
@ August 1981

Also numbered:
, HPP-81-14

Interlisp-VAX: A Report

by

Larry M. Masintcr

Department of Computer Science

Stailford University
Stanford, CA 94305

Report. No. STAN-CS-81-879

Interlisp-VAX: A Report

Larry M. Masinter

August 1,1981

Contents:
I. Introduction
I . . Interlisp-VAX: Overview a~Ht Status
HI. What will Interlisp-VAX be like?
IV. Conclusions

The views expressed in this report are those of the author. They do not necessarily reflect those of the Xerox
Corporation, Stanford University, or the University of Southern California.

This study was funded in part through the SUMEX Computer Project at Stanford University undcr grant RR-00785 from
the Biotechnology Resources Program of the National Tnstitutes of Health.

I. INTRODUCTION

Since November 1979, a group at the Information Sciences Institute of the University of Soutliern
California has bcen working on an implementation of Interlisp for the DEC VAX-series1 computers.
This rcport is a description of thc current status, future prospects, and estimated charactcr of that
Interlisp-VAX implementation. It is the result of several days of discussion with those at IS1
involved with the implementation (Dave Dyer, Mans Koomen, Ray Batcs, Dan Lynch): with John
L. Whitc of MIT, who is working on an implementation of another Lisp for the VAX (NIL); with
the iniplcmentors of Interlisp-Jericho at BBN (Alice Hartlcy, Norton Greenfeld, Martin Yonke,
John Vittal, Frank Zdybel, Jcff Gibbons, Darylc Ixwis); with the implementors of Franz Lisp and
Berkcley unix2 at U.C. Berkeley (Richard Fateman, Bill Joy, Keith Sklower, John Foderaro); and
with my colleagucs at Xerox PARC.

An earlier draft of this report was circulated to the partics involved in the Interlisp-VAX
discussions. l'his document has been revised as a result of comlnents received.

Why Interlisp-VAX?

In early April 1981, a meeting of AliPA-sponsored or related Lisp users was held at SRI, to discuss
the status and future of Lisp. Those of the community who were current Interlisp users felt strongly
that: (1) there was a need for Interlisp to continue to be a viablc programming environment in the
1980's, strongly standardized aniong all implementations; and (2) the most important new
implementation of Interlisp would be for the VAX. There were several reasons for the choice of
both the \AX and Interlisp.

Why VAX? The primary reason is that many sites already have VAX's which are and will continue
to be used not only for Lisp and A1 research, but also for use as general purpose, time-shared
computing resousccs, for runuing FOK'TRAN, business computing, ctc. 'l'hc VAX is considcred to
be the most important "technology transfer" vehiclc for Intcrlisp A1 programs in thc early through
mid '80s. It is already spread widely throughout industry and industrial laboratories, and it is very
widespread among ARPA7s military clientele. It is unlikely that rcsearchers who develop application-
oricnted A1 systems in Interlisp will want to re-implement them in some other language. It is also
unlikely that thesc institutions (private and military) will buy machincs specifically for A1 programs
if thosc programs constitute only an occasional part of their computing needs. 'Slle VAX is believed
to be the most likely vehicle for transferring applications to thosc institutions.

1

In addition, the VAX (for better or for worse) appears to be the machine that many computer
science departments around the country have chosen for their "next gencration" machine. Insofar as
there is a need to spread the concepts and software tcchnologies dcveloped in Interlisp to these
departments, it is believed that there is a need to have Interlisp running on the VAX.

Why Interlisp? The Interlisp programming environment has been in wide use in the Artificial
Intelligence community for a number of years. It is a powerful, integrated environment, having
evolved over the years into a stable system. The availability of multiple, compatible implementations
on a number of machines means that researchers can easily transport their programs from any
implementation to another.

Why this report? Because of the perceived importance of Interlisp-VAX to the cominunity, and
because of my experience with Interlisp and its implerncntations, I was asked by Stanford and IS1 to
evaluate the status of the on-going project at ISI, and to estimate the magnitude of the tasks
remaining, expected performance and character of the resulting product. Many ongoing research
institutions are making plans for their future computational requirements, and many of the decisions
about choice of programming language and hardware hinge on the prospects for Interlisp-VAX. In
light of the large amount of confilsioil in the community about the future availability of Interlisp on
the VAX, it was thought important to have an outside assessment of the future of the project.

