
Interlisp-VAX Users Manual

Fi rst Edition

Preliminary Draft

Raymond Bates

David Dyer

Andrea lgnatowski

Johannes Koomen

Steven Saunders

Donald Voreck

5 December 1 982

USC Information Sciences Institute

Interlisp-VAX Project

4676 Admiralty Way

Marina del Rey, CA 90291

Interlisp-VAX is sponsored by DARPA under contract number MDA 903-81 -C-0335.

Table of Contents
1. Introduction

2. Interlisp-10 Supplementary Manual

3. UNlX Operating System Dependencies

3.1. Csh and Ls
3.2. Increasing the Maximum Segment Size in the UNlX Operating System

4. VMS Operating System Dependencies

4.1. EUNICE
4.2. UNlX Environment Variables Under VMS
4.3. VMS Resources
4.4. VMS Files
4.5. Configuring the Emulation of the LlNlX File System

5. Known bugs and deficiencies

5.1. DRIBBLE
5.2. OPENFILE
5.3. PRINTNUM

6. Fixed Bugs

6.1. BOUNDP
6.2. COPYBYTES
6.3. DWIMIFY .

6.4. PEEKC
6.5. UNPACK
6.6. MISCELLANEOUS

7. Llpcoming Attractions

7.1. Hash Package
7.2. SUBSYS
7.3. PMAP
7.4. EXEC
7.5. Improved Code
7.6. File Names
7.7. File Versions

Index

1

UNlX is a trademark of Bell Laboratories.

The following are trademarks of the Digitial Equipment Corportaion:

DIGITAL
PDP
VAX
VMS
TOPS-20

1. Int reduction

Welcome to the world of Interlisp-VAX!

The Interlisp-VAX project was begun in mid-1979 to provide a newer, more powerful alternative

to Interlisp-10 as a LISP environment suitable for research. The result is an efficient, portable, fully

functional system compatible with other Interlisps and supporting a large virtual address space.

Interlisp-VAX runs under two operating systems, VMS and UNIX' . Its implementation on the VAX,

one of the most popular machines in research facilities and college campuses today, assures it of a

long, productive future.

The implementation of Interlisp-VAX relied heavily on two sources: Interlisp-D, which runs on a

personal computer developed at Xerox Palo Alto Research Center, and Multilisp, implemented at the

University of British Columbia for the IBM-370. It is a more traditional implementation than some of

the newer LISPS. It is written in lnterlisp itself and C, the universal implementation language for the

UNlX operating system, and took approximately six man-years of effort to complete. For a more

detailed explanation of the implementation see implementation of lnterlisp on the VAX [I].

This manual is periodically revised to reflect the changes and improvements made to Interlisp-

VAX, which is still in a stage of development. New manuals can be ordered from the address below.

USC/lnformation Sciences Institute
Interlisp-VAX Project
4676 Ad miral ty Way

Marina del Rey, CA 90291
USA

Mail can also be sent via the ARPANET to Interlisp@ISIB.

Interlisp-10 manuals can be obtained from Xerox Corporation. Write to the following address

for order information.

Xerox Corporation
Electro-Optical Systems MS 384

300 N. Halstead St.
Pasadena CA 91 107

USA
ATTENTION: Rachel Navarro

or send ARPANET mail to, Lispmanual@Parc-Maxc.

'specifically Berkeley VM/UNIX

2. lnterlisp-10 Supplementary Manual

This chapter describes the major differences between Interlisp- 1 0 and Interlisp-VAX. It is meant

to be used as a supplement to the large lnterlisp Reference Manual [5]; it cannot stand on its own as a

document.

To facilitate the checking of information between the two manuals, this chapter is organized in

the same manner as the Interlisp-10 guide, even down to the headings and sectio~i numbers; nearly

every function and variable noted here is located in the equivalent chapter and section in the lnterlisp

Reference Manual. Of course, there are many areas in which there are no marked differences

between the two lnterlisps and thus nothing to make note of, so the section numbers, while in

numerical order, are not necessarily consecutive (don't worry, you're not missing any sections!).

This chapter describes functions which have been revised for Interlisp-VAX; new functions for

Interlisp-VAX which do not exist in Interlisp-10; machine-dependent or otherwise unneeded functions

that don't appear in Interlisp-VAX; and other aspects in which the two lnterlisps differ.

4

SECTION 3

DATA TYPES, STORAGE ALLOCATION,
GARBAGE COLLECTION, AND OVERLAYS

3.1 DATA TYPES

For the most part, Interlisp-VAX utilizes the same data types for the same purposes as

Interlisp-10. One exception is that FIXP, which represents a large integer in Interlisp-10, does not

exist as a data type in Interlisp-VAX; all integer types are designated as SMALLP.

The following primitive data types are implemented by the VM:

SMALLP
FLOATP
LlSTP
STACKP
STRINGP
ARRAYP
CCODEP
PDL
PNAME
VMSPACE

Integer, from -2~30 to + 2~30- 1.
Unboxed 32-bit floating point number.
Pair of arbitrary objects (list).
Stack pointer.
String descriptor.
Array descriptor.
Code object descriptor.
Spaghetti stack space.
Character space for atom and string pnames.
VM program and static data space, C stack.

All other data types are established as composites of these types.

3.2 USER DEFINED DATA TYPES

(DECLAREDATATY PE NAME DESCR FLG ALIGN) [Function]

is the user level and record package entry point that creates a new data type. It is also called by

the record package to generate descriptors for ARRAYBLOCK and BLOCKRECORD record types.

NAME is the name for the new type. DESCR is a list of descriptors, including one or more of the

following:

POINTER, XPOINTER, FULLPOINTER, FULLXPOINTER
Name of a pointer field.

Fl XP Name of a signed 32-bit integer field.
FLOATP Name of an unboxed 32-bit floating point number.
WORD, SHORT Name of an unsigned 16-bit integer.
SIGNEDWORD Name of a signed 16-bit integer.
BYTE Name of an unsigned 8-bit integer.
SIGNEDBYTE Name of a signed $-bit integer.
FLAG Name of a field whose value is T or NIL.
(B ITS n) Name of an unsigned integer, O<n<32.

(SIGMEDBITS n) Name of a signed integer, O(n<32.
(BITS n offset) Allocates a field of n-bits. Offset, a constant integer, is added to n

after a FETCH and subtracted from n before a STORE. This feature
s~~pports the (BETWEEN n l n2) construct allowed by the record
package's DATATYPE and ARRAYBLOCK types.

(SIGNEDBITS n offset)
Same as above, but for signed integers.

All 8-, 16-, and 32-bit fields will be aligned 0, 1, or 2 bytes respectively. All pointer fields will be

placed before all nonpointer fields. Gaps created by alignment constraints will be filled if possible.

FLG is set to ARRAY i f declaring an ARRAYBLOCK, to T if declaring a BLOCKRECORD, and to

NIL otherwise. ALIGN is the alignment request or NIL, which defaults to 2 (long word).

3.5 THE INTERLISP-10 SWAPPER

Tliere are no swappable arrays in Interlisp-VAX. All of the swapper-related functions exist, but

they operate as no-ops.

SECTION 5

PRIMITIVE FUNCTIONS AND PREDICATES

5.1 PRIMITIVE FUNCTIONS

Users importing lnterlisp programs onto the VAX may find their CARS and CDRs behaving a

little differently than they did on Interlisp-10. This is because Interlisp-VAX discourages the practice

of taking the CAR and CDR of atoms, numbers, and other nonlists by generating error messages and

entering a break when such actions are attempted. 'This is especially true in the case of numbers;

whereas Interlisp-10 returns apparently random values for such function calls, Interlisp-VAX

generates an error message in an uncompiled program and a hard interrupt in a compiled function

(what the user types is underlined):

+DEFINEO((TEST (X I (CAR X I
(TEST)
+(TEST 1)

ILLEGAL ARG
1

+COMPILE(TEST)
l i s t i n g ? =ore and r e d e f i n e
o u t p u t f i l e ? No

. (TEST r e d e f i n e d)
(TEST)
(TEST 1)

Hard I n t e r r u p t , s i g n a l 10 a t 2389239 i n TEST + 11

Interlisp-VAX provides the functions OLDCAR and OLDCDR, which more closely resemble the

CAR and CDR of Interlisp-10 in that they will return a value (NIL) when passed an atom or a number.

It is recommended for efficiency and reliability, however, that if there are instances in a program

where the LISTP property of an object X is unknown, the user should take (CAR (LISTP X)) rather than

(CAR X) or (OLDCAR X).

SECTION 8

FUNCTION DEFINITION AND EVALUATION

(EVALHOOK OBJ FUNCTION) [Function]

is a function designed to make it easy to step or trace the interpreter. It sets the variable

EVALHOOK to FUNCTION and, whenever an EVAL is called, APPLYs that function to OBJ just before

executing the EVAL itself. At some point the tracer called in this way will normally call (EVALHOOK

OBJ 'MYSELF), which will do the actual evaluation and continue tracing lower levels of the OBJ.

