LsTE S S P
Programmer®s Manual

MIT Artificial Intelligence Project

10.

MODIFICATIONS

cons{a,d)
consw(w)

copy(L)
equal(Ll,L2)
eralis(L)
erase(L)
maplist(L,f)
Open Subroutines
search(L,p,f,u)
apply

3/3/59
3/3/59
3/3/59
3/3/59
3/3/59
3/3/59
3/3/59
3/3/59
3/3/59
3/3/59

1/1
CONS (a,d)

cons {a,d) puts comb{a,d) into a register taken from free
storage, and returns with the location of this register
ag its value. It may be written as:

cons {a,d) = consw(comb(a,d))

CONS STQ T1
ARS 18
ADD T1
SXD T1.4
LXD FREE,%4
TXH *+4,4,0
SXD FROUT, %
TSX FROUT+1,4
LXD FROUT, 4
LDQ 0,4
STQ FREE
STO 0,4
PXD 0,4
LXD T1,4%
TRA 1,
1

) PZE

Status: Checked out.

March 3, 1959 Modification number 1
Author: J. McCarthy Makes obsolete:

11
CONSW {w)

consw ng takes the first word in the free storage list,
puts w in i1t, and returns with the location of the word

as the value of consw(w). consw(w) may be called by the
instruction

TSX CONSW,4

°

©

CONSW S&N CONS + 3
(See cons(a;d)))

Stacus: Checked out.

March 3, 1959 Modification number 2
Author: J. McCarthy Makes obsolete

1/1

COPY (L)

The iist structure starting in (L) is copiled
into free storage and the value of copy (L) is the loca-
tion of the lead word of the copied structure.

copy (L) = (L = 0—0,car(L) =-1—L,1->cons{copy(car(L)),
copy(edr(L))))

Status: copy (L) is available as a debugged SAP
language subroutine.

March 3, 1959 Modification number 3
Author: J. McCarthy Makes obsolete:

1/1
EQUAL (L1,L2)

equal {L1,L2) compares the list structures starting at
Ll and L2, and the result is 1 if the structures agree
both as to forms and as to the identities of the objects
in corresponding places.

equal(Ll,12) = (Ll=12—1, car(Ll) =-Vcar(L2)=-1-—0,
I-equals(car(Ll),car(L2) equals(cdr{Ll),cdr(L2)))

Status: equal(Ll,L2) 1s available as a debugged
SAP language subroutine.

March 3, 1959 Modification number 4
Author: K. Maling Makes obsolete:

1/1
ERALIS (L)

eralis(L) erases the list structure starting in L.

subroutine {eralis(L))
/ L = OVear{L) =-1—>return
M = erase(L)
eralis (add(M))
eralis (dec(M))
\return

Status: Checked out.

March 3, 1959
Author: J. McCarthy

Modification number 5
Makes obsolete:

1/1
ERASE (L)
eragse (L) returns the word in location L to free
storage, and has as its value, the former contents of

the erased word.

ERASE SXD T1,4
PDX O, 4
CLA O,k
LDQ FREE
STQ O,k
SXD FREE, 4
LXD T1,4
TRA 1,4

o

Tl

Status: Checked out.

March 3, 1959 Modification number 6
Author: J. McCarthy Makes obsolete:

1/1
MAPLIST (L,f)

maplist (L,f) constructs a 1ist in free storage whose
elements are in 1l-1 correspondence with the elements
of the list L. The address portion of the element of
. the new list at J, corresponding to the element at L
contains f(car(L)). The value of maplist is the address
of the new list.
a) "fast" maplist
maplist(L,f)q/LmO—ereturn(O)
maplist = cons(f(L),0)
M = maplist
al L = cdr (L)
cdr(M) = cons(f{L),0)
cdr(L) = O-rreturn(maplist)
M = cdr(M)
\go{al)
-b) "slow" maplist
maplist(L,f) =(L=0—0,l—>cons(f(L),maplist{cdr(L),f)))

Status: Both maplists have been checked out.
In compiling, the fast maplist is used;, as it saves
about 1.3 milliseconds per 1list element of L. (75 ‘;Zaav:l.ng)

March 3, 1959 Modification number 7
Auﬁﬁor: J. McCarthy Makes obsolete:

1/1

OPEN SUBROUTINES

1. add(w) extracts the 15 bit address of the word w.
2, car(n). The value of car{n) is the 15 bit contents
of the address part of the register in location n.

3. cdr(n). The value of cdr(n) is the 1% bit contents

of the decrement part of the register in location n.

