+. A .C1>~“ﬁ°£QQC COPIED FROM ORIGINAL

Imperial College of Science and Technology

Computer Unit

LISP on the Imperial College 7080 Computer

The LISP version available on this machine is LISP 1.55, the Stanford
(California) Export Version of LISP 1.5. Details regarding the structure
of the system and preparation of program decks may be found in the LISP 1.5
PROGRAMMER’s MANUAL, published by the M.I.T. Press. Any program prepared
for LISP 1.5 will run without change in the present system. The extra
features available in LISP 1.55 are listed in notes available from Programs
Records Office, Room 405, Electrical Engineering Dept., Imperial College,

London SW7.

The system uses the FMS monitor and a small FAP calling program to
gain control, and returns control to the FMS monitor at the end of a job.

A complete job, with calling program, will have the form:

*ID 7

PLEASE LOAD CURRENT LISP TAPES
PAUSE
XEQ
PACK
FAP
RTEB
RCHB
LCHB
TRA
10c 10CT

END
* DATA

XK ¥ ¥ %X ¥

oc

]\ 2N

(transfer card: 7, 9 in column 1: 2,3,4,5,6,8,9 in column 3)
(blank card)

(LISP program)

(End-of-file card)

Assembled copies of cards 2 through 13 (i.e. including transfer card)
are available on request from the Reception Room 404, address as above.

SYSTAP is B7 and SYSTMP AS. Tape B7 should therefore be specified as
"LISP"” and A5 as scratch on the job slip. A5 could, of course, be reserved
and later used as SYSTAP. SYSPOT and SYSPPT are A3; punched output is
processed with the standard FMS output without any further action from the
programmer. ’

g

14,
15.
‘,16.
17.

"~ 19.

20.

21.
22,

. .A.Va.llablllty 0.0'0‘0.o..ol.ooo'.o.ooooo.o.l"o.v.l!l

n 180 »

t

| IMPLRIAL COLLEGE_LISE PROLRAMIING GUIDE..,

e o o s ._.‘,_,A,‘Mj I e e

Trows

 J.A. Gimpbell

CONTENTS
Plan Qf the G'U.ide 00.-..-...:.00"000...;000'..0.I..6'

Some HiStOry and P.I'.Opaganda voo-oonooo.ciro.--.oso‘ol

References ooooaoo;oo‘o.‘..o-oootoo-uo'vo-ou‘o-ootvo".

The SCOpe OfI’ISP -‘Q'Q.I.‘..Q..".'0..‘..0.0...'.'.

£ N N

Deflnltlons of the BaSlG Entities 1n "LISP eeveeences

The Atom NIL and Bquivalence between 'Dot'
Notation.and 'List' Notation e.eeeveveveecencircncnes 5

The Functions CAR, CDR and CONS, and the Computer
Representation of Iist Structurecceeceecsces

Prefix‘lqo.‘tation';ooo.oo.oc.c.a..co...uu.O;Qoo.totochl 9

How to Write Simple,Definitidns df'Functions‘~9

The Use of QUOTE,.and some- Special AtOmMS seeeveocess 10

Predicate Functions, and . COND I 1

 Recursive Definitions of Functions eesveeeevsioconsss 13

The Fanction ERROR «.yeeesionreseennoessnnncensennas 13
The Functlons LIST and APPEND14
CONSHANES evaessrovesssevesscnnscnsosasssacnnscanene L&
Example - Part of a LISP Programme;.... 15
The Function EVALll.......................;;. 17

The PROG Feature. amd the Functlons GO, ‘SETQ and
RETURI‘I‘......'..I‘.‘Q..IO‘..' e

-loovoo....-oooa.co‘o..’18

Preparation of the Card Deck for an IBM 7090 .
LISP Programme ® 8 5 05 % ¢ 0000 %9 e 00 e e S & s 0060000 00000000 19
Som34Common Programming BITOTS eoeeeeeennsnns ceeeies 22

Aids to Debugging ceeeeeoveescveeeeiosennane cesrnsns 23

(1)

.8
.
.

<

23.

24.

25,

26.

27.
28,

29.

© 30.

31.

32.
33.
34.
35.

36.
57,

38.

39.
40.
41.
42,
43.

4,

45.

46,
47.

The Most Common Error Messages and their
Interpre‘ta‘tion ...0(‘.0... ooooo o-ob'0~..o.o..no‘..§0'_.l

The Functions SUBST and SUBLIS, and a Comment
about buanoard Tables.. of IntegralsA..... ceseans

e e,

The Punctlon MAPLIST - an Introduction to
Functional Argumentscecce.. T T IR

BOOlean Logic o--0-0..0.0"0'-_000000....0..000.00.';..

The Garbage Collector ..,....................}..;...

How to Write Functlons of No Arguments cevetensseane
Functions for Prlntlng and Similar Operations
Some I‘liOI‘e Useful leCthIlS ..O'bul..‘.;l'.-....‘DOOOG

Additional Functions in the LISP 1.6 System at
Impo“lal Coll ge ’.’."...’..’O.’.-.”."..."..‘...’

The Postal Functlon POST seeveveovesononancoanannns .s
Pause 1.;............;.}..
PuCullarltleS of CLC 3600 LIBP wveevvecocncncoans PN
Peculiarities of Atlas LISP ;.......................
An Index for the LISP 1.5 Programmer's Manual

List of Errata for the LISF 1.5 Programmer's

‘I\Eanual‘o.bo»v~v~oooono.o..ocoo-.o"..n.ao::-..'go-.aov?o;v

Commentary on Appendix 1 of the LISP 1. 5 . '
Prowrammer s Manual seesscssescccsannns ciecessecnssen

SOme Uselul TI‘leS ln IJAP ® 6 0 0 00 8 8" " e s s 90 P se e el

'''''''''''

..........

.......

Feynman Diagrams and Traces - Programmes for

Theoretical PhysicCsS weveioonosss ceessrersecncsseanens

Help% .o'ov..ou.e..coo‘oonoootvnoooo..coc ooooooo > o 000

POSJGSCI'ipt e ®» @ & » 0 0 s e ® 0 0 @ ® ® 6 5 0 0 0 P 6" o 0o e F e Ve e oo ooo'o

(ii)

24

25

26
27
27

27

28
29

29
33
35
35
36
36

46

47
48

50
51
52
53

‘53

62

63

.
* L)

1.

v
RN

23

Plan of the Guide

et o o o ——_— o — — T — o~ =" o~ S

It is reported in section 3.1l.4 of the User's Mapual at
Imperial College that the programming langugage LISP is '
available at Imperial College but is 'difficult to lcarn'.
This view may have been induced by a reading of the LISP
1.5 Programmer's Manual (reference (3.1)), which is a work
far more suited to the regular us:.r of LISP than to the beg-
inner. The first part of the present Guide, up to Section 33,
has the purpose of disproving the quotation in the first sen-
tence above. ¥ith the help of tlis part it should be possible
to write and run simple LISP programmes without reference to
the LIS¢ 1.5 lNManual.

. Following the first Pause at section 33 come nine sections
that presuppose knowledge of the LISP 1.5 Manual, (which is
readily available from efficient British. booksellexs), and
that contain comments or reports of tricks which may be help-
ful for the advanced programmer,

The second Pause (section 43) is followed by some
information of use to programmers who wish to construct their
own LISF systems from the set-up tape at Imperial College.

The set-up tape also contzins card images for LISP programmes
that have applications in the physics. of sub-atomic particles,
and in section 45 there is a description of thase Programmes.

Apart from a postscript, the Guide ends with a few. :-
addressces of people who-may be able teo provide advice if the
beginning programmer in LISP encounters what appear.to be
inexplicable bugs. : ' B

e s s i, e e e e e Ue et 1 e e v e e smere S e, D s S o oot

_ Most non-specislised literature about compu%ers; in the
classical (pre-1950?) period of the subject, 'spent much time

-in discussing their possible uses for logical problems (e.g.

chess-playing) that could not properly have been reduced to
problems only of numerical manipulation. At that stage it
would have seemed that numerical problems represented a very

small part of the total field of scientific applications of
- computers. Nevertheless, the most popular computing language

continues to be FORTRAN, which is most effective only for
programmes that consist mainly of .arithmetic operations.

The earliest successful attempts to construct a

fp:dgramming language suitable for the description of general
manipulations of data not limited merely to numerical materizl
- led to the IPL series:of languages. The best-known member

of this series is IPL-V. +shile still used in some centres,
IPL-V is now rathcr less popular than LISP, because its . =
superficially close resemblance to z machine code makes it-
more difficult to employ ecither as = programming language or
as a medium for the teaching of principles of non-numerical

“computing.

-1~

‘
.

-
)

- LISP (LISP 1) dates from 61959, although the first public-,
ations (notably a LISP 1 Programmer's IManual) to deal with it |
did not appear until 1360. It was developed first for an v
IBM 7090 at MIT by J. lMcCarthy and others. Its flavour of
mathematical logic (well demonstrated by the reference (3.4)),
which was carried over into the LISP 1.5 Programmer's Manual
(3.1), may have been responsible for the legends about the
difficulty of LISP. -

The MIT LISP 1.5 evolved into LISP 1.55 in Boston, and in

1963 and 1964 some further and more utilitarian additions (see

Appendix I of the reference (3.1)) by.courtesy of the Artificial
Intelligence Project at stanford University turned it into

LISP 1.56. The LISP 1l.56 system was imported from Stanford

to Imperial College in February 1965, and at various times up

to August 1966 it was altered somewhat to provide a 'LISP 1.6'
which was of greater use for several specialised problems in _
physics. However, to avoid alienation of non-physicists, it has

‘since been 'de-tuned' to approximately the specification of

LISP 1,56. = ° 4 -

Some of the examples in this Guide have a bias towards.
theoretical physics, but that does not imply that the uses of
LISP are narr wly specialised. The LISF 1.5 manual lists as
uses game-playing, electrical circuit-theory and symbolic
calculations in differential and integral calculus. To this
list, from experience at Imperial College alone, we can add
modal logic, the automatic proof of theorems in the first-order
predicate calculus, teaching, mechanical anthropology (including
the editing of text), spectroscopy (applied to physical chemistry),
group theory, neurophysiology, automatic writing and debugging
of FORTRAN programmes and translations betwcen different machine
codes. In all of thesc problems, LISP programmes have primarily
manipulated non-numerical data and. performed non-arithmetic -
operations. ~Therefore it is not necessary to consider the IBM
7090 at Imperial College as being confined to.the very limited - +
ranf,.. of scientific problems that can be solved only by numerical

metl..ds and FORTRAN programmes. Any procedure that can be

" described completely in unambiguous English can be described (and
presumably executed) in LISP. - ' -

References

Y s e ot e — o

_This Guide is not completely self-contained, and ideally it
should be read in conjunction with the LISP 1.5 Programmer's "

" Manual, which is in any case an essential reference for the

serious user =¥ LISP. The references (3.2) and (3.3) are in
effect commentaries on the Manual, with reports of original vork
on the uses of LISP and its preparation for computers other than
the IBM 7090. (3.4) is now largely of historical interest. '
(3.5) is a Manual for LISP on the CDC 3600 computer, and its
points of difference with (3.1) demonstrate what are the most

- difficult narts of the pb of setting up LISP for a new computer.

3.1. - 'LISP 1.5 Programmer's Manual' (J. McCarthy et al.)
: MIT Press, Cambridge 42, Massachusetts 02142, U.S.A.

- The original edition was dated 17 August 1962, but
probably the only version now obtainable is the revised
edition from February 1365. The price is.S3.00, or 23/-
from British booksellers. '

-2 .

-‘“

3.2 'The Programming Language LISF; Its Operatlon and
Applications' (editors E.C. Berkelby and D. Bobrow),

% Information International Inc., 200 Sixth Street,

Cambridge, Mass. (1964). Copies may still be available
from the Defense Documentation Centcr, Arllngton,
Virginia, U.S.4. for £7.50. _

3.3,- 'The Nauure, Uses and Iﬂplementation of the Computer
Programming Language LISP' (ecditors E.C. Berkeley and
D, Zdwards), Information International Inc., address as
in (3 2). The expected datc of publlcaalon is March 19G7.

3.4, J. McCarthy, contrlbutlon to 'Computer rrogrammlnﬁ and
Formal Systems' (editors P. Braffort and D. ﬂlrschbnrg)
North-Holland Publishing Company, Amsterdam, Holland (1963)

3.5.~'LISP 3600: User's Manual' (J.G. Kent), Teknisk notat E-98,

Forsvarets Forskningsinstitutt, Box 25, Kjeller, Norway (196€).

At 25 October 1966, LISP programmlnv systems were available
for four large commer01a1 computers: IBM 7090/94 D.E.C. PDP-6,
CDC 3600 and ICT Atlas (formerly Ferranti Atlas). Information
about PDP-6 LISP is rather vague, except that research efforts by
the System Development Corporation (2500 Colorado Avenue, Santa
Monica, California 90406, U.S.A) on varieties of LISP 1.5 (NOT to

‘be confused with LISP 2) are due to be transferred from the

military A¥/PSQ-3%32 machine to the PDP-6 shortly, so that encuiries

- either to S.D.C. or to the Digital Equipment Corporation Users'

Serv1ue, Maynard, Massaﬁhusetts, U.L.4., should produce whatever

news is avallablc.'

Details of GDC 3600 LISE can be derived from (3.5); or from .
C0-0P, the CDC equivalent of the IBY SHARE users' association.
In Burope, this LIS¥ sys tem is avallable in Kjeller and Fexris.

Atlas LISP has becen developed by Dr. D. Russell of the Aclas
Computeyr Laboratory, Chilton, Didcot, Berkshire, and is so far
available only on the Chilton Atlas. The Atlas laboratory .

- produces occasional duplicated sheets of 1nformat10n about current

developments of its LISF uystem.'

‘A version of LISP suLtable Lor CDC computers in the 3600
series exists but has not yet been tested. It will be debugged.
on the CDC 6400 of the Computing Centre, Unlvcr51ty of Adelaide,

‘Adelalde, bouth Australla, durlng 1367

The Scone of LIQP

.————...-——‘-.-._—.—-.—_._-—_

Let us begln ‘n examinaivion of the advantages of LISP by a
short comparison w1tn the well-known languagc FOR PRAN. hlerly,
FORLRAN ﬁrogrammms only described ogerduloas on numbﬁrs, whereas

——— e e s e — P S e) Spphe ety

-and text. scconoly, PORTRAN programmmes have rigid requirements of

storage, which means effectively that any va rlahle in a programmc,

~or any mecmber of a dimensioned array can only stand for a single

number. By contrast, a variable or a member of an array in a

LISP programme can be made to stand not only for a single number,

3 - .

3 =
' - "

like 2.7, but for a list of numbers, like (2.7 4.5 9 288.31);>‘

a letter like A, a word or combination of letters like LISP, '

a list of these entities in any order §e.g. (A LISP 2.7 4.5 '
9 288.31)), a list of lists, like (A (LISF 2.7) 4.5 ((9))
288.31), and so on. Therefore quite general operations may

be progremmed in LISP, and tihe conventional arithmetic operations
make up a subset of LISP. S ‘

In thecretical physics, LISP programmes have been written
to take traces of Dirac gamma matrices and their matrix
products vith four-vectors, producing as output the algebraic -
result of the trace geration, and to perform the analytic
proccdurcs of dintegration both over internal four-momenta in
matrix elements derived from Feynman diagrams and over phasc
space in the.final state. BSuch programmes have derived results

- which are sums of up to 35000 algebraic terms in 20 minutes

of computing time on an IBM 7090. Other programmes have .
generated Feynman diagrams, specified tiie asymptotic behaviour
of scattering amplitudes at high energy, and reproduced the
calculation for the magnetic moment of the electron, correcct to
fourth order in perturbation theory.

There are two othér advantages of LISP in comparison with
FORTRAFK, It is obvious to any user where a PORTRAN programme
stops and its data begins, because the rules for writing FORTRAW
statements are laid down in the programming manuals, while the
(different) rules for reading and writing data are in effect
contained in the FORIIAT statements of the programme. By contrast,
units of LISP programmes and data are both written in the same
basic form - the S-expression. (We shall examine the definition
of 'S-expression' below,) It follows that programmes can be
treated as data, and in particular they can debug and correcct
each other to a limited extent. :

The final advantage of LISY programmes over FORTRAN, since
they can operate on combinations of letters, numbers and text, is
that they can write other LISY programmes - or even FORTRAIT
programnmes. 1In practice, it is quite¢ easy to design LISP prog-
rammes to do this. ’ ' '

In conclusion, a disadvantage. TFor large guantities of
arithmetic, LISP is significantly slower than FCRTRaN. Therefore,
if a calculation is primarily numerical, as much of it as '
possible should be programmed in FORTRAN. '

Definitions of the Basic Entities in LISP

S e s e e e e T — . W . Bt S TS o T s oS st St St S e S i i ok A s A o e S P P T S

| The most basic object that can occur in a LISP programme
(or data) is an atom. ‘ ‘

in atom is either 'a number (fixed-point, floating-point

or octal, i.e-any number permissible in a FORTRal programme,

except thot the first character of the,nuabsg must not be the

décimal point) smaller in ma.gnitude than 21 , Or a string of

‘letters, certain special characters and decimal integers not

separated by blank spaces (provided that the first character in
the string is a letter, and that the total length of the string
docs not exceed 29 characters in IBM 7090 LISP or 82 characters
in CDC 3600 LISP). Some possible atoms are: ; :

- -

o 1 1.4 3257Q (+h13 is an octal number, equal
B | S T o 1711)
* 2,986E+12 A - AB. , ’{ZB A E‘(TRALONGSTRII\:GOFZ9CHA?.ACT CR3
SIMP+6 SIMP+6++—

LIsP programmes elways treat these atoms as aWuOle, and do not
split them up into their component characters.

" The next obgpct +hat we meet is the QQiEEQ pair. This is
most simply a pair of atoms which is separated by a dot (vhlch
is the same thing as a decimal p01nt) and encloscd by a pair

cf brackets. A tr1v1%l dotted peir is:

(A B)
and another possibility is:

(2.4 0.3).

Now we can sec why a number cannot bcbln with a decimal p01nt.
Also, to avoid ambloulty, it is always good to leave a blank
space between the dot and each of the elements of a dotted pair -
otherwise we run the risk of- wrltlng nonsense like (2.4.%.3).

Hext, a most important qtatcment @l}_gﬁggg_g;g
S—expressions.

e e s . v e e W oy s

O s e e s St o e s P s e B i Bt e e i e rn e St e o e e

follow1nv°

"A left-hand bracket v
An S-expression -
‘Optional blank spaces

A dot ‘

Optional blank spaces

An S-expression’

A right-hand bracket DR

in that order.

‘Notice that 'S-expression' is defined in terms of itsclfs
the definition still makes sense, though, because we know that
an atom is an S-cxpression. iWe call thls property of 'definition
in terms OL 1tue1f‘ recurs1on., Latcr we shall use rccur51on :

et e e e @t n e

: Obviously (A . B) obgys all the demands of the S-expression
defjnltﬁon, so that it must be an G- expression. Therefore all
dotted palrs are S-expressions mhgreiorc, using the definition
again, we find that ((& . B) . (C D)) is an S-expression. So is-
((A .(CD..EF)).. (GH . IJk2;) In this way, we can build up
S—expressions of arbitrary complexity.

'Th@ “uom NILL and dqurvalbnoc between 'Dot! Notation and 'List’

R e £ e o o e

e e e v e o

‘he greatest dlfflculty in the writing of long S- eXUTG%alOH
n the 'dot' notation .above ig that it 1nvoles much hard vork
to get all of the dots and brackets in the right places. It
seems reasonable to expect some complication with brackets in
long lists, like:

. e .
d +

((1 1)(2 1.414)(3 1.732)(4 2) etec) v
(whose meaﬁing should be evidentl) but the dots merely provide ’
unnecessary detail. Therefore, in LISF, the programmer may use

an alternative 'list' notation and forget most of the dots.

Thers is a special atom nameg NIL in the LISP system, to
assist in the establishment of an egquivalence between 1list
notation and dot notaticn. Let the lower-case letters x and y
stand Ior any S-expressions. Then we have two important LISP

éx. NIL)

identitices: S T
x. (y)) X y)-

By re peated usg of tne 1dcnfliles, we can wrlte (for example)

(4B ¢ D)= (A (B. (C. (D. NIL))))
((A‘b A D))((§A EB 1\(fII:)) ((c. (D. NIL)) NIL))

However, there is no guarantee that all dots can be removed with
the help of the identities. #&s an example ((A. B). ((C. D). jIL))
can be reduced only to ((A. B)(C. D)). Therefore it must be
possible to mix the use of list and dot notations in any
S—expreSelon.

