
~. 

INSIDE INTERLISP: Two IMPLEMENTATIONS 

L. Peter Deutsch 
Xerox Palo Alto Research Center 

November 26, 1978 

The views expressed in this paper are those of the author, and should not be considered as necessarily 
representing the views or intentions of JYerox Corp. 

1. Thc Intcrlisp virtual machine 

Intcrlisp and Standard Lisp (Griss, Utah) are the only Lisp dialects for which anything like a 
comprehensi ve functional specification exists. The Interlisp Virtual ~tachine (VM) document 
speaks for itself: only the highlights appear just below. 

The non-technical qualities of Interlisp are unique and deserve mention. Interlisp has an 
exhaustive and well-organized reference manual, which is available on-line to answer questions 
about particular functions or (to a 1esser, extent) topics. It is only through amaling amounts of 
labor expended on this manual that the proliferation of features in Interlisp has remained usable. 

1.1 Data types 

Interlisp provides list cells, litatoms (symbols), fixed-size integers, fixed-size floating point numbers, 
character strings, arrays of pointers or integers, hash tables, and environments as predefined data 
types. 'Ibe user can define his own packed record types: each type consists of any combination of 
pointers and non-pointers in a fixed layout. All the primitive operations are supposed to check the 
type of their operands, but Inlerlisp-lO omits the check on many "read" accesses (such as CAR 
and CDR) for efficiency. 

Literal atOlns are unique over'the entire system -- there is no OnLIST. They may not have 
printnames which would read in as numbers. Each atom has an associated global value (NOBIND 
means none), property list (initially NIL), and function definition cell (inili,ltly NIL). CAR and 
CDR of titatoms are formally undefined (except for NIL). Litatoms and strings are essentially 
interchangeable for character operations, except that one cannot change the printname of a litatom. 
NIL is a litatom whose CAR and CDR are both fixed at NIL: attempts to change them are 
reported as errors. NIL also serves as "false"; anything other than NIL is "true". T is an 
ordinary litatom whose global value is T. NIL and T filay not be rebound. 

Some integers arc itnplemented by "boxing"; programs can share pointers to boxes and smash 
values into boxes. (Like many such functional anomalies, this one crept in as an implementation 
artifact and was allowed to become official for efficiency reasons. It has caused a lot of obscure 
trouble.) Interlisp provides separate integer al.1d floating point arithmetic operations, as well as the 
familiar PLUS etc.: these operations always fix or floal their operands respectively. and compile 
more efficiently. 

Strings are likewise implemented through descriptors. and some facilities exist which smash 
descriptors. The substring operation creates a new descriptor which shares the string characters 
with the old one, so replacing characters through onc descriptor c,m affect characters accessed 
through another. 

Arrays in Inlerlisp-lO may contain a pointer part and a non-pointer part. although the VM only 
requires the existence of homogenous ,}rrays. rlllC access fUllclions must check the index to see 



2 INSIDE INTERLISP: Two IMPLEMENTATIONS 

\\'hich part it lies in. 

Hash tables use EQ to compare keys. The garbage collector will remove entries from hash tables 
if the key is no longer referenced by anything else. 

1.2 Environments and the interpreter 

Environments (pointers to stack frames) again involve visible descriptors. Interlisp allows one to 
move freely up the call or access chain. to return to any frmne. to evaluate expressions in any 
context, or to exanllne or alter the value (or name!) of any variable in any frame. The "spaghetti 
stack" concept requires that when control returns to a frame Ulat has nlorc than onc refcrcnce to 
it. the temporary values (but not thc argument variables) of the frame are copied. 

The interpreter is required to leave its working variables in stack frames in a specified form, so 
that D\VIM can examine and even alter them (e.g. to provide better recovery from parenthesis 
errors). 

An errors in Interlisp send control to a user-definablc function which can resume the computation 
cleanly. There is a higher-level facility for attempting a computation and regaining control at the 
point of the attempt if an error occurs. . 

Interlisp-lO uses shallow binding for variables. The user can declarc variables as purely local (not 
accessible outside the function that binds them): this is the default for block compilation, but not 
for ordinary compilation, and it is not supported by thc interpreter. 

1.3 File system 

Interlisp supports a somewhat implementation-independent file interface based on the Tenex file 
syslenl. Files may be opened by name, which may include supplying defaults for unspecified 
fields (e.g. directory. version). rThere is a somewhat confusing set of rules for determining the 
referent of an incomplete file name. I/O may only be done to a file while it is open. Functions 
are available for deleting, renaming. and reading and setting attributes of files (e.g. length). and for 
scanning through the directory sY3tem. 

Intcrlisp-lO supports communication through the A RP ANET through the file system. 

