
SERIES BASE NO. I VOL I REISSUE

System Deve!opment Corporation/2500 Colorado Alle./Santa Monica, California 90406

LISP 1.5 for 360 Computer
Language Maintenance Manual

ABSTRACT

TM

AUTHOR
J. B

TECHl~ICAl

for

DATE
March 2, 1970

This document describes the language processing facilities of SDC's LISP 1.5

system for the IBM 360. The system operates under ADEPT on the Model 50 and

PAGEl

("-.) TS/EXEC on the Model 65. In. most respects, this LISP is a direct superset of

" i4~rJ (51 fJ8j
I

the system operating on the Q-32. Ma~y implementation ideas were borrowed

from the LISP 2 Project. Included are chapters on system special variables,

declaration logic, compiler and assembler. The information herein is for use

by persons maintaining or augmenting the system.

This document has not been cleared for open publication.

, ,

March 2, 1970 2 TM-4520

TABLE OF CONTENTS

Section Page

1- INTRODUCTION 4

2. SYSTEM SPECIAL VARIABLES 4

2.1 (LBRL 127) 5
2.2 (LBDL • 127) 5
2.3 (ELAB 127) 5
2.4 (SLAB 127) . 5
2.5 (TGO 127) 5
2.6 (FGO 127) 5
2.7 (BLAB 127) 5
2.8 (LBeK 127) 6
2.9 (SeLS 127) 6
2.10 (PCLS 127) 6
2.11 (Ael 126) 6
2.12 (AC2 126) 6
2.13 (KIND 122) 6

~" 2.14 (DELTA • 122). 6
L' 2.15 (Rl 122) 7

2.16 (R2 122) 7
2.17 (V360 122 . 7
2.18 (LST 127) . 7
2.19 (SLST 127) 7
2.20 (SGUS 127) 7
2.21 (GL 127) 7
2.22 (EXP 127) 7
2.23 (SVAR . 127) 7
2.24 (ALIST 127) 7
2.25 (FNAM • 127) 8
2.26 (LOe 126) 8
2.27 (HB 126) 8
2.28 (DPDP 126) 8
2.29 (MLST 126) 8
2.30 (RLST 126) 8
2.31 (PLST 126) 8
2.32 (eLST 126) 8
2.33 (ELST 126) 8
2.34 (ENTL 126) 9
2.35 (LEAD 126) 9
2.36 (XLST 126) 9
2.37 (REF 122). 9
2.38 (ERRFLG 122) 9

0
2.39 (FeNT 127) 9

._-_._--._----------- ------------------------_._-_._-

, I

,"

C:

o

March 2, 1970

Section

3.

3.1
3.1.1
3.1. 2
3.1. 3
3.1. 4
3.1. 5
3.1.6
3.2
3.2.1
3.2.2
3.2.3

4.

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

5.

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4

6.

6.1
6.2
6.2.1
6.2.2
6.2.3

3

TABLE OF CONTENTS (CONT'D)

SYSTEM DECLARATION MECHANISM • • • • •

Declarations: Philosophy of Operation •
Reference Class • • • • • • • • • • • • • •
Bind Class . . . • • • • •
Explicit Function Class ••
Operator Class . • .
Entity Name Class .• • "
Explicit Declaration Class
Declarations: Implementation
Declarations: Supervisor

,. . .

Declarations: Compiler.............
Declarations: Assembler ••

THE LISP 1.5 360 COMPILER

Compiler: Philosophy of Operation • • • • • •
Compiler: Implementation . • • • • • • •••
Compilation Control and Central Functions
Function for Building the Compilers Listing . . • •
Calling Sequence Gener~tors • • • • • • . • •
The FOR Macro
Compilation of Predicate Forms • • • • • • • •
Compilation of Forms Cognizant of Terminals.
The PROGN Logic . • • • • • • . • • .
Miscellaneous Compiler Forms . • • . • • • • • • •
Machine Dependent Forms Compilation •

THE LISP 1.5 360 ASSEMBLER~ LAP ••••

LAP: Philosophy of Operation ••••••••..••
Assembler: Implementation..... • •••
Assembly Control Functions • • • • •
Assembler Pattern Matching Functions • . • • • •
Assembler Macros . . . • •
Assembler Planter Functions •....

THE LISP 1.5 360 SUPERVISOR . . . • • • . . •

Supervisor: Philosophy of Operation •
Supervisor: Implementation....
Supervisor Control Functions • • • • •
Supervisor, Compiler and Assembler Error Mechanism •
Miscellaneous Service Functions • • • • • • •• • • •

-----------~-----------------

TM-4520

Page

9

9
10
11
12
14
15
17

·18
18
19
20

22

22
26
26
28
30
31
32
32
36
36
37

38

38
40
40
41
42
44

46

46
48
48
49
SO

I,'

c'

c

, ,

March 2, 1970 4 TM-4520

1. INTRODUCTION

This paper describes the language processing facilities of SDC's LISP 1.5
system for the LBM 360. The system operates under ADEPT-50 on the Model 50
and TS/EXEC on the Model 65. The following chapters describe special variables
used by the system, the ,LISP 1.5 compilers the LAP assembler and the super-

, visor.

The supervisor controls system inputs and the interaction process. The compiler
translates LISP 1.5 programs into the equivalent LAP programs. LAP programs

'are translated to binary and placed ,in the computer's memory by the assembler.
Provisions are made for using the compiler as a separate function from the
assembler. This is useful if it is desired to translate a large set of func­
tions to LAP and then preprocess the assembled code or save on disc in a
quickly loadable form.

The documentation conventions used were the" following:

The section describing system special variables names the variable and defines
the format in which its data values are kept. These definitions are prece.ded
by one or more of the words "COMPII , "ASMB", or "SUPV" indicating the defined
use is for the compiler assembler or supervisor respectively. '

Entities are enclosed in quotes. This usage means the entity as written, in
fact as if it had been a quoted item in a LISP program. Since neither T, F
or NIL need be quoted in a LISP program they are not quoted in this document. ,
Thus, "Til is equivalent to T.' .

In the documentation of system functions, the tailed name of a function i~ followe~
by a parameter list and a kind descriptor. The parameter .list gives a one
letter dummy name for each argument of that function. The kind descriptor is
either "MACRO~', II INSTRUCTION" , IlLAPII or blank. IILAPII implying a function
written in LAP and blank implying a function written in LISP.

Other information describing the function is given in the following order:
Args, Bindings, Side Effects, Values Description. The information following
Args describes each parameter's format, e:g., s-express, identifies, etc. The
information following Bindings is a list of special or unspecial variables
bound as l~bda, or block variables in the described routine. The information
following Side Effects is a list of special or unspecial variables whose value
bound outside of the described routine may be affected directly by actions
explicitly taken by this routine, i.e., SETQ, CSET, etc. The information
following Value describes the value of the routine. The information follow­
ing:Description is a prose account of the action of this ro~tine.

2. SYSTEM SPECIAL VARIABLES

The following is a list of special variables used by the compiler, assembler,
and supervisor, .and a brief description of their use.

, ,

March 2, 1970 5 TM-4520

2.1 (LBRL • 127)

COMP: A list of unique label names that have been referenced and not defined
at the time of reference.

ASMB: A list of dotted pairs of labels that have been referenced and not
defined at the time of reference and, the relative byte address of
the last half-word of program to reference that label.

2.2 (LBDL. 127)

COMP: A list of label names visible toGO statements at this point in the
compilation.

ASMB: A list of dotted pairs of all labels defined to this point in the
assembly and, the byte location at which the label was defined.

2.3 (ELAB . 127)

COMP: The value of ELAB is either bound to an integer name of a compi1er­
generated label or NIL. The label value is the confluence point
for terminal expressions.

2.4 (SLAB. 127) o COMP: The value of SLAB is either bound to an integer name of a compiler­
generated label or NIL. The label value is the confluence point for
terminal statements.

o

2.5 (TGO. 127)

COMP: The value of TGO is either bound to an integer name of a compiler­
generated label or NIL. The label value is the transfer point for
a predicate upon true evaluation. A NIL value indicates a fall­
through upon true evaluation.

2.6

COMP:

2.7

COMP:

(FGO • 127)

The value of FGO is either bound. to an integer .name of a compiler­
generated label or NIL. The label value is the transfer point for
a predicate upon false evaluation. A NIL value indicates a fall­
through upon false evaluation.

(BLAB . 127)

During the compilation of statement BLOCKs, BLAB is bound to the
integer name of a compiler-generated .labe1. This label is the trans­
fer point for RETURN statements.

During the compilation of predicate BLOCKs, BLAB is bound to a dotted
pair of compiler-generated label names. The first label is the trans­
fer point for a RETURN statement whose expression body evaluates true.
The second label is the transfer point for a RETURN statement whose
expression body evaluates false.

'.

o

March 2, 1970 6 TM-4520

2.8

COMP:

2.9

COMP:

2.10

COMP:

2.11

COMP:

2.12

COMP:

2.13

COMP,
ASMB,
SUPV:

2.14

ASMB:

(LBCK. 127)

The value of LBCK is bound to "EXP", "STAT", or "PRED" as the BLOCK
presently being compiled is encountered in the expression mode, the
statement mode, or the predicate mode respectively.

(SCLS . 127)

The value of SCLS is bound to either T or NIL. T indicates that the
compilation is in the statement mode. NIL indicates that compila­
tion is either in the expression mode or the predicate, mode.

(PCLS • 127)

The value of PCLS is bound to either T or NIL. T indicates that the
compilation is in the predicate mode. NIL indicates that compila­
tion is in the expression mode. The value bound to PCLS is only
meaningful when the value bound ,to SCLS is NIL.

(ACI • 126)

The value of ACI is bound to either NIL, "(NIL)II, or a variable
name. NIL indicates that the value of the accumulator is not known
at this point of the compilation. lie NIL)" indicates that the value
of the accumulator is known at this point in the compilation to be
NIL. A variable name indicates that the accumulator is known to
contain a copy of the value of that variable at this point in the
compilation.

(AC2 . 126)

The value of AC2 is bound to either NIL, II (NIL) II, or a variable name.
NIL indicates that the value of the accumulator is not know at this
point of the compilation. "(NIL)" indicates that the value of the
accumulator is known at this point in the compilation to be NIL.
A variable name indicates that the accumulator is known to contain
a copy of the value of that variable at this point in the compila­
tion.