Example:

(DEFINEQ (HOOK (OBJ)
(EVALHOOK (PRINT OBJ) 'HOOK]

(HOOK anything) will evaluate "anything" and print each subform before it is evaluated.

EVALHOOK is found in the Lispusers package TRACEIN.

SECTION 10

ATOM, STRING, ARRAY, AND STORAGE MANIPULATION

10.1 PNAMES AND ATOM MANIPULATION

(U-CASE VAR FLAG) [Function]

works as for Interlisp-10, but care must be taken in its use (e.g., i f used to enforce a system

standard not appropriate for the UNlX operating system, such as U-CASE-ing a filename). Same for

L-CASE.

10.2 STRING FUNCTIONS

[Function]

allocates a new string of size LENGTH characters. If INITIALVALUE is

-an atom 'The string will contain the first letter in the atom.
-an integer 'The string will contain the ASCII character that the integer represents.

10.3 ARRAY FUNCTIONS

(ARRAY SIZE TYPE INITIAL ORIGIN) [Function]

All features of Interlisp-10 arrays are duplicated in Interlisp-VAX, including mixed-type

(pointer/integer) arrays. But Interlisp-VAX offers the user additional options, including the zero-origin

and small integer array options included in Interlisp-D. All Interlisp-VAX arrays should be completely

compatible with Interlisp-D arrays.

While the features of Interlisp-VAX are compatible with other implementations, the underlying

representations of these features are different; notably, Interlisp-10 uses essentially identical .

representations for all arrays, hash arrays, and code arrays, but Interlisp-VAX does not. Thus the

low-level hacking which works for other versions of Interlisp will not work for Interlisp-VAX.

In Interlisp-VAX arrays, SIZE is the number of elements, TYPE is the type of array and can be one

of the following choices:

NIL
n

Array of double-pointers; both SETA and SETD can be used.
0 < = n < = SIZE; the first n elements of array are integers, the rest are
double-pointers.

(n) 0 < = n < = SIZE; origin is 0, the First SIZE-n elements are integers, rest
are pointers; used to create arrayblock records;.

BYTE Elements are unsigned bytes (8-bit integers).
SMALLPOSP Elements are unsigned 16- bit integers.
FlXP Elements are unboxed integers.
POINTER Array of pointers; orily SETA may be used.
DOUBLEPOINTER Same as NIL.
HARRAY Hash array; type is pointer, origin is 0; SIZE represents the number of

items which can be put into the array before it becomes full.

INITIAL sets the initial value of each element in the array. ORIGIN specifies the origin of the array,

either 0, 1, or NIL (default is 1).

Nearly all functions in Interlisp-1 0 which manipulate arrays and hash arrays are also present in

Interlisp-VAX. One that is not irrtplemented is ARRAYBEG; there is no way to generate pointers to

the interior of arrays in Interlisp-VAX.

Swappable arrays do not exist in Interlisp-VAX.

10.4 STORAGE FUNCTIONS

DATA TYPES --
'There are 10 predefined data types in Interlisp-VAX (note that the type numbers are different

from Interlisp-1 0):

type# type description

SMALLP
BlGP
FlXP
FLOATP
LIT ATOM
LlSTP
STACKP
STRINGP
CODEP
ARRAYP

Small integers (<2t30).
Big integers (not implemented).
Integers (same as SMALLP).
Floating point numbers.
Literal atoms.
List cells.
Stack pointers,
String pointers.
Cexpr or subr objects.
Arrays.

Many functions involving data types will accept either the type name or type number as an

argument. The use of names is encouraged over numbers, however, as this will make the code more

compatible across other Interlisp implementations.

GARBAGE COLLECTION -

Unlike Interlisp-10, which invokes garbage collection frequently, Interlisp-VAX just assigns

more storage space to a data type as it is needed and does not actually garbage collect until all of the

memory available for immediate storage has been allocated and used. As storage space is allotted,

usually in 64K byte sectors, Interlisp-VAX issues "memory exparision" messages of this form:

"expanding DATATYPE, nnn used, kkk before GC"

where nnn is the nurr~ber of bytes currently in use by the DATATVPE and kkk is the number of bytes

which can be allocated before garbage collection will be invoked. Once kkk reaches 0 and garbage

collection begins, this message:

is printed. Several seconds later, when the garbage collection is finished, execution of the program

continues.

The nature of Interlisp-VAX's garbage collector has an effect on SYSOUTs; see page 19.

GCMESS GCGAG

As with Interlisp-10, the messages issued during memory expansion are controlled by the

functions GCMESS and GCGAG.

(GCMESS NUMBER MESSAGE) [Function]

manipulates both the expansion and garbage collection messages, according to the following

sequences:2

NUMBER: 1 2 3 4 5 6 7
MESSAGE: expanding DATATYPE I nnn used, kkk before GC <CR>

and

NUMBER: 0
MESSAGE: "..in GC.."

2~~~~~~~~ is the description or name of the type being expanded and cannot be directly manipulated by the user.

0 manipulates the message printed upon entering garbage collection. There is also an option 8,

which allows the user to have a message printed upon leaving garbage collection.

(GCMESS 1 NIL) silences the DATATYPE portion of the message.

MESSAGE for 0, 2, 7, and 8 must be a string; for 1, 4, and 6, it can be a string or the name of a

function of one argument to be APPLYed to its adjacent message (1 to NIL, 4 to 3,6 to 5).

(GCGAG MESSAGE) [Function]

also affects the expansion and garbage collection messages. MESSAGE can be one of the

following:

T Expansion and garbage collection messages are printed at the
appropriate times.

NIL Garbage collection or expansion messages are not printed.
A List The CAR of MESSAGE is printed when garbage collection is begun, and

the CDR is printed when garbage collection is finished.
atom or string MESSAGE is printed when garbage collection begins and nothing is

printed when it ends.

MAXFS and RECLAIM --
A system that allows arbitrarily large usage of virtual memory will eventually degrade, so it is not

necessarily wise to postpone garbage collection until absolutely necessary. lnterlisp-VAX provides

two ways to trigger garbage collection early, MAXFS and RECLAIM.

(MAXFS SIZE TYPE) [Function] ,

sets the maximum size of storage for a data type. SIZE is in bytes and TYPE can be either type

name or number. When space allocated to a data type exceeds SIZE, a garbage collection is begun.

Interlisp-10's MlNFS exists on the VAX for historical reasons but has no effect.

(RECLAIM TYPE MAKESYSFLAG) [Function]

goes beyond its Interlisp-10 capabilities. If only the TYPE flag is used, it initializes a garbage

collection of that TYPE just as in lnterlisp-10. MAKESYSFLAG, useful when performing MAKESYS

operations, triggers Interlisp-VAX's "frozen page" facility, which allows parts of the address space to

be set aside and not garbage collected (resulting in a large savings of garbage collection time).

MAKESYSFLAG Can be one of the following:

NIL No change in freezing; collects the unfrozen part.
T Forces garbage collection onto an "even " garbage collection

boundary, appropriate for profiling or making a sysout.

Performs a garbage collection, then freeze those sectors of datatype
- TYPE in which more than n bytes are being used. This allows users to

leave sectors with only a few bytes used ava.ilable for recycling via
garbage collection.
Thaws all Frozen sectors back to k (which is a previous level of
freeze), then performs a garbage collection and freezes using
parameter n. (NIL . 0) thaws back to the original level and doesn't
refreeze.

Freezing is incremental, meaning that if there are already frozen pages and the user requests

another free.ze without thawing any sectors, there will now be two sets of frozen pages.

Freezing can begin to take place only when the garbage collection flop is in its even state, so if

the user is in an odd garbage collection flop upon requesting a freeze, a garbage collection to the

even Flop will occur before the freezing process starts. Garbage collection is then done twice more

before the process is completed.

When garbage collections are called after a freeze, the frozen space is scanned in order to

move any pointers there that may point out of frozen space.

MAKESYS uses the variable \MAKESYSGCTYPE as the argument to RECLAIM and is

initially set to (SECTORSIZE/2.0).

MEMUSAGE

(MEMUSAGE TYPE MEMTYPE) [Function]

. returns a dotted pair representing the amount of storage (allocated . used) by data type TYPE for

memory space MEMTYPE. TYPE can be either the name or the number of that data type. MEMTYPE can

be one of the following:

NIL
FROZEN
T

Represents user space.
Indicates system space.
Represents the sum of both system and user spaces.

