/&/\

}f
ANy
ke ¥

%

B L e

Q;"SG et

SR I 3
' Magsachusetts Institute of Technology —
Canbridge 39, Hassachusetts
To: P, ¥, Horse
From: J, McCarihy

Pate: December 13, 1957
SUZJECT: A PROPOSAL FOR A CONPILER

ABSTRACT

This memorandum contains the first version of
the first two chapters of a preposal for a compiler, C497;;Z:;~:z;/
Comments on the points raised =o far and complaints f>¢k4~”4fé129b4

about ambiguities are earaestly selicited, ,’/v o

CHAPTER 1

1, Intrecduction

The purpose of an automatic coding system in scientific
computing is to reduce the clapsed time beiween the decision to make
a computation and getiiang the results, It can make {feasible computa-
ticns which, without it, would be too cemplicated to underiake,
This report describes & proposed aew automatic coding system
wvhich I hope will be a sufficient advance over those now availabls or
soon to be available to justify the eifcrt of writing the required
transiation progranm, The specifications for the sysiem are presented
in sufficiont detail for evaluaticn of its merits, but would be subject) %fg
modificntion in the course of writing the translation program, A
aunber of the ideag to be prezented have beey 5L, seated by the Fortran
systen £o t?zvéégé;azjaéggkproposﬁd s@é{”ﬁ?éééé?gor the IBM 709, and
the ngzgé%fé gystem for the Hﬂlvéé:r Tha soﬁré;ﬂzgéguage {3 mainiy -) e

independent of the machine beoing used, except that the provisicns for

referring directly to machine registers and their parts, which we
believe must be included in any powcrful scurce leagusge, have besn worked
cut only for the IBM 704,

in whet {ollows, underlined texma are dofined by the sentences
in which they cccur,

1,1 V¥hat is an Automntic Toding Systen

An autometic coding system has two parts, These ars

1. a socurcd language in which procedures for sclving

Fala ¥l
[u&

problems can be described more conveniently than im machine language, and
2, a tramslation program vhich translates prograns written
in the scuxce language into machine langnage.
Thus we have to do with three programs: the sourée program

written in the source language, the obgec program which is the result
of translating this program into machine 1anguage, and the translator or
compiler which does the translating,

Programlera sometimos lose sight of the distinction between a
problem and a procedure for golving it; this sometimes causes them to
talk about haviﬁg'ﬁritten a problem iﬂ Foitran. The distinctioﬁ ig im-
portant in decidlng what it is possible to make automatic coding systems
do for us, A problem iz defined by a procedure for telling vhether one
has a solution, not by a procedure for getting cne, For example, the
problem'of proving or disproving Fermat's last theorem in one of the
known systems of formalized arithmetic is well defined since am alleged
proSf one way or the other can readily be tested, but there is no known
procedure for getting a proof, The artificial intelligence problem is
that of gettiag a procedure which is good at solving problems in general
and is much hardér than the automatic ceding problem which is merely
that of translating already formulated precedures from one language to
another, The automatic coding problem may admit a fairly satisfactory
general solution although we don't expect to achieve a fully genersl
solution in this systenm,

1.2 %hat Should a Good Source Language Be Like?

It has often been said that if only we could program the
calculator in English, the automatic coding problem would be solved,
The English language has features which have not as yet been incorporated
in any pregrasmming language and which programmers covet, such as a very

rich vocabulary and provisions for introduciag new terminology; nevertheless
it is a priori no more likely that English is very well suited for de-~
scribing compiicated procedures, than 1t is that English is welil suited

for deseribing the theorems of an advanced branch of mathamatics or the

laws of physics, {In fact, English is a very pcor language for giving
complicated instrﬁctions; Some programming systems for business use have
been advertised as allowing the programﬁer to write in English, It secems