1.4 Symbolic I/O 

Interlisp supports a complex table-driven I/O system for symbolic data. Input, and to a much 
lesser extent output. is controlled by an object called a readtable which specifics things' like what 
characters (if any) have the functions of brackets or atom separators. what characters arc to be 
treated as read-time macros. etc. Symbolic 110 also keeps track of horizontal line position and 
inserts end-of-line characters automatically, and will truncate excessively deep or long list structures 
if desired. Unfortunately. the continued accretion of features in this ,Irea has led to an unwieldy 
specification in the VM (a full third of the VM document), which still leaves users needing to add 
their own facilities. 

Packages supply the ability to do more highly fonnalted output (e.g. centered, right-justified, with 
font changes and super/subscripting, in fixed fields, etc.) and to print circular or re-entrant 
structures preserving the exact topology. 



INSIDE [NTERLISP: Two IMPLEMENTATIONS 3 

1.5 The tennillai 

Interlisp provides substantial user control over line editing at the terminal through an objcct like a 
read table called a tenllinal table. Again. the features have accumulated over the years, but still 
fall short of more sophisticated requirements. rille basic model of input is a teletype with a single
line buffer in which editing can occur through backspacing. nuffering and echoing can be 
disabled. Any character can be designated as an internlpt character of one of three types: hard 
(Ule interrupt takes effect immediately, but computation may be disnlpted), soft (the interrupt may 
have to wait, but computation is guaranteed unaffected), or flag (a vatiable is set to T and nothing 
else happens). 

1.6 Functional changeability 

In Interlisp-l0, the VM is implemented entirely in PDP-IO assembly language. Changing it is 
tricky -- implementing spaghetti stacks took over a person-year. While it is obviously unfair to 
compare a second implenlcntation with a first. we think the Bytelisp approach desctibed below is a 
much more prom~sing one for future Interlisp implementations. 

2. The Bytclisp virtual machine 

In addition to Interlisp-IO. whose underlying implementation machine is the PDP-IO augmented 
by Tenex or TOPS-20, PARC has another implementation of Interlisp on two personal computers, 
the Alto and th~ Dorado. rI11is implementation, which we refer to as Bytelisp, relics on a virtual 
machine which is substantially less hardware-dependent than the PDP-I0 implementation, and 
therefore of interest in our system comparison. 

The Bytetisp virtual machine has an address space of 2t24 16-bit words, of which only 2t22 words 
arc presently used by Lisp, divided into 256-word pages. Its instmction set is similar to that 
described in my paper "A Lisp Machine with Very Compact Programs", presented at IJCAI in 
1973. This instruction set is based on 8-bit bytes: most instructions are only one byte long, and 
there arc a total of about 80 different instructions. In addition to the instnlction set. which is 
implemented in microcode, the Bytetisp machine has a support kernel of about 40 SUBRs wIitten 
in a conventional minicomputer instruction set for such things as floating point and double
precision ariUlmetic. implcmenting a disk file system. and SYSIN and SYSOUT. Everything 
else -- including CONS, the garbage collector, and all I/O above the uninterpreted byte level -- is 
written in Lisp. rIlle instruction set includes instnlctions for uninhibited access to the virtual 
memory, whose use is confined to the level of the system that implements the Interlisp VM. We 
believe that once we have completed the arduous task of verifying that our implementation of the 
VM agrees with the current Tenex implementation (which. thanks to poor documentation and lack 
of management, has diverged in numerous minor ways from the VM document over the past few 
years). we wilt be able to nm essentially aU of the support packages and tools, and all user 
progratns that do not contain PDP-I0 assernbly code. without change: we attained a state very 
close to this for a brief pcriod in early 1977, when we were able to run the Boyer-Moore theorem 
prover, part of the Intertisp version of Reduce, and part of the Dendral systetn on the Alto. 

Dytelisp provides essentially no functional capability beyond that of the Intertisp VM, other than 
binary 110 and a primitive for operating on bit arrays which we have found useful for display 
graphics. 

2.1 Functiollal changeability 



4 INSIDE INTERLISP: Two IMPLEMENTATIONS 

The level of the Bytelisp system which implements the Interlisp VM consists of about l-.5K (32-bit) 
microinstnlclions and SOK (16-bit) non-Lisp instnlctions. 10K of the non-Lisp instructions arc the 
operating system, which provides disk files, a time-of-day clock, and a few other miscellaneous 
services. 20K are initialization c.ode which duplicates Lisp code -- we needed it on the Alto for 
pcrfolmance reasons and will discard it on the Dorado. lbe remaining 20K include floating point, 
double-precision arithmetic, opcrating system interfaces, SYSOUT. access to the display, and the 
virtual nlcnlOry system. A more integrated redesign of the non-Lisp part of the systcm could 
probably reduce its size from 30K to 20K. '1bis is the minimum mnount of code that would 
require rewriting if one wantcd to move Bytelisp to o~er hardware. 

