
..
The views, conclusions, or recommendations expressed in this document do not neces·
sarily reflect the official views or policies of agencies of the United States Government. T~c 2710/240/01

AUTHOR
: .. : " . .'

The research reported in this paper was sponsored by the
Advanced Research Projects Agency Information Processing
Techniques Office and was monitored by the Electronic
Systems Division, Air Force Systems Command under contract
F1962867COOOl. with the System Development Corporation.

C. Weissman, SDC

TECHNIC:t'~,-"",- ~~
Donna Firth, SDC

for J. I. Sch·-r1artz, SDC

System Development Corporation /2500 Colorado Avenue / Santa Monica, California 90406

Information International Inc./1l161 Pica Boulevard / Los Angeles, California 90064
DATE PAGE 1 OF~PAGES

9/16/66

LISP 2 Project

Input-Output

ABSTRACT

This document specifies the philosophy and mechanics
of LISP 2 input-output, which is designed for maximum
on-line interaction under time-sharing. LISP 2 data
files are described as the principal input-output
mechanism. These files may be created, positioned,
selected, read, written, and dismissed, dynamically,
at run-time, for the complete spectrwn of physical
1-0 devices available to the system. frhe user may
also control the external horizontal and vertical
page formatting of symbolic files.

The mechanics of Q-32 LISP 2 file management are also
described herein by specification of a collection of
1-0 variables and primitives.

(S) Copyright System Development Corporation and Information
International Incorporated 1966.

16 September 1966 2 TM-2710/240!Ol

1.

2.

CONTENTS

INPUT-OUTPUT : FILES.

·1.1 File Activation and Selection •.

1.1.1
1.1.2

OPEN Function •
SHUT Function •

1.1.2.1 File Disposition List ••

1.1.3 File Selection.

1.2 File Descriptions • • •

5

6

7
8·

8

9

.10

1.2.1 Entries in the· File Description • • • . • • • 10

1.2.1.1 Unit ••••• 10
1.2.1.2 Form ••••• . • . • 11

1.2.2

1.2.1.3 Connection ••
1.2.1.4 Protection ••
1.2.1.5 Identification.
1.2.1.6 Format ..

1.2.1.6.1
1.2.1.6.2

Record Length
Page Format

Reserved I/O Variables ••

INPUT-OUTPUT : FORMAT CONTROL, READING, PRINTING. •

2.1 Page Control Variables. • • • • •

2.1.1 Horizontal Control Variables.

2.1.1.1
2.1.1.2
2.1.1.3

Left Margin (LMG and ILMG). •
Right Margin (RMG and IRMG) • • • •
Maximum Column (MAXCOL and lMAXCOL) •

2.1.2 Vertical Control V~riables •••..••

2.1.2.1
2.1.2.2
2.1.2.3

Top Line (TOP and ITOP) • •
Bottom Line (BOT and IBOT) ••••••
Page Te~ination (PAGE and IPAGE) •

11
12
12
13

13
14

14

16

16.

16

16
17 .
18 '

18

18
18
18

•

i.

16 September 1966

2.1.3
2.1.4

3
(page 4 blank)

CONTENTS (Cont'd)

Specification of Control Variables •••••
Effect of Simultaneous Input and Output on
Page Control Variables. • •

TM-27l0/24o/0l

• • • • 19

19

2.2 Reading and Printing Functions. 20

2.3

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9

. READCR. • . . • •
PRINCR. •• ••••
PRINATOM. • • • • • •
PRINSTRING. • • • • • •
PRIN and PRINT.
READ. • • • • •
SYMPRIN and SYMPRINT. •
READWORD and PRINTWORD.
Symmetric Printing. •

Terminator Functions ••••

2.3.1
2.3.2
2.3.3

Line Terminators ••
Page Terminators .•
Record Terminators.

2 • 4 POSITION.......

2.5 Format Interrogation.

FIGURES

· • • • 20
20
21
21
21
22
22
22
22

23

23
• • • • 24

24

25

25

1. Page Format Controls Shown with output Control Variables. 17

2. Action Codes for POSITION. . • 26

3. Section IO Control Variables. 27

16 September 1966 5 TM-2710/24o/01

1. INPUT-OUTPUT: FILES

LISP input-output is based upon a set of primitive functions and variables that
is available to the user. Each input or output operation references, either
implicitly or explicitly, a specific file. A file is associated with a partic·.
ular device as declared by the user; the LISP meaning of the term "file" is the
same as the meaning normally assigned by a time-sharing system. A file is
device-dependent but direction-independent; the same file may be used for both
input and output, and with caution the file can be used for both purposes
simultaneously.

A file consists of a sequence of records. A record is stored as a LISP array
of type "OCTAL" if the file is binary and as a string if the file is symbolic.
To reduce buffer storage overhead, only one record for a given file can be in
main memory at a time. A file can contain any number of records.

A symbolic record consists of a sequence of lines, possibly only one. The num­
ber of lines per record depends upon either the physical device, the user's
requirements, or both. A line, in turn, consists of a sequence of characters.
The number of characters per line may be specified by the user within the limits
imposed by the physical device. If this number is not specified it is assumed
to be 72.

A binary record consists of a sequence of machine words of some user-controlled
number.

When a record is transmitted between a device and main memory, control characters
are usually required to indicate line formatting. Since these characters may
vary from device to device and machine to machine, LISP represents this informa­
tion in the form of an integer array of control words associated with the rfle.
When a record is transmitted from maihmemory to a device during output, the
control words are used to generate appropriate control characters. The process
is reversed during input. This editing process is called string post-proces!3ing.
The control array includes provisions- for the logical concept of a (printed)
~. There is no necessary relationship between page boundaries and record
boundaries, and the user can adjust page sizes to suit his format requiremeQts.
Page terminations are handled automatically in accordance with the information
in the control array.

A binary record is composed of a sequence of words. If a word is taken to oe a
single line, file control for binary files can be made to behave like that for
symbolic files. Externally, binary data records do not contain any control
information.