4. comb(a,d) combines tow 15 bit quantities to make
a 36 bit word.

5. cuwr(n) is the 36 bit contents of the register n.

6. dec(n) extracts the 15 bit decrement of the word w.
T reglaca(J,k) vreplaces the address of k with the

15 bit word j.

8. replacd(j,k) replaces the decrement of K\with the
15 bit word & [

March 3, 1959 Modification number 8
Makes obsolete:

1/1
SEARCH (L;p,f,u)

search(L,p,f,u) examines the list L for an element

satisfying the condition p, and if it finds one, it
-exlts with £ of that element; if the search is un-
successful, search(L,p,f,u) exits with the value of the
expression u.

search(L,p,f,u) = (L=0—u,p(L)—f{(L),1—search(cdr(L),
p,f,u))

Status: Checked out.

March 3, 1959 Modification number 9
Author J. McCarthy Makes obsolete:

A 3/1
The Universal function - APPLY
WRITING LISP FOR APPLY AND EVAL
APPLY and EVAL understand lists whose first elements are
funetion names or symbols to denote certain special expres-
sions built into EVAL. The succeeding elements are taken to
be the arguments of the functions, or part of the expression.
Since we do not yet have an input program to read infixes

or rearrange parenthesis we must write the above lists in re-
stricted external notation. Thus, the following translaticn
hold between our usual notation and the notation appropriate
for read-in to apply and eval.

Usual Notation Restricted Notation
X x
car(x) (car,x)
cons(x,y) {(cons,x,r)
cons(car(x),cdr(y)) (cons, (car,x),(cdr,y))

EVAL

Eval(E,A) is a function that evaluates the lisp expression
E using the list of palrs A to determine the values of varlables.

If E is a variable name, it searches A for the value paired
with E and takes this value. If E is a function it evaluates
the arguments of the function and then uses apply to evaluate
the function. In addition, it recognized certain special
expressions described below.

The expression (const,C) indicates that the symbol C is a
constant and not to be looked up on the A list.

(sub,E) does a sublist on the result of evaluating the
expression E, using the entire list A as a 1list of substitutions.

(cond,(pl,el),(pa,ee)-~-(pk,ek)) is the conditional expres-
sion.The p; are evaluated successively until one 1is found with a
value of 1. The corresponding ey is evaluated. If none of
the p, are 1, error is enter

(vare,B)(variable expression) causes the evaluation of the
expression paired with the object B on the A list.

{varc,C)(v-riable constant) causes the item paired with C on
the A-1list to be the value of eval.

(intv,N) causes the integer value of N to be looked up on

the property list of N. At present only 0,1, and MINUSl are

allowable as N

3/2
The following are examples of statements in our usual
notation and in the restricted notation necessary for eval:

Usual Eval
X : X
cons(x,y) (consg,x,y)
(pl €120 €5===Dp ek) (cond, (plel)z(Pgﬁeg)a““'(pkyek)
L=l (EQUAL, L, (INTV,1))

APPLY

Apply(F,L,A) is a function that evaluates a function F
for the arguments given in the list L. In addition the values
of previocusly bound variables and some function definitions are
given by the list of pairs,; A. :

If the function F is an object, it may be basic (car,cdr,cons),
in which case it is built into part of apply, it may be defined
on its property list by either a TO4 program or a lisp expres-
sion, or it may be paired on 1ts A list with a lisp expreasion.

If the definition of F is an expression, it must be the
name of a function object, or else begln with iambda or label,
followed by lambda.

If F is a subexpression it may have the same form described
above, or it may be an expression, that when evaluated defines
the function in a manner acceptable to apply.

.The 1list of arguments umust have the same number of elements
as F has arguments, or an error wmay resvlt.

{Certain built-in functions: e.g. list, may have an arbitrary
number of arguments.)

The first element of L is interpreted as the first argument,
the second element as the second argument, etc.

The expression (label, name,(F)) when it appears as a
function 1is treated exactly as F would be, except that the name
is paired with F and put on the A list given to all lower level
uses of .apply and eval. This permits writing recursions within
a statement. For example the definition of the "slow" maplist
using label is:

(LABEL,MAPLIST, (LAMBDA, (L,F), (COND, ((EQUAL(INTV,0),L),

(INTv,0)), /(INTV,1),(CONS,(F,L),(MAPLIST,(CDR,L),F))))))

The functions built in to Apply are (car,cdr,cons,list,)

and there are also two predicates null and atom. This value of

null is 1 only if its argument is the null 1ist; O, and the
value of atom is 1 only if its argument 1s an obJect.