11. INTERLISP-VAX: OVERVIEW AND STATUS

A. Project definition and history

While the Interlisp-VAX project started in November 1979, most of the first year was taken up with
project startup and training of personnel (None of the project members were originally familiar with
the C programming language, Unix, or Interlisp, either as a programming environment or its overall
implementation). 'I'hus, most of the work on the implemcntation to date has been accomplished
since November 1980.

The goal of the project has been to produce a version of Interlisp which runs on the VAX, which:

Is as compatible with Interlisp-10 as practical.
While it is difficult to give a metric for compatibility, thc goal of the project is that most Interlisp
programs in the community will run in Interlisp-VAX merely by recompiling them. At a bare
minimum, the Interlisp-VAX code must run the standard Interlisp packages such as the Interlisp
Editor, Masterscope, Break Package, Record Package, DWIM, CLisp, and so forth.

Uses the extended virtual address space of thc VAX.
One of the primary motivations for invcsting in the VAX is that the VAX potentially has a large (at
least 230 bit) address space. Many Interlisp-10 users long ago ran out of address space and spend
much of their time trying to squeeze programs into available address space.

Has adequate performance.
The Lisp produced is expected to make reasonable use of the hardware. It is difficult to give a
single number which describes the performance of a system (becausc some things will run faster and
some slowcr), but thc avcragc perforrnancc of Interlisp-VAX must be within a factor of 2 of other
Lisps which run on .thc VAX (c.g., Franz and NIL). In addition, Intcrlisp-VAX must be competitive
in pricc/performancc to a DEC-20 for the sizc of programs which it is now able to run, and also be
able to handle larger programs.

B. Summary of the Interlisp-VAX architecture

Interlisp-VAX is a non-microcoded implementation more similar in architecture to Interlisp-10 than
Interlisp-D or Interlisp-Jcricho. This is appropriatc for thc VAX, which has a powcrful "native"
instruction set and is time-shared betwccn a number of users, not all of whom would be running
Interlisp. Intcrlisp-VAX is intcnded to lun on top of the Bcrkcley Unix operating system. Unlike

I

Interlisp-10, in which the kernel is written in assembly language, the kernel of Interlisp-VAX is
written in the high-level systems implementation language C. This might well simplify the ,

transportation of Interlisp-VAX to another machine which has a C compiler and similar
characteristics (byte addressable memory, Unix, 32-bit registers).

Without going into great detail, the important aspects of the Interlisp-VAX architecture are as
follows: deep binding; full implementation of spaghetti stacks; compilation to VAX native code
(with no "block compiler"); memory allocation in 64 KByte "sectors" with sector-table giving type
per sector; no CDR-coding (CONS cells take 64 bits); a "stop and copy" garbage collector; and 31-
bit imrnediatc integers (with plans, but no implementation, of "bignums"). These design choices
seem reasonable for the VAX, with cxceptions noted below in the section on perfonnance.

Interlisp-VAX has the following component pieces:

1. Machine-independent "higherlevel" Interlisp code. This includes, for example, the Interlisp
editor, file package, and the Masterscope program analyzer. This code is shared, intact, with
Interlisp-10, Interlisp-D and Interlisp-Jericho.

2. Interlisp-D code. This is Lisp code which, although shared with Interlisp-D (and Interlisp-
Jericho), is not used in Interlisp-10. For example, the implementation of Terminal Tables and
Read Tables may be shared with the other Interlisp .implementations.

3. VAX-speciJic Lisp code. This code is necessary to interface to the C kernel and perform other
VAX-specific operations. For example, the implementation of the DATArTYPE package, while
in Lisp, must satisfy constraints placed by the Interlisp-VAX garbage collector. Thus, it has
some essential differences from the version of the DATATYPE package for other Interlisp
irnplemen tations.

4. C kernel. The C kernel handles memory management, garbage collection, the interpreter,
spaghetti stack support (including FUNARGs, RESUME for processes/coroutine support),
bootstrapping and interface to the operating system.

5. Lisp/C interface. A small amount of VAX machine code is necessary for the interface between
Lisp and code generated by the C compiler. Primarily of interest here is the code which is part
of fi~nction call and return.

6. VAX code generator. The VAX native-code generator takes the output of the Interlisp-D
ByteCompiler and generates VAX nativc code. Thc 13ytc-Compilcr [Masinter & Dcutsch 19801 is
a machine-indepcndcnt optimizing compiler which produces intermediate "linearized lisp" code
for an abstract stack machine.