Although_we need to write a minimum of dots when we use. ..
list notation, we must nevertheless remember the equlvalenCHS

with the dot notation, in order to understand how the most basic

IunColone 1n the LISP system obtain their results.

.._.—_._..-....._...—...._—__._ ..._.._.——-..-.....——.-.-.——.——.—._.—.._.___.—_._—_—.______....__..__._...__._u-—‘—..-

- o o e ot W o S o —

I
i
=K0]
5
R
D.;
!
;._'
(O]
]
(6]
ot
33
=
}3
ot
=
W
Q
5 O
H
o
8
o
-2
o
O o
e
o]
h
y ot
,’:7‘
(o)
~
o
P
JEN|
v O
kl'..)
v O
=
U)
\N
.o
L

bits. The bllE systen uses tﬂ€ p081t10ns of 6 of thebe bluS For
special purposes (whose significance is outside the range of ’
this discussion), leaving 30 bits per word for storage of
information. e divide the word into two 15 -bit parts,_tae
'address" part and the 'deerement’ part:.

15 bits 15 bits
address part I decrement par i

Becauge the IBM 7030 has threc special 15-b1t regloters, vie can
look &t the two parts of a word separately, and use the two
parts to-store separatse pieces of 1nformab10n._ - Recall che-
dotted pelr (A, B We store this in an obvious- manner,: by
putting & in the Cdr ss part of one computer word and'B in L“L‘
decrement pdrt oi tne same vword:

f~ I B"'1?

On a very bagic level, then, we need LISF functions which
operate on a compound structure like this and give us back the
simpler parts of the structure, e.g. A or B.

o) .
T . These two functions are:

C4AR ('contents of the address register')
CDR ('contents of the decrement register')

' In the simplest case, the CiR of (a. B) is 4, an@ the CDR of
(A, B) is B. More generally, when x and y szain stand for any
S-expression, we find that

CAR of (x) = x
C4AR of Ex y) = X
but CDR o y) is not y, it is (y)
and likewise CDR of (y) = NIL

These results are easy to understend if we remember tqa
equlvalencLs between dot and list notation from sectlon 5.

How are structures more complicated than (A. B) represcnted
in the computer ? For example, the list (A B) ?

To do this, we must consider the manner in which the core
memory of the computer is organised. Each word of the memory
is an unique location, and this location is specified by an
octal number between ¢ (€Q) and 32767 é?????@) in the IBM 7030.
‘Suppose that the parts of (4 B) = (A. (B. NIL)) are stored in
the computer like this:

LOC/LION . WORD
453320 [E 1 773]
472149 | B NIL

It is nccoessary to associate the two words in some way in order

to set up the list (A B). This is done by replacing '???' in *

the decrement part of the word at location 45%32¢ by a pointer

to location 472144 The LISE convention is that the pointer

. to any location L lS the octal number cqual to the difference of
188098y and L. Therefore, in the present case, '?22' must be

replaced by the octal number 39564(=170@80G— 47214Q)

Now here is an important piece of information which makes
life easy for the programmur. ile nced not worry about the
actual storage locutions of information, or about the need to:
calculate the pointer explicitly. This is done automatlcally
by the LISk system, which inserts new information,; as it is
calculated or recad in, into thé first convenient unused wmord
which it finds in the core memory. Because cof the concept of
the pointer, LISP (unlike FORTRAHY) is not limited to a sequential
type of stcrage or the storage of information which has a fixed
length. : : o :

In view of what has been said zbove, wc can represent (4 3)
in a gsimple diagrammatic form:

:LrA- , ~,§;mﬁ~gt B NIL

Both the address part and the deccrement part of any word ufﬂd to
store information in LISP can contain e¢ither information or -
a pointer to another location where information is storeds

The functions CsR and CDR; as their names imply, each detect

the contents of a nalf—word in the computer but, if what they
find in the half-word is a pOLnter, they follow up the pointer
to the place wherc information is stored, and return the ‘
information &s their value. ' ' :

Let ue exemine this in more detail by looking at e

complicated CKQELlc - (4 (BC DEFP (GHT . K)((LMN\)) Pron the
principles that we have lcarned already, 1t is evident that
this structure can be rcprvsvntbd diagrammatically as:
o T4 ' ‘ y | NID
]Bc‘l‘l - bopp! | NIL .
les| «x Ty | NIL

It is al~o ev1denu that repeated applications of thg functiocns .
CLR and CLR are necessary to recoer nost of the atoms in this
list structure. Below, we write 'equations' in which the
operations that occur to the left of any.= sign produce the
results on the right-hand side when they are applied to the
structure in the last diagram:

CAR A :
CAR of CDR (BC DEF (GHJ . K))
CAR of CAR of CDR = BC
CAR of CDR of CAR .of CDR = DEF

This tends to become rather'tedlousg so the LIS? system contains
- as nares of functions any combination of As and Ds between ths

'C' and the 'R', rrovided that that combination has a maxinmum .

~length of four characiters. Therefore we can write CAADR = BC
and CADADR = DEF. Let us now complete. the analy31s of the
structure in the diagran.

CAR of CDDaDR = (GHJ. K)
CAAR of CDDLDR = uHJ
"CDAR of CDDADR =
CDDR = »(((LMN)))
CDDDR = HNIL
CDDDDR = undefined result (grror
: - condition in- programme)
© CADDR = ((IMN))
CALDDR = LM) -
~ CDADDR = WIL
CAR of CAADDR = LMN
CDR of CAADDR = NIL

C.R, CDR anJ their more complicated compounds are all
functions of one . argument, an S ~e¢xpression which is to be
analysed or ,plwt up in some way. <

The inverse ‘of this typc of operation is pbrlormbd by a
function CORES Twhich takes twio arguments (both S- cxprc331onu)

and mzkes them into a new S-expression by creating a dotted pair.

10.

)

)
For e::nole, CONS applled o A and B as arbuncnts 4iVes the
result (A. B), CONS applled t0” (4 B) and (C (D. E)) gives
((4 3 (C (D E))) = ((o B) ¢ (D. E)) ﬁnd S0 on.

i/e have now seen the uses of the Iunctions CONS, CAR,
CDR, CiaR, CADR, CDAR, CDDR, C4iAR, CAADR, CADAR, CADDR
CDAAR, CDADR, CDDAR CDDDR anJ thic 16 funcrlons whosb names take
the form {4 1etters, cach being cither A or D)R'. All of
these functions exist in the LISE system, and are ready for use
by the programmer. -

Prefix Notation

. . B o S oo

Sunpose that we wish to carry out a simplc operation, such
17 X p b

~as the addition of 2, 3 and 4. e write. ? + 3 + 4 or perhaps.

2 PLUS % PLUS 4. The operator is located between pairs of
operaqdo. ”hls is characterlotlc of lﬁﬁéz ggjgﬁ;gg, which we
In LIS?, however, we alméys use prefix notaulon, in whlch the
operator occurs once, to the left of all its arguments.

Thus 2 + 3 + 4 becomes + 2 3 4 or PLUS 2 3 4, and & more
complicated example like, say, 2 + (3 x 4) + (5 x6 x17),

. becomps PLUS 2 (TIMub 3 4)(TIMES 5 6 7).

A ThAD~ usage is consistent with our conventional notation
for funcitions, like F(X,Y) or G(X,Y,Z), where the function-namc
occurs once, to. the left of all its arguments.

Neither PLUS 2 3 4 nor G(X,Y,%) is & valid S—expression.
Can we find a consistent prefix—notation method of writing both

- as S-expressions ? The answer is simple. PLUS 2 3 4 bccomos

(PLUS 2 3 4), and G(X,Y,%Z) becomes (G X Y Z).

- The greatest part of the swecification of any LISP
programme is taken up with definitions (written as S-expressions)
of functions which the programmér designs to pbrform various
tasks, and to give various values.

Imagine that we want to define a LISY function to which we
give the name NIENTE The function takes two argumcnts, but
its value is always NIL. The S-ecxpression definition which we
punch on an IBM card 2 ¢ inclusion into a LISY programme is:

(NIZHTE (LAMBDA (U V) NIL))

i.e., a list which has the two elbmants on thL top levhl., The

first element is the LIS?Z atom which is the name of the
function, and the second is a specification of the definition
of the function. This second element is itself quite complic-
ted: we alweys find that 1t nas three elements on 1ts own top
level. : :

The first of these.clements is the atom LAMBDA. (This is
a LISE convention, which is justified in the reference (1.1).
howevor, to begin writing simple programmes, vie do not necd. to
know: the jus blLlCPtlon). . :

11.

The second clement is a list of the (dummy) arguments for
the function., (By 'dummy', we mean that the programme can
later substitute any S-expression in their place.) The numbcr
of elements of the list must be equal to the number of .
arguments for the function. If the function has no arguments,
the iist becomes () or simply NIL, since tne LISY system
regards () and NIL as being nqulvalent

i

The third element, which is usually the lonbest and most
complicated S-expression, is ¢ither the value of the funcitlion
or an S-cxpression which, on cvaluation by the LISP system,
rcduces to a final value for the function.

How do0 we make the definition of WISHTE aveilable to the
LIS? system ? By itself, the card conteining the S- expre831on
(JI SIE (I..%BDa (U V) NIL)) is insufficient. we st precide it
in the LISY progrumnme by a curd containing

_ DEFINE ((
and follow it by
)

on another card. In fact, any
number of complete function definitions can be inserted betvicen
any one pair of these key cards, to make up a valid statement
of definition which is part of a LISF programme. The effect of
the statement is to aod the function-definitions to the basic
LISP system. .

In particular, after NIENTE haz been defined, any subsequent
card in the programme which contains

| HIENTE (x y) . ‘ o

for any two S-expressions x and y will cause the LISP system to
return the value NIL and print it in the ocutput. An exanmple of
this is presented in section 17. i

‘(

The Use of QUOTE, and_some i

o - - Gt " v o A —— —

becial Atoms

.-.....--—.--—-—--.-—..—.—.-—...____._...____

Consider the atoms U and V in the decfinition of HILNTE in
seetion 10. Obviously they cannot stand for themselves in a
programme, because then a card containing NISHTE(A B) would
cause the LISP system to return a meaningless or undefined

-result. They must be dumny variables, for which actual S-express-—

ions used in calculation may later be substituted.

48 an cexample, let us Gefine a Iunctlon of these argum'vm,h
which makes use of COUu. :

DEFTHE(((JOIN (LaMBDA (U V ¥)(CONS U (CONS ¥V «)))) 3)

The result of UOIN(A B C) is (4. (B. C)), JOIN (& B WIL) g

(A. (B. NIL)) = (& B), JOIN(aBC (DEF uHJ)(KLM)) = (4BC (DEF

GHJ) KLM), and so on. Supposc that we now want to use JOIN to
build up many three-element lists which have the common propsrty
that their last element is always KILM. We should be able to do
this with 2 new function JOINZ:

- 10 -

v

12.

n).

(JOIN2 (LAMBDA (X Y)(JOIN X Y (KLMj)

But this is wrong ! The,LISP system examines X and Y in the
definition in order to replace them by the current arguments

of the function JOIN2, before performing the functional.
operation JOIN on these arguments, so it will try to do the

same thlng with the S-expression (KLM). Ve must have some

means of distinguishing between dummy varlables, which are
to be evaluated (i.e. replaced by the S-expressions for which
tney stand), and S- ~@Xpress ions which stand for themselves.

The distinction is made p0o31ble by the 'function' (UOTE,
which hes one argumcnt. Wé may understand its behaviour from
the definition (QUOTE (LAM?DA (X) X)). The correct structure
of JOIN2 is: v ‘

(JOIN2 (LAMBDA (X Y)(JOIP XY (QUOTE (XTi)))))

Now you mayvobgect that the definition of WIENTE in section
10 is wrong - NIL in that definition should actually be written
(QUOTE NIL). The form (QUOTE NIL) is certainly correct, but
there are three non-numerical atoms in the LISP system that do
not need +to be QUOTED, because they have special propertics
which meke it illegal for them to be used as dummy variables.
These three atoms are:

P, P and NIL
T stands for 'true' and F for 'False'.
A1l numbers share with T, F and N. +the qualification that

they never need to be preccded by WUOTE: they always stand for
themselves.

Predicate 1unctlons and COND

—— — — o — " - Sy S " S S e T e e e St T St e et e S e

A nredloate is a function which can take only two possible
values, T or ¥, according to whether the proposition which it

~expresses is true or fals:. DPor example, NULL is a commonly—uséd?

predicate function of one argument. If this argument has the
current value of WIL, the value of the function is T; if the

argument has any othcr S—express1on as its current vnluc, the
result is F.

Now we make an 1mogg§§§§_§§§;gzgggg, which is not. part of
the LISP programming Ianguagb, but which we use frcquently for
clarity in later sections of this Introduction. ILet r(...

be an abbreviation for 'the S-expression which is the current

value of ... , i.e. the S-expression which the LISF system

causes to be substituted for ... in a programme’.

Our first use of this definition occurs below, in a
description of some of thc¢ other useful predicate functions
that are part of the basis LISt system.

gATOM i) sTrue if rgﬂ) is an atomnm, false otherwise

NCT X) tTrua if r(X) is the cteom NIL or the nton . F,
: falsc otherwise

- 11 -

50U X Y) :True if r(X) and r(Y) are identical S-expressions,
‘ - false otnerwise . o ' . : '
(BQ X Y) :A faster version of EQUAL which, however, it
' o is only safe to use in situations where it is
... - known that r(X) and r(Y) are both atoms
NUMBERP X). . sTrue if r(X) is a number, false otherwise
§MEMB£R XY) :True if r(X) is a member of r(Y¥) (which should
_ : be a list) on the top -level of r(Y), false
otherwise. '

v

The three folloWing predicatés all generate error
conditions if r(X) is not a numerical atom, and should therefore
be used with care.

(Z£ZROP X) :True if r(X) is zero, false if r(X) is any

- other numbar _
(ONEP X) :True if r(X) = 1, 1.4, 1.48+48, 1.48-¢¢ or 1a,
» false if r(X) is any other number _
- (MINUSP X) sTrue if r(X) is a2 negative number (including

any representation of zero which begins with &
minus sign), false if r(X) is any other number.

v The function COND provides a fast means of -testing up to
20 predicates in order to find one which has the value T. This
function can have any number of arguments between 1 and 20, and
each argument is a list which is made up of two S-expressions,
so that it has the general form (P £).r(P) is almost always T,
F or WIL but, if r(P) is any S-expression other than F or NIL,
its effect on the function COND is the same as if r(P) = T.

The value of; .
(COND (P1.EL) (P2.E2) (P3 BE3) (P4 BA) veveveenens)

is the value of the ALGOL-like expression 'if r(P) is T then

réElg, clse if r$P2) is T then rEE2§,_else‘if r(P3) is T then -

r(E3), else if r(P4) is T then r(84) '. Note that, in
general, if no r(P) in the COND is effectively T, an error
condition ('error A3') will occur; for the only exception to
this rule see section 17. Therefore it 1s wise to make tie

last r(P) of the COND expression equal to T, which is most
simply done if we put T in place of P itself.

In the evaluation of the function COND, the LISP system
scans the arguments of COND from left to right until it finds
some r(P) that is effectively T. The value of the entire
function COND is then thc value of the corresponding r(E). A4is
an example, let us define in LISP the step~function, which has
one argument and which is defined as the integral from minus
infinity up to the value of that argument for the one-dimensional
Lirac delta function. This step function is zero if the argument
is negative, .5 by convention when ‘the argument is zero, and 1

~when the argument is positive. If we give the function the
name oSTEP in LISP, we can combine some of the results of
sections 8 and 10 to write:

(STEP (LasMBDA (M) (COND ((Z:ROP W) #.5)
e ((MINUSP N) £),
(T 1)))

“ Probably about half of the functions usecd in any programmne
arc deiined by -consideration of a finite number of casces
‘satisfied by their -arguments. Therefore COND is of great use
in the definition of functions. ‘ve shall see our iirst detailed
example in section 13, and others in seciion 17.

peiuuipuipuispaipnofpraiphipipipiylpappmymill Sy asaE A L

Ia sections 1l and 12 we have met examples. of how a >
programuer can build up definitions of complicated functions by
using both the simpler functions defined in the LISP system and
simpler functions that he uhas previously defined for himself.
However, it is often true that the best definition of a function
is a definition (by induction) of the function in terms of ths
function itself (e.g. the factorial function for positive
integers). ' ‘

Consider one such function: PAIR, whose two arguments arc
lists with the same number of elements, and whose value is a
list in which corresponding elements from the two arguments arec
made into dotted pairs. For illustration, PAIR acting on
(Al A2 A3) and (Bl B2 B5) gives ((41l. Bl) (42. B2) (A3. B3)).
The appropriate definition is:

(PAIR (LAWBDA (X Y) ECOND ((NULL Xg NIL) | '
(T (cous (CONS (C4R X) (CaR Y)) (PAIR (CDR X)(CDR Y)))) N).

Tirstly, it is strongly recommended that any intending LISP
programmer should spend some time analysing on paper the manner
in which this function works, for the arguments (Al A2 A3) and
(BL B2 B3). The structure of the definition of PAIR is a
structure that is highly characteristic in LISP, and it will be
encountered many times. If a simpler example is needed to
demonstrate only why the first of the arguments of COND above
is ((WULL X) WIL), then consider the function REMAKE, which acts *
on its one (list) argument like the unit operator: '

(REMAKE (LAMBDA gx) (cowD ((NULL X) NIL)
(T(coNs (CAR X) (REMiKE (CDR X)))))))

Secondly, the LISP system accepts all recursive definitions.
of functions, and it handles computations with these recursive
functions very easily by making automatic use of an inte¢rnal
device that is called push-down list. '

14.%%e Punction 7 IR

. T S Ay PR p—

The functions STEP in section 12 and PAIR in section 13 will
work correctly when they are given arguments of the correct form,
but an error in computation will occur if the form is unacceptable -
e.g. a non-nunmerical argument for STEP or two lists of unequal
lengths for PAIR. - But the question of acceptability of the :
argument(s) is merely a question that can be answered if an exira.
argumcnt to test for acceptability is given to COND in the :
definition of the original function. If it is the case that the
form of the argument(s) is wrong, we may make use of the function
ERROR, which has one argument, to bring the computation to an

~orderly halt. The choice of this one argument is completely open
to us, and we use it to gain the greatest possible amount of
information about the source of the error. '

13-

15.

16. -

“its value is

APPERD (VIL y) .= y.

In particular, if PAIR works correctly, r(X) should becone

'NIL exsctly when r(Y) becomes fIL, and not at any other point of

the computation. Therefore we can amend the definition in
section 11 to: : o

(PATR (LAMBDA (X Y) gbOhD ((WULL x) (UOU ((NULL Y) HIL)
(T (% RROR (LUOTE PAIR-IS- 4RONG)))))
(T (cows (COES (CaR X) (CiR Y)) GAIR (CDR X)) (CDRY))) i)

The modification of thc definition of BSTEP, to causs
termination if the function is given a non—numurlcal argunent,

is left until section 17.

The Functwonb LIST and nifuND

— ——— - 45 o Sme S G T — " s S # T s T e et S G s Yt G B

LIBT provides a quick means of bypassing excessive use of.
CONS and WIL when we are making up a list from a variable
number of X-cxpressions (betwbcn 1 and 20). Some simple
equlvalvnc 'S are: ' ‘

(LIST X) - chws VIL)
(LIST X Y) = (COifs X (COus Y NIL) L
(LIST X Y Z) = (COWS X (Cows Y (SCis Z NIL)))

Therefore LIST is a function oi between 1 and 20 arguments, and
a list of those arguments.

APPuND is a2 function of two arguments, that provides the
means for joining two lists into a single list without mulr 1910
uses of CONS, CAR and CDR. For example, APPLND applied to mne
arguments (A (BC DB) FG) and . ((HIJ KLM) KOP (GRS. TUV)) give
the res ult (& (BC DE) PG (HIJ KLM) WOP (.®S. TUV)).

