3 When a particular swappable array

is requested, it is brought (swapped) in by mapping or overlaying the pages of
shadow space in which it lies onto a section of the swapping buffer. This
process is the swapping or overlaying from which the system takes its name.
The array is now (directly) accessible. However, further requests for swapping
could cause the array to be overlaid with something else, so in effect it is
liable to go away at any time. Thus all system-code that relates to arrays must
recognize handles as a special kind of array, fetch them into the buffer (if
not already there), when necessary check that they have not disappeared, fetch
them back in if they have, and even be prepared for the second fetch to bring

the swappable array in at a different place than did the first.

23 Currently 64 512 word pages.

3.18

The major emphasis in the design of the overlay system has been placed on
running compiled code, because this accounts for phe overwhelming majority of
arrays in typical systems, and for as much as 60% of the overall data and code.
The system supports the running of compiled code directly from the swapping
buffer, and the function calling mechanism knows when a swappable definition is
being called, finds it in the buffer if it is already there, and brings it in
otherwise. Thus, from the wuser's point of view, there 1s no need to
distinguish between swappable and resident compiled definitions, and in fact

ccodep will be true for either.

3.4.2 Non-Code Arrays

The data-array functions (elt, seta, gethash, puthash, etc.,) do not yet

recognize swappable arrays, and will generate ARG NOT ARRAY errors if called
with one. This will be fixed someday, and then users will be free to copy
resident data arrays into swappable ones or vice-versa. However, note that
programs which generate and use pointers directly into the bodies of arrays, or
take CAR or CDR of them, will not work, since they cannot fetch the array‘in,

nor guarantee that it would not go away.

3.4.3 Efficiency

Once of the most important design goals for the overlay system was that
swappable code should not execute any extra instructions compared to resident
code, once it had been swapped in. Thus, the instructions of a swappable ﬁiece
of code are identical (except for two instructions at the entry point) to those

of the resident code from which it was copied,24 and similarly when a swappable

The relocatable instructions are indexed by a base register, to make them
run equally well at any location in the buffer. The net slowdown due to
this extra level of indirection is too small to measure accurately in the

overall running of a program. On analytical grounds, one would expect it
to be around 2%.

3.19

L+ e+ L

e+t b

4+

function calls another function (of any kind) 1t uses the exact same calling
sequence as any other code. Thus, all costs associated with running of

swappable code are paid at the point of entry (both calling and returning).25

The cost of the swapping itself, i.e. the fetch of a new piece of swapped code
into the buffer, is even harder to measure meaningfully, since two successive
fetches of the same function are not the same, due to the fact that the
instance created by the first fetch is almost certain to be resident when the
second is done, if no swapping is dqne in between. Similarly, two successive
PMAP's (the Tenex operation to fetch one page) are not the same from one moment
to another, even if the virtual state of both forks is exactly the same - a
difficult constraint to meet in itself .26 Thus, all that can be reported is
that empirical measuréments and observations have shown no consistent slowdown
in performance of systems containing swappable functionsp viz a viz resident

functions.

3.4.4 Specifications

Associated with the overlay system is a datatype called a swparray, (numeric
datatype 4), which occupies one word of resident space, plus however much of

shadow space needed for the body of the array. arglist, fntyp, nargs, getd,

putd, argtype, arraysize, changename, calls, printstructure, break, advise, and

® o D ar e W s Ceocownonso P C e OO O P PPN G RO NN AEOTHOPAEDNEUNTD DIV ODUEDWDGDSEn o

25 if the function in question does nothing, e.g. a compiled
(LAMBDA NIL NIL), 1t costs approximately twice as much 'to enter 1its
definition if it is swappable as compared to resident. However, very small
functions are _normally not made swappable (see mkswapp, page 3.21),
because they don't save much space, and are (typically) entered frequently.
Larger programs don't exhibit a measurable slow down since they amortize
the entry cost over longer runs.

26

The cost of fetching is probably not in the mapping operation itself but in
the first reference to the page, which has a high probability of faulting.
This raises the problem of measuring page fault activity, another morass of
uncertainty. The BBN INTERLISP group has a project in progress to measure
the interaction of INTERLISP-10 and TENEX.

3.20

edita all work equally well with swappable as resident programs. ccodep is true

for all compiled functions/definitions.

swparray[n;p;v]

swparrayp[x]

mkswap[x]

mkunswap[x]

mkswapp[fname;cdef]

Analogous to array. Allocates a swappable array.

Analogous to arrayp. Returns X if X is a swappable

array and, NIL otherwise.

If x 1is a resident array, returns a swappable
array which is a copy of Xx. If X 1s a literal
atom and ccodep[x] is true, its definition is
copied into a swappable array, and it is
(undoably) redefined with the latter. The value

of mkswap is X.

the inverse of mkswap. X is either a swappable
array, or an atom with .swapped definition on its

CODE property.

All compiled definitions begin 1life as resident
arrays, whether they are created by load, or by
compiling to core. Before they are stored away
into their atom's function «c¢ell, mkswapp 1is
applied to the atom and the array. If the value
of mkswapp is T, the definition is made
swappable; otherwise, it is left resident. By
redefining mkswapp or advising it, the user can
completely control the swappability of all future
definitions as they are created. The initial
definition of mkswapp will make a function
swappable if (1) noswapflg is NIL, and (2) the

3.21

name of the function is not on noswapfns, and (3)
the size of 1its definition is greater than

mkswapsize words, initially 128.

setsbsize[n] Sets the size of the swapping buffer to n, a
number of pages. Returns the previous value.

setsbsize[] returns the current size without

changing it.27

27 Currently, the system lacks error recovery routines for situations such as
a call to a swappable function which is too big for the swapping buffer, or
when the size is zero. Therefore, setsbsize should be used with care.

3.22

Index for Section 3

ARG NOT ARRAY (error message)
ARRAY[M;P;V] SUBR

array header

D A

array pointer oo
ARRAYP[X] SUBR

arrays P
atoms

carriage-return

CCODEP[FN] SUBR

CODE (property name) ..

compacting

CONCAT[X1;X2;

CONS[X:Y] SUBR venw....

data types

............

I R I A I I I I B R R RN I I]

e s 08000080000

e s e e s s 00000

e 00 e 0 e s e e s s s o000

LI I R e L R R B R A S R I N S RN)

© 6000090000000 Gees0

E (in a floating point number)
ELT[A;N] SUBR
ELTDLA;N] SUBR

end-of-line

EQPLX;Y] SUBR owvovonos

escape character

floating point numbers
FLTFMT{N] SUBR

free-1list

function definition cell
garbage collection

GENSYM[CHAR]
handle

hash arrays

" e s e e

HERALD[STRING] SUBR ...
HERALDSTRING (system variable/parameter)

integers ..

large integers
LINELENGTH[N] SUBR

line-feed
LIST{X1;X2;
list nodes

lists

...Xn] SUBR“

s e s o0 e 0 00 0 D A A A N I N
------ LR A I I R A B R R Y]

ooooooooooo LREARY * o e aee
LR R A) o e Ly e s e s e e
....... e s e e s s e LI
----- DR N A Y

......... S e ee e e s 00
oooooo D I I R e R IR)

. . I I R I O A N IR RN B
. . . D O I I R R A A I
. D I A] o s 0000 e
o s e e e 00 s e e e a0 .
. . LR R I L R R R B R A
. .. 800000800000 de0 0000
® 0006009600 e 00 a0 CRCAY

R N A I IR R

5 000004080000

% 0 0 0 0 0000000000000

I R R R O I I BT N A BN R R S S R A

LI O A I I R R B I S A A A A]

e e s e0 s s 000 e

N A I NN LY

R R I T B}

s s s 0 es 00000

e s e 00w e 0000

LR A A N

s e 0 e 0000000

¢ o

© 0 e e 00000000

------ . DI I I R I Y

literal atomseeenons
MAKESYS[FILE] EXPR e
MAKESYSDATE (system variable/parameter)

MINFS[N;TYP] SUBR

e s 0

MKATOM[X] SUBR

MKSTRING[X] SUBR

MKSWAP[X J

® o e e 808 e

.

e e oo v 0000000

e 000 e s

s 0000000000

s s e 00 s s 000

LR R A N A A]

.................. @ ¢ e s s 0 e e

MKSWAPP[NM;DF]

e s a0 000 s0 e

MKSWAPSIZE (Overlay variable/parameter)

MKUNSWAP[X]
HOBIND

octal

overlays

PACK[X7 SUBR
page

pname cell
pnames ..

pointer ...

@ 4 8 0000 000800000 e

ooooo

e 09 000 0 e s e

HOSWAPFHNS (Overlay variable/parameter)

L R N A N R

LR RSN SR)

LI R R R R I R R R N S A A A S)

e e 00 e e

60009000 0

LR R A A)

e 00000 s a0

s e s e e e e

e e oo

e s 0 e e e 000

s e e s e

L N A

e e0 0000000

s 00 s a0

et e s s e e

o6 0000800

L R R R N I I I I N B N R A A A I R R SR N)

R I R R N I I SR N B RS R S SN A}

4 ¢ 89 0690000 0e 000300 00000

® ¢ 3 0 e v 00000000000t 000

e s 0000

e s v e 000000

s s 00 e

@ ¢ % 0 2 2 0 00 000 e 0086005080000 000 E0O0OD0

9 * 9 e s a0 000 s 00000 LTEEEETETSE

----- L I R R R R R R I S B SR N S

INDEX.3.1

e e e e 0000

e o e s e e e

wwwwwwwwwwwuuwwwwuwuwuwwwwuwwwuwuwwwwwwwuwwwwwwwwwwwwwww

Page
Numbers

°c O
[y
P

12,14

[= ~ N Vs] .- v

Pt e - k=]

[SS AN (3] N~
e

e e 8 & e & 8 e ® ° e e s e »

« ® e« o o s o

@ 9
=S
(32}

e ® o e e o o e

[\
=3

[y
(722 I
- N
o N

N 8.
]
-3
pud
[

« e e

°

-2,4-5,12

hﬂbﬁ&r—‘Nh‘G\NbNN

.

PRINTIX;FILE] SUBR ..
PRINTLEVEL[N] SUBR .
PRINI[X;FILE] SUBR ..
PRINZ[X;FILE] SUBR
private pages

s e a0 00

property 1list

Q (following a number)
RADIX[N] SUBR
RECLAIM[N] SUBR .

RUN (tenex command)
SETA[A;N;V] ...
SETD[A;N;V] ...
SETSBSIZE[N] SUBR
shared pages

shared system
sharing ceaceae
small integers

SHMALLP[N]
space
storage allocation .
string characters
string pointers

strings
SUBSTRING[X;N;M] SUBR
swappable array
swapping buffer
SWPARRAY[N;P;V] SUBR

SWPARRAYP[X] SUBR
TENEX

LRI

9 600 a0

unboxed numbers (in array;)

4.6 0 5000060000000 N LSRRI SLT SRS ODS

D)

4 (followed by a number)

% (escape character)

L R I T N LR

e o0 0 v 0000

CRCRCRE Y

s s e e e e e e 00000

® s 000000000

e s s 000 0

e e 0 000

LR N]

s e 0.

----- LR

s 000000

e e 00000

s e 0000

s e s e 00000

s s 00 e 0000

L A I A I I A I BRI]
e 9 00 0000000000000 esssse s
I I N I R S I B BRI}

L I R O I BN B SN B B B N)

s s e s s es s

s eo s 0000

L R B R N B I I R A B I RN I B

relocation information (in arrays)

LI R A AR A S A I IR)

s 0 e s e v o0

© © 4 0000000000600 0000060sss0LNL0eePe

R I I I I I I A I A BN R N]

L I R R R I RN R B I BN

0 6 000 0B L L EELEPILOIEIOLIIELEEELELELEDIEDPOEINY

4 60008 00000 eELREEOEEIGIOIILOIENIEOLEOEODNGENTOTS

L R I R I S R I A A I B BN A)

49 0 6080000 e0 NG EIOILELEIEIEIEELONTS

LR B}

e e 0.

oo

L O R I R B R N I)

© 6 6 8 4.0 4 9 80080006008 e O OIPIEIEENSESDP
L I I R I B R R R R A R A A B BT T AT N I I]
RN I RN BT SRS R S N)
LI N I I BRI BN SN R N N R B N A I LR

L R I I I O I I I R I R R N A SRR BN)

et s 0000

e o s s e e s ettt

DR R S S A A R SRR R B N R Y

R R I I R R I A I A I KRN B)

L A I I R R A N I I RN A B I IR

® 0 0 20 00000000000 00000000

R R R R I A R R R A A A I B NI

e s e e s e v 00000

CCRCE Y

I I I R I I R I R N A A I)

e s 000

LR B SR BN

LI I R I O A R R R I IR B BRI)

s 0o e

(1n a floating poiﬁt number)

e 0o 00000000

DR I I I I A A A I BB XY
L I I R A R A A BRI NN S SRR RN BRI)
D I I I R B A I R R R R N A RN BN N)

LI R N R I R R R B A I I R N R BRI I I}

INDEX.3.2

LI I O O I I R A I R NN

s e o e @

. ~

(<] (78
-8
(s
>

- OO N
[}

i-12
1-12

gt

e e o ®» @ ® & ®» © o & . e e e o o & *+ o »

c M OOPE e v N
’
N
-

~
-
[}

- -
— -
- —

e 8 ® e e e e o ® e e ° @

WWWWWWwwWwwWwWwWwwwWwWwwWwwWwwwwwwwwwwwWwwwwwwwLwwwwww

. o

NNONONVNNONNONNN - st pardt NIV b bt et A N QO O 2 O D= NN O

SECTION 4
FUNCTION TYPES AND IMPLICIT PROGN

In INTERLISP, esach function may independently have:
a. its arguments evaluated or not evaluated;
b. a fixed number of arguments or an indefinite number of arguments;
c. be defined by an INTERLISP expression, by built-in machine code, or by

compiled machine code.

Hence there are twelve function types (2 x 2 x 3).

4.1 Exprs

Functions defined by INTERLISP expressions are called exprs. Exprs must begin

with either LAMBDA or NLAMBDA.Z indicating whether the arguments to the
function are to be evaluated or not evaluated, respectively. Fellowing the

LAMBDA or NLAMBDA in the expr is the ‘'argument list', which is either

(1) a list of literal atoms or NIL (fixed number of arguments); or

(2) any literal atom other than NIL, (indefinite number of arguments).

Case (1) corresponds to a function with a fixed number of arguments. Each atom

-------------------------- PR PRI ITOAOCRCOCRNCPOVBVIOCATDD DDA GG DODC BT WD oD DGO DD

Where unambiguous, the term expr is used to refer to either the function,
or its definition.

4.1

++ + + ¢

in the 1list is the name of an argument for the function defined by this
expression. When the function is called, its arguments will bé evaluated or
not evaluated, as dictated by whether the definition begins with LAMBDA or
NLAMBDA, and then paired with these argument names.2 This process is called
"spreading" the arguments, and the function is called a spread-LAMBDA or a

spread-NLAMBDA.

Case (2) corresponds to a function with an indefinite number of arguments.
Such a function is called a nospread function. If its definition begins with
NLAMBDA, the atom which constitutes its argument list is bound to the list'of
arguments to the function (unevaluated). For example, if FOO is defined by
(NLAMBDA X =--), when (FOO THIS IS A TEST) is evaluated, X will be bound to
(THIS IS A TEST).

If a nospread function begins with a LAMBDA, indicating its arguments are to be
evaluated, each of its n arguments are evaluated and their values stored on the
pushdown 1list. The atom following the LAMBDA is then bound to the number of
arguments which have been evaluated. For example, if FOO is defined by
(LAMBDA X --) when (FOO A B C) is evaluated, A, B, and C are evaluated and X is
bound to 3. A built-in function, arg({atm;m], is available for computing the

value of the mth argument for the lambda-atom variable atm. arg is described

in section 8.

eval. In fact, since the function type can specify only that all arguments
are to be evaluated or none are to be evaluated, if it 1is desirable to
write a function which only evaluates some of its arguments, e.g. setq, the
function is defined as an nlambda, i.e. no arguments are evaluated in the
process of calling the function, and then included in the definition itself
are the appropriate calls to eval. In this case, the user should also put
on the property list of the function under the property INFO the value
EVAL to inform the various system packages such as . DWIM, CLISP,
PRINTSTRUCTURE, etc., that this function in fact does evaluate 1its
arguments, even though it is an nlambda.

4.2

4.2 Compiled Functions

Fundtions defined by expressions can be compiled by the INTERLISP compiler, as
described in section i8, “The Compiler and Assembler". In INTERLISP-10,
functions may also be written directly in machine code using the ASSEMBLE
directive of the compiler. Functions created by the compiler, whether from S-
expressions or ASSEMBLE directives, are referred to as compiled functions. In
INTERLISP-10, compiled functions may be resident or swappable, as'described in

section 3.

4.3 Function Type

The function fntyp returns the function type of 1t¢s argument. The value of

fntxg is one of the following 12 types:

EXPR . CEXPR SUBR
FEXPR CFEXPR FSUBR
EXPR® CEXPR® SUBR®
FEXPR® CFEXPR® FSUBR®

The types in the first column are all defined by expressions. The types in the
second column are compiled versions of the types in the first column, as
indicated by the prefix C. In the third column are the parallel types for
built-in subroutines. Functions of types ip the first two rows have a fixed
number of arguments, i.e., are spread functions. Functions in the third and
fourth rows have an indefinite number of arguments, as indicated by the
suffix =, The prefix F indicates no evaluation of arguments. Thus, for

example, a CFEXPR® is a compiled form of a nospread-NLAMBDA.

4‘3

A standard feature of the INTERLISP system is that no error occurs if a spreud
SJunction is called with too many or too few arguments. If a function is called
with too many arguments, the extra arguments are evaluated but ignored. If ¢
Sfunction is called with too few arguments, the unsupplied ones will Dbe
delivered as NIL. In fuct, the function itself cannot distinguish between
betng given NIL as an argument., and not being given that argument, e.g..
(FO0) und (FOO NIL) are exactly the same for spread functions.

4.4 Progn

progn is a function of an arbitrary number of arguments. progn evaluates theo
arguments in order and returns the value of the last. i.e., it is an extension

of the function prog2 of LISP 1.5. Both cond and lambda/nlambda expressions

have been generalized to permit ‘implicit progns' as described below.

4.5 1Implicit Progn

The conditional expression has been generalized so that each clause may contain

n forms (n > 1) which are interpreted as follows:

(COND
(P1 E11 E12 E13)
(P2 E21 E22) (1]
(P3) _
(P4 E41))

will be taken as equivalent to (in LISP 1.5):

(COND ,
(P1 (PROGN E11 E12 E13))
(P2 (PROGN E21 E22))
(P3 P3) (2]
(P4 E41)
(T NIL))

Note however that P3 is evaluated only once in [1], while it is evaluated a
second time if the expression is written as in [2]). Thus a clause in a cond

with only a predicate and no following expression causes the value of the

4.4

predicate itself, if non-NIL, to be returned. Note also that NIL is returned
if all the predicates have value NIL, i.e., the cond ‘falls off the end'. No
error is generated.
LAMBDA and NLAMBDA expressions also allow implicit progn's; thus for example:
(LAMBDA (Vi V2) (F1 Vi) (F2 V2) NIL)
is interpreted as:
(LAMBDA (V1 V2) (PROGN (F1 V1) (F2 v2) NIL))
The value of the last expression following LAMBDA (or NLAMBDA) is returned as

the value of the entire expraession. In this example, the function would always

return NIL.

4.5

Index for Section 4

Page
Numbers

ARGLVARGM] FSUBR i iuiienreenronsecasnenosonsansoes
argument evaluationcececriercectorcrossenncas
argument 1iStciiiciitrerencrcstcessterssnens
ASSEP‘BLE o RN R R R R R R T T
CEXPR (function type) ceseareresarttetestser a0
CEXPR®* (funcCtion tYPE) cievervennonoesonoaoansnee
CFEXPR (function type) ...eveeierecrvonssncaananns
CFEXPR® (function TYP@) ...veerecoecenoonnonsnans
compiled fUNCTIONS .. itiireereeenootoneovansanns
COMPIler L ittt itieeeoeesnonsosvssanecasnnsanssssns
COMD[C1;C2;. Cn] FSUBR® ...t ieenernccncccenans
EVAL{X] SUBR ¢ o v 00 @ 6 0 2 00 6 0% OGO LOOLLELINLIIEELIEOOENNE
EXPR (funcCtion TYPE) tvvveeerenrenenneensnnnnnans

XPrs oo v L N N I I I A R A S S S A S S

L
[V

e © o e o o e e o

EXPR* (function TYPe) t.vevereenanoonnnsnnnssanns
FEXPR (function TYPE) wueieereesoeecenennnioannans
FEXPR® (funCtion TYPE) .eveeeeesoocescnnnonnssone
fixed number of argumentsceeeseesrosneces
F”TYP[XJ ------- L I R R I I R e A A I N B R N)
FSUBR (function type) S
FSUBR® (function tYPE) v.vevreeeneenennnsoannnans
FUNCLION BYPES i iiiireerseeoesreasonsacnosnosnenss
implicit progn eeiveennns citecs e s st encene e
incorrect number of arguments cesesetettrsor e
indefinite number of argumentsc.ceevevecnn
INFO (property NBME) v iieveresasosonsooononnansos
LAMBBA Gs s ereastses it enbess it i annnnsen
HLAMB DA L it it eteteenessonseassoasosnnnnans
nospread funNCtioNSieivteeeceacoeosnonanans
PROGNLX1;X2;:...5Xn] FSUBR® . .viiieeernvoorsnnnnns
PUSHAOWN 118t ittt oeoeseereononssennsnsasnss
spread fUNCLIONS .t ..vtirreeenneonoesaneaosnnnasas
spreading argumentsceeceenoecceanscvaonnsas
SUBR (function tyPe)vieeereeenonnesorsannnees
SUBR® (fUunNCTion TYPE) tvieencnnsosssnnsennnnnnsss
TOO0 few arguments ...eveeesoessosacscsessosanssns
T00 ManNy argumentsceceoeecsocoasncossoonansnsne

© o o o o e o e o e o e 4 o o o o o e o ° e o o
R []
NN 3
- -
(2)2)

.

H L L L LODLDOELOELHLLDLDDLDDHDDHDDDL0000000000080808

.

S HLWWNONNNDBDN = NNDLER,WWWRWWWRrWNEWWWWRWWWr =N

INDEX.4.1

SECTION 5

PRIMITIVE FUNCTIONS AND PREDICATES

5.1 Primitive Functions

carfx]

cdrix]

caar[x] = carf{car[(x]]

cadr{x] carfcdr[x]]
cddddr[x] =

cdrlcdr[cdr[cdr[x]]]]

cons[x;y]

car gives the first element of a 1list x, or the
left element of a dotted pair x. For literal
atom, value is top level binding (value) of the
atom. For all other nonlists, e.g. strings,
arrays, and numbers, the value 1s undefined (and

on some implementations may generate an error).

cdr gives the rest of a list (all but the first
element). This is also the right member of a
dotted pair. If x is a literal atom, edri{x] gives
the property 1list of X. Property 1lists are
usually NIL unless modified by the user. The

value of cdr is undefined for other nonlists.