C. Current implementation status of Interlisp-VAX: what's been done?

Many of the major design decisions for Interlisp-VAX have been made, including layout of
memory, important code sequences (e.g., function call and return for all of the various cases),
representations of pointers and system data types, and many parts of the interface to the operating
system. In addition, the following tasks have been accomplished:

1. Higher level Interlisp sofiware. The "shared" Interlisp software has been examined, and a few
problems identified and fixed. 'The rest will run in Interlisp-VAX with little change.

2. Interlisp-D code. An initial pass has been made over the Interlisp-D code, identifying which
portions can be shared.

3. VAX-specifc Lisp code. The major pieces which have been written are a version of the
DATKI'YPE package, an array package, and the compiled code loader and parser.

4. C kernel. Most of the C kernel has been completed, in the sense that the code is there and has
passed preliminary tests.

5. Lisp/C interface. This has been completed

6. VAX code generator. A Srst version of the VAX code generator has been produced and, to a
great extent, debugged. The important design decisions havc been made about function call
scquences, as well as some of the important open-coding sequences (e.g., CAR and CDR).

D. Tasks remaining in existing code

1. Higher-level Interlisp software. Problems may arise in implementing Interlisp's notions of files,
versions, and dates under Unix. If so, it may be necessary to fix those portions of the Interlisp
higher-level software to be more implementation-independent.

2. Interlisp-D code. Unfortunately, Interlisp-D is a "moving target," and it is difficult to rely on
the sources staying compatible. Since code is shared between Interlisp-D and Interlisp-Jericho,
the same code will most likely run under Interlisp-VAX. Problems may arise insofar as the
lower levels of Interlisp-VAX differ.

3. Vax-speczjic Lisp code. The DATATYPE implementation requires some work. The array
package seems to be relatively complete, although the program has not becn extensively tested.
The compiled code loader/parser has been completed and tested in "cross-compilation" mode,
while running in Interlisp-10.

The VAX/Unix I/O package still requires mucl~ work. The interface between Interlisp and Unix
is to be accomplishcd via (1) the Interlisp-D FILE10 package, which gives an interface to
buffered, random access files from higher-level Interlisp software, (2) some VAX-specific Lisp
code, which thcn interfaces to (3) some pieces of the C kernel. 'T'he interfaces between many of
these pieces are being designed, but some of the pieces have not becn written.

There is a body of the Interlisp environment which, although nominally not part of the "core"
of Interlisp, forms a useful part of most of its implementations. For example, the DIRECTORY
package and GETFILEINFO are Interlisp-10 facilities which, while not part of the Moore VM
document, can be implernentcd in Interlisp-VAX. ?'hey are part of Interlisp-10, Interlisp-D and
Interlisp-Jericho, and are used by Interlisp application programs.

Interface with Unix's notion of terminals and interrupts has been considered, but the final
details have not bcen worked out. Initial versions of Interlisp-VAX will have a very simple
notion of interrupts.

4. C kernel. Future changes will likely be required depending on the needs of the Lisp-level I/O
package, interrupts, and a new version of Unix which will allow Interlisp to use the high end of
memory. The C kernel contains some especially "tricky" areas: interpreter, stack management
and garbage collection. These were not completed as of June 1981. Experience with other
Lisp/Interlisp implementations has been that debugging and complete testing are difficult. Bugs
oftcn are found in thc handling of obscure and rare cases, as the code interacts with many other
parts of the system. I expect Interlisp-VAX to havc its sharc of problcms in these areas.

5. Lisp/C interface. Changing the Lisp/C interface will only be necessary in response to fixing
some of the expected "performance bugs" of Interlisp-VAX; e.g., free-variable-pointer-caching
(discussed below) may require changes in the fbnction call sequences.

6. VAX code generator. My examination of the Vax code generator uncovered a few minor
problcms due to a misunderstanding of conventions required by the ByteCompiler.
Undo~tbtedly, a few more will surface.

More importantly, the current code generator for VAX native code will (as planned) require
much work to bring it to the point where it generates production-quality code. In particular:

a. A register-allocating version of the code generator (in some ways a complete rewrite) would
significantly improve performance on the VAX.

b. A "peephole optimizer" for VAX instructions would enable Interlisp-VAX to take
advantage of the VAX's complex instruction repertoire.

c. More "open" compilation of frequently-used routines will be necessary in many
circumstances. Although many open-coding sequences have been incorporated, adding more
will of course require additional time and effort.

d. Modification of the BytcCompiler to suppress boxing of intermediate results would pay off
in speed for integer calculations and space for floating arithmetic.