3/3
Lisp program for single statement lnterpreter
APPLY(F,L,A)=select(car(F);
-1,app2(F,L,A);
lambda,eval(caddr(F), ,append(pair(cadr(F),L),A));
label,apply(caddr(F),L,append(pair(cadr(F),caddr
(F)):A))3
apply(eval(F,A),L,A))
EVAL{E,A)=select(car(E);
-l,search(A,x(J,gaar(J)aﬁ:k(J,cadar(J)),error);
intv ,search(cadr(E),A(J,car(J)=ins),NJ,cdadr(J)),
error); -
sub,sublis(A,eval(cadr(E),A));
const,cadr(E);
label,eval(caddr(E),append(pair{cadr(E),caddr(E)),
A));
varc,search(A,A{J,cadar(J)=cadr(E)),N(J,cadar(J)),
error);
care,search(A,\(J,caar(J)=cadr(E)), (J,eval(cadar(J),
: cdr(J)),error);
apply(car(E),maplist(cdr(E),\(J,eval(car(J),A))),A))
APP2(F,L,A)=select(F;car,caar(L);cdr,cdar(L);cons,cons(car(L),cadr(L));
1ist,L;znull,car(L)®0;atom,caar(L)=-1;
search(F,\(J,car(J)=subrvexpr),
AT, (car(J)=subr—app3(F,L,
1—apply(cadr(J),L,A))),
search(A,A(J,caar(J)=F),N(J,apply(cadar(J),L,A)),

error))
evcon(E,A) = (E=0O—verror,eval(caar(E),A)—>eval(cadar(E),H,l—evcon
(car(E),A))

March 3, 1959 Modification number 10
Author: S. Russell

MODIFICATIONS
11. Function Names 3/20/59
12. maplist(L,f) 3/20/59 (replaces no. 7)

’ 1/1
FUNCTION NAMES
It was agreed in an Artificlial Intelligence Project
meeting that the following abbreviations for the elementary
functions would be used.

sin arsin sinh asinh
cos arcos cosh acosh
tan artan tanh atanh
cot arcot coth acoth
sec arsec sech asech
csc arcsc csch acsch
a+b-~c is written (plus,s,b,(minus,c))

a.b 1is written (times,a,b,{recip,c))

a.b 1s written (times,a,b(recip,(times,c,d)))
c

a.b.écé is written (times,a,b,(recip,c),(recip,d))
u’ is written (power,u,v)

log,x 1s written (log,b,x)
Note: The natural logarithm is denoted by (log,e,x)
The symbol 1ln is not used for this purpose,

March 20, 1959 Modification number 11
Author: N. Rochester Makes obsolete:

1/1
MAPLIST (L,f)
' maplist (I,f) constructs a list in free storage whose
elements are in 1-1 corre¢spondence with the elements
of the list L. The address porticon of the element of
the new list at J, corresponding to the element at L
contains f£(L). The value of maplist is the address of
the new list.
a) "fast" maplist
maplist(L,f)=/L«0-yreturn(0)
maplist=cons(£(L),0)
M=maplist
al Lwcér(L)
cdr(M)=cons(£(L),0)
cdr(L)=0—return(maplist)
M=cdr(M)
\go(al)
b) ‘“slow maplist"
maplist(L,f)=(L=0—0,1—cons(f(L),maplist(cdr(L),f)))

Status: Both maplists have been checked out. In
compiling, the fast maplist is used, as 1t saves about 1.3
mllliseconds per list element of L. (757 saving)

A

March 20, 1959 Modification number 12
Author: J. McCarthy Makes obsolete: Mod. mno. 7

13.
14,
15.
16.
- 17.
18.
19.
20.

MODIFICATIONS

EQ1(L1,L2)
CP1(L)
PRINT(L)
FLVAL(L)
MAKENU(L)
NUTERN(L)
PRDCT(L,K)
SUM(L,K)

3/27/59
3/27/59
3/27/59
4/3/59
4/3/59
k/3/59
k/3/59
4/3/59

1/1
EQ1(L1,L2)

eqli(Ll,12) compares the one level lists at L1 and 12.