All 30 combinations of nested cars
and cdrs up to 4 deep are included
in the system. All are compiled

open by the compiler.
cons constructs a dotted pair of X and y. If y is

a list, X becomes the first element of that list.

To minimize drum accesses the fol;owing algorithm

5.1

cons[x;y] is placed

is used in INTERLISP-10, for finding a page on
which to put thed constructed INTERLISP word.

1) on the page with y if y is a list and there is room;

otherwise

2) on the page with x if x is a list and there is room;

otherwise

3) on the same page as the last cons if there is room;

otherwise

4) on any page with a specified minimum of storage, pre;ently 16 LISP

words.

conscount[]

rplacd[{x;y]

value is the number of conses since this INTERLISP

was started up.

Places the pointer y in the decrement, i.e. cdr,
of the cell pointed to by x. Thus it physically
changes the internal 1list structure of X, as
opposed to cons which creates a néw list element.
The only way to get a circular list 1is by using
rplacd to place a pointer to the beginning of a
list in a spot at the end of the 1list.

The value of rplacd is X. An attempt to rplacd
NIL will cause an error, ATTEMPT TO RPLAC NIL,
(except for rplacd[NIL;NIL]). For Xx a 1literal
atom, rplacd[x;y] will make y be the property list
of x. For all other non—listé. the effect of

rplacd is undefined.

5.2

rplacalx;y]

similar to rplacd, but replaces the address
pointer of x, i.e., car, with y. The value of
rplaca is x. An attempt to rplaca NIL will cause
an error, ATTEMPT TO RPLAC NIL, (except for
rplaca[NIL;NIL]). For X a literal atom,
rplaca[x;y] will make y be the top level value for
%. For all other non-lists, the effect of rplaca

is undefined.

Convention: Naming -a function by prefixing an existing function name with f
usually indicates that the new jfunction is a fast version of the
old, i.e., one which has the same definition but compiles open and
runs without any ‘safety’ error checks.

frplacd[x;y]

frplaca[x;y]

quote[x]

kwote[x]

s e e w e w o>

Has the same definition as prplacd bué compiles
open as one instruction. Note that no checks are
made on X, so that a compiled frplacd can clobber

NiIL, producing strange and wondrous effects.
Similar to frplacd.

This is 'a function that prevents its arguments
from being evaluated. Its value is ¥ itself, e.g.

(QUOTE F00) is F00.!

(LIST (QUOTE QUOTE) x),
if x=A, and y=B8, then
(KWOTE (CONS x y))= (QUOTE (A . B)).

Since giving quote more than one argument, e.g. (QUOTE EXPR (CONS X Y)), is

almost always a parentheses error, and one that would otherwise go

undetected, quote

PARENTHESIS ERROR.

itself generates an error in this case,

5.3

cond[cl;cz;...;ck]

selectq[x;yl;yz;...

Ypizl

The conditional function of INTEﬁLISP. cond, takes
an indefinite number of arguments c,,c,. ... g,
called clauses. Each clause c, is a list (g,

eny) of n 2 1 items, where the first element is
the predicate, and the rest of the elements the

consequents. The operation of cond can be

paraphrased as IF @4 THEN €51 +++ €4
ELSEIF ey, THEN @yp ... €, ELSEIF 83

The clauses are considered in sequence &s follows:
the first expression 844 of the ciause <y is
evaluated and its value is classified as false
(equal to NIL) or true (not equal to NIL). If ;he
value of e, 1s true, the expressions e, ... g 4
that follow in clause ¢; are evaluated 1in
sequence, and the value of the conditional is the
value of &ni’ the lait expreﬁsion in the clause.
In particular, if n=i, i.e., if there i1s only one
expression in the clause c,, the valueb of the
conditional 1is the value of €44- (which is

evaluated only once).

If e,y is false, then the remainder of clause c;
is ignored, and the next clause ¢;,, 1is
considered. If no g,, is true for any clause, the

value of the conditional expression is NIL.

selects a form or sequence of forms based on the
value of its first argument x. Each y; is a list
of the form (s 8(y 834 -+ &y) where s, is the
selection key. The operation of selectq can be

paraphrased as:

5.4

IF x=s; THEN ey, ... e,
ELSEIF x=s, THEN ... ELSE z.

If s, is an atom, the value of x is tested to see
if it 1s eq to Sy (not evaluated). If so, the
" expressions 84y --- €y are evaluated in sequence,
and the value of the selectq is the value of the

last expression evaluated, 1.e. Eki"

If s, is a list, the value of X is compared with
each element (not evaluated) of s,, and if x is eq
te any one of them, then ey to ey are avaluated

in turn as above.

If Yy is not selected in one of the two ways
described, y,,, is tested, etc., until all the y's
have been tested. If none is selected, the value
of the selectq is the value of 2. 2 must be

present.

An example of the form of a selectq is:

[SELECTQ (CAR X)
(Q (PRINT FOO)
(FIE X))
((AEIOU)
(VOWEL X))
(COND
((NULL X)
NIL)
(T (QUOTE STOP]

which has two cases, Q and (A E I OU) and a

default condition which is a cond.

selectq compileé open, and 1is therefore very fast;

5.5

progl[xl;xz;...;xn]

progn[xli;XZi;...;X“]

prog(args;el;ezz..

.;en]

however, it will not work if the value of X is a
list, a large integer, or floating point number,

since selectq uses eq for all comparisons.

evaluates its arguments in order, that is, first
Xy» then Xx,, etc, and returns the value of its
first argument X4» ©.9. (PROG1 X (SETQ X Y)) sets

X to y, and returns x's original value.

progn evaluates each of 1its arguments in order,
and returns the value of its last argument as its
value. progn is used to specify more than one
computation where the syntax allows only one, e.g.
(SELECTQ ... (PROGN ...)) allows evaluation of

several expressions as the default condition for a

selectq.

This function allows the user to write an ALGOL-
like program containing INTERLISP expressions

(forms) to be executed. The first argument, args,

- is a list of local variables (must be NIL if no

variables are used). Each atom in args is treated
as the name of a local variable and bound to NIL.
args can also contain 1lists of the form
(atom form). In this case, atom is the name of
the variable and 1is bound to the value of form.
The evaluation takes place before any of the
bindings . are performed, a.9.,
(PROG ((X Y) (Y X)) ...) will bind X to the value

of y and y to the (original) value of X.

5.6

go[x]

return[x]

The rest of the prog is a sequence of non-atomic
statements (forms) and atomic symbols used as
labels for go. The forms are evaluated
sequentially; the labels serve only as markers.
The two special functions go and return alter this
flow of control as described below. The value of
the prog is wusually specified by the function
return. If no return is executed, i.e., if the
prog "falls off the end,” the value of the prog is
NIL.

go is the function used to cause a transfer in a
prog. (GO L) will cause the program to continue
at the label L. A go can be u;ed at any level in
a prog. If the label 1s not found, go will search
higher progs within the same function., we.g.
(PROG == A == (PROG =-=- (GO A))). If the label is
not found in the function in which the prog
appears, an error 1s generated, UNDEFINED OR
ILLEGAL GO.

A return is the normal exit for a prog. Its
argument is evaluated and is the value of the prog

in which it appears.

I1f ¢ go or return is executed in an interpreted function which is not « prog.
the go or return will be executed in the last interpreted prog entered if any.

otherwise cause an error.

go or return inside of a compiled junction that is not a prog is not allowed.
and will cause an error at compile time.

As a corollary,

go or return in a functional argument, e.g. to sort, will not

5.7

work compiled. Also, since nlsetq's and ersetq's compile as separate

functions, a go or return cennot be used inside of a compiled nlsetq or ersetqg

if the corresponding Qrbg is outside, i.e. above, the nlsetq or ersetq.

set[x;y] ’ This function sets x to y. Its value is y. If x
is not 'a 1literal atom, causes an error,
ARG NOT ATOM - SET. If x is NIL, causes an error,
ATTEMPT TO SET NIL. Note that 'set 1s a normal
lambda-spread function, i.e., 1its arguments are
evaluated before it is called. Thus, if the value
of x is ¢, and the value of y is b, then set[x;y]
would result in ¢ having value b, and b being

returned as the value of set.

setq[x;y] An nlambda version of set: the first argument is
not evaluated, the second is.® Thus if the value
of X is C and the value of Y is B, (SETQ X Y)
would result in X (not C) being set to B, and B
being returned. If X is not a literal atom, an
error is generated, ARG NOT ATOM - SET. If x is
NIL, the error ATTEMPT TO SET NIL is generated.

setqq[x;y]) Like setq except that neither argument is
evaluated, e.g. (SETQQ X (A B-C)) sets X to
(A B C).

2 Since setq is an nlambda, neither argument is evaluated during the calling

process. However, setq itself calls eval on its second argument. Note
that as a result, typing (SETQ var form) and SETQ(var form) to lispx 1is
equivalent: in both cases var ‘1s not evaluated, and form is.

5.8

rpaglx;y] like setq, except always works on top level
| binding of X, "i.e. on the value cell. rpagq
derives its name from rplaca quote, since 1t is
essentially an nlambda version of rplaca, e.g.
(RPAQ FCO form) is equivalent to
(RPLACA (QUOTE FOO) form).

rpaqqlx;y] like setqq for top level bindings.

rpaq and rpaqq are used by prettydef (Section 14). Both rpagq and rpagqgq

generate errors if X 1s not atomic. Both are affected by the value of dfnflg
(Section 8). If dfnflg = ALLPROP (and the value of X is other than NOBIND),
instead of setting x, the corresponding value is stored on the property list of

X under the property VALUE.

Resetvar and Resetform

resetvar[var;new=-value;form] The effect of resetvar is the same as
(PROG ((var new-value)) (RETURN form)), except
that resetvar 1is designed to work on GLOBAL
variables, i.e. variables that must be reset, not
rebound (see section 18). resetvar resets the
variable (using frplaca), and ihen restores 1ts
value after evaluating form. The evaluation of

form is errorset protected so that the value is

restored even if an error occurs. resetvar also
adds the old value of var to a global 1list, so
that if the user types control-D (or equivalently
in INTERLISP-10, control-C followed by REENTER)

while form is being evaluated, the variable will

5.9

be restcered by the top level INTERLISP executive.
The value of resetvar is the value returned by
form, if no error occurred. Otherwise, resetvar
generates an error (after restoring the value of

var). resetvar compiles open.

For example, the editor calls lispx to execute editor history
commands by performing (RESETVAR LISPXHISTORY EDITHISTORY (LISPX -=)), thereby

making lispx work on edithistory instead of lispxhistory.

The behavior of many system functions is affected by calling certain functions,

as opposed to resetting variables, e.g. printlevel, linelength, input, output,

radix, gcgag, etc. The function resetform enables a program to treat these

functions much like variables, and temporarily change their "setting".

resetform[formi;form2] nlambda, nospread. formi is evaluated, then form2
is evaluated, ‘then formi 1is ‘'restored', we.g.

(RESETFORM (RADIX 8) (FOO)) will evaluate (FOO)
while radix is 8, and then restore the original

setting of radix.

formi must return as its value 1its "previous
setting” so that its effects can be undone by

applying car of formi to this value.

resetform is errorset protected like resetvar, and
also records its information on a global list so

that after control-D, forml is properly restored.

The value of resetform is the value returned by

formZ, ‘if no error occurred. Otherwise,

resetform generates an error (after restoring

formi). resetform compiles open.

Since each call to resetvar or resetform involves a separate errorset and some

additional overhead, the functions resetlst and resstsave provide a more
efficient (and convenient) way of performing several resetvars and/or

resetforms at the same time.

resetlstfresetx] ‘ nlambda, nospread. resetx is a 1list of forms.
resetlst sets up the errorset so that anyireset
operations performed by resetsave are restored
when the evaluation of resetx has been completed
(or an error occurs, or a control-D is typed).
The value of resetlst is the value of the last
form on resetx, if no .error occurs, otherwise
resetlst generates an error (after performing the

necessary restorations). resetlst compiles open.

resetsave[resetx] nlambda, npspread function for wuse under a
resetlst. Combines functions of yresetvar and
resetform. If car of resetx is atomic, acts 1like
resetvar, e.g.
(ﬁESETSAVE LISPXHISTORY EDITHISTORY) resets the
value of 1lispxhistory to be edithistory and

provides for the original value of lispxhistory to

be restored when the resetlst completes operation,
(or an error occurs, or a control-D is typed).
If car of resetx is not atomic, resetsave acts
like resetform, e.g. {RESETSAVE (RADIX 8)})
performs (RADIX 8), and provides for radix to be

reset to 1its original value when the resetlst

5.11

completes. For functions which do not return
their "previous setting”, resetsave can be given
the restoration expression as a se;ond argument,
e.g.

[RESETSAVE(SETBRK ==)(LIST(QUOTE SETBRK)(GETBRK].3

4 (RESETSAVE NIL form) can be used to treat the

value of form as a restoration expression, e.g.

(RESETSAVE NIL (LIST (QUOTE CLOSEF) FILE)) - will

cause file to be closed when the resetlst that the

resetsave is under completes (or an error occurs

or -a control=-D is typed).

Note that resetsave provides a way of
conditionally resetting a variable or form, e.g.

(RESETLST == (COND (== (RESETSAVE =--))) —-);

resetsave compiles open. Its value is not a

‘useful' quantity.

5.2 Predicates and Logical Connectives

atom[x]

litatom[x]

numberp[x]

~is T if x is an atom; NIL otherwise.

is T if x is a literal atom, i.e., an atom and not

a number, NIL otherwise.

is x if x is a number, NIL otherwise.

-- Boeoceoseoees

Note that restoration expressions are 'evaluated' by applying their car to

their cdr, as described under discussion of resetform.

5.12

Convention: Functions that end in p are usually predicoies., i.e. they test for
some condition.

stringp(x] is x if X 1s a string, NIL otherwise.d
arrayp[x] is x if x is an array, NIL otherwise.
listp[x] is x if X i1s a list-structure, i.e., one created

by one or mora conses; NIL otherwiss.

Vote that arrays and strings are not atoms, but are also not lists, i.e. both
atom and listp will return ¥IL when given an array or a string.

nlistp[x] not[listp[x]]

eqlx;y] The value of eq is T, if X and y are pointers to
the same structure in memory, and NIL otherwise.
eq 1s compiled open by the compiler. Its value is
not guaranteed T for equal numbers which are not

small integers. See egp.

neq(x;y] ' The value of neq is T, if x is not eg to y, and

NIL otherwise.

nulllx] eq[x;NIL]

not[x] same as null, that is eq[x;NIL].

eqplx;y] . The value of eqp is T if x and y are eq, i.e.
a---—-----------------------------------v----------------—---o ------------------

pointers to the same structure in memory, or if X
and y are numbers and are equal in value.® Its

value is NIL otherwise.

equallx;y] The value of equal is T (1) if X and y are eq,

i.e. pointers to the same structure in memory; or
(2) egp, i.e. numbers with equal value; or (3)
strequal, i.e. strings containing the same
sequence of characters; or (4) lists and car of x

is equal to car of y, and cdr of X is equal to cdr

of x.s The value of equal is NIL otherise. Note
that x and 2 do not have to be eq.

aNd[xl;xzz.-.;xn] Takes an indefinite number of arguments (including

0). If all of its arguments have non-null value,
- its value 1s the value of its last argument,
otherwise NIL. E.g. and[x;member[x;yJ] will have
as its value either NIL or a tail of y. and[]=T.
Evaluation stops at the first argument whose value

is NIL.

Orfxlsxz:-‘-;xnlv Takes an indefinite number of arguments (including

:’5--

6

0). Its value is that of the first argument whose
value is not NIL, otherwise NIL if all arguments
have value NIL. E.g. or[x;numberp{y]] has its
value X, y, or NIL. or[]=NIL. Evaluation stops at

the first argument whose value is not NIL.

--------------------- [EAX TR E R LR TR TR Ry L L R R R N R R R N R R R R

For more discussion of eqp and other number functions, see Section 13.

A loose description of equal might be to say that x and y are equal if they
print out the same way.

5.14

evaeryleveryx;everyfni;everyfn2) Is T if the result of applying everyfni

some[somex;somefni;somefn2]

? ----------------- oo oon

to each element in everyx is true, otherwise NIL.
E.g., every[(X Y Z); ATOM]nT.

every © operates by computing
everyfnl[car[everyx]].7 If this ylelds NIL, every
immediately returns NIL. Otherwise, every computes
everyfn2[everyx], or cdr[everyx] if everyfn2=NIL,
and uses this as the 'new' everyx, and the process
continues, e.g. every[x;ATOM;CDDR] 1s true |if

every other element of X is atomic.
every compliles open.

value 1is the tail of somex beginning with the
first eiement that satisfies somefnl, i.e., for
which somefni applied to that element 1is true.

Value 1s NIL if no such element exists.

E.g., some[x;(LAMBDA (Z) (EQUAL Z Y))] is
equivalent to member[y;x]. some operates
analagously to every. At each staée.

somefnifcar[somex];somex] is computed, and if this
is not NIL, somex is returned as the value of
some. Otherwise, somefn2[somex] is computed, or
cdr[somex] if somefn2=NIL, and used for the next

somex.

some compiles open.

Actually, everyfni[car[everyx];everyx] is computed, so for example everyfni
can look at the next element on everyx if necessary.

5.15

notany[somex;somefni,somefn2] same as not[some[somex;somefni;somefn2]]
notevery[everyx;everyfni;everyfn2] not{every[everyx;everyfni;everyfn2])

memb[X;y] Determines if X is a member of the list y, i.e.,
if there is an element of y eg to X. If so, its
value is the tail of the list y starting with that

element. If not, its value is NIL.

fmemb[x;vy] | Fast version of memb that compiles open as a five
instruction 1loop, terminating on & NULL check.
Interpreted, fmemb gives an error,
. BAD- ARGUMENT - FMEMB, 1if y ends in a non-list
other than NIL.

member[x;y] Identical to memb except that it uses equal

instead of eq to check membership of X in y.

The reason for the existence of both memb and member is that eq compiles as one
instruction but equal requires a function call, and is therefore considerably
more expensive. VWherever possible, the user should write (and use) functions
that use eq instead of equal.

tailp(x;y] Is x,%1f x is a list and a tail of y, i.e., x is
eq to some number of cdrs > 08 or Y, NIL

otherwise.

assoc[x;y] y is a list of lists (usually dotted pairs). The

value of assoc is the first sublist of y whose car

é ---------------- N T L Ny T A cSecescsvenuvavase

If X is eq to some number of cdrs > 1 of y, we say X is a proper tail.

5.16

fassoc[x;v]

sassoc[x;y]

is eq to Xx. If such a list is not found, the
value is NIL. Example:

assoc[B;((A . 1) (B . 2) (C . 3))] = (B . 2).

Fast version of assoc that compiles open as a 6
instruction 1loop, terminating on a NULL check.
interpreted, fassoc gives an error if y ends in a

non-1list other than NIL, BAD ARGUMENT - FASSOC.

Same as assoc but uses equal instead of eq.

5.17

Index for Section 5§

Page
Numbers

ALLPROP ..., O 5.9

AND[X1;X2; -Xn] FSUBR® ... iiiveevernconsnnnanes 5.14

ARG NOT ATOM - SET (error message)ceveeneee 5.8-9
ARRAYP[X] SUBR PP T K

ArTraysS vuveveeenn t et escasceeseesencatesar s 5.13

ASSOCE X YT ittt i i sttt 5.16

ATOM[X] SUBR O S ¥4

ATTEMPT TO RPLAC NIL (error messaga) Cesesaseaans 5.2-3
ATTEMPT TO SET NIL (error messSage) " v..ieevecevnoses
BAD ARGUMENT = FASSOC {error message)cesvees
BAD ARGUMENT - FMEMB (error message)cce00e
CAR[X] SUBRvune.... P N
CDR[(X] SUBR e eeerserasessess st ass s en
CO”D[CI;CZ;...;C"] FSUBRR LR R R I R R R AL IR]
cond clause S e
CONSEX Y] SUBR it itiiinitenneeesasasoesenansnns
ConsS algorithm ...t iiereneensnesnoasossonnna
CONSCOUNT[N] SUBR veseen cresnecr et anan
COI’H’-?‘OI-D “« v o e ®oe e s ® % % 6 5 5 05 0 ¥ OO LIV GGG OO NE LS
DFNFLG (system variable/parameter)cceeeeecceo
dotted pair Ciesasesesacretsstetserecaer et
EOL X Y] SUBR i iiiitriereerennosoessnnassoseennns
EQP[X;Y] SUBR tiieneseicesrenssnssnaissenuse
EQUALLX:;Y] B T
ERRORSET[U;V] SUBR seeceensssnasesosnnn
ERSETQ[ERSETX] NL Maesssersresssenetony
EVERY[EVERYX;EVERYFN1; EVERYFNZ] Chesesretienesens
false Ceeeisresseanisiavaceretrasaneas
FASSOC[X Y] LR A) L L R R I A I I I A A LI BB)
FMEMB[X;Y] T T
FRPLAFA[X Y] SUBR ® 0 6 0 2 5 0 0 2 W 00 8 00 806N POt DN ECS
FRPLACDIX;Y] SUBR titivertvecennnsonanssononsanns
GCGAGLMESSAGE] SUBR v it iiiienieseoenessesoncnnnns
global variablesiiieiiinenececennencnrnonas
GO[X] FSUBR“ R K I I R e I I A I R B A A A B 2 A BN R B B N A]
ILLEGAL RETURN (error mesSSage) .«.eeoivevsscevonsns
INPUTLFILE] SUBR 1 iivtiiinenenneonnoenescnssonnas
KWOTELX] C et ee st e ettt ettt as et en bt
large IntegersS i .iiieiir it eirnonnennanetanrorans
LINELENGTHIN] SUBR ttietvrrersceosesnnsnsonensnns
LISTP[X] SUBR LA N B IO IR A T IR I I Y N IR I IR I DAY I T IR B B REY IR Y IR JNE BN RN N RN Y O)
lists e e e et easscesees et sssr s esae s
LITATOM[X] SUBR cesess s csssesereetacenss ety
literal AtOmMS .. .i.itieenererenooeeseanononassenes
local variables S easecrereasascecasanansnas 5.6

MEMB[X;Y] ceesessns cteeserseceneseseasaanne e 5.16
MEMBERIX;Y] +oneeerennnnn ces e B 5.16
NEQLX;Y] et et et seiteetsetteetaseseanenan 5.13
NLISTP[X] S e essrtsaretescsttstsesasaennss e 5.13
HLSETQLNLSETX] NL tiiiitiiiiieenennenssnsnennnnns 5.8

NOBIND iiiieennnn s eaeias st e et s s st esans 5.9

NOT[X] SUBR T 5.13
NOTANY[SOMEX; SOMEFN1 ; SOMEFNZ] sesesseeresetasannne 5.16
NOTEVERY[EVERYX; EVERYFNI ;EVERYFN2] voeviivinnnnns 5.16
NULLEX] SUBR . .iiitiiiinenneoeeeaseonnsosennsanns 5.13
NUMBERPLX] SUBR tuiiiieenereraneececensssonsaanes 5.12

e o o o o o o & e
] S~
-
o

W w

« e » e o e+ e

.