to me that these claims are somevhat fraudulent, It is, of course, sasy

to make a system in which the instructions are English sentences. To take

3

an extreme example, we could require the programmer to write "put the
number in register 1000 in the accumulator"” instead of '"CLA 1000".
However, to really be a2ble to claim that English is being used as a pro-
gramming language, one would have to be able to accept any reasonable
synonym for a sentence, and even more important one would have to have
the facility available in English of peing able to define new‘tgrminology.
- . One may haza:d'a guess, that were such a facility available, the pro-
grammer would quick;y'uge it to estaﬁlish e jargon that would £60k aimost
as 1ncompreheqsi§lo to the uninitiaté as the present programm;né iéhguagea.
it might be surmised that perhaps mathematics has ai;aady pro-
vided us with the symbolic tools necessary to describe procedures, This
turns out not to be the case for two reascns, First mathematical symbol-
ism is mainly used for the expressioa of declarative sentences; program-
ming deals in imperative sentences, Secondly; defining new iefminology
is almost always carried out informally in the natural language, so that
mathematics doesn't give tco much help in this important problem,

For this reascn, it seems most likely that a special symbolic
language will be developed for the expression of procedures which wiil
contain those features of the natural and mathematical languages which
are the most valuable. This language will not bs dependent on a parti-
cular calculator, although it will have facilities for describing calcu-
lators and taking special account of their peculiarities, It is not
likely that the language will be as easy to learn to use as preseat com-
puter languages, because one will be able to express in a primitive way
concepts which are expressed in a very complicated way in present systems.

One mey regard & programming language as a co-ordinate system
in the space of procedures, From this point of view, we can see that
one of the desirata for a2 language is that those aspects of a progranm
one would most like to vary are expressed as changes in one or just a
few co-ordinates, We shall call the various attributes of a program
variables, These variables may, in a given system be divided into four
categories:;.Systém‘vafiables, program variables, program segmeat vari-
ables, and computaticnal variables, A system variable is one which
can be changed only bj changing the programmihg system, a program variable
one which is set by the programmer and which‘dces not change during the
course of the calculatien, a progra& segment variable is one which~can

be different fdr different segments of the same progrem, andha compnfétion

CC-56 A

variable is one which changes its.-value during the course of the program,
As Perlis euphaum:u, a asystem can be more poverful than anmother .s‘:lmyly
by making 3 system variable in the one system a program variable in
another, 80il.e‘ of tho. most important differencaes between this system and
fortran can be expressed as saying that certain attributes of 2 Fortran
progran which can only be changed by changing the system, are prograa
segsent variables in our system, BSome of Fortran's program varisbles are
program segment ami evem computation variables in this system. The sim-
plest examples of this are that tho kinds of arithmetic available and
vith them the meanings of the operation sysbols are program segment vari-
ables since new kinds of quantity and new meanings for the operations
can be defined within the system. The typographical conventions are
also program segment variables, The statements themselves which are
program variables im Fortran are computational variables here since the
progranm can generate more source language program in the course of opera- |
tion and can call in the compiler to compile it,

The source language is general enough to express the compiler
itself, This will enable the compiler to be written in a sort of boot-
strepping way wherein esrly inefficient versions are used to compile
later more efficient ones with added features.

1,3 PFeatures of the Source Language

The moat important feature of the source language of this

system is tho freedoas it gives the progresamer to define new ways of ex-~
pressing himself, This ability is provided by several ieatureéo

1, A type of statemaent called the equivaience statement which |
provides for the introduction of abbreviations for any kind of cxpression,

2, 7The translator starts with certain tables giving the reila-

tion between statements in the source language and the successive A
languages through which the translation goes, Much of the tramnslation
is accomplished by compiling tables comprising information taken from
the source program, Either set of tabies can be directly enlarged or
altered by suitable Source program statements, This of courss includes
the tables which determine how table alioration instructioms are obeyed,
3, The shove two features should suffice for moét oxtensions
of the language, However, in addition, certain points in the compiling
program are accessible to the programmer in the sense that he himself
can describe program to be executed at these points under appropriate

cC-56 5

conditions, The writing of such program is made easy by providing
convenient ways to refer to parts of e atatement in various stagas of
translation and to entries in the tables,

4, The ability to describe a computaticn by giving fimal
state of the machine in terms of the initial state without having to
worry ahout intermediate changés to the variables used in the compu-
tation, .

