Automated programmering—The programmer’s assistant

by WARREN TEITELMAN*

Bolt, Beranek, & Newman
Cambridge, Massachusetts

INTRODUCTION

This paper describes a research effort and programming

system designed to facilitate the production of pro-
grams. Unlike automated programming, which focuses
on developing systems that write programs, automated
programmering involves developing systems which
automate (or at least greatly facilitate) those tasks that
a programmer performs other than writing programs:
e.g., repairing syntactical errors to get programs to run
in the first place, generating test cases, making tentative
changes, retesting, undoing changes, reconfiguring,
massive edits, et al., plus repairing and recovering from
mistakes made during the above. When the system in
which the programmer is operating is cooperative and
helpful with respect to these activities, the programmer
can devote more time and energy to the task of pro-
gramming itself, i.e., to conceptualizing, designing and
implementing. Consequently, he can be more ambi-
tious, and more productive.

BBN-LISP

The system we will describe here is embedded in
BBN-LISP. BBN-LISP, as a programming language,
is an implementation of LISP, a language designed for
list processing and symbolic manipulation.! BBN-LISP
as a programming system, is the product of, and vehicle
for, a research effort supported by ARPA for improving
the programmer’s environment.** The term “‘environ-
ment”’ is used to suggest such elusive and subjective
considerations as ease and level of interaction, forgiving-
ness of errors, human engincering, ete.

Much of BBN-LISP was designed specifically to
enable construction of the type of system described in
this paper. For ecxample, BBN-LISP includes such

* The author is currently at Xerox Palo Alto Research Center
3180 Porter Drive, Palo Alto, California 94304.
** Earlier work in this area is reported in Reference 2.

917

features as complete compatibility of compiled and
interpreted code, “visible” variable bindings and control
information, programmable error recovery procedures,
ete. Indeed, at this point the two systems, BBN-LISP
and the programmer’s assistant, have become so inter-
twined (and interdependent), that it is difficult, and
somewhat artificial, to distinguish between them. We
shall not attempt to do so in this paper, preferring
instead to present them as one integrated system.

BBN-LISP contains many facilities for assisting the
programmer in his non-programming activities. These
include a sophisticated structure editor which can either
be used intecractively or as a subroutine; a debugging
package for inserting conditional programmed inter-
rupts around or inside of specified procedures; a
“prettyprint”’ facility for producing structured sym-
bolic output; a program analysis package which pro-
duces a tree structured representation of the flow of
control between procedures, as well as a concordance
listing indicating for each procedure the procedures that
call it, the procedures that it calls, and the variables it
references, sets, and binds; ete.

Most, on-line programming systems contain similar
features. However, the essential difference between the
BBN-LISP system and other systems is embodied in
the philosophy that the user addresses the system
through an (active) intermediary agent, whose task it
is to collect and save information about what the user
and his programs are doing, and to utilize this informa-
tion to assist the user and his programs. This inter-
mediary is called the programmer’s assistant (or p.a.).

THE PROGRAMMER’S ASSISTANT

For most interactions with the BBN LISP system,
the programmer’s assistant is an invisible interface
between the user and LISP: the user types a request,
for example, specifying a function to be applied to a set
of arguments. The indicated operation is then per-

918 Irall Joint Computer Conference, 1972

formed, and a resulting value is printed. The system is
then ready for the next request. However, in addition,
in BBN-LISP, cach input typed by the user, and the
value of the corresponding operation, are automatically
stored by the p.a. on a global data structure called the
history list.