Pt et Bt () et NI NI O e L0 G A b I e (DO s e et e O WO NN e B S et a e s (O
o (= B0} [$,]

o

e o ® s e = e ® e e o s e

(L RSN N NENERORE RO RENE RO N RO NS NN N N NN RE N RN RE N NERE NS NS, HE NN RS RS,

s pd i
NN W WO W

.

INDEX.5.1

R 191 o 1= ol
OR[X1;X2;...;Xn]) FSUBR® ,...... et rieeseanas cee
OUTPUTLFILE] SUBR .iiivteveeerrnnoneannnns ceveeen
PARENTHESIS ERROR (error message) Ceeetsaas
pPredicatesiiiiieiiettetataceatinannn .
PRETTYDEF ... itiiiiiinennnss . tetetet e .e

PRINTLEVEL[N] SUBR .

PROG[ARGS;E1;E2;...;EN] FSUBR® .. iiutvnenenanees

PROG labeliiininennnnanns ceseenn trenacen cee
PROGNL X1;X2;...;Xn] FSUBRT L .iiierorevnnvocnnnne .
PROGI[X1;X2;...;%n] FSUBR®c.. Chieies e
proper tailc0c00. Ceerissessessr s e ann s
QUOTE[L X] NL® Cer it ettt e .
RADIX[HN] SUBR . .iviieiiienncennaenns Cerserrecenen
REENTER (tenex command)eveeeervonecnans ceeee

RESETFORM[RESETX;RESETY;;RESETZI NLvvvvivennn

RESETLST[RESETX] NL=®

RESETSAVE[RESETX] NL® ittt eoneeaneinaannnns
RESETVAR[RESETX;RESETY;RESETZI NL cveeevvann ceaee
RETURNIX] SUBR .ttt nnneanenns Cevescroaennas .e
RPAQIRPAQX;RPAQYT NL o ivriiivinrnennns Cesesenaas .
RPAQOLX; YT NL iiiiiirieiiennnns ceereeeestesoeas .
RPLACA[X;Y] SUBR ..iivvvinrnnnn ceesnoesenna ceve
RPLACDIX;Y] SUBR . iitieienenenennonnnnanns cerenns
SASSOCI XSAS;YSAS] i vrivrrnnnens Cteseacecesnenns
SELECTO[X;Y1;Y2;...:¥Yn;Z] NL® tereetcrrsans
SETIX;Y] SUBR tiiitiinenrnnennne cetecteennen ceeae
SETQ[X;Y] FSUBR~® Cee e e seasesacacran s PN
SETQOLXSET;YSET] NL © tivtiiiiteneneeneennannnas e
SMall INtegersS ...vieeeverveescanenns cesseacasnas
SOME[SOMEX ; SOMEFN1;SOMEFN2] tesassaseena
STRINGPIX] SUBR 4. iverirreeceasonnrneennnnas ceeen
L o 1 X o S ebernsanne
tail of a 1list0.. ceesens teeesenssenea e
TAILPIX;Y)o.. Ceeeeseasnnn crtecersreenens .
top level valuei.iiieeirnereninnesonas .

7% ol - N Ceretacen

UNDEFINED OR ILLEGAL GO (error message)
(UNDEFINED TAG) (compiler error message)

value cell

ooooooooooooooooooooooooooo

INDEX.5.2

[3: R NE NSNS RO NSRS RO RE RSN REFE RO NE RN NGRS NS R RE NS RE SRS RE NS NS RS R RE RSN
. . e P . . o o e« o o o

Page
Numbers

5.12
5.14
5.10
5.3

[$4]
—
(= B A

o O

-

o~

=3

> e

:o..—lzw.xs-.-ap.-».-».-.:-cco:oo.b--mw@o\;o»u»o»w—-oovc\»o

e O WWWLL

©o

llst[xl;xz;...;xn]'

append[xl;xz;...

%]

SECTION 6

LIST MANIPULATION AND CONCATENATION

lambda-nospread function. Its value 1is a list of

the values of its arguments.

Copies the top level of the list X, and appends
this to a copy of topAlevel list X, appended to
... appended to X, e.9.

append[(A B) (CDE) (FG))l=(ABCDEFG).
Note that only'the first n-i lists are copied.
However n=zi is treated specially; i.e. append[x]
can be used to copy the top level of a single

1ist.]

The following examples illustrate the treatment of

non-lists.

append[(A B C);0]) = (A B C . D)

append[A;(B C D)] = (B C D)

append[(A B C . D);(EF)] = (AB CEF G)
append[(A B C . D)} =(ABC . D)

- R WD s O S e e T S W Gl S K R P G ER W W e TR e P T eD WS W WD O S S Oh D CD W W P R N TR S S D MR W D e e

To copy a list to all levels, use copy.

6.1

nconc{xl;xz;...;xn] Returns same value as append but actually modifies

the list structure of x; ... X _4.
Note that nconc cannot change NIL to a list. In other words, if the value of
foo is NIL, then the value of (NCONC FOO (QUOTE (A B C))) is (A B C), but foo

will not have been changed. The ‘problem' 1is that nconc simply has a

collection of pointers to work with, and does not know where they originally
came from, i.e. does not know that this NIL is the value of foo, and while it
is possible ‘to alter list structure using rplaca, there is no way to change a

non-list to a list.

nconci[1lst;x] , Performs nconc[lst;list{x]]. The cons will be on

the same page as lst.

tconclptr;x] tconc is useful for building a 1list by adding
elements one at a time at the end, i.e. its role
is similar to that of nconcl. However, unlike

nconci, tconc does not have to search to the end

of the list each time it is called. It does this
by keeping a pointer to the end of the list being
assembled, and updating this pointer after each
call. The savings can be considerable for long
lists. The cost is the extra word required for
storing both the list being assembled, and the end
of the list. ptr is that word: car[ptr] is the
list being assembled, cdr[ptr] is last [car[ptr]].
The Value of tconc is ptr, with the approbriate
modifications to car and cdr. Example:

«(RPTQ 5 (SETQ FOO {TCONC FOO RPTN)))
((54321)1)

6.2

lconclptr;x]

tconc can be initialized in two ways. If ptr is
NIL, tconc will make up a ptr. In this case, the
program must set some variable to the value of the

first c¢all to tconc. After that, it 1is

. unnecessary to reset ptr since tconc physically

changes it. Thus:

~(SET FOO (TCONC WIL 1))

((1) 1)

«(RPTQ 4 (TCONC FOO RPTN))

((14321)1)

If ptr is initially (NIL), the value of tconc is

the same as for ptr=NIL, but tconc changes ptr,
e.g.

~(SETQ FOO (CONS))

(NIL)

«(RPTQ 5 (TCONC FOO RPTN))

((54321)1)

The latter method allows the program to
initialize, and then call tconc without having to

perform setq on its value.

Where tconc is used to add elements at the end of

"a list, lconc is used for building a 1list by

adding lists at the end, i.e. it 1is similar to

nconc instead of nconci, e.g.

~(SETQ FOO (CONS))

(NIL)
«~(LCONC FOO (LIST 1 2))
((12) 2)

~(LCONC FOO (LIST 3 4 5))
((12345)5)
«(LCONC FOO NIL)
((1 2 34 5)5)

Note that
«(TCONC) FOO NIL)
((1 2 3 4 5 NIL) NIL)

~(TCONC FOO (LIST 3 4 5))
((12345NIL(345))(3415))

6.3

lconc uses the same pointer conventions as tconc
for eliminating searching to the end of the list,
so that the same pointer can be given to tconc and

ylconc interchangeably.

attachlx;y] Value is equal to constx:y]. but attaches X to the
front of y by doing an rplaca and rplacd, i.e.
the value of attach is eq to y, which it
physically chandes. y must be a list, or an error

is generated, ILLEGAL ARG.

remove[x;1] : Removes all occurrences of X% from list 1, giving a
copy of 1 with all elements equal to X removed.

Convention: WNaming a function by prefixing an existing Junction with d
Jrequently indicates the new function is a destructive wversion of
the old one, i.e. it does not make any new structure but
cannibalizes its argument(s).

dremove[x;1] Similar to remove, but uses eq instead of equal,
and actually modifies the list 1 when removing X,
and thus does not use any additional storage.

More efficient than remove.

Note that dremove cannot change a list to NIL. For example, if the value of
foo is (A), then (DREMOVE (QUOTE A) FOO) will return NIL, and not perform any
conses, but the value of foo will still be (A) because there is not way to

change a list to a non-list. See discussion following description of nconc on

page 6.2.

copy[x] " Makes a copy of the list %. The value of copy is

6.4

reverse[1]

dreverse[1]

substix;y;z]

ek

2

the copied list. All levels of X are copied.2
down to non-lists, so that if X contains arrays
and strings, the copy of Xx will contaln the same
arrays and strings, not copies. Copy is recursive
in the car direction only, so that very long lists

can be copied.

Reverses (and coples) tha top level of a 1list,
8.9. vreverse[(A B (C D))} = {((C D) B A). If x is

not a 1list, value is Xx.

Value 1is same as that of reverse, but dreverse
destroys the original list'l and thus does not use
any additional storage. More efficient than

reverse.

Value is the result of substituting the S-
expression x for all occurrences of the &-
expression y in the S-expression 2. Substitution
occurs whenever y 1is gqual to car of some
subexpression of 2, or when y is both atomic and
not NIL and eq to cdr of some subexpression of 2.

For éxample:

subst[A;B;(C B (X . B))] = (C A (X‘. A))
subst[A;(B C);((BC)DBC)]=(ADBC),
not (A D . A).

The value of subst 1is a copy of 2z with the

-------------------------------------- escescoersONcaRTD a0 oo

To copy just the top level of x, do append[x].

6.5

dsubst[x;y;z2]

lsubst{x;y;z]

esubst[x;y;z;flg)

sublis[alst;expr;flg]

3

appropriate changes. Furthermore, if X is a list,

it is copled at each substitution.

Similar to subst, but does not copy 2, but changes

the list structure 2 itself. Like subst, dsubst

substitutes with a copy of x. More efficient than

subst.

Like subst except X is substituted as a segment,
e.g. lsubst[(A B);Y;(X ¥ Z2)] 1s (X A B Z). Note
that if X is NIL, produces a copy of z with all
y's deleted.

Similar to gggggg, but first checks to see if ¥
actualiy appears in 2. 1If not, calls error! where
flg=T7 means print a message of the form X 7?7 This
function is actually an 1mplemehtation of the
editor's R command (see Section 9), so that y can

use &, --, or alt-modes as with the R command.

alst is a list of pairs:
((u1 . Vl) (u2 . va) coe (un . vn)) with each uy

atomic.

The value of sublis[alst;expr;flg] is the result
of substitu;ing each v for the corresponding u in
g;gg.a Example:

sublis[((A . X) (C . Y));(ABCD)]=(XBYD)

---------------- 5 D DD D VDG DDESDmmD e ® oo .

To remember the order on alst, think of it as old to new, i.e. uy -> vy-

6.6

subpair[old;new;expr;flg]

Vote that subst, dsubst,

New structure is created only if needed, or if
flg=7, we.g. if flg=NIL and there ars no

substitutions, value is eq to expr.

Similar to sublis, oxcept that alements of new are

substituted for corresponding atoms of old in
expr. Example:

subpair[(A C);(X Y);(A B CD)] = (X B VYD)

As with sublis, new structure is created only if
needed, or if flg=T, e.g. if flg=NIL and there are

no substitutions, the value is eq to expr.

If old ends in an atom other than NIL, the rest of

the elements on new are substituted for that atom.
For example, if old=(A B . C) and pnew=(U V X ¥ 2),
U is substituted for A, V for B, and (X Y Z) for
C. Similarly, if old itself is an atom (other than

NIL), the entire list new is substituted for it.

lsubst, and esubst all substitute copies of the

uppropriate expression, whereds subpair and sublis substitute the identical

structure (unless flg=T).

last[x]

flast[x]

Value is a pointer to the last node in the list X,
e.g. if x=(A B C) then last[x] = (C). If
Xx=(A B . C) last[x] = (B . C). Value is NIL if x

is not a 1list.

Fast version of last that compiles open as a 5
instruction 1loop, ¢terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -

FLAST, if X ends in other than NIL.

6.7

nleft{l;n;tail] Tail is a tail of 1 or NIL. The value of nleft is

the tail of 1 that contains n more elements than

tail,? e.g., if x=(A B C D E), nleft[x;2)=(D E),

nleft[x;1;cddr[x]])=(B C D E). Thus nleft can be
used to work backwards through a list. Value 1is
NIL if 1 does not contain n more elements than

tail.

lastn[1;n] Value is cons[x;y] where y is the last n elements
| of 1, and x is the initial segment, e.g.
lastn[(A B C D E);2])=((A B C)DE)
lastn[(A B);2]=(NIL A B).

Value is NIL if 1 is not a 1list containing at

least n elements.

nth{x;n] Value is the tail of X beginning with the nth
element, e.g. if n=2, value is cdr[x], if n=3,
cddr[x], etc. If p=1, value is x, if n=0, for
consistency, value is cons[NIL;x]. If x has fewer
than n elements, value is NIL, e.g.
nth{ (A B);3]=NIL, as is nth[(A . B);3] Note that
nth{(A . B);2])=8B.

fnth{x;n] Fast version of nth that compiles open as a 3
instruction loop, terminating on .a null-check.
Interpreted, generates an error, BAD ARGUMENT -
FNTH, if x ends in other than NIL.

¢ If tail is not NIL, but not a tail of 1, the result is the same as if tail

were NIL, i.e. nleft operates by scanning 1 looking for tail, not by
computing the lengths of 1 and tail.

6.8

length[x] Value is the length of the list x where length is
defined as the number of cdrs required to reach a
non-list, e.g.
length{(A B C)] = 3
length[(AB C . D))} = 3

length[A] = 0
flength[x] Fast version of length that compiles open as a 4

instruction 1loop, terminating on a null-check.
Interpreted, generates an error, BAD ARGUMENT -
FLENGTH, if x ends in other than NIL.

count[x] Value is the number of list words in the structure
X. Thus, count is like a length that goes to all

levels. Count of a non-list is 0.

ldiff[x;y;2] y must be a tail of x, i.e. eq to the result of
applying some number of cdrs to X. ldiffix;y]
gives a list of all elements in x up to y, i.e.,
the 1list difference of X | and y. Thus

1diff[x;member[F00;x]] gives all elements in X up
to the first F00.

Vote that the value of ldiff is always new list structure unless ys¥IL, in
which case the value is x itself.

If 2z is not NIL the value of 1ldiff is effectively
nconc{z;ldiff[x;y]]), 1.e. the list difference is

added at the end of 2.

If y is not a tail of X, generates an error,

6.9

intersection[x;y]

union[x;y]

sort[data;comparefn]6

LDIFF: NOT A TAIL. ldiff terminates on a

null-check.

Value is a list whose elements are members of both

- lists x and y. Note that intersection[x;x] gives

a 1list of all members of X without any

duplications.

Value is a (new) list consisting of all elements
included on either of the two original lists. It

is more efficient to make X be the shorter 1ist.%

data 1s a 1list of items to be sorted using
comparefn, a predicate function of two argﬁments
which can compare any two items on data and return
T if the first one belongs before the second. If
comparefn 1is NIL, alphorder is used; thus
sort[data)] will alphabetize a list. If comparefn
is T, car's of items are given to alphorder; thus
sort[a-1ist;7] will alphabetizé by the car of each
item. sort[x;ILESSP] will sort a 1list of

integers.

The value of sort is the sorted list. The sort is

destructive and uses no extra storage. The value

------- e PO E " CES PP PPN OYCTEEROORNNDTENEG NG SO 5o o

The value of union is y with all elements of x not in y consed on the front

of it. Therefore, if an element appears twice in 'y, it will appear twicae

in union[x;y].

Also, since union[(A);(A A)] = (A A), while
union[(A A);(A)] = (A),

union 1s non-commutative. :

Sort, merge, and alphorder were written by J. W. Goodwin.

returned 1is eq to data but elements have been
switched around. Interrupting with control D, E,
or B may cause loss of data, but control H may be
used at any time, and sort will break at a clean
state from which ¢ or control characters‘are safe.
The algorithm used by sort 1is such that the
maximum number of compares is n“log2 n, where n 1is

length{datal.

Vote: if comparefnla;b] = comparefn[h;d]. then the ordering of d& and b may or

may not be preserved.

For example, if (FOO . FIE) appears before (FOO . FUM) in X, sort[{x;7] may or

may not reverse the order of these two elements. Of course, the user can

always specify a more precise comparefn.

mergel[a;b;comparefn]

alphorderfa;b]

a and b are 1lists which have previously been
sorted using sort and comparefn. Value 1is a
destructive merging of the two lists. It does not

matter which list 1is longerAfter merging both a

' and b are equal to the merged list In fact, cdr[a]

is eq to cdr[b]). merge may be aborted after

control H.

A predicate function of two arguments, for
alphabetizing. Returns T if its arguments are in
order, i.e. 1if b does not belong before a.
Numbers come before literal atoms, and are ordered
by magnitude (using greaterp). Literal atoms and
strings are ordered by comparing the (ASCII)

character codes in thelir pnames. Thus

alphorder[23;123] is T, (whereas
alphorder[A23;A123] 1is NIL, because the character
code for the digit 2 is greater than the code for
i.

Atoms and strings are ordered before all other
data types. If neither a nor b are atoms or
strings, the value of alphorder is T, 1.e. in

order.

Vote: galphorder does no unpacks, chcons, conses or nthchars. It is several
times faster for alphabetizing than anything that can be writien using
these other functions. o

cplists[x;y] compares X and y and prints their differences,
i.e. cplists is essentially a SRCCOM for 1list

structures.

6.12

Index for Section 6

Page
Numbers

ALPHORDER[A;B] tit it tineeeenneeneasnssansonnenns
APPENDL L] ™ it iiiiinntnnnancnnnns Cerer e ceosas
ATTACHIX Y] i ittt i iniennansnnns Cereerrareans
ATTEMPT TO RPLAC NIL (error message) Cheeeees AN
BAD ARGUMENT = FLAST (error message)cceceoee
BAD ARGUMENT - FLENGTH (error message)coeee
BAD ARGUMENT - FNTH (error messSage)ceoeeeo
CODy ooooooooooooooooooooo s e s 000 e 000 DR A A R)
COPY[X] wviiireereennnnanns essesenetesanaa csiesaas
COU'JT{X] D A B R B) 9 0860040000000 ILBss 0000
CPLISTSIX;Y] civevnninnnns et sessassisrsessacnasnns

—

.

-

o3
L]

~

[
[=2]

destructive functions ® 6 0 0 0 4 5 5P S QB 0N ST e E SN E e
DRE"IOVE[X;L] ooooooooooo € 0 4 0 0800000000000
DREVERSE[L] cvvvrvininnncnnnnns ceeeens cressannne
DSUBSTLX;Y3;2) .ovvnn. Cheeeens vecserserttseanan
ERROR![]SUBR ooooooooooooooooooo L R]
ESUBST[X;Y;Z;ERRORFLG;CHARFLG] ...cviiveinnnnn cee
L D ceeeeresetennan
FLENGTHLX] ...eiveiriennnns st eesesssessssseaan s
FRHTHIY N it iieiieeenvnaennns esvesersacssenen s
ILLEGAL ARG (error message) Cheeeserettsessaerann
INTERSECTION[X;Y] .«.evvenne tescessesscssenaasens
LAST[XJ s as 000000 LU N R N R A
LASTHL L NT it ii it ittt iannnns ceereananan cesnen
LCONCIPTR;X] vuivivernen T
LDIFF[X;Y: ZJ cresecsesssstennne
LDIFF: NOT A TAIL (error message) Crerererrians .o
LENGTH[L] e et s e e oo I I R R R I e A N)
LIST[XI;XZ;-..;X"] Sl.’BRa ooooo S e s 000 s v 0000
list manipulation and concatenationc...
LSUBSTECX;Y;2] ovvevnnns Ceseaeeceerrscosensnoerans
MERGE{A;B;COMPAREFN] * 5 0 8 0 0 5 0000V E eI NS IOOOOGECODN

e e e o o
]

. o e o & « o e o o
(=4]
N~

NCONC[X1;X2;...;Xn] SUBR® .,...... Cereersseiiessane .
”CONCI[LST;X] ooooo ® 6 82 500 0000000000000 LEsNS L=
”LEFT[L;N;TAIL] L R I R I I N R R B B I A A K .
NTH[X;?‘I] oooooooooo D I R R R R R O A I R R R B R I I Y S) .
null’check L N I R I R N N R N R N o-io
R (edit command) Ceeasesriesssesanoas

REMOVELX L] coiiiiiiiiiinieeencnnnsnensanasnnn N
REVERSE[L]iiiiiiiiiiiinenes ettt et
SORT[DATA;COMPAREFN] ...ivvvevennnens ciereetenaans
SRCCOM L it iiiiiiiinatennnsanns teereeasenan
SUBLIS[ALST;;EXPR;FLE]c... Ceseseiasenans .
SUBPAIR[OLD;NEW; EXPR FLG]
SUBST[X;Y;Z] vieesescanesarsnnas teseaaes
TCONC[PTR X] ooooooooooooo e e s 000 G600 0s 0000000000
UNION[X;Y] ® 5 6 0 00 00005000068 0000eCENLIEOONOBSEICES e

= A A s N DO LT DOIN s O ekt 1t O 1 O WP At DO AN NN L 1 O D12 DO Do oo

INDEX.6.1

SECTION 7
PROPERTY LISTS AND HASH LINKS

7.1 Property Lists

Property lists are entities agssocioted with literul atoms. and are stored on
cdr of the atom. Property lists are conventionally lists of the form (property
value property value ... property value) although the user can store anything
he wishes in cdr of a literal atom. However, the jfunciions which manipulate
property lists observe this convention by cycling down the property lists two
cdrs at a time. Most of these functions also generate an error, ARG VOT ATOM.
if given ar orgument which 1s not a literal aetom, i.e., they cannot be used
directly on lists.

The term 'property name' or °'property’ is used for the properity indicators
appearing in the odd positions., and the term 'property value' or ‘value ojf a
property’ or simply ‘'value' jfor the values appearing in the even positions.
Sometimes the phrase 'to store on the property --' is used. meaning to place
the indicated information on the property list under the property name --.