It is useful also to bcar in mlnd tnat AFPEND (y NIL)

’
-

Constants
Until DOu, we have only seen functions that generate reszults
and cause them to be prianted in the output from the computsr.

- Once thcese results are Urlntao, they are not accessible to

subscquent steps in a pr ramme.. We may therefore ask: 'vwhat is
the proccdurce for putt1n~ a rcesult somewherc in storabe from
which it can be recovered for later use?!

The answer is that ve can assign an unigue name (a LISP atom,
to the result, just as cacn ‘unction-definition that we make is
referenccd by an unigue name which is the name of that function.
we may later refer to this name andé thereby recover the result

For function de¢1n1t10ho, the assianment is performed by the
function DuFINs, which we have secen already in section 10. The
gnalogens function ror storinz results (aPQ ior storing many itv.oms
of input information that are not function- dcflnltlons), and which
makes the namne of any result into a constant of the system, is
CSET. 1In som: contexts we use CSETQ, another function which has
the same ciiect,

~

Practiceal ﬂxamples of tix¢ uses of C3ET and CS&Te will be
given in oectlon 17 ‘ '

17

—— i ——— — o — T Gy - oo e et S S G B P G P s e N T oot g G B

A TISP programme is not organised sequentially, with a
well-defined beginning and end (which may be observed in any

numerical programming language like FORTRzN). It consists

first of & collection of programmer-defined functions to do
certain parts of a given job, and then a command to the LISP
system to use those functions to dc the job. The functions
call ezch other, and there is one function which initiates

“the entire seguence of calls that occurs during the perform-.

ance of +tire job. The commend that is mentioned two sentences
abovc consists of the occurrence of the name oi that function

on one card of the programme, together with a list of the

function's arguments.

Ag an example, we write a set of functions to perform the
algebraic expansion of (1l4x)® for arbitrary x and (positive
integer) n. IEXPAND is the initiating function, and it calls
BXPsID2, which calls itself and BINOM, a function that
determines binomial coefficients and calls the function FAC,
the factorial function, in order to do so. We also cause the
functions STHP and NI&HNTE (which we have seen before) "to be
defined at the same time, for convenience, because this does
not interfere in any way with the sc¢t of functions associatved

with BL-AND. ‘
To do this, we punch on IB cards:

DEFINE ((-
| (NIENTE (@LAMBDA (U V) NIL))

(sTEP (LAMBDA (Y) (cowD ((NOT (WUMBERF Y)) (ERROR (LIST
(LUOLE STEP) Y)))
((ZEROP Y) ¢/5) (((MINUSP Y) &) (T 1)))) :
(EXPLND (LaMBDA (X N) (LIST (QUOTE PLUS) 1 (BXPAND2 XN 1))))

(EXPAND2 (LAMBDA (¥ORM N i) (COND

((By W WA) CONS (LIST (WUOTE ZXPT) FORM N) WIL)) '

(T (CONS (LIST (QUOTE TIMES) (BINOM K NA) ' .
(COND ((ONEP NA)PORM) (T (LIST (QUOTE EXPT)FORM KA))))

g&xrhmbz FORM H(aDDL ¥4)))))))
(BINOM (LiMBDA (4 B) (LUOTIENT (FAC A) (TIMES (FaC B)
o éFAC'(DIFFERENCE A B)

(FAC (LaliBDA (X) (cogp)()§gaoy N) 1) (T (TINES N (FAC (SUBL N)))

) : :

By way of additional explanation, (ADD1 X) is a function whose
v?l?e is the sum of 1 and r(X), and SUBLl X) subtracts 1 from
riX). ; '

Hov suppose that we want to apply NILETE to the argumcnts
1 and FRED, STEP to 52, STEP to FRED, ZXPakD to (TIMES LLFHA X)
and 4, FAC to 4 and BINOH to 9 and 5.. We punch these cards:

- NIENTE(L. FRrD)
STEP(52)
STEP (FRED) ‘ R
CEEPAUD((TINSS LLPHA X) 4)
FAC (4)
BIKOM(9 5)

and add them to our card-deck after tie function definitions.

- 15 -

ihen all the cards are run on the computer as part of a LISP
~job, the printed output 1ooks approximately like this: .
“UNCEIOL oo
DEFINE)
ARG(S) v, - ’ :
(((§Izuts (LAMBDA (U V) KNIL)) (STEE (LAMBDA'(Y)
2 and so on, down to
(FAC (SUBL §)))))))))
ValUs OF

RAwSULT IS ..
(WI=WTE 57T

SU
uPp panuD EXPAND2 BINOM th)
FUNCTION, ..
NIZHT®
ARG’ (S) o e
(1 FRED)
Valls OF 1?*‘.SUT'I‘ I5..
NIL :

PUNCTION...
STIP '
“RG(S)...
(52) |
VALU= OF RESULT IS..
1

FUI‘;O TION— o e e
- STEP
ARG(S)e.s
(FRED)
——————— ERROR NUMBER A 1 ————e
ES TEP .'_l .LL.uD)
STEP)

| FUHGTION. ..
. BXP:OID

- AR\T(O).QC V

((.LI m8 ALFHA .u) 14)
ValUl OF R&pULT IS.. B

(PLUS]_ (TTEES 4 ”IWLD A
2)) (TIias 4 (EXP

; 6(“%?T (TIMES ATPHA X)
(.L’Iu‘..S ALPHA X) 4))

, FUﬂCTIOL...
FAC

::.LL\.A (). .e
(4)

VALUSE O" neSULT IS..
24

PUNCTION... .
BINOM '
ARG(S)ew.
(9 5) '
VALUE OF RESULT IS..
126 ‘ :

In the programme above, the result of the binomial expanszion
for wXPAWD is printed and then lost from the core memory of the
computpr. Powevcr, if we had vwished to preserve it for future
use, we could have decided on the namc¢ BXPANSION for it, and
replacbd the card with the command BXEAND ((TIMES aLPHA X) 4) by

- 16 -

~+ (LAMBDA (i B) (CSET (JUOTE EXEANSION) (BXPAND 4 B))) ((TIMES
' ‘ :ALPHA X) 4) . o .
or (LAMBDA (4 B) (CSETQ MXPANSTON (:XPAKD 4 B))) ((TIMEZS ALEHA X)4)

The equivalence of these last two commands indicates the
nature of the relationship between the functions CSET and ConTle

18. Tne Function EVAL

We heve previously used the phrzse 'the LISK systen' cquite
freely. The system is a collection of basic functions (1ike CLR,
CDR, cte) written in machine code (PP, in the case of he IBH 7090,
4BL in the case of the Atlas), but there are several key functions
in the system whose task it is to interpret automatically all of
tine operations and commands that occur in any programme on cards.
The principsl function, which is named EVALQUOTE, is discussed in
detail in ths reference (3.1). BVLLUYUOTE makes use of =VAL, a
function thet is explicitly available for the purposes of the
Prograiiicr,

WVAL is a function of two arguments. For (EVaL X 4), r(X) is
the guantity to be evaluated, and r(A) is the association-list or
a-list, which is also described in detail in (3.1). However, for
many practical uses of &VAL, we can replace 4 or r(A) by WIL.

Let us look at a casce where %VAL is needed. Consicder a part of a
programine made up of the cards

CSET(TRICKLIST (PLUS 2 3 4))

DEFTiiE ((|
(TESTFN (LAMBDA () (COND ((ON«P ¥) TRICKLIST)
(T (4VAL TRICKLIST WIL)))))))

TESTFIT (1)
TESTEY (2)
EVAT (TRICKLIST NIL)

The last three Steps in the printed output from this programme will
be: ,

FUNCTION.,.
TESTF

ARG(S)..
&

VALUE CF RuSULT IS ..
(PLUS 2

PUNCTION...

Ta3TEFN
ARG(S)ess

e
VaLUE O0F mu3ULT IS..
9

FUHGTION. ..
EVATL
ARG(S)... .
(PRIGKLIST NIL)
VALUL 0F “G3ULT IS ..
(PLUS 2 3 4) |

' This;example demonstrates the most important basic uses o
and &Val. '

H
(@]
oz
%
=]

- 17 -

.

19,

The DQOG Peature, and the Punctions GO, SEMW !

___.-.-.”.-..———— -—.—.———.—.—-————-—— s s > e - S " S - S S | > S an S —— —— - -

é
&
[\v]
=
[e]]
)
ta
3
o
=

Although o complete TISY wrogramme is not organised like a
complete FORTRAN programme, there are occasions on which it nay
be dc51f1b1a to write single LISF functions that are organised
like 2 FORIRAN programue. An sxample of this method which usas
the —called FRCG fezature, is the functicon LuwWGTH, which has ss

“1its valua tue number of S-expressions on the top level of its

arzum:nt if this argument is 2 list, and 1s zerc if the argument
ig WIL (and is meaningless otherwisel). Je write:

(LESGTH (LumBnA () (PROG (4 B)
. (sr > A D) .
o ’l‘x\, B N)
GX (COHD ((WULL _3)("{31
SETG A EADDI A))
SETQ B (CDR B))
GO GX))))

The four new funcitional operations which we find here are
;ROG‘ G‘O S,\r ’ and RuTURY.

£ROG occurs always in the position shown, in a function-
definition which make use of the PROG feature. It is a special
conventional LISP marker like LAMBDA, 'and must be followed
immediately by a list of programme varl bles. If there are no
PO gramie variables, it should be followed by () or HIL. (This
is uﬂllLvlj in the case of PORTRAN , in which programme varisbhlcs
do not havc to be declared az such) -

GO is effectively a transfer statement. It can be und
d 1maedi:tely in terms of FORTRAN, except that the labe
tenecnts in a PROG feature in LISP are LISP atoms, not

S=TQ is snalogous to CSETyL, except thiat its effect is
confinzd to tne PROG feature within which it occurs. The
function-name SETQ is an abbreviation of 'set and quote'.

(32%3 U V) hss the effect of establishing that the nzme U (not
r(Uj!) is associated temporarily with r(V) In the PR0G feature
the function LENGTH, (85T A P) is the LISFE equlvalenu of
the FORTALN Btgtﬁment A =g, and (S&ETQ 4 GDDL 4)) is equVMlbﬂ”
to & = 4 +1.0. : .

BTURN causes computation witinin the PROG feature to cnd.
JRJ V) bnuu es that r(V) is the value of that computation.
i occur any numb.r of times within thc one PROG.

n

If a FR0G is not caught un in a non-terminating loop, if i%
last statement is reached and that statement dces not contain
=“”?E tire value of the computation deteimined by that PROG
2111 &1“aya be KWIL. ' ~

If no v(?) within thc general form of & function “OmD (

section l’) on the top level inside a2 PROG is effectively e
to T, an ¢rror condition will not occur. The computation vi
,prooee7 QOLmally to the next stztement of the frOG

sce
gqusl
i1l

Functions can also be defined recursively with Pﬁ\G. AN
artificial butbt correct example of this is uan slternative
definition of LanGTd: : :

20.

»

* v ‘GTH ELAMBDA () (IGTH T £)))
(LGTH LaBDA (W) (PROG (&)
~ (CO8D ((WULL 1) (RSTURN m)))
(S5 A éaDDl M))
(RETURY (LGTH (CDR N) 4))))).

.....

Beware of a common mistake, though - if RSTURN is omitted and the

la t line of LGTH is simply (LGTH (CDR H) 4), the result will
lways be KHIL, ’ S

Preparation £ the Curd Deck Ffor an IBM 7090 LISFE programme .

-.-—.——...-..,......-_.....-—.—.—.—....—_.—-—-—_——...—_.——..—.—-.-.-—-—.——_————-—_—.—_——.——— — e o o g

We have already seen some exanples of the contents of cards
which make up part of a LISt programme. The only important
additional item of information about these cards is that their
contents cen be punched anywhere in columns 1 through 72 of cach
80~column card, and they can overflow from any one card to the

ext. o continuatidn. markers are necessary.

Lzt us now look &t the components of the card deck for a
ST job. '

I
20.1 - the deck is headed by the Imperizal College ID card. The
correct entry for the section beginning at column.3l . is
FiiS, since LISP uses the FiS monitor. LISP jobs will
not run under the IBSYS monitor,

20,2 - A comment card comes next, with an asterisk () in column’
1, 2nd a message to the computer operators to mount a
current LISY system tape (you have the choice of X51 or -
X247, but pleasec specify once of these), tc be saved and’
filn~protectcd on tazpe drive BT. qu message can bc
punched in columns T through 72.

20.3 - the LISP loadecr, a snort binary programne. Copics of tune
lozder may be found in the 'LISP' library drawer in Room
405 (and may be taken away for permanent use). Contents

. ’ of the cards of this loader are as: follows:-

= in column 1, and the word PAUSE bsginning in column 7.

x in column 1, and the word XuN buglnnlng in co1umn G

Card 3
12, 7,9 punches in column 1
1l Bunch in column 2
12, 7,9 »punches in colunn 4
1 »unch in column 5
7,9 nunches in column 6
7,9 punches in column 9

_ 19 -

——y o -

11, 7, 9 punches in column 1 .
1, 3 punches in column 2 ‘
0, 1, 2, 3, 6, 8 9 punches in colunn 4

.0 - punch in colunn 5 -

11, 2, 5, 6, 7, 8 punches in column

punch in column 7
1, 2, 3, 4, 5, 8 punches in coluun
11, 2, 5, 75 8, 9 punches in column
12, 1, 3, 4 punches in column 16

AV)

= o
UI\AN

7 punch in column 18
12, 1, 3, 4, 7 punches in column 19
5 punch in column 22
9 punch in column 24
12, O punches in column 25
2, 3 punches in column 26
Card 5
% in column 1, and word D:iTi beginning in column 7
Cerd 6
7y 9 punches in column 1

2, 35 4, 5, 6, 8, 9 punchcs in column 3

- o - —

Blank card (optional but recommended)

20.4 - The LISY programme itself
20,5 - 4 card containing FIW in columna 8 through 10, and blznk
elgevhere :

20.6 - in end-of-file card - punches in rows 7 and 8 of coluuns 1
and 30, and blank elscwhnere : A ¢

The programme in (20.4) may be divided into any number of
parts (including one). ¥e may choose to allow these parts to
~communicate with cach other, or to be self-contained. ZHach part
must be headed Dby a special control card which is not writicn

in LISF, and concluded by the statement ST0F)))))) on ths last
card. The word STOP should be followed by several right-hand
brackets, although the actual number of these brackets is
unimportant. : :

fach such part of a LISY programme is ealled a packet.

t is important for the discussion below to note that, as _
soon 23 the LISP loader is processed by the computer (and before
the processing of any packets), the machine puts a copy of the
system tape's contents (from tazpe drive B7) onto a tape which
(for the IS monitor) is mounted on tape drive B3 in the cas
of Oxford LISF 1.6. :

b
d

The control card at tic nesd of cach packet sihiould have a
control viord beginning in cclunn 8, and whatever comuients you
like (dncluding no comments at all) in columns 1f through 72.

For basic programming, only three control words should be
“ - .
known. :

- 20 -

packpt ccntrolled by the word SzT will be . processed
conventlonally, but, if it is free from computational errcrs,
Jghe results of 21l 1ew function-definitions (via DEFINE) end
esta bllsnmunt of constants (via CSET or CsdTw) will be added %o
~the basic LISP system. At the conclusion of the packet, the
conputer popies this 'updated! LISP system onto the tape on the
drive B3, and usss that tape thereafter as the source of the
system for all fursher packets. However, if an error occurs
within the packet, nothing is copied onto B3.

(\)

4 packet controlled by the word SSTSET behaves in all
respects like a 82T packet, except that, if errors occur within
it, an updsted systen (complcte with the effects of the errors)
is copied onto B3. Therefore SuTSET should be used with care
(or low cunning), or it will affect the behaviour of all
subsequent packets adverscly

A packet controlled by the word TsS57T can make use of -
definitions and constants established in all previous SLETSET or
error-free SET packets. It is self-contained because, even if
it is free from errors, its definitions and constants are lost at
the ¢nd of the packet and not copied onto B3.

Flnully, if we wish to preserve all the successful results
of SETSET ond SET packets from any one job on tape (rather thar
on cards) for use with other jobs at later times, it is evident:
that all we have to do is to ask the operators at the computer
installation to remove the tape on the drive B3 at the end of
the job, and save it. This tape should then be mounted on tioc
drive BT for the later jobs, for which it becomes the LISP syszem
tape.

The job regquest slip for an ordinary LISP job shoulda specify .
the use of the FiIS monitor, and indicate that either tape Z51 or
tape X247 - whichever you prefer - should be placed (file-
protected and saved) on the tape drive B7. Additionally, in
connection with the paragraph above, if the tape on B3 is to be -«
saved at the end of & job, presumably it will be a numbered tape
which the programmer hss .previously asked the tape librarian to
reserve., In that case, the gob Sllp should also carry the
‘request that this tapc be mounted (saved but not flle-probected)
on tinc tape drive B3. .

If the tape on B3 is to be unloaded and saved at the end of
the job, one method of ensuring that it is not partly over-
wriﬁten before it can be unloaded is the addition of a second
trick 'job' to the original card deck following its end-— of-file
card. This trick job should have a maximum running time of a1
minutes recorded on its ID card, and (1n addition to the ID card)
should congist of:

i) a comment card advising the operators that the job is
merely to allow time +to unload B3 and BY
ii) a PAUSE card identical to the PaUSE card of the LIST
' loader (20.3)
iii) another end-of-file card

There is no nced to make any reference tc this trlck 'job' on
the job request slip.

Next, let us consider a short example that 111ustratcs thic

different uses of bul ‘and TEST pac&ets, by looking at the cara
deck:

21.

21.2 -

SET ' ERROR-FREEZ EXANFLE | ‘
CSET(ZXAMPLE (A BC D E)) ' ST0E))))))))
CSET EXAMPLE WITH AN BERROR (BRACKET MISSING) :
SET(EX4MPLE (4 B C) " STOF))))))))
TBEST THE EFFECT OF TH: PREVIOUS 2 DACKBTS
(LaMBDA (M) (FLUS M (LENGTH EXAMPLE))) (4) ST0P)))))))

In the seconé SET pazcket, we have tried to make LX&MPLE the neme

of a list (A B C) ‘of length 3. However, that packet contains

an error, so our crxforts are not recorded on the tape on tue
drive B3, Instead, on B3 we hzve the earlier result that
BXsMPLE is the name of a the list (A B C D E) of length 5.

The calculated result in the TL3T packet is therefore 4 + 5 = 9.

Finally, a small point about the punching of a card. deck,
Suppose tihiat we have a funcr10n Fii2 of one argument, and that
the atoms T and F are likely to occur as possible values of the
argument. The print-names of T and F are respectively =Tz and
Pk, and the effect of this information is to make the choice of
which of the forms we punch dependent on how the function T2 is
called. Below, we have three ﬂorrect examples (in the first
colunn) and three ‘incorrect examples:

FN2 (=Tx) FNZ(

SL‘VBDA (X) (FF2 X)g ﬁiTx) (LAMBDA (X) (FN2 X)) (T)
LA¥BDA NIL (PH2 T)) (LANgDn NIL (FW2 =T=)) ()

It is also @ point worth rcmembering thau, inside the LISP system,
NIL can manJu replace ¥ or =Fx without any undesirable results
Therefore we need never punch F or =Fz at all, provided that ve

- alwgys put NIL in their places.

peiubynipu iyt giiysiuipui & St puianinieg <> Smaguibniiiyiiot

With the use of the information in the first 20 sections, it
should be DOS3 ssible to write guite detailed LISFE programmes. Moz
of the scctions which follow (up to section 32) contain inform- .
ation about more advanced concepts and functions which, in any

-case, are degscribed in the.@fcrence(B 1). Therefore no. is the

time for z practical roview of the most common programming errors.

2l.1 - By far the most important error is failure to count .
brackets correctly. In any function or command, in fact
in any non-atomic S-expression, the number of left-hand
brackets should equal the number of right-hand brackets.
In any packet, the refusal to obey this rule means that
part or all of the packet will not be processed. It is

a peculiar psychological effect that right-hand brackets
arc omitted between 8 zné 10 times eo:&;quently as left-
hand brackets. In either case, the legson is: COUNT YOUR

— e e o e man

BRACELTS CARYFULLYY This is. Wnltlally the most difiicult
pa rt of LISY programming, but it may be some consolation
that any LISY programmer can usually count brackets sub-
congciously (Ana correctly) after two or three months of

experience with the language.