MEMUSAGE can also take the following arguments, which are used by storage and the

Lispusers package PROFILE:

IsDownalloc Returns.NIL if the garbage collection flop is even and T if it is odd.
StorageLimit Gives the maximum storage that can be allocated in user space.
StorageLimit FROZEN

Shows the storage size allocated to system space.
StorageLimit T Returns the sum of system.and user storage space still available.

Storag eRemaining
Gives the amount of storage remaining before a garbage collection
becomes mandatory.

VmSize NIL Shows the size of the VM in PO space.
VmSize T Shows the size of the VM in PI space.

Because Interlisp-VAX invokes garbage collection when there are only a few byte sectors still

remaining, functions called when a garbage collection is pending should not allocate large amounts

of storage of any kind.

Stack Overflow 1
A "stack overflow trap" has been implemented to handle runaway recursion. ~

I

The function STACKOVERFLOWP, found in GCTRAPFORMS, checks ac ual stack space t
usage against the variable STACKOVERFLOWP, initially set to .5 megabytes. If shack space used

exceeds STACKOVERFLOWP, the stack overflow trap is generated wit

"STACKOVERFLOWP on GCTRAPFORMS".
h the

I
Users can change or remove the function STACKOVERFLOWP from GCT~APFORMS and

can change or rebind the value of the variable STACKOVERFLOWP. - ~

SECTION 13

NUMBERS AND ARITHMETIC FUNCTIONS

13.1 INTEGER ARITHMETIC

Interlisp-VAX currently supports only "small" integers (SMALLP, from -2t30 to 2t30-1).

Advantage is taken of the fact that all user virtual addresses on the VAX are always less than 2t31,

and hence all addresses in system space can be considered as encoded integers (an integer being 30

bits long, with the 31st bit as a sign bit and the 32nd bit as a system address mask, set to 1).

Two other integer types, FlXP (to represent full 32-bit numbers) and BIGP (to represent integers

of any arbitrary size), may be implemented in the future.

13.5 REUSING BOXED NUMBERS IN INTERLISP-10 - SETN

SETN exists, but since Interlisp-VAX currently employs only SMALLP for integers, SETN

performs the same function as the function SETQ.

13.6 BOX AND UNBOX IN INTERLISP - 1 0

LOC and VAG are not included in Interlisp-VAX.

SECTION 14

INPUT/OUTPUT FUNCTIONS

14.1 FILES

The UNlX operating system's facility for handling files posed two obstacles for Interlisp-VAX.

First, the UNlX system does not save old files which have been updated. All new files supersede their

old versions in the user's directory. Second, the UNlX system only recognizes distinct file names of

14 characters or less; any longer names are truncated by the UNIX system to fit this format.

The UNlX operating system file names are really pointers to files, which means that a file can

have more than one name. Interlisp-VAX uses this feature to save old versions of files as new ones

are created. When a file is updated, Interlisp-VAX designates it as a new File and gives it an

appropriate version number. It also passes along to each updated file an unnumbered name, so that

the latest version of the file always .has two names assigned to it, one numbered and one

unnumbered. The UNlX operating system recognizes the unnumbered names but not the numbered

ones, so any manipulation of older versions of files must be done in Interlisp.

To be able to handle numbered files at the UNlX shell level, one must use the special versions of

csh and Is provided with Interlisp-VAX. Setting the environment variable VERSIONS in the modified C

shell causes the shell to pass the "true" names of files to programs rather than the names with

characters truncated to 7 bits. Typing "setenv VERSIONS n", where n is an integer, allows the new Is

to print the file names as "fi9ename;versionnumber".

'This method of handling version numbers is currently being improved; see Upcoming

Attractions, page 50, for details.

Interlisp implements the version number by setting the high order bit of the last character of the
,

file name. This convention limits the length of file names to 13 characters, since one character must

be reserved for version numbers. However, if the file is a .v (binary) file, or if the FORCEEXT flag is set

to T, the file name is truncated to the first 11 characters to allow room for the extension as well as the

version number.

Should the UNlX operating system ever be modified to accommodate longer file names, this

special procedure would be removed, allowing version numbers to be designated by ordinary

characters.

The UNlX operating .system also, by nature, distinguishes between upper- and

lower-case characters in file names. Interlisp-VAX, however, recognizes either upper or lower case

and will match the upper or lower case pattern of the previous version when creating new files.

OPENFILE

There is a slight bug concerning the function OPENFILE; see page 45.

MANIPULATING FILE NAMES

The directory structure of the WNlX operating system is represented by separating the names of

successive directories leading to the intended file by slashes (e.g., /usr/lnterlisp/foo). A user can

change a TENEX or TOPS-20-type file name to this format by using the following function:

(TRANSLATEFILENAME FILENAME) [Function]

uses the alist FILENAMETRANSLATIONS to direct the translation of all or specific fields of

FILENAME. The entries of FILENAMETRANSLATIONS can be any of the field names known to

UNPACKFILENAME, plus the following:

FIRST Each form in FIRST is evaluated before any other processing is done.
FILENAME and FILENAMETRANSLATIONS are bound to the file
name and to the whole translation list, respectively.

FULLNAME A list of dotted pairs of full path names. If the CAR of any of these
pairs matches FILENAME, the corresponding CDR is returned as the
translation.

HOST, DEVICE, DIRECTORY, NAME, EXTENSION, VERSION
Each of these is a list of dotted pairs, which are matched with the
corresponding fields as returned by UNPACKFILENAME. if any
CAR matches the input, the CDR replaces it.

LAST After all changes have been made, each form in LAST is evaluated.

Below is a sample showing the recommended format for setting FILENAMETRANSLATIONS.

(SETQQ FILENAMETRANSLATIONS
((DIRECTORY (DDYER . / l i sp /ddye r / l i sp)

(VORECK . /l isp/voreck/ l i sp)
(RBATES . / l i sp / rba tes / l i sp)
(IGNATOWSKI . / l i sp / i gna towsk i / l i sp)
(LISPUSERS . /l i s p / I n t e r l i s p / l ispusers))

(EXTENSION (COM . v))
(NAME (MACHINEINDEPENDENT . machine)

(FOO . newfoo))
(LAST (SETQ FILENAME

(PACKFILENAME (QUOTE VERSION) N I L (QUOTE BODY) FILENAME]

With this format, if FILENAME = "<lGNATOWSKI>FOO.COM.3, TRANSLATEFILENAME would

produce l1/Iisp/ig natowski/lisp/newfoo.v".

FILENAME can also be a list of a file name's properties as returned by UNPACKFILENAME, in

which case it would return that list with the changes according to FILENAMETRANSLAI-IONS.

Interlisp initially has the following advice on the SPELLFILE property list:

(A D V I S E (QUOTE S P E L L F I L E)
(QUOTE BEFORE)
(QUOTE (PROG ((B (TRANSLATEFILENAME F I L E)))

(COND ((E Q B F I L E) N I L)
(T (RETFROM (QUOTE S P E L L F I L E) B)))))

1
To activiate it do:

R E A D V I S E (S P E L L F 1 L E)

This will advise SPELLFILE to try TRANSLATEFILENAME before making any other attempt the file

name.

ADDRESSABLE FILES

Users may have to alter calls to the function FILEPOS in files imported from other machines,

primarily because "end-of-line" representations differ among the various systems. The UNlX

operating system's files use just a single character (a linefeed) to end each line, while TENEX files use

a special end-of-line character and TOPS-20 files use two characters, carriage return and linefeed.

'These differences will also affect any files which rely on explicit file positions.

14.2 INPUT FUNCTIONS

The differences in "end-of-line" representations noted above also affect the functions READC,

SETSEPR, SETBRK, GETSEPR, and GETBRK. Moreover, VAX computers use an 8-bit

representation for characters rather than the 7-bit convention employed by the PDP-I Os, a fact which

could alter the way these functions are used.

14.3 OUTPUT FUNCTIONS

(PRINTCODE FUNCTION FROM TO) [Function]

prints the assembly code for a function. FUNCTION can be either an atom, in which case its

function definition is used, or a code object as returned by GETD. FROM specifies the first address to

be printed and TO the last. If FROM and TO are not supplied, the whole funcbtion is printed. If they are

included, the header section of the code is printed only the first time PRINTCODE is called on that

function. Here is an example (what the user types is underlined):

+ D E F I N E Q ((T E S T (X I (C A R X I
('TEST)
+COMPILE(TESTL
1 i s t i ng? . B o r e and' redef ine
output f i l e ? No

+ l P R I N T C O O E ' T E S T)
TEST
Header: Fntype=CEXPR nArgs=l

nFunctions=O nBindings=O nFreeVars=O nGlobals=O nConstants=-1
args:
0: (X I
the code:
4/ ENTRY: dv i v 0 CO =ENTRY
6/ push1 r t n i l OD 58
8/ push1 ?BIZ(reap) DD AC C
11/ movl @(r+sp)+, r e re t va l DO 9E 50
14/ jmp @?B4(r cb t) 17 BA 4 = E x i t
NIL

+(PRINTCODE ' T E S T 4 11)
4/ ENTRY: dv i v
6/ push1 r t n i l
8 / push1 ?B12(r+ap)
NIL

The print commands in Interlisp-VAX use two new variables for controlling output,

\STOPSCROLLMESSAGE and \ # DISPLAYLINES. The variable \ # DISPLAYLINES

represents the number of lines the system will print to the screen before pausing (default is 22), and

the variable \STOPSCROLLMESSAGE is the message printed when the pause occurs (default is a

bell). Output resumes when the user types any character. A user can silence this facility either by

setting \ # DISPLAYLINES to NIL or by typing ahead during the display.

