
.
J

~~ ~----~----~~------- ~ ~~~- ~--~--~-~ ----------------

'1'0:

li'l'om:

Date:

_____ ,:F-~ l&-V~."~: ,
~, -.. ..:..-. ,

l',gas13a.chusetts rnsti tu"te of T<3cilnology
Cambri.dge 39, Ma.13sact .. t~setts

p. ~. Morse

J • .McCarthy

Decembe~ 13, 1957

SUBJECT: A PROPOSAL FOR A CanPlLER

ABSTR.IlCT

This memorandum contains the first version of

the first two chapters of a proposal for a compiler.

Comments on the points ra3sed so far and complaints

about ambiguities are earnestly solicited.

CHAPTER 1

1 • Introduction

The purpose of an automatic coding system in sCientific

computing is to reduce the elapsed time between the decision to ~~e

a computation and getting the results o It can make feasible computa­

tions which, without it, ~ould be too complicated to undertake.

This report describes a proposed new antoaatic coding system

which 1 hope will be a suffiCient advance over those DOW available or

soon to be available to justify the effo~t of ~1r1ting the required

translation program. The specifications for the system are presented ~~~
in sufii.i""t detaU for evaluation of its merits, but would be SUbject' k

mod1fieation in the course of writing the translation prog~~~. A ~;.j_ ~~

number of the id~a to b presented have heer p~' gested by the Fortran ~
G ~~"'i'L

system~" t~l H 70 ~ the propo8~J Scat ayste,fOT the 15M 709, 2nd
_ :J.T ~~ ,

the Fl wmatic By tem for the UNIVAC. The source lang".Jaga is mainly

independent of the machine being used, except that tile provisions for

re~erring directly to machine registers and their parts, which we

believe must be included in any poworful source le.ng1.1sge, have been

out only for the ImM 704.

In what follows p underline1 ta:rms are defined by the zeiltenoes

in which thel7 occur.

1.1 What is an Automatic Codix:.g Syaten

An automatic coding system has two parts. These- e.J.'~

1. a source langu~e in which procedures for eel ving

.
"~ ,V-

problems can be described more conveniently than in machine laaguace, and

2. a translation program which translates prosrams written ,. . .
in the s~ce laaauase into machine language • . . ~. . ~

Thus we have to do wi ttl three programs: the source program

written in .the s~ce language, the "o~ject program which i~ t~~ ~esult

of translating this prosram into machine language, and the translator or
.' ,

compiler which does the translating.

Procr&m8Qrs sometimes lose sight of the distinction between a

problem and a proced~e for solving itj this sometimes causes them to
.

talk about havinc written a problem in Portran. The distinction is i.-

portant in deciding what it is possible to make automatic coding systema . . .' . . i
do for us. A problem 1s defined by a procedure for telling \9h~th~r one

has a solution, not by a procedure for getting one. For example, the

problem of proving or diilprovlng Fermat's last theorem in one of the

known systems of formalized arithmetic is well defined Since an alleged

proif one way or the other can readily be tested, but there is no known

procedure for getting a prooi. The artificial intelligence problem i~

that of gettiag a procedure which is scad at solving problems in generAl

and is much harder than the automatic coding problem which is merely

that cd translating already formulated procedures from one language to

another. The automatiC codiq problem may admit a fairly ~tisfactor,

general solution although we don't expect to achieve a fully seneral

solution in this System.

102 What Shouid a Good Source Language Be Like?

It has often baeD. said that if only we could program the

calculator in EnSlisb, the automatic cod1ng probl~ would be sol~ed.

The English laDguage has features which have not as yet been incorporated

in any prosrammiq lanauage and which pros:rammers covet, such as a very

rich vocabulary and provisions for introduc1ng new terminology; nevertheless

it is a priori DO more likely that English 1s very well suited for cie­

scribiq complicated procedures, than it is that EnglIsh is well suited

for describinc the theorems of an advanced branch of mathematics or the

lava of physics. ,In fact, EDalish is a very poor lanlUag~ for giving

complicated instructions: Some prosrammlng systems for bUSiness use have

been advertised as alloWing the programmer to wri to in English.. it seems

to me that these claims are lIom8what fraudulent.. it is I of course, easy

to l118ke a s,st .. in which the lutnlctions ~e English sentences. To take

3

an extreme example, we could require the programmer to write ttpu~ the

number in register 1000 in the accumulator" instead. of "CIA 1000".

However, to really be able to claim that English is being used as a pro­

gramming language, one would have to be able to accept any reasonable

synonym for a sentence, and even more important one would have to have

the facility a~i1able in English of being able to define new ~erminology. ,

One may haz~d a gues~~ that were such a.f~cil~ty available, the pro-
.. '. '-"

grammer would quic~y u~e it to esta~lish a jargon that would l~~k .almost

as incomprehansib,le to the uninitiate as the present progr~ns laDguages.

