
Automated programmering-The programmer's assistant

by WARREN TEITELMAN*

Bolt, Beranek, R. Newman
Cambridge, Massachusetts

INTRODUCTION

This paprr dcscribrs a research effort and programming
system dcsigncd to facilitate the production of pro-
grams. Unlike automatod prog~amnzing, which focuses
on developing systems that write programs, automated
programmering involves developing systems which
automate (or a t least greatly facilitat,~) t,hose tasks that
a programmer pcrforms othcr than writing programs:
e.g., repairing syntactical crrors to get programs to run
in the first place, generating test cases, making tentative
changcs, retrsting, undoing changcs, reconfiguring,
massive edits, et al., plus repairing and recovering from
mistakes made during the above. When the system in
which the programmer is operating is cooperative and
helpful with respect to these activities, the programmer
can devote more t,ime and energy to the task of pro-
gramming it,self, i.c., to concotualizing, designing and
implementing. Conscquently, he can be more ambi-
tious, and more productive.

BBN-LISP

The system we will describe here is en~bcdded in
BBN-LISP. BBN-LISP, as a programming la?lguage,
is an implemcnt8ation of LISP, a language designed for
list processing and symbolic rnanipu1ation.l BBN-LISP
as a programming system, is the product of, and vehicle
for, a research effort supported by AItPA for improving
the programmer's environment,.** The term "environ-
ment" is used to suggest such elusive and subjective

features as complete compatibility of compiled and
interpreted code, "visible" variable bindings and control
information, programmable error recovery procedures,
etc. Indeed, a t this point the two systems, BBN-LISP
and the programmcr's assistant, have become so inter-
twined (and interdependent), that i t is difficult, and
somewhat artificial, to distinguish between them. We
shall not attempt to do so in this paper, preferring
instead to present them as one integrated system.

BBN-LISP contairls many facilities for assisting the
programmer in his non-programming activities. These
include a sophisticated structure editor which can either
be used interactively or as a subroutine; a debugging
package for inserting conditional programmed inter-
rupts around or inside of specified procedures; a
"prettyprint" facility for producing structured sym-
bolic output; a program analysis package which pro-
duces a tree structured representation of the flow of
control between procedures, as \\re11 as a concordance
listing indicating for each procedure the procedures that
call .it, the procedures that i t calls, and the variables it
references, sets, and binds; etc.

Most on-line programming systems contain similar
features. However, the essential difference between the
BBN-LISI' system and other systems is embodied in
the philosophy that the user addresses the system
through an (active) intermediary agent, whose task i t
is to collect and save information about what the user
and his programs are doing, and to utilize this informa-
tion to assist the user and his programs. This inter-
mediary is called the programmer's assistant (or p.a.).

considerations as ease and level of int,oraction, forgiving-
ness of errors, lluman cmgincering, etc. T H E PItOGRAAIhlEIt'S ASSISTANT

Rluch of BBN-LISP was designcd specifically to
enable construction of the type of system described in
this paper. For example, BBN-LISP includes such For most int~ract~ions with the BBN LISP system,

the programmer's assistant is an invisible interface

* The author is currently a t Xerox Palo Alto Research Center between the user and LISP: the user types a request,

3180 Porter Drive, Palo Alto, California 94304. for example, specifying a function to be applied to a set
** Earlier work in this area is reported in Reference 2. of arguments. The indicated operation is then per-

918 k'all Joint Computer Conference, 1972

formed, and a resulting value is printed. The system is
thcn rc:~dy for the next rcqurst. Hoivclvcr, in addition,
in 1313N-IJISI', each input typed hy the uscr, and the
value of the corresponding opcrat ion, are auton~:tt ically
storcd by the p a . on a global data structure called the
history list.

The histlory list contains information associated with
cach of the i~ndivid~ial "cvc.ntsfl that have occurred in
the syst,cm, where an cvcnt corresponds to an individual
type-in operation. Associatcd with each cvcnt is t,hc
input that init,iatod it , thc value it yicldcd, plus othcr
information such :is side of f~c ts , mc1ssagcs print cd by the
system or by usor programs, information about any
errors that may have occurrcd during thc execution of
the cvent,, ctc. As cach new cvcnt occurs, the existling
events on the history list are aged, with the oldest event
"forgotten".*