5, An extended set of baaiq,quantities and operatioﬁs Com-
pared to Fortran including fixed-point full words, logical words, and
1-bit quantities which play an especially important role in the system,

6. A direct way of handling propesitions and predicates and
conditional functions which eliminates much branching in the socurce
progranm,

7. A large gemeralization of the concept of subscripted vari-
able where the set of subscripts can be any ordered set and not just the
set of integers, Subscripts in expressions can be arbitrary expressions,

8, A way of describing flow apart from the cosmputation state-
ments,

9, The ability to compile statements referring to lists and
[]
tables, r-‘,io«oa—bo(

16, The ability to define functions and other open and closed
subrcutines in a powerful way,

11, The ability to refer to the machine registers,

12, The ability to compile statements which modify others,

13, The a2bility to compile interpreters and interpretive
coding, -

14, The abilify to define one's own typographical coaventions
includiag the ability to define what is to be done in cases where nothing
is stated, These conventicns can be program or program segment variables,

Because the system as a whole has so many features it will not
be as quick to learn fully as previous systems, However, simplified sub-
systems will be availeble, which will be easier to learn if less powerful,

The library iape oi the system caa contain not only cpen and
closed subroutines, but also the sets of definitions for introducing new
kinds of quantity or for defining simplified subsyst.emso

CC-56 . 8

1,4 Objectives in Designing the Tramslator
Given the source language and the computer on which the

object programs are to be run, there are a number of desirable proporties
for the translator., These include:

"1, The aobject programs should be efficient, This system will
carry out soveral.kinds of optimization on the program including, taking
calculations out of locps when poasible, calculating common sub’expfessions
only once, straight lining parts of tight loops, deciding vhether certain
yuantities should be recalculated or updated, deciding whether tables
should be formed of certain auxiliary quantities, and finally, taking
advantage of certain special situationms, "

2. It should be possible to impose constraints on the abject
program as to where it finds certain variables and what regions of storage
it occupies, Other constraints may also help optimization,

3. The time required for compiling should not be excessive,
This can be accomplished by putting less effort into optimizing thé rarer
parts of the program, This compiler will also have facilities for com-
piling very small programs entirely in high spsed storsage,

4, It should be possible to make small changes expressed in
the source language without recompiling the whole program,

5, It should have goocd facilities for detecting es meny
errors as possible in the source program and printing out a complaint
about all errors that can be found, If possible, the machine should go
on to other vork while an error is being corrected and then take up from
where it 1left off rather tham starting the compilation from the beginning,

6, 1t should make s report on the translation which should in-
clude the correspondehces between the source program and the object pro-
gram, changés the compiler has mede in the source program for optimizatioa
purposes, the location of quantities in storage, information about the
object program including lists of the imnstructions referring te particu-
lar storage addresses and the times required for all subcomputations for
which this can be determined,

7. The compiler should fit into a complete system for operating
the machine which should be so designed as to minimize the elapsed time
between submitting a request for computation and'getting correct results,

CC-56 ¥

1,5 Plan of this Report
The next chapter, chapter 2, describes the kinds of compute
etatements allowed in the system, Compute statements are those which
cause new values to be computed Zor certain quantities, The important
concept of non-recursive program segment which is a natural unit of
program is introduced and discussed, ’

Chapter 3 discusses the statements which determine the flow of
coatrol, These include the conditional branches, indexing over ordered
aets, and the algebraic way of deacribing flow separated from the compu-
tations,

Chapter 4 takes up the statements by which the language can
be extended, These include a kind of statement called the equivalence
statement which makes abbreviations and changes of notation easy, table
entry statemsnts which alter the tables used by the compiler in mk:l.ng
the translation, and finally the facility for introducing prograam at
strategic places in the compiling process, An example is given of how
these facilities can be used to provide new kinds of quantity such as -
complex numbers or quaternions in terms of which algebraic formulas ecan
then be written,

Chapter 5 takes up the manipulation of symbolic quantities such
as algebraic formulas or statements in a compiler, This is important
in itself for making the compiler do calculus and other symbolic com-
putations and also becsiuse this kind of computaticn is performed by the
compiler itzelf and hence will be nceded in the beot~strapping opsration
of writing the compiler in the language of the compiler and using the
simpler parts to translate the more difficult parts,