E. Other areas requiring work

In addition to the areas outlined above, a number of other areas need attention:

Free variable pointer caching. There is a very serious performance problem in Interlisp-VAX, the
correction of which will rcquire major changcs to the Interlisp-VAX systcm. Interlisp-VAX uses
deep binding. While deep binding is a reasonable choicc for Interlisp-D (because of microcoded
free variable lookup), it may be a source of a largc performance penalty in Interlisp-VAX,
especially in intcrpreted code. In any case, there is currently no mechanism for "caching" free
variable pointers; so free variables are "looked up" at every reference, even within an inner
loop. This is unacceptable. A design needs to be worked out and integrated into the compiler
and stack access mechanism. No one scheme is clearly optimal, although whatever scheme is
chosen will require changes to the compiler, interpreter, garbage collector and stack
manipulation routines.

2. Bootstrapping. Bootstrapping is as complicated in Interlisp-VAX as it is in other Interlisp
implementations, for a variety of reasons. For example, debugging "low level" pieces of the
system is made more difficult because bootstrap-load order requirements are difficult to detect
without running the (time-consuming) bootstrap process. Traditionally, this is merely a source of
frustration rather than an insurmountable barrier.

3. Docurnentation. Documentation of Interlisp-VAX is needcd discussing its diffcrcnces from other
Intcrlisps and areas such as interface to Unix. There is some intention to participate in the
upcoming major revision of the Interlisp Reference Manual.

4. Access to Unix facilities. Intcrface from Lisp to Unix facilities such as pipes, processes, and shell
programs, will greatly increase the utility of Interlisp-VAX. These facilities are not necessary for
running current Interlisp-10 programs, except to the extent they replace Interlisp-10 facilities
(e.g., SUBSYS).

5. SYSOUT. Thc currcnt Interlisp-VAX SYSOUT facility dumps the entire allocated virtual
mcmory of the Lisp systcm (currcntly, without any of the "sharcd" Intcrlisp code over 1 .

MByte). At some future date, Berkclcy Unix will provide a mechanism which will allow writing
out individual pages and a page map, making SYSOUT files more manageable.

6. Porting to other VAX operating systems. Many sites do not run the Berkeley Unix operating
system, instead choosing VMS (the DEC-supplicd opcrating systcm for the VAX), or EUNICE
(a Unix compatibility package developed at SRI). 'These are candidates for "other
implementations" of Interlisp-VAX. Becausc of Interlisp's heavy use of the operating system's
memory managcmcnt facilities, porting Interlisp-VAX to thcsc other operating systems will likely
prove quite difficult.

111. WHAT WILL INTERLISY-VAX RE LIKE?

Assuming the above tasks are completed, the question remains: what will it be like? There are two
issues: in what way will Interlisp-VAX differ from other Lisp implementations, and what
performance can be expected?

A. Comparison of Interlisp-VAX to other Interlisps

Full Interlisp-VAX is intended to be highly compatible with Interlisp-10, to the point where many
complex programs would move gracehlly bctwecn it and other Interlisp implementations. The only
areas of incompatibility are those which are ncccssarily not shared between any implementations:
access to machine code within Lisp routines, etc. In addition, there are currently no plans for
"linked" function calls in Interlisp-VAX, nor for a "block" compiler. These are minor difficulties.

Interlisp-VAX will be able to access some of the facilities of the Unix environment to good effect;
e.g., one might imagine using it as an interactive "shell" programming language.

Interlisp-VAX will not have any particular capabilities for bit-mapped graphics.

Interlisp-VAX will have a larger "small" arithmetic range.

B. Performance

There are two major factors in the performance of Interlisp on the VAX. First is in the actual CPU
time to complete various operations, and second is in the amount of time spent paging.

1. CPU performance

Tlie performance profile of a Lisp system is complex, and tl~ere are many areas whcre Interlisp-
VAX's relative performance to other Interlisp implementations will vary over a wide range. There
seem to be a few areas of critical performance to any program: function call, variable reference,
data structure access, arithmetic, and garbage collection. An appropriate weighted average of
performance in those areas is a good overall measure of total system performance.

Onc important way of estimating performance of Tnterlisp-VAX is to use as a comparison the code
in other Lisp implementations for thc same task, taking into account the differences in the various
code sequences. Comparisons arc made between Interlisp-VAX and Franz, NIL, and Interlisp-10.

a Funcliorl call and rerurn
A function call for Interlisp-VAX will be at least twice as slow as a similar function call in Franz
Lisp, partly because of lang~~age requircmcnts (Franz does not chcck that the number of arguments
passed matches the number of arguments expected), and partly because of the design of the
Jnterlisp-VAX stack format (Variable namcs are pushed as well as the values).