16 September 1966 6 TM-27l0/24o/0l

1.1 FILE ACTIVATION AND SELECTION

A file may be either available or inactive; an available file, in turn, may be
either selected or deselected. No record is kept within LISP of inactive files,
and no space is allocated for them. At any given time~ exactly one file is
selected for input and one for output; all other available files are deselected.
A single file can be selected for both input and output simultaneously. The
reading functions all operate on the' currently selected input file; the printing
functions all operate on the currently selected output file.

Each available file has associated with it the following four arrays for which
the user supplies the information:

(1) The data record string.

(2) An integer array of format control variables.

(3) A functional array of overflow and string post-processing
variables.

(4) A symbol array of miscellaneous control data.

When a file is selected, various locations within these arrays are bound to n
family of fluid locative variables. The reading or printing functions, as the
case may be, then access the file arrays through the family of variables. When
a file is deselected, the file arrays are frozen in their current state until
the file is again selected. The state is preserved (unless explicitly modified)
down to the level of the single character about to be read or printed.

Once a symbolic file is selected, the symbolic input-output primitives act only
on that file. Thus it is possible to write a LISP 2 program that is independent
of device, format, etc., by supplying the name of the file as an argument of the
program. For instance, one can debug a program by supplying input from teletype
that will ultimately come from tape; at the time of switch over, only the file
name need be changed.

There are four functions that change the state of a file. Each of them reference
a file name. These functions are:

(1) OPEN, which makes an inactive file available or creates a
new available file.

(2) SHUT, which makes an available file inactive.

(3) INPUT, which selects an available input file and deselects
the previous input file.

(4) OUTPUT, which selects an available output file and deselects
the previous output file.

Each of these will now be discussed in detail.

16 September 1966 7 TM-2710/24o/0l

1.1.1 OPEN Function

A file is created by evaluating the f'.lnction OPEN. OPEN establishes all neces­
sary communication linkages between LISP 2 and the time-sharing monitor, and
accomplishes the following:

(1) Creates an internal string sufficient in size to contain
one data record for the designated file.

(2) Creates an integer and a symbol array and sets their contents
with format and control 'information for the file.

(3) Creates a functional array and sets its contents with necessary
primitives for formatting and string post-processing.

(4) Declares information to the time-sharing monitor, enabling the
monitor to establish communication linkages with the external
storage medium designated for the file.

(5) Maintains a list of all available file names and their
descriptions as the value of fluid variable FILES.; all
active file names are derived from the value of fluid
variable FILES. and returned as the value of OPEN. OPEN
uses FILES. to check for redundant or conflicting file names.

(6) Stores the file's name and description as a dotted pair on
the list bound to variable FILES.

OPEN is a function of two arguments and has the form

OPEN(name,desc)

where name is the name of the file being created and desc is a description of
the file.

The name of the file being created must be a LISP 2 identifier. The first six
characters of the name will be used by Q-32 LISP 2 as the internal name for the
file in establishing its communication linkages with the time-sharing monitQr.
Therefore, the first six characters ~ust be unique among all previously opened
files. For file names of less than six characters, OPEN will create a six-

-character name by filling the remaining character positions with blanks.

The description of a file is a list of flags and dotted pairs of attributes and
variables, in property-list format. This list specifies the unit, form,
connection, protection, identification, and format of the file, and is discu'r;F'
in Section 1.2. Except for nonstandard input-output operations, the user need
not concern himself with the construction of a file description list, since he
can use an appropriate standard description. The standard descriptions are
specified in Section 1.2.2.

16 September 1966 8 TM-27l0/24o/0l

1.1.2 SHUT Function

A file created by OPEN may be made inactive and purged from LISP 2 by evaluating
the function SHUT. SHUT breaks all the communication linkages and deletes all
internal structure·s such as arrays, strings, and variables that were dynamically
established by OPEN. Before purging the file, SHUT communicates to the time­
sharing monitor the disposition of the file, e.g., add the file to a permanent
inventory, delete all file references, change the protection mode of the file,
change the file name, etc. The value of SHUT is all the active file names
derived from the value of the fluid variable FILES .•

SHUT is a function of two arguments, and has the form

SHUT(name, disp)

name must be a LISP 2 identifier naming an available file, i.e., a file name
previously used with OPEN. If name is not in the list FILES., then SHUT has
no effect. disp is a list of dotted pairs of attributes and values specifying
the disposition of the file.

SHUT does not cause any data to be moved out of the file; it is left to the
user to call for an ENDOUTR and POSITION(WEOF.), when appropriate, before
calling SHUT.

1.1.2.1 File Disposition List

The dotted pair

(FILE • x)

in the file disposition list is used to communicate to the time-sharing monitor
the inventory action desired for the file. The action is specified by the
parameter x. For Q-32 LISP 2, x may be SAVE or DELETE. Saved files are inven­
toried and may be accessed at a later date by the use of the flag OLD (cf.
Section 1.2.1.3) as the connection mode of an OPEN call. DELETEd files will
not be inventoried and will disappear. If the CDR of the FILE pair is DELETE,
no further disposition parameters are meaningful.

The dotted pair

(NAME • file-name)

may be used to change the name of the saved file in the time-sharing system
inventory. If this parameter is absent, the file name under which the file was
opened will be used. In either cas.e, SHUT may be forced to query the on-line
user for a new file name if the file name (a name local to LISP) conflicts vith
a name already in the inventory.

16 September 1966 9 TM-27l0/24o/0l

The dotted pair

(PROTECT • y)

may be used to change the file protection of the saved file. If this parameter
is absent, the protection mode under 'Nhich the file was opened will be used
(cf. Section 1.1.3.4). For Q-32 LISP 2, this parameter will be ignored.

The dotted pair

(LOG • z)

may be used to log a message on the operator's console. The parameter z is that
message, in the form of a LISP 2 S-expression. LOG is useful for giving
directions to console operators, labels to tapes, etc.

1.1.3 File Selection

The file selection calls are of the form

INPUT(name)
OUTPUT(name)

where ~ is the name of an active file, i.e., used in a previous OPEN call.
INPUT is the function used for selecting input files for reading. OUTPUT is the
function used for selecting output files for printing. The value of INPUT or
OUTPUT is the file name previously selected. By using INPUT or OUTPUT as the
second argument of an assignment expression, the name of the previously selected
file can be. saved for subsequent reselection, e.g.,

x+OUTPUT(name)

will save the name of the deselected file as the value of symbol variable x;
subsequently, the expression

OUTPUT(x)

can be used to res elect the previously deselected file.