(KIND • 122)

The value of KIND is bound to either "SPECIAL", "UNSPECIALII , "MACRO",
"INSTRUCTION", or an integer. The value is used for communications
by the declaration logic.

(DELTA • 122)

The value of DELTA is bound to an integer displacement in
bytes. This displacement is relative to a register specified by
Rl or R2.

, ,

"

(~','

\.-,--

March 2, 1970 7 TM-4520

2.15

ASMB:

2.16

ASMB:

2.17

COMP,
ASMB.
SUPV:

2.18

COMP:

2.19

COMP,
ASMB,
SUPV:

2.20

COMP,
ASMB,

2.21

COMP:

2.22

COMP:

2.23

COMP:

2.24

COMP:

ASHB:

(R1 • 122)

The value of Rl is bound to either a register number or name.

(R2 • 122)

The value of R2 is bound to either a register number 9r name.

(V360 • 122)

The value of V360 is bound to either a copy of the value of a
special variable or a pointer into PRS space. The value is used
for communication by the declaration logic.

(LST • 127)

The value of LST is bound to LAP code output by the compiler to
this point in the compilation. This list of instructions is
built in reverse order.

(SLST • 127)

The value of SLST is bound to a list of section numbers used in the
order of occurrence for the section default logic.

(SGUS • 127)

The value of SGUS is bound to a section number used by the section
default logic and the value is the guess section.

(GL • 127)

The value of GL is bound to an integer. The integer is the label
nam,e for the next compiler-generated label.

(EXP • 127)

The value of EXP is bound to the symbolic expression presently being
compiled.

(SVAR • 127)

The value of SVAR is bound to either NIL or T to reflect the con­
dition of either no special variables being bound in the BLOCK
presently being compiled or. one or more special bindings in the
BLOCK presently being compiled.

(ALIST • 127)

The value of ALIST is bound to a list of local variable names visible
at this point in the compilation.

The value of ALIST is bound to a list of pairs. The first element
is the name of a local variable visible at this point in the assembly.
The second element of the pairs is the relative pushdown stack
location used for storage of the local variable value •

. _------- --------- --

o

, .

March 2, 1970 8 TM-4520

2.25

COMP,
ASMB,
SUPV:

2.26

ASMB:

2.27

ASMB:

2.28

ASMB:

(FNAM • 127)

The value of FNAM is bound to the name of the function, instruction
or macro being compiled or assembled.

(LOC • 126)

The value of LaC is bound to an integer, which is the relative byte
address of the half-word presently being assembled.

(HB • 126)

The value of HB is bound to be either 0, 4, 8, or 12. The value is
the number of bits from the left of the half -word being assembled
that the next item is to be planted in the binary program image.

(DPDP • 126)

The value of DPDP is bound to the integer logical pushdown pointer
at this point in the assembly.

2.29 (MLST • 126)

ASMB:

2.30

ASMB:

2.31

ASMB:

2.32

ASMB:

2.33

ASMB,
SUPV:

The value of MLST is bound to a list of pairs. The first element is
an identifier name of a mask used in BC or BCR instructions. The
second element in the pair is the four-bit integer equivalent for
the mask identifier.

(RLST • 126)

The value of RLST is bound to a list of pairs. The first element is
the identifier name of a register used in 360 instructions. The
second element in the pair is the four-bit integer equivalent for
the register identifier.

(PLST • 126)

The value of PLST is bound to a list of pairs. The first element is
an integer, identifying a type "of 360 instruction. The second element
of the pair is a pattern describing the format of that type.

(CLST • 126)

The value of CLST is bound to a list of integers. The integers are
the values of DPDP in effect when an (ARGS) was assembled for which
the corresponding CALL has not been assembled.

(ELST • 126)

The value of ELST is bound to a list of pairs that comprise entry
definitions in the system. The first element is the identifier
name of an entry. The second element of the pair is the relative
to SORG, byte location of the entry •

. -.--.-.-- .. ----.-----.. ---.~-~--------

,"

o

March 2, 1970 9 TM-4520

2.34

SUPV:

2.35

ASMB:

2.36

ASMB.
SUPV:

2.37

COMP,
ASMB,
SUPV:
2.38

COMP,
ASMB,
SUPV: .

2.39

COMP:

3.

3.1

(ENTL • 126)

The value of· ENTL is bound to an integer specifying the relative to
SORG, byte location at which the next'entry can be defined.

(LEAD • 126)

The value of LEAD is bound to an integer number of bytes telling the
distance from the location pointed at by register PDP to the logical
beginning of the pushdown stock.

(XLST • 126)

The value of XLST is bound to a list of pairs. The first element is
a pointer into PRS space. The second element of the pair is the
number of references made by the program being assembled to this
PRS item.

(REF • 122)

The value of REF is bound to a pointer into PRS space. REF is used
for communications by the declaration logic.

(ERRFLG • 122)

The value of ERRFLG is bound to either NIL or T. The value T
reflects the occurrence of an error in an assembly or compilation.

(FCNT • 127)

The value of FCNT is bound to an integer section number to be used in
the name of the next explicitly defined, embedded functional argu­
ment.

SYSTEM DECLARATION MECHANISM

DECLARATIONS: PHILOSOPHY OF OPERATION

The declaration logic of the compiler and assembler deal with several types of
entities: special variables, unspecial variables, lexical variables, macros,
instructions, and functions. At several places, the type of entity being
processed is specified as a value of the variable (KIND • 122) or as a para­
meter to declarations logic functions specifying kind information. The values
of ki.nd and the associated interpretations are listed below:

KIND
SPECIAL
UNSPECIAL
LEXICAL
MACRO
INSTRUCTION
o - 15
16

Meaning
Special variable
Unspecial variable
Local variable
Macro functional
Instruction functional
Number of arguments for a function
Function with 16 or more arguments

o

o

o

March 2, 1970 10 TM-4520

KIND
17
18
20

Meaning
Function with 0 or 1 argument
Function with an· unknown number of arguments
Function with an indefinite· number of arguments

The compiler, assembler and supervisor recognize six distinct classes of
variable usage. Examples of each with semantic descriptions of system actions
is given in the following paragraphs. In these paragraphs, the phrase, "guess
as ••• " means to so declare the variable and issue a warning message. The
variable KIND represents the old declaration and the variable K represents the
new declaration to be made. The notation Vs:.SGUS means "I.s V tailed in the
section SGUS, declared?". The notation VESLST means "I.s V tailed into any
!3ection in SLIST, declared?".

3.1.1 Reference Class

Vari::lbles in the reference class are used as address fields of LAP instructions
and as expressions in LISP programs. The following flowchart shows the
interpretation given to the variable V in a LISP program used in the reference
class: r Atom (V) 1-1 _y_e_s B> 1--..,.-n-o---1+--y- e- s----ll> I Us e V as LEXICAL I

yes
V declared o

IVE;SGUsl es

no

guess and use V
as U~SPECIAL in

SGUS

L-___ -'--____ J4.---.;...y-es-----1 KIND UNSPECIAL-l

L.....-i>lor

lerror I

o
~

------ .. -. _._._ .. _-_ ... _ .. _

",

o

o

. March 2, 1970 11 TM-4520

The fo110'I1ing flowchart shows the interpretation given to variable V in a LAP
program used in the reference class:

no
(V)

yes
b atom

yes.
Iv declared

no

I Use V a~l I guess and use declared

V as SPECIAL.

3.1.2 Bind Class

Va:.ALIST
y_es [-Use V as

no

VESLST J
ves

no

I ves
Ve:SGUS I

I no

g uess and use
V as UNSPECIAL

in SGUS

LEXICALj

Use V as
'1 declared

The bind class consists of variable~ bound as parameters of macros and functions
or variables bound as block variables. The following flowchart shows the
interpretation given to variable V used in either a LISP or LAP program in
the bind class.

no

yes

no V SPECIAL

no

guess and· use
V as SPECIAL

ra-...r...;.~~ V UNSPECIAL

no

............ _--_ _-----

Ve:SGUS &
V SPECIAL

no

~""""'--e>IUse V as SPECIAL I

Use V as LEXICAL

Use V as SPECIAL

o

o

o

March 2, 1970 12 TM-4520

3.1. 3 Explicit Function Class

The explicit function class consists of variables used in the form (FUNCTION
V) in either LISP .or LAP and as the body of either a CALL or CALI pseudo
instruction in LAP. The following flowchart shows the interpretations given
to the function name V used in LISP in the explicit function class.

no
: atom (v)

yes' I VE;SLST t I yi no
Iv declared t yes

no ~P.1 VE SGUS I
no

declare V as
18 and use declare V as

18 in SGUS
and use

KINDE (MACRO, INSTRUCTION, yes
error

SI'ECIAL, UNSPECIAL)

no

luse V as declared I

."

o

March 2, 1970 13 TM-4520

The following flowchart shows the interpretation given to the function name V

used in the explicit function class in a LAP program.

no
V declared

guess and
use V as K

yes

KINDe:

K = 18 and
KINDe: (0,1)

no

no

KIND = K

no

es

KIND = 18
and K e: (0,1)

I ______ ~y~e~s~ _____ ~

no

atom (V)

yes

warn and change
V to K

V E;SGUS

no

guess and use
V as K in SGUS

Use V as now
declared

"wrong number of arguments" J...-'.-------------J

--~-.---- ------
-~--~~~--~~~~~~------~~-

,-

C)

March 2, 1970 14 TM-4520

3.1.4 Operator Class

Variables appear in the operator class 'only in LISP programs. The following
flowchart shows the interpretation given to a variable V used in a form oper­
ator in a LISP program.

lAO
I atom (V) I ves

,VeALIST I ves I Use V as LEXI I I J

no

IV
VPl=:

declared I
ve!'; I V£SLST I I

no I no

l guess and use J ves' , I Vi::SGUS I I V as ·K

no

guess and use V
yes KINDE: (INSTRUCTION, MACRO as K in SGUS

SPECIAL, UNSPECIAL)

no

ves KIND 18 L = J

no

I ves guess and J KIND = 17 & Ke: (0,1) J use as K

no
. '