It lBip,t 'be surmised that perhaps mathematics has al.ready pro­

vided us with the s,mbolic tools necess.al"J' to describe procedures, This

turns out not to be the case for two reasons. First mathematical sym~l­

ism is mainly used for the expression of decl~ative sentences; program-. .,' ,

mine deals in imperative sentences. Secondly, defining new terminology

is almost always carried out informally in the natural language, so that

mathematics doesn't give too much help in this important problem o

For this reason, it seems most likely that a special symboli~

language will be developed for the expression· of procedures which will

contain those feQtures of the natural and mathematical languages wh1ch

are the most valuable. This language will not be dependent on a parti­

cular calculator, although it will have facilities for describing calcu­

lators and taking special account of their peculiarities. It is not

likely that the language will be as easy to learn to use as present com­

puter languages, because one will be able to express in a primitive way

concepts which are expressed in a very complicated way in present systems.

One may regard a programming language as a co-ordinate system

in the space of procedures. Prom this pOint of View, we can see that

one of the desirata for a language is that those aspects of a program

one would most like to vary are expressed as changes in one 01" just a

few co-ordinates. We shall call the various attributes of a program

variables. These variables may, in a given system be divided into four
;- .' -

categories: System variables, program variables, program segment vari-

ables, and computational variables. A system variable is one which

can be changed only by changing the programming system, a program variable

one which is set by.the programmer and which does not change during the
..

course of the calculation, a program segment variable is one which CaD
..

be different for different segments of the same program, and a computation

CC-56 4

variable i8 OIle Wbicb cJaaDa.. i tl~ value d~1J2a the course 01 the program.

AI Perlis eIIpIaa.l~., a ayst_ can ~ ~. power.ful ~ au.o~her ,~illplJ

b, -.killS ~ slata ~lable in the o.e lI)':st_ • prosnm vari~le 1.
o " • • • •

&1IOthel' • Soa,e, of 'tile 11081: important ,difteHllc8s be1:ween tlUs s,ateB and

1'01'tl'_ CAll be apsoealMd as aay1DC that cer~iD attributes of a Fortraa

pJ'Oll'&ll whlell Caa OII1y ... claaDcacl by cJJ.aIaIlna the sya1:_, are pl'Cp"Ul

s t val'iab1.. ~D 01110 system. Solie, of 1'000traa' s procr- var1ebles are

PI"OI1"8II aecaem; ami .tea coapu'tatioa variables 'm thia .,st_. "IIl8 s1ll­

pl.st ea"QI1 •• 01 tbiS' are tbat the ktDda 01 'ari tluletic a_Uable and , ' ,

'Vitia ibea the -~DC. 4d the opel'at:1cm ,tIJ1Ibci18 AN prosraa 8ep.eDt vari­

abl.. siBce un 1d.ad8 cd qllllDtl tlf ADd Bft 1qa for tbe opera"tlOJUt '. . '.,

C8Il be de1~Ded ws.:a:1a tile ayst_. ~e tJpopaph:1cal canveDti.. are

also prOfP"aa Seplell~ V&!':l.abl.s. The stat8lUmts themselves which are

program variables ia ~Ortl'an are camputatiGD8l variables here siDce the

Pl'OCram can sen81'S'. ~ source laquase prosraa in the coarse of opera­

tloa and caD call ill the cOllPl1er to compile it.

The acnaroe lausuace i8 general enoup to express the ccrapile~

i tsell. This will ,aable tbe COIIpilCtI' to be written iD e. sort of boot­

strappinc way Wberein earl, inefficient versions are used to compile

later lIlore efficient ODes with added., leatures.

1.3 Peatures of the Source La!!pye

The raost lmpoHant featve of the source l aae of this

s,stea is the' freedClli 1 t 11 yes the prOSI'1l!lllBft' to defiae Dew _,s of _­

pre.sillS himself. 'l'b1s abilitlf is prOvided by several features o

loA type of stat t called tbe equivalence statGe1lt which

provides foz tbe introduction of abbreviations for any kind of expression.

2. The traaslator starts with certain tables civims the rela­

tion bet~ stateaeats ill the source laaguage and the successive

lusuases throqll _iell the translatioD goes. Much of the translation

is accomplished bJ' 'compiling tables comprising information taken from

the source procr-. B1 tber set of tables can be dir~tly eDlargeci or

altered b, SUitable source prosram statements. This of course includes

the table. whtch det~ne how table al t~ratiOll iDStructio~ are obeyed 0

3. 'lbe aIaove two features should suffice for most est_l0.s

of the languace. However" in ad.ditlon~ certain points ill the colllPillq

proaram are accessible to the progr8llllll8r in the sense that he hiasel1

can describe prOll'am to be executed at tbeso points undsr approp~iate

CC-56 5

coadi tions, The wri t1128 of such prograa is made easy by providiq

convenient ways to rafer to parts of a statement in various stase. of

traaslation aDd to entries 1n the tables.

40 The &bUtt7 to describe a computation by giYing fiDal

state of the machine in ter.ma of the initial state without haying to

worry about tatermadiate chaDBes to the variables used in the compu­

tation.

5. AD exteDded set of basic, quantities aDd operations eGa­

pared to Fortran inc1udiag fixed-poi at full words, logical worcI~, tlDd
1-bit quantities which play AD especially important role in the system.