Properties are usually atoms, although no checks are made to eliminate use of

non-atoms in an odd position. However, the property list searching functions
all use eq.

Property List Functions

put{atm;prop;vall puts on the property list of atm, the property
prop with value val. val replaces any previous
value for the property prop on this property list.
Generates an error, ARG NOT ATOM, if atm is not a

literal atom. Value is val.
putl{lst;prop;val] similar to put except operates on lists instead of

property lists. Searches lst one cdr at a time

looking for an occurrence of prop. If one \is

7.1

addprop[atm;prop;new;flg]

remprop[atm;prop]

changeprop[x;propi;prop2]

get[x;y]

found, val replaces the next element in the 1list.
if prop is not found, adds prop followed by val at
the end of lst. For example, putl[NIL;A;B]}=(A B),
putl{(A B C D);B;X]=(A B X D).

adds the value pew to the list which is the value
of property prop on property list of atm. If flg
is T, new is consed onto the front of value of
prop, otherwise it is nconced on the end (gggggl);
If atm does not have a property prop, the effect
is the same as put[atm;prop;list[new]]Q for
example, if addprop[FOO;PROP;FIE] is followed by
addprop[FOO; PROP;FUM], o getp[FOO;PROP] will
be (FIE FUM). The value of addprop is the (new)
property value. If atm is not a literal atom,

generates an error, ARG NOT ATOM.

removes all occurrences of the property prop (and
its value) from the property list of atm. Value
is prop if any were found, otherwise NIL. If atm
is not a literal atom, generates an error,

ARG NOT ATOM.

Changes name of property propl to prop2 on
property list of X, (but does not affect the value
of the property). Value is x, unless propi is not
found, in which case, the value is NIL. If Xx is
not a literal atom, generates an error,

ARG NOT ATOM.

Gets the item after the atom y on list x. If y is

7.2

not on the list ¥, value is NIL. For example,
get[(A B C D);B)=C. get and putl are inverse

operations.

Note: since get terminates on a non-list, get{atom;anything] is VIL.

getplatm;prop]

Therefore, to search a property list, getp should

be used, or get applied to cdr[atom].

gets the propserty value for prop from the property
list of atm. The value of getp is NIL if atm is

not & literal atom, or prop if not found.

Vote: the value of getp may also be VIL, if there {s an occurrence of prop buti
the corresponding property value is VIL.

getlis[x;props])

Note: Since getp searches a list two items at a
time, the same 'object can be used as both a
property name and a property value, e.g., if the
property 1list of atm is (PROP1 A PROP2 B A C),
then getp[atm;A] = C. Note however that

get[cdr[atm];A] = PROP2.

searches the property list of X, and returns the
property list as of the first property on props
that it finds e.g., if the property list of X is
(PROP1 A PROP3 B A C),

getlis[x;(PROP2 PROP3)]=(PROP3 B A C)

Value is NIL if no element on props is found. X
can also be a list itself, in which case it is

searched as above.

7.3

deflist[1l;prop] is used to put values under the same property nameo
on the property lists of several atoms. 1 1is a
list of two-element 1lists. The first element of
each is a literal atom, and the second element is
the property value for the property prop. The
value of deflist is NIL.

Vote: Many atoms in the system already have property lists. with properties
used by the compiler, the break package, DWIM, etc. Be careful not to
clobber such system properties. The value of sysprops gives the complete
tist of the property names used by the system.

7.2 Hash Links

The description of the hash 1link facility in INTERLISP is included in the
chapter on property lists becausé of the similarities in the ways the two
features are used. A property list provides a way of associating information
with a particular atom. A hash link 1is an association between any INTERLISP
pointer (atoms, numbers, arrays, strings, lists, et al) called the hash-item,
and any other INTERLISP pointer callqd the hash-value. Préperty lists are
stored in cdr of the atom. Hash links are implemented by computing an address,
called the hash-address, in a specified array, célled the hash-array, and
storing the hash-value and the hash-item into the cell with that address. The

contents of that cell, i.e. the hash-value and hash-item, is then called the

hash-link.l

Since the hash-array is obviously much smaller than the total number of

The term hash link (unhyphenated) refers to the process of associating
information this way, or the 'association' as an abstract concept.

7.4

possible hash-items,2

the hash-address computed from item may already contain a
hash=-1ink. If this link is from 1§gm.3 the new hash-value simbly replaces the
old hash-value. Otherwise, another hash-address (in the same hash-array) must
be computed, etc, until an empty cell is’ found,4 or a c¢ell containing a

hash-1link from item.

When a hash 1link for item is being retrieved, the hash-address is computed
using the same algorithm as that employed for making the hash 1link. If the
corresponding cell is empty, there is no hash link for item. If it contains a
hash-link from item, the hash-value 1is returned. Otherwise, another

hash-address must be computed, and so forth.5

Note that more than one hash link can be associated with a given hash-item by

using more than one hash-array.

Hash Link Functions

In the description of the functions below, the argument array has one of three

forms: (i) NIL, 1in which case the hash-array provided by the system,

2 which is the total number of INTERLISP pointers, i.e. in INTERLISP-10,
256K.

3 eq is used for comparing item with the hash-item in the cell.

4 After a certain number of iterations (the exact algorithm is complicated),
the hash-array is considered to be full, and the array is either enlarged,
or an error is generated, as described below in the discussion of overflow.

5

For reasonable operation, the hash array should be ten to twenty percent
larger than the maximum number of hash links to be made to it.

7.5

syshasharray, 1is used;6 (2) a hash-array created by the function harray: or (3)
a list car of which is a hash-array. The latter form is used for specifying

what is to be done on overflow, as described below.

harray[n] creates a hash-array of siz2e n, equivalent to
clrhash[array(nl].
clrhash[array]) sets all elements of array to 0 and sets left half

of first word of header to =-i. Value 1is array.

puthash[item;val;array] puts into array a hash-1link from jitem to val.
Replaces previous link from same item, if any. . If
val=NIL any old 1link 1s removed, (hence a

hash-value of NIL is not allowed). Value is val.

gethash[item;array] finds hash=link from item in array, and returns

the hash-value. Value is NIL if no link exists.
gethash compiles open. Note that gethash makes

no legality checks on either argument.

rehash[oldar;newar] hashes all items and values in oldar into newar.
The two arrays do not have to be (and usually

aren't) the same size. Value is newar.

maphash[array;maphfn] maphfn is a function of two arguments. For each

hash-1ink in array, maphfn will be applied to the

hash-value and hash-item, e.d.

6 syshasharray is not used by the system, it 1is provided solely for the
user's benefit. It is initially 512 words large, and is automatically
enlarged by 50% whenever it is 'full'. See page 7.7.

7‘6

maphash{a; (LAMBDA(X Y) (AND(LISTP Y) (PRINT X)))]
will print the hash-value for all hash-links from

lists. The value of maphash 1s array.

dmphash[arrayname) Nlambda-nospread that prints on the primary output
file a loadabls form which will restore what is in
the hash-array spacified by arrayname, e.g.
(E (DMPHASH SYSHASHARRAY)) as a prettydef command

will dump the system hash-array.

Vote: all eq identities except atoms and small integers are lost by dumping and
loading because read will create. new Structure jfor each item. Thus if
two lists contain an eq substructure. when they are dumped and louded
back in, the corresponding substructures while equal are no longer egq.’

Hash Overflow

By using an array argument of a special form, the user can provide for
automatic enlargement of a hash-array when it overflows, i.e., is full and an
attempt 1s made to store a hash link into it. The array argument is either of
the form (hash-array . n), n a positive integer; or (hash-array . f), £ a
floating point number; or (hash-array). In the first case, a new hash-array 1is
created with n more cells than the current hash-array. In the second case, the
new hash array will be f times the size of the current hash-array. The third
case, (hash-array). is equivalent to (hash-array . 1.5). In each case, the new

hash-array is rplacaed into the dotted pair, and the computation continues.

If a hash-array overflows, and the array argument used was not one of these

circlprint and circlmaker (Section 21) provide a way of dumping and
reloading structures containing eq substructures so that these identities
are preserved.

7.7

three forms, the error HASH TABLE FULL is generated, which will either cause a
break or unwind to the last errorset, as per treatment of errors described in

Section 16.

The system hash array, syshasharray, is automatically enlarged by 1.5 when it
is full.

7'8

Iindex for

ADDPROP[ATM; PROP;NEW;FLG] .
ARG NOT ATOM (error message)
CHANGEPROP[X; PROP1;PROP2] .
CIRCLMAKER[L] cenn
CIRCLPRINT[L;PRINTFLG;RLKNT]
CLRHASH[ARRAY] SUBR
DEFLISTIL;PROP] +.vvunnveenn
DMPHASH[L] NL®
ERRORSET[U;V] SUBR
GETIX;Y) ... cresanen
GETHASH[ITEM;ARRAY] SUBR ..
GETLIS{X;PROPS] ..e.ivevenn.
GETP[ATM;PROP] ...vieennann
HARRAY[LEN] ... viieinennens
hash link functions
hash links ceeeeenns
hash overflow

Section 7

LR R R R A I I I RN RE BN B B B RC Y
L R N B R U B R N R Y)

® 0 ee e e s 0000000000

" s 0 e et e s b

L N N I R NI S BB B S)

T ees e st v 00 e v e e es e

L RN R R S N I I R BN B AN Y

L A R I R R N A Y

© s o000 s 0 et s es s

@ e s o 000 e et et 00U

L R I I R I A A N I R

D I R R e R I IR B BN B

9 e 6008 e 00000t s0stencse

PP e s e 00 e s

86 9000800000000 000s0s0d0e0

L R I R R R R A N A I B A Y

L A A N A A A I BN I S B Y

HASH TABLE FULL (error me$SSag8) ..coeeeesccascans

hash-addressviie0vnee
hash=arrayeeeeeereons
hash-item et ececeerae
hash-link seceieaeaa
hash-value cecervenan
MAPHASH[ARRAY ;MAPHFN]
property cessraenes
property list
Property Namececeeooe
property value vee
PUT[ATM;PROP;VAL]
PUTHASH[ITEM; VAL ;ARRAY] SUBR
PUTL[LST;PROP;VAL]
REHASH[OLDAR;NEWAR] SUBR ..
REMPROP[LATM;PROP]

L A I O A IR R R R N R A BN A Y

I B I R I I I B AR)

e soce s es e s s et Ner o0
R N N R R A A R I I
R R N R A A A N R
D I R RN S A A S R B R B AN
s oseees s s st

LI I B I I BN Y BB B BRI)

® o9 00600000000 0000 0000

LI I O L I N A B N N S N S Y Y

L S R N R I I RN A S Y

R R I O I I I B BT BT B A

s e e s 000 e0 eI ISEETITTOTN
R N I I R R N R A IR I I R A)

e et 0 cs 0000000000000

SYSHASHARRAY (system variable/parameter)
SYSPROPS (system variable/parameter)ceee

value of a property

L I I I I N A N I NI A

INDEX.7.1

Page
Numbers

[4
(&) N
~

]
-
~

[
SO v

t e =
NS DS

e o e o o e @

[+-]

s & & & o o

NN NN NSNNNSNSNUNNSNNNNSNSNSNNNNNNNNSNNNNNNNNNN
=B ONO et Nt oo bt b DD B H BN OAWWONONDLININN-N

SECTION &
FUNCTION DEFINITION AND EVALUATION

General Comments

A function definition in INTERLISP is stored im a special cell called the
function definition cell, which 1s associated with each literal atom. This
cell is directly accessible via the two functions putd, which puts a definition
in the cell, and getd which gets the definition from the cell. In addition,
the function fntyp returns the function type, i.e., EXPR, EXPR® ... FSUBR% as

described in Section 4. Exprp, ccodep, and subrp are true if the function is

an expr, compiled function, or subr respectively; argtype returns
0, 1, 2, or 3, depending on whether the function is a spread or nospread (i.e.,
its fntyp ends in ®), or evaluate or no-evaluate {(i.e., its fntyp begins with F
or CF); arglist returns the list of arguments; and pargs returns the number of

arguments. fntyp, exprp, ccodep, subrp, argtype, arglist, and nargs can be

given either a literal atom, in which case they obtain the function definition

from the atom's definition cell, or a function definition itself.

Subrs

1

Because subrs,® are called in a special way, their definitions are stored

1 Basic functions, handcoded in machine language, e.g. cons, car, cond. The

terms subr includes spread/nospread, eval/noeval functions, i.e. the four
~fntyp's SUBR, FSUBR, SUBR®, and FSUBR%,

8.1

differently than those of compiled or interpreted functions. 1In INTERLISP-10,
in the right half of the definition cell 1is the address of the first
instruction of the subr, and in the left half its argtype: 0, 1, 2, or 3. getd
of a subr returns a dotted pair of argtype and address. Note that this is not
the same word as appears in the definition cell, but a new cons; 1.e., each
getd of a subr performs a cons. Similarly, putd of a definition of the form
(number . address), where number = 0, 1, 2, or 3, and address 1s in the
appropriate range, stores the definition as & subr, i.e., takes the cons apart

and stores car in the left half of the definition cell and cdr in the right
half.

Validity of Definitions in INTERLISP-10

Alfhough the function definition cell is intended for function definitions,
putd and getd do not make thorough checks on the validity of definitions that
"look like" exprs, compiled code, or subrs. Thus if putd is given an array
pointer, it treats it as compiled code, and simply stores the array pointer in
the definition cell. getd will then return the array pointer. Similarly, a
call to that function will simply transfer to what would normally be the entry
point for the function, and produce random results if the array were not

compiled function.

Similarly, if putd is given a dotted pair of the form (number . address) where
number is 0, 1, 2, or 3, and address falls in the subr range, putd assumes it
is a subr and stores it away as described earlier. getd would then return cons
of the lefi and right half, i.e., a dotted pair equal (but not eq) to the
expression originally given putd. Similarly. a call to this function would

transfer to the corresponding address.

Finally, if putd is given any other list, it simply stores it away. A call to

this function would then go through the interpreter as described in the

appendix.

8.2

Note that putd does not actually check to see if the s-expression 1s valid
definition, i.e., begins with LAMBDA or NLAMBDA. Similarly, exprp is true if a
definition is a 1list and not of the form (number . address), number =
0, 1, 2, or 3 and address a subr address; subrp is true if it is of this form.

arglist and nargs work correspondingly.

Only fntyp and argtype check function definitions further than that described

above: both argtype and fntyp return NIL when exprp 1is true but car of the
definition is not LAMBDA or NLAMBDA.Z In other words, if the user uses putd to
put (A B C) in a function definition cell, getd will return this value, the
editor and prettyprint will both treat it as a definition, exprp will return T,

ccodep and subrp NIL, arglist B, and nargs i.

getd[x] gets the function definition of x. Value is the
definition.® Value is NIL if x is not a literal

atom, or has no definition.

fgetd[x] fast version of getd that compiles open.
Interpreted, generates an error, BAD ARGUMENT -

FGETD, if X is not a literal atom.?

------------------------ LR R R R R N T R R R R R R R R I R

2 These functions have different value on LAMBDAs and NLAMBDAs and hence must
check. The compiler and interpreter also take different actions for
LAMBDAs and NLAMBDAs, and therefore generate errors if the definition is
neither. .

3 Note that in INTERLISP-10, getd of a subr performs a cons, as described on

" page 8.2. See footnote on fgetd below.

4

Fgetd is intended primarily to check whether a function has a definition,
rather than to obtain the definition. Therefore, for subrs, fgetd returns
Just the address of the function definition, not the dotted pair returned
by getd, page 8.2, thereby saving the cons.

8.3

putd[x;y]

putdq[x;y]

movd[from;to;copyflg]

puts the definition y into X's function cell,
Value is y. Generates an error, ILLEGAL ARG -
PUTD, if x 1s not a literal atom, or y is a

string, number, or literal atom other than NIL.

nlambda version of putd; both arguments are

considered quoted. Value is X.

Moves. the definition of from to to, 1.e.,
redefines to. If copyflg=T, & copy of the
definition of from is used. copyflg=T is only
meaningful for exprs, although movd works for
compiled functions and subrs as well. The value

of movd is to.

Vote: fntyp. subrp. ccodep, exprp, argtype. nargs. and grglist all can be given

either the name oj a function, or a definition.

fntyp[fn]

Value is NIL if fn is not a function definition or
the name of a defined function. Otherwise fntyp
returns one of the following as defined in the

section on function types:

EXPR CEXPR SUBR
FEXPR CFEXPR FSUBR
EXPR® CEXPR® SUBR*
FEXPR® CFEXPR® FSUBR®

The prefix F indicates unevaluated arguments, the

prefix C indicates compiled code, and the suffix =

indicates an indefinite number of arguments.

8.4

subrp[fn]

ccodep[fn]

exprp[fn]

argtypel[fn]

fntyp returns FUNARG if fn is a funarg expression.

See Section i1.

is true if and only if fntyp[fn] is either SUBR,
FSUBR, SUBR=®, or FSUBR#, i.e., the third column of

fntyp's.

is true if and only if fntyp[fn] is either CEXPR,
CFEXPR, CEXPRw, or CFEXPR%, i.e., second column of

fntyp's.

- is true if fntyp[fn] is either EXPR, FEXPR, EXPR=,

or FEXPR=, i.8., first column of fntyp's.
However, exprp[fn] is also true if fn is (has) a
list definition that is not a SUBR, but does not
begin with either LAMBDA or NLAMBDA. In other

words, exprp is not quite as selective as fntyp.

fn 1s the name of a function or its definition.
The value of argtype is the argtype of fn, i.e.,
0, 1, 2, or 3, or NIL if fn is not a function.
The interpretation of the argtype is:
0 eval/spread function

(EXPR, CEXPR, SUBR)

i no-eval/spread functions
(FEXPR, CFEXPR, FSUBR)

2 eval/nospread functions
(EXPR%, CEXPR%, SUBR%)

3 no-eval/nospread functions
(FEXPR®, CFEXPR®, FSUBR%)

i.e., argtype corresponds to the rows of fntyps.

8.5

nargs[fn] value is the number of arguments of fn, or NIL if

fn is not a function.®

nargs uses exprp, hnhot
fntyp, so that nargs[(A (B C) D)]=2. 1If fn is a

nospread function, the value of pnargs is 1.

arglist{fn] . value is the 'argument 1list' for fn. Note that
the ‘argument 1list' 1is an atom for nospread
functions. Since NIL is a possible value for
arglist, an error is generated,
ARGS NOT AVAILABLE, if fn is not a function.’

If fn is a 3UBR or FSUBR, the value of arglist is (U), (U V), (U V W), etc.
depending on the number of arguments, if a SUBR® or FSUBR®, the value is U.
This is merely a 'feature' of arglist, §ggr§ do not actually store the names of
their arguments(s) on the stack. However, if the user breaks or traces a SUBR
(Section 15), these will be the argument names used when an equivalent EXPR

definition is constructed.

define[x) The argument of define is a list. Each element of
the list is itself a list either of the form (name
definition) or (name arguments ...). In the
second case, following ‘'arguments' is the body of
the definition. As an example, consider the
following two equivalent expressions for defining
the function null.

1) (NULL (LAMBDA (X) (EQ X NIL)))

i.e., if exprp, ccodep, and subrp are all NIL.

If fn is a compileq function, the argument list is constructed, i.e. each
call to arglist requires making a new list. For interpreted functions, the
argument list is simply cadr of getd.

8.6

2) (NULL (X) (EQ X NIL))

define will generate an error on encountering an atom where a defining list is
expected. If dfnflg=NIL, an attempt to redefine a function fn will cause
define to print the message (fn REDEFINED) and to save the old definition of fn
using savedef before redefining it. If dinflg=T, the function 1is simply
redefined. If dfnflg=PROP or ALLPROP, the new definition 1is stored on the
property list under the property EXPR. (ALLPROP affects the operation of rpaqq
and rpaq, section §). dfnflg is initially NIL.

dfnflg is reset by load to enable various ways of handling the defining of
functions and setting of variables when loading a file. For most applications,

the user will not reset dfnflg directly himself.

Vote: define will o'pera?.e correctly if the Jfunction 1is already dejfined and
broken, advised, or broken-in‘.

defineq[xlgxi;...;xn] nlambda nospread version of define, i.e., takes an
indefinite number of arguments which are not
evaluated. Each x4 must be a list, of the form

descfibed in define. defineq calls define, so

dfnflg affects its operation the same as define.

savedef[fn]) Saves the definition of fn on its property 1list
under property EXPR, CODE, or SUBR depending on
its fntyp. Value is the property“name used. If
getd(fn] is non-NIL, but fntyp[fn] is NIL, saves
on property name LIST. This situation can arise
when a function is redefined which was originally

defined with LAMBDA misspelled or omitted.

8.7

unsavedef[fn;prop]

If fn is a list, savedef operates on each function
in the 1list, and its value 1is a 1list of the

individual values.

Restores the definition of fn from its property
1ist under property prop (see savedef above).
Value is prop. If nothing saved under prop, and
fn is defined, returns (prop NOT FOUND), otherwise
generates an error, NOT A FUNCTION.

If prop is not given, i.e. NIL, unsavedef 1looks
under EXPR, CODE, and SUBR, in that order. The
value of unsavedef‘is the property name, or if
nothing is found and fn is a function, the value
is (NOTHING FOUND); otherwise generates an error,
NOT A FUNCTION.

If dfnflg=NIL, the current definition of fn, if
any, 1s saved using savedef. Thus one can use
unsavedef to switch back and forth between two
definitions of the same function, keeping one on
its property list and the other in the function

definition cell.

If fn is a 1list, unsavedef operates on each
function of the 1ist, and its value is a list of

the individual values.

8.8

eval[x}7

e[x]

apply[fn;args]

eval evaluates the expression X and returns this
value 1i.e. eval provides a way of calling the
interpreter. Note that eval 1s itself a lambda
type function, so its argument is first evaluated,
e.g.,

=SET(FOO (ADD1 3))

(ADD1 3)

~{EVAL FOO)

4

~EVAL(FO0) or (EVAL (QUOTE FO00))
(ADD1 3)

nlambda nospread version of @egval. Thus 1t
eliminates the extra pair of parenthesss for the

list of arguments for eval. i.e., & X |is

equivalent ¢o eval[x]. Note however that in
INTERLISP, the user can type Just X to get X

evaluated. (See Section 3.)

apply applies the function fn to the arguments
args. The individual elements of args are not
evaluated by apply, fn is simply called with args
as its argument list.8 Thus for the purposes of

apply, nlambda's and lambda's are treated the

same. However 1like eval, apply 1is a lamhda
function so its arguments are evaluated before it

is called e.g.,

P R R Ry Y R R Y LT R R YR R R R N Rk

eval is a subr so that the 'name' x does not actually appear on the stack.