PRINTNUM

There is a bug concerning the function PRINTNUM; see page 45.

14.6 SYSlN AND SYSOUT

Each copy of lnterlisp generated on the VAX takes up the maximum permitted amount of

swapping space. Thus, a standard partition of 17 megabytes can hold just two copies of lnterlisp at a

time, since the copies do not share any pages. Likewise, each SYSOUT performed on the VAX takes

up at least 4 megabytes of space with no pages shared, as SYSOUT files contain a copy of the entire

virtual memory.

The VAX memory is divided into three sections: a "high" segment, used as stack space; a

"low" segment, where the code is located prior to the first garbage collection; and a gap of gigabyte

size in between the two segments. Interlisp-VAX uses the high segment as the alternate space for the

copying garbage collector. However, the operating system does not support saving/restoring the

high segment in executable files. So if garbage collections have been invoked an odd number of

times, SYSOUT must perform garbage collection again before it can execute.

(SYSIN FILE '(ARG1, ARGP ...)) [Function]

works the same as SYSIN, but it can now take a list of arguments (ARGi, ARG~..) to FILE. The

arguments are the same type that a user can pass when invoking Interlisp at the exec level and are

accessed through the function GETENV (see page 27).

SECTION 18

THE COMPILER AND ASSEMBLER

18.1 THE COMPILER

The optimizing compiler used be Interlisp-VAX used by is somewhat slower than Interlisp-I 0's

compiler, but produces much better code. It is invoked in the same way as the compiler for

Interlisp-10. Since the instruction set is different from that of the PDP-10, source files from the 10

must be recompiled when brought over to Interlisp-VAX.

The compiler uses two passes. The first pass takes the S-expression function definition,

expands all macros, CLISP, records, and iterative statements, and generates an intermediate code.

The second pass is devoted to optimizing the code, which is then passed to the assembler where it is

converted to VAX-executable machine instructions.

The second pass in this release of Interlisp-VAX does only very simple optimizing. Future

versions will feature more complex optimization.

For more information on the compiler, see Conference Record of the 1980 LISP Conference [3].

Users should remember to use SYSTEMTYPE when executing code specific to a particular

system such as the VAX, TOPS-20, or TENEX. See Sec. 21.5, page 26 for details.

18.4 GLOBAL VARIABLES VS SHALLOW BINDING

Unlike Interlisp-10 which uses shallow binding of variable, Interlisp-VAX is a deep-bound

system, which means that Interlisp-VAX there is a difference between GLOBALVARS declarations and

SPECVARS declarations. Because of the nature of a deep-bound system, it takes less time to look up

GLOBALVARS than to find SPECVARS. And where RESETVARS and PROG are virtually identical

commands on the 10, they are different on the VAX; RESETVARS works only for GLOBALVARS, and

PROG handles only SPECVARS and LOCALVARS. Failure to use these declarations correctly can

lead to inefficiencies in programming.

18.7 COMPILER MACROS

To allow differential compilation of code to run on b ~ t h the PDP-10 and the VAX, the Interlisp-

VAX byte compiler provides several new macro properties and formats in addition to the standard

Interlisp-1 0 compiler macros.

-The byte compiler checks the set of macro properties in the order they appear on the list

COMPILERMACROPROPS and uses the first non-NIL value found. There are three principal

macro properties on this list: MACRO, BYTEMACRO, and VAXMACRO. BYTEMACRO and

VAXMACRO take priority over MACRO properties and are equivalent, differing only in that

BYTEMACROs are used by the compiler itself and VAXMACROs are for user code. The properties

work as such:

Use MACRO for macros that will affect both the PDP-10 and the
VAX.

Use 1 QMACRO for macros that are to be used only on the PDP-10.

Use VAXMACRO for macros that should be used only by the VAX.

Besides the regular substitution, computed, and LAMBDA-type macros available on the 10, the

Interlisp-VAX byte compiler offers three additional options:

T [Macro]

as a macro means that the call to this function should be compiled closed; this is a simple way

of turning off other macros. For example, if a function has a MACRO property which provides

necessary information for the PDP-10 but which should be ignored by the VAX, then giving the

function a BYTEMACRO of T would instruct the byte compiler to ignore the MACRO property.

(= . OTHERFUNCTION) [Macro]

tells the compiler to compile this function exactly as it would compile the function

. OTHERFUNCTION. On the VAX, for example, FRPLACAs are treated like RPLACAs by setting a

BYTEMACRO in FRPLACA's property list to (= .RPLACA).

(OPENLAMBDA ARGS BODY) [Macro]

is a cross between substitution-type and LAMBDA-type macros. The compiler attempts to

substitute ARGS for the formal arguments wherever this preserves the frequency and order of

evaluation that would have resulted from a LAMBDA expression. It also produces a LAMBDA binding

only for those instances that require one. For example, a VAXMACRO for ILESSP might be

(OPENLAMBDA (X Y) (IGREATERP Y X))

This would force a binding in a situation such as (ILESSP (ABC) (DEF)), because (ABC) must

be executed before (DEF). On the other hand, there would be no LAMBDA binding for (ILESSP

(ABC) lo), since the order OF execution does not matter.

PUNT

causes a compilation error.

CONSTANT

The following are "magic" numbers to TENEX, TOPS-20, and the PDP-10, and they may not

have the same effect i f included in Interlisp-VAX programs:

all octal constants
7 (bits per character)
36 (bits per word)
5 (characters per word)
127 (character mask)
128 (number of characters in character set)
512 (words per page)
2621 43 (or 7777770) (halfword mask)
2621 44 (or 1000000Q)

Magic numbers for the VAX include the following:

8 (bits per character)
16 (bits per word)
32 (bits per longword)
65536 (bytes per sector--allocation unit for memory management)

18.9 BLOCK COMPILING

Block compilation as performed in Interlisp-1 0 does not exist in Interlisp-VAX. When BCOMPL

is invoked, Interlisp-VAX compiles and keeps all functions distinct from one another rather than

compiling them into one indiscernible block. In the process, it "hides" the individual functions by

attaching a prefix of the form \BLOCKNAME/ to the name of each function in the "block." The "block"

is then entered and controlled in the same manner as any regular block on Interlisp-10.

BCOMPL is still slightly more efficient than TCOMPL since it treats all undeclared variables as

LOCALVARS.

Setting the variable MERGEBINDFLG at compile time allows the user to see LOCALVARS in a

compiled function while in BREAK mode without creating bindings for them.

18.1 0 LINKED FUNCTION CALLS

Linked function calls are not implemented in Interlisp-VAX, so be careful not to BREAK many

LISP system functions. A BREAK(READ), for example, could result in an infinite recursion. However,

REVERT can still be used to back up to a function even if breaking that function would normally be

unsafe.

18.1 2 THE BLOCK COMPILER

Because of the special way Interlisp-VAX block compiles, all BCOMPLed code, which normally

runs faster than TCOMPLed code in Interlisp-10, now executes at about the same speed on the VAX

as TCOMPLed code.

18.1 4 ASSEMBLE

The ASSEMBLE directive of Interlisp-10 is not currently implemented in Interlisp-VAX.

SECTION 20

MASTERSCOPE AND HELPSYS

20.2 HELPSYS

There is no HELPSYS in Interlisp-VAX. The current implementation of HELPSYS contains

machine-dependent code which has not been updated and requires a database which is extremely

out of date even for Interlisp-10.

SECTION 21

MISCELLANEOUS

21 . I MEASURING FUNCTIONS

(IDATE TIMEANDDATE) [Function]

performs similarly to Interlisp-I 0's IDATE. However, because the UNlX operating system uses

a different time standard than the PDP-10, the number that Interlisp-VAX's IDATE returns is not the

same number that would be calculated from the same date on the 10, so some Interlisp-10 programs

which use arithmetic on these integers may have to be altered. Also, TIMEANDDATE must be either NIL

(in which case the current time and date are passed) or the complete time and date in the form

"dd-MMM-yy hh:mm:ssW.

GDATE and DATE in Interlisp-VAX treat Interlisp-10's FORMATBITS argument as a no-op; its

inclusion (or lack thereof) does not affect these functions' output.