6. ,A direct way of haDdling proposition. and predicates and

cOlldi tiona! functions Which eliminates much branching 111 the source

prosralll.

7. A larae generalization of the concept of subscr~pted vari­

able where the set of subscripts can be aDy ordered set and not just the

,set of integers. Subscripts in ezpresS10JlS CaD be arbitrary e:pressioJlS.

8 0 A way of descr1binc flow apart frOB the computatiOD stat ..

ments.

tables.
9 0 :-J.~to ~_eats re1erri1l8 to lists aDd

10. Tbe ability to define functiODs aDd other OpeD aad closed

subroutines in a powerful way.

coding.

11. The abl1i ty to refer to the machine resisters.

12. The ability to compile sta.tements which IIlOCll1y otJalSl's.

13 0 The ability tO'compile interpreters and interpretive

14. The ability to define one's own typographical conVeDtlonB

including the ability to define what 1s to be done in cases where nothiQl

is stated. These conventions caD ~e program or program segment variables D

.. cause the system as a whole has so many features it will Dot

be a8 quick to learn fully as previous systems. However, simplified sub­

systems will be available, which will be easier to lelll'D if less powerful.

The library tape of the system CaD contain Dot only open aDd

closed subroutines, but also the sets of definitions for introducing new

kinds of quantity or for defining simplified subsystems o

CC-56 6

104 Objectives in DeslgniD§ the Translator

Given the source lanpace aDd the computer CD which the

object prOlra.8 are to be run, there are a number of desirable properties

for the tJ'8ll81ator. 'l'hese include:'

, 1. The object prOlP"811S sbould be efficient. This systell will

carl"J out several kincls of optimization on the prosram lncludiDg, taJdDC
, ~

calc:ulations out of loops when poSSible, calculatlDg common sub"'expressions

oa11 ODce, strailht liniDe parts of tight loop., decidlns vbether certain

~uaatltie. should be recalculated or updated, decidlns whether table.

should be for.Ded of certain auxiliary quantities, and finally, tatin.

advantage of certain special situations.

I. It should be possible to impose constraints on the object

prosraa a8 to where it :fiDds certain variables and what regions of stor .. e

it occupie8. other cODstraints may also help optimdzation.

3. The ti .. required for cOllpllilli should not be excessive.

T.bia can be accomplisbed by putting less effort into optiaizinc the rarer

parts of the prograa. This compiler will also have facilities for c~

piling very 8mall programs entirely in higb speed storage.

4. It should be possible to make small chaJlges expressed in

the source 18J18U8Se without recompiling the whole program.

s. It should have good facilities for detect ins as many

errors as possible 1n the source PrQlraa and printing out a complaint

about all errors that can be found. If pOSSible, the machine should so

OD to other \J01'k while an error is bei11&' corrected and then take up froa

where it left off rather than starting the compilation from the beglnnlna.

6. It shoalei make a report on the translation which should in­

clude the corr •• pomaces between the source program and the object pro­

gram, ch_as •• the compiler has made in the source program for opt1mization

purposes~ the locatioa of quantities in storage, information about the

object procraa includirc lists of the instructions referring to particu-'

1ar storase addresses and the times requlred for all subcomputations for

whlch this can be deterllined.

7. fte coBipiler should fit into a complete system for operatlq

the aachlne which should be so designed as to minimize tbe elapsed time

between subm1ttiDS a request for computation and gettiDg correct results •

..
I

----~------ ~-------~----.

CC-56 'I'

1 .5 Plaa of 'this Report

The neat cilapter I cbapter 2, de.cribea the kinds of compute

.tat t. allo.... i. the .78t_. 9c!P'II1:e statements aN .those aia
cau .. Dew Value. to be computed for certaiD ClU8Dt1tles. The il!lpOrtant

concept 01 DOD-rearsin PI'OCP'- s&pleDt Which i8 a natural uu t of

proaraa is iatroduced IUId discussed.

Chapter 3 discusses the stat_eDta which ctetel'lliu ta flow of

caatrol. Th ••• iaclude the ccmdttiODal bftmch •• , 11ldez1q over ordered

set., aDd the alsebralc wa, of de.criblD8 flow separated from the compu­

tatioas.

(!Iapt .. '" take. up the atateJ&eJlt. by which the 18lJlU8C. CUI

be extended. ftese include a kiad of stat_eDt called the equi valenoe

.tat8lleat whlcJa akes abbreviations and changes of notation easy, table

eatl'J' statements which alter the tables used by the compiler ill ~iDS

the tr8DBlatiOD, and fiDally the facilit, for introducing program at

strategic place. iD the complliDS process. An example is liveD of how

th... facilities caB be used to provide new klDds fd quantity sUch as .

coapla I1WIbers or quatemloDS in terms of which algebraic formul~ can

the be written.