Chapter 6 takes up input and output,

Chapter 7 takes up the detailed design of the compiler aad
the facilities provided for optimizing programs and also the fitting
of the compiler im an operator system,

cc-56 CRAPTER 2 3

2, GQuantities, Symbols, Compute Statements, and Non-Recursive
Program Segments

This chapter takes up a kind of statement which ias bagic in
any compiler and which we call the compute statement, Compute state-
ments, which correspond in function to the arithmetic staetements in
Fortran, are compiled into program which computes new values for certain
quantitiecs, An example of a compute statement is

A =B+ C/A,

The program compiled from this causes the expression on the right of

the equality sign to be computed using the current values of the guan-
titiea denoted by the symbols A, B, and C, The result becomes the
new value of the quantity denoted by the syﬁbol A,

Before describing compute statements, we first discuss quanti-
ties in general, the symbols which are the handles with which we hold
them, and the functional expressions {called algebraic expressions in
Fortran) in functions, pseudo-functions and operations which describe
the computations, The particular importance of propositional quantities
is discussed, Firnally, we introduce the new concept of non-recursive
progran segment. For many purposes including cosmon sub-expression
optimization by the compiler this is a rnatural unit of program,

2,1 Quantities

Previous compilers admit a fixed set of kinds of quantity,
In particular, Fortran admits two: the floating point number and the
integer of 15 bits plus sign, The present compiler admits an arbitrary
set of kinds of quantity, since there is a process by which new kinds of
quantity can be defined and used, The compiler langusage will have the
important conservative property that the major kinds of expressieon which
can be used with the kinds of quantitises originally provided for can also
be used with the newly defined kinds of quantity. Im particular,
functional expressions can be used with all kinds of quantity,

Basic to this compiler will be the two kinds of quantity allowed
in Fortran and the full length fixed-point quantity, the full lemngtih
logical word of the 704, and the ome-bit propositicmal quantity. Other
kinds of quantity camn be defined in terms of the basic ones or elss by
giving the programs vhich define what the operation and function symbols
mean when applied to these quantities,

CC~56 e

In general, a type of quantity is defined by describing how it
is represented in the machine and vhat operations combine quantities of
this type with others of the same type and also with quantities of other
types. Ve give some examples of kinds of quantity which may be used,

1, Multiple precision numbers

2, Complex numbers

3. Quaternions

4, Vectors

5. Clifford numbers

6. Functions represented in some way, either by a table, a
formula, or perheps by a sequence of expansion coefficients, More
generally, elements of function spaces,

7., Strings of characters, This kind is especially important
since the compiler itself fnnctiois by manipulating strings of charac-
ters,

8. Lists, described in the manner used by Newell, Shaw, and
Simon, We shall have more to say about these later, .

) Quantities can be objects quite different from numbers such as
algebraic and functional expressions, differential equations, shapes,
colors, programs (in somo particular language) or electrical networks,
It is worth vhile to define a new kind of quantity 1f enough exemples
will occur in the program and useful operations can be defined involv-
ing quantities of this kind and other kinds, For example, the cperations
of simplification, substitution and differentiation with respect to a
variable may be defined for algebraic expressions, An operation of
solution might be defined for a cla2ss of differential equations, Opera-
tiong of combination, identificatien of veriables, and compilation might
be defined for programs, Operations of combimation might be defined
for electrical networks as might operation of solution combining a net-
work with initial conditionms,

None of the above kinds of quantity will be explicitly pro-~
vided for in the systeam, though once the statemsnts defining them have
been made, the definitions can be included in the library tape,.