Note that fn may still explicitly evaluate one or more of its arguments

itself, as in the case of setq. Thus
(APPLY (QUOTE SETQ) (QUOTE (FOO (ADD1 3)))) will set FOO to 4, whereas
(APPLY (QUOTE SET) (QUOTE (FOO (ADD1 3)))) will set FOO to the expression

(ADD1 3).

8‘9

apply“[fn;argl;..

evala[x;a]

rptirptn;rptf]

-iarg,]

«SET(FO01 3)

3

«SET(F002 4)

4

«(APPLY (QUOTE IPLUS) (LIST FOO1 FOO02]
7

Here, fool and foo2 were evaluated when the second
argument to apply was evaluated. Compare with:
«~SET(FO01 (ADD1 2))

(ADD1 2)

«SET(FO02 (SUB1 5))

(suBi 5)

«(APPLY (QUOTE IPLUS) (LIST FOO1 FOO2]

NON-NUMERIC ARG
(ADD1 2)

equivalent to abply[fn;list[argi;...;argn]] For
ekample,‘ if fn is the name of a functional
argument to be applied to X and y, one can write
(APPLY® FN X Y), which is equivalent to
(APPLY FN (LIST X Y)). Note that (FN X Y)
specifies a call to the function FN itself, and
will cause an error if FN is not defined. (See

Section 16.) FN will not be svaluated.

Simulates a-list evaluation as in LISP 1.5, x is a
form, a is a list of dotted pairs of variable name
and value. a is 'spread' on the stack, and then Xx
is evaluated, i.e., any variables appearing free
in X, that also appears 55 car of an element of a
will be given the value in the cdr of that

elament.

Evaluates the expression pptf rpth times. At any

poin¢, rptn is the number of évaluations yet to

8.10

take placs. Returns the value of the last
evaluation. If prptn < 0, rptf is not evaluated,
and the value of rpt is NIL.

Note: rpt is a lambda function, so both its arguments are evaluated before rpt

is called.

rpilg.

rptglrptn;rptf]

arg[var;m])

9

For most applications, the user will probadly want to use

nlambda version of rpt: rptn is evaluated, rptf is
not, e.g. (RPTQ 10 (READ)) will perform ten calls
to read. rptq compiles open.

Used to access the individual arguments of a
lambda nospread function. arg is an nlamhda
function used like set. var is the name of the
atomic argument 1list ¢to a lambda-nospread
function, and is not evaluated; m is the number of
the desired argument, and 1is evaluated. For
example, consider the following definition of

iplus in terms of plus.

[LAMBDA X
(PROG ((M 0)

LP (COND

(RETURN #))
(SETQ N (ADD1 N
[SETQ M (PLUS M
(GO LP]

)
(ARG X N)))

The value of arg is undefined for m less than or

equal to 0 or greater than the value of var.g

------------------------ PN RO BCETWCT TR DDD DI EGGDw DD - Do

For lambda nospread functions, the lambda variable is bound to the number

of arguments actually given to the function. See Section 4.

8.11

setarg[vhr;m;x]

Lower numbered arguments appear earlier in the
form, e.g. for (IPLUS A B C),

arg[(X;1J=the value of A,

arg[X;2J)=the value of B, and

arg[(X;3]=the value of C.

Note that the lambda variable should never be
reset. However, individual arguments can be reset

using setarg described bslow.

sets to x the mth argument for the lambda nospread

" function whose argument list is wvar. var is

considered quoted, m and X are evaluated; e.g. in
the previous example, (SETARG X (ADD1 N)(MINUS M))

would be an example of the correct form for

setarg.

8.12

Index for Section 8

Page

Numbers
ADVISED (property NGME) ...eeeceesccssancassons . 8.7
ALLPROP .. ittt iennns teessestsstsssens ceens 8.7
APPLY[FN;ARGS] SUBR caeens cresseecsnaen 8.9
APPLY®[FN;ARG1;...;ARGn] SUBRﬂ cesesseacene 8.10
ARG[VAR;M] FSUBR N teesccetseseesanenes 8.11
ARGLISTIX] i it iiiieeeeeeneneceenessaossonsecnnnns 8.1,3-4,6
ARGS NOT AVAILABLE (error message) cereeeranas e 8.6
ARGTYPE[FN] SUBR tesssesrsavesinevanasaneans 8.1-5
argument 1listcc0e00 cesansas Cesreseresecseans 8.1
a=-11ist ...t iiii i ittt cencsececans 8.10
BAD ARGUMENT - FGETD (error message) o 8.3
BROKEN (property nNname)cecececosoocnccns ceves 8.7
BROKEN-IN (property name) ...ccc... ceeneas N 8.7
CCODEPLFN] SUBR tecescesssaeas e cesenss 8.1,3-5
CEXPR (function type) ..oceeoces hesesssceresnnens 8.4-5
CEXPR® (Tunction TtYyPE) teveeervercoesnsccsasevonsso 8.4-5
CFEXPR (function tYPE8) tieeeeernncranaancnnne ceee 8.4-5
CFEXPR® (function type) ..eerveceescnnnns tecesenn 8.4-5
CODE (property NamMe) ..ceeceesccccsacaans tecosaas 8.7-8
DEFINE[X] ceeereens N Cetescerenns e 8.6-7
DEFINEQIX] NL® .. iieeeereaoncnnss tesoecrsnessans 8.7
DFHNFLG (system variable/parameter)cciceeeeess 8.7-8
E[XEEEE] NL® ceevssenssesesacreranane . 8.9
EVALEX) SUBR v .iiiereerenacennns ceeseaans cecinus . 8.9
EVALA[X;A] SUBR Ceeeesaetsesesererereeane 8.10
Epr (fUﬂCtiOﬂ type) ceceecessssnes teecssscsseces 814-6
EXPR (property Name) .c.coeeereevecccesesosossonans 8.7-8
EXPRP[FN] SUBR ----- I R R e U I I IR I ss 0000 8-1)3"6
EXPR2 (function TYPE) .eiveevroncvesnnsossssvnanes 8.4-5
FEXPR (function type) P e s 0000000 B0 s 804.5
FEXPR® (function tYPE) .t.cevccososocsrocsasoccssss 8.4-5
FGETD[X] lllll ¢ & o 0 o 0 ® 5 0 0 0 006 0 93 2 QA0 G N e 0O eSO O 00 8!3
FNTYPLX]vevn... Ceeererereeaeeeanas tiesesess B.1,3-7
FSUBR (function type) R R R E R I I S AT A 8.4"6
FSUBRZ (function TYPE) .vevvecaascsosssscnsocnnns 8.4-6
FUNARG (function type)iceecens createean ceseae 8.5
function definition and evaluationccccevvvees 8.1-12
function definition cell Cetescereaae ceeeee 8.1-2
functional Argumentseevceocarssssascnsocas 8.10
GETDLX] SUBR v.vveiinennnncene 4essssesssusssesnes 8.1-3,7
ILLEGAL ARG -~ PUTD (error message) ceeseane 8.4
INCORRECT DEFINING FORM (error message) ...ceeeee 8.7
interpreter e e esesesaserseseresesascann e 8.9
LAMBDAttt it rcnaaennn et eteseseenaens 8.3,5,7
LIST (property Name) ...ceeeceees ceennas cecesnaans 8.7
MOVD[FROM;TO; COPYFLG] N eireonans 8.4
NARGS[X] ® 0 0 0 0 0 0 4 OSSO LY NeN 8.1'3‘4.6
NLAMBDAt etenenns teetsetseteasansetenneus 8.3,5
nospread functions cetcesssessessnnans 8.1
HOT A FUNCTION (error message) ...eccccececvccsas 8.8
(NOT FOUND) (value of unsavedef)ccoevcveces 8.8
(NOTHING FOUND) < I -
PROP[X Y] oooooooo R EEEE 40 e v 00000000 8.7
pUTD[X;Y] SUBR 9 0 0 4 5 2 50 ¥ O S0 0SS EOS e E N e A . 8.1‘4
PUTDQ[X;YJ NL 9 0 & 0 0 Q0 8 60 0 A Q O ST 0PSO NO eSS S SE eV 8.4
REDEFINED (typed by SYStem) ...ccvevessosssnvnoss 8.7

INDEX.8.1

RPTLRPTN;RPTF]
RPTQLRPTN;RPTF] NL
SAVEDEF[X]

SETARG[VAR ;M;X] FSUBR

spread functions

SUBR (function type)
SUBR (property name)
SUBRP[LFN] SUBR

subrs

.............

SUBR* (function type)
U (value of ARGLIST)

UNSAVEDEF[X;TYP] ...

s e s 020 e e

A A N IR AN Y

L N I I I B RN A A S I

A)

s e 0 e e

o e s 00 80

o0 e e e

R I NN A

S et o000

RO S S

LR

LR A S N

L R I I I A I I R A N)

D A A A]

e s 00 a0

.........

LR R S I IRy

e e e 08 000 0

® e 0 0

L R I I N R N B B A

INDEX.8.2

R R I R I B B AR B S SR I

L N L]

L N)

Page
Numbers

¢
(&)

'
S WwEoe

Oct-b—-:-\l-b--

.

OO ODOORP

SECTION 9
THE INTERLISP EDITOR!

The INTERLISP editor allows rapid, convenient modification of 1list structures.
Most often it is used to edit function definitions, (often while the function
itself 1is running) via the function editf, e.g., EDITF(FOO). However, the
editor can also be used to edit the value of a variable, via editv, to edit a
property list, via editp, or to edit an arbitrary expression, via edits. It is
an important feature which allows good on-line interaction in the INTERLISP

system.

This chapter begins with a lengthy introduction intended for the new user. The

reference portion begins on page 9.15.

9.1 Introduction

Let us introduce some of the basic editor commands, and give a flavor for the
editor's language structure by guiding the reader through a hypothetical

editing session. Suppose we are editing the following incorrect definition of

append:

The editor was written by and is the responsibility of W. Teitelman.

9.1

[LAMBDA (X)
Y
(COND
((NUL X)
Z)
(T (CONS (CAR)
(APPEND (CDR X Y]

We call the editor via the function editf:

~EDITF(APPEND)
EDIT
4

The editor responds by typing EDIT followed by %, which is the editor's prompt

character, i.e., it signifies that the editor is ready to accept commands.z

At any given moment, the editor's attention is centered on some substructure of
the exXxpression being edited. This substructure 1is called the current
expression, and it is what the user sees when he gives the editor the command
P, for print. 1Initially, the current expression is the top level one, i.e.,
the entire expression being edited. Thus:

*p
(LAMBDA (X) Y (COND & &))
®

Note that the editor prints the current expression as though printlevel were
set to 2, 1.e., sublists of sublists are printed as &. The command ? will

print the current expression as though printlevel were 1000.

x?

(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR X Y))))))
®" .

and the command PP will prettyprint the current expression.

2 In other words, all lines beginning with ® were typed by the user, theo rest

by the editor.

9.2

A positive integer is interpreted by the aditor as a command to descend into

the correspondingly numbered slement of the current expression. Thus:

%2
=p
(X)
®

A negative integer has a similar effect, but counting begins from the end of
the current expression and proceeds backward, i.e., -1 refers to the last
element in the current expression, -2 the next to the last, etc. For either

positive integer or negative integer, if there is no such element, an error

oc:curs,3 the editor types the faulty command followed by a ?, and then another

®, The current expression is never changed whern a command causes an error.

Thus:

A phrase of the jform ‘the current expression is changed' or ‘'the current
expression becomes' refers to a shift in the editor's dattention, not to a
modijication of the structure being edited.

When the user changes the current expression by descending into it, the old

current expression is not lost. Instead, the editor actually operates by

'Editor errors' are not of the flavor described in Section 16, i.e., they
never cause breaks or even go through the error machinery but are direct
calls to error! indicating that a command is in some way faulty. Vhat
happens next depends on the context in which the command was being
executed. For example, there are conditional commands which branch on
errors. In most situations, though, an error will cause the editor to type
the faulty command followed by a ? and wait for more input. Note that
typing control-E while a command is being executed aborts the command
exactly as though it had caused an error.

9.3

maintaining a chaein of expressions leading to the current one. The current
expression is simply the last link in the chain. Descending adds the indicated
subexpression onto the end of the chain, thereby making it be the current
expression. The command 0 is used to ascend the chain; it removes the last

link of the chain, thereby making the previous 1link be the current expression.

Thus:

p

X

%0 P

(X) ‘

x0 -1 P

(COND (& Z) (T &))

Note the use of several commands on a single line in the previous output. The
editor operates in a line buffered mode, the same as evalqt. . Thus no command
is actually seen by the editor, or executed, until the line 1s terminated,
either by a carriage return, or a matching right parenthesis. The user can
thus use control-A and control-Q for line-editing edit commands, the same as he

does for inputs to evalqt.

In our editing session, we will make the following corrections to append:
delete Y from where it appears, add Y to the end of the argument list.4 change

NUL to NULL, change Z to Y, add Z after CAR, and insert a right parenthesis
following CDR X.

First we will delete Y. By now we have forgotten where we are in the function
definition, but we want to be at the "top" so we use the command %, which

ascends through the entire chain of expressions to the top level expression,

4 These two operations could be though of as one operation, i.e., MOVE Y from
its current position to a new position, and in fact there is a MOVE command

in the editor. However, for the purposes of this introduction, we will
confine ourselves to the simpler edit commands.

9.4

which then becomes the current expression, i.e., t removes all links except the

first one.

e P .
(LAMBDA (X) Y (COND & &))
2 :

Note that if we are already at the top, ¢ has no effect, i.e., it is & NOP.
However, 0 would generate an error. In other words, ¢ means "go to the top,"

while 0 means "ascend one link."
The basic structure modification commands in the editor are:

(n) n > 1 deletes the corresponding

slement from the current expression.

(ne; ... ep) n,m > 1 replaces the nth element in the current
expression with
€4 «« Op-.

(-n ey ... em) n,m > 1 inserts 8y ... & before the nth element

in the current expression.

Thus:

*p

(LAMBDA (X) Y (COND & &))
®(3)

(2 (X Y))

=p

(LAMBDA (X Y) (COND & 8))

All structure modification déne by the editor is destructibe. t.e., the editor
uses rplaca and rplacd to physically change the structure it was given.

Note that all three of the above commands perform their operation with respect

9.5

to the nth element from the front of the current expression; the sign of n is
used to specify whether the operation is replacement or insertion. Thus, there
is no way to specify deletion or replacement of the nth element from the end of
the current expression, or insertion before the nth element from the end
without counting out that element's position from the front of the 1list.
Similarly, because we cannot specify insertion after a particular element, we
cannot attach something at the end of the current expression using the above
commands. Instead, we use the command N (for nconc). Thus we could have
performed the above changes instead by: |

*p
(LAMBDA (X) Y (COND & &))

®(LAMBDA (X Y) (COND & &))
®

Now we are ready to change NUL to NULL. Rather than specify the sequence of
descent commands necessary to reach NUL, and then replace it with NULL, e.g., 3
2 1 (1 NULL), we will use F, the find command, to find NUL:

np

(LAMBDA (X Y) (COND & &))

*F NUL

xp

(NUL X)

=(1 NULL)

%0 P
((NULL - X) Z)
R

Note that F is special in that it corresponds to two inputs. In other words, F
says to the editor, "treat your next command as an expression to be searched
for." The search is carried out in printout order in the current expression.
If the target expression is not found there, F automatically ascends and
searches those portions of the higher expressions that would appear after (in a

printout) the current expression. If the search is successful, the new current

9.6

expression will be the structure where the expression was found.5 and the chain
will be the same as one resulting from the appropriate sequence of ascent and
descent commands. if the search 1s not successful, an error occurs, and

neither the current expression nor the chain is changed:6

=p

((NULL X) Z)
*F COND P
COND 7

xp

=((NULL X) Z)

Here the search failed to find a cond following the 'cﬁrrent expression,
although of course a cond does appear earlier in the structure. This last
example illustrates another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, all commands on the line beyond the one
vhich caused the error (and all commands that may have been typed ahead while

the editor was computing) are forgotten.7

We could alsoc have used.the R command (fﬁr teplaca) to change NUL to NULL. A
command of the form (R 8y ez) will replace all occurrences of e in the current
expression by e,. There must be at least one such occurrence or the R command
will generate an error. Let us use the R command to change all Z's (even

though there is only one) in append to V:

-- L I I I e I R

5 If the search is for an atom, e.g., F NUL, the current expression will be
the structure containing the atom.

6 F is never a NOP, i.e., if succeésful.‘the'burrént.expkession after the
search will never be the same as the current expression before the search.
Thus F expr repeated without intervening commands that change the edit
chain can be used to find successive instances of expr.

re

i.e. the input buffer 1is cleared (and saved) (see clearbuf, Section i4).
It can be restored, and the type-ahead recovered via the command $BUFS
(alt-mode BUFS), described in Section 22.

9.7

29 (R ZY)
*F 2
zZ?
ﬁpp
[LAMBBA (X Y)
{COND

((NULL X)

v)
{T (CONS (CAR) v
© (APPEND (CDR X Y]

The next task 1s to change (CAR) to (CAR X). We could do this by
(R (CAR) (CAR X)), or by:

2F CAR

*(N X)

®p v
(CAR X)
®

The expression we now waht to change is the next expression after the current
expression, i.e., we are currently looking at (CAR X) in (CONS (CAR X) (APPEND
(COR X Y))). We could get to the append expression by typing 0 and then 3 or
-1, or we can use the command NX, which does both operations:

xp

(CAR X)

ANX P ‘
(APPEND (CDR X Y))
* .

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR X) Y), we could perform
(2 (CDR X) Y), or (2 (CDR X)) and (N Y), or 2 and (3), deleting the Y, and then
0 (N Y). However, if Y were a complex expression, we would noi want to have to
retype it. Instead, we could use a command which effectively inserts and/or
removes left and right parentheses. There are six of these commands:
8I1,80,LI,LO0,RI, and RO, for both in, both out, left in, left out, right in, and
right out. Of course, we'will always have the same number of left parentheses

as right parentheses, because the parentheses are just a notational guide to

9.8

structure that 1s provided by our print program.8 Thus, left in, left out,
right in, and right out actually do not insert or remove Just one parenthesis,

but this is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear following X in (CDR X
Y). Therefore, we use the command (RI 2 2), which means insert a right
parentheses after the second element in the second element (of the current

expression):

xp
(APPEND (CDR X Y))
*(RI 2 2)

*p

(APPEND (CDR X) VY)
"

We have now finished our editing, and can exit from the editor, to test append,

or we could test it while still inside of the editor, by using the E command:

*E APPEND((A B) (C D E))

(ABCDE)

b=
The E command causes the next input to be given to evalqt. 1If there is another
input following it, as in the above example, the first will be applied (apply)

to the second. Otherwise, the input is evaluated (eval).

We prettyprint append, and leave the editor.

Herein lies one of the principal advantages of a LISP oriented editor over
a text editor: unbalanced parentheses errors are not possible.

9.9

2pp
[LAMBDA (X Y)
(COND
((NULL X)
Y

(T (CONS (CAR X)
(APPEND (CDR X) Y]
*OK
APPEND

9.2 Commands for the New User

As mentioned earlier, the INTERLISP manual is intended primarily as a reference
manual, and the remainder of this chapter 1s organized and presented
accordingly. "~ While the commands introduced in the previous scenario constitute
a complete set, i.e.. the user could perform any and all editing operations
using just those commands, there are many situations in which knowing the right
command(s) can save the user considerable effort. We include here as part of
the introduction a 1list of those commands which are not only frequently
applicable but also easy to use. They are not presented in. any particular

order, and are all discussed in detail in the reference portion of the chapter.

UNDO . B undoes the last modification to the structure
being edited, e.g., if the user deletes the wrong
element, UNDO will restore it. The availability
of UNDO should give the user -confidence to
experiment with any and all editing commands, no
matter how complgx, because he can always reverse

the effect of the command.

BK like NX, except makes the expression immediately

before the current expression become current.

BF Qackwafds find. Like F, except searches

backwards, i.e., in inverse print order.

9.10

"Restores the current expression to the expression
before the last "big jump", e.g., a find command,
an ?.‘ or another \. For example, if the usor
types F COND, and then F CAR, '\ would take him
back to the COND. Another \ would take him back to
the CAR.

\P ' '~ like \ except it restores the edit chain to its
state as of the last print, eithér by P, ?, or PP.
If the edit chain has not been changed since the
last print, \P restores it to its state as of the
'printing 'béfore that one, 1i.e., two chains are

always saved.

Thus if the user types P followed by 3 2 1 P, \P will take him back to the
first P, i.e., would be squivalent to 0 0 0. Another \P would then take him
back to the second P. Thus the user can use \P to flip back and forth between

two current expressions.

&, -~ The search expression given to the F or BF command
need not be a literal S-expression. Instead, it
can be a pattern. - The symbol & can be used
anywhere within this pattern to match with any
'single element of a 1list, and =-- can be used to
match with any segment of a list. Thus, in the
incorrect definition of append used earlier,
'F (NUL &) could have been used to find (NUL X),
and F (CDR --) or F (COR & &), but not F (CDR &),
to find (COR X Y).

Neote that & and -- can be nested arbitrarily deeply in the pattern. For

9.11

example, if there are many places where the variable X is set, F SETQ may not
find the desired expression, nor may F (SETQ X &). It may be necessary to use
F (SETQ X (LIST =--)). Hdwever. the usual technique in such a case 1s to pick
out a unique atom which occurs prior to the desired expression, and perform two
F commands. This "homing in" process seems to be more convenient than ultra-

precise specification of the pattern.

$ (alt-mode) '$ is equivalent to -- at the character level, e.g.
VERS will match with VERYLONGATOM, as will SATOM,

 SLONGS, (but not SLONG) and SVSNSMS. $ can be

nested inside of a pattern, e.d.,

F (SETQ VERS (CONS --)).

If the search is successful, the editor will print
¢ followed by the atom which matched with the &-
atom, e.9.,

*F (SETQ VERS &)
=VERYLONGATOM
®

Frequently the user will want to replace the entire current expression, or
insert something before it. In order to do this using a command of the form (n
ey ... em) or (=n 8y .- em). the user must be above the current expression.
In other wOrds,.he would haVe,to perform a 0 followed by a ;ommand with the
appropriate number. However, if he has reached the current expression via an F
command, he may not know what that number is. In this case, the user would
like a command whose effect would be to modify the edit chain so that the
current expression became the first element in a new, higher current
expression. Then he could perform the desired operation via (i 8y ... em) or

(-1 ey .. em). UP is provided for this purpose.

9.12

up

(B e

(A e

9

after UP operates, the old current expression is
the first element of the new current expression.
Note that if the current expression happens to be
the first element in the next higher expression,
then UP is exactly the same as 0. Otherwise, UP
modifies the edit chain so that the new current
expressiﬁni is é tailg of thé next higher

expression:

*F. APPEND P
(APPEND (CDR X) Y)
=Up P ,

.. (APPEND & Y))
%0 p

(CONS (CAR X) (APPEND & Y))
Rr .