Juite lrcoucntly some quantity g is written where

(QUOTE) is intended, or needed. Thus the programme tries
() ‘véguate a, and uuuully produces the error messages 48
or 49, In such a case, g is printed out on the linc below
the error message in the output, so that the mistake can

be ildentified quickly.:

- 22 -

21.3 - & function may be given the wrong number of argumentss,
vihich leads ;0 the error nmcssages F2 or F3. The most
comnmion cause of the error is tnat one arﬁument is omitted
at ths znd of a recursive definition of & function, e.g.

(PN (LiMBDA (X Y) (COND'(EEULL X) 1)
(ATCHM (CAR X)) (COWS (CaR)@I(%RX)Y)H
T Cons (CuR Y) (FN (CDR X))))))

This error may 2lso have z psychological origin - it -
always seems to happen in thc same place as 1t 1s
displayed in FN.

2l.4 - Physicists and other binomial-series expanders may have
trouble with nocullarlclcs of the numerical functions
(5XPT X Y) and (R““IP 1), which are equivalent to XY znd
1/X rbspectlvely. For the first argument of EXPT, r(X)
must not be negative, otherwise an error message Io will
occcur, 4L gimilar LISYE deficiency, which 1is harder to
identify bCCquSc it produces no .error message dircctly, is
that (RZCIP X) is zero if r(X) is a le“d—pOlnt or octal
number. A cure for this inconvenience is that fixed-point
numbsrs can be turned into Iloatlng—p01nt numbers by . the

following tricks L

(FLOAT (LawBDs (¥) (PLUS 2.3 W - 2.3)))
Octal numbers sre suBceptible to the sahe_tfick.

21.5 - 4 numerical predicate like ZEROP or ONEF may be given an
argunent which is not = numerical atom. This produces
the error message 13.

21l.6 - buvpose that we define a function sBCF as a SuT packet,
anG that the definition is correct, but that some other
error occurs in the packet. Then ABCP is not available .
Yor use in any subscguent packet. If we try to usc it
by meking reference to the nanme 4BCF, we get the error
g s and the name of the functicn is printed out
he line below the error message for rapid identification.
21.7---C:R CDR- and their compound functions CaDR, CDDAAR etc.
produce undefined Iesults when they are ”qun atoms as
arguments. © You may get away with the °pD1103 tion of CDi
To an atom without beneratlnb an erroxr mnessage, ovut the
result will be a long and irrelevant list which will)
. probably stop your comnutatlon at some later stage becausc
+ your own runctions cxpect to be given sensible lists as
argunicnts. On the ctke nand, CsR applied to sn atom
generates between g.5 and 2 pa es of junk, in which xTx
TXI, KIL and left-hand brackets are prominent, followed
by an error message GC2. Oncec se cen, the unique Type of
juni that CiaR or an atom produces in IB 7030 LISP is
not forgotten. o :

-_.__._........___.,.

Oncc.we have ov.rcome the methodological errors (mainly

sz mentioned in seciion 21) in a LISK programme, we may find
2t somze sequence of functions is not working correctly becauce

.'95.

23.

of faults in the concepts of ths funcition-definitions. ¥e may
have particular difficulty with recursive functions, because
from the computer output.it may not be obvious at what stage of
the recursion the trouble occurs.

- #hen this happens, and in any case¢ in a TosT or SET packet.
which is not knowr to work cor*ec*ly, it is & good idea to make
the first card of that packet:

TRACECOUHT (F) (vhere £ is a zerc).

Then, if an error occurs, the error message will include a
statenent about NUMBIR OF FUHCTIONW LiTRanCES, together with a
number. Subtract about 450 from that number, =nd call the

result n. If this n is ncaative, call it zero. How suppose

that we ¢lso have an idea of the secquence of funcitions in which
the errcr must heve occurred. urite down a list of the names of
these Zunctvions, znd let it be denoted by m.” "In the next (o_pa.”
computer jeb which contains tihe relevant packet, make the firs
two cards of the packet

TRACLCOUNT (n)

and . TRACE (m)

The computer will print out the name of any iunction in m,
togetner with its arguments, near the point of error, every
theat the function is called (rbcur51vbly or otherwise), and
also state its value.

oof
e H
=
o

wt
o

If, at any later point in the UaCth, we wish to cease
tracing all the functions whosc names we can write in 2 list
den0ued by nn, we only need to insert the card UNTRACE(mm) at
that pcint.

In = PROG fs ature, we nmay require more detailed tracing: it
may be necessary to print out the value of every programme L.

varisble every time it is set or r;sct by S&T¢. If we denove by

amm a list of names of all the functions for which this fa0111uy
is desired, we insert the command TR:CLS3ET (mmm). The 1nvsr°e
opcration, UNTRACESET, is not included in the systen.

4 finel (adVQHde) ©C debugging is the function b?ROLcmL
which is cdescribed in (3 l) Grrors that occur under the control

.of ERRORS.T, if they are the only errors in a SET packet, do not

nrevcnb the results of that packet from being added to an
"up wuecz LISF system tape on the tape. drive B3,

..-..-—.—__...—-—.—.—._.._—_ — e ey e e e e e e S

41 This occurs whenever the function BRROR is called. ZRDOR,
whicih is uscd by the programmer and not zutomatically by the
LIS? systeim, is described in section 12.

AZ2: An atom has been used as. the
atom has not been successfully asscci
definition by DEFINE. Sec (21 6).

(r
c+ 5
:‘\

T 2 function, but that
th any function-

, A3: Out of all of the arguments of the form (P B) for JOHD,
each r(D) is eitier F or ¥IL, and nons iz T. This feult will not
occur, nowev :ry for COND used on the tope level within a PROG
feature,

- 24

ooy o

S Y A8 or A3: mhe second most popular cause of these messazes
i*"ﬂlVﬁn 1n.@l They occur most commonly, though , whilc the
LIDP sSystem is trylng to process a packet in which the brackets
are not metched correctly (see 21. 1§ If the bracketing error
(type R1l, or occasionally F2) is corrected, these errors may &lso
d“sgypear. :

v F2 or F3: &ither some left-hand brackets are missing from &
packet, or the cause of the messages is to be found 1n (21 3).

Gl:; You have probably tried to divide by zero.

@Cc2: If this message is preceded by junk in the output, you
. have probably attempted to take the CAR of an atom. See (21. 7.
However, if.the wharacteristic junk is missing and there is no
obvious gource of error, it is most probable that the COJyutablnﬂ
is too 1dfbb for the core memory of the oomputcr.

I 2% The first argument of the function EAPT is a negative
number. ' -

I35:; A Function which -ehould have a numerical atom as an
argument has been given some different type of S-expression.

#5: The control card of the packet has been wrongly o
prepared. Check that the control word begins in column 8, and,
that no comments are punched to the left of column 1€.

Rl: Some right-hand brackets are missing from a packet.
Below the error message, thc whole packet will be printed out,
ending with STOP and one or more right-hand brackets. The
number of these brackets is the totdl number of brackets missing
from within the packet. '

For the interpretation of other error messages, see the
reference (3.1). S

24. The runcbions SUBQT and JUBLI and v a Comment about Standard

—— o e ——.———_—_.——_.—. ——-—.——-_——__————.—_.._—_-——..—_..__.._-._

e o 2 e e e s o o s o e o B2

(SU BST X Y Z) exanines r(Z) substitutes r(X) for an
occurrence of r(¥) on any level (not merely the top levclg
therein, and returns as its value the modified value of r(2).
For example, : : :

SUBS ST(4 1,752 (ABC D (3 1. 73») 1.732 3))=(4BC D (3 A) A ;)

-

(Y) can be any S-expression, not only an atomnm.

(SUBLIS U V) is a generalisation of SUBST. »(U) must be of
the form' ((G1 . H1)} (G2 . H2) etc.). SUBLIS then causes r(il)
to be substituted rfor any occurrence of r(Gl) in r(V), r(H2) for
any occurrence of r(G2) in r(V), and so on. For example:

SUBLIS(((2.1) (B.2) (C.3)) (& (BC)D (A4 B)))= (1 (23)D (1 2))

SUBST and SUBLIS are obviously two very useful functions,
which occur in many places in most large LISF programmes. In
particular, in some calculations in t3h0¢c+1cal physics tha
involve extensivec use of 1nbegfdls, SUBST and ©SUBLIS 1nsort
particulzr values (thc limits of integration) in standard forms

- 25

for indefinite integrals, « simpl: néaes of nmaking up a table of

.

o

1ntcbrtls ﬁlrnuay exists - thsz function CSET. If we denote by x

‘a list of tne form ((41 Bl)(A2 B2) c¢tc.), where Al, A2 ... are

intesrands and Bl, B2 are’ thie corresponding 1nt°grals, we con

insc ft

CSET (TLBLE x)

into ourlprogramme‘anc tnerebv set up a table of 1ntagrzls that
czn later be addressed by 1its name, lpBLE

A simple table of one-dimensionzl integrals may begind

(((e1338 & (8XPT X K))(T IHES 4 (RECIF (ADDL N)) (EXPT ¥ (aDD1 ﬂ})))
(((\Ox) .A.)(I'_\l ‘A.tCo }o

It has alrcady proved practicbl to extend this method to four~
dimensional integrals, and to build up tables of integrals by
LI3? functional operations (e.g. integration by parts) on the
contents of tuc.orlglnal table, :

The Function MAPLIST - in Introduction to Functional argumcnts.

e e e e 7oes Tt ors oot o s o P S S S o o? S o . o e o e P et o8 m e s s o ® S S e T B S s SO o S St oo o St S et o et S 2t 712 G e e B s B oy

Conclcer a common type of problem in LISE programning. «e

haves a list, say (1 2 3 4), and we wish to perfornm a computuulon

which will have as its value a list in which all elements of the
original list have been subjscted to the same operation. If this
operation is, say, the addition of 2, our answer will be (3 4 5 6).
It is most convenient to have a single function thiat can map any
given operation onto any given list. This function is MLPLIST:

(MAPLIST (LibBDi (X FH) (COWD ((WULL X) WIL)
(T (COH3 (¥ X)(MAPLIST (CDR X) FN))).)))

Two precautions must be observed in connection with this
definition:

25, l - Note that we have (Fi X) in the last line of the COKD, and
10t (FH- (Car X)). Ths most common programming nistake nith
MAPLIST is tiie assumption that the argument of FH Iz (CiRr X).
The fact that we have (FW K) explains why (CiR J) occuvrs in
tie function ADD2LIST below. o

25.2 = HMsarLIST is not defined in the LISY gsystem according to the
S~expression form above, but it is written in machinc code.
The definition above is only intended to show roughly how
HAPLIST works. Programmers cannot use DEFINE to define
their own new functions that teake functional argument;
such functions will not work!

An example of the use of MaPLIST to add 2 to each element
of a2 list of numbers is given below:

(ADD2LIST (LaxBDA (U) (M.PLIST U (FUNCWTON (LuMBDA (J)
(FLUS 2 (CzR 3))))))

It mry seem at first that the final part of thu definition of
ADD2LIST siiould be (PLUS 2 J). But this is not so; it is an
illustration oi the mistake (25.1).

275

28.

o The correct specificaticn of the functional -

o de W

argument of FAFLIST must begin with the atom DJCIIOw,
hlcn the LISY system uses tempororlly a2s thc name of the
.f¢u0tlon whcsc dcfinition is part of the argument.

that use functioral

PROP. These

Other functions
erguncnts are MAP,
6locubseq fully in

of trne LISF system
MsPCOIT, SEZARCH and
Avpendix A of(3.1).

ey ey
LS

Boolean LO“lC

——s - o— vt = - o= St

The taree basic Boolean functions are D, OR and NOT.
Wie hzve already encountered NOT in section 12. AND and OR aled
exist in the LISr system. Like FLUS and TIMES, they are allovwed
to have any number of arguments between 2 and 20. The LISP
system eviluates the arguments of AND and OR from left to right.

If ecach result of the evaluation of arguments for AWD is T,
the value of iAND is T. If zny one evaluation gives the result ¥
cr WIL, eveluation of all arguments to the right of that
argument s not carried out, and the wlue of AnD is F.

OR behaves in the same manner. If all evaluations of
arguments give F or WIL, the value of OR is F. However, if any
one argument has the value T on evaluation, all arguments Ho the
right of bhwf argum cnt are not proce sed, and the value of OR
is T, ‘

In section 8 we have discussed the way in which new inform-
ation produced by the LISP system during reading operations or

computationﬂ ig inserted into the most convenient unused wordsg in

core memory. Eventually, though, this procedure must fill a‘l ’
of the spacc available for storage. e must have a means of
removing information from storage when it is no longer nceéed.

The o",I“n g &
whichh does

collector is a function,
b}..x.l.x. °

written in machine code,

During oxdinary operaticn of tihie computer, the LISP system
uses the garbagekcollector automatically whenever the storage
avaﬁlbb?e for computation is full. However, the programmer maj
start a garbage collection himself by using the function RECL..TIM,
which is & function of no arguments. Because of this latter fact,

“fhe wlue of RFCLALm (thCu i3 uninmportant by comparis
with its ¢ffect) is

§IL.

srite Functions of I

...—-..._‘..-...._..-..’-—-—.-.—----—....——-—_._—_—

The list structure ()
structure 1s a
Therefore

“-d

AAIJ.”

Q“CClLlOaﬁlOH of no

-we put it ontc an IBHM card as:
RECLaIM ()
For short programmes, howev:r, this;option.is net nscessarye.

301N

r ruments

is eguivalent to HIL. Either

arguments for a function.

{) and RaCLsIl ®IL are eguivalent.

- 27 -

Novi suppose that we nmust make RECLAIM into part of &
function-definition or .a PROG feature. We must use prefix
notation, as with any oth:cr function. Remember that G(X,Y) in
infix notation becomes (G X Y) in prefix notation. Therefore
G() becomes (G). Similerly, RECL:IM() becomes (RECLAIM). For

example, we may write a function-lefinition:

SETG A (CoR X

$BT¢ B (CDR X

RECLATH)

RLIURY (COWS B 4)))))

(TESTFY (LAMDDA (xg)(PROG (4 B)
))

and another definition, in which RECLaAIM occurs inside a COND, is:

(ANOTHER (LAMBDA (X) (COxD ((HULL X) (RECLAIM)) (T X))))

S s e (e e G S S Vi S S D T i, s G s St . Bt g ST s G P P, S . G S — Gt > S s U s G et s et e W ot

The LISP system will normally print out only the final
result of a computation, as we can see from the examples in
section 17. But we may viant to have some intermediate results
of a computation printed (or punched on cards) also. e have
five funections avaeilable for operations of this type.

(BRIEY X) will print r(Z), space up the carriage of the
printer by one line, and also return r(X) as its value.

(FUHCH X) will punch r(X) in S-expression form on IH¥ c=rds),
and also return r(X) as its value.

(PRIN1 X) will work only if r(X) is an atom, In that case,
its value is r(X), but it will also print r(X) followed by a
blank space, and leave thie carriage of the printer on the same

(TERPRI), a functicn of no arguments, spaces up thc carriage
of the printer by one line. It has the value HIL.

(BJECT) spaces up the carriage to the top of a new page.
Its value is WNIL. :

Here is an example whnich uses all of the printing and output
functions: : '
(PRINTTEST (LiMBDA (W) (PROG (4 B)

(PRIHléQUOTE CxLCULATION))

(PRINL (. ,UOTE BLGIES))
(TERPRI)
(SST% & (CADR §))

327 B QCDDR §)) | o
S=Ti C (PRINT (PUNCH (LIST B A4 (CaR H)))))
(PAIKL (JUOTE CoLCULATION))

- 28 -

30, some_lure “§‘;u1_£g§gilons

JREEN

30.1~In addition to the functions that have been mentionzd e
‘functions included in the LISY system, the 10110w1n non-ayitimetic
funCulons are members of the systems :

(L.uClH X), which has as its value the numbcr of elements on'
“the top level of the list r(X) If r(X) = () = NIL, the value
is zero. ‘

(BT ERSE %) has the value of the list obtained from r(4)
by the reversal of the order in which its elements occur on The
top level., Tor example: S x

REVERSE((& (B C)(D B) F)) = (F (D E)(BC) 4)

(DELETE X Y) returns r(Y) from which the .first occurrence of
r(X) on the top level has been removed. For example:

DELETE(L (A B 4 C)) = (B 4°C)
DHLr”“éA éB CD) = (BC D)
DELLTE(A (B (C L) D)) = (B (C 4) D)

(SETDIFT X Y) is a 'set Gifference' of its arguments. i.c.
it treats r(}) and r(Y) as sets and returns r(Z) - r(¥).
For examples

SETPIFF((A B C) (BC D)) = §A)
S2TDIFF((B C D) A B o) j = (D)
SZIDIFF((4 B C) = (4 BC)

30.2 - The following arithmetic functions (in addlthH to those
J“nTlonco in previous aectlonu) are available in the
y -t am .

ny nunber of arguments betwesn two and twenty (but
evaluate to numericsl atonms), and rcturns as its
I

all of them 1us
est of them. MIN does the same for the smallegt of

value the larg
them.

[I S V)

(GRELTERP X Y) is T if r(X) i
iisc., A predicate function L
ists in the systen.

grezter than r(Y), and F
S3F, whose meaning is obvious,

S
iy

ﬁAfT -RECIF (for 1n10r stion zbout these two functions and
~ 1~ .l.

rtcomings, see (21.4)), PLUS and TINsS are availazble,

(MINUS X) has the value -r(X)
(DI?F”PﬁNCL X Y) has the value r(X) - r(Y)
(QUOTILNT X Y) has the velue r(x)/r (Y)

31.2ddi%ion: 1 Funculoﬂq in the LISE System aut_ Imp yrlal College

o eos S b v A St 3 e 278 S am s wn e B e S - Ty i 19 0 o oy —

Several new functions not listed in the reference (3.1) are
present con the LISE system z‘ﬁus. They sre described below by
1 :

name, propcerty (EXPR or SUBE)}, S-expression definition, eficct,
value and (ii ncccss:ry/ bLUMDlsS 211¢ comments.

PRI, | (SUBR)
(FWL (LAMBDA WIL uIL)) ~
Value ; NIL .

- 29 -

DELLTE o | (S**é)
(DELETE (L*MBDA (X Y) (COND ((NULL Y) KIL)
g(dub;b X (CiR Y)) (CDR Y))
7 (CONS (CAR Y) (DELETE X (' ¥)))))))

tion 30.

[

5]

w2

Effect, value and exzmples:

Comments superficially it may secm that the fuanction wEEaCh,
vhich is also in the LIS? system, dcss cxactly the same thing
as DeliTZ%., This is not strictly true. 4 good rule of thumb is
that DELETE should slways be used in preference to EHFIGCE unwil
one has undirstood LHllYl) the d¢ifierence batween MaP and
MAPLIST, and ii). the usc of RFL:iCA 2nd RPLACD.

+

PLUSP (5UBR)

(PLUSP (LAMBDA (N) (COED ((Z&ROP N) F) (T (WOT (MINUSP N))))))

Value ; T if r() is =& positive number, F if r(N) is 2 negatvive
number or any rcpreS¢ntqtlon of zero, and undefined ('error I3')
othervise,. ‘

Co;meﬂv in practice, PLUSP scems to be needed mors freguently
than IIINUSP,. ‘

SLEOLFE ~ (sumR)

(55TDIFF (LeHBDA (X Y¥) (COND ((WULL Y) X)
(T (SETDIFP (DuJATH (CaR Y) X) (CDR Y))) D))
Value andg examplcs: Sce section 30.

TRIN | | (sUBR)
(TRTH (L&MBDA (X) (COMD ((WULL X) uIL)
) ((HAMBER (O__J.\.L y\ (\Jll.u. J\:)) (TR.U.' ((\J.UR .A.)))

(T (CO®S (CaR X) (TRIM (CQ& Z)))))))

ValLLZ the list obtained from the list r(X) by the dbl&ulOﬂ
from r(}) on the top level of 411 but the last occurrences of any
of its c¢lements which occur mor than once. -

Txamples TRIM(iﬁA BaC (Da)aga))=(BC (Da) B &)
FLATTEN (SUBR)

(PLATTEN (MhnBDh (x) (CO¥D ((WULL X) ®IL)

§ ATOM X) (LIST X)
ATOM AR X)) (Cous (Co®) (ELAZ 4L COR X))))
T (APPOND (FLATTEN (Cz2 X)) (FLz2TEN (CDR X)))) J))

Value: (1(\)) if r(%) is an «tom, otherwise the list obtained
from r(¥X) by the removal of 21l brackets on all levels and 211
dots in all cxplicit dotted pzirs.