Chapter 5 takes up the manipulation of symbolic quanti ties sucb

as al&ebraic fOftlUlas or statements ill a cOIlpiler 0 '!"his:18 1JIportaat

iD itself for aakiDl the compiler do calculus and other symbolic c~

putatioaa aud alao because this klnd of cosputatiOD is per~ol'illed 'bJ the

COSIPi~er 1 tself and h8llCe will be Deeded 1D the boot-strappiD8 operatiOD

of vi tine t~e compiler in the 18Jllllqe 01 the compiler and using the

stapler parts to translate the more difficult parts.

Chapter 6 takes up input and output.

Chapter 1 takes up the detailed design of the compiler and

th~ facilities provided for optimizing prosrams and also the fitting

of the compiler 1. an operator system.

CC-56

2. Quamtltlea, Sl!bolll, Compute stataeata, and lion-Recursive
P!oBr- Sepents

8

"l'b18 cJaaptezo takes up a kiDCI of stat_nt which 111 basic in

aD~ c:c.piler &1Ul which 9J8 call the compute statemtmt. Compute state­

ments, which COI'J'.8pOJId in function to the arltbmetlc statements in

Fortran, are COJIplled into PI'OlP'U which COIIputes ne .. values for certa1n

quanti t1e.. AD ezaaple of a compute stataeat 1s

A •• + CIA.

The procraa co.p11ed froa ~his cause. the expre~sion on the right of

the equalit~ slp to be computec1 asiq the current values of the QuaD­

t11:1 •• den.otecl by the Symb018 A, ., and C. Tbe result becomes the

new value of the quantit~ denoted by the s,abol A.
Before describing compute statements, we first discuss quanti­

ties in general, the symbols which -are the handles with which we hold

thea, and the functional e.~ressions (called algebraic expressions in

Fortran) in funCtiOllS, pseudo-functions and operatiODS which describe

the CGBPutat10DB. the particular importance of propositional qU&Dtitie~

is discussed. Piull,., we introduce the neVI concept of non-recursive

program se(Cllent. For many purposes including COIIIItOD sub-expres8iOll

opti~zatioD by the comptler this is a natural unit of program.

201 Quantit1es

Previous compilers admit a fixed set of kinds of quantity.

III particular, Portran adID1ts two: the floating point number and the

int_er of 15 bi til plus sip. The present compiler admi t8 an arbitrary

set of kinds of quantity, siDce there 1s a process by which new kinds of

quantity can be defineel &lUI used. The compiler language will have the

important conservat1 ve property that the major kinds of expression which

can be used with the kiDds of quantities originally provided for can also

be used with the newl, defined kinds of quantity. In particular,

functional expressions can be used with all kinds of quantity.

Basic to this compiler will be the two kinds of QuaDtity allowed

in Portran and the full length fixed-point quantity, the full length

logical word of the 704, and the one-bit propositional quantity. Other

kinds of quantity can be defined in terms of the basic ones or else by

giving the prograas which define what the operation and fUAction symbols

mean when applied to these quantities o

------_ _-_. ------------------------------------

CC-56 9

In geDeral, a type of quantity is defined by descrtbiDa how it

is represented in the .. chi.e aDd what operat10ns combine quantities of

this tJ)Ht with othera 01 the SUle type and also with quantities of other

t7P88_ We eiV8 lIOII8 eD1IIple. of kims d qu8Dtity which aay be used.

1. IUltlple precision numbers

2. Collpl._ nabers

3. Qutern10u

4. V_tors

5. Cliffozd D1IIIbers

6. I'1mctiODa represented 1n SOJI8 -J', either b,. a table, a
fonu1&# or pU'beps _ a sequeJlce of expansion coefficients. lion

g .. erall,., el_ts 01 function spaces.

1. Striq8 of characters. '!'his klDd i. especially iaportant

siace the ca-.piler itself functions bJ manipulating strlags of charac­

ter ••

8. Lists, described in the masmer \ised by Kewell, Shaw, ~d

SillOll. We sball bave lIOre to aay about these later.

Quantities can be objects quite different from DUmbers such as

algebraic and functiaaal expressions, differential equationa, shape.,

colors, p!'OCr ... (in soae particular laapqe) or electrical networks.

It is worth while to deftne a new kind of quanti t,. 1f enough eDltples

Will occur in the program and useful operati0D.8 can be defined il1"ol,,-

i .. quantitie. of th18 kind and other kill.cls. Por example, the operations

of Simplification, substitution and differentiation with respect to a

variable _y be defined for algebraic expressions. An operation of

solut10n might be defined for a class of differential equations. Opera­

tiGD. of combination, identlficatloa of variables, and compilation might

be defined for proarau. Operations of combill8.tion might be defined

for electrical networks as might operation 01 solution combiniug a net­

work with int tiel COJldi tiona.

BODe 01 the above kinds 01 quantity Will be explicitly pro­

"ided for in the 8J'.t .. ~ though cmes the stat6llent8 de:finiug them have

ben made, the de11n1 tiona can be included in the library tape.