KIND = 17 & I yes warn "wrong number of arguments"
Kit (0,1) I and use as declared

no

1 KIND = K & K <l6r~
, yes

no

1 K ~ KIND & KIND <161

no

J Use V as declared J

CAL

"

c)

o

March 2, 1970 15 TM-4520

3.1.5 Entity Name Class

Variables in the entity name class are those variables being used to name the
function, macro or instruction being compiled or assembled. The following
flowchart shows the interpretation given to the available V in the entity
name class in a LAP definition.

no I atom (V) I yes
- co I Ve;SGUS J
yes no

1 V
ves

declared I
make and use

no_ declaration
in SGUS of K

make and use
declaration of K

KIND = K I yes J use as declared I I I

no

yes I war~ "V re- KE. (MACRO, INSTRUCTION
declared K" I SPECIAL, UNSPECIAL)

no

~-

I KIND 18 I
yes

=

no

no I KIND = 17 & Ke: (0,1)
I

yes

change declaration
to K and use it

"--""------

· ,

March 2, 1970 16 TM-4520

The follmoJ'ing flowchart shows the interpretation given to the variable V in
the entity name class in a LISP definition •

.----~no~ ___ ,11 atom (V)~ : __ v~e~!s~_~r VRSGUS l

I V declared I
no

no

I make and use I
declaration as K

no I no

make declaration
as K in SGUS and

use it

KINDE (MACRO, INSTR,UCTION, yes
SPECIAL, UNSPECIAL)

no I KIND = K 1--__ v.L.:'e::.::s=--_~

~KIND=KI
no

no

I KIND <16 :l-vz..;le:;:.:s:::..-..-_____ _<>I: wa rn "V not redeclared K" 1
no

'---~j KIND = 16 I
no

yes

I K <16 I

no

noW KIND = 171

yes

yes

r yes
K £ (0,1) 1

no

1---1: KIND ' 18 1 yes

no

make and use 'as
declaration of K I KIND = 17 & I yes

K € (0,1) II-----'~--....
~--------------~

no

I Use V as declared]

o

o

March 2, 1970 17 TM-4520

3.1. 6 Explicit Declaration Class

Variables in the explicit declaration class are those appearing in SPECIAL
or UNSPECIAL forms or as the first argument of CSET. The following flowchart
describes the interpretation given to variables used in the explicit declara­
tion class.

,
(V) :

ves I , no
, atom I V,ESGUS J

yes

Iv declared I yes declare and use
as K in SGUS

no

declared and I KIND = K I ves
I

use as K
no I Use as I

' d'eclared

KINDE (SPECIAL,UNSPECIAL)

no

I warn "V redeclared K" I
yes

change and use declaration
of V as K in SGUS

-------------- - --------,

o . March 2, 1970 18 TM-4520

3.2 DECLARATIONS: IMPLEMENTATION

3.2.1 Declarations: Supervisor

The following group of functions are used by the supervisor for interfacing
with the system declaration logic.

3.2.1.1 (SECTION. 0) (S,L)

Args:

Side effects:

Value:
Description:

S is a section number
L is a list of section numbers
(SLST • 127)
(SGUS • 127)
S
SLST is set to Land SGUS is set to S.

3.2.1.2 (DVAR • 122) (L,K)

Args:

Value:

Description:

L i~ a list of variables.
K is either "SPECIAL" or "UNSPECIAL".
A copy of the variable list L, with the variables appro­
priately tailed.
DVAR is used by SPECIAL, UNSPECIAL and CSET for appropriately
defining variables.

3.2.1.3 (SPECIAL • 0) (L)

Args:
Value:

Description:

L is a list of variaBles.
A copy of the variable list L with the ·variables correctly
tailed.
DVAR is used to declare the variables in L special.

3.2.1.4 (UNSPECIAL • 0) (L)

Args:
Value:

Description:

L is a list of variables.
A copy of the variable list L with the variables correctly
tailed.
DVAR is used to declare the variables in L unspecial.

3.2.1.5 (CSET • 0) (V,E)

Args:

Side effects:
Value:
De,scription:

V is a variable.
E is any s-expression.
The PRS word associated with V is altered.
V appropriately tailed.
The variable V. i.s declared special using DVAR.
The value of V is set to E.

3.2.1.6 (CSETQ • 0) (E) MACRO

Args:
Value:
Description:

E is a CSETQ form.
A CSET form equivalent to E.
The CSETQ form, E is transformed to a CSET form with a quoted
first argument.

o

c)

'0

March 2, 1970 19 TM-4520

3.2~2 Declarations: Compiler

The following group of functions are used by the compiler for interfacing with
the system declaration logic.

3.2.2.1 (INSL • 127)· (V)

Args:
Value:
Description:

V is an identifier.
NIL or a tailed name.
Using GDEC, a declaration for V in a section from SLST is
looked for. If none is found, the value is NIL. Otherwise
the value is V dotted with the first section number in SLST
for which a declaration. exists.

3.2.2.2 (GSDC • 127) (I, S, K)

Args:

Value:
Description:

I is an identifier.
S is a section number.
K isa kind of declaration.
The dotted pair of I with S.
The warning message, "«i. s) GUESSED k)" is issued and MDEC
is then used to make the declaration of kind K.

3.2.2.3 (RDEF • 127) (V)

Args:
Value:
Description:

V is a variable.
Either V or V tailed into an appropriate section.
RDEF obtains the deciaration and full name for variables used
in contexts other than operator,block or lambda variable, and
function or embedded function name, i.e., reterence class.

3.2.2.4 (BDEF • 127) (V)

Args:
Value:
Description:

V is a variable.
Either V or V tailed into an appropriate section.
BDEF obtains the declaration and full name for variables
bound in either c:. BLOCK or LAMBDA expression. '

3.2.2.5 (BIND. 127) (L,P)

Args: L is a variable binding list from either a BLOCK or LAMBDA
form.

Side effects:

Value:
Description:

P is T if L is from a BLOCK and NIL if L is from a LAMBDA.
(SVAR • 127)
(ALIST • 127)
(ACI • 126)
(AC2 • 126)
The list of the variables in L, tailed when appropriate.
BIND handles lists of variables to be bound. In the case
of BLOCKS this list L, may contain explicit presets or
implicit presets of NIL. BDEF is used to determine if the
name is tailed. The contents of AC are reflected in ACI
and AC2. Lexical variables are, added to ALIST. SVAR is
given value T if any special variables are in L.

c

March 2, 1970 20 TM-4520

3.2.2.6 (ODEF • 127) (V,K)

Args: . V is a variable.

Side effects:
K is the number of arguments V is called with.
(KIND • 122).

Value:
Description:

Either V or V tailed into an appropriate section.
ODEF obtains the declaration and full riame for a variable
used as a form operator. KIND reflects the declaration and
will be given the '\Blue "LEXICAL" if V is on ALIST.

3.2.2.7 (TDEF • 127) (VwK)

Args: V is a variable.
K is the number of arguments, "MACRO" or "INSTRUCTION".

Value: V properly tailed.
Description: TDEF makes an appropriate declaration for a macro, ins truc­

·tion, or function being compiled. The tailed name is

3.2.2.8

Args:
Value:
Description:

(FDEF

returned. .

127) (V)

V is a variable.
V tailed into an appropriate section.
FDEF obtains the declaration for V used in the context
"(FUNCTION v)". The tailed name is returned.

3.2.2.9 (GVAR • 127) ()

Value: "*GUESS*"
Description: Supplies a guessed name for a variable during compilation.

3.2.3 Declarations: Assembler

The following group of functions are used by the assembler for interfacing
with the system declaration logic.

3.2.3.1

Args:

Description:

3.2.3.2

Args:
Value:
Description:

(LGSD • 126) (N,S,K)

N is an identifier.
S is a section number.
K is a kind of declaration.
The warning message "«n • s) (GUESSED k)" is issued and LMPC
is then used to make the declaration of kind K.

(LINS • 126) (I)

I is an identifier.
T or NIL.
Using LGDC, a declaration for I in a section from SLST is
looked for. If none if found, the value is NIL. Otherwise,
the value is T.

C)

o
,.', .'

March 2,1970 21 TM-4520

3.2.3.3 (LCNT • 126) 0
Side effects: (XLST • 126)
Value:

Description:

3.2.3.4

Args:

The displacement of the PRS word pointed to by REF from the
beginning of PRS space.
If the PRS entry referenced by REF is not already in XLST,
it is added. .If it is already there, the count of references
is incremented.

(LRDF • 126) (V)

Side effects:
V is a variable.
(R1 . 122)
(DELTA . 122)

Descr'iption:

3.2.3.5

Args:

Value:

Description:

3.2.3.6

Args:

Value:

Description:

3.2.3.7

Args:
Value:

Description:

LRDF is used for retrieving the definition of variables used
as an address field of an instruction. DELTA and Rl are set
to reflect appropriate ~alues to be used as decrement and
base register. If the reference is a non-local variable,
LCNT is used to increment the reference count.

(LTDF '. 126) (V, K)

V is a variable.,
K is the number of arguments, "MACRO", or "INSTRUCTION".
The byte displacement of V's PRS word from the beginning of
space.
LTDFis used for r.etrieving and/or making a declaration for
a function, ma.cro or instruction being assembled. The count
for this entry is incremented by one.

(LFDF • 126) (V,K)

V is a variable.
K is an integer kind number.
The byte displacement of V's, PRS word from the beginning
of PRS space.
The declaration for V is retrieved and/or made of kind K.
The count for this function is incremented by one. LFDF is
used for processing the named function in CALL or CALI pseudo
instructions and in (FUNCTION f) types of address fields.

(LBDF • 126) (V)

V is a variable.
Either the variable name, V or the byte displacement of V's
PRS word from the beginning of PRS space.
LBDF is used for making and/or retrieving V's declaration.
V is used, in a BIND pseudo instruction. If V is to be
specially bound, its count 'is incremented by one.

March 2, 1970 22 TM-4520

4. THE LISP 1.5 360 COMPILER

4.1 COMPILER: PHILOSOPHY OF OPERATION

The LISP compiler is a fast, one-pass program written in LISP. The LISP input
is translated to a computationally equivalent LAP program that may be then
assembled.

The compiler acts as if the 360 were a one accumulator machine. All values
are left in the accumulator, AC. The compiler keeps track of the value in
AC. The variab1es~ (ACI • 126) and (AC2 • 126) have values which are either
NIL, "(NIL)" or a variable name. The value NIL indicates the compiler doesn't
know the contents of AC. The value "(NIL)" indicates that the value of AC is
NIL. A variable name indicates that the value of AC is a copy of the value of
the named variable.