In Franz Lisp, a minimal .call/return takes 17 microseconds (VAX-11/780). Call/return in Interlisp-
VAX may be as high as 100 microseconds, although the average will most likely be nearer to 40
microseconds.

In Interlisp-10 on a DEC 2060, a block-internal call takes on the order of a microsecond (PUSHJ,
POPJ), and the minimal (non-block) call/rcturn takes 57 instructions (roughly 25 microseconds),
while some functions, because of the Interlisp Swapper, may take more than 200 instructions for
callheturn (100 microscconds). ?'he variation in function call time will apparently be high for
Interlisp-VAX and Interlisp-10. For some functions, Intcrlisp-VAX hnction call will be slightly
faster. For calls which in Interlisp-10 would bc block internal, an Tnterlisp-VAX call might be 50
times slower. Note that bencll~narks which purport to make comparisons with Interlisp-10 should
explicitly control for the possibly enormous variation in Intcrlisp-10 function call time.

b. Variable reference
Performance on local variable rcference in Franz and Interlisp-VAX will be similar if Interlisp-VAX
dclivers its optimizing, register allocation code gencrator. Currently, variable rcference will often be
slightly slower. Morc importantly, free variable access will bc very significantly slower in Interlisp-
VAX, even after a variable caching scheme is implemented, because of the cost of variable lookup
wl~en using deep binding.

c. Garbage collection
The "stop and copy" variety of garbage collection, while compacting the address space and thus
reducing the working set of subsequent computations, is more expensive in CPU time and memory
usage than the "mark and swcep" variety by a nominal factor of two. Garbage collections for large
address space systems can be expensive, even using mark and sweep. A full VAXSYMA garbage
collection is reported to take on the order of 3 seconds of CPU time. A garbage collection of an 8
MByte address space in ELISP (a Lisp for DEC 2060's which uscs the extcnded addressing feature
[Hedrick]) took between 20 and 40 seconds of CPU time. This figure includes some charge for
paging overhead. It seems likely that (1) garbage collection is swap limited, and (2) the respective
operating systcms used to gather those times do not do a particularly good job of filtering out swap
overhead from CPU time. It i:, not unreasonable to expect, however, that an Interlisp-VAX garbage
collection will take twice as long as a Franz Lisp collection, because of the intrinsic overhead of
"stop and copy" over "mark and sweep."

An alternative computation can be made as follows. Assuniing an Interlisp-VAX system uses 4
Mnytes of memory, then with a compacting garbage collcctio~~ but no other memory localization
algorithms, I bclieve that most user programs would "dirty" at least of all system pages (i.e., 1
MRyte) within a relatively small amount of time. Let us suppose a garbage collection occurs after a
user has allocated the equivalent 40K CONS cells, or 0.32 MByte of storage. This would involve
referencing 1.6 MBytes of memory. Tl~is' would mean that a garbage collection would take, at a
minimum, between 2 and 20 seconds of CPU time on a VAX-11/780.

2. Paging Performance and Real Memory Requirements

I spent a considerable amount of time trying to estimate the number of users or sizes of Lisp
systems that some typical VAX configurations might support. I bclicve that this is one of the most
important factors in Intcrlisp-VAX perforrnancc, because of the predicted large virtual address
spaces of Interljsp-VAX programs (one of the main reasons for going to Interlisp-VAX in the first
place).

a Operating system considernlions

Intcrlisp-VAX will be implemented on top of the Berkeley Unix operating system. Another possible
candidatc for a host operating systcrn is a Unix compatibility package written at SRI by the name of
EUNICE, which runs under thc DEC-supplied opcrating system VMS. There is some controversy
over the relative performance and functionality of VMS vs. Unix. A fairly comprehensive set of
benchmarks [Kashtan] showed illat VMS dul-performed Unix ill a varieiy or pda;ng configulatio~ls.
It is claimed by the I3crkelcy Unix implemcntors that (a) many of the benchmarks were atypical of
rcal computations, and (b) tests were run on an early vcrsion of Berkeley Unix and performance has
improved considcrably since then. I believe thc choicc of operating systcrn can be made on grounds
other than predicted pcrfotmance for running lnterlisp: rcliability, maintcnance, cost, etc. I;urthcr,
converting Intcrlisp-VAX to run undcr EUNICE rather than 13crkcley U~iix will bc a rclatively
minor job compared to the rnagnitudc of the [ntcrlisp-VAX irnplementation itself. It seems that the
difference between operating systems makes for only a relatively small factor in the overall
performance, if the real memory available is too small to hold the "working set" of programs
attempting to run at any one time.

b. Real memory requirements of Interlisp- VAX

There are a variety of ways of estimating memory necds. The best estimates seem to come from: (1)
comparison with MACSYMA in Franz Lisp (VAXSYMA), and (2) comparisoil with Interlisp-10 and
Interlisp-D.