1.2 Spbols

We describe computatiOns involviq quantities by apres­

siGDS in the .,abols representiag these qwmti ties 0 The cODDection

b.t a sJBbol and the quantity of quantities it represents is

----------- -----------

CC-56 10

detel'llined by cODv_tioDS which in this coapller are usually prograa

variables, but sometimes prograa segment varIables, and even computation

variables. In SAP syabols represent the nuabers of storage registers

and sOJl8t1ae. progrUl parameters. That tllis is so is best indicated by

tile _&nine of art tluaetlc expressions in the symbols. Bowever, the

asterisk ($) represent Inc the current value of the locatioD counter in

tile nn SAP is an exaaple of a syabol whose connection wi til nUilbers 1s

quite diff~rent.

1. Portran a s,mbol represents the conteats of a register except

that a symbol used ODlJ .. an index ma1 never have a fixed home register.

The meaaillC of art tbllflt:l.c expressions in the symbols bears out this inter­

pretation.

In the course 01 the later chapters, the reader Will see that

a s,.abol may be conaected with the quantities it represents in quite a

variety of \l8.1S.

Typographicall)', we shall allow sequences of letters and diSi~S

beginning with a letter to represent a symbol. We shall not make a re­

striction on the length of symbols and we will avoid system conventions

such as that in Fortran that symbols beginning with I, ••• ,N represent

fixed point variables. We will, however, reserve tentatively special

symbols for the contents of the machine registers AC, MQ, ILC, Ill, 182,

1M, SLl, SWl, etc. By "tentatively" J lIeaD that the propoammer caD

reject this usage by an appropriate statement and keep these Bymbols

unCommitted. The cODventions defining a duffers' system might contain

such a statement in order to keep the duffers uncontaminated by any

actual knowledge of the machine. We shall give some examples of the use

of the symbols for the machine registers later.

2.3 Algebraic EXpressions and Simple Compute Stateaents

The points we want to make first are best illustrated by

giving an example of a simple compute statement which is what Fortran

calls an arithmetic statement. In our opinion the Fortran term prejudges

the question of what such statements are good for. Our example is

A • A + •• 0 + OO8(D)

This formula is an imperative to the computer to co6pile instructions

that will replace the value of the quantity A by the result of evaluating

the foraula on the right side using the current values of the quantities

1

ce·-ss 11

represented by the syabols in it.

What i. the advaDtqe to the procra.aer of being able to

write such aD expressioa rather than the sequence of expressioDs

X • COS (D)

'I •• ~

Z.Z+Y
A_A,+Z

especiall, c0D81c1eriDS the fact the first thiDa the compiler does with

the origiaal fOl'llUl& ia to translate 1 t into sOll8thll18 correl!'pondlDS to

the sequence of fOUJ" elaentary fOl"lBUlas? The following are some ot the

adYaDtage. :

1. This i. the way nOD-Pl"OBra.aers are used to writiq

2. The Pl'OCram88r saves vi tina a number ot characters, This

has to be balaaced asaiDst the fact that the procram consisting of a

sequence ot eleaentary tormula. is more easily changed than the single

.ore coap11cated formula.

3 • '1'be progr8lllller avoids hav1:ng to inv8llt the awdliary

qUaDtities X, Y, and Z. We regoard this last as the most important ad­

vantage because experieJlce has shown that it 1s iD the inventlq and

handli .. of auxiliary quantities that errors are most of tea made.

4. There is B.D additional advantage that the compiler can plan

the shariDg of temporary storage better than the. programaer can.

The ability to make the output of one calculation the input of

another without haviDg to give the intermediate result any other name

than the n&!le of the calculation that produces it 1s of use in other

than numerical computation. Certainly it is useful in describing symbolic

manipulations as we shall show later in this paper, and we believe it will

a180 be useful in data processing.

Algebraic expressions are obtained by combining the symbols rep­

resentiDg constants, quantities, operations, and functions together with

ca.aaa and parentheses as punctuation according to recursive rules which

are too familiar to need repetition here_ Just a,s in Fortran we shall

use the sy,abols + - * / and *~ to represent the elementary operations ot

addition, subtraction, multiplication, division, and 8Xpoaentiation.

We shall also want s,abols for the elementary 1Oo1ean operations, and

additional symbols tor the elementary moolean operations, and additional

sy.abols are desirable. We shall also establish as tentative conventions

-----------.

CC-56 1.2

tile su. seniority rules between the operation symbols. It should be

understood that since functional notation is provided for, tile operation

sJ1lbola are a conoes.ion to eIIstOll, a worthwhile one in tel'lls of 'the

lesibility of prosraaa.
The calculations represented by the particular operation and

function s,mbols depead on the kinds of quantity tbe quantity symbols

in the ezpression repre ... t. Dowever, the first step in complliDg a

fOl'!l1lla which trasfol'llll aD algebraic .x:pl'essi~ into a sequence of

elemeatar,r expressiona, 1s independent of what the operations represent.

It 1. onl1 after Ws tr_formatiOD has taken place that tile rul~.

established lIT the PHCl' 1' which define the operations on his kinds

of qaaattti.s affect tbe c~ilation praces. b1 deter..iniag the trans­

lation of the el..antar,r allebraic statements. The translation rule.

may have several effects. First tlley may eive rise to sequences of

machin. operations. Thua A •• + e may sive rise to one of the four

sequences

CLA A

ADD •

STOe

ADD •

S'lO e

CIA A

ADD B ADD.

dependiug on tile neishboriDC fOJ'llUlas. Second, a transfer to a

subroutine may be compiled. Third, the eleaentary expressions -J' be

replaced by ~lex ~ressions in symbols representing more primitive

~uantities. We do not discuss how the programmer indicates what kind

of quantity a given symbol represents in this sectioD.