The history list contains information associated with
each of the individual “cvents” that have occurred in
the system, where an event corresponds to an individual
type-in operation. Associated with cach event is the
input that initiated it, the value it yielded, plus other
information such as side effects, messages printed by the
system or by user programs, information about any
errors that may have occurred during the execution of
the cvent, ete. As cach new event oceurs, the existing
events on the history list are aged, with the oldest event
“forgotten’” . *

The user can reference an event on the history list by
a pattern which is used for scarching the history list,
c.g., FLAG:—$ refers to the last event in which the
variable FLAG was changed by the user; by its relative
event number, c.g. -1 refers to the most recent event,
-2 the event before that, ete., or by an absolute cvent
number. Ior example, the user can retrieve an event in
order to REDO a test case after making some program
changes. Or, having typed a request that contains a
slight error, the user may clect to FIX it, rather than
retyping the request in its entirety. The USE command
provides a convenient way of specifying simultancous
substitutions for lexical units and/or character strings,
e.g., USE X FOR Y AND + TFOR *. This permits
after-the-fact parameterization of previous events.

The p.a. recognizes such requests as REDO, FIX|
and USE as being directed to ¢, not the LISP inter-
preter, and exccutes them directly. For example, when
given a REDO command, the p.a. retrieves the indi-
cated event, obtains the input from that cvent, and
treats it exactly as though the user had typed it in
dircctly. Similarly, the USE command directs the p.a.
to perform the indicated substitutions and process the
result exactly as though it had been typed in.

The p.a. currently rccognizes about 15 different
commands (and includes a facility enabling the user to
define additional ones). The p.a. also enables the user
to treat several events as a single unit, (c.g. REDO 47

"THRU 51), and to name an event or group of events,
c.g., NAME TEST -1 AND -2. All of these capabilities
allow, and in fact encourage, the user to construct
complex console operations out, of simpler ones in much
the same fashion as programs arc constructed, i.c.,
simpler operations are checked out first, and then
combined and rearranged into large ones. The important

* The storage used in its representation is then reusable.

point to note is that the user does not have to prepare in
advance for possible future (re-) usage of an event. He
can operate straightforwardly as in other systems, yet
the information saved by the p.a. enables him to
implement his “after-thoughts.”

[

UNDOING

Perhaps the most important after-thought operation
made possible by the p.a. is that of undoing the side-
effects of a particular event or events. In most systems,
if the user suspects that a disaster might result from a
particular operation, e.g., an untested program running
wild and chewing up a complex data structure, he would
prepare for this contingency by saving the state part of
or all of his environment before attempting the opera-
tion. If anything went wrong, he would then back up
and start over. However, saving/dumping operations
are usually expensive and time-consuming, especially
compared to a short computation, and are therefore not
performed that frequently. In addition, there is always
the casc where disaster strikes as a result of a supposedly
debugged or innocuous operation. For example, suppose
the user types

FOR X IN ELTS REMOVE PROPERTY
'MORPH FROM X

which removes the property MORPH from every mem-
ber of the list ELTS, and then realizes that he meant to
remove this property from the members of the list
ELEMENTS instcad, and has thus destroyed some
valuable information.

Such ‘““accidents” happen all too often in typical
console sessions, and result in the user’s either having
to spend a great deal of effort in reconstructing the
inadvertently destroyed information, or alternatively
in returning to the point of his last back-up, and then
repeating all useful work performed in the interim.
(Instead, using the p.a., the user can recover by simply
typing UNDQ, and then perform the correct operation
by typing USE ELEMENTS I'OR ELTS.)

The existence of UNDO frees the user from worrying
about such oversights. He can be relaxed and confident
in his console operations, yet still work rapidly. He can
even experiment with various program and data con-
figurations, without neccessarily thinking through all
the implications in advance. One might argue that this
would promote sloppy working habits. However, the
same argument can be, and has been, leveled against
interactive systems in general. In fact, freeing the user

from such details as having to anticipate all of the

conscquences of an(experimental) change usually re-

Automated Programmering 919

sults in his being able to pay more attention to the
conceptual difficulties of the problem he is trying to
solve. ‘

Another advantage of undoing as it is implemented
in the programmer’s assistant is that it enables events
to be undone selectively. Thus, in the above example, if
the user had performed a number of useful modifica-
tions to his programs and data structures before noticing
his mistake, he would not have to return to the environ-
ment extant when he originally typed FOR X IN ELTS
REMOVE PROPERTY "MORPH FROM X, in order
to UNDO that event, 1.c., he could UNDO this event
without UNDOing the intervening events.* This means
that even if we eliminated efficiency considerations and
assumed the existence of a system where saving the
entire state of the user’s environment required insig-
nificant resources and was automatically performed
before every event, therc would still be an advantage to
having an undo capability such as the one described
here.