Although DISMISS does exist in Interlisp-VAX, it is not as precise as DISMISS in Interlisp-10

because the UNlX operating system's clock times in intervals of seconds rather than milliseconds.

DISMISS still takes milliseconds as its argument, but the time it actually pauses is rounded off to the

nearest second (to one second for any argument less than a second). Typing any character stops the

pause immediately.

The function GCTRAP does not exist.

(PAGEFAULTS WHICHKIND) [Function]

uses the UNlX system call vtimes to compute the page fault rate. WHICHKIND can be any of the

followingn:

MINOR Page faults incurred in simulation of reference bits.
NIL or MAJOR Real page fault rate.
SWAP The number of swaps which occured.

Under VMS all pagefaults are reported as MINOR.

The UNlX command control-Z temporarily suspends lnterfisp and places the user at the shell

level. The user can return to Interlisp by the UNIX shell command fg (foreground job). The job will

continue as if there had been no interruption (except that any typeahead will be flushed).

LOGOUT is the same as control-C in Interlisp-VAX; once either command been executed there

is no way to continue where the user left off. If this strategy for LOGOUT is found to be undesirable,

the user can redefine it via the SETINTERRUPT function (see page 33).

26

21.3 INTERFORK COMMUNICATION IN INTERLISP-10

Due to their dependence on PDP-10 hardware, the functions GETBLK and RELBLK do not

exist in Interlisp-VAX.

21.5 MISCELLANEOUS OPERATING SYSTEM FUNCTIONS

Again, because of the differences in the hardware and operating systems between the

PDP-10 and the VAX, many of the machine-dependent functions used by Interlisp-10 do not exist in

Interlisp-VAX. These include LOADAV, ERSTR, JSYS, HOSTNUMBER, and TENEX. FlLDlRand

USERNUMBER are also not currently part of Interlisp-VAX, but plans are under way to implement

them in the future.

(SYSTEMTY PE OPTION) [Function]

returns the type of system the program is currently running on. SYSTEMTYPE on Interlisp-

VAX returns "VAX". It is most useful in a SELECTQ situation such as this:

(SELECTQ (SYSTEMTYPE)
(VAX (. . .))
(TOPS-20 (. . .))
(D (* * *) ?
(* * .))

In addition, if OPTION is OSTYPE, it will return the type of operating system which exists on that

machine; in the case of Interlisp-VAX it would return UNIX, EUNICE, or VMS.

Four additional functions (CHDIR, DIRECTORYNAME, OSYSCALL, and GETENV) interact with

the UNIX operating system:

(CHDIR TODIR ATOMORSTRING) [Function]

is roughly equivalent to cd in the UNlX shell. It is the same as CNDlR in Interlisp-10.

ATOMORSTRING set to T prints the information as an atom; set to NIL, it returns the information as a

string..

(DIRECTORYNAME DIR ATOMORSTRING) [Function]

returns information about the user's directory. If DIR is T, it gives the user's current working

directory (same as pwd in the UNlX shell); if NIL, it returns the user's login directory. ATOMORSTRING

set to T prints the information as an atom; set to NIL, it returns the information as a string.

(OSYSCALL NUMBER ARG1 ARG2) [Function]

performs the UNlX system call represented by NUMBER according to the ARGX arguments.

(GETENV WHICHARG WHICHLIST) [Function]

is used to return information, either from the user's UNlX environment file or from arguments

the user may have typed in upon invoking LISP. WHICHLIST can be either T (meaning return one of the

arguments typed to run Interlisp) or NIL (meaning return information from the environment file).

WHICHARG can be one of the following:

NIL Return the number of arguments run with Interlisp or the number of
entries in the environment file.

a number Print the nth argument passed or the nth entry in the environment file.
a string Return the matching environment variable (only for WHICHLIST = NIL).

Examples:

(GETENV 'USER) prints a string corresponding to the shell environment variable $USER.

(GETENV 1 T) gets the first argument to Interlisp. If LISP was invoked by "lisp foo bar" it

returns "foo".

Interlisp-VAX uses two enviornment variables (see page 29):

SysLispInitFile The file where site's initialize is.
LisplnitFile The user's initialize file is.

DIRECTORIES

In accordance with UNlX convention, the variable DIRECTORIES will recognize ../ and ./ in -

directory path names.

A convenient way to load subfiles in a system-independent way is to use the following

construction in filecoms:

(F I L E S
(SYSLOAD COMPILED FROM VALUEOF
(F ILENAMEFIELD (I N P U T) 'D IRECTORY))
FOO BAR)

This construction causes compiled versions of FOO and BAR to be loaded from the same

directory that the current input file is being read from. .

28

21.6 JFN FUNCTIONS IN INTERLISP-1 0

Since JFNs are TENEX phenomena, none of the functions that refer to them (GTJFN, JFNS,

OPENF, OPNJFN, RLJFN) appear in Interlisp-VAX.

21.8 TYPESCRIPT FILES

There is a slight bug concerning the function DRIBBLE; see page 45.

21 .I 1 SETALINK AND SETCLINK

Neither SETALINK nor SETCLINK is implemented in Interlisp-VAX.

SECTION 22

THE PROGRAMMER'S ASSISTANT

22.1 2 GREETING AND USER PROFILES

GREET searches for INIT.LISP files in the following ways:

For the system greeting, GREET looks in the file specified by the environment variable

SysLisplnitFile. If the variable does not exist, it looks in /lisp/lnterlisp.

GREET searches for the personal greeting first in the file mentioned in the LisplnitFile

variable, then in either $HOME/INIT.LISP or $HOME/INIT.LSP.

The user's name, as set by his greeting, must match $USER exactly, even in case, to have first

name and initials set correctly.

SECTION 24

LISPUSERS PACKAGES

Most of the machine-independent packages that exist in Interlisp-10 also appear in Interlisp-

VAX. Features such as CJSYS and EDITA, which rely heavily on the TENEX or TOPS-20 operating

systems, have not been included. Some packages that do not appear in the current version of

Interlisp-VAX will be present in future editions. These are listed in Upcoming Attractions, page 50.

Listed below are some new Lispusers packages designed for Interlisp-VAX.

BSCAN

BSCAN allows users to monitor the look-up of free variables in any LISP sysout. It uses an

alternate set of free variable look-up functions which can record each free variable reference on the

FRAMESCAN property of the atom referenced. These functions are listed below.

(BSCANINIT)

sets up the monitor facility and initializes the counts.

(BSCANON)

starts recording the information.

[Function]

[Functiorr]

(BSCANOFF)

stops recording the information.

(BSCANCOLLECT)

stops monitoring and collects the accumulated data.

[Fun'ction]

[Function]

(BSCANPRINT OPTION OPTION ...) [Function]

does a BSCANCOLLECT if necessary and prints a summary of the information. OPTION can be

any of the following:

n Limits the printing to the first n items.
GLOBAL Prints only searches of global variables.
BOUND Shows collected information for bound variables.
AVERAGE Sorts by the average number of frames scanned.
CALLS Sorts by the number of calls.

The default is to print all information, sorted by the number of frames scanned.

PROFILE

PROFILE monitors the performance of functions within a LISP environment using the

UNlX PROFIL facility. It keeps track of the PC and makes note of the most heavily executed code.

(Start Profi li ng SCALE FNS OTHERS WHICHSPACE) [Function]

initializes the data base and starts the profiling.

Functions are monitored via a PC map divided into equal sections. A section counter is

incremented each time the PC enters a particular section. SCALE is the power of two to scale the PC

map by (e.g., 4 = 16 bytes per section).

FNS can be either a list of functions to monitor explicitly or T to monitor everything. OTHERS is an

integer representing how many other "most used" functions the PROFIL facility keeps track of.

WHICHSPACE selects which program space to watch:

VM Only the kernel C code.
FROZEN All of the kernel plus frozen space.
NIL Everything.

(PauseProfiling)

suspends profiling.

[Function]

(ResumeProfiling) [Function]

resumes suspended profiling. Because PauseProfiling and ResumeProfiling nest, multiple

pauses must be matched by the same number of resumes.

(StopPfof ~ ~ ~ ~ ~ A B O R T F L G) [Function]

stops the profiling facility. If ABORTFLG = anything but the word ABORT, UpdateProfilelnfo is

done automatically.

(UpdateProfilelnfo) [Function]

empties the profile array into the permanent data base. This must be done before results can

be printed.

(PrintProfilel nfo NAMEDONES? HOWMANY) [Function]

prints the accumulated data. NAMEDONES? can be any of the following:

NIL Prints the most used functions.
T Prints the data for the specifically monitored functions.
function name Prints the data for that function.

HOWMANY is the number of lines to print to the screen.

PrintProfilelnfo produces three columns: the name of the function, the number of times it was

called, and the percentage of the total time spent in that function. A (VM) after a function name

indicates a C function.