2.4 Pseudo-functions

Prosraa.iDC has not yet reached a state where all kinds

of calculatiODs can be described with no regard at all for the fact

that the .achine has a storace whiCh 1s divided into numbered relisters.

In thi s l8DgUage we provide certain pseudo-functions which allow one to

connect nUJlbers wi til the contents of the corresponding registers. '!'bey

are called pseudo-functions because while they compose like functions,

the value of a pseudo-function of a number depends not merely on the

nuaber but also on the contents of the memory of the results of the

assably process. Here are a few such pseudo-functions: .
1 • CAll CAR(X) denotes the ,!OBtents of the !,ddress part of !:egister

nUllber X. Thus CAa(3) i8 the 15 bit quantity stored in the address part

CC-56 13

of resister number 3. We have several pseudo-functions similar to ClR.

:II. COR contents of the decreJ&ellt part of register llWIber - . -
3. en ,£ODtats of the ~hole of !esister number

4. aIT8(Y,Z,Z) denotes the Y-X+l bit quantity in bits J: throup Y

of resister number Z.(lbis pseudo-function should be dlst1nguished froa

the function BXalT(X,Y,Z) wbose value is the Y-X+l bit quantity eonsis­

tiq of bits X throusb 'f of the 36 bit quaaUty Z. 1~ is related to the

pseudo functioa aITS bJ aITS(X,V,Z) ~ BJalT (X,'f,CIR(Z». 80th aITS

aDd BUIT have their us ...)

Addi tloaal pseudo functi0ll8 of "this kind CaD be defined as s,st.

or pragna variable ••

5 • *(X) This pseudo-function for those qUlUltl ties for which it

makes sense, gives the address of the first register assigned by the CQB­

pilar for 1 ts storage. In the compiled program it will generally be a

constant.

6. lWIB(X). This is mainly useful in input-output stat •• ent

when X Is an index which runs over a list of quanti ties. Its value is

the string of letters used by the programmer to Dame the quantity. Its

use can greatly simplify output statements.

2.5 Propo.t~i9Dal.QQantitie8 and Functions

A propositional quantity is a one bit quantity lenerally

associated wi til the truth of falsity of apropos! tiOD. The value 1 of

the quantity is aSSOCiated with the truth of the proposition and 0 With

its falsity. This systea provides a number of operations and functions

which can be used to combine propOSitional quantities with each other

and with other kinds of quantity.

First of all, we have the predicates =- , <. and ~ which are

used to compute propositional quantitIes from numbers. A predicate is

a function Wlaich takes on the values "true" and "false" which here are

represented by the bits 1 and O. A typical e:ample of a compute state­

ment involvinc a predicate is

p .. (A =- • + C)

which calls for tha quantity P to.be replaced by 1 if the value of the

~uant::l.ty A is equal to the sum of the values of the quantities B and C.

Motice in this statement the character • is used both as a predicate

operation and as a symbol for the operation of replacement. We can

probably set by With this dual u8age, although if there were plenty of

character symbols it might be worth while to use something like a left

14

polntins arrow as a symbol for replac t aDd reserve the • sign for

use as a predicate.

SeCODdl~, we have the 1eo1ean operatioas by whick propositions

are combined. 'l'b. sJlllbols for these operations areA for "and", V
for "inclusive or", IlJ for "not", 0for IfelEclusive or", ':)for

"material1,. implies", aa4 eVeD l for "not both". A typical atata ... t

usiae these operatiODS is

P • Q A «A ••)V P)

Thirdl,., fO%" U8ill&' proposi tioaal quaa.ti ties to compute quan­

titie. of other ktDds, _ have the fanetiOD IP. AD example of compute

stat_eat lnvol viae the II'-functioa ls

A =- IJ'(P, X + Y: Q, V + V: (A. _ .), A + .: Ol'IIBRtrISB, R)

The execution of thi8 stateaent causes the variable A to be replaced by

X + l' 1f P is true. If P is not trae aDd Q is trae, then A is replaced

b,. U - V. If nel til.. P nor q i8 true Uld A III ., A. is to be replaced by

A + 8 0 Pinal1" if ncme of the preceding predicates is true, A is to

be replaced b, R

(If tile II' and Boolean functions are to be compiled into

efficient procrams, tile usual way of compiliDC alaebraic statemeDts,

whiell 1nvo1 ves eGIIp1ItiDS all the arpEIlts of a function be%ore tryiDC

to COIIPUte its value, cannot be followed. Ccmslder the stateaent di8-

CUllS'" in the previoull parasraph. If P tUl"llS out to be tn., it is UD­

Deeecessey to coapute Ci, (A.a) I or the quanti tie8 correspondiua to

thea. A s1ll11&1' cirCUJlStaace holds in the case of the previous eDJBp1e 0

~ly, 1f Q 1s false, DOthiDa else need be computed.)