1ne commitment of Bytclisp to addressing 16-bit words is a fairly strong one in the Lisp code that 
implements the Vfvl, although there are prinlitive functions (and opcodes) for fetching and storing 
entire 24-bit pointers. Considerable mechanical work would be required to move Bytclisp to a 
machine like the V AX, which addresses bytes, or to the Jericho, which addresses 32-bit words. No 
code above the VM level is supposed to know the addressing grain. 

While essentially any aspect of the VM is easily changed by modifying the Lisp code that 
implements it, the consequences for the system and user code above it are difficult to assess. 
Changes that do not affect functional capability arc easier to contemplate: for example. we are 
considering changing from dynamic to shallow binding, and we might consider changing from a 
quantum map to typed pointers. Neither of these changes would be enomlously difficult to make. 
More fundamental changes, such as replacing the Interlisp "spaghetti stack" with a heap structure, 
would have significant effects on the instruction set and would be harder. 

3. Support: tools 

It is worth pointing out that the philosophy of Interlisp is to provide a programmer interface to 
any tool available to the user at the terminal. and to provide a ma'{imum degree of parametrization 
(via global flags and property lists) for every system facility. lbis has been successful -- perhaps 
too successful, in that whenever a facility has been found insufficiently general. it has atmost 
always been extended by adding another flag. rather than attempting a redefinition of the facility. 

3.1 Editing, filing, translating 

Interlisp provides an integrated S-expression editor, for both programs and data. The editor 
includes a macro facility and the ability to call the interpreter (and be called from programs). 

Interlisp has a prettyprinter which is capable of distinguishing different categories of names (e.g. 
programmer-defined from system functions, local from free variables) by changing font, 
underlining, etc. 

Interlisp includes an integrated filing package which keeps track of what objects (functions, 
variable initialization, datatype definitions, etc.) have been changed and need to be dumped out on 
files. In conjunction WiUl Masterscopc. this package can do some startling things: for example, 
when a user has edited a compiler macro, the file package warns him of functions which need to 
be recompiled because they usc the macro. 

Interlisp provides infix synta"<. for many common operations, and a powerful iteration statement 
including parallel iteration. lIser-defined sequencing behavior. and ability to combine the generated 
values in user-defined ways (c.g. scarch. Slim, form a list). lbis is integraled with the 
prellyptintcr -- a program can be input in either intix. or S-cxprcssion form. and output in either 
form independent of how it was input. Unfortunately. this f~\cility is implemented by intercepting 



INSIDE INTERLISP: Two IMPLEMENTATIONS 5 

interpreter errors and breaking apart undefined atoms looking for infix operator characters. This 
causes it to behave in ill-defined and sOIlletimes counter-intuitive ways. 

3.2 Debugging, session management 

When a nm-time error occurs, Interlisp provides a variant of the nonnal executive that allows the 
uscr to look around the stack and to resume execution in a variety of different ways. Computation 
can oftcn continue with little loss of state even if a function with an aClivation on the stack on the 
stack was edited. 

The user can insert breakpoints at the entry to any function, possibly conditional, or at any place 
within the definition of an (interpreted) function. 

The Interlisp "advising" facility provides a stnlctured way of patching functions at their entries and 
exits. It is widely used to accomplish minor changes to functions pending incorporation of those 
changes in the system. 0 

Interlisp saves the inputs and outputs of the last N interactions with the user (N settable), and 
provides facilities for reviewing, re-executing, grouping, and naming interaction events. 

Most system functions are undoable: they save enough infonnation to undo their effects. This 0 

includes all operations in the editor. 1be conventions for undoable functions are simple enough 
that users can easily write undoable functions of their own. Interlisp does its best to replace all 
functions in typed-in expressions with their undoable versions. so that some kinds of changes not 
nonnally undoable are undoable if they result directly from user input. 

Interlisp is the original home of the D\VIM facility to which automatically corrects certain kinds of 
spelling and minor syntactic errors. This idea has been progressively extended -- DWIM now can 
correct not only function and variable names. but file names. command names for the editor and 
the Interlisp executive. etc. 

As mentioned abo\'e, the Interlisp manual is kept on-line. index.ed by function names and by a 
wide variety of topics. The user can ask for infonnation about a function or topic and Interlisp 
wilt print the relevant section of the manual. It does surprisingly well in selecting what to print, 
considering that the manual is essentially free-form text. 