Although profiling is affected by garbage collection, the fields in

BEFORERECLAIMFORMS assure valid profile data even if a garbage collection occurs during

profiling.

To effectively profile code in the Interlisp kernel, symbols have to be found. The original

lnterlisp makesys contains symbols, and the package will give you the opportunity to use them. When

a sysout or makesys is made it is also possible to include symbols by linking the file to copy symbols

from into the current directory with name VM (all caps) when making a new sysout.

APPENDIX 1

CONTROL CHARACTERS

MISCELLANEOUS

control-C

is .the same as LOGOUT in Interlisp-VAX; it aborts Interlisp so that it cannot be reentered and

continued.

control-T

appends information available from the VTIMES system call onto the regular program status

information. 'The new printout ends with

where

nn is the user's percent of the CPU;
kk is the user's average working set size, in pages;
zz is the user's number of page faults per second of CPU time.

This information is supplied to control-T by the following function:

(CONTROLTV'TI MES VERBOSE) [Function]

is found in the variable CONTROL-TFORMS. Setting VERBOSE to T within

CONTROL-TFORMS causes control-T to also print out the user time, system time, and compute

time.

is the UNlX control-Z that temporarily stops a job. It is the only way to exit Interlisp-VAX and be

able to reenter it where one left off, using the fg command (equivalent to using control-C, then CONT

on Interlisp-lo).

Users can change the behavior of all interrupt characters with the functions GETINTERRUPT

and SET1 NTERRUPT.

(GETINTERRUPT ELEMENT) [Function]

returns the value or class of valid interrupt characters (see The Interlisp Virtual Machine

Specification ~41). ELEMENT can be any of the following:

T Returns a list of the codes of all valid interrupt characters.
NIL Returns the codes of all nonbasic interrupt characters.
code number Prints the name of the interrupt class it refers to.
class name Prints its character code number.

Below is a list of all the valid interrupt characters in Interlisp-VAX and their code numbers.

code #
0
2
3
4
5
8

14
15
16
17
19
20
26

class -
RUBOUT
BREAK
\QUIT
RESET
ERROR
HELP
CTRLUFLG
OUTPUTBUFFER
PRINTLEVEL
\QUOTE
\STOPOUTPUT
CONTROL-T
\PAUSE

(SETINTERRUPT CHAR CLASS) [Function]

allows the user to change the functions of interrupt characters. CHAR is the ASCII

representation of the control characters (1-26), and CLASS is one of the classes shown above. Only

control characters can become interrupt characters.

3. UNlX Operating System Dependencies

3.1. Csh and Ls
In order for users to be able to read the version numbers that LISP generates when creating

files, Interlisp-VAX includes slightly altered versions of csh and Is shell commands. See page 15 for

details.

3.2. Increasing the Maximum Segment Size in the UNlX
Operating System

To make Interlisp-VAX more useful, it may be necessary to increase the maximum size

permitted for each process in Berkeley UNIX. The procedure described below will raise the limits of

both the data segment size and the stack segment size of each process from -6Mbytes to

-1 1 Mbytes. These changes do not relax current limits on text segment size, however. .

The implementation of the changes is as follows:

Definitions of constants DMMIN and NDMAP in file /sys/h/dmap.h are changed.

#define NDMAP 24 / * Size of the swap area map (was 16). */
#define DMMIN 128 / * The initial block size in clicks (was 32). */

DMMIN is increased by 400 percent to enlarge the minimum allocation (for data and stack) per

process. NDMAP is increased by 50 percent to enlarge the total number of allocations per process.

Thus, for data or stack segments, a process is initially given a chunk of 128 (DMMIN) blocks. If .

necessary, a subsequent chunk of 256, then 51 2, and finally 1024 blocks is given. The last chunk size

of 1024 (DMMAX) block is repeatedly allocated 21 times, i f necessary, until 24 (NDMAP) allocations

are made in all.

Definitions of constants MAXDSIZ and MAXSSIZ in the file /sys/h/vmparam.h are changed.

#define MAXDSIZ (22*1024-128-SLOP) /* max data size (clicks) */
#define MAXSSlZ (22*1024-128-SLOP) /* max stack size (clicks) */

MAXDSIZ and MAXSSIZ 'are increased by 182 percent to enlarge the total allocation (for data

and stack) per process- This patch must be-made in conjunction with the above change to dmap.h.

MAXDSIZ and MAXSSIZ can each comprise 21 1024-block chunks, plus chunks of 128, 256,

and 51 2 blocks. The aggregate of the latter chunks is equivalent to 1024-1 28. Hence the maximums:

21 *1024+ (1024-128) = 22*1024-128.

The program max.c3 can cahulate appropriate values for MAXDSIZ and MAXSSlZ as a function

of DMMIN, DMMAX, NDMAP. Executing the program via

max dmmin dmmax ndmap

will provide definitions for the relevant constants. For example, using original values,

max 32 1024 16

yields

d e f i n e DMMIN 32
d e f i n e DMMAX 1024
d e f i n e NDMAP 16
d e f i n e MAXDSIZE (12256)-SLOP
d e f i n e MAXSSIZE (12256)-SLOP

Using the cited modifications,

max 128 1024 24

yields

d e f i n e DMMIN 128
d e f i n e DMMAX 1024
d e f i n e NDMAP 24
d e f i n e MAXDSIZE (22400)-SLOP
d e f i n e MAXSSIZE (22400)-SLOP

The following is the text of max.c.

main (a rgc , a r g v)
i n t a r g c ;
c h a r * * a r g v ;

{
i n t dmmin, dmmax, ndmap;
i n t t h i s s i z e , ' t o t a l s i z e = 0;
i n t p a r t ;

a rgc - - , argv++;
i f (a r g c ! = 3)

p r i n t f (" a . o u t DMMIN DMMAX NDMAP\nW) , e x i t (1) ;
dmmin = a t o i (a r g v C 0 1) ;

3~ornplirnents of Bill Joy of the University of California at Berkeley.

dmmax = a t o i (a r g v C 1 1) ;
ndmap = a t o i (a r g v C 2 1) ;
t h i s s i z e = dmmin;
f o r (p a r t = 0; p a r t < ndmap; p a r t + +) {

t o t a l s i z e += t h i s s i z e :
i f (t h i s s i z e < dmmax)

t h i s s i z e *= 2 ;
1
p r i n t f (" # d e f i n e DMMIN % d \ n W , dmmin):
p r i n t f (" # d e f i n e DMMAX % d \ n W , dmmax);
p r i n t f (" # d e f i n e NDMAP % d \ n W , ndmap);
p r i n t f (" # d e f i n e MAXDSIZE (%d)-SLOP\nW, t o t a l s i z e) ;
p r i n t f (" # d e f i n e MAXSSIZE (%d)-SLOP\nV, t o t a l s i z e) ;

1

4. VMS Operating System Dependencies

4.1. EUNICE
This chapter describes the idiosyhoacies of running Interlisp-VAX on a VMS system. To enable

Interlisp-VAX ro run under VMS, we are using a compatability package (called EUNICE) to translate

UNlX system calls into VMS system calls. EUNICE runs under VMS and allows the user to run

standard UNlX software on a VMS machine. Using the EUNICE package, Interlisp-VAX runs on a VMS

system while "thinking" it is operating on the UNlX system. For more information about EUNICE,

send mail to Unti~lis@SRI-Al or write the address below.

Charles Untulis
SRI International

333 Ravenswood Ave
Menlo Park CA 94025

(41 5)-326-6200

4.2. UNlX Environment Variables Under VMS
Interlisp needs two environment variables for the GREET function (see page 29). VMS users

can use the DEFINE command to create them. The following example shows the creation of the two

important environment variables:

$ d e f i n e " S y s L i s p I n i t F i l e " "/usr/ddyer/lisp/init/sysinit.lspw
$ d e f i n e " L i s p I n i t F i l e " " / u s r / d d y e r / l i s p / i n i t / i n i t . 1 s ' p w

4.3. VMS Resources
A VMS system has many quotas and parameters. Although Interlisp-VAX can use the default

values of most quotas, the values of PGFLQUOTA and ASTLM must be changed in order for Interlisp-

VAX to work.

Interlisp-VAX uses the sytem resouces's PGFLQUOTA to to determine how much memory to

use. I f PGFLQUOTA is too big (or if it is bigger than the file SYS$SYS'rEM:PAGEFILE.SYS), Interlisp

might hang the entire VMS system waiting of a free page that will never occur. This also rrright

happen if too many Interlisps are running on one system. A good PGFLQUOTA number is 30000 per

lnterlisp users. If the PGLFQUOTA is too small lnterlisp won't run, it will die trying to do a garbage

collection. If the PGFLQUOTA number is not changed by the system manager for each user of

Interlisp-VAX, lnterlisp might not run.

lnterlisp needs the AST queue limit (ASTLM) to be about 30. If the number is too small lnterlisp

may generated an I/O error when trying to read from a file.