The user can reference an evcnt on the history list by
a pattern which is used for sc~arching the history list],
c.g., l;LAG:c$ refers to the last cvcnt in which the
variablc I'LAC ~v:xs changed by t,hc uscr; by its rclat,ivc
cvcnt number, c.g. -1 rofcrs to tho most rcccnt evcnt,
-2 the cvcnt before that, ctc., or by an absolute cvcnt
numbcr. ITor examplc, thc? uscr (;:in rct,ricvo an cvcnt in
ordcr to l tEDO a test case after making some program
changes. Or, having t y p ~ d a rcqucst that contains a
slight error, the uscr may elcct to F I X it, rather than
retyping the rcquest in its entirety. The USE command
provides a convenient way of specifying simllltancous
substitutions for lexical units and/or character strings,
e.g., USE X FOR Y AND + F01X *. This permits
after-the-fact paramctcrizat ion of previous ovents.

The p a . recognizes such rcqucsts as IXISDO, FIX,
and USE as bcing directed to i t , not the LISP inter-
preter, and cxccutcs them dircctly. For cxamplc, when
given a ItEDO command, the p.a. rctricvrs the indi-
catled cvent, obtains t,hc input from that event,, and
trclats i t exactly as though the uscr had typed it in
directly. Similarly, t,hc USE command directs thc p.a.
to pcrform the indicated substitutions and process the
result exactly as though it had been t,ypcd in.

Tho p.a. currctntly rc.cognixcs about, 15 diffcrcnt
conninnxlds (:~ncl inc~ludc~s :L f:wilit y t3n;d)ling tho 1isc.r t,o
define addit,ion:tl 0nt.s). Thc p a . also cnak)lcs the usor
to t,rc:it, several cvc1nts as a singlc unit, ((3.g. ItEIlO 47
THlIU 51), and to nnmo :Ln chvcnt or group of cvcnts,
cl.g., NAhl I< l'l'ISrr -1 AND -2. All of thcsc c:~p:~l)ilit i(\s
:~llo\v, and in f:~ct, cncourago, tht1 user to constructl
complcx consolc opcr:ttions out, of simplcr ones in much
the same fashion as programs arc const,ruct,c~d, i.e.,
simpl(.r operations :~r(> (~ h ~ ~ k c d out first,, and thcn
combined and roarrangod into largo oncls. Thc important

* The storage used in its representation is then reusnble.

point to note is that the uscr docs not have to preparc: in
advance for possiblc future (re-) usage of an evcnt. He
can opcratc straightforwardly as in other systems, yet
t,he information savcd by t,he p.a. enables him to
implement his "after-thoughts."

ii

UNDOING

I'crhaps the most import ant after-thought ~pera t~ ion
m:~de possible by t,h(t p a . is that of u??do i?~q the side-
offcct,s of a particular cvcnt or cvcnts. In most systems,
if the usor suspc3cts that, a disaster might result from a
part,icular operation, e.g., an untested program running
wild and chcwing up a complex data structure, he would
prepare for this contingency by saving the state part of
or all of his cnvironmcnt before attempting the opera-
tion. If anything went wrong, he would then hack up
and start over. However, saving/dumping operations
are usually expensive and time-consuming, cspccially
comparod to a short computation, and arc! therefore not
performed thttt frcqucnt,ly. In addition, there is always
the case where disaster st,rikcs :IS a result of a supposedly
dcbuggcd or innocuous operation. For example, suppose
the user types

which removes t,hc propertly RIORPH from cvcry mcm-
bcr of t,hc list ELTS, and then roalizcs that he mc~ant to
remove t,his property from tjhc men~bcrs of the list
ELEAIENTS instcad, and has thus dcstroyed some

CL ion. valuable inform. t '
Such "accidents" happen all too often in typical

console sessions, and result in the user's either having
to spend a great, deal of offort in reconst,ructing the
inadvcrtcnt,ly dcstroycd information, or alternatively
in returning to the point of his last back-up, and thcn
rcpc3ating all usoful work performed in the interim.
(Instlead, using the p.a., the user can rclcover by simply
typing UNDO, :m i thcn perform tho correct operat,ion
by typing USIC I<III~~ilII~N?'S 1'01t IXLTS.)

The cxistoncr of UNI>O frecs thc usc1r from worrying
about such ovc.rsigllts. Hc can bc rc1:txed and confident
in his console ol)or;ttions, yct, still work rapidly. Hc can
cvcn ospc~rirnt~nt wit,h various program and data con-
figurations, wit llout, nccc~ssarily t,hinking through all
thc implications i r b advallce. Onc might argue that this
would prornoto sloppy working habits. However, thc
same :~rgumcnt c:Ln be, and has l)c.cm, lcvolcc-1 against
intchr:tct,ivo systc1ins in gcnc~ral. In fact,, frciciing the uscr
from such dotails as having to anticipate all of the
conscqucnccs of an ~(ex1)crimcntal) change usually re-

sults in his bcing :hlc tJo p:~y more attention to tho
conceptual difficulties of tho problem he is trying to
solve.