Gremples PLATTPES((& ((BC)) (@ . 5)(((2 3)) 4))) =
) LBCDE 23 4)
FLATTENE (4 .B))= (4 B)
ELaTEEN(&) = (4)

“ALIOUT ~ (SUBR)

Ve e w——

Y (ALLOUT (LAMBDA NIL. (PROG2 (REMPROP (QUOTE x) (QUOTE syi)) ¢
. _ EXCISE T)))) : :
Bffect: ALLOUT removes LAP and the compiler from storage,
thus making more space available for computation. It is
probably not necessary to insert tne doublet EXCISE(NIL) into a
programme until the same programme (withouw it) has run out of
space and produced the error message GC2 as a result. (This
doublet removes only the compiler). Further, it is unnecessary
to use ALLOUT() until : prorr-rz.. cont.ining EXCISE(WIL) has
run out of gspace in the same manner. :

Value: NIL.

- Comment: After LAP has been removed, functions in whose
definitions the programmer has -made use of LAP (see section 39)
will not work, and will cause the computer to stop processing
the entire LISP job. - C

FLAGP | (SUBR)
(FLAGP €LAMBDA (2 PR) (COND ((NULL A) F)
?(EQ CAR 4) PR) T)
(T (PLAGP (CDR 4) PR)))))

: Value: T if the property-list of r(A).containskthe flag
r(PR), and T otherwise, provided that r(A) is an atom. It is
not intended for use with any other form of r(4).

Comment: The function FLAG, which is mentioned on p.60 of
the reference (3.1), can be used to place flags on the property-
lists of atoms. FLAGP tests forthe presence of such flags.
ATOMLIS - - (sUER) |

(ATOMLIS (LAMBDA (X) (OR (NULL X) (4D (ATOM (CiR X)) (ATOMLIS‘
| - (CDR X)))))) | o

. Values T if r(X) is a list whose members on the top levelv
are all atoms, and F if r(X) is any other kind of list. = (X)
should not be an atom, or an explicit dotted pair like (A . B).

NUMLIS . (SUBR)

- —on o oy s —

(NUMLIS (LAMBD2 (X) (OR (NULL X) (ﬁ§? (HUMBERP (CAR X)) {NUMLIS
. . C .

(CIR X))))

- Value: T if r(X) is a list whose members on the top level
are all numbers, and F if r(X) is any other kind of list. The
restrictions on r(X) are the same as those for ATOMLIS.

TRACESTY | -~ (EZPR)
7 (TRACESET (LAMBDa (U) (MAP U (FUNCTION (LAMBDA (J) '
' MAP (CADDAR (PROP (C4R J) (QUOTE EXPR) (PUKCTION (LAMBDL ()
PROG NIL (PRIN1 (CaR J)) (PRINT (JUOTE ZZF HAS N0 EXPRE))
RETURN (QUOTE ((NIL WIL (WIL)))))))))g
FUNCTION (LAMBDA (X) (COND ((OR (WULL K) (4TOM (CAR K))
-(NOT (ZQUAL (CAsR K) (QUOTE 3s7¢)))) WIL) v
(? (RPLACD K (AFPLED (SUBST (CADAR K) (QUOTE VBL) (QUOTE ((
. , PRIN1 (4UOTE VBL)) o :
(PRINT (wUOTE gZF =2)) (PRINT VBL) (TERPRI)))) (CDR K)
' '31 : 3))))))))1)))

_Vélue: NIL

Lffect: Let r(U) be a list of names of functions. Any function
in this list which is defined zs an ZXPR via the FPROG feature
will heve its definition in storage altere¢ so that, whenever
the function is used subsequently, all programme variables that
are bound by StT§ on the top levél of the PROG will be printed
ous autcmatically, together with their current values, whenever
these values are changed or re-established.

Example: Suppose we have defined & function (PN (LaMBDA (V)
(PROG (4 B) (5&TQ & (CaR Y)) (SETQ B (CDR Y)) (RETURN
(CON3 B 4))))), end have alsc applied TRaCESET to it. Then, if
N (K Ls (1 N))) is presented for execution by EVALUOTE,

the aopearance of the printsd output is:

PULCTICH...
Py
ARGES)...
(((K L) (MN)))

-’(‘u)
((i)

- VA L
(

=

) e
OF RESULT Is..
¥)) K L)

: Comment: Section 40 contzinsg an improved definition of
TR4CESET. The function UNTRACESET in section 40, while being the
inverse of the function TRACIESLT there; is obviously not the
inverse of TRACLSwT as definec above.

B

4

Ut
((M 3

-

DALLLE coo (SUBR)

(SAMZE (LAMBIA (U V) (COMD ((MUL1 U) (HULL V))
(T (AND (MEIBER (CAR U) V) (SAMEP (CIR U) (DLthn (CaR T)

\

/

Value: T either if. r(U) and (V) ars 1dentlcal 11Sus or if
r(U) 22n be obtained from r(V) by pernutations of the member
of r(v; on the top level only, and F otherwise.

UHIONiésﬁBR)

— e - ——

Definition: See p.l1l5 of the reference (3.1). TUNION has two
arguments. , .

- Value:s A singlc list equivalent to the set-theoretic union
of thc two arguments.

.' ;) |

Bxamples: UNION(EA BC) DEFG))= (ABCD AR G)
~ uwIoN((A BC) (BC DE)) = (4 B C DE)
UNION((4 (B C)) ((BD) & (B¢))) = (4 (B C) (3D) =
UFION{ WIL (&)) = UNICH((A) 8IL) = (&)

e,

XN , , o (SUBR)

Definition: See p. 15 of the reference (3.1). AN has tio
argunents. .

-Value: 4 single list equivalent to the set-theoretic
interscction of the two argum nts.

NIL
(B

sxamples: XN 0) v ' |
BC)))= (a(BC) (BD))

i B cg (D iF 6))
il (4 BC) (BC pi))
XW((& (B C)) ((B D) E

- XN(NIL (A)) = VIL

~ 1 1

BXPEL B (SUBR)

Effect: EXPEL takes one argumcnt a list of atoms for which
2ll properties (including print-nak sS are to be removed from
the system - most frequently, to make more space available for
computatlor. EXPrL is an improved version of the function RIMGS,
which is m\puloned on p.67 of the reference (3.1). Hote that,
although +the argument of EXPEL is a list of atoms, RINMUB can only
be applled to one atom =t a time.

Value; NIL.
POST - | - (SUBR)

(POST (LaMBDA (Nlﬂl NR LIN=) (PROG (PAa) -
SETL Pa (GLT NaMs (WUCTE EXPR
CONu (P4 (GO 6X))) (TERPRI) (PRINL NaME) (PRINT (. UOT: 5 38
" HAS NO EXPRZ)) -
(TZRPRI) o
GX (Cowo (é i; =2 NR) (DEPINE gcomo (LIST LTI Pa) NIL)))
MTHUSP NR) (2PLaCa(GRPR PA) LINL))

(€0 e §T (GO (Ga)))

GA éPoUB (CADDR P4) LINE NR)

GB (RETURHN (GET NAWE (LUOTE EXER))))))

(PSUB (LAMBDA EA B N) (COND ((MINUSP W) (ERROR N))
E(EROP N) (RPLACD 4 B))

T (PSUB (CDR 4) B (SUBL N))))))

Commgnt The function PSUB cannot be called directly
by name by the programmer.
Furuher 1nforma’clono See section 32.

—_--———————.——-—————.—.———.——.—

Suppose that we have followed the option (see section 20)

of updating the basic LISP system for our own specific use
by adding some of our own function-definitions to it and

~ yeserving a numbered tape which contains this updated system.
Suppose also that, at some later time, we find that we would
like to make changes in the definitions of some of the funciions
that_vc.hdvu added to the system. The simplest method of -
repalr 1s teo meke the changes in the original cards containing
the function definitions, and add these cards as a whole to

- 33 -

the card decks for all later JObS. (In such cases, the . .
definition on cards overridss the definition on tape). However,

if there are many repairs, card decks cen grow excessively larges,

This is a particular problem for the user who posts card decks
to Imperial College and receives cards and output by post also.
If a2 card deck has more than about 40 cards, it must go by parcel
post ané cannot conveniently be pzcked int> the same envelope

as printed output, for trznsmission by letter post. Therefore
-one tries to QXPTCQS repairs by punches on as few cards as
possible.

‘ The function POST is designcd for this purpose. Its three
distinct usce can be summarised by exemple. Imagine that our
systen contains as function-definitions ;

(PRED (LiMBDA (X Y 2) (PROG . (h B) (THRPRI)H
RETURY 4))) (SE1Q 4 (bOuo
(s&Ty B (COWS (£3R X) B)) (COND ((SAMEP A
(RETURH (FRED2 4 B)))))
(FRED2 (Lua#iBDA (U V) (COWD ((NUMBERP (CiR U
~ (CaR V)) U) (T (TLIST U V)

COHD ((KULL Y) (
CAR Y) A
B) (GO H (T

) V) ((NUMBJRP
)))

W_/N-\

and %H 2t ve want %o do the following things:

1) lake (X Y) thc list of dummy arguments for PR“D
because Z is superfluous.

ii) Replace the mistake ACR by CAR in FRED. Note that, if
we start counting on the top level the members of the list .-
which begins’with the atom PROG, but exclude PROG itself from
the counting, the mistake occurs in the sixth element.

iii) Define a completely new functlon“Tﬁﬂ h¢v1ng the sanme
. definition =a FRED2 above.

" iv) Pinally change the definition of FRID2 to replace LIST
by APPEND. (LIST occurs in the third argument of COND).

We achieve thcm by punching on ca fdb only the following four
specifications:

POST(FRED -1 (X Y))

POQTEFR ED 6 (SETQ B (CONS (CsR X) B)))
POST(FR&ED2 -2 TOM) R
POST(FRED2 3 (T(APPEND U V)))

With luck, these corrections should fit onto two cards, and
therefore avoid the necessity of having to include all of the
original function-definitions on cerds as part of the job.

¥ithout the LISP 1. 5 -ﬂrual it should be possible +to
- understand exactly what POST cocs when its second argument is
¢ither ~2 or -1 from a study of the definitiorn of POST in seection
'31. An uvnderstanding of what happens when the argument is &
positive integer requires knowledge of the functions RPLACL ané
RPLACD, but the actual usc of POST for corrections when the
argument is positive 1is simply a watter of careful counting of
b—u/p;c551ons inside the dcil”ltlon of the funotlon to b -
oorrucc :d -

The value of POST is in every case the corrected dpllanLOﬂ
of the function named as the frst argument.

34,

" For programmers familiar with the conczpt of EXPR and the
use of COMPILE, it is worth mentioning that POST will work
correctly only if the function named as the first argument has
its definition in the form of an =2XPR in the systen.

Fause 1

———— o

A1l of the preceding material is designed to be useful to the
intending LISP programmer who has no access to the LISE 1.5
Ifanual. That Manual is an essentiazl reference for serious
programming, but it is not an expository manual in the usual
sense, so thot this Guide mékes profitable reading in parallel ©o
clear uv voints that msy be obscure.

The ten following sections assume a knowledge of the lenual
(3.1), and & cecrtain amount of programming experience. Sectlons
34 and 35 are for the IBM 7030 LISP? user who may have to run card
decks temporarily on CDC 3600 or Ferranti Atlas computers clse-
where in FEurope, sections 36, 37 and 38 are especially recommended
as companion pieces to the Manual, and the remaining sections
record various specialised programming tricks that havebeen

effective in filling some obvious gaps in LIS¥ procedure.

Peculiarities of the CDC 3600 LISP

- s e o B T S S B o S s S Pt e T Gt e S T it e e S — S — — o ——

CDC 3600 LISF is available to any CDC 3600 installation through
CO0-0P, the CDC equivalent of ShhRE. The relevant manual for its
general operation is the reference (3.5). However,. let us
consider the more specific problem of getting a card deck of &
successful IBit 7090 LISY* job to run on a 3600, for which LI3Et is
implemented. The followingz points should be noted: ‘

34.1 - The division of the card deck into packets is not
permitted. Et must be in effect a single packet, without :
STOF))))) cards or Overlord directive cards (including FIN).
Thcrefore all of these cards must be removed.

34.2 - The FiS identifying card (20.1), comment cards (20.2) and
the LISE loader must also be rcemoved and replaced by:

the ?J0B czrd of the 3600 installation

- 2484 UIF, 6=(BINARY LISF3600),SV
?nUIP,10=60 : :
?EQUIP,11=61
?LO.:'LD 3 6 . N . ;
card containing ?RUN, in the first five columns,
and a specification of the maximum job time and ’
lines output according to the direction of tue
installation : S

Above, ?stsnds for 7-9 punch. Punching on all of these cards.
begins in column 1. :

34,3 - Reniove the end-of-file card from the deck, and be sure that
the FIH card is also removed. The CDC 3600 LISPF deck ends
with two standard cards, firstly a card with a 4-8 punch ~
in column 1, and secondly an 'end-of-fils! card with 7-3
~punches in columns 1 and 2. -

35.

34,4 - Of the functions present in the LISP 1.5 Frogrammer'
ifanual (refecence 3.1)), subject to the corrections 1n
Section 37, at least tire following zre not available:
Ly, COMPILE, ZXCISEH, “LﬁARBUFF, INTIRN, RIVAM, A?L“‘,
.JALJ.LORSZET, RL!CT4 Ill, couw?t ’ Ui OUl }-T, ND.L:.I;:K, O..._.LT.AB L
TRAC:COUNT, ¥MrEAD, MFRINT, Ru:IND, BaCH5-all, T W1Ucu3 LT,
TIHE, TILEL, BACkTgnCE, SFEaCa, HJLCT, PLB, ViRBOS. -
Hone of the functions in Section 31 is included. However,
the popular character-rcading procedure (LaiBDa WIL
(INLAhh (MKNa¥))) () is performed by MKa?0M ().

34.5 - If TRACE is used &t all in the job, its first cogurrence

should be preceded by the doublet SLTBIT(7).

34.6 - In the reference (3.1), it is stated that Of&p, ZsR0T,
EYUAL and E((for numericszl arguments) operate with 2
tolzrance of 3 x 10-6 1p CDC 3600 LISP, this fig SUTC 1S
1078,

34,7 - CiR of an atom is not gunk but the print-nane
of that atom.

34.8 - + and - should not be used as characters of an =ztom.

34,9 - If PRIN]1 is uscd anywhere (e.g. in a PROG), it is not
adviszble for PRINT to be the next function to be excecuts
by EVALLUOTE. For safety, (ToHPRI) should be inscricd
. betveen them: in such a case. - :

Peculiaritics of Atlas LISE

et e i o Srin Gm et o e = v G —— ————— o —

The .tlas LISP systen is still in a Dt$uc of flux, but tic
material wresented in this scetion will probably not become
obsolete for sowe time. Jith respect to thce current state of
istlas LISP, documentaetion wAd/Of folklore are available from the
atlas Couputcr Laboratory, Chilton, Didcot, Berkshire.

35.1 - There sre no packets in Atlas LISZ. Therefore all
control cards and STOP))))) cards should bc removed Iron
a 7030 LISY deck. If zny ST0F card is left in the de
the atlas system will tzke it at its face value and r
no more input beyond it. '

35.2 - Renmove the PIN control card and FiS end-of-file card at
tine end of the deck. Substitute an Atlas 'end-of-file!
card with a 7-8 punch in column 1 and Z in column 80.

35,3 - Hemove the LISY loader, and substitute the preacribed
' Atlas job reguest cards (ID, maximum number of lines
output, maximum running time etc.). The last thrce job
cards, vwhich are specific to LISP jobs, snould be:

TAPE 1 SRC CPMPILERS FPx
(;Oiv‘IPILu-\ SrECIal

HY IR T4

MKy (thu '0' is a zero, -not a lettér)

3544 = The followin. regulirly-used functions are not implemcnted

in atlas LISP: ARRAY, TIiis, TIMEl, ERROXSAT, all C -
CiR-CDR-type functions with four As znd Ds between the
'C! snd the 'R', all ch~raotbr~reddlnw and. character—
classifying func=ions. COUPILE ealstb, but it is fairly
rudimentary. ' ‘
- 36 -

36.

35.5 = LAP 1is deflncd in Atlus LISf but 1t uss s ABL 1n tructiono.

35.6 - Do not use the atoms SY5TEd, IWDEX and USE.

35.7 - G4R of an stom will not produCu 7090- type junk, but thec’
nessage SV OPLRadD, which is an error nessage.. On
occasions, though, many pages of ordercd junk will occur
becouse the backtrace following an crror is not as
effcetively inhibited in Atlas LISk as in 7030 LIZE.

On these occasions, your chances that EV.LGUOTI will
process any doublets after the one which caused the
error are e¢xtremely small.

35.8 - The tolerance of 3 x 10~ -6 between numbers compared by
and BUAL in 7090 LIJP is exsctly zero in atlas LISE.
Por this reason, it is dangerous to have EGUAL and PQ
compare numbers of different types. For example, BiaUal
(1L 1.0) may be false because of changes in the floating-
point number (rouno—off effects) during reading-in. :
Therefore it is safe to say that E(and BUAL will- almost
always have the value NIL if either or both of their
arguments are floating-point (or octal with negative
exponent).

35.9 - TRACHES..T and UNTRLCLS3ET, working on the top level of any
PROG, are already deflned in the Atlas LIS? system. There
is an additional valuable debugging aid: the function
(DwP”H N), which sets up a push-down-list trap in a manner

similar to that in which (COUNT i) sets up a CONS counter
trep. The inverse of DEPTH is (UNDEPTH), which is to be
compaored w1th (UNCOUNT ®IL). {(ote the difference in
number of arguments!) In this connection, the function
(HO»DEEP) is the analogue of (SrZaK HIL). ' '

35 10 -The apn pllottlon of CDR to an atom, to get the property
list of that atom, is not Pllow d; it leads +to thz error
described in (35.7). itlas LISE has a special functicn
(PLIST X) whose value is the propﬁrty list of r(X).