4.4. VMS Files
The VMS version of lnterlisp writes a FIXED-length, 512-byte file. This is not a standard VMS

text file (which has variable length records with an implied <cr><lf> after each record). To convert

from one file form to the other use the program UNIXTOVMS or VMSTOUNIX. lnterlisp cannot do

random access on VMS text files.

(GETFILEINFO FILE ATTRIB SCRATCH) [Function]

tells what kind of VMS file you have if ATTRIB is FILETYPE. It will return the following:

"UNIX - FILE"
"TEXT - FILE"

I "VAR - FILE"
"TTY - FII-E"
"MBX - FII-E"
"DIRECTORY - FILE1'
"USER - HANDLED"
"RAW - QIO"

Standard UNIX file.
VMS text file.
Nontext VMS variable-length record file.
Teletype.
PIPE/MAILBOX.
Directory.
Special fileto be handled by the user.
Special file to be handled by VMS $QlOs.

(OPENFI LE FILE ACCESS RECOG BYTESIZE MACHINE.DEPENDENT.PARAMETERS) [Function]

writes a VMS text file instead of a UNIX-style file if the MACHINE.DEPENDENT.PARAMETER of

OPENFII-E is (VMSTEXT).

4.5. Configuring the Emulation of the UNIX File System
Interlisp-VAX filenames are specified in UNIX form (e.g. SYS:[FOO.BAR]FUM.COM must be

given as /SYS/FOO/BAR/FUM.COM). In order to do this, the program MAKEROOT must be run by

someone like you system manager. The following is an excerpt from instaling EUNICE. [2]

The information is supposed to guide VMS sites running Interlisp-VAX that don't run EUNICE. I t .

shows how to successfully run the program MAKEROOT and to create the file SYS$SYSTEM:ROOT.

If this file isn't created Interlisp-VAX will still be able to run but it will not be able to do file I/O.

The first step is to edit the file EUNICE.COM to describe the system in which lnterlisp will run.

EUNICE.COM should be run each time the VMS system is started (it should be called from

SYS$SYSTEM:[SYSMGR]STARTUP.COM). The first part of the file sets up the system-wide logical

names required to correctly convert local time to GMT (which is the time base used by UNIX). The

logical name GMTeDSP must translate to a string that specifies the displacement west of GMT. A .

displacement east of GMT can be had by starting the string with a "-". The file shipped with the

EUNICE distribution tape. has GMTcDSP set for 8 hours west of GMT (California). Modify this line (if

necessary) to reflect the displacement west of GMT for your site:4

$ de f inehys tem GMTtDSP "0 08:00:00.01' !West o f GMT

The next line in the file determines whether or not Daylight Savings Time is in effect. It should be

commented out (with a "!") when DST is not in effect. Thus, the logical name DSTcFLAG should not

exist when Daylight Savings Time is not in effect and should translate to the string "ON" when

Daylight Savings Time is in effect:

$ de f inehys tem DSTtFLAG ON !DST i s i n e f f e c t

The next set of logical names are used to mount directories at the root of the UNlX file system.

For every logical name of the form NAME -> DIRSPEC the directory specified by DIRSPEC is mounted

at the root of the UNlX file hierarchy as /name. There are two possible specifications for DIRSPEC. If

it just consists of a device name then the root directory of the device ([0,0]) is mounted. If it consists

of both a device and directory name then the specified directory (and, of course, its subdirectories) is

mounted. Given the following assignments:

Log ica l Name Trans1 a t i on

SYS
USR

DBAO :
DBA1:

The following UNlX to VMS name translations will occur:

U N I X F i l e Equivalent VMS F i l e

/sys DBAO: [0 ,0]000000 .D IR (the [0 , 0] d i r e c t o r y f i l e) =
/sys/a DBAO:[O,O]A.DIR (the [A] d i r ec to r y f i l e)
/sys/a/b.c DBAO:[A]B.C
/sys/a/b/c.d DBA0:CA.BJC.D
/usr D B A l : [0 , 0]
/usr/a/b.c DBAl : [A]B .C

In order to make the mount assignnlents disk drive independent (i.e. you can mount the pack on any

drive on the system and things will still work) we use the logical name translations for the various

packs to find out which drive they are on. By default, when a disk is rnounted a logical name of the

form DISK$packname is created by UMS. This name translates into the name of the device on which

the pack is mounted. The logical name SYS$SYSDISK always trarlslates to the device on which the

system pack is mounted. The commands in the EUNICE.COM file are an example of how to setup the

mounted file systems for a configuration that consists of 2 disk drives. One drive holds the system

4~astern time is Shrs west of GMT, Central time is 6hrs west of GMT, Mountain time is 7hrs west of GMT and Pacific time is
8hrs west of GMT.

'thus the world has to read access to [0,0]000000.DIR files on all disks.

disk, one drive contains the uses files, then it is desired to mount the system pack as /sys and the user

pack as /usr

$ ass ignhystem 'f$log["SYS$SYSDISK1') sys ! /sys
$ assignhystem 'f$log("DISK$USER") ' usr ! /US r

You may also include this line (which just makes /lisp be the same as /usr):

$ ass ignhystem ' f$ log("USRV)' 1 i sp ! / l i s p (same as us r)

Now execute the commands in EUNICE.COM with the "@!I command. Now edit the ROOT.TXT

file. It should have in it a list of dl the directories you want to have mounted at the root of the UNlX file

hierarchy (at least one entry for each disk you want Interlisp to be able to use). The sample file

supplied contains:

Run the program MAKEROOT and specify ROOT as the directory file and ROOT.TXT as 'the input file.

MAKEROOT should not declare any errors this time (i.e. it should run silently). If it does there are two

possible reasons. You may hawe incorrectly setup a logical name in the EUNICE.COM file causing

MAKEROOT to not be able to access the specified directory file or you may have specified a directory

on a device which is not current& mounted. It the problem is the former, go back to the EUNICE.COM

file and fix it. If the problem is ihe latter, it is a good idea to mount something on the device so that

MAKEROOT can generate an i-node for the specified directory (this is not absolutely necessary

though). Once you are happy with the results (usually meaning that there are no messages from

MAKEROOT) you must rename w copy the generated file ROOT to SYS$SYSTEM:

$ r makeroot
Name o f d i r e c t o r y f i l e : root
Inpu t f i l e : r o o t . t x t
$ copy ROOT. SYS$SYSTEM:ROOT

If you ever change your configuration you should be sure to update the EIJNICE.COM file and then

re-generate the root and device directories as described above (after editing the ROOT-TXT files).

For a three pack file system EUNI%E.COM would'look like:

$ assign/system 'f$log("SYS$SYSDISK1') sys ! /sys
$ ass ignhystem 'f$log("OISK$USERW)' usr ! /usr
$ ass ignhystem 'f$log("DISK$USERW)' usr2 1 /usr

and ROOT.TXT would look like:

In summary for every disk drive on your system have the proper assign statement in EIJNICE.COM and

a entry in ROOT.TXT.

The following are some recammended quotas for EUNICE users6. :

6 ~ e don't know if they are all actually needed for Interlisp-VAX yet.

P R I O 4
PRCLM 6 to 10
TQELM 30
B Y T L M 10000 to 30000
F I L L M 40 to 60.

5. Known bugs and deficiencies

The following of bugs are known to exist in this release of Interlisp-VAX and will be corrected in

future editions.

5.1. DRIBBLE
The function DRIBBLE works correctly in almost all modes. The one exception is that when

DRIBBLE is in the append mode, the DELETE key does not work (back up and delete) as it should.

5.2. OPENFILE
Interlisp-VAX successfully handles the problem posed by the UNlX operating system of not

allowing version numbers in file names (see page 15). However, Interlisp's method of handling the

situation introduces another slight problem.

Because of the importance of the character "/" in specifying directory paths, the UNlX system

does not allow that character in file or directory names. The ASCII representation for "/" is the

number 47. If an OPENFILE is performed on a file with version number 47, the current UNlX

operating system perceives it as the illegal character "/" and will not open the file.

5.3. PRINTNUM
Interlisp-VAX's PRINTNUM function merely prints the number without doing any rounding. It

will be corrected in future versions.

6. Fixed Bugs

The following is a partial list of bugs that have been fixed:

6.1. BOUNDP
BOUNDP of something that is not a LITATOM returns NIL instead of blowing up.

6.2. COPYBYTES
COPYBYTES now works when the output is the terminal.

6.3. DWIMIFY
(SET 'FOO 1 + 2) will dwimify.

6.4. PEEKC
PEECK and READC return a carriage return when the input is a lirte feed and the device is the

terminal.