When a file is selected, the locations of the four arrays that specify the state
of the file are retrieved. The flui~ locative variables that are used by the
reading and printing primitives are then bound to various locations within the~e
arrays. Through this mechanism, one file can be deselected and another selectc~
without any extraneous data copying, 'and yet the control variables for reading
and printing can be accessed through a single point that is independent of whicll
file is currently selected.

16 September 1966 10 TM-27l0/240/0l

Selection and deselect ion have no effect on the state of a file (i.e., the
state of its control parameters). Thus, deselection of files is permitted in
the middle of lines and records. A partial line or record exists in terms of
the state of the file's control parameters.

1.2 FILE DESCRIPTIONS

A file description specifies various relevant properties of the file. It is
initialized at the time that a file is opened; some of the properties can be
altered later (cf. Section 2). In Q-32 LISP, the changeable parameters are
HORIZONTAL, VERTICAL, OVERFLOW, and PROTECT. The following properties may
appear:

UNIT
FORM
PROTECT
REEL
SCOPE
NAME
RECORD
HORIZONTAL
VERTICAL
OVERFLOW

In addition, either or neither of the flags NEW and OLD may appear. All of these
properties and flags will be discussed in the following SUbsections.

A property may appear more than once in a file description; in this case, the
first appearance from the left is the one that counts. Thus, properties may
be added at the front of a standard file description to modify that file
description. For example, one might 'call

OPEN('TAPEOl, '(REEL. 1234) . TAPE.)

to open file TAPEOI with reel 1234 and the standard tape file format as described
by the system variable TAPE. (cf. Section 1.2.2).

1.2.1 Entries in the File Description

1.2.1.1 Unit

A file is unit-dependent, because LISP 2 uses the unit type of file to establish
the proper communication linkages with the time-sharing monitor, and to set up
the correct string post-processing for the file. Thus one element of the file
desc_ription list must be a dotted pair designating the unit type. For example,
the dotted pair

(UNIT • TTY)

16 September 1966 11 TM-2710/24o/0l

designates the on-line typewriter or ~eletype as the unit for a particular file
by the presence of the identifier TTY as the CDR of the dotted pair. Similarly,

(UNIT • DISC)
(UNIT • TAPE)
(UNIT • CORE)
(UNIT • CRT)

will designate disc, tape, core, and CRT (scope display), respectively, as the
unit for a file.

1.2.1.2 Form

Symbolic data will be represented internally in LISP 2 as 8-bit ASCII characters.
However, not all external media use this standard, and conversion will be required.
These conversions will be performed by primitives as part of string post-processing.

At least two types of symbolic converters will be required for Q-32 LISP 2. The
converter is specified by the value of the attribute FORM in the file description
list. The value may be ASCII, BCD, or BINARY.

Q-32 teletypes use a 12-bit representation of ASCII 8-bit code. The dotted
pair

(FORM • ASCII)

will be used to invoke a 12-bit to 8-bit (for teletype input) or an 8-bit to 12-
bit (for teletype output) converter. ASCII may also be used with tape and disc
with appropriate conversion performed.

(FORM . BCD)

will be used to invoke a 6-bit to 8-bit, or 8-bit to 6-bit converter.

(FORM . BINARY)

specifies a binary file, and_no conversion is necessary, because a simple blnary
record will be transferred to and from the file. When a binary file is selected,
the primitive functions READW9RD and PRINWORD must be used, rather than READ and
PRINT.

1.2.1.3 Connection

When OPEN establishes communication linkages with the time-sharing monitor, LISP
must tell the monitor how to connect the external file to its internal storage
area. LISP is made aware of whether or not the file already exists in the file
inventory of the time-sharing monitor by means of a connection flag, which is
one of the identifiers "NEW" or "OLD." The user is responsible for specifying
the connection flag which is part of the file description list; if it does not
appear, NEW is assumed. If the file is an old file, the monitor will connect

16 Ceptember 1966 12 TJl1-2710 /240 I 01

LISP to the existing copy of it; if the file is a new file, the monitor will'
allocate storage for the file on the requested external device and then connect
LISP to the device.

1.2.1.4 . Protection

File security is a difficult problem in time-sharing systems, and data files
must be protected by the monitor from inadvertent or maliciqus acquisition by
unauthorized persons. In LISP 2, the presence of the dotted pair

(PROTECT . x)

in the file description list is used to convey "keys" to lock or unlock various
protected files. The nature of the parameter x depends upon the protection
schemes provided by the monitor.

For Q-32 LISP 2, all files are assumed to be private to the current user. Also
an interpretive protection scheme will be provided with Q-32 LISP 2. The para­
meter x is a list that may contain the identifiers READ or WRITE, or both. If
READ is present, the file will be READ-protected (i.e., reading is prohibited).
If WRITE is present, writing (printing) is prohibited. The prohibition mechanism
works through the functions INPUT and OUTPUT already discussed. The functions
will balk if a protected file is selected for input or output. As a further
protection for tape files, the "ring" will be removed from the physical tape for
WRITE-protected tape files. For other LISP 2 implementations, the parameter. x
can designate a password, a protection code, an executable protection function,
a change of protection code, or a combination of these.

1.2.1.5 Identification

This parameter is optional, and used where it is desired to identify a specific
physical unit. The dotted pair is of the form

(y • z)

where y and z take on the following values for Q-32 LISP 2.

Unit

TAPE REEL

CRT SCOPE

DISC NAME

z Comment

n ~ 9999 Physical reel number; if identification
\ parameters absent, a default of reel n=O

(scratch tape) will be assumed.

I ~ n ~ 6 Physical scope number.

identifier Disc file name. If it is different from
the first argument of OPEN, it will be
used as the name of the file for communi­
cation with the time-sharing system.

"II, ,

16 September 1966 13 TM-27l0/240/0l

For other LISP 2 implementation, y and z may take on other values and meanings.

1.2.1.6 Format

The last dimension of a file to be considered is its format. Format means the
external organization of the file, particularly its blocked structure and its
printed structure. Within the physical limitations of the hardware, the user
may control these formats; if he does not, the system will set the necessary
parameters by default. These dotted pairs, like the prior parameters, are top­
level elements of the file description list.