Finally, since the operation of undoing an event itself
produces side effects, it too is undoable. The user can
often take advantage of this fact, and employ strategies
that use UNDO for desired operation reversals, not
simply as a means of recovery in case of trouble. For
example, suppose the user wishes to interrogate a
complex data structure in cach of two states while
successively modifying his programs. He can interrogate
the data structure, change it, interrogate it again, then
undo the changes, modify his programs, and then repeat
the process using successive UNDOs to flip back and
forth between the two states of the data structure.

IMPLEMENTATION OF UNDO**

The UNDO capability of the programmer’s assistant
is implemented by making each function that is to be
undoable save on the history list enough information to
enable reversal of its side effects. For example, when a
list node is about to be changed, it and its original
contents are saved; when a variable is reset, its binding
(i.c., position on the stack) and its current value arc
saved. For cach primitive operation that involves side
effects, there are two scparate functions, one which
always saves this information, 1.c., is always undoable,
and one which docs not.

Although the overhead for saving undo information
is small, the user may cleet to make a particular opera-
tion not be undoable if the cumulative effect of saving

* Of course, he could UNDOQ all of the intervening events as
well, e.g., by typing UNDO THRU ELTS.

** See Reference 1, pp. 22.39-43, for a more complete description
of undoing.

the undo information seriously degrades the overall
performance of a program because the operation in
question is répeated so often. The user, by his choice of
funetion, specifics which operations are undoable. In
some sense, the user’s choice of function acts as a
declaration about; frequency of use versus nced for
undoing. For those cases where the user does not want
certain functions undoable once his program becomes
operational, but does wish to be able to undo while
debugging, the p.a. provides a facility called TEST-
MODE. When in TESTMODE, the undoable version
of each function is exccuted, regardless of whether the
user’s program specifically called that version or not.

Tinally, all operations involving side effcets that are
typed-tn by the user are automatically made undoable
by the p.a. by substituting the corresponding undoable
function name(s) in the expression before exccution.
This procedure is feasible because operations that are
typed-in rarely involve iterations or lengthy computa-
tions directly, nor is efficiency usually important. How-
ever, as a precaution, if an event oceurs during which
more than a user-specified number of picees of undo
information are saved, the p.a. interrupts the operation
to ask the uscr if he wants to continue having undo
information saved.

AUTOMATIC ERROR CORRECTION—THE
DWIM FACILITY

The previous discussion has deseribed ways in which
the programmer’s assistant is explicitly invoked by the
user. The programmer’s assistant is also automatically
invoked by the system when certain error conditions
arc encountered. A surprisingly large percentage of
these errors, especially those oceurring in type-in, are of
the type that can be corrected without any knowledge
about the purpose of the program or opecration in
question, e.g., misspellings, certain kinds of syntax
errors, cte. The p.a. attempts to correct these errors,
using as a guide both the context at the time of the
error, and information gathered from monitoring the
user’s requests. This form of emplicit assistance provided
by the programmer’s assistant is called the DWIM
{(Do-What-I-Mcan) capability.

Tor example, suppose the user defines a function for
computing N factoral by typing

DEFIN[((FACT (N) II' N=0 THEN 1 ELSE
NN*(FACT N-—-1)*].

When this input is exccuted, an error occurs because
DEFIN is not the name of a function. However, DWIM

*In BBN-LISP] automatically supplies enough right paren-
theses to match back to the last {.

920 Fall Joint Computer Conference, 1972

notes that DEFIN is very close to DEFINE, which is
a likely candidate in this context. Sinee the error oc-
curred in type-in, DWIM proceeds on this assumption,
types = DEFINE to inform the user of its action, makes
the correction and carries out the request. Similarly if
the user then types FATC (3) to test out his function,
DWIM would correct FATC to FACT.