The ... is used by the editor to indicate that the
current expression is a tail of the next higher
expression as opposéd to beiﬁg'an element (i.e., a
vmember) of the next higher expression. Note: 1if
the current expression is already a tail, UP has

no effect.

inserts e, ... em\before’the current expression,

i.e., does an UP and then a -1.

g .- ®) inserts ey ... € after the current expression,

m
i.e., does an UP and then either a (-2 €y - em)

or an (N ey ... e if the current expression is

)
the last one in the next higher expression.

---------------------- L R R I A e I I N I N I

Throughout this chapter 'tail' means 'proper tail' (see Section 5).

9.13

(ey em) replaces current expression by @y ... 8., i.e.,
does an UP and then a (1 8y .- em).
DELETE _ deletes current expression; equivalent to (:).

Earlier, we\introdUced tﬁe RI command 1n4the append example. The rest of the
commands in this family{'BI. BO, LI, LO, and RO, perform similar functions and
are useful in certain situations. In addition, the commands MBD and XTR can be
used to combine the effécts of several céhmands of the BI-BO family. MBD is
used to embed the current expre#sion in a larger expression. For example, if
the current expression is (PRINT bigexpression), and the user wants to replace
it by (COND (FLG (PRINTvbigexpression))), he ;ould accomplish this by (LI 1),
(-1 FLG), (LI 1), and (-1 COND). or by a sindle MBD éoﬁmand. page 9.47.

XTR is used to egggact an expression from the current expression. For example,
extracting the PRINT eXpression from the above COND could be accomplished by
(1), (LO 1), (1), and (LO 1) or by a single XTR command. The new user is
encouraged to inélude XTR and MBD in his repertoire as soon as he is familiar

with the more basic commands.

This ends the introductory material.

9.14

9.3 Attention Changing Commands

Commands to the editor fall into three classes: commands that change the
current expression (i.e., change the edit chain) thereby "shifting the editor's
attention," commands that modify the structure being edited, and miscellaneous

commands, e.g., exiting from the editor, printing, evaluating expressions, etc.

Within the context of commands that shift the editor's attention, we can
distinguish among (1) those commands whose operation depends only on the
structure of the edit chain, e.g., 0, UP, NX; (2) those which depend on the
contents of the structure, i.e., commands that search; and (3) those commands
which simply restore the edit chain to some previous state, e.g., \, \P. (1)
and (2) can also be thought of as local, small steps versus open ended, big
jumps. - Commands of type (i) are discussed on page 9.15-21, type (2) on page
9.21-34, and type (3) on page 9.34-36.

9.3.1 Local Attention-Changing Commands

up (1) If a P command would cause the editor to type
... before typing the current expression, i.e. the
current expression 1is a tail of the next higher
expression, UP has no effect; otherwise
(2) UP modifies the edit chain so that the old
current expre#sion (i.é.. the one at the time UP
was called) 1is the first element in the new

current expression.lo

--------------------- L e L K X R N R I I

10 If the current expression is the first element in the next higher

expression UP simply does a 0. Otherwise UP adds the corresponding tail to
the edit chain.

9.15

Examples: The current expression in each case is

(COND ((NULL X) (RETURN Y))).

1. =1 p
COND
xUp P
(COND (& &))

2. =-1p
((NULL X) (RETURN Y))
=yp P
((NULL X) (RETURN Y))
=yp P
. ((NULL X) (RETURN Y)))

3. ®F NULL P

(NULL X)

%yp P

((NULL X) (RETURN Y))
®Up p

«.. ((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current
expression appears more than once in the next higher expression. For example,
if the current expression is (A NIL B NIL ¢ NIL) and the user performs 4
followed by UP, the current expression should then be ... NIL C NIL). UP can
determine which tail is the correct one because the commands that descend save
the 1last tail on an internal editor variable, lastail. Thus after the 4
command is executed, lastail 1is (NIL C NIL). When UP 1is called, it first
determines if the current expression is a tail of the next higher expression.
If it is, UP is finished. Otherwise, UP computes

memb[current-expression;ﬁext-higher-expression] to obtain a tail beginning with
the current exbression.’l If there are no other instances of the current

expression 1in the next higher expression, this tail 1is the correct one.

11 The current expression should aglways be either a tail or an -element of the
next higher expression. If it 1is neither, for example the user has
directly (and incorrectly) manipulated the edit chain, UP generates an
error.

9.16

Otherwise UP uses lastail to select the correct tai

1.12

n(n>1) adds the nth element of the current expression to

the front of the edit chain, thereby making it be
the new current.expression. Sets lastail for use
by UP. Generates an error 1if the current
expression 1s not a list that contains at loast n

elements.

-n (n > 1) : adds the nth element from the end of the current

Note

- -

expression to the front of the edit chain, theoreby
making it be the new current expression. Sets
lastail for use by UP. Generates an error if the
current expression is not a list that contains at

least n elements.

Sets edit chain to cdr of edit chain, thereby
making the next higher expression be the new
current expression. Generates an error if there
is no higher expression, i.e. cdr of edit chain is

-NIL.

that 0 wusually corresponds to going back to the next higher 1left

L I i I I R R R I T T R R e

Occasionally the user can get the edit chain into a state where lastail
cannot resolve the ambiguity, for example if there were two non-atomic
structures in the same expression that were eq, and the user descended more
than one level into one of them and then tried to come back out using UP.
In this case, UP prints LOCATION UNCERTAIN and generates an error. Of
course, we could have solved this problem completely in our implementation
by saving at each descent both elements and tails. However, this would be
a costly solution to a situation that arises infrequently, and when it
does, has no detrimental effects. The lastail solution is cheap and
resolves 99% of the ambiguities.

1 9.17

parenthesis,

but not always. For examble, if the current expreossion 1is

(AB CDEFB), and the user performs:

%3 Up P
...CDEFG®G)
x3 UP P

... EF G)
xQ P
..CDEFG)

If the intention is to go back to the next higher left parenthesis, regardless

of any intervening tails, the command !0 can be used.13

NX

BK

does repeated 0's until it reaches a point where
the current expression is not a tail of the next
higher expression, i.e., always goes back to the

next higher left parenthesis.

sets edit chain to last of edit chain, thereby
making the top level expression be the current

expression. Never generates an error.

effectively does an UP followed by a 2,79 thereby
making the current expression be the next
expression. Generates an error if the current
expression is the last one in a list. (However,

INX described below will handle this case.)

makes the current expression be the previous

------------------------- L R R R R R N R R N N L L LR

13

14

'0 is pronounced bang-zero.

Both NX and BK operate by performing a !0 followed by an appropriate

number, i.e. there won't be an extra tail above the new current expression;
as there would be if NX operated by performing an UP followed by a 2.

9.18

expression in the next higher expression.
Generates an error if the current expression is

the first expression in a list.

For example, if the current expression 1is (COND ((NULL 'X) (RETURN Y))):

*F RETURN P

(RETURN Y)
®*BK P
(NULL X)
(NX n) n > 1 equivalent to n NX commands, except if an error
occurs, the edit chain is not changed.
(BK n) n > 1 equivalent to n BK commands, except if an error
occurs, the edit chain is not changed.
Note: (NX -n) is equivalent to (BK n), and vice versa.
THX ' - makes current expression be the next expression at

a higher level, i.e., goes through any number of

right parentheses to get to the next expression.

9.19

For example:

=pp
(PROG ((L L)
(UF L))
LP (COND
((NULL (SETQ L (CDR L)))
(ERROR!))
(INULL {(CDR (FMEMB (CAR L)

(CADR L]
(GO LP)))

(EDITCOM (QUOTE NX))

(SETQ UNFIND UF)

(RETURN L))
*F CDR P :
(COR L)
*NX

NX ?

=INX P

(ERROR!)

®INX P

((NULL &) (GO LP))
XINX P '
(EDITCOM (QUOTE NX))

4
INX operates by doing 0's until it reaches a stage where the current expression
is not the last expression in the next higher expression, and then does a NX.
Thus !NX always goes through at least one unmatched right parenthesis, and the
new current expression is always on a different level, i.e., !'NX and NX always

produce different results. For example using the previous current expression:

*F CAR P
(CAR L)
*INX P
(GO LP)
*\P P
(CAR L)
ENX P
(CADR L)
®

(NTHn) n # 0 equivalent to n followed by UP, i.e., causes the
list starting with the pth element of the current

expression (or nth from the end if n < 0) to

- 9.20

become the current expression.ls Causes an error
if current expression does not have at least n

elements.

A generalized form of NTH using location specifications is described on page

9.32.

9.3.2 Commands That Search

All of the editor commands that search use the same pattern matching routine.

16

We will therefore begin our discussion of searching by describing the pattern

match mechanism. A pattern pat matches with x if:

186

1.

pat is eq to x.

2. pat is &.

3. pat is a number and eqp to X.

4. pat is a string and strequal[pat;x] is true.

5, If car[pat] is the atom ®=ANY®, cdr[pat] is a list of patterns and
pat matches x if and only if one of the patterns on cdr[pat]
matches X.

6a. If pat is a literal atom or string containing one or more alt-
modes, each $ can match an indefinite number (including 0) of
contiguous characters in a literal atom or string, e.g.
VER$ matches both VERYLONGATOM and
"VERYLONGSTRING" as do $LONGS (but not
SLONG), and 3VSLITS.

57 (NTH 1) is a NOP, as is (NTH -n) where n is the length of the current
expression.

16

This routine is available to the user directly, and is described on page

9.89.

9.21

6b. If pat is a literal atom or string ending in two alt-modes, pat
matches with the first atom or string that is “close" to pat, in
the sense used by the spelling corrector (Section 17). E.g.
CONSSSS matches with CONS, CNONCS$ with NCONC or NCONCI.
The pattern matching routine always types a message of the form
=X to inform the user of the object matched by a pattern of type
6a or 6b,%7 e.g. =VERYLONGATOM.
7. If car[pat] is the atom --, pat matches x if
a. | cdr[pat]=NIL, i.e. pat=(--), e.g.
(A --) matches (A) (A B C) and (A . B)
"In other words, =-- can match any tail of a list.
b. cdr[pat] matches with some tail of Xx,
e.g. (A == (&)) will match with (A B C (D)),
but not (A B C D), or (AB C (D) E). However,
note that (A -- (&) -=-) will match with
(A B C (D) E).
In other words, -- can match any interior segment of a list.
8. If car[pat] is the atom ==, pat matches x if and only if cdr[pat]
is eq to 3.18
9. Otherwise if x is a list, pat matches x if car[pat]
matches car[x], and cdr[pat] matches cdr[x].
When the editor is searching, the pattern matching routine is called to match
with elements in the structure, unless the pattern begins with ..., in which
case cdr of the pattern is matched against proper tails in the structure. Thus

if the current expression is (A B C (B C)),

unless editquietflg=T.

Pattern 8 1s for use by programs that call the editor as a subroutine,
since any non-atomic expression in a command typed in by the user obviously
cannot be eq to already existing structure.

9.22

“F (B =-)

*p (B C)

*0 F (... B --)
=p

.. BC(BC))

Matching is also attempted with atomic tails (except for NIL). Thus

=p

(A (B . C))
®F C
=p
e . C)

Although the current expression is the atom C after the final command, it is
printed as C) to alert the user to the fact that C is a tegil, not an
element. Note that the pattern C will match with either instance of C in
(A C (B . C)), whereas (... . C) will match only the second C. The pattern NIL
will only match with NIL as an element, i.e. it will not match in (A B), even
though cddr of (A B) is NIL. However, (... . NIL) (or equivalently (...)) may
be used to specify a NIL teil, e.g. (... . NIL) will match with cdr of the

third subexpression of ((A . B) (C . D) (E)).

Search Algorithm

Searching begins with the current expression and proceeds in print order.
Searching usually means find the next instance of this pattern, and
_consequently a match is not attempted that would leave the edit chain
unchanged.zg At each step, the pattern is matched against the next element in
the expression currently being searched, unless the pattern begins with ... in

which case it is matched against the next tail of the expression.

Lttt it i e L R R R

19 However, there is a version of the find command which can succeed and leave
the current expression unchanged (see page 9.26).

9.23

If the match is not successful, the search operation is recursive first in the
car direction and then in the c¢dr direction, i.e., if the element under

examination is a list, the search descends into that list before attempting to

match with other elements (or tails) at the same 1evel.20

However, at no point is the total recursive depth of the search (sum of number
of cars and cdrs descended into) allowed to exceed the value of the variable
maxlevel. At that point, the search of that element or tail 1is abandoned,
exactly as though the element or tail had been completely searched without
finding a match, and the search continues with the element or tail for which
the recursive depth is below maxlevel. This feature is designed to enable the
user to search circular list structures (by setting maxlevel small), as well as
protecting him from accidentally encountering a circular list structure in the

course of normal editing. maxlevel is initially set to 300.21

If a successful match _is not found in the current expression, the search

22 and continues searching

automatically ascends to the next higher expression,
there on the next expression after the expression it just finished searching.
If there 1is none, it ascends again, etc. This process cdntinues until the
‘entire edit chain has been searched, at which point the search fails, and an
error is generated. If the search fails (or, what is equivalent, is aborted by

control-E), the edit chain is not changed (nor are any conses performed).

If the search 1is successful, i.e., an expression is found that the pattern

20 There is also a version of the find command (see page 9.27) which only
attempts matches at the top level of the current expression, i.e., does not
descend into elements, or ascend to higher expressions.

21 maxlevel can also be set to NIL, which is equivalent to infinity.

22

See footnote on page 9.24.

9.24

matches, the edit chain is set to the value it would have had had the user

reached that expression via a sequence of integer commands.

If the expression that matched was a 1list, it will be the final link in the
edit chain, i.e., the new current expression. If the expression that matched
is not a 1list, e.g., 1is an atom, the current expression will be the tail
beginning with that atom.23 i.e., that atom will be the first element in the

new current expression. In other words, the search effectively does an UP.24

Search Commands

All of the commands below set lastail for use by UP, set unfind for use by \
(page 9.35), and do not change the edit chain or perform any conses if they

are unsuccessful or aborted.

F pattern i.e., two commands: the F informs the editor that
the next command 1s to be interpreted as a
pattern. This is the most common and useful form
of the find command. If successful, the edit
chain always changes, i.e., F pattern means find

the next instance of pattern.

If memb[pattern;current-expression] 1is true, F
does not proceed with a full recursive search. If
the value of the memb is NIL, F invokes the search
algorithm described earlier.

el e e e e R e e e R R ettt

Unless the atom is a tail, e.g. B in (A . B). In this case, the current
expression will be B, but will print as B).

24 Unless upfindflg=NIL (initially set to T). For discussion, see page

9.43-44.

9.25

Thus if the current expression is_

(PROG NIL LP (COND (-- (GO LP1))) ... LP1 ...), F LP1 will find the prog label,

not the LP1 inside of the GO expression, even though the latter appears first

(in print order) in the current expression. Note that 1 (making the atom PROG

be the current expression), followed by F LP1 would find the first LP1.

(F pattern N)

(F pattern T)

same as F pattern, i.e., finds the next instance

of pattern, except the memb check of F pattern is

- not performed.

Similar to F pattern, except may succeed without

changing edit chain, and does not perform the memb

“check.

Thus if the current expression 1is (COND ..), F COND will look for the next

COND, but (F COND T) will 'stay here'.

(F pattern n) n > 1

Finds the nth place that pattern matches.
Equivalent to (F pattern T) followed by
(F pattern N) repeatéd n-1 times. Each time
pattern successfully matches, n is decremented by
1, and the search continues, until n reaches 0.
the that the pattern does not have to match with
n identical expressions; it just has to match n
timés. Thus if the current expression is
(FOO1 F002 FO03), (F FOO$ 3) will find FOO3.

If the battern does not match successfully n
times, an error is generated and the edit chain is

unchanged (even if the pattern matched n-1 times).

9.26

(F pattern) or

(F pattern NIL)

only matches with elements at the

top 1level of the current expression, 1i.e., the
search will not descend into the current
expression, nor will it go outside of the current
expression. May succeed without changing edit

chain.

For example, if the current expression is

(PROG NIL (SETQ X (COND & &)) (COND &) ...), F COND will find the COND inside

the SETQ, whereas (F (COND --)) will find the top level COND, i.e., the second

one.

(FS pattern, ... patternn)

(F= expression x)

(ORF pattern1 “en patternn)

BF pattern

equivalent to F péttern1 followed by F
patternz ... followed by F patternn. so that if F
patternm fails, edit chain 1s 1left at place

patternm_1 matched.

equivalent to (F (== . expression) x), 1i.e.,
searches for a structure eq to expression, see

page 9.22.

equivalent to (F (=ANY® pattern; ... pattefnn) N),
i.e., searches for an expression that 1is matched
by either patternl. patternz. ce. OF patternn.

See page 9.21.

backwards find. Searches in reverse print order,
beginning with expression immediately before the
current expression (unless the current expression
is the top level expression, in which case BF

searches the entire expression, in reverse order).

9.27

BF uses the same pattern match routine as F, and
maxlevel and upfindflg have the same effect, but
the searching begins at the end of each list, and
descends into each element before attempting to
match that element. If unsuccessful, the search
continues with the next previous element, etc.,
until the front of the list is reached, at which

point BF ascends and backs up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W =--) =-=)) =--), F LIST
followed by BF SETQ will leave the current expression as (SETQ Y (LIST Z)), as
will F COND followed by BF'SETQ.

(BF pattern T) search always includes current expression, i.e.,
starts at the end of current expression and works

backward, then ascends and backs up, etc.

Thus in the previous example, where F COND followed by BF SETQ found
(SETQ Y (LIST Z)), F COND followed by (BF SETQ T) would find the (SETQ W --)

expression.

(BF pattern) same as BF pattern.
(BF pattern NIL) .

Location Specification

Many of the more sophisticated commands described later in this chapter use a

more general method of spécifying position called a location specification. A

location specification is a list of edit commands that are executed in the

normal fashion with two exceptions. First, all commands not recognized by the

9.28

editor are interpreted as though they had been preceded by F.25 For example,
the location specification (COND 2 3) specifies the 3rd element in the first

clause of the next COND.26

Secondly, if an error occurs while evaluating one of the commands in the
location specification, and the edit chain had been changed, i.e., was not the
same as it was at the beginning of that execution of the 1location
specification, the 1location operation will continue. In other words, the
location operation keeps going unless it reaches a state where it detects that
it is 'looping', at which point it gives up. Thus, if (COND 2 3) is being
located, and the first clause of the next COND contained only two elements, the
execution of the command 3 would cause an error. The search would then
continue by looking for the next COND. However, if a point were reached where
there were no further CONDs, then the first command, COND, would cause the
error; the edit chain would not have been changed, and so the entire location

operation would fail, and cause an error.

The IF command in conjunction with the ## function provide a way of using
arbitrary predicates applied to elements in the current expression. IF and #¢
will be described in detail later in the chapter, along with examples

illustrating their use in location specifications.

Throughout this chapter, the meta-symbol @ 1s used to denote a location
specification. Thus @ is a list of commands interpreted as described above. @

can also be atomic, in which case it is interpreted as list[@].

-------------------------- LRI R R N R R R R I I I I I I I I I R)

26 Normally such commands would cause errors.

26 Note that the user could always write F COND followed by 2 and 3 for

(COND 2 3) if he were not sure whether or not COND was the name of an
atomic command.

9.29

(LC

(LCL

(2ND

(3RD

(«p

- w o

27

. 8) provides a way of explicitly invoking the location
“operation, e.g. (LC COND 2 3) will perform the the

search described above.

. @) Same as LC except the search is confined to the
current expression, 1i.e., the wedit <chain is
rebound during the search so that it 1looks as
though the editor were called on just the current
expression. For example, to find a COND
containing a RETURN, one might use the location
specification (COND (LCL RETURN) \) where the \
would reverse the effects of the LCL command, and

make the final current expression be the COND.

. @) Same as (LC . @) followed by another (LC . @)
except that if the first succeeds and second

fails, no change is made to the edit chain.
. @) | Similar to 2ND.

attern) ascends the edit chaln looking for a link which
matches pattern. In other words, it keeps doing
0's until it gets to a specified point. 1f
pattern is atomic, it is matched with the first
element of each link, otherwise with the entire

1ink.27

------------------------- C R I L I N R R N A]

If pattern is of the form (IF expression), expression is evaluated at each
link, and if its value is NIL, or the evaluation causes an error, the
ascent continues.

9.30

For example:

app
[PROG NIL
{COND
[(NULL (SETQ L (CDR L}))
(COND
(FLG (RETURN L]
(INULL (CDR (FMEMB (CAR L)
(CADR L]]

=F CADR
Z(«~ COND)
“p
(COND (& &) (& &))

Note that this command differs from BF in that it does not search inside of
each link, 1t simply ascends. Thus in the above example, F CADR followed by
BF COND would find (COND (FLG (RETURN L))), not the higher COND.

If no match is found, an error 1is generated, and

the edit chain is unchanged.

(BELOW com x) ascends the edit chain 1looking for a 1link
specified by com, and stops §28 links below
that,29 i.e. BELOW keeps doing 0's until it gets

to a specified point, and then backs off x 0's.
(BELOW com) same as (BELOW com 1).
For example, (BELOW COND) will cause the cond clause containing the current

expression to become the new current expression. Thus 1if the current

expression is as shown above, F CADR followed by (BELOW COND) will make the new

odietindiadl ol bl L R e I R R R R R I I A R e R R Y

X is evaluated, e.g., (BELOW com (IPLUS X Y)).

29 Only links that are elements are counted, not tails.

9.31

expression be ([NULL (CDR (FMEMB (CAR L) (CADR L] (GO LP)), and 1s therefore

equivalent to 0 0 0 O.

The BELOW command is.useful for locating a substructure by specifying something
it contains. For example, suppose the user is editing»é list of 1lists, and
wants to find a sublist that contains a FOO (at any depth). He simply executes
F FOO (BELOW \).

(NEX x) same as (BELOW x) followed by NX.

For example, if the user 1s deep inside of a SELECTQ clause, he can advance to

the next clause with (NEX SELECTQ).
NE X same as (NEX «).

The atomic form of NEX is useful if the user will be performing repeated
executions of (NEX x). By simply MARKing (see page 9.34) the chain

corresponding to x, he can use NEX to step through the sublists.

(NTH x) . generalized NTH command. Effectively performs
(LCL . x), followed by (BELOW \), followed by UP.

In other words, NTH locates x, using a search restricted to the current
expression, and then backs up to the current level, where the new current
expression 1is the tail whose first element contains, however deeply, the

expression that was the terminus of the location operation. For example:

xp
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
*(NTH UF)
*p
(SETQ UNFIND UF) (RETURN L))

®

9.32

If the search 1s unsuccessful, NTH generates an

error and the edit chain is not changed.