“Thers is 2 final practical point to obscrvce. I.C.T. caxrd
readers digest I.B.M. cards without conmpleint, but the converse
is not true. Therefore, if an I.B.MH. deck is developed by
several runs at an Atlas installation, during which time thc
developments are added to the deck on I.C.T. cards, those cends
shoull be replaced by dupllnateo I.B.M. cards if the dGCn is %0
be run @&“1& on a 1090 or 7094

Aan Index for the II%f 1.5 Prquanmer g Manual

___,-.‘_._—.—.—.-.__.__——.—.———--———._—...-._. ———— o —— T — o

The LI31 1.5 Progranne r's Manual (3.1) is suppllca without =z
general index. To improve its readability, E.C. Berkeley und
D.C. Bobrow have supplied such an indecx, on page 377 of the

refzrence (3. 2). For convenience, an upa vted version of the

lﬂQvK’ relevant +o the 1365 reprinting of the Hanuszl, is
reprocduccd here. feferences to functions not mentloncd beloir @
be found in the indcx n Page 100 of te Manual.

o
¥
d

R

- 37 -

'a' in multipls car's and cdr's, 4
A1, A2, A3, A4, h5(error diagnostics),
46, A7, aA8(error diagnostics% 32

49, Cl, ChHl(error diagnosticss, 33
absolute value, 6, 24
active list, 43, _
actuzl interpreter, 17
add, 26

~ ADD1, 26

Address, 36, 41 :
Advantages of list structures, 37
ALGOL-like programme, 29

a-list, 17, 18, 19, 30, 71, 72
allocation of storage, 1, 89
alphabetic characters, 16

sND, 21, 22 ,
ambiguity, 24

LYFEND, 11, €1

APPLY, 13, 14, 17, 18, 70

LPPLY, definition of, 70

CAPPLY, sifrle descriptive definition of,

args (arguments), 10, 12
ergunent (definition), 21
arguments, 2, 5, 10, 16, 193
arguncents, functional, 73 ‘
arguments of a function, 7, 16
erithmetic, 24

‘arithmetic errors, 33
arithmetic functions, 25
arithactic predicates, 25
ARRAY, 27 ,

arrey feature, 27

arrows 9 »

assecmbly—-type language, 18
association list, 12, 13, 14
atom, 3 ' ‘ '
.l'.LTOI‘/I, . 13 . .

agtomic arguments, 14

32

13

atomic symbol, 1, 2, 8,:16; 24, 30, 36, 39

atomic symbol (definition), 2
atomic symbols, list of, 43
cauxiliary function, 12

axes; 28

BACKSPACE, 96 :

backtrace, 32, 97

BACKTRACE, 97 :

Backus notation, 8

“base registers, 43

basic functions, 16

BCD characters, 36

BCD print-names, 43 :
binary programme space, 28, 895
binding variasbles, -17 '
bit table, 43 v

blank, 4, 16

blanks, 16 ‘

blanks in lists, &4

blocks of storage, 27, 38

- 38 _

h]
Boolean connectives, 21
Pound, 8, 18
bound function narie, 8 o
bound varisbles, 7, 8, 9, 13, 14, 17, 30
brackets, 9
branches, 5
~branching, 1
ouilt-in functions, 14
C.R., 2, 10, 13, 14, 36, 56
car (@ CL’HlulOJ) 2, 56
car, vilue in system, 14
card boundaries, 16 ‘
card deck preparation, 31

card format, 16
CDR, 3%, 13, 14, 36, 56
Cjn(de¢1n1t1 n), 3, 56

CH2, CH3(error dlagnostlcs), 33
change, 21

character errors CH, 33
character-clagsgifying predicates, 87
character-handling functions, 33
character-reading functions, 87
character objects, 84

character strings, 3

characteristics of the LISP system, 80
charactcrs, 84

characters in criic symbols, 8
characters, packing and unpacking of, 36
circular lists, 37

closed machine-language subreutines, 18
combining of S-expressions, 2

comma, 4, 16

commags in lists, &

commands to effect an acticn, 20
common subzxpressions, 37

;.L_Qllbf, 18 33 9 76

compﬁlcr errors, 33

compiler, non-printing, 94

cohpllc speed, 18 '

complement of address, 36

complete card deck, 31

composite 3

COhQOulblOﬂ, 2,.5 4
composition of car's and cdr's, - 3, 4
composition of functions, 2, 5, I
computable functions, 41
cowb, 10, 13, 14, 18, 29, 30
conditional expressioms, 5, 3, 16, 11, 30
conditional oxpressions(definitions 5
conditional expressions in PROGs, 730
cons, 2, 13, 183, 33, 41, 56 :
‘COAD(dpllnltlon) 2, 56
COHS counter, 34 '
constant, 9, 17, 13, 24
constants, 9, ¢O 14, 17, 18
constants, Luﬂctlonwl, 78
constant predicates, 22
constant translation, 10

- 39

’

-

CONS +trap, 35

construvction of list structure, 38
control cards, 31, 81
co-ordinates, 28

core dumps, 31

correction cards, octal, 80

counT, 34

critical subfunctions, 32
¢seT, 17, 18, 20, 59

'd' in mulitiple car‘
dats in LISP, 1
dsta lenguage, 8

DEPUG, 81

debugging,

32

decimal points, 24

decrement,

369 41

define, 9, 15, 18,
DEFPTw =, 15, 18, 58
defining functions,
definingy functions recursively, 9
,deflnlnb new functions, 15
definition of functions, 18

DEFLIST,

41, 58

disgnostics, 31
diagrammed S-expressicns, 36
dizgrams of lists,

DIFRFPERENC] L:,
dimensions,

26, 64
27

s and cdr's, 4

20, 40, 41

9

36 ’

distinction between function and predicate, 23
DIVIDE, 26, 64
divide cmvck, 26

dot, 2

dot notation, 2, 4,
dotted pairs, 16
15, 17, 31, 32
dunny variables, 7
DUHMP (function), 67
DGWP(control words
E in numbers, 24

doublcts,

EEN SOOI m 9 5

9, 16, 24

81

elcmcnt“ry functions of dottzd pairs, 2
elementary functions of lists, 4
elementary'LI P, 41

elenentary rules for writing LISP 1.5 progranmmes,
elements, 15, 16

clements of
elements of
clemcents of
By, -3, 11,

vl - 5
B, cifect

BUaL, 11,
egquzlity si

error, 32

an array,
16

lists,

28

the syntax, 8

lj L) 14,

26, 57
gn, 8

error diavnostics,
error diagnostics, LaP, 75

GI'I’OZL" in =

VAL, 13,

anL(G flnltlon),

suT packet,

34y 35
1»or1thm,

23, 57 . *“
viith non-atomic Shge ibols, 23

32

31

7

14, 17, 18, 12, 71

71

_4@ /- c— . ' A

15

*

" 2VAL (simplified illustrative definition), 13 .
uVALuUOmﬁ, 10, 11, 12, 13, 14, le, 17, 20, 21, 31 70, 96

LVALLUCTS (deflnltlon), 70

EVaLUCTHE (simplified illustrative deflnltlon), 13
evaluxting varlables, 17

CVﬁlu‘tlon of srguments, 19
evaluaticn of a recursive functiocn, 6, 91
exclusive OR, 27

exhaustion of storage, 43

gxponent indicstion, 24

exponents, 24

-BXPR, 18, 39, .40

eXpress 1on, 5 :

extensions of LISP 20

r, 3, 14, 16, 18, 22

PL through P5(brror dizgnostics), 33
fuctorldl 6, 27

false, 3

falsity, 5, 22

fatal errors, 32

FEXPR, 19 '

£ff, 8, 10

FFr, 6, 10, 40

fields,LiP, T4

FIN, 31, 81

first atomic symbol, 6

fixed-point arguments, 25
floating-point numbers, 14, 24
floating-point trup, 93

fn, 10, 12

FOR, 98

forp 1 nathematical language, 1
format, 9

format on cards, 16

forns, 7T, 9, 10, 13

FREE, 42 '

free-storage list, 38, 42, 43, 90
free-storage space, 43, 90
free-variables, 7, 21, 77

FSUBR, 19

full words, 43

full-word space, 43, 89

function, 7, 9, 10, 16, 18

FUNCTION, 21

function bound to variable, 21

function definition, 18

function evaluation, 13 o S
function names, 2, 5, 9, 10, 24
function naimes in meta-langue gv, 5
functional arguments, 10, 20, 21, 79
functional constants, 78 »
functional syntax of LISP, 20

functions, 7, 9, 13, 18

functions, arithmetic, 25

functions, built-in, 14

functions, index to descriptions of, 100
functions with functions as urUUhcﬂtD, 20

Gl through Gp(prror diagnostics), 33 .
garbage collector, 33, 36, 42, 43, 89

garbage collector errors, 33

-4l -

- GC1l, GC2 (error dlagnostlcs),“.BB
- G.C. D. algorithm, -7 .

u.ﬂ:ﬂSYh, 66, 97 »
gloosafy of LISk tcrmlnolovy, 103
ro-list 71

gD, 391 42 Lo

higher-level bindings, 17 . : ‘

I1 through I4(error diagnostics), 33, 34
ID card, 31 ' '
~identical S-expressions, 11

identity function, 20 .

IF, 98

illegal BCD charactcr, 40

inaccessible registers, 43

indefinite number of arguments, .19
1ndcntﬁt10n, 16

index to descriptions of functions, 100
indicator, 18, 39, 41
indicator(definition), 39

indices of arrays, 27

infinite recursion, 6, 10

infix notation, 22

input and output in LISP, 83

input at top level, 19

input-output errors, 34

internal representation, 37
interpreter, see BVaLQUOTE
interpreter errors, 32
interpreting S-expressions, 1

LABEL, 8, 9, 10, 13, 14, 18

labvel notation, 8

Ls:BDA, 10, 13, 14 v

lembda notation, Ty, 8, 9, 17

LAP, 18, 73, 94

LAP assembly, origin for, T3

LiP error diagnostics, 34., 15

Le? fieléds, T4

LAP instructions, 75

left parenthesis, 2

link, 79

LISP compiler, 18, 76

LISP for SHARE distribution, 93

LISP functions, 10 :
LISP interpreter, 15 (see also EVALQUOTE)
LISP library, 56 v

LISP loader, 31

- LISP programmes, 15

LISY progranming system, 14

LISE,QJ“ELM, 31 .

LISP systenm, ChaIaCtLrlStho of, 80

list clenrnts, 16 s

list function, 39

LISTIHNG, 94

list notation, 4, 9

list of arguments, 10, 16, 13

list of atomic symbols, 43

list of pairs, 12

“list structures, 1, 36

LY

list structure, aGVantaﬁes of, 37
list-structure cperators, 41 ’
llstb, L’" 16, 27, 36, 39
location mzrker, 30
logarithns, 26
logical ALD 27
logical onucctives, 21
logical OR, 26 '
logloAT unlfts, 27
~logical words, 24, 25
1009, 6
lower—-case letters, 2, 9
nachine-language functions, 18, 40
MAPLIST, 20, 21, 63
narginal inoex1ng, 28
memory, allocation of, 89
memory organisation, 1

meta-language, 1, 5, 8, 9
mcta—lanﬂuanp (aeflnltlon), 9
M—eApTESulOHS, 1, 5, 10, 20, 22, 29
M-expressions as S—expressions, 10
minus. sign, 24 :
misccllaneous errors, 33
-mlégrp, 39, 42
modifying list structurey 41
- MPRINT, 96
MREAD, 96

names bound tc function-definitions, 18-

Hames of funcblons, 18
negative octal numbers 25
negstive signs in garbage collectlon, '43
new LISP systenm tape, - 31, 82-
NIL, 4, 9, 11, 16, 18, 22, 39, 40
NIL as. f“l 1tJ, 92
‘NIL in diagrans of S- expre351ons, 36
HIL, internal represcntatlon of, 40
non—aCulvo recgisters, 43 '
non-a bOglC, 3
non-printing compiler, 94
NULL, 11, 23, 57
null 1ist, 4
number formats, 24
number of expressions, 37
NUMB.iRP, 26, 64
nuntbor rcarcsbntatlon,_ 36
nunbers, 24, 41, 43
nunbers as variables, 24
numbers, fixed-point, 14
‘nuabers, floating- p01nt 14
- nunbers, internal re presentation of 41
‘numerical computations, 6
OBKLEEP, 17 o
octal corrcction cards, 80
octel numbers, 25
operate, 20
order of rguﬂenta, 2!
overlord (LIb* monitor), 31, 32, 80
overlord Giresction cerds, 31, 81
overlord errors, 34 :

[\

43:

packets, 31 :

packing and unpacking of . characters, 86
parameter, 7

pdrentheSLs, 2, 13, 31

partial function, 7

pgrp, 42 :

plus-sign, 24

pmltgrp, 42

PNAME, 39 .

pointers, 18, 36, 37, 43

powers, 26

predicate(s), 3, 11, 14, 21, 22, 23, 25
predicates, arithmetic, 25 '
predicates, character-classifying, 87
prefix notation, 22 : '
PRINT, 20, 65, 84

prlnt—name, 39, 40

print-names, 43

printing of numbers, 24

PROG feavure, 29, Tl

programme form, 30

programne format, 16

programne S-expressions, 29

programne variables, 29, 30

progrzmmes for execution, 15

propcrtigs of atoms, 41

property list, 17, 18, 36, 39

property list (deflnltlon),‘ 39

- propositional connectives, 20
propositional position in conditional expre331ons, 9
pseudo-atomic symbols, 14 -
pseudo~-function(s), 15, 17, 18, 20, 27, 32, 35, 41, 42
punctuation marks,

'pure! LISP, 20

push-down list, 91

Q in octal numbers, 25

QUOTE, 10, 13, 14, 18,'21, 22, 71

'quoted 24 - .
QUOTE F, 14, 16, 22 : ‘
0Ty HIn, 16, 22

QuoT® T, 10, 14, le, 22, 23
read EXTOT,)1 '
Rl throubh R6(error dia THOStLCS), 34
reading of numbers, 24 :
reading of octal numbors, 25
reclaimer, 33
- reciprocal, 26
- recuwrsion, 91
I‘"CU.L.QJ.VL,, 6 15, 18, 27, 30
recursive 1unctloqu, 1, 6, 8, 18, 32 .
. reglsters containing ps rtL L f sults of LISF computation in
progresss 43

i

rem, ,

removal of properties, 41

replacenent of addresses or decrements, 41
representing expresgssions, 36

28 :RVED, 97

rev, 30

REVIND, 96

- 4h -

right parenthesis, 2, 31

.rules for LI3r programmes, 15, 16
rules for trenslation of -functions, 10
 running the LISY system, 31, 80, 82
sczle fector, 25

scope of bindings, 17

semicolon, 2

semicolons, 5, 9

sensc sviitches, us of, 82

separators of list clcments, 4

$al (funciion), 30, 71 '

SET (control word), 31, 81

SLTSET, 31, 8l . '

setting of constants, 17

S—-expression diagrans, 36
S-expression(definition), 2
S—-expregsions, 1, 2, 5, 9, 10, 1le6, 20, 92

S-expressions for functional argumcqts, 21,

SHaRE LISP, 93
81gn1flcgnt digits, 24
S1zs, 81 :
source language, 1
SPaCi, 95 _
special forms, 18, :21
SPRELD, 70

square brackets, 2, 5, 9
STOP, 31 :

STR trazp, 33

sUB2, 12
°ubexprcsulon(s), 2, 3, 37, 38
SUBLIS, 12, 61, 98
sublists, 4

sSUBr, 18, 39, 40

sUBsT, 11, 41, 61
substitution, 11, 12

sun, 25
symbolic dats processing 1

symbolic expfess1ons, 1 41,
syabols, 18
bYMEAM, 97

.Ll.LTAD’ 9"1!- '
syntactlc_summary, 8

syntax, 8, 20
system memory, 31

Ty 3, 5, 9, 10, 14, l6, 18, 22
table-scarching function, 12
tags for num bers, 41
TAPE(function), 95
T4LPE (control word), 81 .
tenporary tape, 31, 80, 82
terminator for 1lsts, 4
TE3T, 31, 81
test cases, 15, 30 :
theory of recursive functlona, 41
thirdéd arguments, 5
TIEE, 93

TIEEL, 93 :
TR&CE, 32, 41, 66, 79

- 45 -

TRACECOUNT, 94 - | .
tracing, 32 ' ’ :
tracing of compiled functions, 79 .
transletion from M-expressions to S-expressions, 10
trap, 33, 93 ‘

tranping on errors, 35

trec-type structures, 1

trecs, 36

true, 3

truth, 5, 23

truth as negation of HIL, 23

truth in LISP, 22

psT, 81

TXL instruction, 40

unbound varizble, 32

undefined conditionals, 5

universal function, 10, 17, 20
universal LISP functions, .10

unpaired parentheses, 31

UNTIHE, 95

upper-case letters, 2, 8

valid S-expressions, 9

value of atomic symbol, 39 :
value of conditional expressions (definition), 5 . :
velue of constant, 17 , . e
value of numbers, 24

values of arithmetic functions, 25
veriable, 7, 9, 16, 17

variable nanmes, 5

variables, 3, 7, 9, 10, 12, 16, 24
variables, free, 77

variableg not allowed, 18

variables paired with arguments, 17
variables, progranme, 29, 30, 72
well-defined recursive definitions, 6

———— - - T — " — ——— - S~ " - A o S — . ———— — T T > s S T U U T S ot S — ot S i Gt B

‘The following list is intended for use only with the
February 1965 reprinting of the Manual. The 1962 edition contains
rany more defects which have been corrected in the later version.

Page - Line - Correction

11 17 For atomic symbol read S—expfession -
18 -3 - For fron~10 4. 100 rcad froa~3 10 .40
59 -8 For is the value is read is the value of
63 - 2 For from the list L read from the top level

of the list L

63 6 Note that this line refers to the text below
: it, not above it

67

W

For MIT users only read MIT and Atlas users only

N
JPage Iine Correction

67 18 Underline excise

67 19 For pair rc¢ad doublet

67 19 Underline Temprop ‘ |

67 19 - 448 However, in the system =t Imperial Collcge,
rcoprop (%3 SYL) and excise (#Dx) need never
executed. Their combined cffect is produced
by the ncw function allouwt() .

68 2 £dd thié LISP set-up tape, which is distributed
by SHARZ®, is NOT equivalent to the setup tape
(X 248) at Imperial College, so that the)
descriptions of the library functions (with the
exception of tracesst) do mot apply. tracesct
is included automatically in the setting-up
procedure from X 248. ' -

77 5 Add If such a2 free variable is y, the typiczl

diagnostic reads (y USDECL:RZD). There is no
Error messsge.

80 12 For A4 read A3

93 -1 Add This-facility exists a2t Imperial College.
95 -1 Por A4, A5, 46, 4T, &8, B2, B3, B4, BS5, B6 read
: v L4, A6, B6, AT, B4, B2, A5, Bl, .B5, B6.

97 | 1 Insert The paragraphs headed Obkeep and

Reserved on this pzze are inapplicable to the

systen at Imperial Cdllege.
98 1 = Insert The paragraphs headed If, For and Sublis

——— ot o . — —— o -

on this page are inappliceble TG the systen ol
Imperial College. . : -

93 18 4£dd However, the present system at Imperial
College differs from this specification of tae
SHuRE LISFY system in the follcwing respects:

Systen Teaporary Tape (SY3TMP) B3

Sy2 and 3U4 nominally have no effect
but it is wise to leave them both off
if uapredictable effacts are to be
avoided. :

Q
(@}
i3
=
i
)
s
o
W
H
[‘:q:
O
=
b
b
o
o
®
4]
(o1
=t
]
]..J
(o]
b
A
o
(0]
-
—
G2
k¢!
-
.
L) I
R
H
Q
]
H
W
134
3
3
®
[»]
. -
w
iy
4]
B,
~,
[
o
=

' 38. © Coumnentary on appendix 1 of the LISY 1.5 Programmer,s Manusl

Verbos: and the Gerbage Collector: This form of non-tollntive
garbage collector is now tiic standard for 11 current LIS
systeng cxcept Atlas LISPY. ' : ’

Plan Trap: In brief, an underflow during =n arithmetic
cperaiicn vredéuccs a result of zero feor that operation. Ho
crYOr LICS38gC 0CCurs. :

-
- L -

39.

‘prefcrence

Time: The tining print-out hsas the Drmat | | !
a MIN b MS. c MIN d S

= milliscconds) It o.curs automqtlc“lly et thc bcglnnlng
irectly after the print-cut of the control-card) and¢ end of
ch packet. a = b = ¢ at the beginning of _any packet, but

4 b at the end of that packet acacure the time. taken for
ne 9 ocessing of the packet. The 'age' of the system is

sured by ¢ and d. fiithout affecting any of these numbers,

an use TIME and TI8EL inside any packet.- -TINEL() causes

& print-out in which a =1 =:¢ = d = . Thereafter, TIME()

nay be used any number of times. Its effect is as described

in the Avppendix. The 'agé' of the systenm, mentioned above, 1is
the tine that the LISE jOb has run since all of the relevant
tapes have been nounted and 'ST.RT' pressed on the 7030 congole.

‘Lap bnd Symtab, Non—Prlntlng Compller°' Unless there is a
special’ aovantage in having the LA4P code for compiled functions
printed out, it is wise to. execute SYMTAB(WIL) and LISTIHG(MIL)

‘before any conpllatlon.

Tracecountz sece sectlon 22

Space and Eject: see section 29

-~

Pope: TFor the Imperial College LIST system, note the

Appropriate correction in section 37

Backtrace: Ideally BACLTRACL() should be xecuted by
EVALQUOTE (i.e. it should never occur on cards as (BaCKIR:uCE)),
but frequently one can get away with itsuse in other contexis.
This loopholc has been cxpleited, for example, in some
self-debugging progfwAmcs. ‘ o

_ 'Obkeép; .Reserved: Fot in the Imperlal College LISP :
systemn. C

If; Fors -lot in thé Iz al Lollagc LISP sys»eg.

Sublis: This note is not apullcablc to the Imperial
College LISY svstc“

Characteristics of the System: TUse appendix B in
to this paragraph, and note the corrections in

}

section 37.