When the funection FACT is called, the evaluation of
NN in NN*(FACT N-—1) causes an error. Here,
DWIM is able to guess that NN probably means N by
using the contextual information that N is the name of

the argument to the function IFACT in which the error.

occurred. Since this correction involves a user program,
DWIM proceeds more cautiously than for corrections
to user type-in: it informs the user of the correction it is
about to make by typing NN(IN FACT)—N ? and then
waits for approval. If the user types Y (for YES), or
simply does not respond within a (user) specified time
interval (for example, if the user has started the com-
putation and left the room), DWIM makes the correc-
tion and continues the computation, exactly as though
the function had originally been correct, i.e., no informa-
tion is lost as a result of the error.

If the user types N (for NO), the situation is the same
as when DWIM is not able to make a correction (that
it is reasonably confident of). In this case, an. error
occurs, following which the system goes into a sus-
pended state called a “break’ from which the user can
repair the problem himself and continue the computa-
tion. Note that in neither casc is any information or
partial results lost.

DWIM also fixes other mistakes besides misspellings,
e.g., typing eight for “(** or nine for ”)”’ (because of
failure to hit the shift key). For example, if the user had
defined FACT as '

(IF N=0 THEN 1 ELSE NN*8FACT N-1),

DWIM would have been able to infer the correct
definition.

DWIM is also used to correct other types of condi-
tions not considered errors, but nevertheless obviously
not what the user meant. For example, if the user calls
the editor on a function that is not defined, rather than
~ gencrating an crror, the editor invokes the spelling
corrector to try to find what function the user meant,
giving DWIM as possible candidates a list of user
defined functions. Similarly, the spelling corrector is
called to correct misspelled edit commands, p.a. com-
mands, names of files, etc. The spelling corrector can
also be called by user programs.

As mentioned above, DWIM also uses information
gathered by monitoring user requests. This is accom-

TABLE I—Statistics on Usage

edit p.a. spelling
exec com- undo com- correc-
Sessions inputs mands saves mands tions

1. 1422 1089 3418 87 17
2. 454 791 782 44 28
3. 360 650 680 33 28
4. 1233 3149 2430 184 64
5. 302 24 538 8 0
6. 109 55 677 6 1
7. 1371 2178 2138 95 32
8. 400 311 1441 19 57
9. 294 604 653 7 30
10. 102 44 1044 1 4
11. 378 52 1818 2 2

plished by having the p.a., for each user request,
“notice” the functions and variables being used, and
add them to appropriate spelling lists, which are then
used for comparison with (potentially) misspelled units.
This is how DWIM “knew” that 'ACT was the name
of a function; and was therefore able to correct FATC
to FACT.

As a result of knowing the names of user functions
and variables (as well as the names of the most fre-
quently used system functions and variables), DWIM
seldom fails to correct a spelling error the user feels it
should have. And, since DWIM knows about common
typing errors, e.g., transpositions, doubled characters,
shift mistakes, etc.,* DWIM almost never mistakenly
corrects an crror. However, if DWIM did make a mis-
take, the user could simply interrupt or abort the
computation, UNDO the correction (all DWIM correc-
tions are undoable), and repair the problem himself.
Since an error had occurred, the user would have had to
intervene anyway, so that DWIM’s unsuccessful
attempt at correction did not result in extra work for
him. |

STATISTICS OF USE

While monitoring user requests, the programmer’s
assistant keeps statistics about utilization of its various
capabilitics. Table I contains 5 statistics from 11
different sessions, where each corresponds to several

* The spelling corrector also can be instructed as to specific user
misspelling habits. For example, a fast typist is more apt to make
transposition errors than a hunt-and-peck typist, so that DWIM
is more conservative about transposition errors with the latter.
See Reference 1, pp. 17.20-22 for complete description of spelling
corrections. .