2.2 Sysbols

We describe computations involving quantities by expres-
sions in the symbols representing these quantities, The connection
between a symbol and the quantity of quantities it reprssents is

CC-56 10

determined by conventions which in this compiler are usually program
variables, but sometimes program segment variables, and even computation
variables, In SAP symbols represent the numbers of storage registers
and scmetimes program parameters, That this is so is best indicated by
the meaning of arithmetic expressions in the symbols, However, the
asterisk (*) representing the current value of the location counter in
the new SAP is an example of a symbol whose connection with numbers is
quite different,

In Fortran a symbol rapresents the contents of a register except
that a symbol used only as an index may never have a fixed home register,
The meaning of arithmetic expressions in the symbols bears out this inter-
pretation,

In the course of the later chapters, the reader will see that
a symbol may be connected with the quantities it represents in quite a
variety of ways,

Typographically, we shall allow sequences of letters and digits
beginning with a letter to represent a symbol, We shall not make a re-
striction on the length of symbols and we will avoid aystem conventions
such as that in Fortran that symbols beginning with 1I,,...,N represent
fixed point variables, We will, however, reserve tentatively special
symbols for the contents of the machine registers AC, MQ, ILC, IRl, IR2,
IR4, SL1, SW1, etc. By "tentatively" I mean that the programmer can
reject this usage by an appropriate statement and keep these symbols
uncommitted, The conventions defining a duffers' system might contain
such a statement in order to keep the duffers uncontaminated by any
actual knowledge of the machine., We shall give some examples of the use
of the symbols for the machine registers later,

2.3 Algebraic Expressions and Simple Compute Statements

The points we want to make first are best illustrated by
giving an example of a simple compute statement which is what Fortran
calls an arithmetic statement. In our opinion the Fortran term prejudges
the question of what such statements are good for, Our example is

A = A + B*C + COS{(D) _

This formula is an imperative to the computer to ccippile instructions
that will replace the value of the quantity A by the result of evaluating
the formula on the right side using the currsnt values of the quantities

£C--3¢ 11

represented by the symbols in it.

What is the sdvantage to the programmer of being able to

write such an expression rather than the sequence of expressions

X = COS (D) ‘

Y = B*C

Z=X+Y

A=A+ 2
especially considering the fact the first thing the compiler does with
the original formula is to translate it into something corresponding to
the sequence of four elementary formulas? The following are some of the
advantages:

1, This is the way non-programmers are used to writing

2, The programmer saves writing a number of characters. This
has to be balanced against the fact that the program consisting of a
sequence of elementary formulas is more easily changed than_the single
more complicated formula,

3. The programmer avoids having to invent the auxiliary
quantities X, ¥, and Z, We regard this last as the most important ad-
vantage because experience has shown that it is in the inventing and
handling of auxiliary quantities that errors are most often made.

4, There is an additional advantage that the compiler can plan
the sharing 6! temporary storage better than the programmer can.

The ability to make the output of one calculation the input of
another without having to give the intermediate result any other name
than the name of the calculation that produces it is of use in other
than numerical computation., Certainly it is useful in describing symbolic
manipulations as we shall show later in this paper, and we believe it will
also be useful in data processing.

Algebraic expressions are obtained by combining the symbols rep-
resenting constants, quantities, operations, and functions together with
commas and parentheses as punctuation according to recursive rules which
are too familiar to need repetition heree Just as in Fortran we shall
use the symbols + - #* / and #*= to rqpresent the elementary operations of
addition, subtraction, multiplication, division, and exponentiation,

We shall a2lso want symbols for the elementary Boolean operations, and
additional symbols for the elementary Bcolean coperations, and additional
symbols are desirable . We shall also establish as tentative conventions

CC-586 i2

the same seniority rules between the operation symbols, It should be
understood that since functional notation is provided for, the operatiomn
symbols are a concession to custom; a worthwhile one in terms of the
legibility of programs, .

The calculations represented by the particular operation and
function symbols depend on the kinds of quantity the quantity symbols
in the expression represent, However, the first step in compiling a
formula which transforms an algebraic expression into a sequence of
elementary expressions, is independent of what the operations represent.
It is only after this transformation has taken place that the rules
established by the programmer which dofine the operations on his kinds
of quantities affect the compilation process by determining the trans-
lation of the elementary algebraic statements, The translation rules
may have several effects, First they may give rise to sequences of
machine operations, Thus A = B + C may give rise to one of the four
sequences

CLA A CIA A

ADD B ADD B ADD B ADD B

STO C STO C
depending on the neighboring formulas, Second, a transfer to a
subroutine may be cempiled. Third, the elementary expressions may be
replaced by coaplex expressions in symbols representing more primitive
yuantities, Ve do not discuss how the programmer indicates what kind
of quantity a given symbol represents in this section.