Sone U5ﬁpul Trlcks in Lpr

—— - " St O T ot o, i o G S} G Gt o o T

39. 1 - INSET: Occasionally it may be necessary to insert a
.. given expression: r(V) .Anto a specific location r(U) in
core storage. r(U) is obv1oule an octal nunber. Ana,
since the pon* snts of any word in core storJge,can be
written os an octal number of up to 12 digits, so is
r(V). The definition of the function which performs the
insertion iss ‘

(IJSLT (Lak BDA (U V) (La? (COWS U (COW3 (“OJ V NIL)
HIL)) NIL)))

39.3

TMP: Here we find the first practical instance oi" tac
use of INSET. Suppose theat vie have = programme which is
so .long -that-it cannot it onto one LISY systen tape, but
it cen be divided between two such tapes. If the
processing of data by the first 'half' of this program:ue
is ccmplctc befors the application of any operations from
th. second 'half', we can use MPRINT in the first helf
to put the intermediate results ontc 2z scratch teone, from
vhich LAJ“D in the sccond half can recover them for tue
rzst of the processing - provided tiat we have some means
of transferring countrol cf the LISP Jjob from one system
tape to gnotlicr. S : '

Because we have seen on p.80 of the reference (3.1)

~that, after any TusT packet, a copy of the system for use

with the next packet is read in from the bystem tenporary
tape (SYSTHP), it follows that the core memory nust
contnln one location with information on wiere the SYSTHP -
is to be found. In the Imperial College system, this
location is 367Q and, for the conventional SYSTLP
allocation of tape drive B3, it contains the octal

nunber 2002223G. The last digit is the tape-drive

nunber, tie first and fourth digits are 2 if the channel
is B eand 1 if it is &4, and the others are always as shoun.
Therefore, if we put the tape containingthe first half
of our programme on BY and thctape contalnlng the sccond
half on (sqy) A5, and change 20022230 a2t location 367w

to 1001225Q during the last TEST pzcket that mukes use

of the first half of the prograrnme, the second half of

the programme will be read in from 55 for the next packet.
The function that performs the:. trick is:

TP (L001225G)

where we have . S - .

(TP (LAMBDa (W) (IWSET 3670 W)))

Generalisations of the triuk.for longer znd more complex
progranmnes are cbvious.

GETCEL: It is desirs ble to have an inverse of = function.
that is as useful as IHSET. This function, GITCEL, retjurns

‘as its velue the number stored at the octal location r(U).

GAETCEL is defined in terims of the LAP function &a0T,

12321¢ is a location reserved for speciszl use by GATCEL,
Definitions zre as follows:

LiP(((GECT SUBR O) (XuC BEXsV) (LDy OCTD) (TRi HMKKO))
(0CTD . 54Q1) (EXiV . 12321¢) (MENG 166451)))
(GETCIL (LaliBDa (U) (PROG2 (ISET 12321g ngus 5310)

GETT))))

Frior to the definition of GETTY, it is necessary to mnke
tho FaP dnstruction X, available to LaP by the sxecuiion
o CFDHE I E(((XBC 52238))).

- 49 -

39.4 - ALIST: The a-list or associstion list inside a2 PROG is”
not normally accessible to the programmer. However, if
we mzke explicit use of functions like EVAT and AFPLY for
which one argunent nust be the a-list, we may need a
function whose value is the current a-list. & function
of no arguments which has this property is (ALIST). Its
LAP definition is: - ‘ '

LAP(((LLIST SUBR 0) (CL& ZALLIST) (TRa 1 4)) WIL)

39.5 - ORDERP: Suppose that we wish to establish a specific
ordering of certain atoms which occur as data. (This
ordering nay be of use in fast factoring functions for
manipulation of algebraic polynomials). &An ordering is
established by the order in wnich the atoms are read inte
the LISE system for the first time. Therefore, if we
want A4 to precede AB, AB %tc precede AC, =2nd so on, ve
can head the first SLT or SETSZT packet by a harmless
dcublet like: : »

CAR((4A AB AC AD AE etc.))

‘whose value is unimportant but whose effect is to make

the desired ordering. ‘e now need a predicate (ORDER U V)
which takes: two atomic arguments, and which is true if r(U)
precedes r(V) in the order and false otherwise. In LAP,
thie relevant definition is. o

L:P(((ORDERP SUBR 2) (4038 4) (CLa (QUOTE.#Tx))
(TRA 1L 4) A (PXD) (TRA 1 4)) WIL)

39.6 - POL: If we are present when a LISY job is being run on
the 7090, it m=2y be convenient to have certain results
printed an-line to avoid the delay involved in the usual
off-line printing of the output tape. e czn obtain
on-line printing in bulk by depressing sense switch 3 on
the console, but the slow on-line printer effectively
increases the running time of the Job andé usually prints
out much inessential material besides the information
that is nceded. A more efiicient method of printing is .
provided o> the function (POL U), which prints r(U) both -
on-line and off-line. This function temporarily alters
.the instruction that tests the position of sense switch 3
to an unconditionzl transfer of control to the on-linc
printing routine. In the Imperizl College system, the
sense-switch test occurs at location 1562¢ and the
printing routine begins at 1564Q-

(POT. (LitiBD4a (U) PROG (4 B)
| ~§SET§ A (QUOTE (15624 E52200001714Q))
SETQ B (QUOTE (15620 (2000001564Q)))
§LAP B HIL)
PRINT U)
ELAE A NIL)
LLTURN U))))

))
)

40. TRACLOSHT ond UNTRACESET for all ILevels of a PROG

- o - o —— S = > B — ——_- —— ——— ok S S T G et S e ot o et T e = S e = S . — S e s

. The function TRACESLET presently in tue system (seec
section 31) has the disadvantage that it detects occurrences of

- 50 -

[}

, S&TQ only on the top level of a PRGG, and not inside a COKD or
"in any other well—hldden places. Therc is the further disad-
vcntabb that the inverse function, named UNTRsCESET in the LISE
1.5 Programmner's Manual, is not defined in the sybten becaus:
of the amount of storage \thﬁ it tzkes up.

Since TR‘CJDET has an LXFR in the system, its old defintion
can be removed by the execution of Ru“PﬁOl(TR4.CESET EXPR), or
siuply ovarwritten by = . pregrammer's new definition if DEFINE is
used. Below, we have the S-—expression definitions of a good
version of TRACESET and UNTHRLCESLT thzat works on S<TQ at any place
inside a PROG. The subsidiary functions PNTSHET, NBLKJ and NRP2S
are common to TRACESET and UNTRAC-»sT, as can be‘seen fron he
definitions. ' '

(TR:CESET (LAMBDA (V) (EROG2 (CSxTQ TRACECT T) (MaP V (LUOTE
NBLP')))))
: (UNTRLCGESET (LAMBDA (V) (PROG2 (CS&TQ TRACICT NIL) (MAR V

i
, _ (QUOTE NBLKJ)))))
(NEIXJ (LAMBDA (U) EPLLOG (P4)
ESETQ‘PA (GET U (QUOTE ®XPR)))
COND ((NULL Pia) (PROG WIL (PRINL (CaR U)) (PRINT (QUCTE %#3
. ' HiS NO EXPRZ)) (TERPRI)))
((OR (ATOM (SETY PA (CADDR P4))) (nULL (CDR Pi)) (WULL
(coprR D_e—.))) NIL)
(T (GO PB))) (EETURY le)
IB (XAP P4 (QUOTE HRP2S)))))
(NRst (LABDA (X) (COWD
- ((aT0M (C.R X)) NIL) ‘
((NO.L (HLMBER (CasR X) (wUOTE (SETw COND PROG2)))) (MaP
(CiR X) (QUOTE WRP2S)))
((2 (CiiRrR X) (QUOTE SBTQ)) (RPLAGA X (CONS (CaiR X) (COED
_ (TRaCECT (LIST (CADLR X)
(LIST (QUOTE PHTSLT) (LIST (uUOTE QUOTE) (CaDAR X))
_(c2DDaR X)))) (T (cOds
(CADAR X)- (COED ((OR (ATOM (CADDaR A)) (WMo (B¢ (QUOTE
PNTSET) (CAR (CaDDaR- X);)))

(oauD“J X)) (T (CDDB (CaDDaR X)))))) 1))
g\Lﬂ (C4A4R X) (QUOTE PROG2)) (AT (CUDaR X) (QUOTE IRP2S)))
T (MAP (CDAR X) Q%ELNF(Lmdn(J)KHP(&&Jﬂ (QUCTE
o _ ¥RP28)))) 7))))) :
(PNTSET (LAMBDA (X Y) (PROG G NIL (TaRPRI) (PRINL X) (PPIuv
UOTE 838 =%))

mmud P INT Y)))))

unction-Definiticns

—— - Gre S ot i s Ot oy s e Wt s s (s o e et o S e B = e Bt e v e o S — e St T S —— f— —

4:
’..!
1
@
@
Qu
£
o’
[l
(6]
)
|._]
0]

f—~l
*..J
(B
O
)
txj

T

en Functions are defined by DiFINE, their BXPRS are printcd
in tap output over the full '¢Guh of thﬁ page, in a single-spaccd
format that is difficult to read. To improve the readabilitvy of
this cutput, functions are available to print 2XPRS in a decerative
and spacious format (a2t the rate of one per page).)

71,
i

I€ we have HAPRS cn cards vhich we wish to introduce into a
packet via DEPINE and print in this new format at the same tine,
we punch the function-name SiuDEF in the place where we would have
put DEFING previously. If we wish to display, define and conpile
the LXPRE in the one operation, the relevant function-nanme is
CAlIDEF, ' : '

- 51

~

42,

wWr L

If, on the other hund e have wreviously used DEFINE to Jut
some EXPRS into a LISP job (or onto a tape) and we want >nly % .
have thesge »XPRS printed readably, we use the function SHOV, :
which must be given one argument, a list of the names of the
functions to ve displayed. ' :

Finally, if we w*ish to display and compile some fuuctions v
thet have previously been definead via DEFINE, the relevant function
is CHOW, whose argument is the sanme as for SiHO.

A11 of the four dlsplay-;unctlons are included in a single
SET packet which is punched on cards in the drawer marked 'LISP
11brqu' in Rocm 405. Please duplicate your own copy from this
packet and return the original cards to thes drawer.

FORTRuI Input-Output Format

prohudyuisuniinytvisp S Qusvipeg Wil phaubap s hufuh QU ol g Sl

The prefix notation (sec section 3) characteristic of LISZE
is occasionally difficult to handle. In particular, long algebraic
results of LISP computations may be more easily read by a greater
number of people if converted to the infix notation of FORTRAN
(with = for nulltpllcatlon, x¥x for exponentiation, and so on).

The 'LISF library' function (MiTHPRINT X) prints r({) in FORTRAN
format in the ocutput and returns the value HIL.

The reading of FORTRalN-like input . by the computer is a nmore
difficplt profrosition, but it may be necessary under some
circumstances. Obvicusly such input cannot occur in the body
of a paciztet in LISF, as it is not in the form of valid - .. .
S—-cxpressicns. however, we can legally put it in the 'tall’ of
a packet, i.e. between the word STOP and the large number of
right-hand brackets which ncrmzlly follow STOP. %e can then
mzke use of the function (MaTHRLAD), analogous to (READ), within
the packet, t0 ingest the FORTREN-1ike input znd convert it
auvtomatically into S—nxpresolpnu. Consider a simple example:

MATHREAD (. .
(La#BDA () (TIMES W (BVaL (MATHRESD) NIL))) (5)
"‘T‘OP . .
§AKB/S)RLF(C))

2x%6))))))))

As part of a LISP packet, thesec card-images produce the output

FUNCYION ..
HATHRELD

AQC' (b) v e o
.ul IL

VaLUZ CF RLsULT IS..

(I‘L-L'S 4 (LUOTIZET B (SGRTF C)))

FUNCTIOW. ..
(LiZiBDa (¥) (TIMES N (VAL (ifaTeREAD) NIL)))

» JXRG(\ L)
()

VALUE OF RESULT IS..
320

- 52 -

43.

ay.,

“have par.llel references in the ﬂa

end entry poiants to the coupr‘“ wnich occupy a.region dowinvia

¥hen MATARLAD is' used the following Eﬂlii for cerd-
punching must be observed.

N e e
¢ -
"

42,1 - The word STOP at thc cnd ¢f s packet should .be_punched .
by itself on a single card. IR

- Lach PORTRAN-like expression to be read in snould ‘be
so-osurrounded by a pair of brackets, adéitional to any
pairs that may be needed in the expr"031on itself.”

42,3 - Lach EOALRnu—llke expression to. be read in shoula pegin
v . on 2 new card. _ A

4§¥4i—‘mbé last of the expressions to be'readrin‘at the end of
b =ny packet should be folleowed by & large number of
right-hand brackets. :

The functions which make up the complete specification of
mATHPdLJT are available in a’ singlé SET packet. .Another S&T
packet contains MATHREAD. - The cards ‘for each of ,thesg packets
are present in the 'LISP library' drawer., If you', wish' td-use
either EaTeRELD or MATHERIET,- Plbdoc follow the.- 1n°tructlonq in

the 1= st svntencv of S&CthD 41

Pause 2

" The last nine. secctions nay ve read in parallel vlth tﬂé%_y
LISE 1.5 Progrwnmer's Hanual, =s they contain information which
has been lturﬂp over, .boqt_ZvB man-ye ears of LISY programquv

The remqlnlnb' cctions dea th r aterlcluwhich does not

val. Section 44 sets out tiic
procedure for thé sstablishment of a LIST system tape from the-
source tane, and seéction 45 gives an account of some programiies
for-use in theoretical pnvs1cs tnqt are also storedion th& . -
source tape. o

v
n

ot

Settln =710 an IBH 7090 LISP zstbm

‘ A;The sstablisiment of a LISE °"“te* tau is a two-pass
precess.: The source tape, coat vining the card inages for both

' passes, is 3 248 at Irgbrlml College. If the sy stam is tc e

set up elsewhere, any copy of one file of X“248 cnto 2 blank tanc
constitutes an cccthble sourcc tape. '

"The first pass produces a binsry deck of zbout 400 cards
(which is part of the input fer the second pass) and erntCC
cutput of abhout 1170“ lines (30C pzz s). The cutput is
of the »zrt of the 1LISP system that

;) ills sbout the fi"“t.
locations of the computer, plus LY, upsrmenent list structure

D]

!*".) (T

from location T77777%. Clieck that the szrial nbnbbr (oolurn”
of the first card of the binury deck is LISPOGOO and that the cord

is labelled TRA00371.

i

The programme which produces the output is:

*1D sual Imperial College FMS ID card

* PLEASE MOUNT TAPE X 248 (SAVE + F.P.) ON.CHANNEL A 5
* PAUSE
* PACK
* FAP
UPDATE 9

EIFTO | - - Lsggdres
::if you want to update the source tape, update cards ’
in FAP format go here:

ENDEND END CONTIN _) Ls:lzzy,‘yg!

On the job slip, request tape X 248 (saved + flle—protected) on channel AS,
maximum output 18000 lines, maximum running tlme 8.0 minutes.

Important: The programme above, and all subsequent setting-up programmes
in this Guide, must be punched according to the rules for FAP (FORTRAN II
Assembly Programme)coding. The location field (containing the asterisks and the
first NE" of ENDEND above) begins in column 1, the operation field (PAUSE, PACK
etc.) begins in column 8, and the variable field ("9, in UPDATE 9) begins in
column 16. All serial numbers (e.g. LS122070) for cards begin in column 73.
If these rules are ignored, the programmes will not work. Also, be sure that
no programme deck is loaded on~11ne, because the on-line card reader does not
scan columns 73-to 80.

A1l programme decks should end with an FMS end-of-file card.

The second pzee of the setting-up procedure produces the LISP system tape
(SYSTAP). The binary programme from the previous pass is built upon from cards
- with serial numbers prefixed by LU on the source tape. We reserve from the
tape librarian in Room LO5 the tape to be used as a SYSTAP, and this is mounted
on channel B3 (to be saved but not file-protected). X 248 is mounted on A5.as
before. The second-pass programme is as follows: '

*ID . usual Imperial College FMS ID card
* PLFASE MOUNT TAPE X 248 (SAVE + F.P.) ON CHANNEL A 5
* PLEASE MOUNT TAPE (AND SAVE IT) ON CHANNEL B 3 ::(The number of
: : : : your reserved
tape will go in
the blank snace)~
o PAUSE
* PACK
* FAP
UPDATE 9,,,NO | | ' :
SKIPTO o - LUgIAees
ENDUP '

-~

- Sy~

L PACK

. FAP

RTBA .2
RCHA IOC
ICHA, o
TRA 1

I0C I0CT &,,3
END

* DATA

::the LISP binary deck from the first pass goes here::
TAPE SYSPIT,AS
SET
" RECLAIM NIL STOP))))))
© s FIN

Howev.r, suppose that we want to alter some of the LU cards and . produce
an updated LISP system. In that case, we run a slightly different programme,
which takes account of the FMS UPDATE option. .X 248 goes on A5 and the . |
intended SYSTAP on B3, as before, but in addition we mount a good scratch tape
on B5. This tape is not file-protected, and not saved after the job. The
programme 1s:)

*ID Imperial College FMS ID card e an

e el
* " PLEASE MOUNT TLPE X 248 (SAVE + F.P.) ON CHANNEL A5)
*» PLEASE MOUNT (AND SAVE) TAPE - ON CHANNEL B3 D
* ' PLEASE HAVE A GOOD SCRATCH 'TiPE ON CHANNEL BS _
* PAUSE o - - L
* XEQ ' ‘ DR *
* - PACK | ; B o *
* FAP |
UPDATE 9,10,U,NO . . .
SKIPTO | . 7
:update‘cards for the LU section go here:: | ‘ f
- TAPE SYSEIP,A2 Lo o T 1ugh3928
UNIOAD 9 - .
REWIND
ENDUP
* PACK
* FAP
"~ RTBA 2
RCHA 10C
ICHA ¢
TRA 1

I0c IOCT 0,,3

END
* DATA
::the LISP binary deck from the first pass goes here::
TAPE SYSPIT,BS
SET
RECLAIM NIL STOP)))))
FIN

~ On the job slips for either of these jobs, request a maximum running
flme of 11. O minutes, and a maximum output of 3000 lines,.

The result is that the tape on B3 at the end of either job is a LISP
system tape, which should be saved and mounted on channel BY in the usual way
for all future standard LISP jobs.

To be sure that the tape on B3 is not overwritten atvthe end of the job,:
please note the trick (see section 20) of putting a small O.l-minute "pseudo-job"
at the end of the regular card deck. ,

When punching the TAPE control for elther of the two jobs above, be sure
that there ‘is no blank on either side of the comma in the variable field.

The SET packet at the end of the Jobs is essentldl

Before updating can be decided upon for either of the two passes of the
LISP r;atsm agsssibly, it is necessary to know what is on the appropriate card
images on the source tape. Card images for the first pass run from LS@ZABED to

18122@7#, and for the second pass from LUZZZIZY to LU¢ﬁ35?/ Selective printing
can be carried out by the follow1n6 programme :

*1D usual I.C. FMS ID card wl
* PLEASE MOUNT TAPE X 248 (SAVE + F.P.) ON CHANNEL A5
* PLEASE MOUNT A GOOD SCRATCH TAPE ON E;, AND PRINT ONE FILE OF IT
: AFTER THE JOB
*. DPAUSE
* - PACK
* FAP
UPDATE 9,10,U,NO
SKIPTO ~ t:columns 73-80 contein serial nr. of first card
A v ' v to be printed::
END OF PRINTING - :columns 75 -80 conta*n serial nr. of last card
to be prlnted
UNLOAD 9
UNLOAD
 ENDUP

The job slip should be filled in accordingly.

k5.

¢

The programme on the previous page can be used in ‘connection with the

next section of this Guide, to investigate the contents of the Physics
Programmes 7¥ and LX.