I) Virtual Address space (rninimum). Many current Interlisp-10 programs run with a virtual address
space of 2 MDytes (2 full "forks"). A similar system in Intcrlisp-VAX will probably require a 4
MByte address space because: (1) there is expansion for 32 rather than 18 bit addresses (no CDR
coding); (2) the copying garbage collector, when it runs, will require twice the allocated space; and
(3) Interlisp-VAX allocates storage in quanta of 64 KByte sectors rather than a 2 KBytc "page" as
in Interlisp-10, giving more "breakage" per datatype. This figure is consistent with numbers
extrapolated from Interlisp-D.

2) Working set. In current Interlisp-10, the "working set" of many programs is 0.5 MBytes or more
(that is, the amount of real Incmory outside of the "systcm" nccessary to' keep the program from
spending more than half of its time paging). Extrapolating, using the same figures as above, the
working set of a "typical" Interlisp-VAX application will be over 1 MByte. This figure is consistent
with memory requirements extrapolatcd from Interlisp-D.

3) Calculation of real mentory requirements. If there are i uscrs, j of whom are active, they will need
i*31 KBytes of page table (31 Knytes = 4 MBytes/128), plus 0.75*j MBytc bytes for thcir working
set. For example, 5 uscrs, 2 of whom are actively running at any one time, would require less than
2 MBytes of real memory (outside of i/o buffers, etc.).

However, if systcms increase in allocated space (independent of the working set) because more
programming or data is contained in their virtual address space, one might imagine a situation
where the virtual address spaces were in the 20-30 MByte range (Many users do not believe that a
224 byte virtual address space, 16 MByte, is big enough for applications they plan in the near
future). In such a situation, each such lntcrlisp proccss would require as much as 0.2 MBytes of
real memory for its page table, independent of its activity. This might scvcrely limit the number of
users who could be active on the system at any one time.

c. Problem areas

There are some problem areas, both with Unix and with VMS, which will have to be resolved:

I) Sharing. VMS currently has more flcxibility in allowing sharing of space among users. in a
picccnleal fashion. In the current Intcrlisp-VAX design, only 0.1 M13ytes of the addrcss spacc are
"pure" in the sense that Berkeley Unix would allow it to be shared among multiple users. Insofar as
multiple users have thc samc large virtual address space (e.g., they are iunniilg the same program
with a large, fairly static "knowledge base"), sharing is important to improving the number of users
allowable at any one time.

2) Problents with large virtual address space. VMS requires disk/swap spacc to be pre-allocated, at
system generation timc, for the maximum allowable in thc system. With multiple users with large
addrcss spacc programs, this adds considc~-ably to the amount of disk space required on thc system
(evcn if most of thosc uscrs arc inactivc). In addition, VMS rcqiiircs an additional prc-allocated
swap file which contains J*W pages, whcre J is the maximum number of proccsscs with
independcnt address spaces (100 would not be an unreasonable figure for a machine used by many
users for editing, background processing, etc.), while W is the maximum "working sct" of a single
process (which, for large address space processes, should be at least 2 MBytes).

On the other hand, Berkeley Unix currently requires the page tables of all processes to be locked
down, which may be a significant drain for very large address space programs where the data in, the
address space is in fact infrequenlly refcrcnced.

IV. CONCLUSIONS: WHITHER INTERldSP-VAX

A. There aren't any good alternatives

Given the requirements of technology transfer to university, industrial and military sites, there are
few other options. Even though Interlisp-VAX will probably not be cost- effective for intensive
Lisp users, it may be for thosc whose requircmcnts are for casual and occasional use of Interlisp or
tools developed in it. Therc are a few alternatives which could benefit from further exploration:

Interlisp-3 70
There is a version of Interlisp for IBM/370 machines, originally developed at Uppsala University
and modified at the Weizrnann Institute [Kaim]. Interlisp-370 might be a possibility for some sites,
although reports from several sources are that the Interlisp-370 is incomplete, not particularly
compatible with other Interlisps, and has serious performance and reliability problems. However, I
believe that this alternative should be more seriously explored.