Another advantage of undoing as i t is implcn~cntcd
in the programmer's ass i~ t~ant is that i t enables events
to be undone selectively. Thus, in the above clxamplc, if
the uscr had performcd a numbcr of useful modifica-
tions to his programs and d:tta structures bcforc not'icing
his mistake, hc would not have t,o rct,urn t,o the rnviron-
mcnt extant when he originally t,ypcd ITOR X I N ELTS
ItEhIOVE I'ROl'EItTY 'RZOltl'H 1~'ItOAI X, in ordcr
t,o UNDO that, event, i.c., hc could UNDO this ctvcnt
without UNDOing t,hc intcrvcning events.* This mcans
that even if we climinatcd cficiency considerations and
assumed the existence of a system where saving t,hc
entire state of the user's environment required insig-
nificant resources and was automatically performed
before every event, there would still be an advantage to
having an undo capability such as the one described
here.

Finally, since the opcrat,ion of undoing an event itself
produces side effects, i t too is undoablc. The user can
oftcn tJakc advantage of this fact, and employ stratcgics
that use UNDO for dcsircci opc,rat,ion rovcrsals, not
simply as a mcans of recovery in case of trouble. For
example, suppose the uscr wishes to interrogate a
complex data structure in cach of two states while
successivcly modifying his programs. He can interrogate
the data st,ructurc, chnngt? it, intcrrogatc i t again, thcn
undo the changes, modify his programs, and thcn repeat
the process using succcssivc UNDOs to flip back and
forth between the two states of the data structlure.

IRIPLEAIENTATION 017 UNDO**

The UNDO capability of the progrnmmcr's assist,ant
is implemented by making cach function that is to be
undoablc save on the history list enough information to
enable rclvcrsal of its side ctffccts. For example, whcn :I

list node is about to be changctd, i t and its original
contents are saved; whcn a v:triablc is reset, its binding
(i . ~ . , positlion on thc stack) t~nd its currclnt valuc arc
saved. For cach primitive opcration that involves sidc
effects, thclre are two scparatc functions, one which
always savcs t,his informat,ion, i.c., is always undoablc,
anti one which tlocs not,.

Although the ovcrhcad for saving undo information
is small, the usor may rlcct to nmkc a pkzrt,icul:ir opcra-
t,ion not be undoablc if the cumulative c:ffect of saving

*Of course, he could IJNIIO a11 of thc intervening events as
well, e.g., by typing UNIIO TI11tU EI,'L'S.
** See Reference 1, pp. 22.39-43, for a more complete description
of undoing.

the undo inform:ttion seriously degrades the overall
performance of n program bccrtuso the opcration in
question is repcat,cd so often. Thc uscr, by his choice of
function, specifics which operations arc undoable. In
some sclnsc, the user's choice of function acts as a
declaration about$, frcqucncy of use versus need for
undoing. For those cascs where the uscr docs not, want
certain functions undoablo once his program becomes
operational, but docs wish to bc able to undo while
debugging, thc p.a. providcs a facility callcd TEST-
RlODE. Whcn in TI<STAIODE, the undonblc version
of cach function is exccutcd, rcgardlcss of whether thc
user's program specifically called that version or not.

Finally, all operations involving sidc effects that are
typed-in by the uscr :ire automat,ically made undoable
by the p.a. by substituting the corresponding undoable
function name(s) in the expression before execution.
This proccdurc is feasiblc because operations that are
typed-in rarely involve iterations or lengthy computa-
tions directly, nor is efficiency usually important. How-
ever, as a precaution, if an event occurs during which
more t,hm a uscr-spccifiod number of pieces of undo
information thre savcd, the p a . interrupts thc opcration
to ask t,he user if he wants to continue having undo
information saved.