Example:

If (SETQ X (SETQ Y (CAR Z)) is compiled, the value of AC1 would be "X" and the
value of AC2 vlOu1d be "y". This scheme allows the compiler to remember the
contents of AC "two deep".

Labels generated by the compiler are dotted pairs. The first element of the
pair is a unique, integer label name. The second element of the pair is the
number of references to the label, initially zero. Each use of the label
causes the count to be incremented.by one. The final count is used by the
compiler optimization logic to determine whether the contents of AC may be
remembered when the label is attached to the LAP listing. LST.

The compiler uses the macro/instruction mechanism for compiling special forms.
When a form is compiled, the declaration for its operator is retrieved. If
it is a macro, the functional associated \V'ith the operator is applied to the
form being compiled. The value of this macro expansion is then compiled in
place of the original form. If the declaration of the form is instruction,
then thE: functional associated with this operator is executed and Js expected
to complete the entire job of compiling this form.

The compiler divides the conte~ts of compilation into five modes; statement,
terminal statement, expression, terminal expression, and predicate. Statements
are those forms used for side effect, not value. The top level of a PROG or
BLOCK is a list of statements. Examples are (GO L), (PRINT X). A terminal
statement is a form used as a statement 'tV'here the semantics of LISP require
an i~plicit transfer of program control after evaluations of the statement.
In the conditional statement (COND (X(PRINT Y)) ••••), (PRINT Y) is a terminal
statement. A transfer to the end of the conditional statement· must be added
to the generated code after the call to PRINT.

--------_ --------

G
March 2, 1970 23 TM-4520

Expressions are forms used for value. Examples of expressions are X in (CAR X)
or (FN Z) in (BLOCK«Y (FN Z») •••). A terminal express~on is a form used as
an expression where the semantics of LISP require an implicit transfer of pro­
gram control· after evaluation of the expression. In the conditional expression
(COND(X (CAR X» •••), (CAR X) is a terminal expression. A transfer to the end
of the conditional expression must be added to the generated code after the
call to CAR. Another example of a terminal expression is the expression body
of a RETURN statement. After evaluation of the expression, control must be
transferred to the end of the BLOCK.

Predicates are a special kind of expression. They are expressions used not for
their value. but for conditional code placemenL In this conditional form,
.(COND(P X) •••). P is a predicate. lfthe value of P is NIL, program control
is transferred to the next clause, otherwise control falls thro~gh. This is
an example of a one-way conditional branch. Consider the example; (COND((COND(.
X P) .••) Y) •••). The predicate P is eva~uated. If the value is NIL, then a
branch to the next phrase of the outer COND is executed; otherwise control
branches to the evaluation of Y. This is an example of a two-way conditional
branch.

Five functions; CSTA, CTST, CEXP, CTXP and CPRDcomprise the contextual top
drivers in the compiler. They are used for compiling forms in statement. r\ terminal statement. expression, terminal expression, and predicate modes

~ respectively. The five functions indicate the mode of compilation to the rest
of the compiler by the values bound to several special variables. These
variables, and arguments to these functions are summarized in. the following
table:

o

Function Arguments ELAB SLAB TGO FGO SCLS PCLS

CSTA(X) X is a form NIL T

erST (X, SL) X is a form SL T
SL is a label

CEXP(X) X is a form NIL NIL NIL

CTXP(X,EL) X is a form EL NIL NIL
EL is a label

CPFD(X, TL,FL) X is a form TL FL NIL T
. TL is a label

FL is a label - indicates no binding or change of values of the variable.

The variables, ELAB, SLAB, TGO, SCLS, and PCLS are all in section 127. The
functions bind the indicated variables to the value shown and pass the form to
be compiled, X, to the function (COMP • 127). It should be noted that the mode
of compilation may be unambiguously deduced from the values of the special
variables.

'

o

o

o

March 2, 1970 24 TM-4520

COMP is the central compiler function that controls re.cursion. COMP has one
argument, a form to be compiled. This form is bound to the special variable
(EXP • 127). If the form to be compiled if.~ a variable or datum, COMP finishes
the compilation using the functions (CVAR .. 127) or (CDAT • 127) respe.ctively.
If the form is a macro, then COMP applies itself to the value of the expansion
of the form. If the form is an instruction, the instruction is invoked to
continue the compilation.· The only legitimate cases not yet covered ate func­
tion and functional calls; these are handled by COMP using the functions (FNCL
• 127) and (FTCL • 127) r~spectively.

When instructions are invoked, they may compile the arguments of the form in
EXP using any of the five top driver functions (e.g., CEXP, ••).

A standard set of conditions in the compilation process is defined as follows:
If the mode is statement or terminal statement, the code for the form being
compiled has been generated. ' In other cases, code for the form has been
generated that leave a value in AC. When these standard conditions exist,
the function (RESP • 127) may be used to complete compilation by responding
to mode information. RESP performs the following task: If the mode is ter­
minal statement, attach an unconditional branch to the label in SLAB. If
the mode is terminal expression, attach an unconditional branch to the label
in ELAB. If the mode is predicate, attach a branch on NIL AC (BZH) to the
label in FGO and attach an unconditional branch to the label in TGO.
If the mode is neither terminal stateptent, terminal expression or predicate,
RESP acts as a NOP.

I
Any of the variables which have labels as values (SLAB, ELAB, FGO, TGO) may
have value NIL. When NIL is the value, generation of branches for that label
is suppressed. (This indicates the fall through for one-way predicates.)

The interrelationships of the compiler functions is illustrated by Figure X.

------------_ .. _- --.----
.. __ ._-----------------_ _. -----_.

March 2, 1970 25 TM-4520

o

I (COMPILE . 127) r

I (CSTA • 127)1 I (CTST • 127) I I (CEXP • 127)1 '. I (CTYP • 127)1 I (CPRP • 127) I

1 MACROS 1 I (COMP • 127) 1 : INSTRUCTIONS I

o
I I (CVAR • 127) I (GDAT • 127) t

l (RESP • 127) I

Figure ;x: •.

o

----_. __ _-_ ..

C)

o

o

March 2, 1970 26 TN-4520

4.2 COMPILER: IMPLEMENTATION

4.2.1 Compilation Control and Central Functions

The following group of functions are the controllers of the compilation pro­
cess.

4.2.1.1 (COMPILE • 127) (N,K,A,B)

Args:

Bindings:

Value:
Description:

N is the name of the function, macro or instruction to be
compiled.
K is the kind of entity to be compiled, i.e., MACRO, INSTRUC­
TION or integer detailing information about the number of
arguments for a function.
A is the argument list.
B is the expression body of the entity to be compiled.
(FNAM • li7) is bound to .the name of the entity being compiled.
(ACI • 126)
(AC2 • 129)
(SVAR . 127)
(GL • 127) is bound to 0
(LST . 127)
The LAP listing reSUlting from this compilation.
Performs the compilation and declarations for this entity.'

4.2.1.2 (CEXP • 127) (E)

Args:
Bindings:

Description:

E is a form.
(SCLS • 127)
(PCLS • 127)
(ELAB , 127)
E is compiled in the expression mode using (COMP , 127),

4.2.1.3 (CTXP . 127) (E,L)

Args:

Bindings:

Description:

E is a form
L is a compiler-generated label.
(ELAB • 127) is bound tG L.
(PCLS • 127)
(SCLS • 127)
E is compiled in the terminal expression mode with L as the
confluence point by using (COMP • 127).

4.2.1.4 (CSTA . 127) (S)

Args:
. Bindings:

Description:

S is a form •
(SLAB. 127)
(SCLS • 127)
S is compi1ed in the statement mode using (COMP • 127).

._---------------_ .. _-_ ...

o

March 2, 1970 27 TH-4520

4.2.1.5 (CTST. 127) (S,L)

Args: S is a form.
L is a compiler-generated label.

Bindings: (SLAB. 127) is bound to L.
(SCLS • 127)

Description: S is compiled in the terminal statement mode with L as the
confluence point by using (COMP • 127).

4.2.1.6 (CPRD • 127) (P,TL,FL)

Args: (TGO • 127) is bound to TL.
(FGO • 127) is bound to FL.
(SCLS • 127)
(PCLS • 127)

Description: P is compiled in the predicate mode using (COMP • 127).
TL and FL give the confluence points for true and false
evaluation of prespective1y.

4.2.1. 7 (COMP • 127) (E)

Args:
Bindings:
Description:

E is a form.
(EXP ~ 127) is bound to E.
COMP is the master switch for recursion in the compilation
process. Macros are expanded" LAMBDA forms are converted
to BLOCK forms by MBLK, functional and functional calls
are made by FTCL, FNCL, and FIDF, variables and constants
are compiled using CVAR and CDAT, and instructions are
invoked for code generation.

4.2.1.8 (MACX 127) (E)

Args:
Value:
Description:

E is any form.
A form equivalent to E.
The formE is macro-expanded if its operator is a macro name.
'Further, if the operator is not in the syntax' of a variable,
the operator is expanded using MACX.

4.2.1.9 OMBLK • 127) (L.P)

Args:

Value:
Description:

L is a LAMBDA form.
P is a list of presets.
A BLOCK form.
The LAMBDA form L, with variable presets L, is transformed in­
to an equivalent BLOCK form.

4.2.1.10 (RESP • 127) 0
Description: RESP assumes the compilation is in a standard form, i.e., if

the mode is not statement or terminal statement, a value is
in the accumulator. RESP attaches appropriate branch or
conditional branch instruction to satisfy the terminal or
predicate modes of compilation.

Harch 2, 1970 28 TM-4520

4.2.1.11 (CVAR . 127) (V)

Args:
Side Effects:

Description:

V is a variable name.
(AC2 . 126)
(AC2 . 126)
When necessary, instructions are attached to copy the value
of the variable named by V into the accumulator. ACl and
AC2 are updated to reflect this fact.

4.2.1.12 (CDAT • 127) (D)

Args:
Side Effects:

Description:

D is any atomic datum.
(ACl . 126)
(AC2 . 126)
Instructions to copy the datum named by Dinto the accumulator
are generated. Appropriate tracks are left in ACl and AC2.

4.2.2 Function for Building the Compilers Listing

The following group of functions are used by the compiler for attaching
instructions to the listing.