Implementing Interlisp on top of NIL or fianz
This might have been a reasonable way to approach the initial Interlisp-VAX implementation, but it
does not seem cost-effective at this point.

Emulating Interlisp-D on a VAX
An alternative not presently explored in any detail would be to write an Interpreter for Interlisp-D
byte codes and r-un Interlisp-l) on a VAX (cf. [Rowan]). Performance would be poor (perhaps a
factor of 4-5 slower than currently projected), but code would be more easily transportable.

Automatic conversion of Interlisp programs to other VAX Lisps
This is an approach which has rarely succecded. Programs which convert betwcen language dialects
are heuristic at best, and require considerable hand-holding. For any particular program, converting
to another language might be cost-effective, but on the whole it is not.

B. Performance: mixed results

Performance in the Lisp community is often measured in DEC KA-10 or KT,-10 equivalents, e.g.,
"1/4 of the speed as on a KL-10." One would like to be able to draw the inference that, if a KL-10
adequately supports 40 users wit11 8 actively computing (the rest editing, reading mail, ctc.), % of
that would amount to 10 users wit11 2 actively computing. Unfortunatcly. these performance figures
can be misleading: (1) because of the widc variation in Intcrlisp-10 speeds on the same problem,
and (2) becausc timings on small benchmarks do not give an accurate picture of the number of
active users who can be supported in a working environment.

More reasonable estimations of performance can be drawn from expcrience with VAX's running
Franz Lisp or VAXSYMA. While no exact figures are available, experiencc has been that a VAX-
11/780 with 4 MRytes real memory can support 30 users, of whom 3 are actively using VAXSYMA.
lnterlisp working-set and virtual address space requirements will exceed those of VAXSYMA.

Although the VAX is purported to be quite cost-effective for FORTRAN, the instruction set is not
pal*ticularly cffcctive for Lisp, and even less so for Interlisp. The "CAI,LSW instruction, which is
intended to bc used for function calls in high-lcvel languages, assumes a model of the stack which
docs not match Interlisp's. While the Interlisp-VAX design takes advantage of "CALLS" in a clever
way, function call is still relatively more expensive than it is on microcoded machines which can
have an Interlisp-specific function call instruction.

Virtual address space and real memory

Although the VAX is a large virtual addrcss space machine, the address space may not . be
particularly usable on config~irations typical in many installations. For example, the following
configurations werc proposcd as "typical" VAX installations:

VAX-11/750 with 2 MBytes real memory (maximum for 750)

VAX-11/780 with 4 MBytes real memory

VAX-11/780 with 8 MDytes real memory (requires additional memory controller)

Also proposed are configurations not currently available: "single-user" VAX machines with memory
in the 1-2 MByte range, or 750's and 780's with more memory (requiring 64K IIAM chips).

Because of Interlisp-VAX's large virtual address space and working set, a machine with only 2
MBytes of real memory might be able to support at most one or two large address space active
uscrs at a time. Generous amounts of disk, swapping space, and real memory will be required --
more so than in Intcrlisp-10 to support the same uscrs, and much more so than in Interlisp-D or
Interlisp- Jericho.

Very few time-sharing systems have adequately dealt with giant address spaces for multiple users.
The success of very-large-address-space Interlisp-VAX will depend on the cooperation and support
of the Berkeley Unix implementors.

C. There is much left to do

There is an unfortunate tendency to underestimate the magnitude of the task of transporting a
system the size and complexity of Interlisp. Interlisp is not merely an interpreter and a few utility
routines. It is a rich and complex programming environment with facilitics which were heavily
influenced by Tenex, its original host operating systcm. Porting it to another machine and
continuing to upgrade it is a major undertaking. I cannot stress this enough.

The publication of the Interlisp Virtual Machine Specification [Moore] was an important step
forward in the creation of transportable Interlisp, in that it identified a major portion of what the
"higher-level" Interlisp support software rcquired in order to run. Unhappily, as complete and well-
written as that document was, it is not an accurate guide for the construction of a useful lnterlisp
implementation, in that many areas are designated as being left to the implementor while many
Interlisp applications require exact compatibility with Interlisp-10. The VM is also not a good
mcasure of the magnitude of imple~nenting Interlisp. For example, the VM mentions the compiler
only in passing; however, providing a reasonable Interlisp compiler is a major portion of the task of
transporting Interlisp to a new (non-microcoded) machine.