AUTOAZATIC EItItOR COltltECTION-THE
DWIM I'ACILITY

Thc previous discussion has described ways in which
the programmer's assistant is explicilly invokcd by the
user. The programmer's assistant is also automatically
invokcd by t,he system whcn ccrtain error conditions
are encountered. A surprisingly largo percentage of
these errors, especi:~lly those occurring in type-in, are of
the type that can bc corrected without any knowledge
about t,he purpose of the program or opcration in
quest,ion, c.g., misspellings, certain kinds of syntax
errors, ctc. The p.a. attempts to correct these errors,
using as a guido both the context a t the timc of the
error, and inform:tt,ion gathcrcd from monitoring the
user's requests. This form of implicit ttssist~ancc provided
by the progr:~mmer's assistant is called the DWIM
(Do-Whatl-I-Ifcan) capability.

For examplc, suppose the uscr defines a function for
computing N fact,oral by typing

DELTIN[((IcACT (N) I F N = 0 THEN 1 ELSE
NN*(klACT N-l)"].

Whon this input is cxccutcd, an error occurs becausc
DElCIN is not thc namc of a function. However, DWIM

* In IJBN-LISP] autom~tically supplies enough right paren-
theses to match hack to the last [.

920 Fall Joint Computer Conference, 1972

notes that DElCIN is very closc to DEFINE, which is
a likely candidate in this contcst. Since the error oc-
curred in t,ype-in, DWI ;\I proceeds on this assumption,
types =DEFINE to inform the user of its act,ion, makes
the correction and carries out the request. Similarly if
the user then types FATC (3) to test out his function,
DWIM would correct FATC to FACT.

When the function FACT is called, the evaluation of
N N in NN*(ITACT N-1) causes an error. Here,
DWIA4 is able to guess that NN probably means N by
using the contc:xtual information t,hat N is t,hc name of
the argument, to thc f~inct,ion ICACT in ~vhich the error
occurred. Since this corroct,ion involves a uscr program,
DWIh4 proceeds more cautiously than for corrections
to user type-in: i t informs the uscr of the correction it is
about to make by typing NN(1N I'ACT)-+N ? and then
waits for approval. If the user types Y (for YES), or
simply does not respond within a (uscr) specified time
interval (for example, if the user has startcld the com-
putation and left the room), DWIAZ makes the correc-
tion and continucs the computation, exactly as though
the function had originally bccn correct, i.e., no informs-
tion is lost as a result of the error.

If the user types N (for NO), the situation is t,he same
as when DWI114 is not able to make a correction (that
i t is reasonably confident of). In this case, an error
occurs, following which the system goes into a sus-
pended state called a "break" from which the uscr can
repair the problem himself and continue the computa-
tion. Note that in neither case is any information or
partial results lost.

DWIRI also fixes other mistakes besides misspellings,
e.g., typing eight for "(" or nine for ")" (because of
failure to hit the shift key). For example, if the user had
defined FACT as

(IF N-0 T H E N 1 ELSE NN*8FACT N-1))

DWIh4 would have been able to infer the correct
definition.

DWIRI is also used to correct other types of condi-
tions not considered errors, but nevertheless obviously
not what the user meant. For example, if the user calls
the editor on a function that is not, defined, rather t,han
generating an error, the editor invokes the spelling
corrector to try to find what function the user meant,
giving DWIR'I as possible candidates a list of user
defined functions. Similarly, the spelling corrector is
called to correct misspelled edit commands, p.a. com-
mands, names of files, etc. The spelling corrector can
also be called by user programs.

As mentioned above, DWIM also uses information
gathered by monitoring user requests. This is nccom-

TABLE I-Statistics on Usage

edit p.a. spelling
exec com- undo com- correc-

Sessions inputs mands saves mands tions

plished by having thc p.a., for each user request,
"notice" the functions and variables being used, and
add them to appropriate spelling lists, which are then
used for comparison with (potentially) misspelled units.
This is how DWIiVI "knew" that FACT was the name
of :L function, and was therefore able to correct FATC
to FACT.

As a result of knowing the names of user functions
and variables (as well as the names of the most fre-
quctntly used system functions and variables), DWIM
seldom fails to correct a spclling error the user feels i t
should have. And, since DWIh4 knows about common
typing errors, e.g., transpositions, doubled characters,
shift mistakes, etc.,* D W I N almost never mistakenly
corrects an error. However, if DWIA4 dicl make a mis-
take, the user could simply interrupt or abort the
computation, UNDO the correction (all DWIRlI: correc-
tions arc undoable), and repair the problem himself.
Since an error had occurred, the user would have had to
intervene anyway, so that DWIfiI's unsuccessful
attempt a t correction did not result in extra work for
him.