3.2 Analysis and monitoring 

Masterscope is a unique InterIisp tool that maintains a data base of facts about programs (who calls 
whom. who binds what, etc.) and can answer quite complex questions about them. It is integrated 
with the editor and file package, so it knows when things need re-analyzing. It has an option to 
store the data base on an external file, so that information is available even for functions not 
currently loaded into the system. My personal experience is that Masterscope is especially valuable 
when one wants to make changes that atlcct interface data structures. 0 

Interlisp contains packages for monitoring the consumption of resources (CONSes, computation 
time. page faults. or any user-defined quantity), either during the computation of a single 
expression, or continuously for a selected set of functions. 



6 INSIDE INTERLISP: Two IMPLEMENTATIONS 

4. Support: packages 

The list of packages below is bound to be incomplete, since new packages arc written (and find 
their way into the system) on a continuous basis. 

A number of packages exist for maintaining data structures on tiles. lbe Boyer-Moore fast search 
algorithm is inlplcmented as a package, as is a facility for storing hash tables on external files. 
Packages exist for communication over the ARPANET and for coordinating the assignment of 
names in a multi-person project 

Intcrlisp provides a package containing all the usual transcendental functions. An ambitious 
package for statistical analysis has been implemented at PARCo 

Several packages for manipulating displays are being developed in various places. 

5. Pcrfonnance . 

5.1 Space & speed 

Interlisp-10 is notorious among Lisp users for its poor performance. Factors of 2 and 3 in both 
speed and code space compared to other dialects have been quoted. In fact, it appears that this 
apparent poor showing is due to a combination of factors. few of which arc inherent in Interlisp's 
functional capabilities. Also, the speed differences vary greatly depending on the exact application. 

Many users do not realize that Interlisp provides a "block compiler" which produces tighter calling 
and binding sequences at the sacrifice of being able to break or advise functions within the 
"block", or see the names of the internally bound variables. In one instance of unfavorable 
comparison between Interlisp-10 and UCI Lisp, for example, recompilation with the block compiler 
actually produced about a 20% advantage for Interlisp. 

The present Int~r1isp-10 compiler and calling conventions have evolved over the years without 
much systematic scrutiny, and Ule Interlisp maintenance group at BBN have consistently felt that 
they did not have the resources for major reimplementation. 101.1s, for example, a design has 
existed on paper for about 3 years which would cut the cost of an ordinary function call and 
return roughly in half. Similarly, the compiler produces atrociolls code for arithmetic, and even 
when block compiling ha~ no fllcilities for passing unboxed numbers between functions. Ukewise, 
a simple change in the stack fonnat would reduce the cost of CAR and CDR of variables in non
block-compiled code by one instruction. lbere are many exarnplcs of such economies: I would 
guess that Interlisp-10 could come within 15% of any other dialect in both space and time with an 
investment of effort that would be extremely modest compared to the effort already invested in the 
Interlisp system. 

Bytelisp uses a very compact instruction set and a CDR -codcd list cell representation. The use of 
a quantum map. rather than type codes in pointers, slows down type testing by one memory 
reference (which would almost always be in the cache on a nlachine that had one). The use of 
deep, rather than shallow, binding slows the system down somewhat -- we have no hard numbers 
yet, but are working on getting them. (We are also considering switch;ng to shallow binding -- the 
work required is substantial but not overwhelming.) '111C absence of instructions for unboxcd 
arithmetic slows down arithmetic operations, since type tests are required, but since all integers 
from -2t 10 to + 2t 16-1 have "immediate" representations, boxing is rarely required. 

-----------------



INSIDE INTERUSP: Two IMPLEMENTATIONS 1 

5.2 Fixed limits 

The major limitation in Interlisp-lO is the PDP-IO IS-bit address space. Interlisp now uses a 
software swapping scheme for code which effectively removes this limitation (at a significant cost 
in time for functions which are allowed to be swapped). However, the limit remains for data 
structures. Interlisp's requirement that space be allocated permanently to data types a page at a 
time also wastes about half a page per data type; this is not significant. Within the I8-bit limit, 

. only stack space has a fixed amount allocated to it, which has caused problems in some 
applications: the other data types all acquire space as n<:edcd. 

Of Bylelisp's 22-bit address spacc, a good deal is permanently allocated to variolls data types: 64K 
for stack, 1M for code and arrays, 512K each for strings and print names, and enough space for 
32K atoms. Another 1M is shared betwecn fixed-size types -- lists, integers, floating point 
numbers, llser-defined data types, etc. -- as needed. The architecture of the system allows all these 
numbers to be increased, except for the stack and atom space, up to a grand total of 16M words. 
Relatively minor changes would allow doubling the stack sizc; morc significant changes would 
remove thc limit completely. Incrcasing the number of atoms to 64K would require minor work; 
further incrcases would require very substantial changes. 