It's value is 1 if the two lists are identical, and zero

otherwise.
eql(Ll,L2)=(L1=12—1,
L1=0vL2=0—20,
1—cur(car(Ll))=cur(car(L2) JAeqi(
edr(Ll),cdr(L2)))
Status: Available as a debugged SAP subroutine.
March 27, 1959 Mecdification nmumber 13

Author: K. Maling

1/1

CP1(L)

cpl(L) copies the one-level list beginning at L into
free storage, and returns with the location of the copiled

list as its value.

epl(L)=(L=0—0,
}—cons(consw(cwr(car{L))),cpi(cdr(L))))

Status: Available as a debugged SAP subroutine.

March 27, 1959 Medification number 14
Author: K. Maling

1/1
PRINT(L)

print(L) prints the 1ist at L in restricted external
notation, using 119 character lines. print(L) requires the
subroutines prinl(L), prin2(L), terpri, MISPH2 (or UASPH2)
all headed by P, and save, unsave, error unheaded.
print(L)=(car(L)=-l—prini(L),
1—(prin2(LPAR2) ,print(car(L)),

(cdr(L)=0—sprin2(RPAR2),

1— (prin2{COMMA2) ,print(cdr(L))))))
p#inl(L) prints the print-name on the property list.
SUBROUTINE (prinl(L))

/ear(L)#-1 error
al cdr(L)=0 ervror

L=cdr(L)

car(L)#PNAME go(al)

L=car(cdr(L))

a2 prin2(cwr(car(L))
cdr(L)=0 return
L=cdr(L)
\ go(a2)
prin2 prints up to 6 characters in one word when the
characters are justified to the left, followed by the illegal
charactér whose octal form is 77.

Status: print(L) is available as a debugged SAP program.

March 27, 19%9 Modification number
Author: J. McCarthy

15

1/1
FLVAL (L)

flval(L) finds the address of the floating point represen-
tation of the number represented by the property list L. The
value of flval(L) is the address of the floatiug point number.
fival(L) = /car(L)#-1—error
Bl cdr(L)=0—error

L=cdr(L)
car(L)#FLOAT—go(B1)
\return(cdar(L))
Status: Available as a debugged SAP subroutine.
April 3, 1959 Modification number

Author: S. Goldberg

16

1/1
MAKENU(L)

makenu(L) makes an numerical object of the list
structure at L, and adds it to the number list. The value

of makenu(L) is the address of the constructed object 1list.

Status: Available as a debugged SAP subroutine.

April 3, 1959 Modification number 17
Author: S. Goldberg

1/1
NUTERN(L)
nutern(L) searches the number list for a number equal
to the floating point numher‘L. If no number is found on the
number lisy, a new property list is formed, using makenu.
The value of the function is the address of a property list
which represents the floating point number L.
nutern(L)=/val 1l=L
return(search{cdr(nulist),
Lambda(J,search(car(J)),
Lambda(J,car(J)=FLOAT),
Lambda(J,cdar(J)=val 1),
Lambda(J,0),
Lambda(J,car(J)),
Lambda(J,makénu(List(numb,
\ FLOAT,consw(cwr(val 1)))))))

Status: Available as a debugged SAP subroutine

April 3, 1959 Modification number 18

Author: S. Goldberg

1/1
PRDCT(L,K)
prdct(L,K) computes the product of two floating point
numbers represented O the property lists L and K. Its value

is the address of an object containing the product.

Status: Available as a debugged SAP subroutine.

April 3, 1959 Modification number 19
Author: S. Goldberg

1/1

SUM(L,K)
sum(L,K) computés the sum of the floating point numbers
represented by the object 1lists L and K. 1Its value 1s the

address of an object containing the sum.

Status: Avalilable as a débugged SAP subroutine.

April 3, 1959 Modification number
Author: S. Goldberg

20

2l.
22,
23.
24,
25.
26.

MODIFICATIONS

desc [usm]
pick [s;£]
mapcar(L,f)
GREATR(J,K)
format [n;f;v]
SUBSTR(R,S)

4/1/59
4/7/59
4/9/59
%/9/59
4/29/59
4/15/59

1/1

desc[u;m)

desc[u;m] descends a list structure m going in the address
or decrement dlrection according to the list u. Each element of
the list u 1is either A or D.

We have

desc [u;ui] = [null [u]—»m;atom[m]— error;car [u] =A—»desc [cdr
[u] scar[m]] ;car[u]=D->desc [car[u];cor En]]; 1-verror]

As an example

desc[(A,A,D);(((U,V)),W)]=(V)=cdaar[(((U,V)),W)]

desc Ex;n_l] will be used by the funciions created by format.
Even by itself it will operate faster when used by apply than
the corresponding composition of car and cdr.