Note that (NTH n) is just a special case of (NTH x), and in fact, no special
check is made for X a number; both commands are executed identically.

(pattern .. @)30

e.g., (COND .. RETURN). Finds a cond that
contains a return, at any depth. Equivalent to
(but more éfficient than) (F pattern N), (LCL . @)

followed by (¢« pattern).

For example, if the current expression is

(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L} --), then (COND .. RETURN) will
make (COND (FLG (RETURN‘L))) be the current expression. Note that 1t 1is the
innermost COND that is found, because this is the first COND encountered when
ascending from the RETURN. In other words, (péttern .. ®) 1is not alwuys

equivalent to (F pattern N), followed by (LCL . @) followed by \.

Note that @ is a location specification, not just a pattérn: Thus
(RETURN .. COND 2 3) <can be used to find the RETURN which contains a COND
whose first clause contains (at least) three elements. Note also that since ©@
permits = any edit command, the user can write commands of the form
(COND .. (RETURN .. COND)), which will locate the first COND that contains a
RETURN that contains a COND.

30 An infix command, '..' is not a meta-Symbol. it is the name of the command.
@ is cddr of the command.

9.33

9.3.3 Commands That Save and Restore The Edit Chain

Several facilities are available for saving the current edit chain and later
retrieving it: MARK, which marks the current chain for futuré reference, ».31
which returns to the last mark without destroying it, and <, which returns to

the last mark and also erases it.

MARK adds the current edit chain to the front of the

1ist marklst.

- makes the new _edit chain be (CAR MARKLST).
Generates an error if marklst 1is NIL, i1.e., no
MARKs have been performed, or all have been

erased.

. similar to « but also erases the MARK, 1i.e.,

performs (SETQ MARKLST (CDR MARKLST)).

Note that if the user has two chains marked, and wishes to return to the first
chain, he must perform =, which removes the second mark, and then ~. However,
the second mark is then no longer accessible. If the user wants to be able to

return to either of two (or more) chains, he can use the following generalized

MARK :

(MARK atom) sets atom to the current edit chain,

(\ atom) ‘ makes the current edit chain become the value of
atom.

52 ---------------- DS e me 000D RN NTOND SRR OORD RO S o TGS WSO ®m e -

An atomic command; do not confuse « with the list command (e~ pattern).

9.34

If the user did not prepare in advancé for returning ¢o a particular edit
chain, he may still be able to return to that chain with a single command by

using \ or \P.

\ " makes the edit chain be the value of unfind.

Generates an error if unfind=NIL.

unfind is set to the current edit chain by each command that makes a "big
jump", 1.e., a command that usually performs more than a single ascent or
descent, namely t, <, ««=, INX, all commands that involve a search, e.g., F, LC,

.., BELOW, et al and \ and \P themselves.32

For example, if the user types F COND, and then F CAR, \ would take him back to
the COND. Another \ would take him back to the CAR, etc.

\P restores the edit chain to its state as of the
last print operation, i.e. P, ?, or PP. If the
edit chain has not changed since the last
printing, \P restores it to its state as of the
printing before that one, i.e., two chains are

always saved.

For example, if the user types P followed by 3 2 1 P, \P will return to the
first P, i.e., would be equivalent to 0 0 0.33 Another \P would then take him
back to the second P, i.e., the user could use \P to flip back and forth

between the two edit chains.

Except that unfind is not reset when the current edit chain is the top
level expression, since this could always be returned to via the t command.

33 Note that if the user had typed P followed by F COND, he could use either \

or \P to return to the P, i.e., the action of \ and \P are independent.

9.35

(S var . @) Sets var (using setq) to the current expression
after performing (LC . @). Edit chain 1is not

changed.

Thus (S FO0) will set foo to the current expression, (S FOO -1 1) will set foo

to the first element in the last element of the current expression.

This ends the section on "Attention Changing Commands."

9.4 Commands That Modify Structure

The basic structure modification commands in the editor are:

(n) n > 1 deletes the corresponding element from the

current expression.

(ne; ... e) n,m > 1 replaces the nth element in the current

expression with 8y <.« €.

(-n ey ... ep) n,m> 1 inserts e; ... e, before the nth element

m
in the current expression.

(N e, ... e) ‘ m > 1 attaches 8y «.. © at the end of the current

m
expression.

As mentioned earlier:

all structure modification'done by the editor is destructive, i.e. the editor
uses rplaca and rplacd to physically change the structure it was given.

However, all structure modification is undoable, see UNDO page 9.78.

9.36

All of the above commands generate errors if the current expression is not a
list, or in the case of the first three commands, if the list contains fewer
than n elements. In addition, the command (1), 1.e. delete the first element,
will cause an error if there is only one element, since deleting the first
element must be done by replacing it with the second element, and then deleting
the second element. Or, to look at it another way, deleting the first element
when there is only one element would require changing a list to an atom (i.e.

to NIL) which cannot be done.34

9.4.1 Implementation of Structure Modification Commands_

Vote: Since oll commands that insert, replace, delete or attach structure use
the same low level editor functions, the remarks made here are valid jfor
all structure changing commands.

For all replacement, insertion, and attaching at the end of a list, unless the

command was typed in directly to the editor.35

copies of the corresponding
structure are used, because of the possibility that the exact same command,
(i.e. same 1list strucpure) might be used again. Thus if a program constructs
the command (1 (A B C)) e.g. via (LIST i FOOi. and gives this command to the

editor, the (A B C) used for the replacement will not be eq to ﬁgg.36

---------------------------------- B R L L R N ettt

34 However, the command DELETE will work even if there is only one element in
the current expression, since it will ascend to a point where it con do the
deletion.

35 Some editor commands take as arguments a list of edit commands, e.g.
(LP F FOO (1 (CAR FO0))). In this case, the command (1 (CAR FO0O)) is not
considered to have been "typed in" even though the LP command itself may
have been typed in. Similarly, commands originating from macros, or
comnmands given to the editor as arguments to editf, editv, et al, e.g.
EDITF(FOO F COND (N --)) are not considered typed in. ‘ '

36 The user can circumvent this by using the I command, which computes the

structure to be used. In the above example, the form of the command would
be (I 1 FOO), which would replace the first element with the value of foo
itself. See page 9.62.

9.37

The rest of this section is included for applications wherein the editor 1is
used to modify a data structure, and pointers into that data structure are
stored elsewhere. In these cases, the actual mechanics of Sstructure
modification must be known in order to predict the effect that various commands
may have on these outside pointers. For example, if the value of foo is cdr of
the current expression, what will the commands (2), (3), (2 X Y Z), (-2 X Y Z),

etc. do to foo?

Deletion of the first element in the current expression is performed by
replacing it with the second element and deleting the second element by
patching around it. Deletion of any other element is done by patching around
it, i.e., the previous tail is altered. Thus if foo is eq to the current
expression which is (A B C D), and fie is cdr of foo, after executing the
command (1), foo will be (B C D) (which is equal but not eq to fie). However,
under the same initial conditions, after executing (2) fie will be unchanged,
i.e., fie will still be (B C D) even though the current expression and foo are

now (A ¢ 0).%7

Both replacement and inseftion are accomplished by smashing both car and cdr of
the corresponding tail. Thus, if foo were eq to the current expression,
(ABCD), after (1 XY Z), foo would be (XY Z B C D). Similarly, if foo were
eq to the current expression, (A B C D), then after (-1 X Y Z), foo would be
(XY ZABCD). |

The N command is accomplished by smashing the last cdr of the current

------------------ L R R . R N R e R N R I

37 A general solution of the problem just isn't possible, as it would require
being able to make two 1lists eq to each other that were originally
different. Thus if fie is cdr of the current expression, and fum is cddr
of the current expression, performing (2) would have to make fie be eq to

fum if all subsequent operations were to update both fie and fum correctly.
Think about it.

9.38

expression a la nconc. Thus if foo were eq to any tail of the current
expression, after executing an N command, the corresponding expressions would

also appear at the end of foo.

In summary, the only situation in which an edit operation will not change an
external pointer occurs when the external pointer 15 to a proper tail‘of the
data structure, i.e., to cdr of some node in the structure.-énd the operation
is deletion. If all external’pointérs ére to elements of the structure, 1i.e.,
to car of some node, or if only inseftions} replacémenﬁs. or attachments are
performed, the edit operation will always have thé same effect on an external

pointer as it does on the current expression.

9.4.2 The A, B, and : Commands

In the (n), (n ey ... e,), and (-n 8y o em) commands, the sign of the
integer is used to indicate the operation. As a result, there is no direct way
to express insertion after a particular_element,‘(hence'&he‘necessity for a
separate N command). Similarly, the user cannot specify deletion or
replacement of the nth element from the end of a list without first converting

n to the corresponding positive integer. Accordingly, we have:

(B ey ...) inserts e, ... e, before the current expression.

m
Equivalent to UP followed by (-1 €y ... em).

For example, to insert FOO before the last element in the current expression,

perform -1 and then (B F00).

(A ey ... e.) inserts e, ... e, after the current expression.

Equivalent to UP followed by (-2 8y -t em) or

(N ey ... em) whichever is appropriate.

9.39

b3

(: ey ... @) replaces the current expression by @y ... ©

Equivalent to UP followed by (1 8y vt em).
DELETE or (:) deletes the current expression.

DELETE first tries to delete tﬁe,current expression by performing an UP and
then a (1). This works in most cases. However, if after performing UP. the
new current expre#sionbcontains only one element;’the command (1) will not
work. Therefore, DELETE starts ‘ovér, and performs a BK, followed by UP,
followed by (2). For example, if the current expression is
(COND ((MEMB X Y)) (T Y)), and the user performs -i, and then DELETE, the
BK-UP-(2) method 1s wused, and 'the new cﬁrrent expression will be

((MEMB X Y)))

However, if the next higher éxpression contains only one element, BK will not
work. So im this case, DELETE performs UP, followed by (: NIL), i.e., it
replaces the higher expression by NIL. For exampla, if the current expression
is (COND ((MEMB X Y)) (T Y)) and the user performs F MEMB and then DELETE, the
new current expression will be ... NIL (T Y)) and the original expression would
now be (COND NIL (T Y)). The rationale behind this is that deleting (MEMB X Y)
from ((MEMB X Y)) changes a list of one element to a list of no elements, i.e.,

() or NIL.

If the current expression is a tail, then B, A, :, and DELETE all work exactly

the same as though the current expression were the first element in that tail.

Thus if the current expression were ... (PRINT Y) (PRINT Z)), (B (PRINT X))

would insert (PRINT X) before (PRINT Y), 1leaving the current expression
(PRINT X) (PRINT Y) (PRINT 2)).

9.40

The following forms of the A, B, and : commands incorporate a location

specification:

(INSERT e, ... e BEFORE .)38 similar to (LC .0)%Y followed Dby (B

ap

(PROG (& & X) ==COMMENT=2 (SELECTQ ATM & NIL) (OR & &) (PRIN1 & T)
(PRIN1 & T) (SETQ X &

% (INSERT LABEL BEFORE PRIN{)

xp

(PROG (& & X) *%COMMENT®x (SELECTQ ATM & NIL) (OR & &) LABEL
(PRIN1 & T) (40

b 4

Current edit chain is not changed, but unfind is
set to the edit chain after the B was performed,
i.e. \ will make the edit chain be that chain

where the insertion was performed.

(INSERT ey ... e AFTER'. ©) Similar to INSERT BEFORE except uses A instead of
B.

(INSERT ey ... ep FOR . @) similar to INSERT BEFORE except uses : for B.

-- P L L L R N P I Y

38 i.e. @ is cdr[member[BEFORE command]]

39 except that if @ causes an error, the location process does not continue as

described on page 9.29. For example if @=(COND 3) and the next COND does
not have a 3rd element, the search stops and the INSERT fails. Note that
the user can always write (LC COND 3) if he intends the search to continue.

40 Sudden termination of output followed by a blank 1line return indicates

printing was aborted by control-E.

9.41

(REPLACE G WITH ey ... em)41 Here @42 is the segment of the command between
REPLACE and WITH. . Same as
(INSERT ey ... e FOR . @).

Example: (REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE @ TO e e_) Same as REPLACE WITH.

{0 ®p
(DELETE . @) does a (LC . @)43 followed by DELETE. Current
edit chain is not changed.44 but unfind 1s set to

the edit chain after the DELETE was performed.
Example: (DELETE -1), (DELETE COND 3)

Note: i1y @ is NIL (i.e. empty), the corresponding operation is performed heore
(on the current edit chain).

For example, (REPLACE WITH (CAR X)) is equivalent to (: (CAR X)). For added
readability, HERE is also permitted, e.g. (INSERT (PRINT X) BEFORE HERE) will
insert (PRINT X). before the current expression (but not change the edit

chain).

Vote: @ does not have to specify a location within the current expression, i.c.
it 1s perfectly legal to ascend to INSERT, REPLACE, or DELETE

B I N e i e T N X I I I L KR I I

BY can be used for WITH.

See footnote on page 9.41.

43 See footnote on page 9.41.

94 ynless the current expression is no longer a part of the'expression being

edited, e.g. if the current expression is ... C) and the user performs
(DELETE 1), the tail, (C), will have been cut off. Similarly, if the
current expression is (CDR Y) and the user performs (REPLACE WITH (CAR X)).

9.42

Fof example, (INSERT (RETURN) AFTER ¢ PROG -1) will go to the top, find the
first PROG, and insert a (RETURN) at its end, and not change the current edit

chain.

The A, B, and : commands, commands, (and consequently INSERT, REPLACE, and
CHANGE), all make special checks in ey thru en for expressions of the form (v#

coms). In this case, the expression used for inserting or replacing is a
copy of the current expression after executing coms, a list of edit commands.‘!5
For example, (INSERT (## F COND -1 -1) AFTER 3)46 will make a copy of the last
form in the last clause of the next cond, and insert it after the third element

of the current expression.

9.4.3 Form Oriented Editing and the Role of UP

47 nakes these operations

The UP that is performed before A, B, éhd 1 commands
form-oriented. For example, if the user tyﬁes F‘SEfO. and then DELETE, or
Simply (DELETE SETQ), he will delete the entire SETQ expression, vwhereas
(DELETE X) if X is a variable, deletes just the variable X. In both cases, the
operation is performeq on the corresponding form, and in bath cases 1is probably

what the user intended. Similarly, if the user types

(INSERT (RETURN Y) BEFORE SETQ), he means before the SETQ expression, not

D I A e e e i R kR R e S Y

45 The execution of coms does not change the current edit chain.

46 yot (INSERT F COND -1 (## -1) AFTER 3), which inserts four elements after
the third element, namely F, COND, -1, and a copy of the last element in
the current expression.

47 and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the
- location portion of the operation has been performed.

9.43

before thé atom SETQ.48 A consequent of this procedure is that a pattern of the
form (SETQ Y --) can be viewed as simply an elaboration and fufther refinement
of ~ the pattern SETQ. Thus (INSERT (RETURN V) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same operation49 and, 1in
fact, this is one of the motivations behind making the current expression after

F SETQ, and F (SETQ.Y --) be the same.

Occasionally, however, a user may have a data structure in which no special
significance or meaning is attached to the position of an atom in a list, as
INTERLISP attaches to atoms that appear as car of a 1list, versus those
appearing elsewhere in a list. In general, the user may not even know whether
a particular atom is at the head of a 1list or not. Thus, when he writes
(INSERT expression BEFORE F00), he means before the atom FOO, whether or not it
is car of a 1list. By setting the variable upfindflg to NIL,50 the user can
suppress the implicit UP that follows searches for atoms, and thus achieve the
desired effect. With upfindflg=NIL, following F F0O, for example, the current
expression will be the atom FOO. In this case, the A, B, and : operations will
operate with respect to the atom FO0O. If the user intends the operation to

refer to the list which FOO heads, he simply uses instead the pattern (FOO --}.

48 There is some ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function's first argument. Similarly, the user
~cannot write (REPLACE SETQ WITH SETQQ) meaning change the name of the
function. The user must 1in these cases . write . (INSERT expr AFTER
functioname 1), and (REPLACE SETQ 1 WITH SETQQ). '
49 assuming the next SETQ is of the form (SETQ Y ==},
50

Initially, and usually, set to T.

9.44

9.4.4 Extract and Embed

Extraction involves replacing the current expression with one of its

subexpressions (from any depth).

(XTR . @) replaces the original current expression with the
expression that 1s current after performing

(LeL . e).%

For example, if the current expression 1is (CONb ((NULL X) (PRINT VY))).

(XTR PRINT), or (XTR 2 2) will replace the cond by the print.

If the current expression after (LCL . @) is a
tail of a higher expression{ its'fifst element 1is

used.
For example, if the current expression is (COND ((NULL X) Y) (T Z)), then
(XTR Y) will replace the cond with Y, even though the current expression after
performing (LCL Y) is ... Y).

If the extracted expression is a 1list, then after

XTR has finished, the current expression will be

that list.

Thus, in the first example, the current expression after the XTR would be

(PRINT Y).

See footnote on page 9.41.

9.45

If the extracted expression is not a list, the new
current expression will be a tail whose first

element is that non-list.

Thus, in the second example, the current expression after the XTR would be

Y followed by whatever followed the COND.

If the current expression initially is-a‘téil. extraction works exactly the
same as though the current expression were the first element in that tail.
Thus if the current expression is ... (COND ((NULL X} (PRINT Y))) (RETURN Z)),
then (XTR PRINT) will replace the cond by the print, leaving (PRINT Y) as the

current expression.
The extract command can also incorporate a location specification:

(EXTRACT @, FROM . 0,)%2 Perforns (LC . @,)%% and then (XTR . @,). Current
edit chain 1is not changed. but unfind is set to

the edit chain after the XTR was performed.

Example: If the current expression is (PRINT (COND ((NULL X) Y) (T 2))) then
following (EXTRACT Y FROM COND), the current expression will be (PRINT Y).
(EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2), (EXTRACT 2 -1 FROM 2) will all

produce the same result.

A n er en e W D O R S G W TR O ID R YD R D D D D e eGP EH TS D eI G WD eI ESEEDW e W

52 @1 is the segment between EXTRACT and FROM.

63 See footnote on page 9.41.

9.46

While extracting replaces the current expression by a subexpression, embedding
replaces the current expression with one containing it as a subexpression.

54

(MBD €y ... @ MBD substitutes the current expression for all

m)
instances of the atom ® in 8y +-- €ns and replaces
the current expression with the result of that

substitution.

Examples: If the current expression is (PRINT Y},
(MBD (COND ((NULL X) =) ((MNULL (CAR Y)) » (GO LP)))) would replace (PRINT Y)
with (COND ((NULL X) (PRINT Y)) ((NULL (CAR Y)) (PRINT Y) (GO LP))).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG =)) would
replace it with the two expressions (PRINT Y) and (AND FLG (RETURN X)) i.e., if
the (RETURN X) appeared in the cond clausev(T (RETURN X)), after the MBD, the
clause would be (T (PRINT Y) (AND FLG (RETURN X))).

If # does not appear in e, ... ® ~the MBD is

m'
interpreted as (MBD (e; ... e, %)).

Examples: If the current expression 1is (PRINT Y), then (MBD SETQ X) will
replace it with (SETQ X (PRINT Y)). If the current expression is (PRINT Y),

(MBD RETURN) will replace it with (RETURN (PRINT Y)).

MBD leaves the edit chain so that the larger expression is the new current

expression.

A R R RN R R R R N A X TR R L I I I I N

as with subst, a fresh copy is used for each substitution.

9.47

If the current expression initially is a tail, embedding works exactly the same
as though the current expression were the first element in that tail. Thus if
the current expression were ... (PRINT Y) (PRINT Z)), (MBD SETQ X) would
replace (PRINT Y) with (SETQ X (PRINT Y)).

The embed command can also incorporate a location specification:
(EMBED @ IN . x)% does (LC . @)% and then (MBD . x). Edit chain is
| not changed, but unfind is set to the edit chain

after the MBD was performed.

Example: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),
(EMBED COND 3 1 IN (OR = (NULL X))).

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND
HUMBERP WITH (AND ® (MINUSP X))).

9.4.5 The MOVE Command

The MOVE command allows the user to specify (1) the expression to be moved, (2)
the place it is to 5e moved to, and (3) the'operation to be performed there,

e.g., insert it before, insert it after, replace, etc.

(MOVE @, T0 com . 0,)%7 where com is BEFORE, AFTER, or the name of a list

--- EE TN R R R R R R

56 ® is the segment between EMBED and IN.
56 See footnote on page 9.41.

57 @1 is the segment between MOVE and TO.

9.48

command, e.g., :, N, etc. performs (LC . @l).sg
and obtains the current expression there (or its
first element, if it is a tail), which we will
call expr; MOVE then goes back to the original

edit chain, performs (LC . @
59

2) " followed by

(com expr), then goes back to’ @l and deletes
expr. Edit chain 1is not changed. Unfind is set

to edit chain after (com expr) was performed.

For example, if the current expression is (A B C D), (MOVE 2 TO AFTER 4) will
make the new current expression be (A C D B). Note that 4 was executed as of

the original edit chain, and that the second element had not yet been

removed.GO

As the following examples taken from actual editing will show, the MOVE command

is an extremely versatile and powerful feature of the editof.

%7

(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))
%*(MOVE 3 TO : CAR)
x 7

(PROG ((L L)) (RETURN (EDLOC (CDDR C))))
4

*p
... (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
*(MOVE 2 TO N 1)
#p
.. (SELECTQ OBJPR & & &) LP2 (COND & &))

22

58 see footnote on page 9.41.
59

Setting an internal flag so expr is not copied.
60

If @, specifies a location inside of the expression to be moved, a message
is printed and an error is generated, e.g. (MOVE 2 TO AFTER X), where X is
contained inside of the second element.

9.49

%xp
(OR (EQ X LASTAIL) (NOT &) (AND & & &))
*(MOVE 4 TO AFTER (BELOW COND))

*p
(OR (EQ X LASTAIL) (NOT &))
x\ P

(& &) (AND & & &) (T & &))
®
%p

((NULL X) =*COMMENT®% (COND & &))

%(-3 (GO NXT]

*(MOVE 4 TO N (= PROG))

*p

((NULL X) ==*COMMENT®== (GO NXT))

x\ Pp

(PROG (&) **COMMENT®% (COND & & &) (COND & & &) (COND & &))

* (INSERT NXT BEFORE -1)

® p ,

(PROG (&) **COMMENT®% (COND & & &) (COND & & &) NXT (COND & &))

Note that in the last example, the user could have added the prog label NXT and
moved the cond in one operation by performing (MOVE 4 TO N (= PROG) (N NXT)).
Similarly, in the next example, in the course of specifying @2, the location
where the expression was to be moved tb. the user also performs a structure
modification, via (N (T)), thus creating the structure that will receive the

expression being moved.