4.2.2.1 (ATCH • 127) (I)

Args:
Side Effects:
Description:

I is a LAP instruction or label.
(LST. 127)
I is attached to LST~

4.2.2.2 (ATIN . 127) (O,A)

Args:

Side Effects:
Description:

4.2.2.3 (ATBR

Args:

Side Effects:
Description:

o is a "compiler" LAP macro name, i.e., p,e, etc.
A is an address field.
(LST . 127)
The instruction (0 • A) is attached to LST.

127) (B,L)

B is a "compiler" LAP macro name for a branch instruction, i.e.,
T, B, etc.
Lisa compiler generate label.
(LST . 127)
The instruction, (B . L) is attached to LST. The reference
count of the label named by L is increased by one.

---- ~- .. -~--~---

C)

March 2, 1970 29 TM-4520

4.2.2.4 (ATUL • 127) (L)

Args:
Side Effects:

Description:

L is an identifier label name.
(LBDL • 127)
(LST • 127)
(ACI • 127)
(AC2 • 127)
The user-defined label named L is attached to LST.
The label definition is added to LBDL.

4.2.2.5 (ATLB • 127) (L)

Args:
Side Effects:

Description:

L is a compiler-generated label.
(LST • 127)
(ACI • 126)
(AC2 • 126)
In principle, ATLB attaches the label named by L to LST.
However, several kinds of optimizations are first attempted.
For example, if the last instruction in LST references
this label, the instructions may be discarded, and the
reference count decremented by one. Also if the reference
count is or becomes zero, the label is not attached, and
therefore the contents of the accumulator are known to be
preserved.

4.2.2.6 (ATHL . 127) (I,O.Q)

Description: ATHL is a long, messy, predicate expression used several
times by ATLB. A further description would at best be
confusing.

4.2.2.7 (GLAB . 127) 0

Side Effects: (GL . 127)
Value: A compiler-generated label.
Description: GLAB generates unique labels for the compiler.

4.2.2.8 (ULAB . 127) (L)

Args:
Value:
Description:

L is a compiler-generated label.
The integer name of L.
The reference count for.L is incremented by one.

4.2.2.9 (LBUC • 127) ()

V~lue:

Description:
T or F.
This predicate determines whether the last instruction
attached to LST is an unconditional branch.

(')

o

,March 2, 1970 30 TM-4520

4.2.2.10 (BUCP • 127) (I)

Args:
Value:
Description:

I is a LAP instruction.
T orF.
This predicate determines whether I is an unconditional
branch or a BLOCK, whose last instruction is an uncon­
ditional branch.

4.2.3 Calling Sequence Generators

The following group of functions are used by the compiler to generate calling
sequences.

4.2.3.1

Args:

(FCAL • 127) (E,A,I)

E is a form.
A is a list of forms.
I is a LAP instruction, a" fast or slow call.

Side Effects: (ACI • 126)
(AC2 126)

Description: FCAL causes compilation of a call to the functional result-
ing from the evaluation of E with arguments specified by A.

4.2.3.2 (FTCL • 127) (E,A)

Args:

Description:

E is a form.
A is a list of forms,.
FTCL compiles a SLOWCALL linkage, to the function resulting
from the evaluation of E, with arguments specified by A, by
using (FCAL • 127). .

4.2.3.3 (FNCL . 127) (N,A)

Args:
Side Effects:

Description:

N is a function name.
(ACI . 126)
(AC2 • 126)
A function call to N with arguments specified by A is com­
piled.

4.2.3.4 (FIDF • 127) (D)

Args:
Side Effects:

Description:

D is a constant form.
(ACI • 126)
(AC2 • 126)
A function call to a function of an indefinite number of
arguments is compiled. The form to be compiled is the value
of (EXP • 127). If the call has zero arguments, D i$ used
for the value, e.g., (LIST) = NIL. The call is forced to

. section 121.

c

0

March 2, 1970 31 TI1-4520

4.2.3.5 (CARG • 127) (A,B)

Args: A is a list of forms.
B is a boolean flag.

Description: The forms in A are compiled. After each, a LAP instruction
to move the value to the pushdown stack is attached to the
listing. The value of the last argument (if there is one
or more arguments) is left in the accumulator if the value of
B is F.

4.2.3.6 (FASTCALL . ~) () INSTRUCTION

Description: The FASTCALL form in ~EXP • 127) is compiled.

4.2.3.7 (LIST • 0) 0 INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.3.8 (MAX • 0) 0 INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.3.9 (MIN. 0) 0 INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.3.10 (LOGOR • 0) 0 INSTRUCTION

Description: An appropriate cal~ing sequence is compiled.

4.2.3.11 (LOGAND • 0) 0 INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.3.12 (LOGXOR • 0) () INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.3.13 (PLUS • 0) 0 INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.3.14 (TIMES • 0) 0 INSTRUCTION

Description: An appropriate calling sequence is compiled.

4.2.4 The FOR MACRO

T~e following description is of the FOR MACRO.

4.2.4.1 (FOR • '/1) (X) MACRO

Args: X is a FOR form.
Value: An equivalent of X expressed as a BLOCK.
Description: See language document for complete description of the expansion.

o

o

March 2, 1970 32 TM-4520

4.2.5 Compilation of Predicate Forms

The following group of functions are used for compiling predicate forms.

4.2.5.1 (NOT ~ 0) 0 INSTRUCTION

Description: The true and false terminal labels~ TGO and FGO, are reversed
and compilation continues on the embedded form.

4.2.5.2 (NULL .0) 0 INSTRUCTION

Description: The true and false terminal labels, TGO and FGO, are reversed
and compilation continues on the embedded form.

4.2.5.3 (AND • 0) INSTRUCTION

Description:. The AND form is compiled using (CBOL • 127).

4.2.5.4 (OR. 0) INSTimCTION

Description: The OR form is compiled using (CBOL • 127).

4.2.5.5 (EQ • 0) INSTRUCTION

Description: LAP code for the EQ form is generated. Special, optimized
code is generated when either embedded form is a constant
or, when the last embedded form is a variable •

4.2.5.6 . (PRDP • 127) 0

Value:
Description:

T or F.
PRDP is a semi-predicate. If the mode of compilation is
predicate, the value of PRDP is F. Otherwise the value is T
and, the form,EXP, is compiled in a modified mode. PRDP is
used by NOT, NULL, OR, AND and EQ to assure proper compila­
tion.

4.2.5.7 (CBOL • 127) (B)

Args:
Description:

B is either T or F.
CBOL compiles AND ·and OR forms with the value of B being T
or F respectively. The main chore is optimizing the choice
of arguments to CPRD for compilation of the embedded fo~s
in the predicate mode.

4.2.6 Compilation of Forms Cognizant of Terminals

The;following group of functions are used for compiling forms that cause
transitions into the terminal statement or terminal expression modes.

o

o

o

March 2, 1970 33 TM-4520

4.2.6.1 (SELECTQ . Q») 0 INSTRUCTION

Bindings:

Side Effects:
Description: .

(ACI • 126)
(AC2 • 126)
(EX? • 127)
The SELECTQ form is compiled. Where necessary. appropriate
terminal labels are generated and placed on the LAP listing.
Care is taken to preserve the proper contents of the accumu­
lator for optimization of generated code.

4.2.6.2 (SELECT . 0) 0
Side Effects:
Description:

(EXP • 127)
The SELECT form is compiled. Where necessary, appropriate
terminal labels are generated. Care is taken to generate
optimized code wherever either the comparand or comparor is
a constant. (SHLp·. 127) is used as a large connnon sub­
expression by SELECT. .

4.2.6.3 (COND • 0) INSTRUCTION

Side Effects:
Description:

(EX? • 127)
COND handles the case of no embedded forms with an appropriate
call to CONDERR. In other cases, (KSTA • 127), (KPRD • 127),
or (KEX? • 127) are used to complete compilation of the COND
form.

4.2.6.4 (KHLP. 127) ()

Value: A compiler-generated label.
Description: KHLP is used for compiling the predicates embedded in a

COND form. The confluence point label used for false
evaluation of the predicate is returned.

4.2.6.5 (KLOB

Args:

Side Effects:

Description:

127) (L,P)

L is a partial LAP listing in reverse order.
P is a compiler generated label.
(ACI • 126)
(AC2 • 126)
If neither the reference count of P is zero, nor the
reference count is one and the last instruction in L
is a branch to P, the remembered contents of the accumulator
is clobbered. In all other cases, KLOB is equivalent to a
NOP.

4.2.6.6 (KSTA. 127) ()

Bindings: (ACI 126)
(AC2 • 126)

Side Effects: (EXP • 127)
Description: KSTA compiles COND forms encountered in the statement or

terminal statement mode. Appropriate terminals and predicate
labels are generated and placed on the LAP listing. Care is
taken to properly map the contents of the accumulator along
branch paths to the generated labels.

o

o

o

March 2, 1970 34 TM-4520

4.2.6.7 (KEXP . 127) 0
Bindings: (ACI • 126)

Side Effects:
(AC2 • 126)
(EXP • 127)

Description:

4.2.6.8

Bindings:

KEXP compiles COND forms encountered in the expression or
terminal expression mode. Appropriate terminal and predicate
labels are generated. Care is taken to properly map the
contents of the accumulator along branch paths to the generated
labels.

(KPRD • 127) 0
(ACI • 126)

Side Effects:
(AC2 • 126)
(EXP • 127)

Description:

4.2.6.9

Args:

Bindings:

Description:

4.2.6.10

Bindings:

KPRD compiles COND forms encountered in the predicate mode.
Appropriate predicate labels for both the COND form and
embedded predicates are generated. Care is taker. to properly
map the contents of the accumulator along branch paths to
the generated labels.

(SHLP • 127) (I, U, V)

I is a LAP instruction.
U and V are compiler-generated labels.
(ACl·. 126)
(AC2 • 126)
SHLP is a large, cornmon sub-expression used by the instruction,
SELECT. The comparison and branch logic is compiled. Care
is taken to properly map the contents of the accumulator along
branch paths.

(BLOCK. 0) 0
(LBRL • 127)
(LBDL • 127)
(SVAR • 127)
(ALIST • 127)

INSTRUCTION

Side Effects:
(LST • 127)
(LST • 127)

Description: BLOCK compiles the BLOCK form in EXP. Bindings are made
using BIND •. Either BSTA, BPRD or BEXP is used to compile the
statements~ Error diagnostics for undefined labels are
issued.