Automated Programmering 921

TABLE II—Further Statistics

exec inputs 3445
undo saves 10394
changes undone 468
calls to editor 387
edit commands . 3027
edit undo saves 1669
edit changes undone 178
p.a. commands 360
spelling corrections 74
calls to spelling corrector 1108*
of words compared 5636**
time in spelling corrector (in seconds) 80.2
CPU time (hr:min:sec) 1:49:59
console time 21:36:48
time in editor 5:23:53

* An “error’” may result in several calls to the spelling corrector,
e.g., the word might be a misspelling of a break command, of a
p.a. command, or of a function name, each of which entails a
separate call.

** This number is the actual number of words considered as
possible respellings. Note that for each call to the spelling cor-
rector, on the average only five words were considered, although
the spelling lists are typically 20 to 50 words long. This number
is so low because frequently misspelled words are moved to the
front of the spelling list, and because words are not considered
that are “obviously” too long or too short, e.g., neither AND
nor PRETTYPRINT would be considered as possible respellings
of DEFIN.

individual sessions at the console, following cach of
which the user saved the state of his environment, and
then resumed at the next console session. These ses-
sions are from cight different users at several ARPA
sites. It is important to note that with one exception
(the author) the users did not know that statistics on
their session would be scen by anyone, or, in most cases,
that the p.a. gathered such statistics at all.

The five statistics reported here are the number of:

1. requests to executive, i.e., in LISP terms, inputs
to evalquote or to a break;

2. requests to editor, i.c., number of editing com-
mands typed in by uscr;

3. units of undo information saved by the p.a., e.g.,
changing a list node (in LISP terms, a single
rplaca or rplacd) corresponds to one unit of undo
information;

4. p.a. commands, ¢.g., REDO, USE, UNDO, etc.;

5. spelling corrections.

After these statistics were gathered, more extensive

measurements were added to the p.a. These are shown

for an extended session with one user (the author) in
Table II below.

CONCLUSION

We see the current form of the programmer’s assistant
as a first step in a sequence of progressively more
intelligent, and therefore more helpful, intermediary
agents. By attacking the problem of representing the
intent behind a user request, and incorporating such
information in the p.a., we hope to enable the user to be
less specifie, and the p.a. to draw inferences and take
more initiative.

However, even in its present relatively simplistic
form, in addition to making life a lot more pleasant for
uscrs, the p.a. has had a suprising synergistic effect on
user productivity that scems to be related to the over-
head that is involved when people have to swilch tasks or
levels. For example, when a user types a request which
contains a misspelling, having to retype it is a minor
annoyance (depending, of course, on the amount of
typing required and the user’s typing skill). However,
if the user has mentally already performed that task, and
is thinking ahead several steps to what he wants to do
next, then having to go back and retype the operation
represents a disruption of his thought processes, in
addition to being a clerical annoyance. The disruption
is-even more severe when the user must also repair the
damage caused by a faulty operation (instead of being
able to simply UNDO it).

The p.a. acts to minimize these distractions and
diversions, and thereby, as Bobrow putsit, «“. .. greatly
facilitates construction of complex programs because it
allows the user to remain thinking about his program
operation at a rclatively high level without having to
descend into manipulation of details.””? We feel that
similar capabilitics should be built into low level
debugging packages such as DDT, the executive lan-
guage of time sharing systems, ete., as well as other
“high-level” programming languages, for they provide
the user with a significant mental mechanical advantage
in attacking problems.

REFERENCES

1 W TEITELMAN D G BOBROW A K HARTLEY
D I. MURPHY
BBN-LISP TENEX reference manual
BBN Report July 1971

2 W TEITELMAN
Toward a programming laboratory
Proceedings of First International Joint Conference on
Artificial Intelligence
Washington May 1969

3 D G BOBROW
Requirements for advanced programming systems for list
processing (to be published July 1972 CACM)

	00.tif
	001.tif
	002.tif
	003.tif
	004.tif