PropOSi tiona! quanti ties will play an important role 1n our

later discusslOD of coatrol stateaents o

PropositioDAl qaaatit1es have not been explicitly used in ~

putatlon as lI1IeIl .s their importance warl'8Ilts 0 This is probably because

the -.chin. facilities for dealiq with th_ cODveni_tly have not usual1,.

been provided 0

It ma, be possible to introduce expliCitly some propositional

p."'o-functi«lS which occur frequently in illformal descriptions of

prosr-o C1ae example is "A has been done already" wIlere A denotea a

certain action.

15

2.8 HoD-Recursive Program Serpents 8Il4 eo.pomul CoJIput.
StatelleDte

It 18 frequently p08.ible6 wben pl&DD1ac a part of a

comp1ltat10., to recard the s8glleat of procraa .a cbaDgiDS the _cII1JIe

fra. a 81tuatloa A to a 81tuatioa • wbere the d1fference betweea the

two 81tuat10 .. 18 that ceriai. ClUaDtltle8 have n .. valuea in sltuatioa

a. If each of tllea values CaD co.v_lentl,. be expressed dlrectly

1. terIU of th_ valu .. of tlut quaatiti •• in s1tuat1oa A we sa, that we

are dealt .. with a nOD-recursive proarraa lI t. W. shall ,ive three

.... les of nOD-reC'U"sl ve prqp'aa s.lI*1t ••

1. A PI'OCJ'8Il to i.terebus_ the values of two quaatl tie. X

aad 1'.

2. A procr- to perform one step of a predictiOD operat1oa,

1n the 801utlO8 of a 818t .. of ordiaary dlfferential equatioJl8 by

II1l.e's aethod.

3. The fol1owiD8 operatiOJl with 11st structures which require.

a dlcre.aion to describe a method of storl .. l1sts whlch has beeD developed

1I08t fully by Ifawell, SilllOD., and Shaw in their Information Processiy

La.!(aaae.. I. that syst811 a llst consists of a nUllber of machine word ••

In each word of the list 1s the address of the next word of the list u
well as a datum. (!hls assames that the lencth of a word is 8uch that a

word caD contain aD address and st111 have rooa for a data.) I. addi­

tl0. to the data lists there is a free storage list in which all the

regist.rs not filled wi tb data are connected together. 'lbe 81 tuat10n

is shown in figure 2.6.1 "herein aD arrow from a symbol to a reglster

indicates that the value of the symbol 1s the number of the reg18ter.

In the case of the 704 we put the address of the Dext element 01 a list

in the decrement part of a list resister and put the datum 1n the address

part. The laat 1t_ on a list has zero in 1ts decrement part.

Fipre 2.6.1

CO-56 16

The lllain adv8ntace of such I a .. way of haDdU.Dg list 18 men tile

l-ath of a slva list ilil a computation variable BUch that it 1s not

feas1ble to a •• ign e~oulh storage permanently to each list to take Care
'. . '.

of tile lUBeet number f)X elements :I. t \~J ever have. In addi tl0D :I. t is

convenient ~o insert items in the m1dd1e of such a list or to delete

it_ fl'o. it.

'l'b.e prosraa segment we wisb to deSCribe deallug with these

Ii.sta 1s needed when one wislles to insert aa element at the beglaniq

of & list, cettiq the r .. :lster for this el_at from the fr .. ~toral.

list.

'1'Jle prosl'..- for the above three e:ampl.. are all conveDiently

described bJ of a compound compQte stat and are siven in

Pipre 2.6.2

1.

2.

3.

l'ipre 2.6.2

X 11'
Y It

YOP AIlllYl+ll *YlP+A2*Y2+82*Y2P+A3*Y3+JI3*1'3P

n YO

np YOP

1'2 n
UP YIP

'13 1'2

Y3P 1'21'

FausTO CDB(nDSTO)

CDIt(PRBESTO) A

CAIt(PUESTO) II

A FltEESTO

As caD be seen from the examples, a compound compute statement

consists of two columns. Corresponding to each quantity in the lett

colwm is the value it is to assume in the right column. The nomen­

clature of the quantities and their values are all assumed to be given

in terms of the valuelil of these quantities as of the beginning of the

execution of the compound statement.

A more elaborate kind of compound compute statement is also

allowed in which there are three columns: the quantity to be calculated,

a condition, and a value. An example of this is given in figure 2.6.3.

-- -------

CC-56 17

"lpre 2.6.3

Gl A. .. >0 A+l

LO A.

A.~l

• (a<O).p 0

c C+-l

P 4(.0 Q

-.zr A>O Gl

The __ of tile atat_eat Is Gl. fte first line states that

if »0, 4 1s to be replaced by A+l. fte s.cond 11ne stat •• tbat it

-.0, A is to be left .. is, wh11e in tile r 1D1q case, A is to be

replaced by A-I. TIle next line says that if <-<.0) P, • is to be

replaced by O. SiDce there are DO other stat __ ts made about • it

18 asauaed tat if the above CODdi tion does Dot hold, II will be

UDchaDcecl. The last 11118 illustrates the use of another special

symbol: !fBJ.'l' denote. the Dext statement to be execut8d, and i~. this

coapoUDd compute statement, we have that if ">0 the present stat ... nt

Gl is to be executed .. ain. If the condition is DOt satisfied the

physically next stateaent in the prograJI will be executed next.