--------_ .. _._-_ _ •......... _-_ ... _--

o

o

o

March 2, 1970 . 35 TM-4520

4.2.6.11

Bindings:

DescriI>tion:

4.2.6.12

Args:
Value:

4.2.6.13

Bindings:

Value:
Description:

4.2.6.14

Bindings:

Value:
Description:

4.2.6.15

Bindings:

Value:
Description:

4.,2.6.16

Value:
Description:

(RETURN . 'IJ) ()

(LBRL . 127)
(LBDL .' 127)

INSTRUCTION

Code for the RETURN form in EXP is compiled.

(PROG • 'IJ) (P) MACRO

P is a PROG form.
A BLOCK form equivalent to P.

(BEXP • 127) 0
(ELAB • 127)
(SVAR . 127)
(LBeK • 127)
A list of branch instru~tions or NIL.
The BLOCK form in EXP is compiled as an expression. If the
compilation is not in terminal expression mode, an approp­
riate label is generated and compilation is put in that mode.
When necessary, a (RETURN NIL) statement is forced as the
last statement of the BLOCK.

(BSTA • 127) 0
(SLAB. 127)
(SVAR • 127)
(LBCK • 127).
(BLAB. 127)
A list of branch instructions or NIL.
The BLOCK form in EXP is compiled as a statement. If the
compilation is not in terminal statement mode, an appropriate
label is generated and compilation is put in that mode.

(BPRD 127) 0
(ELAB . 127)
(LBCK 127)
(BLAB. 127)
A list of branch instructions or NIL.
The BLOCK form in EXP is compiled as a predicate. Appropriate
labels are generated, and when necessary a (RETURN NIL)
statement is forced as the last statement of the BLOCK.

(SMAP • 127) 0
A statement or NIL.
SMAP is used to compile the list of forms in the BLOCK form
in EXP. The last form, if it is not a label, is returned. ' ..

___________ . _____ .. ______ .. ______ . ____ . ______ ---_co
-_._--------------------

March 2, 1970 36 TM-4520

4.2.7 The PROGN Logic

The following group of functions are used for generating code for PROGNs,
both implicitly and explicitly .written.

4.2.7.1 (PROGN • ~) 0 INSTRUCTION

Description: The PROGN form in EXP is compiled using BRl(T.

4.2.7.2

Args:

(MPGN . 127) (L)

Value:
Description:

L is a list of forms.
A PROGN form with the forms in L as the body.
Converts a list of forms. to a PROGN.

4.2.7.3 (BRKT • 127) (L)

Args:
Description:

L is a list of forms.
The list of forms in L are compiled in statement mode if. the
mode of compilation was in either the statement or terminal
statement mode, and are compiled in expression mode in all
other cases. The last form in L is compiled with no mode
change whatsoever. If L is NIL, then NIL is compiled.

o 4.2.8 Miscellaneous Compiler Forms

o

The following is a group of miscellaneous forms used for compilation.

4.2.8.1 (GO • 0) 0 INSTRUCTION

Side effects:
Description:

(LBRL • 127)
An appropriate branch instruction is generated. If the
referenced label has not been defined, it is added to LBRL.

4.2.8.2 (LABEL • 0) O· INSTRUCTION

Description: The defined label is attached to the listing and the embedded
statement is compiled.

4.2.8.3 (QUOTE. 0) 0 INSTRUCTION

Description: The QUOTE form is compiled using CDAT.

4.2.8.4 (SETQ • 0) 0 INSTRUCTION

Side Effects

Description:

(ACl • 126
(AC2 • 126)
Optimized code for the SETQ form in EXP is compiled. Care
is taken to use the remembered contents of the accumulator,
and lvhen possible, update the contents to reflect" new, known
information.

March 2, 1970 37 TM-4520

4.2.8.5 (FUNCTION • 0) () INSTRUCTION

Side Effects:

Description:

(FCNT . 127)
(ACI • 126)
(AC2 . 126)
If the embedded form is a LAMBDA form, it is compiled
under a compiler generated name. If the embedded form is
a function name, the appropriate code to convert a function
to a functional is generated.

4.2.9 Machine Dependent Forms Compilation

The following group of functions are used to generate code for machine depen­
dent, non-LISP use.

4.2.9.1 (LEFT . 0) () INSTRUCTION

Description: Code to access the left'16 bits of the argument is compiled
using WPRT.

4.2.9.2 (RIGHT • 0) 0 INSTRUCTION

Description: Code to access the second from the left group of 16 bits of
the argument is compiled using HPRT.

4.2.9.3 (THIRD . 9.\) 0 INSTRUCTION

Description: Code to access the.third from the left group of 16 bits of the
argument is compiled by WPRT.

4.2.9.4 (FOURTH . fl\) 0 INSTRUCTION

Description: Code to access the fourth from the left group of 16 bits
of the argument is compiled byWPRT.

4.2.9.5 (HPRT . 127) (I)

Args:
Side Effects:

Description:

I is a LAP instruction.
(ACI . 126)
(AC2 . 126)
WPRT generates code to access a group of 16 bits (a half­
word) from memory and convert it to a 24 bit symbolic pointer.

4.2.9.6 (CODE . 0) () INSTRUCTION

Side Effects:

Description:

(ACI . 126)
(AC2 . 126)
CODE attaches the instructions comprising the body of the
form in EXP to the LAP listing.