1.2.1.6.1 Record Length. The format parameter RECORD specifies the number of
lines to be blocked in each record. This parameter is permanent for the life
of a file. The dotted pair is of the form

(RECORD • n)

where n is the integer number of lines. It is imperative that n be at least
the number of lines in records being read from an external unit. That is, if
a tape is written by LISP 2 (or any other system) as n lines per record, then
it must be read with n lines per record, otherwise data can be lost. For Q-32
LISP 2, and for most time"-sharing systems in general , it is desirable to read
or write maximum-sized records for faster I/O. The following table specifies
the upper bound on n for Q-32 LISP 2 units.

Unit

TTY

TAPE

DISC

CRT*

CORE*

*

Form

ASCII

BCD

n Max

1

30

BCD 20

ASCII optional

BINARY optional

BCD 50

ASCII optional

BINARY optional

680 n

optional

n Default

1

30

50

680

1

Comment

Record = 1 line of 72 characters

Line - card image of 72 characters

Line - 120 characters

Line _ optional

Line - binary word

Line _ card image of 72 characters
plus 8 control characters

Line _ optional

Line _ binary word
I

Line _ binary word; 1 ~ n ~ 3

Default will consider a CORE file = 1
record = 1 line of optional character

size

These units are not currently available for Q-32.

16 September 1966 14 TM-2110/24o/01

1.2.1.6.2 Page Format. Page format is controlled by the three properties
HORIZONTAL, VERTICAL, and OVERFLOW. The effects of these parameters are described
in detail in Section 2.1.

Briefly, HORIZONTAL has three parameters associated with it: a left margin, a
right margin, and a maximum column. These parameters in section IO are accessible
for the currently selected file through the fluid variables LMG, RMG, and MAXCOL,
respectively for output, and ILMG, IRMG, and IMAXCOL, respectively for input. The
fluid variables are bound to the parameter values when the file is selected. The
property is stored in the file description list in the form

(HORIZONTAL. (x y z))

where x, y, and z are integers specifying the left margin, right margin, and
maximum column, respectively •

. Similarly, VERTICAL has an upper line boundary, a lower line boundary, and S~

page boundary. For output, these are represented, in section IO, respectively
by the fluid variables TOP, BOT, and PAGE, and for input by the fluid variables
ITOP, IBOT, and IPAGE. The property is stored in the file description list in
the form

(VERTICAL. (x y z))

where x, y, and z are integers specifying the upper line boundary, the lower
line boundary, and the page boundary, respectively. If the column counter moves
beyond a right-hand column boundary, or if the line counter moves below a lower
boundary, an overflow condition results. Overflow can also result from exceeding
a record boundary. Overflow actions ~or the record boundary, the maximum column
and the page boundary are built into the system; those for the right margin and
the lower line boundary can be specified by the user. These are specified by
the property

(OVERFLOW • (x y))

where x and y are functional constants (of no arguments and NOVALUE) that specify
the actions to be taken for right margin and lower line boundary overflow,
respectively.

1.2.2 Reserved I/O Variables

There is a set of reserved variables whose values are file descriptions for
various input-output devices. These file descriptions may be modified as described
at the beginning of Section 1.2. The variables and their values are as follows:

16 September 1966 15 TM-2710/240/0l

(1) TTY. «UNIT. TTY) (FORM. ASCII) (RECORD • 1)

(HORIZONTAL • (1 73 72»)

(2) DISC. «UNIT • DISC) (FORM • BCD) (RECORD • 50)

(HORIZONTAL • (1 73 80» (VERTICAL (1 51 50»)

(3) TAPE. «UNIT. TAPE) (FORM • BCD) (RECORD • 30)

(HORIZONTAL • (1 73 80» (VERTICAL • (1 51 50»)

(4) CORE. ((UNIT CORE) (FORM • ASCII) (RECORD. 1»

(5) CRT. ((UNIT • CRT) (FORM • BINARY) (RECORD • 680»

CORE will eventually be used as an input-output unit in order to cause the
printing and reading functions to generate or absorb internal strings. It is
not implemented currently on Q-32 LISP 2.

16 September 1966 16 TM-27l0/24o/I)1

2. INPUT-OUTPUT: FORMAT CONTROL, READING, PRINTING

The format of a printed page is specified at the time that a symbolic file is
opened, and may be modified subsequently. The various format variables are
specified in Section 2.1. The reading and printing functions are specified in
Section 2.2, and methods of modifying and interrogating the format variables.
are described in subsequent sections. All input-output variables are FLUID,
LOC and are in section IO.

2.1 PAGE CONTROL VARIABLES

The structure of a printed page is logically considered to have two directions:
horizontal and vertical. The horizontal position is measured in columns and
the vertical position is measured in lines. The printed page is shown schema­
tically in Figure 1 and variables are shown for output only. Each output
variable has an identical input variable counterpart, the name of which is pre­
fixed with an "I." For example, CURCOL is an output variable and ICURCOL is the
input counterpart.

At any given time, the variable CURCOL has an integer value specifying the current
output column, and the variable CURLINE has an integer value specifying the
current output line. If a single character is printed, it will appear in the
column and line specified by CURCOL end CURLINE on the selected output file.
(If a file is deselected and reselected later, the values of CURCOL and CURLlNE at
the time of reselection are the same as those at the time of deselection.) The
corresponding variables for input are ICURCOL and ICURLINE; if a single character
is read, it will be the character in the column and line specified by ICURCOL and
ICURLINE.*

'.
2.1.1 Horizontal Control Variables

2.1.1.1 Left Margin (LMG and ILMG)
\

The fluid variable LMG has as its value a positive integer specifying the left
margin for output. When a new line is started because of termination of the
previous line by the function ENDOUT, CURCOL is initialized to LMG. The character
positions preceding LMG are filled with blanks. Text can be formatted dynamically
by changing the value of LMG.

The input variable corresponding to LMG is ILMG. When a new line is startea be­
cause of termination of the previous1line by the function ENDIN, ICURCOL is
initialized to ILMG. The characters preceding ILMG are ignored.