6.5. UNPACK
UNPACK of a number now works.

6.6. MISCELLANEOUS
Also various CAR errors have been fixed.

7. Upcoming Attractions

Below is a summary of a few Lispusers packages, functions, etc., which Interlisp-VAX does not

currently support but which will be included in future versions.

7.1. Hash Package
The HASH package, along with the WHEREIS package that depends on it, are still under

development.

7.2. SUBSYS
A SUBSYS for Interlisp-VAX is currently under development and will be available at a later date.

7.3. PMAP
There is a PMAP package in Interlisp-VAX, but it is not yet documented.

7.4. EXEC
Interlisp-VAX's EXEC package, to be included in future editions, will employ standard

. UNIX shell commands instead of the TENEX or TOPS-20 commands described in the Interlisp-10

manual.

7.5. Improved Code
'The Interlisp-VAX compiler is presently undergoing changes to produce better, much more

optimized code and open code in future releases.

7.6. File Names
Should the UNIX operating system ever be changed to accommodate longer file names,

Interlisp-VAX will be modified to handle them.

7 .7 . File Versions
Currently, Interlisp-VAX allows version numbers only up to 127; later releases will handle larger

numbers. Also, in this version of Interlisp-VAX, the integer to which the environment variable

VERSIONS is set merely enables the modified Is to show the version numbers. In future editions this

integer will also denote the number of versions to keep for each file in the user's directory.

References

1. Bates, R. L., Dyer, D. and Koon~en, J. A. G. M., "Implementation of Interlisp on the VAX," in
Conference Record of the 7982 ACM Symposium on LlSP and Functional Programming,
pp. 81 -87, Pittsburgh, Pennsylvania, August 1982.

2. Kashtan, D. L., Installing EUNICE, Version 2.0 (DRAFT). SRI International

3. Masinter, L. and Deutsch, L. P., "Local optimization in a complier for stack-based LlSP
machines," in Proceedings of the 7980 LlSP Conference, pp. 223-230, Stanford, Calif., August
1980.

4. Moore, J S., The lnterlisp Virtual Machine Specification, Xerox Palo Alto Research Center
Report, Technical Report CSL 76-5, March 1979.

5. Teitelman, W., lnterlisp Reference Manual, Palo Alto, California, 1978.

Index

OSYSCALL 26

\ # DISPLAYLINES 18
\STOPSCROLLMESSAGE 18

ALLOCSTRING 8
APPLY 7
Arithmetic 14
ARRAY 8
ARRAYBEG 9
ARRAYBLOCK 4 , s
ARRAYP 4 ,9
ASSEMBLE 23
ASTLM 39

BCOMPL 22,23
BEFORERECLAIMFORMS 31
BlGP 9, 14 '

BLOCKRECORD 4 , s
BREAK 22,23
BSCAN 29
BSCANCOLLECT 30
BSCANlNlT 29
BSCANOFF 29
BSCANON 29
BSCANPRINT 30
BYTEMACRO 20

CAR 6
Case 15
CCODEP 4
Cd 26
COR 6
CHDlR 26
CJSYS 29
CNDlR 26
CODEP 9
Compiler 20,49
COMPILERMACROPROPS 20
Constants 22
Control-C 25,32
Control-T 32
CONTROL-TFORMS 32
Control-Z 25, 32
CONTROLTVTIMES 32
Csh 15,35

Data types 4, 9, 11

DATE 25
DECLAREDATATYPE 4
DIRECTORIES 27
DIRECTORYNAME 26
DISMISS 25
DOUBLEPOINTER 9
DRIBBLE 45

EDlTA 29
End-of-line 17
ERSTR 26
ELINICE 26
EVAL 7
EVALHOOK 7
EXEC package 49

Fg 25
FlLDlR 26
File names 15, 49
FILENAMETRANSLATIONS 16
FILEPOS 17
Files 15, 27
FlXP 4,9, 14
FLOATP 4,9
FORCEEXT 15
FULLPOINTER 4
FULLXPOINTER 4

Garbage collection 9
GCGAG 11
GCMESS 10
GCTRAP 25
GCTRAPFORMS 13
GDATE 25
GETBLK 26
GETBRK 17
GETENV 27
GETFILEINFO 40
GETINTERRUPT 33
GETSEPR 17
GLOBALVARS 20
GREET 29

HARRAY 9
HASH package 49
HELPSYS 24
HOSTNUMBER 26

IDATE 25
Integer 4,14
Interrupts 32

JFNs 28
JSYS 26

L-CASE 8
LAMBDA 21
Linked function calls 23
LisplnitFile 29
LlSTP 4.9

LITATOM 9
LOADAV 26
LOC 14
LOCALVARS 20,22
LOGOUT 25,32
Ls 15,35,50

MACRO 20
MAKEROOT 40
MAKESYS 11,12
MAXFS 11
Memory 9, 11, 12
MEMUSAGE 12
MERGEBINDFLG 22

New Functions
OSYSCALL 26
ALLOCSTRING 8
BSCANCOLLECT 30
BSCANlNlT 29
BSCANOFF 29
BSCANON 29
BSCANPRINT 30
CHDlR 26
CONTROLTVTIMES 32
DIRECTORYNAME 26
EVALHOOK 7
GETENV 27
MAXFS 11
MEMUSAGE 12
OPENLAMBDA 21
PauseProfiling 30
PRINTCODE 17
Print Profilelnfo 31
ResumeProfiling 31
Startprofiling 30
StopProfiling 31
TRANSLATEflLENAME 16
UpdateProfilelnfo 31

New Variables
\ # DISPLAYLINES 18
\STOPSCROLLMESSAGE 18
BEFORERECLAIMFORMS 31
COMPILERMACROPROPS 20
CONTROL-TFORMS 32
F1 LEN AMETRANSLATIONS 16
GCTRAPFORMS 13
MERGEBINDFLG 22
STACKOVERFLOWP 13

OLDCAR 6
OLDCDR 6
OPENFILE 40,45
OPENLAMBDA 21
Optimization 20

Page freezing 1 1
PAGEFAULTS 25
Pauseprof iling 30
PDL 4

PDP-I0 17, 20,21,22, 26
PGFLQUOTA 39
PMAP 49
PNAME 4
POINTER 4,9
PRINTCODE 17
PRINTNUM 45
PrintProfilelnfo 31
PROFIL 30
PROFILE 30
PROG 20
PUNT 21
Pwd 26

READC 17
RECLAIM 11
RELBLK 26
RESETVARS 20
Resu meprof iting 31
REVERT 23

Segment sizes 35
SETALlNK 28
SETBRK 17
SETCLINK 28
SETINTERRUPT 33
SETN 14
SETSEPR 17
SMALLP 4,9,14 .
SMALLPOSP 9
SPECVARS 20
SPELLFILE 17
STACKOVERFLOWP 13
STACKP 4,9
Startprofiling 30
StopProfiling 31
String 8
STRINGP 4,9
SUBSYS 49
Swapper 5
SYS$SYSTEM:[SYSMGR]STARTUP.COM 40
SYS$SYSTEM:ROOT 40
SYSlN 19
SysLisplnitFi te 29
SYSOUT 18
SYSTEMTYPE 20,26

TCOMPL 22,23
TENEX 16, 17,20, 22,26, 28,29, 49
TOPS-20 16, 17, 20,22,29,49
TRANSLATEFILENAME 16

U-CASE 8
UNtX 8,15, 16,25, 26,27,30,32,35,45,49
UNlX Shell Commands

cd 26
csh 35
fg 25 .
Is 35
pwd 26

UNIXTOVMS 40
UNPACKFILENAME 16
UpdateProfilelnfo 31
USERNUMBER 26

VAG 14
Variable binding 20
VAX 6, 14, 17, 18, 20, 21,22, 26
VAXMACRO 20
Version numbers 15, 50
VERSIONS 15,50
VMS 26
VMSPACE 4
VMSTOUNIX 40

WHEREIS package 49

XPOINTER 4

	Title
	Table of Contents
	1. Introduction
	2. Interlisp-10 Supplementary Manual
	Section 3: Data Types, Storage Allocation, Garbage Collection, and Overlays
	Section 5: Primitive Functions and Predicates
	Section 8: Function Definition and Evaluation
	Section 10: Atom String, Array, and Storage Manipulation
	Section 13: Numbers and Arithmetica Functions
	Section 14: Input/Output Functions
	Section 18: The Compiler and Assembler
	Section 20: MASTERSCOPE and HELPSYS
	Section 21: Miscellaneous
	Section 22: The Programmer's Assistant
	Appendix 1: Control Characters
	3. UNIX Operating System Dependencies
	4. VMS Operating System Dependencies
	5. Known bugs and deficiencies
	6. Fixed Bugs
	7. Upcoming Attractions
	References
	Index