4.2.9.7 (ADDSMALL . 0) () INSTRUCTION

Description: The ADDSMALL form in EXP is compiled using ADHL.


~~~ 
'.,' ., 
\ 
\ 
i 

.... : 

'-~ 

" . 
~ . 

J 

March 2, 1970 38 

4.2.9.8 (SUBSMALL • 0) () INSTRUCTION 

Description: The SUBSMALL form in EXP is compiled using ADHL. 

4.2.9.9 (ADHL • 127) (B) 

Args: 
Side Effects: 

B is either T or F. 
(ACI • 126) 
(AC2 • 126) 

TM-4520 

Description: Optimized code is generated for the small integer arithmetic 
form in EXP. B indicates whether addition or subtraction is 

. to be performed. 

5. THE LISP 1.5 360 ASSEMBLER, LAP 

5.1 LAP: PHILOSOPHY OF OPERATION 

LAP is an acronym for ~ISP Assembly Program and is also the name of the 
language assembled. LAP is a one-pass assembler that handles the entire set 
of the IBM 360's order codes and in addition provides for several pseudo­
instructions'and a generalized macro capability. With the exception of a 
few functions, the entire assembler is coded in the LISP language. The other 
functions are themselve.s coded in LAP. 

LAP is a one-pass assembler allowing forward references to labels, symbolic 
naming of variables, both temporary and global, automatic handling and alloca­
tion of the pushdown stack, block structuring and an interface with the full 
declarative logic of the system. The function being assembled is assembled 
as if its name were (**** . 126). At the completion of assembly, an appro­
priate declaration is made and the binary image is transferred and linked with 
the proper PRS word. **** is initialized to 4096 bytes but is shrunk to the 
correct length before thePRS relinking. If any errors (not warnings) are 
detected during assembly, the binary image does not become usable and the 
reference counts to external items are not incremented. This allows for 
proper excising. When an identifier op code is used, the function INSP 
obtains a value for that identifier as if it were a variable tailed into 
section 125. This value may be either a number or a functional. . If it is 
a functional, the functional is called with the instruction to be assembled 
as an argument. The value of this call is a list of LAP instructions (either 
360, pseudo or macro-instructions). The instructions in this list are now 
compiled instead of the original. This is the macro capability in LAP. 
Pseudo-ins.tructions are handled through this same mechanism. The following is 
a list of pseudo-ops and the function performing the expansion: 

--.----'--. 

Pseudo-op 

PUSH. 
POP. 
ARGS 
BLOCK 
CALL 
CALI 
FASTCALL 
SLOWCALL 

Function 

(PUSH •• 126) 
(POP. • 126) 
(ARGS • 126 

'(RAP . 126) 
(CALL • 126) 
(CALL • 126) 
(CALL • 126) 
(CALL • 126) 

--_ .. -------_. --" -------_. 



March 2, 1970 39 TM-4520 

The following is a list of op codes output by the compiler that are assembled 
using the macro expansion facility. With each op code is listed the function 
used for expansion: 

Op Code Function 

G (LGPR • 126) 
Z (LGPR • 126) 
P (LGPR • 126) 
R (LGPR • .1,26) 
U (LAPB • 126) 
E (LAPB • 1'26) 
I (LAPB • 126) 
F (LAPB . 126) 
B (LAPB • 126) 
GO (LGO • 126) 
BZM (BGZM • 126) 
BGZ (BGZM • 126) 

If the value of the declaration found in section 125 is a number, the value 
of the op code for this instruction may be computed as the remainder of the 
number divided by 256. The quotient of the number divided by 256 indicates 
the format of the instruction being assembled. A list of format patterns 
dotted with an identifying number is kept as the value of the variable 
(PLST • 216). The format pattern is a list of the simple patterns: 

Simple Patterns 

REG 

MASK 

ADR 

HADR 

SK 

liB 
BY 

Explanation 

A four bit integer or register 
mnemonic. 
A four bit integer or mask 
mnemonic. 
An address that consists of two 
registers and a displacement. 
An address that consists of one 
register and a displacement. 
Ignore rest of half-word being 
assembled. 
A four bit integer. 
An eight bit integer. 

Each 360 instruction is described by one of eleven patterns in PLST. The 
pattern matching instruction assembling is handled by the function IMCH. 

Forward references to labels are handled by having a linked chain of references 
kept in the displacement portion of the referencing instructions in ****. The 
displacement of the original instruction is set to zero to indicate the end 
of the chain. The displacement of the last instruction to reference th~ label 

,~ is kept in LBRL, a list of unsatisfied labels and link locations. 
~/ 

-------- -------------_ ... _-_ .. _-----_. 



CI 

o 

o 

March 2, 1970 40 TM-4520 

The assembler uses several functions to plant in the binary image, ****: 

Function 

(GETHW • 126) 
(SETHW • 126) 
(DINK • 126) 

(PLHH • 126) 
(PLBY • 126) 
(PLTB • 126) 
(PLHB • 126) 

Action 

Gets-half-word (16 bits) from **** 
Sets half-word (16 bits) in **** 
Advances location counter to next half­
word. 
Plants half-word (16 bits) in **** 
Plants a byte (8 bits) in **** 
Plants twelve bits in **** 
Plants a half-byte (4 bits) in **** 

The value of the variable, DPDP~ gives the byte-displacement qf the last 
active word put on the pushdown stack. Various pseudo-ops (e.g., PUSH) and 
address fields (e.g., TOP.) either modify: DPDP and/or use DPDP as the dis­
placement field for instructions. RAP (w'hich handles BLOCK expansions) 
matches the variables in the BIND list with locations at and behind DPDP and 
adds these definitions to ALIST or uses them for generating the special 
variable hind/unbind code. 

5.2 ASSEMBLER: IMPLEMENTATION 

5.2.1 Assembly Control Functions 

The functions described in this sect,ion comprise the top end control logic 
of the LAP assembler. 

5.2.1.1 

Args: 
Bindings: 

Value: 

(LAP360 • 126) (X) 

X is a LAP form to be assembled. 
(FNAM 127) 
(HB 126) 
(LOC 126 
(CLST 126) 
(XLST 126) 
(LBRL 127) 
(LBDL 127) 
(ALIST 127) 
(DELTA 122) 
(R1 122) 
(R2 122) 
(REF 122) 
(V360 122) 
(KIND 122) 
(DPDP 126) 

A list of four items: The tailed name of the assembled func­
tion, the size in bytes of the assembled function, a pointer 
to the. PRS word for the assembled function, and a list of 
dotted pairs of pointers to PRS words for external references 
and reference counts from the assembled function. 



, C: 
-'", 

" 

, 

':0 
J 

March 2, 1970 

Description: 

41 TM-4520 

LAP360 assembles the form X. DPDP is set to a value depen­
dent upon the number of arguments. The major portion of the 
assembly is accomplished using RAP by wrapping the code in 
a dummy BLOCK. Forward references to labels are satisfied 
and the return code is placed in the assembled binary program 
image. The size of the image is adjusted to be a multiple 
of four bytes. An appropriate declaration is made for the 
the image just assembled. LAP, 360 may not be entered re­
cursively. 

5.2.1.2 (RAP • 126) (L) 

Args: 
Bindings: 

Value: 
Description: 

L is a BLOCK LAP form. 
(ALIST • 127) 
(DPDP • 126) 
NIL 
RAP assembles LAP BLOCK forms. Necessary code for binding 
and unbinding Special variables is generated. ALIST is 
agumented with the name of lexical variables bound in this 
BLOCK •. The instructions in the BLOCK are assembled using 
INSP. RAP may be entered recursively. 

5.2.1.3 (INSP • 126) (I) 

Args: 
Side Effects: 
Description: 

5.2.1.4 (DECL 

Args: 
Value: 
Description: 

I is a LAP instruction or label. 
(LBDL • 127) 
If I is an Atom, a label definition is added to LBDL. 
If I is a Macro instruction, then it is expanded and the 
result assembled. Otherwise I is ,an ordinary 360 instruction 
and is, assembled by IMCH. 

126) (X) 

X is a list of variables 
A list of variables. 
If X is NIL then the value is "(RET.)". Otherwise the value 
is a copy of X with "RET," inserted as the next-to-1ast 
variable in the list, DECL is used by LAP 360 in dummying up 
a BLOCK for RAP. 

5.2.2 Assembler Pattern Matching Functions 

The fo1lm<1ing group of functions comprise the pattern-matching, instruction 
assembler portion of LAP. 

5',2.2.1 (LADR ~ 126) (X) 

Args: 
Side Effects: 

X is an ADR or HADR. 
(Rl • 122) 
(R2 , 122) 
(DELTA 122) 
(DPDP ,126) 

\ I 

/' 

- I 



o 

(,--, LI 

March 2, 1970 42 TM-4520 

Description: LADR converts address fields of instructions being assembled 
into displacement (DELTA), base and index. register (R1, R2) 
fields. The kinds of addresses handled are: variable, 
PUSH., POP., LABEL, QUOTE, FUNCTION, ENTRY, NUMBER, TOP., 
(displacement), (displacement, register), and (displacement, 
register, register). Hhen LADR has an option, R1 is given 
a non-zero value and R2 is given a zero value. 

5.2.2.2 (LAPR • 126) (X) 

Args: X is a register mnemonic or number. 
Description: The four-bit integer equivalent of X is placed in **** by 

PLHB. 

5.2.2.3 

Args: 

5.2.2.4 

Args: 

(LAPM • 216) (X) 

X is a mask mnemonic or number. The four bit integer equi­
valent of X is placed in **** by PLHB. 

(LAPH • 126) (X) 

X is a HADR 
Description: The HADR, X, is broken apart by LADR. The four-bit integer 

value of R1 and the twelve-bit integer value of DELTA are 
placed in **** by PLHB and PLTB respectively. 

5.2.2.5 (LAPA • 126) (X) 

Args: X is an ADR. 
Description: The ADR, X, is broken apart by LADR. The four-bit integer 

values of R1 and R2, and the twelve-bit integer value of 
DELTA are placed in **** by PLHB and PLTB respectively. 

5.2.2.6 

Args: 
Value: 

5.2.2.7 

Args: 

(REGD • 126) (R) 

R is a register mnemonic or number. 
The numeric equivalent of R. 

elMeH • 126) (S. P) 

S is the CDR of a 360 instruction to be assembled. 
P is a pattern describing the legal format of S. 

Description: P is a list of the following pattern parts; REG, ADR, MASK, 
HADR,'HB, BY, and SK which match, in a one for one manner 
items in the list S. The matched items are planted in core 
by LAPR, LAPA, LAPM, LAPH, PLHB, PLBY and DINK respectively. 

5.2.3 Assembler Macros 

The following group of functions are used for macro expansions of system­
provided LAP language forms. 



c' 

o 

o 

March 2, 1970 43 TM-4520 

5.2.3.1 (PUSH. • 126) (X) 

Args: 
Side Effects: 
Value: 
Description: ' 

X is a PUSH. pseudo-instruction. 
(DPDP • 126) 
NIL 
DPDP is incremented to allocate the appropriate number of 
bytes on the pushdown stack. 

5.2.3.2 (POP •• 126) (X) 

Args: 
Side Effects: 
Value: 
Description: 

X is a POP. pseudo-instruction. 
(DPDP. 126) 
NIL 
PDPD is decremented to return the appropriate number of 
bytes to the pushdown stack. 

5.2.3.3 (ARGS • 126) (X) 

Args: 
Side Effects: 
Value: 
Description: 

X is an ARGS pseudo-instruction. 
(CLST • 126) 
NIL 
The present value of DPDP is added to CLST. 

5 .. 2.3.4 (BGZM' • 126) (I) 

Args: 
Value: 
Description: 

I is either a BZM or BGZ pseudo-form. 
An equivalent 360 instruction. 
(BZM X(LABEL L» is (BXLE X 1 (LABEL L» 
(BGZ X(LABEL L» is (BXH X 1 (LABEL L» 

5.2.3.5 (CALL • 126) (C) 

Args: 

Side Effects: 

Value: 
Description: 

C is either a CALL, CALI, FASTCALL or SLOWCALL pseudo-
instruction. 
(DPDP . 126) 
(CLST • 126) 
NIL 
CALL plants in **** th~ appropriate code to make subroutine 
linkage. The stack increment is computed. A declaration, 
consistent with this use is computed. The pushdown pointer, 
DPDP, is adjusted to its value before this calling sequence 