Programmés for Calculations in Theoretical Physics

. The set-up tape (X 248) contains material for three programmes in
theoretical physics. The first, designed largely by A.C. Hearn, occupies
card-images with serial numbers IN@Z@ZZ7 through IWZ1482%, and is called

- programme LW below. It may be used to perform trace operations on products

of terms containing Dirac gamma matrices, four-vectors and scalars. The . .
second, running from LWA158LF to LuWZ1726#, is a short programme to squére
matrix elements of the type derived from the last programme on the tape. This
last programme (Programe IX) is accommodated on cards LXZ@ZZAF through
LXZF567¢. It takes as input a specification of a Feynman diagram or diagrams
and produces as output an expression for the corresponding matrix elq;nent(s)°

Commentaries on each of the three programmes (under.the headings .
Programme IW, IWFLSZLZ or .IX) are given below. o PR

In section kL, we have already seen that two passes are required to
make up a basic LISP system tape (SYSTAP) from the set-up tape (X 248). We use
a third pass to construct a system tape containing basic LISP plus any of the .
three physics programmes. In the job that constitutes the third pass, we ask

~ for tape X 248 to be placed on A5 and the SYSTAP resulting from the second pass

of the LISP assembly to be placed on B7 (both tapes saved add file-protected)

We reserve from the tape librarien in Roon LOS a tape to carry our physics prog-
ramne, and have this placed (saved but notniile-protected) on B3. Finally, we
Tequest & good scratch tape on A7. -All of these requests must be entered on the
job slip and punched on comment cards o go after the ID card that is the first

card of the job deck. After the last df the comment cards, we put the following

rrograiiie:

* '~ PAUSE .
* PLCK “ o
. FAP : o

UPDATE 9,13,U,NO
SKIPTO ‘ o ' » . 1:al:
.h ttany cards to ﬁpdate the programme go here, if needed::
TAPE SYSPIT,A2 O iibas
s:for Programmé IX only, a card>Wifh'biénks up to column 72 “
e and serial number LX¢¢36Zﬂhbeginning'in;coIQMQ 733 .
 UNLOAD 9 | - '

 REWIND
| ENDUP
* " PACK v
* AP
RTBB 7
RCHB I0C.
ICHB
TRA 1

I0C IOCT 0,43

. DATA | .
" ::octal correction cirds Ior the basic LISD system, if needed::

:transfer card - 7,9 punches in column 1, and 2,3,14,5,6,8,9
punches in columnB, otherw1 e blank:: '

~ TAPE SYSPIT,A7

' SET . /
RECIAIM NIL STOP))))))) : ' e
F]:N N . i . P : :

::FMS énd-dﬁ~§ile card::

1
a

Follow the same rules for placement of columns that have been stated in section
44 (e.g. all FAP instructions like UPDATE begin in column 8, ‘arguments for the

instructions b&gin in column 16, and the" commas which separﬁte arguments must
not be preceded or followed by a blank.

The thlrd—pass nrogramme should run for a masdmun of 10 O minutes and
produce a maximum of 3000 lines of output.

'The'letters a and b in the listing above stand for the fbllow1ng oerlal
numbers- (to-begin in.column.73 of .the relevant cards):

Programme LM a=LUdldds b= LlM’I 4825/
Programme LWZ15@Lg a = IWASELS 7 b = IMZ17268"
Programme LX - a = LXgYRERE b = LX%%Béﬁﬁ

The result of the third-pass programme is the production of & tape)
on B3 conteining the basic LISP system plus the specified physics programme.
This tape should be saved and placed on BY as a SYSTAP for future jobs whlch
make use of that physics programme.

Programme LW

Thls probramne occuples sc much space in core storage that we cannot
process it with a conventional LISP system tape of the type produced in the
no-updating scheme in section L&, During the second pass of the assembly, we:
" must use updating to insert a new SIZE control card in place of the standard
card with the serial nunber LUQ%}VL/, The old card contains:

STZE LR, R, b2, 22k - L

where the "S" occurs in column 8 and the numbers begin in column 16, but the
new card should contain:

STZE 15671A, 2671/, AR, 23200 o Lugssp g

The following two cards should alsoc be included in the appropriate place in
the update section:

TAPE((1224 12¢6Q 22#6Q 12¢/7Q 22¢LQ 22¢2Q 12¢5Q 22#1Q)) ' Lumws.yf .
 DELETE THRU - LUg121dg

..58_.

3!

On the last cerd, the two words should begin in columns 8 and 16 respectively.
~ The serial numbers on all cards should begin in column 73. : '

A1l errors of the type A2 or R1 in the output accompanying the second
pass of the assembly of the system tape should bs ignored. The tape produced
on B3 Auring this pass can be mounted on tape drive B7 for = :bsequent assembly
of Programme LW by the methods mentioned in the earlier part.- of this section.

Each trace calculation is the subject of az separate TEST packet.
Following the TEST control card, we place a card containing the words
START NIL STOP and nothing else., Data for the calculation begin on the next
card, and are surrounded by a pair of brackets. All operations within the data
are punched in a FORTRAN-like notation and separated by commas. They may have
any number of arguments, also spparated by commas. The available popular
operations are:

45,1 - FACTOR, an operation which couses its arguments to be factored out
where they occur in the result of the calculation, to make the reading
of the result easier..

45,2 - ORDER, which establishes an order of Drecedence for its arguments in
the prlntlng of the result.

45,3 - INDEX, whose atomic arguments stand in tHe places where Greek indices
are requlred

L5, L - LET, whose arguments represent replacements to be made in a calculation.
For example, if the scalar product of the four-momentum P1 with itself
is the square of the electron mass EM and the four-momentum P2 refers to
a proton, we can punch: :

LET((P1 . P1) = EM**2, (P2 . P2) = BM**2)
‘Note the convention used to denote scalar producto.

5.5 - MSdELL, which specifies the four—nonenta of particles = zhich'are supposed
' to be on their mass shells. :

L5,6 - FMiKE, each of whose arguments represents the substitutionfor a
" functional form used as shorthand in the expression to be simplified
by trace or other operations. For example, if we have to write -
d + bx + cx? frequently in the calculation, and wish to abbreviate it
by f(x), we use: : ‘

FMA.KE(F(Y) D +B*X +C*x**2)

15,7 - TITLE; whose argument is the atom we want to use as a heading for the
printing of the result of a calculation. Only letters and digits can
occur in this aton.

L5.8 - Following the use of any combination of the seven operations listed
above, we represent the expression to be simplified as the argument of
the functional operation SM.

- Dirac matrices and scalar products of the mztrices with four-vectors
are specilied by the operator G, which has two arguments. The first
argunent is always 2 (non-numerical) stom labelling the fermion line
on which the entity occurs. The second atomic argument, if previously

7
declarcd as one of the arguments of INDEX, causes 1he expression’ beglnnnng with
G to be interpreted as a Dirac matrix; otherwise the second argument is b
assumed to be the name of a four-vector, so that the entire expression is
interpreted as the inner product of Dirac matrices and a four-vector.

A further operator EPS, having four arguments, represents the totally ..

~.antisymmetric unit Iourth—rdnk tensor if all of tle arguments have been
. declared via INDEX, and is otherwise taken to be the partial contraction of

this tensor with the (four-vector) arguments that are not so declared.

Finally, the occurrence of the Direc matrix with subscript 5 on a fermion line
labelled by, say, LB, is written as G(LB,A). A is a special symbcl, so that
we cannot use it elsewhe *2 in the argument of SH. .

As a simple exanple, suppose that we wish to calculate the sum of two
terms. The first is the product of the four-vector p (with index mu),
q (with index nu) and the unit second-rank tensor (indices mu and nu). The
second is. the product of the inner product of Dirac matrices with p and the
same matrices with q. - We punch: :

TEST . o |
START NIL STOP _ - ' ‘ o
(INDEX(U, V), SM((P.. U)*(U . V)*(Q ..V) + G(L,P)*&(L,Q)))

and the answer produced by the programme is 2¥(P . Q).

Tn any expression of the form G(L,P) + &M, vhere P is 2 four-vector and
EM is a scalar, theterm EM is assumed to be the product of this scalar and the
unit bxk matrix.

In addition to the operation described ap to (45.8) on the pre?ious page,
any function named in the object list (we can look for its presenwe by
executing EVAL(OBLIST NIL)) can be used as an operator.

- Conventional orgaﬁisation of LISP nackets can be mixed with the type of
organisation quoted in the example above, where SH actually uses the function
WATHRLAD to read any FORTQAN llkb material following the atom STOP,

¥

Programme LWQ;"I sALY

thsaprogramme is intended to extend slightly the usefulness of Programme
IX. The function RESPROC is ideally used after the function PROCESS from
Programme LX. has printed its results on the output tape and written them onto-
scratch tape 1 via MRPINT, Therefore it is necessary to see the results of

. PROCESS and to understand broadly how PROCESS works before RESPROC and the
. other functions of Programme IWZ15¢L7 are used. To sum up, its effect is to

square the representation of a matrik element and obtain a quantity
provortional to a cross-section. :

" Programmes LW 574 and LX can be set up togetaer onto one tape.

i

Programme X

The structure of a Feynman diazgram can be specified by a list of sublists
which described individual vertices. Any suklist is so arranged that CAR
applied to it gives a list of the four-momenta entering the vertex and CDR
giv“s 2 11st of the four-momenta leav1np it. Therefore we.can write:

() & F2) (B3) B - (5.9)

as a spec1f1catlon of the diagram shaped like an up;er-case,H;

¢ .
! The principal function in Programme LX is PROCZESS. It has one argument, a

2 1lst of lists like (L45.9). Because of this, we can give an arbitrary number

of Fbynman diagrams to PROCESS at any one time, and the corresponding matrix
elements are calculated one after the other. In pracktice, though, the most
common use of PROCESS deals with only one dlagran at a time. If we want to
apply PROCESS to (45.9), we punch: S

PROCESS(((((21) & P2) ((B3 K) PI)))) L o)

Before using PROCESS, be sure that thc reasons for the presence of each pair
of brackets in (45.10) is understood.

Bach four-momentun in an expresslon like (45.9) has properties like spin
and mass. These properties must be assigned to the four-momenta prior to the
use of PROCESS, by DEFLIST with the appropriate indicator as the second
argunent. This requirement can be explained best by example. Suppose that P1
and P2 refer to electrons,P3 and PL to protons and K to a photon. With some
obvious mnemonics for nasses, we can punch:

" DEFLIST(((P1 EM) (PZ EM) (P; PM) . (Pl; PM) (K LA)) M388)

The conventlonal spin a551gnments for fermions {P1 to P1Q) bosons of spin K 1
(K1 to K6, then K1¢) and bosons of spin # (Q1 to Q1¥) are already in the’
system. h1 is given a polarisation four-vector E1, K2 is given E2 and-so on.
The current assignments of mass give odd-numbered fermions masses of ME, even-
numbered fermions masses of MP, all spin-1 bosons except K1¥ nasses of LA
(K1Q’has zero mass) and allyspin—bosons masse of MU. '

‘ If there are any four-momenta. whlcb must be 1nteorated over during the
" determination of a matrix ele ment, we punch'

IOOPVAR(x) -

where x is a list of these four-nomentz.
If anj four-momenta are to be associated with antl—partlcles, we punch.
FLAG(x ANTIPTL) :
‘where x is a list of these four-momenta. :
If we introduce any new four-momenta (other than P1 to P1%) which stend for
foruions, we punch:
FLAG (x FMN) ' where x has the usual meaning.

A1l uses of FLAG, DEELIST LOOPVAR and similar initialising functlons that
we may wish to deflne must precede the use of PROCESS, which is the instruction
to the programme to determine matrix elements,. , R f I

e}

Recognltlon of 1ntegruls is carried out through the standard table ITYP near
card LXg#Wohg in the listing of Programme LX. If we wish to-add new types
of basic-integral to the table, we use the function ITYPES in the manner
demonstrated near card LX#Z494. Further comment on this p01nt occurs below.
If we vish to introluce new types of vertex or particle, we use the function
RULE near card Lx¢g1¢5yf, Cards LX//ﬂ/fo/ to Lx//131¢’ ecntam exam);lea of RULE.

lhe section of Programme LX devoted to four-dimensicnal 1ntegrat10n is
presently prgnared only to recognise denominator terms of the form k2 - AZ
(to which it gives the code number 1) and k€ - 2p.k (code number 2) In the
table ITYP, for example, (1 1 1) is 2 shorthand notation for(k2 - A2)=3, and
the list following (1 1 1) is & representation of the result of the four-
dimensional intsgral of this term over k. (1 2 2) represents
k2 - 7\2)-3(k2 ~ 2p.X)~1(x2-2q.%k)~1." We can add different types of term to

. Cs ~
. . . - . . . e vy e 3 S
- r;:t S e E 134

A,
ITYP by making ow. own assignment of the codes 3, ' ctC. and modifying the’
LISP functions which perform recognition of integrals to take these new ...
codes into account. Hopefully, the integral-recognition functions are -so
arranged that the necessary modlflcatlon will be confined to changes of
the definitions of the two functions IRULE and CODES, to be found after card
IXFA5uFE. Therefore, unlike the case of Programm: LW, whose abilities and
codlng are fixed, Programme LX requires nodification under some circumstances.
This is so because the methods of taking traces are fixed and well-defined,
whereas different strategies are apprgpriate to different integrals where
integration must be carried out. In that sense, Programme LX is incomplete and
will always be incomplete, but an improved version of it should be available
at the Stanford Iinear Accelerator Centre and on the time-shared PDP-6
computer of the Stanford Artificial Intelligence Project from April 1967,
Potential users of Programme IX who vish to include integrations in their
calculatinns are cordially invited to read the vrevious 4l sections of this
Guide and the LISP 1.5 Programmer’'s Manual (3. 1), and learn enough LISP to .
be able to do their own prograrmir: risonpcii'ond developfent.

In connection with the questions of use and development, 2ll users should
obtain listings of the programmes they wish to use, in advance of setting up
the procrammeo themselves, by executing the selective-printing programme
given in section hi. A -study of any 1lst1ng, even by someone who knows very L.
little LISP, is often quite useful for an understanding of what is g01ng on
inside the programme whlle it is running

If Programme LX is used indspendently of Programme IWZ15#L#, PROCESS will
appear to be very taciturn and give the value NIL instead of the expected
natrix elementy: We recapture the result of the calculation by following the
PROCESS instruction of the general form (45.70) in our card deck with:

(1AMBDA NI (PROG NIL (PRINT (MREAD 4)) (DRIN_L (MREAD 1)) (DRINT (MREAD 1))
(PRINT (MRLAD 1)) (REWIND 1))) ()

Users who have read all of the preceding sections of this Guide wili'dquﬁtless,
be able to effect this procedure more concisely and understand why it is
necessarya ~ : ’ o

Help !

In case of trouble with LISP prograrmss -that cannot be explalned adequately
either here or in the reference (3.1), it may be a good thing to consult people
who have had some experience in LISP programming. Such people are known to
exist im the following places: o o

*Atlas Computer Laboratory, Chlltor, Didcot, Berkshire

AERE Computing Centre, Harwell, Berkshire -

- Physics Department, Royal QOlloway College, Englefield Green, Surrey

*Mathematlcs Department, University of Manchester

*departments and units concerned with computing, University of Edlnburgh,
Edinburgh 8, Scotlgnd

Philosophy: Department, University of Oxford

Progect MAC, Massachusetts Institute of Technology, Cambridge 39, Mass.
02139, USA .

Forsvarets Fb”skn3n381nst1tut+ Kjeller, Norway

*Artlflclal Intelligence Project, Stanford University, Stanford, Calif.
94305, USA

Natlonal Burecau of Standards, Boulder, Colorado, USA

*Scheel of Phy51cal Sciences, Flinders University, Bedford Park

: South Australia

7.

Instltut fir th€oretlsche Phys1k Johannes—Gutenberg—Uhlver51tdt
Mainz, Germany.
Laboratorl Nazionali di Frascati, Frascati, (Romn) Ttaly

Information about apparent mlsbehav1our of the LISP system (as distinct from
functions defined by the programmer) 1s best obtained at the nlaces marked
with an asterlsk. Good luck ! :

Postscript

For Imperial Céllegc users, coples of the LISP system exist on tapes X 57
and X 247, and the set-up tape containing card images for LISP and programmes
in physics is X 248. At 11 December 1966, the address for mailing nf . jobs

' was Computer Unit, Centre for Computing and Automation, P.O. Box 346,

Imperial Gollege, Prince Consort Road, Iondon, S.W.7.

For other readers of this Guide or intending users of LISP within range
of an IBM 7090/94 installation, copies of the Guide can be obtained from
Computer Reception, Room 404, Electrical Engineering Department, Imperial

" College, Exhibition Road, London, S.W.7. To set up a LISP system for the

first time on a 7090 or 7094, send a blank tape to Imperial College with a
request to copy one file of X 248 onto that tape. The copy may be used to
set up LISP according to the directions in the Guide section k44, The
physics programmes may be set up from the same tape if the instructions
in section 45 are followed. ’

	Campbell-Imperial_College_LISP_Guide0001_a
	Campbell-Imperial_College_LISP_Guide0002_a
	Campbell-Imperial_College_LISP_Guide0003_a
	Campbell-Imperial_College_LISP_Guide0004_a
	Campbell-Imperial_College_LISP_Guide0005_a
	Campbell-Imperial_College_LISP_Guide0006_a
	Campbell-Imperial_College_LISP_Guide0007_a
	Campbell-Imperial_College_LISP_Guide0008_a
	Campbell-Imperial_College_LISP_Guide0009_a
	Campbell-Imperial_College_LISP_Guide0010_a
	Campbell-Imperial_College_LISP_Guide0011_a
	Campbell-Imperial_College_LISP_Guide0012_a
	Campbell-Imperial_College_LISP_Guide0013_a
	Campbell-Imperial_College_LISP_Guide0014_a
	Campbell-Imperial_College_LISP_Guide0015_a
	Campbell-Imperial_College_LISP_Guide0016_a
	Campbell-Imperial_College_LISP_Guide0017_a
	Campbell-Imperial_College_LISP_Guide0018_a
	Campbell-Imperial_College_LISP_Guide0019_a
	Campbell-Imperial_College_LISP_Guide0020_a
	Campbell-Imperial_College_LISP_Guide0021_a
	Campbell-Imperial_College_LISP_Guide0022_a
	Campbell-Imperial_College_LISP_Guide0023_a
	Campbell-Imperial_College_LISP_Guide0024_a
	Campbell-Imperial_College_LISP_Guide0025_a
	Campbell-Imperial_College_LISP_Guide0026_a
	Campbell-Imperial_College_LISP_Guide0027_a
	Campbell-Imperial_College_LISP_Guide0028_a
	Campbell-Imperial_College_LISP_Guide0029_a
	Campbell-Imperial_College_LISP_Guide0030_a
	Campbell-Imperial_College_LISP_Guide0031_a
	Campbell-Imperial_College_LISP_Guide0032_a
	Campbell-Imperial_College_LISP_Guide0033_a
	Campbell-Imperial_College_LISP_Guide0034_a
	Campbell-Imperial_College_LISP_Guide0035_a
	Campbell-Imperial_College_LISP_Guide0036_a
	Campbell-Imperial_College_LISP_Guide0037_a
	Campbell-Imperial_College_LISP_Guide0038_a
	Campbell-Imperial_College_LISP_Guide0039_a
	Campbell-Imperial_College_LISP_Guide0040_a
	Campbell-Imperial_College_LISP_Guide0041_a
	Campbell-Imperial_College_LISP_Guide0042_a
	Campbell-Imperial_College_LISP_Guide0043_a
	Campbell-Imperial_College_LISP_Guide0044_a
	Campbell-Imperial_College_LISP_Guide0045_a
	Campbell-Imperial_College_LISP_Guide0046_a
	Campbell-Imperial_College_LISP_Guide0047_a
	Campbell-Imperial_College_LISP_Guide0048_a
	Campbell-Imperial_College_LISP_Guide0049_a
	Campbell-Imperial_College_LISP_Guide0050_a
	Campbell-Imperial_College_LISP_Guide0051_a
	Campbell-Imperial_College_LISP_Guide0052_a
	Campbell-Imperial_College_LISP_Guide0053_a
	Campbell-Imperial_College_LISP_Guide0054_a
	Campbell-Imperial_College_LISP_Guide0055_a
	Campbell-Imperial_College_LISP_Guide0056_a
	Campbell-Imperial_College_LISP_Guide0057_a
	Campbell-Imperial_College_LISP_Guide0058_a
	Campbell-Imperial_College_LISP_Guide0059_a
	Campbell-Imperial_College_LISP_Guide0060_a
	Campbell-Imperial_College_LISP_Guide0061_a
	Campbell-Imperial_College_LISP_Guide0062_a
	Campbell-Imperial_College_LISP_Guide0063_a
	Campbell-Imperial_College_LISP_Guide0064_a
	Campbell-Imperial_College_LISP_Guide0065_a
	Campbell-Imperial_College_LISP_Guide0066_a