*Whereas changes to CURCOL (e.g., CURCOL+27) position current column controls,
changes to CURLINE (e.g., CURLINE+12) do not position current line controls.
CURLINE changes only affect vertical overflow controls. To skip or space
n lines, call ENDOUT (or ENDIN) n times.

16 September 1966

1
2
3
4

LMG

17

.

CURCOL

TM-27l0/24o/0l

• • • • 120

~TOP

RMG MAXCOL

CURLINE --~

50 ~------------------------------------~

Figure 1. Page Format Controls Shown with Output Control Variables

2.1.1.2 Right Margin (RMG and IRMG)

RMG acts like the bell on a typewriter and warns the user that he is nearing the
end of the output line. For each invocation of the character output function
PRINCH (cf. Section 2.2.2), a check is made before the character is output to
see if the condition CURCOL = RMG holds. If so, the RMG overflow function is
invoked. RMG overflow is not invoked if CURCOL > RMG, so that if the right mar­
gin is bypassed, no RMG overflow will occur. The RMG overflow function is a
functional constant of no arguments specified by the user or defaulted to ENDOUT
by the system. Possible actions a user might take include inserting a hyphenator
and ending the line. RMG may be greater than MAXCOL: in this case, HMG overflow
will never occur.

The variable IRMG designates the right margin for the input file. IRMG overflow
is invoked if, upon invoking the character reading function HEADCH (cf. Section
2.2.1), prior to the actual character read, the condition ICURCOL = IRMG holds.
In all other respects the behavior of IRMG is exactly analogous to the behavior
of RMG except that the system default functional constant is ENDIN.

16 September 1966 18 TM-27l0/240/01

2.1.1.3 Maximum Column (MAXCOL and lMAXCOL)

MAXCOL specifies the highest-numbered column in the output line. Before each
application of PRINCR, a check is made to see if CURCOL > MAXCOL. If so, the
line terminator ENDOUT (cf. Section 2.3.1) is invoked. MAXCOL must be constant
over the life of a file arid should never be changed by the user. The user can

-specify MAXCOL when a file is OPENed, otherwise it will default to 72 characters
for teletype and 80 characters for tape and disc files on the Q-32.

Similarly, I~MXCOL specifies the highest-numbered column in the input line.
Before each application of READCR, a check is made to see if ICURCOL > lMAXCOL.
If so, the line terminator ENDIN (cf. Section 2.3.1) is invoked. lMAXCOL, like
MAXCOL, is constant over the life of a file.

The user is cautioned that lMAXCOL must be exactly equal to the size of lines
being read from the designated device, or else file compatibility cannot be
guaranteed and data will be garbled.

2.1.2 Vertical Control Variables

2.1.2.1 Top Line (TOP and ITOP)

The fluid variable TOP specifies the top line· of an output page, and the fluid
variable ITOP specifies the top line of an input page. When page overflow occurs,
the function ENDOUTP is executed and causes the line counter CURLINE to be set to
TOP and also causes the correct number of' lines to be spaced over. Similarly,
ENDINP causes the line counter ICURLINE to be set to ITOP and causes the correct
number of lines to be ignored.

2.1.2.2 Bottom Line (BOT and IBOT)

BOT designates a warning point for an output page in the same way that RMG desig­
nates a warning point for an output line. When the condition CURLINE = BOT
occurs immediately after ENDOUT has incremented CURLINE, the BOT overflow function
is invoked. In other words, BOT overflow occurs just before line BOT is about
to be printed. The BOT overflow function, specified by the user as in Section
1.2.1.6.2, might, for example, cause a trailer to be printed. BOT overflow can be
suppressed entirely by setting BOT > PAGE. The behavior of IBOT is entirely
analogous.

2.1.2.3 Page Termination (PAGE and IPAGE)

Output page termination occurs when, immediately after CURLINE has been incre­
mented by ENDOUT, the condition CURLINE > PAGE obtains. At this point the page
is terminated and the function ENDOUTP is invoked to move to the top of the next
page. Similarly, input page termination occurs when ICURLINE > IPAGE with ENnINP
invoked to move to the top of the next page.

16 September 1966 19 TM-2710/24o/01

2.1.3 Specification of Control Variables

The initial values of LMG, RMG, and the RMG overflow function are determined by
the HORIZONTAL and OVERFLOW properties in the file description list (cf. Section
1.2.1.6.2). They may be altered for a given file whenever that file is selected
for input or output (cf.. Section 1.1.3) by setting any of the variables LMG,'
RMG, RMGO or ILMG, IRMG, IRMGO in section IO.

RMGO and IRMGO are FUNCTIONAL FLUID LaC variables that name the functional con­
stant of no arguments and no value invoked at right margin overflow for output
and input, respectively. The other variables are all INTEGER FLUID LaC.

If the condition

1 ~ LMG < RMG

is not satisfied, HORIZONTAL properties have no effect and the default values
are used.

Similarly, the initial values of TOP, BOT, and the BOT overflow function are
determined by the VERTICAL and OVERFLOW properti~s in the file description
list.

Again, as with HORIZONTAL properties, VERTICAL properties may be altered for a
given file whenever it is selected by setting any of the variables TOP, BOT,
BOTO, or ITOP, IBOT, IBOTO in sectior. IO. BOTO and IBOTO are FUNCTIONAL FLUID
LaC variables that name the functional constant of no arguments and no value
invoked at bottom-of-the-page overflow for output and input, respectively.
The other variables are all INTEGER :E'LUID LaC.

The condition

1 ~ TOP < BOT

must always be guaranteed.

2.1.4 Effect of Simultaneous Input and Output on Page Control Variables

If input and output are done simultaneously on the same file, then all of the
input control variables coincide with the corresponding output control variables.
For example, the variables CURLlNE and ICURLINE will ,both take their values from
the same cell. The result is that any change to an input variable will cause a
corresponding change in an output variable, and conversely. It also follows
that the input page format and output page format will be the same unless ~hey
are changed whenever there is a shift from input to output, or conversely. ;

16 September 1966 20 TM-27l0/240/0l

2.2 READING AND PRINTING FUNCTIONS

The reading and printing functions al~ays operate on the currently selected
input or output file. They are thus file-independent,. and may be used without
knowledge of which file is currently selected, providing the file has the
proper FORM. The primitive functions for BCD or ASCII forms are READCR and
PRINCR; the other functions are programmed in terms of these. The reading and
printing functions do not themselves' specify any of the· format parameters, but
they do make use of the format parameters that already exist.