While monit,oring user requests, the programmer's
assistant keeps statistics about utilizat,ion of its various
capabilities. Table I c~n t~a in s 5 statistics from 11
different sessions, ~vhcrc each corresponds to several

* The spelling corrector also can be instructed as to specific user
misspelling habits. For example, a fast typist is more ap t to make
transposition errors than a hunt-and-peck typist, so that DWIM
is more conserv:ttive about transposition errors with the latter.
See Reference 1, pp. 17.20-22 for complete description of spelling
corrections.

Automated 13rogrammering 921

TABLE 11-Further Statistics CONCLUSION

exec inputs
undo saves
changes undone
calls to editor
edit commands
edit undo saves
edit changes undone
p.a. commands
spclling corrections
calls to spelling corrector
of words compared
time in spelling corrector (in seconds)
CPU time (hr : nlin :see)
console time
time in editor

* An "error" may result in several calls to the spelling corrector,
e.g., the word might be a misspelling of a break command, of a
p.a. command, or of a function name, each of which entails a
separate call.
** This number is the actual number of words considered as
possible respellings. Note that for e:~ch call to the spelling cor-
rector, on the average only five words wcre considered, although
the spelling lists are typically 20 to 50 words long. This number
is so low because frequently misspelled words are moved to the
front of the spelling list, and because words are not considered
that are "obviously" too long or too short, e.g., neither AN11
nor PRETTYPItINT would be considered as possible respellings
of DEFIN.

individual sessions a t the consolc, following each of
which the user saved the state of his cnvironrnent, and
thcn resumed at the next consolc session. These ses-
sions are from eight difforcnt usclrs at several ARPA
sites. It is important to not,c t,hat with one exception
(the author) thc users did not know {,hat statistics on
their session would be sccn by anyonc, or, in most cases,
that the pea. gathered such statistics a t all.

The five statistics reported here are the number of:

1. requests to executive, i . ~ . , in LISP terms, inputs
to evalquote or to a break;

2. requests to editor, i . ~ . , number of editing com-
mands typed in by usor;

3. units of undo information saved by thc pa . , e.g.,
changing a list node (in LISP tcrms, a single
rplaca or rplacd) corresponds to one unit of undo
information ;

4. p.a. commands, e.g., REDO, USE, UNDO, etc. ;
5. spelling corrections.

After these statistics were gat,hcrcd, more extensive
measurcn~cnts wcre added to t,hc p.a. Those arc shown
for an extended session with one uscr (the author) in
Table I1 below.

We see the current form of the programmer's assistant
as a first step in a sequence of progressively more
intelligent, and therefore more helpful, intermediary
agents. By attacking the problem. of representing the
intent behind a user request, and incorporating such
information in the pea., we hope to enable the user to bc
lcss specific, and the p.a. to draw inferences and take
more initiative.

However, even in its present relatively simplistic
form, in addition to making life a lot more pleasant for
users, the p.a. has had a suprising synergistic effect on
user productivity that seems to be related to the over-
head that i s involved w l ~ n people have to switch tasks or
levels. For example, when a user types a request which
contains a misspelling, having to retype it is a minor
annoyance (depending, of course, on the amount of
typing required and the user's typing skill). However,
if the uscr has mentally already performed that task, and
is thinking ahcad several steps to what he wants to do
next, thcn having to go back and retype the operation
represents a disruption of his thought processes, in
addition to being a clerical annoyance. The disruption
is even more severe when the user must, also repair the
damage caused by a faulty operation (instead of being
able to simply UNDO it).

The p.a. acts to minimize these distractions and
diversions, and thereby, as Bobrow puts it, ". . . greatly
facilitates construction of complcx programs because it
allows the user to rcmain thinking about his program
operation at a relatively high level without having to
descend into manipulation of detail^."^ We feel that
similar capabilities should be built into low level
debugging packages such as DDT, the executive lan-
guage of time sharing systems, etc., as well as other
"high-level" programming languages, for they provide
the user with a significant mental ?nechanical advantage
in attacking problems.

REFEIIEN CES

1 W TEITET,MAN D G BOBROW A K IIARTLEY
r) T, MIJI~PITY
IIl3N-IJSP TENEX rcjcrcncc manual
BUN Iteport July 1971

2 W TI<I'l'EI*MAN
Toward a programining laboratory
Proceedings of First International Joint Conference on
Artificial Intelligence
Washington May 1969

3 11 G BOBROW
Rcquircmcnls for advanced progranuning syslems for list
processing (to be published July 1972 CACM)

	00.tif
	001.tif
	002.tif
	003.tif
	004.tif