®xp

((CDR &) ==COMMENT=% (SETQ CL &) (EDITSMASH CL & &))
%MOVE 4 TO N 0 (N (T)) -1]

xp

((CDR &) ==COMMENT== (SETQ CL &))

x\ p

*(T (EDITSMASH CL & &))

b4

If @2 is NIL, or (HERE), the current position specifies where the operation is
to take place. In this case, unfind is set to where the expression that was

moved was originally located, i.e. @1. For example:

=p

(TENEX)

*(MOVE t F APPLY TO N HERE)
xp

(TENEX (APPLY & &))

"

9.50

*p
(PROG (& & & ATH IND VAL) (OR & &) =®COMMENT®® (OR & &) (PRIN1 & T) (
PRIN1 & T) (SETQ IND .

% (MOVE * TO BEFORE HERE)
% p
(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRIN1 &

#p

(T (PRIN1 C-EXP T))

%*(MOVE t BF PRIN1 TO N HERE)
p

(T (PRINI C-EXP T) (PRINL & T))
x®

Finally, if @1 is NIL, the MOVE command allows the user to specify where the
current expression is to be moved to. In this case, the edit chain 1is changed,
and is the chain where the current expression was moved to; unfind is set to

where it was.

%p

(SELECTQ OBJPR (&) (PROGN & &))

*(MOVE TO BEFORE LOOP)

%p

... (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ

9.4.6 Conmands That "Move Parentheses"

The commands presented in this section permit modification of the 1list
structure itself, as opposed to modifying components thereof. Their effect can
be described as inserting or removing a single left or right parenthesis, or
pair of left énd right parentheses. Of course, there will always be the same
number of left parentheses as right parentheses in any 1list structure. since
the parentheses are Just a notational guide to the structure provided by print.
Thus, no command can insert or remove Just one parenthesis. but this 1is

suggestive of what actually happens.

Sudden termination of output followed by a blank line indicates printing
was aborted by control-E.

9.51

In all six commands, n and m are used to specify an element of a list, usually
of the current expression. In practice, n and m are usually positive or
negative integers with the obvious interpretation. However, all six commands
use the generalized NTH command, page 9;32; to find their element(s), so that
nth element means the first element of the tall found by performing (NTH n).
In other words, if the current expression 1is

(LIST (CAR X).(SETQ Y (CONS ¥ Z))), then (BI 2 CONS), (BI X -1), and (BI X 2)

all specify the exact same operation.

All six commands generate an error if the element is not found, i.e. the NTH

fails. All are undoable.

(BI n m) both in, inserts a left parentheses before the nth
element and after the mth element in the current
expression. Generates an error if the mth element
is not contained in the nth tail, i.e., the mth

- element must be "to the right" of the nth element.

Example: If the current expression is (A B (C D E) F G), then (BI 2 4) will
modify it to be (A (B (C D E) F) G).

(BI n) same as (BI n n).

Example: If the current expression is (A B(CDE)F G), then (BI -2) will
modify it to be (A B (C D E) (F) G).

(BO n) both out. Removes both parenthéses from the nth
element. Generates an error if nth element is not

a list.

Example: If the current expression is (A B (C D E) F G), then (BO D) will
modify it to be (A B CDE F G).

9.52

(LI n) left in, inserts a left parenthesis before the nth
element (and a matching right parenthesis at the
end of the current expression), i.e. equivalent

to (BI n -1).

Example: if the current expression is (A B (C D E) F G), then (LI 2) will
modify it to be (A (B (C D E) F G)). o '

(LO n) , left g&t. removes a left parenthesis from the nth
element. All elements following the nath element
are deleted. Generates an error ifbgth element is

not a list.

Example: If <the current aexpression 1is (A B(CDE)FG), then {(LO 3) will
modify it to be (A B C D E).

(RI n m) right in, inserts a right parenthesis after the
mth element of the nth element. The rest of the
nth element is brought up to 'the. lavel of the

current expression.

Example: If the current expressidn is-(A (8 cD E) F &), (RI 2 2) will modify
it to be (A (B C) DEF G). Another way of thinking about RI is to read it as

"move the right parenthesis at the end of the nth eiement in to after its mth

element."

(RO n) | right Qut. réhoves‘the fight pafenthesis from the
nth element, moving it to the end of the current
expfe;sion. All elgments fqllowing }he nth
element bare moved inside of the nth elemeﬁﬁ.

Generates an error if nth element is not a list.

9.53

Example: If the current expression is (A B (C D E) F G), (RO 3) will modify it
to be (A B (C D E F G)). Another way of thinking about RO is to read it as
"move the right parenthesis at the end of the nth element out to the end of

the current expression."

'9.4.7 TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on several
contiguous elements, i.e., a segment of a list, by using in their respective

location specifications the TO or THRU command.

(@1 THRU @2) does a (LC . @1). followed by an UP, and then a
' (BI i @2). thereby grouping the segment into a
single element, and finally does a 1, making the

final current expression be that element.

For examplé,~if the current expression is (A (B (C D) (E) (F G H) I) J K),
following (C THRU'G). the current expression will be ((C D) (E) (F G H)).

(e, TO @,) Same as THRU except last element not included,

i.e., after the BI, an (RI {1 -2) is berformed.

If both @, and @2 are numbers, and @z is greater than @y, then @, counts from
the béginning of the current expressioh. the same és @1. In other words, if
the current expression is (A B CDEF G), (3 THRU 5) means (C THRU E) not

(C THRU G)} In this case, the corresponding BI command is (BI 1 @2-@1+1)‘
THRU and TO are not very useful commands'by themselves; they are intended to be

used in conjunction with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU

and TO have operatéd. they set an internal editor flag informing the above

9.54

commands that the element they are operating on is actually a segment, and that
the extra pair of parentheses should be removed when the operation is complete.

Thus:

p
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ IND &) (SETQ VAL &)
*xCOMMENT#=2 (SETQQ

=(MOVE (3 THRU 4) TO BEFORE 7)

“p

(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRIN1 & T) (PRINI & T)
xxCOMMENT==

®

xp A

(* FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR AND
CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL HAVE BEEN
TRANSLATED, AND IT CAUSED THE ERROR.)

% (DELETE (USER THRU CURRS))

=CURRENTFORM.

= p

(= FAIL RETURN FROM EDITOR. CURRENTFORM IS

R

xp

... LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y))
*(MOVE (1 TO OUT) TO N HERE]

xp

. OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))

“pp
[PROG (RF TEMP1 TEMP2)
(COND
((NOT (MEMB REMARG LISTING))
(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS)) =%COMMENT==
(SETQ TEMPZ (CADR TEMP1))
(GO SKIP))
(7 *2COMMENT==®
(SETQ TEMP1 REMARG)))
(NCONC1 LISTING REMARG)
(COND
((NOT (SETQ TEMP2 (SASSOC

= (EXTRACT (SETQ THRU CADR) FROM COND)

%P

(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) "2COMMENT** (SETQ TEMPZ &)
(NCONC1 LISTING REMARG) (COND & &

®”

9.55

TO and THRU can also be used directly with XTR.62 Thus in the previous example,
if the current expression had been the COND, e.g. the user had first performed

F COND, he could have used (XTR (SETQ THRU CADR)) to perform the extraction.

(@1 T70), (@1 THRU) both same as (@1 THRU -1), i.e., from @l through

the end of the list.

Examples:

p

(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN))
%(MOVE (2 TO) TO N (« PROG))

=(N (GO VAR))

%p

"(VALUE (GO VAR))

* P)

(T ==COMMENT*% (COND &) **COMMENT®=® (EDITSMASH CL & &) (COND &))
%(-3 (GO REPLACE))

*(MOVE (COND TO) TO N ¢ PROG (N REPLACE))

®p

(T **COMMENT=* (GO REPLACE)) _

®\ P

{PROG (&) *XCOMMENT®® (COND & & &) (COND & & &) DELETE (COND & &)
REPLACE (COND &) *XCOMMENT=%* (EDITSMASH CL & &) (COND &))

®

L iatiadt I L R R R R R R R R R R R R R R R R R N I I I I I

62 Because XTR involves a location specification while A, B8, :, and MBD do
not.

9.56

=pp
[LAMBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALA)
LP (COMND
((NULL A)
(RETURN)))
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A))
(SETQ A (CDR A))
(GO LP]
= (EXTRACT (SERCH THRU NOTS$) FROM PROG)
=NOTICECL
p
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
% (EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) 2]
%pp
[LAMBDA (CLAUSALA X)
(MAP CLAUSALA (FUNCTION (LAMBDA (A)
(SERCH X A)
(RUMARK (CDR A))
(NOTICECL (CAR A]

9.4.8 The R Command

(R X y) gepiaceé all 1nstancés of X by‘x in the current
expression, e;g., (R CAADR CADAR). Genefétes an

error if there is not at least one instance.

The R command operates in conjunctibb with the search mechaﬁism df iﬁe>editor.
The search proceeds as described on page 9.23-25, and X can ehploy any of the
patterns on page 9.21-23. Each time x matches an element of the structure, the
element is replaced by (a copy’of) Y each'time X matches a tail bf_the'

structure, the tail is replaced bylla copy of) y.

For example, if the current expression is (A (B C) (B . C)),

(R C D) will change it to (A (B D) (Bi; D))‘,

(R (... .C)D)to(A(BC)(B.D))),
(R C (DE)) té (A (B (DE)) (B DE)), and
(R (... . NIL) D) to (A (BC . D) (B.C).D)..

9.57

If X is an atom or Stfing containing alt-modes, alt-modes appearing in y stand
for the characters matched by the corresponding alt-mode in-Xx. For example,
(R FOOS FIES) means for all atoms or strings that begin'with FOO, replace the
characters 'FOO' by 'FIE'.93 Applied to the list
(FOO FOOZ XFOD1), (R FOO$ FIES) would produce . (FIE FIEZ XFOO1), and
(R 3FO0% SFIE$S) would produce (FIE FIE2 XFIE1). Similarly, (R D 3A%) will
change (LIST (CADR X) (CADDR Y)) to (LIST (CAAR X) (CAADR)).%?

The user will be»informéd‘of all such alt-mode replécements by a message of the

form x->y, e.g. CADR->CAAR.

Note that the $ feature can be used to delete or add characters, as well as
replace them. For example, (R $1 $) will delete the terminating 1's from all
literal atoms and strings. Similarly, if an alt-mode in X does not havq a mate
in y. the characters matéhed by the $ are effectively deleted. For example,
(R /5 5) will change AND/OR to AND.5® y can also be a 1ist containing
alt-modes, e.g. (R §1 (CAR §)) will change FOO1 to (CAR FOO), FIE1 to
(CAR FIE). S |

If x does not contain alt-modes, $ appearing in y refers to the entire

63 If X matches a string, it will be replaced by a string. Note that it does
not = matter whether X or Y themselves are strings, i.e.
(R 3D% 3A%), (R "3D" 3A3), (R D "SAS"), and (R "$D3" "SAS") are
equivalent. Note also that X will never match with a number, 1i.e.
(R $1 3$2) will not change 11 to 12.

64 Note that CADDR was not changed to CAAAR, i.e. (R D SAS) does not mean
replace every D with A, but replace the first D in every atom or string by
A. If the user :wanted to replace every 0 by A, he could perform
(LP (R $D3 3A%)).

65

However, there is no similar operation for changing AND/OR to OR, since the
first $ in y always corresponds to the first $ in X, the second % in y to
the second in X, etc. '

.9.58

expression matched by x, e.g. (R LONGATOM 'S) changes LONGATOM to 'LONGATOM,
(R (SETQ X &) (PRINT $)) changes every (SETQ X &) to (PRINT (SETQ X &)).%¢

Since (R 5x% 35y$) is a frequently used operation for replacing characters, the

following command is provided:
(RC x v) equivalent to (R x 3y)

R and RC change all instances of X to y. The commands Rl and RC1 are available

for changing just one, (i.e. the first) instance of X to y.
(R1 x vy) find the first instance of X and replace it by y.
(RC1 x y) (R1 3x% y).

In addition, while R and RC only operate within the current expression, Ri and
RC1 will continue searching, a la the F command, until they find an instance of

X, even if the search carries them beyond the current expression.

(SYW n' m) switches the nth and mth elements of the current

expression.

For example, if the current expression is

(LIST (CONS (CAR X) (CAR Y)) (CONS (CDR,X) (CDR.Y))).

(SW 2 3) will modify it to be

(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR Y))). The relative order of n

and m is not important, i.e., (SW 3 2) and (Sw 2A3) are equivalent.

. - * B
Lttt IR S R R R I e L L R L L N Pescecscosceenea D R I I

66 If x is a pattern containing an alt-mode pattern somewhere within it, tho
characters matched by the alt-modes are not available, and for the purposes
of replacement, the effect is the same as though X did not contain any alt-
modes. For example, if the user types (R (CAR F$) (PRINT 3)), the second $

will refer to the entire expression matched by (CAR F3$).

9.59

SW uses the generalized NTH command to find the

nth and mth elements, a la the BI-BO commands.

Thus in the previous example, (SW CAR CDR) would produce the same result.

9.5 Commands That Print
PP , prettyprints the current expression.

P - prints the current expression as though printlevel

were set to 2.

(P m) ‘ ‘ prints mth element of current expression as though

printlevel were set to 2.
P o)y . same as P

(P mn) - prints mth element of current expression as though

Erintlevel were set to n.

(P 0 n) prints current expression as though printlevel

were set to n.
? ’ : same as (P 0 100)
Both (P m) and (P mn) use the generalized NTH command to obtain the

corresponding element, so that m does not have to be a number, e.g. (P COND 3)

will work. PP causes all comments to be printed as =*COMMENT** (see Section

9.60

14). P and ? print as S%COMMENT®® only those comments that are (top level)

elements of the current expression.67
Pp= prettyprints current exprassion, including
comments.

PP* is equivalent to PP except that it first resets %*comment®=flg to NIL (see

Section 14). In fact, it is defined as (RESETVAR ““COMMENT“QFLG NIL PP), see

page 9.77.

PPV . prettyprints current expression as a variable,
i.e. no: special treatment for LAMBDA, COND, SETQ,
etc., or for CLISP.

PPT prettyprints current expression, printing CLISP

translations, "if any.'.

All printing functions print to the .terminal, regardless of the :primary output
file. All use the readtable T. No printing function ever changes the edit
chain. All record the current edit chain for.use by \P, page 9.35.. All can be

aborted with control-E.

----------------------------- -o------------------------.--q---u----------------

67 Lower expressions are not really seen by the editor; the printing command
simply sets printlevel and calls print.

9.61

9.6 Commands That Evaluate

68 causes the editor to call

69

E C only when typed 1in,

lispx giving it the next input as argument.

Example: *E BREAK(FIE FUM)
(FIE FUM)
=g (FOO)

(FIE BROKEN)

“(E x) ’ evaluates X, 1.e., performs evaltx]. and prints

the result on the terminal.
(E x T) o . same as (E x) but does not print.
The (E x) and (E x T) commands are mainly intended for use by macros and
subroutine calls to the editor; the user would probably type in a form for
“evaluation using the more convenient format of the (atomic) E command.

(I c Xyoeeo xn) S same as (C y, ve yn) where ytzeval[xil‘

Example: (I 3 (GETD (QUOTE F00))) will replace the 3rd element of the current
expression with the definition of foo.”? (I N FOO (CAR FIE)) will attach the

Lttt dl i L R X R R N R R R R R R R R IR R I R

68 e.g, (INSERT D BEFORE E) will treat E as a pattern, and search for E.

69 lispx 1is used by ~eva1gt and break for processing terminal inputs. If
nothing else 1is typed on the same 1line, 1lispx evaluates its argument.
Otherwise, lispx applies it to the next input. In both cases, lispx prints
the result. See above example, and Sections 2 and 22.

70

The I command sets an internal flag to 1indicate to the structure

modification commands not to copy expression(s) when inserting, replacing,
or attaching.

' 9.62

value of foo and car of the value of fie to the end of the current expression.

(I F= FOO T) will search for an expression eq to the value.of foo.
If c is not an_atom, ¢ is evaluated also.

Example: (I (COND ((NULL FLG) (QUOTE -1)) (T 1)) F00), if flg is NIL, inserts
the value of foo before the first element.of the current expression, otherwise

replaces the first element by the.value of foo.

##[comi;comz; e ;comn] is .an NLAMBDA, NOSPREAD function . (not a command).
Its value is what the current expression would be
after executing the edit commands comg ... com,

starting from the present edit chain. Generates

an error if any of comr;thcu1cqm cause arrors.

n..
The current edit chain is never changed.71

Example: (I R (QUOTE X) (## (CONS .. Z))) replaces all X's in the current

expression by the first cons containing a 2.~

The I command is not very convenient for computing:an’entire edit command for
execution, since it computes the command name and 1ts arguments separately.
Also, the I command cannot be used to compute an atomic/. command.. The following

two commands provide more general ways of computing commands.

(COMSx1 e xn),. - Each Xy is ‘evaluated and 1its value 1Is executed as

a .command.

Recall that A, B, :, INSERT, REPLACE, and CHANGE make special checks for ##
forms in the expressions used for inserting or replacing, and use a copy of
form instead (see page 9.43).- Thus, (INSERT (44 3 2) AFTER 1) 1is
equivalent to (I INSERT (COPY (## 3 2)) (QUOTE AFTER): 1). ~ - .~

9.63

For example, (COMS (COND (X (LIST 1 X)))) will replace the first element of tho

current expression with the value of X if non-NIL, otherwise do nothing.’?

(COMSQ com, ... com,) executes com, ... com .

COMSQ is mainly usefui in ‘conjunction with the COMS command. For example,
suppoge the“user‘wishes to compute an entire list of commands for evaluation,
as opposed to computing each command one at a time as does the COMS command.
- He would then write (COMS (CONS (QUOTE COMSQ) x)) where X computed the list of
commands. e.g., (COMS (CONS (QUOTE COMSQ) (GETP FOO (QUOTE COMMANDS)))).

9.7 Cﬁmmands Thgt Test

(IF x) . ‘ ‘generates an error unless the value of eval[x] is
| ' true, 1.e., 1if eval[(x] causés an error or

eval[xJ=NIL, IF’will‘éause an error.

For some ediior commﬁnds. ‘the occurrence of an error has a well defined
meaning, ife.. they use érrors to branch on, as cond uses NIL and non-NIL. For
exampie,;an error condition in a location specification may simply mean "not
this one, try the next." Thus the location specification

(IPLUS.(E (OR (NUMBERP (## 3)) (ERROR!)) T)) SDGCifies the first IPLUS whose
secoﬁd ‘argument is a numbér; The IF command, by equating NIL to error,
provides a more natural way of accohplishing the same result. Thus, an

equivalent location specification is (IPLUS (IF (NUMBERP (## 3)))).

? ----------------------- coacesccanesconeeas Seecocecesseow LR R R RN R R I N R

2 because NIL as a command is a NOP, see page 9 70.

9.64

The IF command can also be used to select between two alternate 1lists of

commands for execution.

(IF x cons, comsz) If eval[x] 1s true, execute coms, ; 1f eval[x]
causes an error or 1is equal to NIL, execute

73
coms, .

For example, the command (IF (READP T) NIL (P)) will print the current

expression provided the input buffer is empty.
IF can also be written as:

(IF x Comsl) if eval[x] 1is ¢true, execute coms, ; otherwise

generate an error.

(LP . coms) repeatedly executes coms, a 1list of commands,

untll an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of every print
expression. (LP F PRINT (IF (## 3) NIL ((N T)))) will attach a T at the end of

each print expression which does not already have a sacond argument.74

When an error occurs, LP prints n OCCURRENCES.

73 Thus IF is equivalent to (COMS (CONS (QUOTE COMSQ) (COND
((CAR (NLSETQ (EVAL X))) COMS1)
(T COMS2)))).

74

i.e. the form (#4 3) will cause an error if the edit command 3 causes an
error, thereby selecting ((N T)) as the list of commands to be e\ecuted
The IF could also be written as (IF (CDDR (#4)) NIL ((N T))).

9.65

(LPQ . coms)

where n 1s the number of times coms was
successfully executed. The edit chain is left as

of the last complete successful execution of coms.

same as LP but does not print the message

n OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the

number of iterations reaches maxloop, initially set to 30.75 Since the edit

chain is left as of the last successful completion of the loop, the user can

simply continue the LP command with REDO (Section 22).

(SHOW . x)

(EXAM . x)

(ORR coms ... comsn)

X 1s a list of patterns. SHOW does a LPQ printing
all instances of the indicated expression(s),
g. (SHOW FOO (SETQ FIE &)) will print all FOO's

and all (SETQ FIE &)'s. Generates an error if

~there aren't any instances of the expression(s).

like SHOW except calls the editor recursively
(via the TTY: command described on page 9.70) on
each 1instance of the indicated espression(s) so

that the user can examine and/or change them.

ORR begins by executing coms, a 11$c of commands.
If no error occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its original value,
and continues by executing coms,, etc. If none of

the command lists execute without errors, i.e.,

maxloop can also be set to NIL which is equivalent to infinicy.

9.66

the ORR "drops off the end", ORR generates an
error. Otherwise, the edit chain is left as of
the completion of the first command 1list which

executes without an error.7°

For example, (ORR (NX) (INX) NIL) will perform a NX, if possible, otherwise a
'NX, 1if possible, otherwise do nothing. Similarly, DELETE could be written as
(ORR (UP (1)) (BK UP (2)) (UP (: NIL))).

9.8 Macros

Many of the more sbphisticated branching commands in the editor, such as ORR,
IF, etc., are most often used in conjunction with edit macros. The macro
feature permits the user to define new commands and theréby expand the editor's
repertoire.77 Macros are defined by using the M command.

(M c . coms) For ¢ an atom, M defines € as an atomic command .8
Executing ¢ is then the same as executing the list

of commands coms.

For example, (M BP BK UP P) will define BP as an atomic command which does

three things, a BK, and UP, and a P. Macros can use commands defined by macros

W h e G G O e D W D W W R D D S G G S G W W U D S N e W O WS D Ol M M h Y N W D e G ow w0 W

76 NIL as a command 1list is perfectly 1legal, and will always execute
successfully. Thus, making the last ‘'argument' to ORR be NIL will insure
that the ORR never causes an error. Any other atom is treated as (atom),
i.e., the above example could be written as (OR NX !NX NIL).

77 However built in commands always take precedence over macros, i.e., the
editor's repertoire can be expanded, but not redgfined.

78

If a macro is redefined, its new definition replaces its old.

9.67

as well as built in commands in their definitions. For example, suppose I 1is
defined by (M Z -1 (IF (READP T) NIL (P))), i.e. Z does a -1, and then 1if
nothing has been typed, a P. Now we can define 2z by

(M ZZ -1 Z), and 222 by (M 227 -1 -1 Z) or (M 2ZZ -1 ZZ).

Macros can also define list commands, i.e., commands that take arguments.

(M (c) (arg1 e argn) . coms) ¢ an atom. M defines ¢ as a list ;ommand.
Executing (