Certain of these functions are sensitive to symmetric printing; that is, they
will print LISP 2 data types (strings and identifiers) with unusual spellings,
so that they may be read back by LISP 2 from the output file as the same
internal data types from which they were printed. A full discussion of sym­
metric printing is provided in Section 2.2.9.

As a mnemonic aid, all print primitives that drop the "t" in their names, e.g.,
PRIN, PRINCR, etc., do not evaluate ENDOUT (cf. Section 2.3) and do not termi­
nate the current line. Those that use the full spelling of "print" in their
names do terminate the current line by evaluating a final ENDOUT. In general,
the read primitives do not evaluate ENDIN (cf. Section 2.3), and thus do not
terminate the current line.

2.2.1 READCR

READCR is a fUnction of no arguments. It reads the current character of the
line and returns that character as a one-character identifier; it also incre­
ments ICURCOL by one. All format and overflow controls are in effect. If l~ne
or record overflow is encountered, the next line or record will be positioned
by ENDIN or ENDINR, and the value of READCR will be the ASCII null character
(OQ). Thus, READCR can be used to test for line or record boundaries. Since
these conditions return OQ, the INTEGER FLUID LOC, variables ISTATUS in section
IO)as discussed below, can be used to remove the ambiguity.

READCR will also return OQ if it is impossible to read the next character becaus~
a· physical (tape) or logical (disc) end-of-file or end-of-medium was encountered.
Again ISTATUS can be used to clarify the nature of the read failure. When an
end-of-medium condition obtains, READCH locks out further reading. (See Figure
2 for unlocking by means of IKEY.)

2.2.2 PRINCH

PRINCH is a function of one argument, a one-character identifier that is also
returned as its value. The character is entered in the line at the current .',
column, and CURCOL is incremented by one. All format and overflow controls are
in effect. If line or record overflow is encountered, ENDOUT or ENDOUTR will be
evaluated. For symmetry with READCR, PRINCH will accept the null character. (OQ)
as its argument. The null character is treated by PRINCH as a line termination,
i.e.,

PRINCH(null character) ~ ENDOUT()

16 September 1966 21 TM-27l0/24o/0l

PRINCH does not call END OUT unless line overflow occurs, or its argument is
the null character (OQ).

2.2.3 PRINATOM

PRINATOM is a fUnction of one argument, which is a LISP 2 atom that is also
returned as its value. The print name of the atom is entered in the line,
starting at the current column. All format and overflow controls are in effect
with ENDOUT automatically called if line overflow is encountered. PRINATOM
does not normally cal~ ENDOUT, and after evaluation, CURCOL marks the column
of the line following the last character of the atom's print name.

Many atoms, such as numbers and Booleans, have no print names. For these cases
special primitives, such as TOSTRG and PRINSTRING, will be called to print
these atoms. (TOSTRG is a conversion fUnction that converts any atom to a
string.)

PRINATOM will apply special primitives for atoms with unusual spellings. as
described in Section 2.2.9.

PRINATOM will split atoms across line boundaries if they cannot fit on a line.
For cases where this is intolerable, the function FITATOM should be used.
FITATOM is entirely analogous to PRINATOM but attempts to fit the atom on one
line, calling ENDOUT if necessary, prior to entering any characters. FITATOM
will probably fail for symmetric printing since the number of characters to be
printed cannot be computed prior to printing when a pre-print logic is used.

2.2.4 PRINSTRING

PRINSTRING is a function of one argument, a LISP 2 string, that is also returned
as its value. The string is taken literally as its print name and entered in
the line starting at the current column, as if each character in the string were
printed with PRINCH. All format and overflow controls are in effect with ENDOUT
automatically called if line· overflow is encountered. When line overflow does
occur, the balance of the printed string is printed, beginning in Column I of
the next. line. PRINSTRING does not normally call ENDOUT, and after evaluation
CURCOL marks the column of the line following the last character of the string.

PRINSTRING can be used to print a string with unusual spelling so that it has
READ symmetry (cf. Section 2.2.9).

2.2.5 PRIN and PRINT

PRIN is a function of one argument, an S-expression, that is also the value of
PRIN. Starting at the current column, PRIN enters left and right parentheses,
dots (set off with blanks), and print names for all atoms in the S-expression,
in list notation format. Atom print names are entered in the line by primitive
PRINATOM. PRIN does not provide symmetric printing. PRINT is PRIN plus a
final ENDOUT.

16 September 1966 . 22 TM-27l0/240/iJl

All format overflow controls are in effect with ENDOUT automatically called if
line overflow is encountered. PRIN does not terminate with a final ENDOUT;
therefore, after evaluation, CURCOL marks the column of the line following the
last character of the S-expression.

2.2.6 READ

READ is a function of no arguments. Its value is the next S-expression in the
file beginning at the current column. If line overflow occurs, READ automatically
calls ENDIN. READ does 'not normally terminate with ENDIN, and therefore the cur­
rent column is set to the next column following the last character of the S­
expression read, when a self-delimiting datum such as a list or string is read.
All other format and overflow controls are in effect.

READ operates by combining tokens into atoms and list structures as directed by
the structure of the S-expression being read. READ calls upon a finite state
machine to supply these tokens. The finite state machine uses READCR to read
characters in the file, which it converts into LISP 2 tokens. Thus, READ does
not directly concern itself with the processes of searching and maintaining the
list of existing identifiers, composing numbers, making strings and the like.
These are more efficiently performed by the finite state machine.

2.2.7 SYMPRIN and SYMPRINT

SYMPRIN is a symmetric PRIN (cf. Section 2.2.9) whose argument and value are a
LISP 2 S-expression. SYMPRIN is symmetric because it prints the S-expression
in such a way that the printout, when read back in by LISP, will yield,
internally, the identical S-expression~ In all other ways, SYMPRIN is like
PRIN. SYMPRINT is SYMPRIN plus a final ENDOUT.