Status: SAP routine not yet checked out-

April 7, 1959 Modification number 21
Author: J. McCarthy and K. Maling Makes obsolete

1/1
pick[s;f]

pick[s;f] has as value & 1list each of whose elements 1s
A or D and which gives the location of the symbol s in the
structure f. The value of pick[s;f] can be used by desc %o
get the element of a structure in a given pesition. |

We have

pick[s;£] = [null[f]>N0;equal[s;£]—A; 13- [u]; [equal[u;NO]
‘“9h[f§];[equal[#;NQ}—%NO;1—9cona[b;y]]][bick[é;cdr[fj]]51-—9
cons[ﬁ;q]]l[pick[s;caq[f]]]}

As an example ’

pick [v; (((U,V)),W)] =(4,A,D,A)

pick will be used by format.

Status: ‘LISP routine not checked out. There are no plans to

write a SAP version but the version for apply will be debugged.

April 7, 1959 Modification number 22
Authors: J. McCarthy and K. Maling Malkes obsolete

1/1

mapear(L,f)

mapcar is like maplist except that it does not construct

a new list and it has O as its value, As as example of the use
of mapcar, suppose one wanted to replace with CO the variables
in 1list L.
mapcar(L, (var(car(L))—>replaca(L,C0),1—0))
mapear(L,f)={L=0—0,

£{L)-0,

I->wapcar(cdr(L),f))

Status: Available as a debugged SAP routine.

April 9, 1959 Modification number 23

Author: N. Rochester

174
GREATR(J,K)

This 1s the predicate J>K it takes as arguments two

15 bit numbers and has a one bit quantity as value. It is

written in SAP

GREATR TIQ *+3
PXD 0,0
TRA 1,4
CLA INTV}
TRA 1,%
INTV1 HIR ,,1

Status: Checked out.

-

Date: April 9, 1959

Author: N. Rochesger

Modification oumber 2%

11
format[ngf;v]

format|n;f;v] has the value n. n is an object, f is some list
structure and v is a list of variables occurring in f. Its execu-~
tien causes n and the variables of v to become functions which are
available to APPLY. This is bes?® explained by an example.

Consider format [SHAKESPEARE;(UNDER,GREENWOOD,TREE) ;(GREEN~

| ‘ WOOD, TREE)]

There are twe variables involved, GREENWOOD and TREE

Then the executlon of format generates three functions to which
we could give arguments .

shakespeare [SPREADING ; CHESTNUT]

greenwood [(BENEATH,SPREADING,CHESTNUT)]

tree [{{ BENEATH , SPREADING , CHESTNUT)]

Executing these functicns in fturn gives

{ UNDER , SPREADING ,CHESTNUT)
SPREADING

and CHESTNUT respectively

Thus ghakespeare has as argument a list u which must¢ contain
as many terms as v; and substitutes in £ for one occurrence of each.
variable ih v the corresponding variable in u.

greenwood and tree have as argument a list structure g and
pick Qﬁtﬁthe element in g which cccupies a positlon corresponding
to their's in f. |
format[n;f;é&h[[n;f;v]3[h[[}5t];ﬁ][attrib[n;sublis[[ﬂ%v];@g{]5[?5

formatp [v]]] 3 (EXPR, (LAMBDA,\/, (SUBLIS, (LIST,P), (CONST,F))}]]

formatq[ngf;yj] -

formatp[j}m[null[v]—»behacqns[subst[car[y]5X;(LIST9(CONST,X),X)]§

formatpfcdr[v]]]]
formatq [n;f;v)=[oullf vj—n; 2o [2] ;] 2=NO—>error; T—N [x5y];¥]

latirib [car»[v]; subst[z3R;(EXPR, ((LAMBDA, (X), (DESC,R,X))))]]]

froruaty usfysar (o]})T} ntok foar[v]sc]]]

Status: APPLY routine not yet-checked out.
Author J. McCarthy and K. Maling Modificatiun No., 25

April 29, 1959

1/1
SUBSTR(R,S)
substr(R;S) is the proposition that the 1list structure S
is a substructure of the 1list structure R,

substr(R,S)=EQUAL(R,S)—T

NULL (R)—F

ATOM (R)—F

SUBSTR(CAR(R) , 5)7

T—>SUBSTR(CDR (R),S)

L3 A ‘
{::aﬁii\" STATUS: Available as a debugged LISP functiocn for apply.

.d‘.'

Aty
[e
: o % in
L s

Y

April 15, 1959

Author: J. Slagle Modification mumber 26

+r
"