2.4 Pseudo-functions

Programming has not yet reached a state where all kinds
of calculations can be described with no regard at all for the fact
that the machine has a storage which is divided into numbered registers,
In this language we provide certain pseudo-functions which allow one to
connect numbers with the contents of the corresponding registers. They
are called pseudo-functions because while they ccmpose like funétions,
the value of a pseudo-function of a number depends not merely on the
number but also on the contents of the memory of the results of the
assembly process, Here are & few such pseudo-functions:

1. CAR CAR(X) denotes the contents of the address part of register

number X, Thus CAR(3) is the 15 bit quantity stored in the address part

CC-56 ‘ 13

of register mmber 3, We have several pseudo-functions similar to CAR,

2, CDR contents of the decrement part of register number
3. CmR contents of the whole of register number

4, BITS8(Y,Z,Z2) denotes the Y-X+1 bit quantity in bits X through Y
of register number Z.(This pseudo-function should be distinguished from
the function EXBIT(X,Y,Z) whose value is the Y-X+l bit quantity consis-
ting of bits X through Y of the 36 bit quantity Z. 1% is related to the
pseudo function BITS by BITS(X,Y,Z) = EXBIT (X,Y,CWR(Z)). Both BITS
and EXSIT have their uses.) ’

Additional pseudo functions of this kind can be defined as system
or program variables.

5. LYC(X) This pseudo-function for those quantities for which it
makes sense, gives the address of the first register assigned by the com-
piler for its storage. In the compiled program it will generally be a
constant,

6. NAME(X). This is mainly useful in input-output statement
vhen X is an index which runs over a list of quantities, 1ts value is
the string of letters used by the programmer to name the quantity, Its
use can greatly simplify ocutput statements,

2.5 Propesitional Quantities and Functions
A propositional quantity is 2 one bit quantity generally
asgociated with the truth of falsity of a proposition., The value 1 of
the quantity is associated with the truth of the proposition and 0 with
its falsity, This system provides a number of cperations and functions

which can be used to combine propositional quantities with each other
and with other kinds of quantity,

First of all, we have the predicates = , < and £ which are
used to compute propositionel quantities from numbers, A predicate is
a function vhich takes on the values "true" and "false" which here are
represented by the bits 1 and 0, A typical example of a compute state-
ment involving a predicate is

P=(AaB+ C)
which calls for the quantity P to be replaced by 1 if the value of the
yuantity A is equzl to the sum of the values of the quantities B and C,
Hotice in this statement the character = is used both as a predicate
operation and as a symbol for the cperation of replacement, We can
probably get by with this dual usage, although if there were plenty of
character symbole it might be worth while to use something like a left

LL~o0

14
pointing arrow as a symbol for replacement and reserve the = sign for
use as a predicate, . ‘

Secondly, we have the Boolean operations by which propositions
are combined. The symbols for these operations are A for "and", \/
for "inclusive or", AJ for "mot", (¥)for “exclusive or”, D for
"materially implies”, and even ' for "not both". A typical statement
using these operations is

PuQA ((A=B)YP)

Thirdly, for using propositional quantities to compute quan-
tities of .‘othor kinds, we have the function IF, An example of compute
statement involving the IPF-function is

Aa=IF(P, X+ Y:Q U+ V: (A =38), A+ B: CTHERWISE, R)
The execution of this statement causes the variable A to be replaced by
X+ Y1if P is true. If P is not true and Q is true, themn A is replaced
by U~V, 1If neither P nor Q is true and A = B, A is to be replaced by
A + B, Finally, if none of the preceding predicates is true, A is to
be replaced by R '

(1f the IF and Boolean functions are to be compiled into
efficient programs, the usual way of compiling algebraic statemeats,
which involves computing all the arguments of a function before trying
to compute its value, camnot be followed, Ccnsider the statement dis~
cussed in the previous paragraph, If P turms out to be true, it is un-
nececessary to compute Q, (A=B), or the quentities corresponding to
them, A similar circumstance holds in the case of the previcus exzample,
Namely, if Q is false, nothing else need be computed,)

Propositional quantities will play an important role in our
later discussion of control statements,

Propositional quantities have not been explicitly used in com~
putation as much as their importance warrants, This is probably because
the machine facilities for dealing with them conveniently have not usually
been provided, .