2.2.8 READWORD and PRINTWORD

These two primitives are used with binary files exclusively. ENDIN and ENDOuT
\

for READWORD and PRINTWORD, respectively, are always invoked since a word and a
line are equivalent for binary files:

READWORD is a function of no arguments, whose value for Q-32 LISP 2 is a 16-
digit octal number contained in the current word of the octal array for the re­
cord. READWORD advances control to the next word, after evaluation.

PRINTWORD is a function of one argument, an octal number, that is returned as the
value of the function. PRINTWORD enters the octal number into the current word of
the octal array for the record and advances control to the next word.

2.2.9 Symmetric Printing

The identifier "ABC" will always pri~t as "ABC" and will always be read as the
identifier "ABC" since there is nothing unusual about the spelling of the identifier.
On the other hand, the spelling "AB)C" can never be read as an identifier because
of the unusual spelling (the contained parenthesis is not a period, letter, or
number). If one wishes this spelling for the identifier, he must spell it as
"%#AB)C#". But on output, normal printing will yield "AB)C" and again one can. not
read the spelling back in as an identifier. Similarly, if one wishes to read the
characters "AB)C" as a string he must spell it as n#AB)C#". Normal printing of this

16 September 1966 23 TM-2710/24o/01

string yields "AB)C", and here also one can not read the spelling back in as a
string, its original internal form. For these reasons, one must have a means for
telling LISP 2 to print unusually spelled identifiers and strings with read
symmetry.

PRMODE (print mode) is a fluid Boolean system variable in section SYS used to
tell the print primitives PRINSTRING and PRINATOM how to print unusually spelled
identifiers and strings. If PRMODE = TRUE, symmetric printing is requested. If
PRMODE = FALSE, normal printing is desired. PRMODE is set to FALSE at the top
level.

When PRIN (PRINT) is evaluated, PRIN locally binds PRMODE to FALSE before calling
PRINSTRING and PRINATOM to print elements of an S-expression. In this way,
regardless of the higher-level binding of PRMODE, normal printing is guaranteed.
Conversely, SYMPRIN (SYMPRINT) binds PRMODE locally to TRUE to guarantee symmetric
printing. Thus, the user may use PRIN (PRINT) or SYMPRIN (SYMPRINT) to print
S-expressions normally or symmetrically without concern with the state of PRMODE.
However, if he uses PRINSTRING or PRINATOM and is concerned with which print
representation he gets, he should bind PRMODE appropriately prior to evaluating
PRINSTRING or PRINATOM.

2.3 TERMINATOR FUNCTIONS

There are six terminator functions, as follows:

input output

line ENDIN ENDOUT

page ENDINP ENDOUTP

record \ENDINR ENDOUTR

All of these are functions of no arguments, and no value. They are evaluated
for their effect on the page control variables. For files with BINARY form
only ENDINR and ENDOUTR have meaning.

2.3.1 Line Terminators

The line terminator END OUT terminates ~rinting of the current line of the out­
put file and advances the control variables to the next line of the file.
ENDOUT causes the following actions:

\

(1) Fill the current line with blanks up to MAXCOL.
(2) If the record is full, call ENDOUTR.
(3) Increment CURLINE by 1.
(4) Set CURCOL to LMG.
(5) If CURLINE = BOT, call BOTO.
(6) If CURLINE > PAGE, call ENDOUTP.

The line terminator ENDIN is entirely analogous; characters on the current line
that have not yet been read are ignored.

16 September 1966 24 TM-2710/24o/01

2.3.2 Page Terminators

The page terminator ENDOUTP terminates printing of the current page of the old put
file and advances the control variables to the top line of the next page. ENDOUTP
calculates the number of blank lines needed and calls ENDOUT an appropriate number
of times. CURLlNE is then set to TOP. The behavior of ENDINP is analogous.

2.3.3 Record Terminators

The functions ENDINR and ENDOUTR are seldom called explicitly by the user, but
rather are called by other input-output functions such as the line terminators.
When they are evaluated they terminate the file record currently in core. For
ENDINR, that means loading another record from the external medium; for ENDOUTR,
it means dumping the current core record onto the external medium. To achieve
these operations it is necessary for the record terminators to invoke string
post-pr?cesses that:

(1) Read or write a raw external core image from or to the
external medium.

(2) Delete or insert requisite format information.

(3) Translate raw charact'~r codes from 12 to 8 bits, 8 to 12
bits, 6 to 8 bits, 8 to 6 bits, from tape, teletype, and
disc standards.

The required string post-processing is determined from the file description .. .
ENDINR and ENDOUTR perform essentially the same actions (though in a different
order) and are explained here in terms of output variables:

(1) Clear record-string (to blanks for symbolic files, to zero
for binary files).

(2) Load or dump external core image.

(3) Perform string post~processing.

(4) Set CURCOL = LMG (for symbolic files only).

Note that the record terminators do not invoke the line terminators so that ,any
partially filled line may be lost after a record terminator is evaluated. Also
note that the line terminators invoke the record terminators only when record
overflow is encountered. When reading blocked records, it is sometimes desirable
to explicitly evaluate ENDINR before a record is fully read, thus initializing
the file controls to the first line qf the next record. When printing blocked
records, a final ENDOUTR should be evaluated before quitting for the day, or
before SHUT is evaluated; otherwise, any data in a partially filled record will
be lost.

16 September 1966 25 TM-21l0/24o/01

2.4 POSITION

POSITION is a function of two arguments that positions the current record of
the file. It also allows various termination marks (e.g., end-of-file, end-of­
tape) to be written in the file. It. has the form:

POSITION(name, action)

where name is the name of an available file, and action is a reserved input-.
output variable that describes the position action desired, e.g., rewind, skip
file, etc. The variable evaluates to a positive decimal integer, the action
code for a file operation. The value of POSITION depends on the action desired.

For many files, particularly TTY, CRT, and CORE units, POSITION acts as a NOP
with a value of NIL. NIL is also returned for illegal action codes. For
POSITION, a record corresponds to a record on tape, and a sector on disc.
Furthermore, many physical files, separated by an end-of-file mark, may exist
on tape; however, only one file is permitted on disc. Therefore, it is impos­
sible to POSITION beyond a disc end-of-file, but you can POSITION past a tape
end-of-file at your own risk.

The legal action codes, values, and their meanings are given in Figure 2.