Transporting Interlisp is harder than merely implementing "some" L,isp dialcct. It is much more
difficult to be strictly compatible while using thc underlying power of the machine to the fullest
Compatibility makes the implementation harder because there is an existing standard against which
the implementation can be judged. For a "new" Lisp, it is always possible to declare oneself "done"
at ahnost any point. The necessity of emulating exactly the behavior of another system is what
makes the task morc difficult.

How much is left to do?

It is difficult to give a "man-month" figure for Intcrlisp-VAX for several reasons. First, of course,
thc notion of "mati-month" indcpendcnt of implcmcntor is a well-known paradox; start-up time and
personi~cl training can delay a projcct for many ~nonths (as in thc carly montl~s of the Interlisp-
VAX project).

Second, there are several tasks ahead which will undoubtedly encounter unforeseen problems.
"System shakedown" is a catch-all phrase which can cover many months of discovering problclns or
previously undetected system requircments. Software complction is not measured wcll by proportion
of lines-of-code written.

Finally, there is a widc range of variation of what is Incant by "Intcrlisp-VAX," On the one hand,
an initial version may be available relatively soon. This version will likcly have scrious performance

problems (mainly because of free variable refcrcnce and non-tuncd codc generation), and will likely t,

not be hlly functional or compatible with Intcrlisp-10. The task of bringing Interlisp-VAX to the
n

level of functionality, performance and rcliability of Interlisp-10 and Interlisp-D remains awesome.

Unfortunately, there is not a good perception in the Interlisp user community of the amount of
work between the first relcax and a system which will be acceptable to current Interlisp users. For
this reason, the recent "pre-announcement" message [l)yer] was at best misleading for those trying
to make plans based on Interlisp-VAX availability. While this initial version might in fact be a
reasonable alternative to, say, converting a large Interlisp program to Franz Lisp (because the
conversion cost would bc higher than the perforrnancc difference would warrant), it will not be
comparable with most other Interlisp implementations (-10, -D, -Jericho).

l11e Interlisp-VAX project is and has been from the beginning drastically undermanned. The initial
proposal for implementation of Interlisp-VAX in one ycar with no existing personnel was at best
wishful thinking. Hans Koomen will bc leaving within the near future. This is a serious, although
possibly not fatal, blow to the continuation of the project, even with the addition of more staff
members (Ray Bates and Don Voreck).

The project needs a team of implementors who are committed to its goals, are qualified to carry it
out, and will stick with the project once the initial release has been made. If Interlisp-VAX is to be
viable, there needs to be a long-term (3-4 year) commitment to its maintenance and support by a
team of qualified personnel. This level of support or greater has been required by every other
serious implementation of Lisp that 1 know of, including Intcrlisp-10, Interlisp-D, Interlisp-Jericho,
and Lisp Machine Lisp. There is no reason why anyone should imagine that Interlisp-VAX would
be different.

NOTES

~ V A X is a trademark of Digital Equipment Corporation.
2 ~ n i x is a trademark of Bell Laboratories.

BIBLIOGRAPHY

Burton, R.R., et al. "Interlisp-D: Overview and Status." In Papers on Interlisp-D, Xerox Palo Alto
Research Center, CIS-5 (SSL-80-4), 1980.
Describes the Interlisp-D implementation effort, including some words of l:!isdom on why implementing Interlisp is
hard.

Dyer, D., et al. INTERLISP-VAX. Message-ID: <[USC-ISIBl17-Jul-81 lS:lO:lO.MILLAR> .
This was the "official pre-announcement of the availability of Interlisp-VAX."

Hedrick, C. Some Tests of Big Core Images. [message file] Rutgers University.
30 May 81 0447-EDT.
Discusses ELISP implementation on an extended address DEC 2060.

Kashtan, D. Unix and VMS: Some Perfomarzce Compari.~ons. [message file] SRI International.
Compares performance of VAX/VMS version 1.6 and VM Unix Berkeley version 2.1.

Masinter, L. M. and Deutsch, L. P. "Local Optimization in a Compiler for Stack-based Lisp
Machines." In Papers on In~erlisp-D, Xerox Palo Alto Research Center, CIS-5 (SSL-80-4), 1980.
Describes the byte compiler.

Moore, J. The Interlisp Virtual Machine Specifcation. Xerox Palo Alto Research Center, CSL 76-5,
revised March 1979.

Raim, M. Personal communication.

Teitclman, W. and Masinter, L. The Interlisp Programming Lihvironment. IEEE Computer,. April
1981, pp. 25-33.
Overview of Interlisp.