It may be poésible to introduce explicitly some propositional
pseudo-functions which occur fregquently im iaformal descriptions of
programs, One example is "A has been done already” where A denotes a
certain action,

1.U-D0 i3
2,8 Non-Recursive Program Segments and Compound Compute
Statements
1t is frequently possible, when planning a part of. a
computation, to regard the segment of program as changing the machine
from a situation A to a situation B where the difference between the
two situations is that certain quantities have new values in situation

B, If each of these new values can conveniently be expressed directly
in terms of the values of the quantities in situation A we say that we
are dealing with a non-recursive program segment. We shall give three
examples of non-recursive program segments,

1, A program to interchange the values of two quantities X
and Y,

2, A progran to perform one step of a prediction operatien,
in the solution of a system of ordinary differemtial equations by
¥ilne's method,

3. The following operation with list structures which requires
a digression to describe a method of storing lists which has been developed
most fully by Newell, Simon, and Shaw in their Information Processing
Languages. In that system a list consists of a number of machine words,
In each word of the list is the address of the next word of the list as
well as a datum, (This assumes that the length of a word is such that a

word can contain an address and still have room for a datum,) In addi-
tion to the data lists there is a free storage list in which all the
registers not filled with data are cennected together, The situation

is shown in figure 2,.6,.,1 wherein an arrow from a symbol to a register
indicates that the value of the symbol is the number of the register,

In the case of the 704 we put the address of the next element of a list
in the decrement part of a list register and put the datum in the address
part, The last item on a list has zero in its decrement part,

Figure 2,6.1

“___),_Tl\,r/;;\. T ..

CC-56 18

The main advantage of such’'a way of handling list is when the
length of a given list is a computation variable such that it is not
feasible to assign enough storage pagﬁénenQIy to each list to take care
of the largest number of elements it;pay ever have, In addition it is
convenient to insert itcms in the middle of such a list or to delete
items from it,

The prbgran aegnsnt ve wish to deoscribe dealing with these
lists is needed when one wishes to insert am element at the beginning
of a 1ist, getting the register for this clement from the free storage
1ist, '

The programs for the above three examples are all'conveniently
described by means of a compound compute statement and are giveam in
Figure 2.6,2

Figure 2,6.2

1, X Y
Y X
2, YOpP|Al#Y1+:Bl+¥Y1P+A2*%Y2+B2*Y2P+A3%Y3+B3+Y3P
Y1 |0
Y1P|YOP
Y2 M1
2P {Y1P
Y3 |¥2
¥3P|Y2P
3. FREESTO CDR(FREESTO)
CDR{FREESTO) A
CAR(FREESTO) B
A FREESTO °

As can be secen from the examples, a compound compute statement
consists of two columns, Corresponding to sach quantity in the left
colusn is the value 1t is to assume in the right column, The nocmen-
clature of the quantities and their values are ali assumed to be given
in terms of the vaiues of these quantities as of the beginniag of the
execution of the compocund statement,

A more elaborate kind of ccmpound compute statement is also

allowed in which there are three columms: the quaatity to be calculated,

a condition, and a value, An cxample of this is given in figure 2.6.3.