2.5 FORMAT INTERROGATION

All input-output control variables are available for examination or change as
FLUID LOC variables of various types in section 10. Therefore, by "tailing"
to section IO one has easy access to these variables. For example, one could
define a new function TABO that advances the current column of the selected
output file to some desired legal column and returns the original column as
output.

INTEGER FUNCTION TABO (COL) INTEGER COL

BLOCK (X+CURCOL$IO) INTEGER X:

IF COL>MAXCOL$IO OR COL<1 THEN GO EXIT ELSE

CURCOL$IO+COL;

EXIT: RETURN X;

END;

Not all 10 variables are modifiable and caution should be used in setting or
binding them. Figure 3 is a complete statement of these variables and their
use.

Action
Variable

SKIPR.

SKIPF.

WEOF.

WEOT.

REWIND.

BACKR.

BACKF.

KEY.

Value Action

1 Skip to line 1 of next record

2 Skip to line 1 of next tape
file--or to the end-of-file
mark of this disc file

3

4

5

6

7

8

Write an end-of-file mark at
current line of file

Write an end-of-file mark at
current line of tape file;
action" 3 for disc files

Backup to line lof'file
(rewind)

Backup to line 1 of prior
record

Backup to last line (just before
end-of-line) of prior tape file;
action 5 for disc files

Unlocks READCH. for further
reading. READCH locks out
further reading if an end-of­
medium is ever encountered

Value

• EOF t if next record is an end-of-file

• n t the number of non-EOFrecords skipped

• EOT t if next record is an end-of~tape

• If EOF encountered',. tape positioned after
EOF mark t disc positioned at EOF mark
(can be overwritten)

file name

Figure 2. Action Codes for POSITION

~
0\

til
(1)

~

~
(1)
ti

J-I
\0
0\
0\

I\)
0\

~
I\)
~
J-I o
........
I\)
.I:""
o
o
f-'

-------._-,_ .. _------- '-----_ ..•.. __ ._.' .. _-------. __ .• _--------_. __ .. _- ---------_ .. _-- .. ,., ... ,., .. , .. ,,- -_ .. " ,,--_ .. , .. _--------_..... ., ... _ _- . ----. "_. " .. __ ._. __

Name

LMG(ILMG)

RMG(IRMG)

TOP(ITOP)
I •

BOT(IBOT)

PAGE(IPAGE)

CURCOL(ICURCOL)

CURLINE(ICURLINE)

SUMLlNE(ISUMLINE)

STATUS(ISTATUS)

-.. ~.

SECTOR(ISECTOR)

SIZE(ISIZE)

COUNT(ICOUNT)

RMGO(IRMGO)

BOTO(IBOTO)

~

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Range
of

Value

l-MAXCOL

1- 00

l-PAGE

1- 00

1- 00

l-MAXCOL

I-PAGE

I-RECORD

1- 00

O-(8n-l)

1- 00

Use

Left-most column of a line--margin control

Right-most column of a line--margin control

Top-most line of a page--margin control

Bottom-most line of a page--margin control

Maximum line of a page

Current column of a line

Current line of a page

Current line of a record

Status code for last output (input) record transfer
according to the following:

1 = end of line
2 = end of record
3 = end of file
4 = end of medium
greater than 4 = error condition

Current disc sector being accessed. There are 8
sectors/track, where n = track number.

Generally means number of words read into core in
last ENDINR for tape or disc files.

INTEGER IOO-lOOn Next card ,number, n, times 100 for Q-32 disc output
files. Required for non-LISP service routine
compatibility.

FUNCTIONAL No value Right margin overflow function
No argument
Function name

FUNCTIONAL No value Bottom line overflow function
No ar~ent
Function name

Figure 3. Section 10 Control Variables

I-'
0'\

m
ro
~

CD

5-
CD
~

I-'
\0
0'\
0'\

N
-:J

~
I
I\)
~
I-'
o

.......
I\)
.::­
o

.......
0,
I-'

..

Name

KEY(IKEY)

IJ.AXCOL(IMAXCOL)

RECORD(IRECORD)

WPL(IWPL)

NAME(INAME)

MAXSEC(IMAXSEC)

MOVE(IMOVE)

XXFUNC

xx S AVE

CURFN(ICURFN)

CPW

BuFLOC(IBUFLOC)

Range
of

~ Value

FUNCTIONAL No value
No argument
Function name

Use

Function executed by READCH if file locked

(The following variables are used internally by LISP 2 input-output
and should never be changed by a user after a file has been opened.)

INTEGER

INTEGER

INTEGER

INTEGER

Device-dependent Maximum column of a line

Device-dependent Maximum line of a record

Device-dependent Number of machine words/line

Variable

INTEGER 8n-l

FUNCTIONAL No value
No argument
Function name

FUNCTIONAL Symbol value
No argument
Function name

SYMBOL Character atom
or NIL

SYMBOL File name

INTEGER 6

ARRAY OCTAL Variable
FLUID

An integer that in octal represents the first 6
characters of the BCD file name.

The maximum possible disc sector allocated for
file; n = number of tracks allocated.

String post-processing function

Function used by the finite state machine to get
next character when called by READ

Delimiter saved by the finite state machine during
token parsing for backup

Currently selected file name

Machine dependent parameter for ASCII character
packing/word

Array name for internal string record

Figure 3. Section IO Control Variables (Continued)

...,
0\

CJl
(1)

~
(1)

~
(1)
t1
...,
\Q
0\
0\

f\)
())

~
I
f\)
~ ...,
o
f\)
+="" o

.......
o ...,

4

Name'

BUFIX

LINELOC(ILINELOC)

FIXLOC

~

ARRAY OCTAL
FLUID

OCTAL

OCTAL

Range
of

Value

Variable

Variable

Variable

Use

Array name for internal 10 buffer

Interrial address of the line indicated by SUMLINE

Internal address of header word of internal IO
buffer

Figure 3. Section 10 Control Variables (Continued)

t-J
0'\

Ul
en

td
c+
en
S-
en
t1

t-J
\0
0'\
0'\

-t-J
P'
en
c+f\)

td
P'

oq
en -

\0

~
I
f\)
--.:J
t-J
o

" l\)
.s::­
o

" o
t-J

'"
\