This illustrates another possibility whlCh will be more fully

explored in 8ubsequent chapters, the concept of the no~ procedure.

OIle CaD set up CGIlventions as to what is norsally done in certain

situations when the proaram "Gee not say otherwise. These conventions

will be under the control of the progr&llller.

2.7 Universal Quantifiers

What calculations can be written as non-recursive prograa
.....

sesaents depends on the richness of the lmaguage and in particular on

what functions aDd operatlons have been defined in the system 0 To

take a trivial example, if square root function has not been defined in

the S1st_, thea an,. program sepeat whiCh requires the extraction of

a square root is recurslve. Of course, il a square root function Is

used in a compound COIIpUte stateaent, the method of calculatiDl the

square root will be take1) for granted and Will not be subject to further

optlmization in the,ca-.pl1:lng process.

In this section we present another of the concepts of compound

cOllpute stateatellt which will enable IlOre prosraa segments to be wrlttea

CC-56 18

in this form. This extension cI1aDBes the previous three colwm torat

to a four coluaa one where in tke ~itional coluaD which is to be

wri tt811 0.' the left contains an index ,and a set oyer which the index

18 to YUy. AD example of such a stateaent 1s g1 ven in figure 2.7.10

Pip" 2.7'.1

Quantifier Q&aaatit,. Coad1tion Value

J(: ~(I)l A(I) a(I)+c(J)

J6L A(.(J)+C(J» 8("»5 R(J).S(J)

A .>0, A+l

If (1 to .) L

J[~ Q. to II} C(1,K) ~ A(1,J)"(JK)
J.l

The IIOst obvious domain of variation of an index is a SepaeDt

of the integers, but others are possible. For em&IIlple, aD inclex may

var'7 over the el __ ts of a .well list.

2.8 MUltiplet-Valued JUnctions aDd T.beir Composition

It is convenient to be able to use subroutines which

take several inputs and produce several quantlties as outputs. We

shall call such routines multiplet-valued functions. (The multipl,.

valued function in _thematics is somethl_ dlfferent. There the

emphasis ls on the ambiSUltJ' of the value rather than on the value

belas aD ordered collection of quanti tles.) The problem of composiq

multiplet valued funct10as 1s best illustrated b,. the exaaple shown

in figure 2.8.1.

!'igure 2.8 0 1

Y .-..j~----l

In the fisure ., 0, H, X, aDd • represeDt multiplet valued

functlons o Por example, • has 4 inputs and 3 outputs. The arrows

show the'flow of data aDd the diaaram represents a multiplet valued

function with 5 inputs and 2 outputs whick is a sort of composition ot

P, 0, H, 1:, azul III. It is'tempting to try to devise a notation to repre­

seat this kind of cOIIpOs1 tion and whiela will include the o:rd1aary COl1-

posi tiOD of functions as a special' case:, beca1uIe it we can, we caD write

r

'i.

CC-56 19

computatioas lnvolv1D8 this sort of computation as com,pound co.pute

stat8aents.

'I'Ilia CUl be dOlI. W1 th the help of certain rearraDCe8eDt

operators.

Asa1n .. WIe a tabular stat t form.

I'1pre 2.8.2

11 • G 1 • A

V 11 11 3 11 a

• 3 C

K 3 D

2 I

4

..
3 ..

F1~e 2.1.1 1s a direct tranalation of Pleura 2.8.1. • as a

four arguaent function takes the first four argaments <l,a,C,D) and the

rema1nill8 arguJIent is passed alolll by the I-argument identity fUllctloD

11. In the next column a selection operator sets up the four outputs

of the previous stase Into the eisht inputs to the next sta... G takes

the first two of these inputs 11 the next input, B the nezi: three, and

It the last two. P 'takes the first three of the outputs and Il the last

one. The two outputs of this stage become the Dew values of U and V.

The same stateaent can be written in a linear way as

V, V • ~P, 11} • (G,I1,B,K) 0 PI(l,3,3,2,o4,4,3,4) 0 (M,Il»

(A,., C,D,B)

where (G,Il,B,K) is an ezample of a sort of direct sum operation on

aultlplet valued functions, the dot denotes compOSition, aad the 21 is

a notation for the selection operator.

-------- ------------ -----=------- -- -------

	CC-560001_a
	CC-560002_a
	CC-560003_a
	CC-560004_a
	CC-560005_a
	CC-560006_a
	CC-560007_a
	CC-560008_a
	CC-560009_a
	CC-560010_a
	CC-560011_a
	CC-560012_a
	CC-560013_a
	CC-560014_a
	CC-560015_a
	CC-560016_a
	CC-560017_a
	CC-560018_a
	CC-560019_a