€C-56 17

Figure 2,6.3
Gl A B>0 A+l
B=0 A
A-1
B (<o) P 0
c C+l
P ACO Q
NEXT A>0 Gl

The name of the statement is Gl, The first line states that
if >0, A 18 to be replaced by A+l, The second line states that if
B=0, A is to he left as 1s, while in the remaining case, A is to be
replaced by A-1, The next line says that if (B<O) P, B is to be
replaced by 0, Since there are no other statements made about B it
is asgumed that if the above condition does not hold, B will be
unchanged, The last line illustrates the use of another special
symbol: NEXT denotes the next statement to be executed, and in this
compound compute statement, we have that if A”0 the present statement
Gl is to be executed again, If the condition is not satisfied the
physically next statement in the programr will be executed mnext,

Thia illustrates another possibility which will be more fully
explored in subsequent chapters, the concept of the normal procedure,
One can set up conventions as to what is normally done in certain
situations when the prograam does not say otherwise, These conventions
will be under the control of the programmer,

2,7 Universal Quantifiers]

What calculations can be written as non-recursive program

segments depends on the\richness of the language and in particular on
what functions and operations have been defined in the system, To
teke a trivial example, if square root function has not been defined in
the system, then any program segmeat which requires the extraction of
a square root is recursive, Of course, if 2 square root function is
used in a compound compute statement, the method of calculating the
square root will be taken for granted aad will not be subject to further
optimization in the compiling process, ‘

In this section we present another of the concepts of coampound
compute statement which will enable more program segments to be written

LN

CC-56

13

in this form, This extension changes the previous three column format
to a four colusm one where in the additional columm which is to be

written on the left contains an index and a set over which the index
i3 to vary. An example of such a statement is givem in figure 2.,7.1,

Figure 2.7.1
Quantifier Quantity Condition Yalue
k@@ | Am B(I)+C(1)
JeL A(B(J3)+C(J3)) B(J)>5 R(J)*8(J)
A B>0 A+l
1€ (1 to K) L
e @ to®) | c1,K ?;1 ACL, 3)*BEE)

The most obvious domain of variation of an index is a segment

of the integers, but others are possible. For example, an index may

vary over the elements of a Newell list,
2.8 Multiplet-Valued Functions and Their Composition

It is convenient to be able to use subroutines which

take sevéral inputs and prcduce several quantities as outputs, We
shall call such routines multiplet-valued functions., (The multiply
valued function in mathematics is something different. There the
emphasis is on the ambiguity of the value rather than on the value
being an ordered collection of quantities,.,) The problem of composing
rmultiplet valued functions is best illustrated by the example shown

in figure 2.8.1,

In the figure F, G, H, K, and M represent multiplet valued

functions, For example, M has 4 inputs and 3 outputs. The arrows

show the flow of data and the diagram represents a multiplet valued

function with 5 inputs and 2 cutputs which is a sort of compesition of

?, G, H, K, and H,

It is tempting to try to devise a notation to repre-

sent this kind of composition and which will include the ordinary com-

position of functions as a special case, because if we can, we can write

7Y

CC-56 19

computations involving this sort of computation as compound compute
statements,

This can be done with the help of certain rearrangement
operators, |

Again we use a tabular statement form,

Figure 2,.8.2

Ul PG |1 [M }A
Vi I11 1113 |11 B
R |3 c
K {3 D
2 E

4

4

3

4

Figure 2.8,.2 is a direct translation of Figure 2,8,1, B as a
four argument function takes the first four arguments (A,8,C,D) and the
remaining argument is passed along by the l-ergument identity fumction
I1. In the next column a selection operator sets up the four cutputs
of the previous stage into the eight inputs to the next stage., G takes
the first two of these inputs Il the next imput, H the next three, and
K the last two, F takes the first three of the outputs and I1 the last
one, The two cutputs of this stage become the new values of U and V.,

The same statement can be written in & linear way as

o,V -((r,n) « (8,11,H,K) » P1(1,3,3,2,4,4,3,4) o (a,u)) :
(A,B,C,D,E)
where (G,I1,H,K) is an example of a sort of direct sum operation on
multiplet valued functions, the dot demotes composition, and the 2I is
a notation for the selection operator,

	CC-560001_a
	CC-560002_a
	CC-560003_a
	CC-560004_a
	CC-560005_a
	CC-560006_a
	CC-560007_a
	CC-560008_a
	CC-560009_a
	CC-560010_a
	CC-560011_a
	CC-560012_a
	CC-560013_a
	CC-560014_a
	CC-560015_a
	CC-560016_a
	CC-560017_a
	CC-560018_a
	CC-560019_a