and CLST has its top member popped. 

5.2.3.6 (LGPR • 126) (I) 

Args: 
Value: 
Description: 

I is either a G, P, R or Z pseudo-instruction. 
NIL 
The G, P, R, and Z pseudo-forms are used by the compiler 
for generating L, ST, C to register AC, and C to register 
ZERO instructions respectively. 

-----------------------------------------------------



C) 

(J 

March 2, 1970 44 TM-4520 

5.2.3.7 (LAPB • 126) (I) 

Args: 
Value: 
Description: 

I is either a D, E, B, T or F pseudo-instruction. 
NIL 
The D, E, B, T, and F pseudo-forms are used by the compiler 
for generative (BC DL), (BC E L), (BC A L), (BGZ AC L) and 
(BZM AC L) instructions respectively. "L" is a label. 

5.2.3.8 (LGO • 126) (I) 

Args: I is a GO pseudo-form. 
Value: (GO L) is equivalent to (BC A (LABEL L». 

5.2.4 Assembler Planter Functions 

The following group of functions are used to interface the system with non­
LISP data structures. 

5.2.4.1 (GENT • 126) (E) 

Args: 
Side Effects: 

Description: 

E is an entry name. 
(DELTA • 122) 
(Rl • 122) 
GENT finds the location of the entry E. 
DELTA is set to the byte displacement for E, relative to 
SORGo Rl is set to SORGo 

5.2.4.2 (ENTRY • 126) (L) 

Args: 
Value: 
Description: 

L is a list of entry definition information. 
A list of pairs of entry names and locations relative to SORGo 
Each entry definition in L is processed using ENTRYI. 

5.2.4.3 (ENTRYI .126) (E) 

Args: 
Side Effects: 

Value: 
Description: 

E is an entry definition. 
(ENTL • 126) 
(ELST . 126) 
A pair of the entry name and relative locations to SORGo 
The entry definition, E, is either an identifier entry name, 
implying a length of one word, or a list of entry name and 
length of the entry in words. The definition is put on ELST 
and ENTL is appropriately updated. 

5.2.4.4 (LGLA . 126) (L) 

Arg-s: 
Side Effects: 

Description: 

L is a label 
(DELTA • 122) 
(LBRL . 127) 
(Rl • 122) 
LGLA is used by the assembler to process label references. 
Rl is made CB and an appropriate DELTA is computed. When 
necessary, this reference is either added to, or a reference 
chain is started in LBRL • 

. . ---_ ....... _ .. - ---



o 

o 

March 2, 1970 45 TM-4520 

5.2.4.5 (GETHW • 126) (L) LAP 

Args: 
Value: 
Description: 

L'is an even,'non-negative LISP integer smaller than 4096. 
A sixteen bit LISP integer. 
The half-word in relative location L of the function is 
converted to a LISP integer. L is the byte address. 

5.2.4.6 (SETHW . 126) (L V) LAP 

Args: 

Side Effects: 
Description: 

L is an even, non-negative LISP integer smaller than 4096. 
V is a LISP number. 
(**** . 126) 
The number V, is truncated to sixteen bits and placed in the 
half-word of function **** specified by L. L is the relative 
byte address. 

5.2.4.7 (DINK . 126) 0 LAP 

Side Effects: 

Description: 

(LaC • 126) 
(****. 126) 
LaC is pointed at the next half-word of **** 
The half-word in **** specified by the updated value of LaC 
is cleared to zero. 

5.2.4.8 (PLHW". 126) (V) LAP 

Args: 
Side Effects: 
Description: 

V is a LISP integer. 
(**** . 126) 
PLHW truncates V to sixteen bits 
word of **** pointed to by LaC. 

and plants them at the half­
LaC is updated by DINK. 

5.2.4.9 (PLBY . 126) (V) LAP 

Args: 
Side Effects: 

Description: 

V is a LISP integer. 
(**** . 126) 
(HB . 126) 
PLBY truncates V to eight bits and plants them at the byt,e of 
**** pointed to by LaC and HB. HB is updated and. if nedes­
sary, LaC is updated by DINK: 

5.2.4.10 (PLTB • 126) (V) LAP 

Args: 
Side Effects: 

D7scription: 

V is a LISP integer~ 
(**** . 126) 
(HB • 126). 
PLTB truncates V to twelve bits and 
location pointed to by LaC and HB. 
necessary, LOC is updated by DINK. 

plants them at the 
HB is updated and, if 

------------_._--_._--_._---_ .. -------_._-_ .... _---_.-_ .. _--_._---_ ..... _. __ .. __ ._-_._ .. 



C) 

March 2, 1970 46 TM-4520 

5.2.4.11 (PLHB • 126) (V) LAP 

Args: 
Side Effects: 

Description: 

V is a LISP integer. 
(**** • 126) 
(HB • 126) 
PLHB truncates V to four bits and plants them at the location 
pointed to by LOC and HB. HB is updated and, if necessary, 
LOC is updated by DINK. 

5.2.4.12 (GNUH • 126) (N) 

Args: 
Side Effects: 

Description: 

N is a LISP number. 
entry NARY 
entry NUML 
(DELTA • 122) 
(Rl • 122) 

GNUM either finds an occu~rence of N in NARY or places N at 
the end of NARY. DELTA is set to the relative byte displace­
ment of the copy of N from SORGo Rl is set to SORGo NARY 
contains the non LISP numbers in the system created for 
NUMBER fields of LAP instructions. 

6. THE LISP 1.5 360 SUPERVISOR 

6.1 SUPERVISOR: PHILOSOPHY OF OPERATION 

The LISP supervisor controls the interaction process of the LISP system. Inputs 
are accepted from a terminal device and appropriately processed by the function, 
(SUPV • 122). Upon unwraps caused by various errors, SUPV is reentered. For . 
operating files in EDLISP format, the function, (LOADEXP . 0) is used. Figure Y 
shows the relationships among the various supervisor functions and control 
flow to the compiler and assembler. Supervisor functions and variables are 
customarily in Section 0 or Section 122, the system section. Compiler and 
Assembler functions and variables are customarily in Sections 127 and 126 
respectively. Common functions and variables may be in any of the Sections; 
0, 122, 126 or 127 

The supervisors, compiler and assembler's error reporting mechanism is imple­
mented by the use of the special variable (ERRFLG . 122). ERRFLGnormally has 
the value NIL, however, at determination of any error the value is changed to 
T. 



March 2, 1970 47 TM-4520 

(SUPV • 122) 

( LOADEXP .0) I 

. 

I (PAIRS . 122) 1 

I (EVAL • 0) I I (LAP. 122) I I (COMP • 122) I 

r (LAPl • 122) I I (COM1 • 122) I 
I 

I (LAP360 • 126)1 l (COMPILE • 127) -I 

Figure Y. 

o 



March 2, 1970 48 TM-4520 

:., .",,' .. ' 

6.2 SUPERVISOR: IMPLEMENTATION 

6.2.1 Supervisor Control Functions 

The following group of functions comprise the supervisor. 

6.2.1.1 (SUPV • 122) 0 
Description: . Pairs of expressions are read from the file "ITTY" and 

processed by the function PAIRS. The file "ITTY" is selected 
before reading but is not automatically used during the 
evaluation by pairs. 

6.2.1.2 

Args: 
Value: 

(LOADEXP • 0) (I) 

I is the identifier name of an opened input file. 
An identifier and several s-expressions. 

Description: An s-expression is read from the file 1. This s-expression 
is assumed to be in EDLISP file format, that is as list of 
an identifier and zero or more evalquote pairs. The value 
of LOADEXP is the identifier. 

6.2.1.3 

Args: 

Value: 

(PAIRS • 122) (A,B) 

A is an operator expression. 
B is a list of s-expressions. 
The value of the operator A applied to the list of argument 
B. 

Description: PAIRS applies the operator A to the arguments B and outputs 
this value using MESSAGE. If A is "DEFINE", "MACRO", or 
"INSTRUCTIONII , (COMP • 122) is used; if A is LAP, (LAP • 122) 
is used; otherwise EVAL is used with liQUOTEII wrapped around 
each argument in B. 

6.2.1.4 

Args: 
Bindings: 
Value: 

(EVAL • 0) (E) 

E is a LISP expression. 
( RRFLG • 122) 
The value obtained from E by evaluation. 

Description: The form E is compiled under a gensym name, operated and 
excised. 

6.2.1.5 

Args: 
Bindings: 
Value: 

(LAP • 122) (L) 

L is a list of LAP definitions 
(ERRFLG • 122) 
A list of entity names for the definitions in L. 

Description: The list of definitions in L are assembled by (LAP1 : 122). 

6.2.1.6 (COMP • 122) (L,K) 

Args: L is a list of LISP definitions. 
K is either IlMACRO II , "INSTRUCTION", or "DEFINE". 

------~--~.-----.--------



() 

March 2, 1970 

Bindings: 
Value: 
Description: 

49 TM-4520 

(ERRFLG • 122) 
A list of dotted entity names for the definitions in L. 
The list of definitions in L is compiled by (COMI . 122). 

6.2.1. 7 (L<\Pl • 122) (L) 

Args: 
Value: 
Description: 

L is a LAP definition. 
The dotted name of the assembled entity. 
(GBPI • 122) is used to initialize ****. 
(LAP360 • 126) then assembles the entity. If any errors 
were detected by the assembler, (EXCISE0 • 122) is used 
on *~'r;*.,: and assembly is terminated. Otherwise, the refer­
ence count of PRS words referenced by the assembled entity 
are appropriately incremented and (GBP2 • 122) is used to 
shorten **** and perform the PRS swap. 

6.2.1.8 (COMI • 122) (C,K) 

Args: 

Value: 
Description: 

C is a named lambda form. 
IC is either "MACRO Ii , "INSTRUCTION" or "DEFINE". 
The dotted name of the entity compiled or NIL. 
The form, C, is compiled using (COMPILE. 127). If any 
errors were detected by the compiler, the process is 
terminated at this point and NIL is returned. Othen.,ise 
the compilation is completed with (LAPI • 122). 

6.2.2 Supervisor, Compiler and Assembler Error Mechanism 

The following group of functions comprise the error reporting mechanism for 
the compiler and assembler. 

6.2.2.1 (LER2 • 122) (X,Y) 

Args: 
Description: 

X and Yare s-expressions. 
LER2 is used by LAP for output of error diagnostics. 
X and Yare CONSed and passed to (LERR • 122), 

6.2.2.2 (CER2 • 122) (X,Y) 

Args: 
Description: 

X and Yare any s-expressions. 
CER2 is used by the compiler and supervisor for output of 
error diagnostics. X and Yare CONSed and passed to (CERR 
• 122). 

6.2.2.3 (LERR , 122) (M) 

.l\rgs: 
Description: 

An error message issued by the assembler. 
LERR uses CERR. 

----_ .. _ ... -----------------'-------------



\ ,< 

o 

March 2, 1970 50 TM-4520 

6.2.2.4 (CERR • 122) (M) 

Args: 
Side Effect: 

M is an error message issued by the compiler .or supervisor. 
. (ERRFLG . 122) 

Description: ERRFLG is set to T. MESAGE is used to output the error 
message M. 

6.2.2.5 <. (WARN. 122) (M) 

Args: M is a warning message. 
Description: The warning message, M, is output by MESAGE. 

6.2.3 Miscellaneous Service Functions 

The following functions perform miscellaneous service functions. 

6.2.3.1 

Args: 

Value: 

(FINDN • 127) (I,L) 

I is any s-expression. 
Lisa list of dotted pairs. 
NIL or a. pair. 

Description: The list L is searched for the first pair whose first 
element EQs I. The pair so found is returned. If no such 
pair exists, the value NIL is returned. 

6.2.3.2 

Args: 

Value: 

(MEMB • 127) (I,L) 

I is any s~expression: 
L is any list. 
T or F 

Description: Identical to MEMBER, but EQ is used instead of EQUAL. 

6.2.3.3 (MQUO. 127) (Q) 

Args: Q is any s-expression. 
Value: 
Description: 

The list of "QUOTE" and Q. 
MQUO quotes its argument Q. 

6.2.3.4 

Args: 
Value: 

(CONP • 127) .(1) 

I is any s-expression. 
T or F 

Description: Determines 'if I is an atomic constant (includfng T or F). 

6.2.3.5 

Args.': 
,Value: 

(QUOP • 127) (Q) 

Q is any s-expression. 
T or F. 

Description: Determines ifQ isa QUOTEd expression. 

·6.2.3.6 (VARP • 127) (V) 

Args: V is any s-expression. 



" 

r'-' 
I \ 

~/ 

March 2, 1970 

Value: 
Description:. 

T or F. 

51 
(Last page) 

TM-4520 

Determines if V is a legal variable name in LISP (excludes 
T and F). 

6.2.3.7 (LVP • 127) (V) 

Args: 
Value: 
Description: 

V is any s-expression. 
T or F. 
Determines if V is a·legal variable name in LAP (includes T 
and F). 

'. 


